1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1CardLiveData.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/g1/suspendibleThreadSet.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 #include "utilities/align.hpp"
  61 #include "utilities/growableArray.hpp"
  62 
  63 void G1CMBitMap::print_on_error(outputStream* st, const char* prefix) const {
  64   _bm.print_on_error(st, prefix);
  65 }
  66 
  67 size_t G1CMBitMap::compute_size(size_t heap_size) {
  68   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
  69 }
  70 
  71 size_t G1CMBitMap::mark_distance() {
  72   return MinObjAlignmentInBytes * BitsPerByte;
  73 }
  74 
  75 void G1CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
  76   _covered = heap;
  77 
  78   _bm = BitMapView((BitMap::bm_word_t*) storage->reserved().start(), _covered.word_size() >> _shifter);
  79 
  80   storage->set_mapping_changed_listener(&_listener);
  81 }
  82 
  83 void G1CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
  84   if (zero_filled) {
  85     return;
  86   }
  87   // We need to clear the bitmap on commit, removing any existing information.
  88   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
  89   _bm->clear_range(mr);
  90 }
  91 
  92 void G1CMBitMap::clear_range(MemRegion mr) {
  93   MemRegion intersection = mr.intersection(_covered);
  94   assert(!intersection.is_empty(),
  95          "Given range from " PTR_FORMAT " to " PTR_FORMAT " is completely outside the heap",
  96          p2i(mr.start()), p2i(mr.end()));
  97   // convert address range into offset range
  98   _bm.at_put_range(addr_to_offset(intersection.start()),
  99                    addr_to_offset(intersection.end()), false);
 100 }
 101 
 102 G1CMMarkStack::G1CMMarkStack() :
 103   _max_chunk_capacity(0),
 104   _base(NULL),
 105   _chunk_capacity(0) {
 106   set_empty();
 107 }
 108 
 109 bool G1CMMarkStack::resize(size_t new_capacity) {
 110   assert(is_empty(), "Only resize when stack is empty.");
 111   assert(new_capacity <= _max_chunk_capacity,
 112          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
 113 
 114   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::allocate_or_null(new_capacity);
 115 
 116   if (new_base == NULL) {
 117     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 118     return false;
 119   }
 120   // Release old mapping.
 121   if (_base != NULL) {
 122     MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::free(_base, _chunk_capacity);
 123   }
 124 
 125   _base = new_base;
 126   _chunk_capacity = new_capacity;
 127   set_empty();
 128 
 129   return true;
 130 }
 131 
 132 size_t G1CMMarkStack::capacity_alignment() {
 133   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 134 }
 135 
 136 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 137   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 138 
 139   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 140 
 141   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 142   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 143 
 144   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 145             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 146             _max_chunk_capacity,
 147             initial_chunk_capacity);
 148 
 149   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 150                 initial_chunk_capacity, _max_chunk_capacity);
 151 
 152   return resize(initial_chunk_capacity);
 153 }
 154 
 155 void G1CMMarkStack::expand() {
 156   if (_chunk_capacity == _max_chunk_capacity) {
 157     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 158     return;
 159   }
 160   size_t old_capacity = _chunk_capacity;
 161   // Double capacity if possible
 162   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 163 
 164   if (resize(new_capacity)) {
 165     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 166                   old_capacity, new_capacity);
 167   } else {
 168     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 169                     old_capacity, new_capacity);
 170   }
 171 }
 172 
 173 G1CMMarkStack::~G1CMMarkStack() {
 174   if (_base != NULL) {
 175     MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::free(_base, _chunk_capacity);
 176   }
 177 }
 178 
 179 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 180   elem->next = *list;
 181   *list = elem;
 182 }
 183 
 184 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 185   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 186   add_chunk_to_list(&_chunk_list, elem);
 187   _chunks_in_chunk_list++;
 188 }
 189 
 190 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 191   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 192   add_chunk_to_list(&_free_list, elem);
 193 }
 194 
 195 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 196   TaskQueueEntryChunk* result = *list;
 197   if (result != NULL) {
 198     *list = (*list)->next;
 199   }
 200   return result;
 201 }
 202 
 203 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 204   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 205   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 206   if (result != NULL) {
 207     _chunks_in_chunk_list--;
 208   }
 209   return result;
 210 }
 211 
 212 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 213   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 214   return remove_chunk_from_list(&_free_list);
 215 }
 216 
 217 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 218   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 219   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 220   // wraparound of _hwm.
 221   if (_hwm >= _chunk_capacity) {
 222     return NULL;
 223   }
 224 
 225   size_t cur_idx = Atomic::add(1, &_hwm) - 1;
 226   if (cur_idx >= _chunk_capacity) {
 227     return NULL;
 228   }
 229 
 230   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 231   result->next = NULL;
 232   return result;
 233 }
 234 
 235 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 236   // Get a new chunk.
 237   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 238 
 239   if (new_chunk == NULL) {
 240     // Did not get a chunk from the free list. Allocate from backing memory.
 241     new_chunk = allocate_new_chunk();
 242 
 243     if (new_chunk == NULL) {
 244       return false;
 245     }
 246   }
 247 
 248   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 249 
 250   add_chunk_to_chunk_list(new_chunk);
 251 
 252   return true;
 253 }
 254 
 255 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 256   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 257 
 258   if (cur == NULL) {
 259     return false;
 260   }
 261 
 262   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 263 
 264   add_chunk_to_free_list(cur);
 265   return true;
 266 }
 267 
 268 void G1CMMarkStack::set_empty() {
 269   _chunks_in_chunk_list = 0;
 270   _hwm = 0;
 271   _chunk_list = NULL;
 272   _free_list = NULL;
 273 }
 274 
 275 G1CMRootRegions::G1CMRootRegions() :
 276   _cm(NULL), _scan_in_progress(false),
 277   _should_abort(false), _claimed_survivor_index(0) { }
 278 
 279 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 280   _survivors = survivors;
 281   _cm = cm;
 282 }
 283 
 284 void G1CMRootRegions::prepare_for_scan() {
 285   assert(!scan_in_progress(), "pre-condition");
 286 
 287   // Currently, only survivors can be root regions.
 288   _claimed_survivor_index = 0;
 289   _scan_in_progress = _survivors->regions()->is_nonempty();
 290   _should_abort = false;
 291 }
 292 
 293 HeapRegion* G1CMRootRegions::claim_next() {
 294   if (_should_abort) {
 295     // If someone has set the should_abort flag, we return NULL to
 296     // force the caller to bail out of their loop.
 297     return NULL;
 298   }
 299 
 300   // Currently, only survivors can be root regions.
 301   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 302 
 303   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 304   if (claimed_index < survivor_regions->length()) {
 305     return survivor_regions->at(claimed_index);
 306   }
 307   return NULL;
 308 }
 309 
 310 uint G1CMRootRegions::num_root_regions() const {
 311   return (uint)_survivors->regions()->length();
 312 }
 313 
 314 void G1CMRootRegions::notify_scan_done() {
 315   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 316   _scan_in_progress = false;
 317   RootRegionScan_lock->notify_all();
 318 }
 319 
 320 void G1CMRootRegions::cancel_scan() {
 321   notify_scan_done();
 322 }
 323 
 324 void G1CMRootRegions::scan_finished() {
 325   assert(scan_in_progress(), "pre-condition");
 326 
 327   // Currently, only survivors can be root regions.
 328   if (!_should_abort) {
 329     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 330     assert((uint)_claimed_survivor_index >= _survivors->length(),
 331            "we should have claimed all survivors, claimed index = %u, length = %u",
 332            (uint)_claimed_survivor_index, _survivors->length());
 333   }
 334 
 335   notify_scan_done();
 336 }
 337 
 338 bool G1CMRootRegions::wait_until_scan_finished() {
 339   if (!scan_in_progress()) return false;
 340 
 341   {
 342     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 343     while (scan_in_progress()) {
 344       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 345     }
 346   }
 347   return true;
 348 }
 349 
 350 uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 351   return MAX2((n_par_threads + 2) / 4, 1U);
 352 }
 353 
 354 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 355   _g1h(g1h),
 356   _markBitMap1(),
 357   _markBitMap2(),
 358   _parallel_marking_threads(0),
 359   _max_parallel_marking_threads(0),
 360   _sleep_factor(0.0),
 361   _marking_task_overhead(1.0),
 362   _cleanup_list("Cleanup List"),
 363 
 364   _prevMarkBitMap(&_markBitMap1),
 365   _nextMarkBitMap(&_markBitMap2),
 366 
 367   _global_mark_stack(),
 368   // _finger set in set_non_marking_state
 369 
 370   _max_worker_id(ParallelGCThreads),
 371   // _active_tasks set in set_non_marking_state
 372   // _tasks set inside the constructor
 373   _task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
 374   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 375 
 376   _has_overflown(false),
 377   _concurrent(false),
 378   _has_aborted(false),
 379   _restart_for_overflow(false),
 380   _concurrent_marking_in_progress(false),
 381   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 382   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 383 
 384   // _verbose_level set below
 385 
 386   _init_times(),
 387   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 388   _cleanup_times(),
 389   _total_counting_time(0.0),
 390   _total_rs_scrub_time(0.0),
 391 
 392   _parallel_workers(NULL),
 393 
 394   _completed_initialization(false) {
 395 
 396   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 397   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 398 
 399   // Create & start a ConcurrentMark thread.
 400   _cmThread = new ConcurrentMarkThread(this);
 401   assert(cmThread() != NULL, "CM Thread should have been created");
 402   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 403   if (_cmThread->osthread() == NULL) {
 404       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 405   }
 406 
 407   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 408 
 409   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 410   satb_qs.set_buffer_size(G1SATBBufferSize);
 411 
 412   _root_regions.init(_g1h->survivor(), this);
 413 
 414   if (ConcGCThreads > ParallelGCThreads) {
 415     log_warning(gc)("Can't have more ConcGCThreads (%u) than ParallelGCThreads (%u).",
 416                     ConcGCThreads, ParallelGCThreads);
 417     return;
 418   }
 419   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 420     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 421     // if both are set
 422     _sleep_factor             = 0.0;
 423     _marking_task_overhead    = 1.0;
 424   } else if (G1MarkingOverheadPercent > 0) {
 425     // We will calculate the number of parallel marking threads based
 426     // on a target overhead with respect to the soft real-time goal
 427     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 428     double overall_cm_overhead =
 429       (double) MaxGCPauseMillis * marking_overhead /
 430       (double) GCPauseIntervalMillis;
 431     double cpu_ratio = 1.0 / os::initial_active_processor_count();
 432     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 433     double marking_task_overhead =
 434       overall_cm_overhead / marking_thread_num * os::initial_active_processor_count();
 435     double sleep_factor =
 436                        (1.0 - marking_task_overhead) / marking_task_overhead;
 437 
 438     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 439     _sleep_factor             = sleep_factor;
 440     _marking_task_overhead    = marking_task_overhead;
 441   } else {
 442     // Calculate the number of parallel marking threads by scaling
 443     // the number of parallel GC threads.
 444     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 445     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 446     _sleep_factor             = 0.0;
 447     _marking_task_overhead    = 1.0;
 448   }
 449 
 450   assert(ConcGCThreads > 0, "Should have been set");
 451   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 452   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 453   _parallel_marking_threads = ConcGCThreads;
 454   _max_parallel_marking_threads = _parallel_marking_threads;
 455 
 456   _parallel_workers = new WorkGang("G1 Marker",
 457        _max_parallel_marking_threads, false, true);
 458   if (_parallel_workers == NULL) {
 459     vm_exit_during_initialization("Failed necessary allocation.");
 460   } else {
 461     _parallel_workers->initialize_workers();
 462   }
 463 
 464   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 465     size_t mark_stack_size =
 466       MIN2(MarkStackSizeMax,
 467           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 468     // Verify that the calculated value for MarkStackSize is in range.
 469     // It would be nice to use the private utility routine from Arguments.
 470     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 471       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 472                       "must be between 1 and " SIZE_FORMAT,
 473                       mark_stack_size, MarkStackSizeMax);
 474       return;
 475     }
 476     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 477   } else {
 478     // Verify MarkStackSize is in range.
 479     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 480       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 481         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 482           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 483                           "must be between 1 and " SIZE_FORMAT,
 484                           MarkStackSize, MarkStackSizeMax);
 485           return;
 486         }
 487       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 488         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 489           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 490                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 491                           MarkStackSize, MarkStackSizeMax);
 492           return;
 493         }
 494       }
 495     }
 496   }
 497 
 498   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 499     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 500   }
 501 
 502   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
 503   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 504 
 505   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 506   _active_tasks = _max_worker_id;
 507 
 508   for (uint i = 0; i < _max_worker_id; ++i) {
 509     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 510     task_queue->initialize();
 511     _task_queues->register_queue(i, task_queue);
 512 
 513     _tasks[i] = new G1CMTask(i, this, task_queue, _task_queues);
 514 
 515     _accum_task_vtime[i] = 0.0;
 516   }
 517 
 518   // so that the call below can read a sensible value
 519   _heap_start = g1h->reserved_region().start();
 520   set_non_marking_state();
 521   _completed_initialization = true;
 522 }
 523 
 524 void G1ConcurrentMark::reset() {
 525   // Starting values for these two. This should be called in a STW
 526   // phase.
 527   MemRegion reserved = _g1h->g1_reserved();
 528   _heap_start = reserved.start();
 529   _heap_end   = reserved.end();
 530 
 531   // Separated the asserts so that we know which one fires.
 532   assert(_heap_start != NULL, "heap bounds should look ok");
 533   assert(_heap_end != NULL, "heap bounds should look ok");
 534   assert(_heap_start < _heap_end, "heap bounds should look ok");
 535 
 536   // Reset all the marking data structures and any necessary flags
 537   reset_marking_state();
 538 
 539   // We do reset all of them, since different phases will use
 540   // different number of active threads. So, it's easiest to have all
 541   // of them ready.
 542   for (uint i = 0; i < _max_worker_id; ++i) {
 543     _tasks[i]->reset(_nextMarkBitMap);
 544   }
 545 
 546   // we need this to make sure that the flag is on during the evac
 547   // pause with initial mark piggy-backed
 548   set_concurrent_marking_in_progress();
 549 }
 550 
 551 
 552 void G1ConcurrentMark::reset_marking_state() {
 553   _global_mark_stack.set_empty();
 554 
 555   // Expand the marking stack, if we have to and if we can.
 556   if (has_overflown()) {
 557     _global_mark_stack.expand();
 558   }
 559 
 560   clear_has_overflown();
 561   _finger = _heap_start;
 562 
 563   for (uint i = 0; i < _max_worker_id; ++i) {
 564     G1CMTaskQueue* queue = _task_queues->queue(i);
 565     queue->set_empty();
 566   }
 567 }
 568 
 569 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 570   assert(active_tasks <= _max_worker_id, "we should not have more");
 571 
 572   _active_tasks = active_tasks;
 573   // Need to update the three data structures below according to the
 574   // number of active threads for this phase.
 575   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 576   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 577   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 578 }
 579 
 580 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 581   set_concurrency(active_tasks);
 582 
 583   _concurrent = concurrent;
 584   // We propagate this to all tasks, not just the active ones.
 585   for (uint i = 0; i < _max_worker_id; ++i)
 586     _tasks[i]->set_concurrent(concurrent);
 587 
 588   if (concurrent) {
 589     set_concurrent_marking_in_progress();
 590   } else {
 591     // We currently assume that the concurrent flag has been set to
 592     // false before we start remark. At this point we should also be
 593     // in a STW phase.
 594     assert(!concurrent_marking_in_progress(), "invariant");
 595     assert(out_of_regions(),
 596            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 597            p2i(_finger), p2i(_heap_end));
 598   }
 599 }
 600 
 601 void G1ConcurrentMark::set_non_marking_state() {
 602   // We set the global marking state to some default values when we're
 603   // not doing marking.
 604   reset_marking_state();
 605   _active_tasks = 0;
 606   clear_concurrent_marking_in_progress();
 607 }
 608 
 609 G1ConcurrentMark::~G1ConcurrentMark() {
 610   // The G1ConcurrentMark instance is never freed.
 611   ShouldNotReachHere();
 612 }
 613 
 614 class G1ClearBitMapTask : public AbstractGangTask {
 615 public:
 616   static size_t chunk_size() { return M; }
 617 
 618 private:
 619   // Heap region closure used for clearing the given mark bitmap.
 620   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 621   private:
 622     G1CMBitMap* _bitmap;
 623     G1ConcurrentMark* _cm;
 624   public:
 625     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 626     }
 627 
 628     virtual bool doHeapRegion(HeapRegion* r) {
 629       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 630 
 631       HeapWord* cur = r->bottom();
 632       HeapWord* const end = r->end();
 633 
 634       while (cur < end) {
 635         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 636         _bitmap->clear_range(mr);
 637 
 638         cur += chunk_size_in_words;
 639 
 640         // Abort iteration if after yielding the marking has been aborted.
 641         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 642           return true;
 643         }
 644         // Repeat the asserts from before the start of the closure. We will do them
 645         // as asserts here to minimize their overhead on the product. However, we
 646         // will have them as guarantees at the beginning / end of the bitmap
 647         // clearing to get some checking in the product.
 648         assert(_cm == NULL || _cm->cmThread()->during_cycle(), "invariant");
 649         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 650       }
 651       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 652 
 653       return false;
 654     }
 655   };
 656 
 657   G1ClearBitmapHRClosure _cl;
 658   HeapRegionClaimer _hr_claimer;
 659   bool _suspendible; // If the task is suspendible, workers must join the STS.
 660 
 661 public:
 662   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 663     AbstractGangTask("G1 Clear Bitmap"),
 664     _cl(bitmap, suspendible ? cm : NULL),
 665     _hr_claimer(n_workers),
 666     _suspendible(suspendible)
 667   { }
 668 
 669   void work(uint worker_id) {
 670     SuspendibleThreadSetJoiner sts_join(_suspendible);
 671     G1CollectedHeap::heap()->heap_region_par_iterate(&_cl, worker_id, &_hr_claimer);
 672   }
 673 
 674   bool is_complete() {
 675     return _cl.complete();
 676   }
 677 };
 678 
 679 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 680   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 681 
 682   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 683   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 684 
 685   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 686 
 687   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 688 
 689   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 690   workers->run_task(&cl, num_workers);
 691   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 692 }
 693 
 694 void G1ConcurrentMark::cleanup_for_next_mark() {
 695   // Make sure that the concurrent mark thread looks to still be in
 696   // the current cycle.
 697   guarantee(cmThread()->during_cycle(), "invariant");
 698 
 699   // We are finishing up the current cycle by clearing the next
 700   // marking bitmap and getting it ready for the next cycle. During
 701   // this time no other cycle can start. So, let's make sure that this
 702   // is the case.
 703   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 704 
 705   clear_bitmap(_nextMarkBitMap, _parallel_workers, true);
 706 
 707   // Clear the live count data. If the marking has been aborted, the abort()
 708   // call already did that.
 709   if (!has_aborted()) {
 710     clear_live_data(_parallel_workers);
 711     DEBUG_ONLY(verify_live_data_clear());
 712   }
 713 
 714   // Repeat the asserts from above.
 715   guarantee(cmThread()->during_cycle(), "invariant");
 716   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 717 }
 718 
 719 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 720   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 721   clear_bitmap(_prevMarkBitMap, workers, false);
 722 }
 723 
 724 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 725   G1CMBitMap* _bitmap;
 726   bool _error;
 727  public:
 728   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 729   }
 730 
 731   virtual bool doHeapRegion(HeapRegion* r) {
 732     // This closure can be called concurrently to the mutator, so we must make sure
 733     // that the result of the getNextMarkedWordAddress() call is compared to the
 734     // value passed to it as limit to detect any found bits.
 735     // end never changes in G1.
 736     HeapWord* end = r->end();
 737     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 738   }
 739 };
 740 
 741 bool G1ConcurrentMark::nextMarkBitmapIsClear() {
 742   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 743   _g1h->heap_region_iterate(&cl);
 744   return cl.complete();
 745 }
 746 
 747 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 748 public:
 749   bool doHeapRegion(HeapRegion* r) {
 750     r->note_start_of_marking();
 751     return false;
 752   }
 753 };
 754 
 755 void G1ConcurrentMark::checkpointRootsInitialPre() {
 756   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 757 
 758   _has_aborted = false;
 759 
 760   // Initialize marking structures. This has to be done in a STW phase.
 761   reset();
 762 
 763   // For each region note start of marking.
 764   NoteStartOfMarkHRClosure startcl;
 765   g1h->heap_region_iterate(&startcl);
 766 }
 767 
 768 
 769 void G1ConcurrentMark::checkpointRootsInitialPost() {
 770   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 771 
 772   // Start Concurrent Marking weak-reference discovery.
 773   ReferenceProcessor* rp = g1h->ref_processor_cm();
 774   // enable ("weak") refs discovery
 775   rp->enable_discovery();
 776   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 777 
 778   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 779   // This is the start of  the marking cycle, we're expected all
 780   // threads to have SATB queues with active set to false.
 781   satb_mq_set.set_active_all_threads(true, /* new active value */
 782                                      false /* expected_active */);
 783 
 784   _root_regions.prepare_for_scan();
 785 
 786   // update_g1_committed() will be called at the end of an evac pause
 787   // when marking is on. So, it's also called at the end of the
 788   // initial-mark pause to update the heap end, if the heap expands
 789   // during it. No need to call it here.
 790 }
 791 
 792 /*
 793  * Notice that in the next two methods, we actually leave the STS
 794  * during the barrier sync and join it immediately afterwards. If we
 795  * do not do this, the following deadlock can occur: one thread could
 796  * be in the barrier sync code, waiting for the other thread to also
 797  * sync up, whereas another one could be trying to yield, while also
 798  * waiting for the other threads to sync up too.
 799  *
 800  * Note, however, that this code is also used during remark and in
 801  * this case we should not attempt to leave / enter the STS, otherwise
 802  * we'll either hit an assert (debug / fastdebug) or deadlock
 803  * (product). So we should only leave / enter the STS if we are
 804  * operating concurrently.
 805  *
 806  * Because the thread that does the sync barrier has left the STS, it
 807  * is possible to be suspended for a Full GC or an evacuation pause
 808  * could occur. This is actually safe, since the entering the sync
 809  * barrier is one of the last things do_marking_step() does, and it
 810  * doesn't manipulate any data structures afterwards.
 811  */
 812 
 813 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 814   bool barrier_aborted;
 815   {
 816     SuspendibleThreadSetLeaver sts_leave(concurrent());
 817     barrier_aborted = !_first_overflow_barrier_sync.enter();
 818   }
 819 
 820   // at this point everyone should have synced up and not be doing any
 821   // more work
 822 
 823   if (barrier_aborted) {
 824     // If the barrier aborted we ignore the overflow condition and
 825     // just abort the whole marking phase as quickly as possible.
 826     return;
 827   }
 828 
 829   // If we're executing the concurrent phase of marking, reset the marking
 830   // state; otherwise the marking state is reset after reference processing,
 831   // during the remark pause.
 832   // If we reset here as a result of an overflow during the remark we will
 833   // see assertion failures from any subsequent set_concurrency_and_phase()
 834   // calls.
 835   if (concurrent()) {
 836     // let the task associated with with worker 0 do this
 837     if (worker_id == 0) {
 838       // task 0 is responsible for clearing the global data structures
 839       // We should be here because of an overflow. During STW we should
 840       // not clear the overflow flag since we rely on it being true when
 841       // we exit this method to abort the pause and restart concurrent
 842       // marking.
 843       reset_marking_state();
 844 
 845       log_info(gc, marking)("Concurrent Mark reset for overflow");
 846     }
 847   }
 848 
 849   // after this, each task should reset its own data structures then
 850   // then go into the second barrier
 851 }
 852 
 853 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 854   SuspendibleThreadSetLeaver sts_leave(concurrent());
 855   _second_overflow_barrier_sync.enter();
 856 
 857   // at this point everything should be re-initialized and ready to go
 858 }
 859 
 860 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 861 private:
 862   G1ConcurrentMark*     _cm;
 863   ConcurrentMarkThread* _cmt;
 864 
 865 public:
 866   void work(uint worker_id) {
 867     assert(Thread::current()->is_ConcurrentGC_thread(),
 868            "this should only be done by a conc GC thread");
 869     ResourceMark rm;
 870 
 871     double start_vtime = os::elapsedVTime();
 872 
 873     {
 874       SuspendibleThreadSetJoiner sts_join;
 875 
 876       assert(worker_id < _cm->active_tasks(), "invariant");
 877       G1CMTask* the_task = _cm->task(worker_id);
 878       the_task->record_start_time();
 879       if (!_cm->has_aborted()) {
 880         do {
 881           double start_vtime_sec = os::elapsedVTime();
 882           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 883 
 884           the_task->do_marking_step(mark_step_duration_ms,
 885                                     true  /* do_termination */,
 886                                     false /* is_serial*/);
 887 
 888           double end_vtime_sec = os::elapsedVTime();
 889           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 890           _cm->do_yield_check();
 891 
 892           jlong sleep_time_ms;
 893           if (!_cm->has_aborted() && the_task->has_aborted()) {
 894             sleep_time_ms =
 895               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 896             {
 897               SuspendibleThreadSetLeaver sts_leave;
 898               os::sleep(Thread::current(), sleep_time_ms, false);
 899             }
 900           }
 901         } while (!_cm->has_aborted() && the_task->has_aborted());
 902       }
 903       the_task->record_end_time();
 904       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 905     }
 906 
 907     double end_vtime = os::elapsedVTime();
 908     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 909   }
 910 
 911   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 912                             ConcurrentMarkThread* cmt) :
 913       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 914 
 915   ~G1CMConcurrentMarkingTask() { }
 916 };
 917 
 918 // Calculates the number of active workers for a concurrent
 919 // phase.
 920 uint G1ConcurrentMark::calc_parallel_marking_threads() {
 921   uint n_conc_workers = 0;
 922   if (!UseDynamicNumberOfGCThreads ||
 923       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 924        !ForceDynamicNumberOfGCThreads)) {
 925     n_conc_workers = max_parallel_marking_threads();
 926   } else {
 927     n_conc_workers =
 928       AdaptiveSizePolicy::calc_default_active_workers(max_parallel_marking_threads(),
 929                                                       1, /* Minimum workers */
 930                                                       parallel_marking_threads(),
 931                                                       Threads::number_of_non_daemon_threads());
 932     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 933     // that scaling has already gone into "_max_parallel_marking_threads".
 934   }
 935   assert(n_conc_workers > 0 && n_conc_workers <= max_parallel_marking_threads(),
 936          "Calculated number of workers must be larger than zero and at most the maximum %u, but is %u",
 937          max_parallel_marking_threads(), n_conc_workers);
 938   return n_conc_workers;
 939 }
 940 
 941 void G1ConcurrentMark::scanRootRegion(HeapRegion* hr) {
 942   // Currently, only survivors can be root regions.
 943   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 944   G1RootRegionScanClosure cl(_g1h, this);
 945 
 946   const uintx interval = PrefetchScanIntervalInBytes;
 947   HeapWord* curr = hr->bottom();
 948   const HeapWord* end = hr->top();
 949   while (curr < end) {
 950     Prefetch::read(curr, interval);
 951     oop obj = oop(curr);
 952     int size = obj->oop_iterate_size(&cl);
 953     assert(size == obj->size(), "sanity");
 954     curr += size;
 955   }
 956 }
 957 
 958 class G1CMRootRegionScanTask : public AbstractGangTask {
 959 private:
 960   G1ConcurrentMark* _cm;
 961 
 962 public:
 963   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 964     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 965 
 966   void work(uint worker_id) {
 967     assert(Thread::current()->is_ConcurrentGC_thread(),
 968            "this should only be done by a conc GC thread");
 969 
 970     G1CMRootRegions* root_regions = _cm->root_regions();
 971     HeapRegion* hr = root_regions->claim_next();
 972     while (hr != NULL) {
 973       _cm->scanRootRegion(hr);
 974       hr = root_regions->claim_next();
 975     }
 976   }
 977 };
 978 
 979 void G1ConcurrentMark::scan_root_regions() {
 980   // scan_in_progress() will have been set to true only if there was
 981   // at least one root region to scan. So, if it's false, we
 982   // should not attempt to do any further work.
 983   if (root_regions()->scan_in_progress()) {
 984     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 985 
 986     _parallel_marking_threads = MIN2(calc_parallel_marking_threads(),
 987                                      // We distribute work on a per-region basis, so starting
 988                                      // more threads than that is useless.
 989                                      root_regions()->num_root_regions());
 990     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 991            "Maximum number of marking threads exceeded");
 992 
 993     G1CMRootRegionScanTask task(this);
 994     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 995                         task.name(), _parallel_marking_threads, root_regions()->num_root_regions());
 996     _parallel_workers->run_task(&task, _parallel_marking_threads);
 997 
 998     // It's possible that has_aborted() is true here without actually
 999     // aborting the survivor scan earlier. This is OK as it's
1000     // mainly used for sanity checking.
1001     root_regions()->scan_finished();
1002   }
1003 }
1004 
1005 void G1ConcurrentMark::concurrent_cycle_start() {
1006   _gc_timer_cm->register_gc_start();
1007 
1008   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
1009 
1010   _g1h->trace_heap_before_gc(_gc_tracer_cm);
1011 }
1012 
1013 void G1ConcurrentMark::concurrent_cycle_end() {
1014   _g1h->trace_heap_after_gc(_gc_tracer_cm);
1015 
1016   if (has_aborted()) {
1017     _gc_tracer_cm->report_concurrent_mode_failure();
1018   }
1019 
1020   _gc_timer_cm->register_gc_end();
1021 
1022   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1023 }
1024 
1025 void G1ConcurrentMark::mark_from_roots() {
1026   // we might be tempted to assert that:
1027   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1028   //        "inconsistent argument?");
1029   // However that wouldn't be right, because it's possible that
1030   // a safepoint is indeed in progress as a younger generation
1031   // stop-the-world GC happens even as we mark in this generation.
1032 
1033   _restart_for_overflow = false;
1034 
1035   // _g1h has _n_par_threads
1036   _parallel_marking_threads = calc_parallel_marking_threads();
1037   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1038     "Maximum number of marking threads exceeded");
1039 
1040   uint active_workers = MAX2(1U, parallel_marking_threads());
1041   assert(active_workers > 0, "Should have been set");
1042 
1043   // Setting active workers is not guaranteed since fewer
1044   // worker threads may currently exist and more may not be
1045   // available.
1046   active_workers = _parallel_workers->update_active_workers(active_workers);
1047   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _parallel_workers->total_workers());
1048 
1049   // Parallel task terminator is set in "set_concurrency_and_phase()"
1050   set_concurrency_and_phase(active_workers, true /* concurrent */);
1051 
1052   G1CMConcurrentMarkingTask markingTask(this, cmThread());
1053   _parallel_workers->run_task(&markingTask);
1054   print_stats();
1055 }
1056 
1057 void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1058   // world is stopped at this checkpoint
1059   assert(SafepointSynchronize::is_at_safepoint(),
1060          "world should be stopped");
1061 
1062   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1063 
1064   // If a full collection has happened, we shouldn't do this.
1065   if (has_aborted()) {
1066     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1067     return;
1068   }
1069 
1070   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1071 
1072   if (VerifyDuringGC) {
1073     HandleMark hm;  // handle scope
1074     g1h->prepare_for_verify();
1075     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1076   }
1077   g1h->verifier()->check_bitmaps("Remark Start");
1078 
1079   G1Policy* g1p = g1h->g1_policy();
1080   g1p->record_concurrent_mark_remark_start();
1081 
1082   double start = os::elapsedTime();
1083 
1084   checkpointRootsFinalWork();
1085 
1086   double mark_work_end = os::elapsedTime();
1087 
1088   weakRefsWork(clear_all_soft_refs);
1089 
1090   if (has_overflown()) {
1091     // We overflowed.  Restart concurrent marking.
1092     _restart_for_overflow = true;
1093 
1094     // Verify the heap w.r.t. the previous marking bitmap.
1095     if (VerifyDuringGC) {
1096       HandleMark hm;  // handle scope
1097       g1h->prepare_for_verify();
1098       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1099     }
1100 
1101     // Clear the marking state because we will be restarting
1102     // marking due to overflowing the global mark stack.
1103     reset_marking_state();
1104   } else {
1105     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1106     // We're done with marking.
1107     // This is the end of  the marking cycle, we're expected all
1108     // threads to have SATB queues with active set to true.
1109     satb_mq_set.set_active_all_threads(false, /* new active value */
1110                                        true /* expected_active */);
1111 
1112     if (VerifyDuringGC) {
1113       HandleMark hm;  // handle scope
1114       g1h->prepare_for_verify();
1115       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1116     }
1117     g1h->verifier()->check_bitmaps("Remark End");
1118     assert(!restart_for_overflow(), "sanity");
1119     // Completely reset the marking state since marking completed
1120     set_non_marking_state();
1121   }
1122 
1123   // Statistics
1124   double now = os::elapsedTime();
1125   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1126   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1127   _remark_times.add((now - start) * 1000.0);
1128 
1129   g1p->record_concurrent_mark_remark_end();
1130 
1131   G1CMIsAliveClosure is_alive(g1h);
1132   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1133 }
1134 
1135 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1136   G1CollectedHeap* _g1;
1137   size_t _freed_bytes;
1138   FreeRegionList* _local_cleanup_list;
1139   uint _old_regions_removed;
1140   uint _humongous_regions_removed;
1141   HRRSCleanupTask* _hrrs_cleanup_task;
1142 
1143 public:
1144   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1145                              FreeRegionList* local_cleanup_list,
1146                              HRRSCleanupTask* hrrs_cleanup_task) :
1147     _g1(g1),
1148     _freed_bytes(0),
1149     _local_cleanup_list(local_cleanup_list),
1150     _old_regions_removed(0),
1151     _humongous_regions_removed(0),
1152     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1153 
1154   size_t freed_bytes() { return _freed_bytes; }
1155   const uint old_regions_removed() { return _old_regions_removed; }
1156   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1157 
1158   bool doHeapRegion(HeapRegion *hr) {
1159     if (hr->is_archive()) {
1160       return false;
1161     }
1162     _g1->reset_gc_time_stamps(hr);
1163     hr->note_end_of_marking();
1164 
1165     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1166       _freed_bytes += hr->used();
1167       hr->set_containing_set(NULL);
1168       if (hr->is_humongous()) {
1169         _humongous_regions_removed++;
1170         _g1->free_humongous_region(hr, _local_cleanup_list, true /* skip_remset */);
1171       } else {
1172         _old_regions_removed++;
1173         _g1->free_region(hr, _local_cleanup_list, true /* skip_remset */);
1174       }
1175     } else {
1176       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1177     }
1178 
1179     return false;
1180   }
1181 };
1182 
1183 class G1ParNoteEndTask: public AbstractGangTask {
1184   friend class G1NoteEndOfConcMarkClosure;
1185 
1186 protected:
1187   G1CollectedHeap* _g1h;
1188   FreeRegionList* _cleanup_list;
1189   HeapRegionClaimer _hrclaimer;
1190 
1191 public:
1192   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1193       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1194   }
1195 
1196   void work(uint worker_id) {
1197     FreeRegionList local_cleanup_list("Local Cleanup List");
1198     HRRSCleanupTask hrrs_cleanup_task;
1199     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1200                                            &hrrs_cleanup_task);
1201     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1202     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1203 
1204     // Now update the lists
1205     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1206     {
1207       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1208       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1209 
1210       // If we iterate over the global cleanup list at the end of
1211       // cleanup to do this printing we will not guarantee to only
1212       // generate output for the newly-reclaimed regions (the list
1213       // might not be empty at the beginning of cleanup; we might
1214       // still be working on its previous contents). So we do the
1215       // printing here, before we append the new regions to the global
1216       // cleanup list.
1217 
1218       G1HRPrinter* hr_printer = _g1h->hr_printer();
1219       if (hr_printer->is_active()) {
1220         FreeRegionListIterator iter(&local_cleanup_list);
1221         while (iter.more_available()) {
1222           HeapRegion* hr = iter.get_next();
1223           hr_printer->cleanup(hr);
1224         }
1225       }
1226 
1227       _cleanup_list->add_ordered(&local_cleanup_list);
1228       assert(local_cleanup_list.is_empty(), "post-condition");
1229 
1230       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1231     }
1232   }
1233 };
1234 
1235 void G1ConcurrentMark::cleanup() {
1236   // world is stopped at this checkpoint
1237   assert(SafepointSynchronize::is_at_safepoint(),
1238          "world should be stopped");
1239   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1240 
1241   // If a full collection has happened, we shouldn't do this.
1242   if (has_aborted()) {
1243     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1244     return;
1245   }
1246 
1247   g1h->verifier()->verify_region_sets_optional();
1248 
1249   if (VerifyDuringGC) {
1250     HandleMark hm;  // handle scope
1251     g1h->prepare_for_verify();
1252     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1253   }
1254   g1h->verifier()->check_bitmaps("Cleanup Start");
1255 
1256   G1Policy* g1p = g1h->g1_policy();
1257   g1p->record_concurrent_mark_cleanup_start();
1258 
1259   double start = os::elapsedTime();
1260 
1261   HeapRegionRemSet::reset_for_cleanup_tasks();
1262 
1263   {
1264     GCTraceTime(Debug, gc)("Finalize Live Data");
1265     finalize_live_data();
1266   }
1267 
1268   if (VerifyDuringGC) {
1269     GCTraceTime(Debug, gc)("Verify Live Data");
1270     verify_live_data();
1271   }
1272 
1273   g1h->collector_state()->set_mark_in_progress(false);
1274 
1275   double count_end = os::elapsedTime();
1276   double this_final_counting_time = (count_end - start);
1277   _total_counting_time += this_final_counting_time;
1278 
1279   if (log_is_enabled(Trace, gc, liveness)) {
1280     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1281     _g1h->heap_region_iterate(&cl);
1282   }
1283 
1284   // Install newly created mark bitMap as "prev".
1285   swapMarkBitMaps();
1286 
1287   g1h->reset_gc_time_stamp();
1288 
1289   uint n_workers = _g1h->workers()->active_workers();
1290 
1291   // Note end of marking in all heap regions.
1292   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1293   g1h->workers()->run_task(&g1_par_note_end_task);
1294   g1h->check_gc_time_stamps();
1295 
1296   if (!cleanup_list_is_empty()) {
1297     // The cleanup list is not empty, so we'll have to process it
1298     // concurrently. Notify anyone else that might be wanting free
1299     // regions that there will be more free regions coming soon.
1300     g1h->set_free_regions_coming();
1301   }
1302 
1303   // call below, since it affects the metric by which we sort the heap
1304   // regions.
1305   if (G1ScrubRemSets) {
1306     double rs_scrub_start = os::elapsedTime();
1307     g1h->scrub_rem_set();
1308     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1309   }
1310 
1311   // this will also free any regions totally full of garbage objects,
1312   // and sort the regions.
1313   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1314 
1315   // Statistics.
1316   double end = os::elapsedTime();
1317   _cleanup_times.add((end - start) * 1000.0);
1318 
1319   // Clean up will have freed any regions completely full of garbage.
1320   // Update the soft reference policy with the new heap occupancy.
1321   Universe::update_heap_info_at_gc();
1322 
1323   if (VerifyDuringGC) {
1324     HandleMark hm;  // handle scope
1325     g1h->prepare_for_verify();
1326     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1327   }
1328 
1329   g1h->verifier()->check_bitmaps("Cleanup End");
1330 
1331   g1h->verifier()->verify_region_sets_optional();
1332 
1333   // We need to make this be a "collection" so any collection pause that
1334   // races with it goes around and waits for completeCleanup to finish.
1335   g1h->increment_total_collections();
1336 
1337   // Clean out dead classes and update Metaspace sizes.
1338   if (ClassUnloadingWithConcurrentMark) {
1339     ClassLoaderDataGraph::purge();
1340   }
1341   MetaspaceGC::compute_new_size();
1342 
1343   // We reclaimed old regions so we should calculate the sizes to make
1344   // sure we update the old gen/space data.
1345   g1h->g1mm()->update_sizes();
1346   g1h->allocation_context_stats().update_after_mark();
1347 }
1348 
1349 void G1ConcurrentMark::complete_cleanup() {
1350   if (has_aborted()) return;
1351 
1352   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1353 
1354   _cleanup_list.verify_optional();
1355   FreeRegionList tmp_free_list("Tmp Free List");
1356 
1357   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1358                                   "cleanup list has %u entries",
1359                                   _cleanup_list.length());
1360 
1361   // No one else should be accessing the _cleanup_list at this point,
1362   // so it is not necessary to take any locks
1363   while (!_cleanup_list.is_empty()) {
1364     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1365     assert(hr != NULL, "Got NULL from a non-empty list");
1366     hr->par_clear();
1367     tmp_free_list.add_ordered(hr);
1368 
1369     // Instead of adding one region at a time to the secondary_free_list,
1370     // we accumulate them in the local list and move them a few at a
1371     // time. This also cuts down on the number of notify_all() calls
1372     // we do during this process. We'll also append the local list when
1373     // _cleanup_list is empty (which means we just removed the last
1374     // region from the _cleanup_list).
1375     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1376         _cleanup_list.is_empty()) {
1377       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1378                                       "appending %u entries to the secondary_free_list, "
1379                                       "cleanup list still has %u entries",
1380                                       tmp_free_list.length(),
1381                                       _cleanup_list.length());
1382 
1383       {
1384         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1385         g1h->secondary_free_list_add(&tmp_free_list);
1386         SecondaryFreeList_lock->notify_all();
1387       }
1388 #ifndef PRODUCT
1389       if (G1StressConcRegionFreeing) {
1390         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1391           os::sleep(Thread::current(), (jlong) 1, false);
1392         }
1393       }
1394 #endif
1395     }
1396   }
1397   assert(tmp_free_list.is_empty(), "post-condition");
1398 }
1399 
1400 // Supporting Object and Oop closures for reference discovery
1401 // and processing in during marking
1402 
1403 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1404   HeapWord* addr = (HeapWord*)obj;
1405   return addr != NULL &&
1406          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1407 }
1408 
1409 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1410 // Uses the G1CMTask associated with a worker thread (for serial reference
1411 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1412 // trace referent objects.
1413 //
1414 // Using the G1CMTask and embedded local queues avoids having the worker
1415 // threads operating on the global mark stack. This reduces the risk
1416 // of overflowing the stack - which we would rather avoid at this late
1417 // state. Also using the tasks' local queues removes the potential
1418 // of the workers interfering with each other that could occur if
1419 // operating on the global stack.
1420 
1421 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1422   G1ConcurrentMark* _cm;
1423   G1CMTask*         _task;
1424   int               _ref_counter_limit;
1425   int               _ref_counter;
1426   bool              _is_serial;
1427  public:
1428   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1429     _cm(cm), _task(task), _is_serial(is_serial),
1430     _ref_counter_limit(G1RefProcDrainInterval) {
1431     assert(_ref_counter_limit > 0, "sanity");
1432     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1433     _ref_counter = _ref_counter_limit;
1434   }
1435 
1436   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1437   virtual void do_oop(      oop* p) { do_oop_work(p); }
1438 
1439   template <class T> void do_oop_work(T* p) {
1440     if (!_cm->has_overflown()) {
1441       oop obj = oopDesc::load_decode_heap_oop(p);
1442       _task->deal_with_reference(obj);
1443       _ref_counter--;
1444 
1445       if (_ref_counter == 0) {
1446         // We have dealt with _ref_counter_limit references, pushing them
1447         // and objects reachable from them on to the local stack (and
1448         // possibly the global stack). Call G1CMTask::do_marking_step() to
1449         // process these entries.
1450         //
1451         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1452         // there's nothing more to do (i.e. we're done with the entries that
1453         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1454         // above) or we overflow.
1455         //
1456         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1457         // flag while there may still be some work to do. (See the comment at
1458         // the beginning of G1CMTask::do_marking_step() for those conditions -
1459         // one of which is reaching the specified time target.) It is only
1460         // when G1CMTask::do_marking_step() returns without setting the
1461         // has_aborted() flag that the marking step has completed.
1462         do {
1463           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1464           _task->do_marking_step(mark_step_duration_ms,
1465                                  false      /* do_termination */,
1466                                  _is_serial);
1467         } while (_task->has_aborted() && !_cm->has_overflown());
1468         _ref_counter = _ref_counter_limit;
1469       }
1470     }
1471   }
1472 };
1473 
1474 // 'Drain' oop closure used by both serial and parallel reference processing.
1475 // Uses the G1CMTask associated with a given worker thread (for serial
1476 // reference processing the G1CMtask for worker 0 is used). Calls the
1477 // do_marking_step routine, with an unbelievably large timeout value,
1478 // to drain the marking data structures of the remaining entries
1479 // added by the 'keep alive' oop closure above.
1480 
1481 class G1CMDrainMarkingStackClosure: public VoidClosure {
1482   G1ConcurrentMark* _cm;
1483   G1CMTask*         _task;
1484   bool              _is_serial;
1485  public:
1486   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1487     _cm(cm), _task(task), _is_serial(is_serial) {
1488     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1489   }
1490 
1491   void do_void() {
1492     do {
1493       // We call G1CMTask::do_marking_step() to completely drain the local
1494       // and global marking stacks of entries pushed by the 'keep alive'
1495       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1496       //
1497       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1498       // if there's nothing more to do (i.e. we've completely drained the
1499       // entries that were pushed as a a result of applying the 'keep alive'
1500       // closure to the entries on the discovered ref lists) or we overflow
1501       // the global marking stack.
1502       //
1503       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1504       // flag while there may still be some work to do. (See the comment at
1505       // the beginning of G1CMTask::do_marking_step() for those conditions -
1506       // one of which is reaching the specified time target.) It is only
1507       // when G1CMTask::do_marking_step() returns without setting the
1508       // has_aborted() flag that the marking step has completed.
1509 
1510       _task->do_marking_step(1000000000.0 /* something very large */,
1511                              true         /* do_termination */,
1512                              _is_serial);
1513     } while (_task->has_aborted() && !_cm->has_overflown());
1514   }
1515 };
1516 
1517 // Implementation of AbstractRefProcTaskExecutor for parallel
1518 // reference processing at the end of G1 concurrent marking
1519 
1520 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1521 private:
1522   G1CollectedHeap*  _g1h;
1523   G1ConcurrentMark* _cm;
1524   WorkGang*         _workers;
1525   uint              _active_workers;
1526 
1527 public:
1528   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1529                           G1ConcurrentMark* cm,
1530                           WorkGang* workers,
1531                           uint n_workers) :
1532     _g1h(g1h), _cm(cm),
1533     _workers(workers), _active_workers(n_workers) { }
1534 
1535   // Executes the given task using concurrent marking worker threads.
1536   virtual void execute(ProcessTask& task);
1537   virtual void execute(EnqueueTask& task);
1538 };
1539 
1540 class G1CMRefProcTaskProxy: public AbstractGangTask {
1541   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1542   ProcessTask&      _proc_task;
1543   G1CollectedHeap*  _g1h;
1544   G1ConcurrentMark* _cm;
1545 
1546 public:
1547   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1548                        G1CollectedHeap* g1h,
1549                        G1ConcurrentMark* cm) :
1550     AbstractGangTask("Process reference objects in parallel"),
1551     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1552     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1553     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1554   }
1555 
1556   virtual void work(uint worker_id) {
1557     ResourceMark rm;
1558     HandleMark hm;
1559     G1CMTask* task = _cm->task(worker_id);
1560     G1CMIsAliveClosure g1_is_alive(_g1h);
1561     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1562     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1563 
1564     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1565   }
1566 };
1567 
1568 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1569   assert(_workers != NULL, "Need parallel worker threads.");
1570   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1571 
1572   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1573 
1574   // We need to reset the concurrency level before each
1575   // proxy task execution, so that the termination protocol
1576   // and overflow handling in G1CMTask::do_marking_step() knows
1577   // how many workers to wait for.
1578   _cm->set_concurrency(_active_workers);
1579   _workers->run_task(&proc_task_proxy);
1580 }
1581 
1582 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1583   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1584   EnqueueTask& _enq_task;
1585 
1586 public:
1587   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1588     AbstractGangTask("Enqueue reference objects in parallel"),
1589     _enq_task(enq_task) { }
1590 
1591   virtual void work(uint worker_id) {
1592     _enq_task.work(worker_id);
1593   }
1594 };
1595 
1596 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1597   assert(_workers != NULL, "Need parallel worker threads.");
1598   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1599 
1600   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1601 
1602   // Not strictly necessary but...
1603   //
1604   // We need to reset the concurrency level before each
1605   // proxy task execution, so that the termination protocol
1606   // and overflow handling in G1CMTask::do_marking_step() knows
1607   // how many workers to wait for.
1608   _cm->set_concurrency(_active_workers);
1609   _workers->run_task(&enq_task_proxy);
1610 }
1611 
1612 void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
1613   if (has_overflown()) {
1614     // Skip processing the discovered references if we have
1615     // overflown the global marking stack. Reference objects
1616     // only get discovered once so it is OK to not
1617     // de-populate the discovered reference lists. We could have,
1618     // but the only benefit would be that, when marking restarts,
1619     // less reference objects are discovered.
1620     return;
1621   }
1622 
1623   ResourceMark rm;
1624   HandleMark   hm;
1625 
1626   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1627 
1628   // Is alive closure.
1629   G1CMIsAliveClosure g1_is_alive(g1h);
1630 
1631   // Inner scope to exclude the cleaning of the string and symbol
1632   // tables from the displayed time.
1633   {
1634     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1635 
1636     ReferenceProcessor* rp = g1h->ref_processor_cm();
1637 
1638     // See the comment in G1CollectedHeap::ref_processing_init()
1639     // about how reference processing currently works in G1.
1640 
1641     // Set the soft reference policy
1642     rp->setup_policy(clear_all_soft_refs);
1643     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1644 
1645     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1646     // in serial reference processing. Note these closures are also
1647     // used for serially processing (by the the current thread) the
1648     // JNI references during parallel reference processing.
1649     //
1650     // These closures do not need to synchronize with the worker
1651     // threads involved in parallel reference processing as these
1652     // instances are executed serially by the current thread (e.g.
1653     // reference processing is not multi-threaded and is thus
1654     // performed by the current thread instead of a gang worker).
1655     //
1656     // The gang tasks involved in parallel reference processing create
1657     // their own instances of these closures, which do their own
1658     // synchronization among themselves.
1659     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1660     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1661 
1662     // We need at least one active thread. If reference processing
1663     // is not multi-threaded we use the current (VMThread) thread,
1664     // otherwise we use the work gang from the G1CollectedHeap and
1665     // we utilize all the worker threads we can.
1666     bool processing_is_mt = rp->processing_is_mt();
1667     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
1668     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
1669 
1670     // Parallel processing task executor.
1671     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
1672                                               g1h->workers(), active_workers);
1673     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1674 
1675     // Set the concurrency level. The phase was already set prior to
1676     // executing the remark task.
1677     set_concurrency(active_workers);
1678 
1679     // Set the degree of MT processing here.  If the discovery was done MT,
1680     // the number of threads involved during discovery could differ from
1681     // the number of active workers.  This is OK as long as the discovered
1682     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1683     rp->set_active_mt_degree(active_workers);
1684 
1685     // Process the weak references.
1686     const ReferenceProcessorStats& stats =
1687         rp->process_discovered_references(&g1_is_alive,
1688                                           &g1_keep_alive,
1689                                           &g1_drain_mark_stack,
1690                                           executor,
1691                                           _gc_timer_cm);
1692     _gc_tracer_cm->report_gc_reference_stats(stats);
1693 
1694     // The do_oop work routines of the keep_alive and drain_marking_stack
1695     // oop closures will set the has_overflown flag if we overflow the
1696     // global marking stack.
1697 
1698     assert(has_overflown() || _global_mark_stack.is_empty(),
1699             "Mark stack should be empty (unless it has overflown)");
1700 
1701     assert(rp->num_q() == active_workers, "why not");
1702 
1703     rp->enqueue_discovered_references(executor);
1704 
1705     rp->verify_no_references_recorded();
1706     assert(!rp->discovery_enabled(), "Post condition");
1707   }
1708 
1709   if (has_overflown()) {
1710     // We can not trust g1_is_alive if the marking stack overflowed
1711     return;
1712   }
1713 
1714   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1715 
1716   // Unload Klasses, String, Symbols, Code Cache, etc.
1717   if (ClassUnloadingWithConcurrentMark) {
1718     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1719     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1720     g1h->complete_cleaning(&g1_is_alive, purged_classes);
1721   } else {
1722     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1723     // No need to clean string table and symbol table as they are treated as strong roots when
1724     // class unloading is disabled.
1725     g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1726 
1727   }
1728 }
1729 
1730 void G1ConcurrentMark::swapMarkBitMaps() {
1731   G1CMBitMap* temp = _prevMarkBitMap;
1732   _prevMarkBitMap  = _nextMarkBitMap;
1733   _nextMarkBitMap  = temp;
1734 }
1735 
1736 // Closure for marking entries in SATB buffers.
1737 class G1CMSATBBufferClosure : public SATBBufferClosure {
1738 private:
1739   G1CMTask* _task;
1740   G1CollectedHeap* _g1h;
1741 
1742   // This is very similar to G1CMTask::deal_with_reference, but with
1743   // more relaxed requirements for the argument, so this must be more
1744   // circumspect about treating the argument as an object.
1745   void do_entry(void* entry) const {
1746     _task->increment_refs_reached();
1747     HeapRegion* hr = _g1h->heap_region_containing(entry);
1748     if (entry < hr->next_top_at_mark_start()) {
1749       // Until we get here, we don't know whether entry refers to a valid
1750       // object; it could instead have been a stale reference.
1751       oop obj = static_cast<oop>(entry);
1752       assert(obj->is_oop(true /* ignore mark word */),
1753              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
1754       _task->make_reference_grey(obj);
1755     }
1756   }
1757 
1758 public:
1759   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1760     : _task(task), _g1h(g1h) { }
1761 
1762   virtual void do_buffer(void** buffer, size_t size) {
1763     for (size_t i = 0; i < size; ++i) {
1764       do_entry(buffer[i]);
1765     }
1766   }
1767 };
1768 
1769 class G1RemarkThreadsClosure : public ThreadClosure {
1770   G1CMSATBBufferClosure _cm_satb_cl;
1771   G1CMOopClosure _cm_cl;
1772   MarkingCodeBlobClosure _code_cl;
1773   int _thread_parity;
1774 
1775  public:
1776   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1777     _cm_satb_cl(task, g1h),
1778     _cm_cl(g1h, g1h->concurrent_mark(), task),
1779     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1780     _thread_parity(Threads::thread_claim_parity()) {}
1781 
1782   void do_thread(Thread* thread) {
1783     if (thread->is_Java_thread()) {
1784       if (thread->claim_oops_do(true, _thread_parity)) {
1785         JavaThread* jt = (JavaThread*)thread;
1786 
1787         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1788         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1789         // * Alive if on the stack of an executing method
1790         // * Weakly reachable otherwise
1791         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1792         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1793         jt->nmethods_do(&_code_cl);
1794 
1795         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1796       }
1797     } else if (thread->is_VM_thread()) {
1798       if (thread->claim_oops_do(true, _thread_parity)) {
1799         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1800       }
1801     }
1802   }
1803 };
1804 
1805 class G1CMRemarkTask: public AbstractGangTask {
1806 private:
1807   G1ConcurrentMark* _cm;
1808 public:
1809   void work(uint worker_id) {
1810     // Since all available tasks are actually started, we should
1811     // only proceed if we're supposed to be active.
1812     if (worker_id < _cm->active_tasks()) {
1813       G1CMTask* task = _cm->task(worker_id);
1814       task->record_start_time();
1815       {
1816         ResourceMark rm;
1817         HandleMark hm;
1818 
1819         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1820         Threads::threads_do(&threads_f);
1821       }
1822 
1823       do {
1824         task->do_marking_step(1000000000.0 /* something very large */,
1825                               true         /* do_termination       */,
1826                               false        /* is_serial            */);
1827       } while (task->has_aborted() && !_cm->has_overflown());
1828       // If we overflow, then we do not want to restart. We instead
1829       // want to abort remark and do concurrent marking again.
1830       task->record_end_time();
1831     }
1832   }
1833 
1834   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1835     AbstractGangTask("Par Remark"), _cm(cm) {
1836     _cm->terminator()->reset_for_reuse(active_workers);
1837   }
1838 };
1839 
1840 void G1ConcurrentMark::checkpointRootsFinalWork() {
1841   ResourceMark rm;
1842   HandleMark   hm;
1843   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1844 
1845   GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1846 
1847   g1h->ensure_parsability(false);
1848 
1849   // this is remark, so we'll use up all active threads
1850   uint active_workers = g1h->workers()->active_workers();
1851   set_concurrency_and_phase(active_workers, false /* concurrent */);
1852   // Leave _parallel_marking_threads at it's
1853   // value originally calculated in the G1ConcurrentMark
1854   // constructor and pass values of the active workers
1855   // through the gang in the task.
1856 
1857   {
1858     StrongRootsScope srs(active_workers);
1859 
1860     G1CMRemarkTask remarkTask(this, active_workers);
1861     // We will start all available threads, even if we decide that the
1862     // active_workers will be fewer. The extra ones will just bail out
1863     // immediately.
1864     g1h->workers()->run_task(&remarkTask);
1865   }
1866 
1867   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1868   guarantee(has_overflown() ||
1869             satb_mq_set.completed_buffers_num() == 0,
1870             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1871             BOOL_TO_STR(has_overflown()),
1872             satb_mq_set.completed_buffers_num());
1873 
1874   print_stats();
1875 }
1876 
1877 void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
1878   _prevMarkBitMap->clear_range(mr);
1879 }
1880 
1881 HeapRegion*
1882 G1ConcurrentMark::claim_region(uint worker_id) {
1883   // "checkpoint" the finger
1884   HeapWord* finger = _finger;
1885 
1886   // _heap_end will not change underneath our feet; it only changes at
1887   // yield points.
1888   while (finger < _heap_end) {
1889     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1890 
1891     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1892     // Make sure that the reads below do not float before loading curr_region.
1893     OrderAccess::loadload();
1894     // Above heap_region_containing may return NULL as we always scan claim
1895     // until the end of the heap. In this case, just jump to the next region.
1896     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1897 
1898     // Is the gap between reading the finger and doing the CAS too long?
1899     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
1900     if (res == finger && curr_region != NULL) {
1901       // we succeeded
1902       HeapWord*   bottom        = curr_region->bottom();
1903       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1904 
1905       // notice that _finger == end cannot be guaranteed here since,
1906       // someone else might have moved the finger even further
1907       assert(_finger >= end, "the finger should have moved forward");
1908 
1909       if (limit > bottom) {
1910         return curr_region;
1911       } else {
1912         assert(limit == bottom,
1913                "the region limit should be at bottom");
1914         // we return NULL and the caller should try calling
1915         // claim_region() again.
1916         return NULL;
1917       }
1918     } else {
1919       assert(_finger > finger, "the finger should have moved forward");
1920       // read it again
1921       finger = _finger;
1922     }
1923   }
1924 
1925   return NULL;
1926 }
1927 
1928 #ifndef PRODUCT
1929 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
1930 private:
1931   G1CollectedHeap* _g1h;
1932   const char* _phase;
1933   int _info;
1934 
1935 public:
1936   VerifyNoCSetOops(const char* phase, int info = -1) :
1937     _g1h(G1CollectedHeap::heap()),
1938     _phase(phase),
1939     _info(info)
1940   { }
1941 
1942   void operator()(G1TaskQueueEntry task_entry) const {
1943     if (task_entry.is_array_slice()) {
1944       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1945       return;
1946     }
1947     guarantee(task_entry.obj()->is_oop(),
1948               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1949               p2i(task_entry.obj()), _phase, _info);
1950     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1951               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1952               p2i(task_entry.obj()), _phase, _info);
1953   }
1954 };
1955 
1956 void G1ConcurrentMark::verify_no_cset_oops() {
1957   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1958   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
1959     return;
1960   }
1961 
1962   // Verify entries on the global mark stack
1963   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1964 
1965   // Verify entries on the task queues
1966   for (uint i = 0; i < _max_worker_id; ++i) {
1967     G1CMTaskQueue* queue = _task_queues->queue(i);
1968     queue->iterate(VerifyNoCSetOops("Queue", i));
1969   }
1970 
1971   // Verify the global finger
1972   HeapWord* global_finger = finger();
1973   if (global_finger != NULL && global_finger < _heap_end) {
1974     // Since we always iterate over all regions, we might get a NULL HeapRegion
1975     // here.
1976     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1977     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1978               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1979               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1980   }
1981 
1982   // Verify the task fingers
1983   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
1984   for (uint i = 0; i < parallel_marking_threads(); ++i) {
1985     G1CMTask* task = _tasks[i];
1986     HeapWord* task_finger = task->finger();
1987     if (task_finger != NULL && task_finger < _heap_end) {
1988       // See above note on the global finger verification.
1989       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1990       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1991                 !task_hr->in_collection_set(),
1992                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1993                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1994     }
1995   }
1996 }
1997 #endif // PRODUCT
1998 void G1ConcurrentMark::create_live_data() {
1999   _g1h->g1_rem_set()->create_card_live_data(_parallel_workers, _nextMarkBitMap);
2000 }
2001 
2002 void G1ConcurrentMark::finalize_live_data() {
2003   _g1h->g1_rem_set()->finalize_card_live_data(_g1h->workers(), _nextMarkBitMap);
2004 }
2005 
2006 void G1ConcurrentMark::verify_live_data() {
2007   _g1h->g1_rem_set()->verify_card_live_data(_g1h->workers(), _nextMarkBitMap);
2008 }
2009 
2010 void G1ConcurrentMark::clear_live_data(WorkGang* workers) {
2011   _g1h->g1_rem_set()->clear_card_live_data(workers);
2012 }
2013 
2014 #ifdef ASSERT
2015 void G1ConcurrentMark::verify_live_data_clear() {
2016   _g1h->g1_rem_set()->verify_card_live_data_is_clear();
2017 }
2018 #endif
2019 
2020 void G1ConcurrentMark::print_stats() {
2021   if (!log_is_enabled(Debug, gc, stats)) {
2022     return;
2023   }
2024   log_debug(gc, stats)("---------------------------------------------------------------------");
2025   for (size_t i = 0; i < _active_tasks; ++i) {
2026     _tasks[i]->print_stats();
2027     log_debug(gc, stats)("---------------------------------------------------------------------");
2028   }
2029 }
2030 
2031 void G1ConcurrentMark::abort() {
2032   if (!cmThread()->during_cycle() || _has_aborted) {
2033     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2034     return;
2035   }
2036 
2037   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2038   // concurrent bitmap clearing.
2039   {
2040     GCTraceTime(Debug, gc)("Clear Next Bitmap");
2041     clear_bitmap(_nextMarkBitMap, _g1h->workers(), false);
2042   }
2043   // Note we cannot clear the previous marking bitmap here
2044   // since VerifyDuringGC verifies the objects marked during
2045   // a full GC against the previous bitmap.
2046 
2047   {
2048     GCTraceTime(Debug, gc)("Clear Live Data");
2049     clear_live_data(_g1h->workers());
2050   }
2051   DEBUG_ONLY({
2052     GCTraceTime(Debug, gc)("Verify Live Data Clear");
2053     verify_live_data_clear();
2054   })
2055   // Empty mark stack
2056   reset_marking_state();
2057   for (uint i = 0; i < _max_worker_id; ++i) {
2058     _tasks[i]->clear_region_fields();
2059   }
2060   _first_overflow_barrier_sync.abort();
2061   _second_overflow_barrier_sync.abort();
2062   _has_aborted = true;
2063 
2064   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2065   satb_mq_set.abandon_partial_marking();
2066   // This can be called either during or outside marking, we'll read
2067   // the expected_active value from the SATB queue set.
2068   satb_mq_set.set_active_all_threads(
2069                                  false, /* new active value */
2070                                  satb_mq_set.is_active() /* expected_active */);
2071 }
2072 
2073 static void print_ms_time_info(const char* prefix, const char* name,
2074                                NumberSeq& ns) {
2075   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2076                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2077   if (ns.num() > 0) {
2078     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2079                            prefix, ns.sd(), ns.maximum());
2080   }
2081 }
2082 
2083 void G1ConcurrentMark::print_summary_info() {
2084   Log(gc, marking) log;
2085   if (!log.is_trace()) {
2086     return;
2087   }
2088 
2089   log.trace(" Concurrent marking:");
2090   print_ms_time_info("  ", "init marks", _init_times);
2091   print_ms_time_info("  ", "remarks", _remark_times);
2092   {
2093     print_ms_time_info("     ", "final marks", _remark_mark_times);
2094     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2095 
2096   }
2097   print_ms_time_info("  ", "cleanups", _cleanup_times);
2098   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2099             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2100   if (G1ScrubRemSets) {
2101     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2102               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2103   }
2104   log.trace("  Total stop_world time = %8.2f s.",
2105             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2106   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2107             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2108 }
2109 
2110 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2111   _parallel_workers->print_worker_threads_on(st);
2112 }
2113 
2114 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2115   _parallel_workers->threads_do(tc);
2116 }
2117 
2118 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2119   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2120       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2121   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2122   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2123 }
2124 
2125 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
2126   assert(addr < _cm->finger(), "invariant");
2127   assert(addr >= _task->finger(), "invariant");
2128 
2129   // We move that task's local finger along.
2130   _task->move_finger_to(addr);
2131 
2132   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
2133   // we only partially drain the local queue and global stack
2134   _task->drain_local_queue(true);
2135   _task->drain_global_stack(true);
2136 
2137   // if the has_aborted flag has been raised, we need to bail out of
2138   // the iteration
2139   return !_task->has_aborted();
2140 }
2141 
2142 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2143   ReferenceProcessor* result = g1h->ref_processor_cm();
2144   assert(result != NULL, "CM reference processor should not be NULL");
2145   return result;
2146 }
2147 
2148 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2149                                G1ConcurrentMark* cm,
2150                                G1CMTask* task)
2151   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2152     _g1h(g1h), _cm(cm), _task(task)
2153 { }
2154 
2155 void G1CMTask::setup_for_region(HeapRegion* hr) {
2156   assert(hr != NULL,
2157         "claim_region() should have filtered out NULL regions");
2158   _curr_region  = hr;
2159   _finger       = hr->bottom();
2160   update_region_limit();
2161 }
2162 
2163 void G1CMTask::update_region_limit() {
2164   HeapRegion* hr            = _curr_region;
2165   HeapWord* bottom          = hr->bottom();
2166   HeapWord* limit           = hr->next_top_at_mark_start();
2167 
2168   if (limit == bottom) {
2169     // The region was collected underneath our feet.
2170     // We set the finger to bottom to ensure that the bitmap
2171     // iteration that will follow this will not do anything.
2172     // (this is not a condition that holds when we set the region up,
2173     // as the region is not supposed to be empty in the first place)
2174     _finger = bottom;
2175   } else if (limit >= _region_limit) {
2176     assert(limit >= _finger, "peace of mind");
2177   } else {
2178     assert(limit < _region_limit, "only way to get here");
2179     // This can happen under some pretty unusual circumstances.  An
2180     // evacuation pause empties the region underneath our feet (NTAMS
2181     // at bottom). We then do some allocation in the region (NTAMS
2182     // stays at bottom), followed by the region being used as a GC
2183     // alloc region (NTAMS will move to top() and the objects
2184     // originally below it will be grayed). All objects now marked in
2185     // the region are explicitly grayed, if below the global finger,
2186     // and we do not need in fact to scan anything else. So, we simply
2187     // set _finger to be limit to ensure that the bitmap iteration
2188     // doesn't do anything.
2189     _finger = limit;
2190   }
2191 
2192   _region_limit = limit;
2193 }
2194 
2195 void G1CMTask::giveup_current_region() {
2196   assert(_curr_region != NULL, "invariant");
2197   clear_region_fields();
2198 }
2199 
2200 void G1CMTask::clear_region_fields() {
2201   // Values for these three fields that indicate that we're not
2202   // holding on to a region.
2203   _curr_region   = NULL;
2204   _finger        = NULL;
2205   _region_limit  = NULL;
2206 }
2207 
2208 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2209   if (cm_oop_closure == NULL) {
2210     assert(_cm_oop_closure != NULL, "invariant");
2211   } else {
2212     assert(_cm_oop_closure == NULL, "invariant");
2213   }
2214   _cm_oop_closure = cm_oop_closure;
2215 }
2216 
2217 void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
2218   guarantee(nextMarkBitMap != NULL, "invariant");
2219   _nextMarkBitMap                = nextMarkBitMap;
2220   clear_region_fields();
2221 
2222   _calls                         = 0;
2223   _elapsed_time_ms               = 0.0;
2224   _termination_time_ms           = 0.0;
2225   _termination_start_time_ms     = 0.0;
2226 }
2227 
2228 bool G1CMTask::should_exit_termination() {
2229   regular_clock_call();
2230   // This is called when we are in the termination protocol. We should
2231   // quit if, for some reason, this task wants to abort or the global
2232   // stack is not empty (this means that we can get work from it).
2233   return !_cm->mark_stack_empty() || has_aborted();
2234 }
2235 
2236 void G1CMTask::reached_limit() {
2237   assert(_words_scanned >= _words_scanned_limit ||
2238          _refs_reached >= _refs_reached_limit ,
2239          "shouldn't have been called otherwise");
2240   regular_clock_call();
2241 }
2242 
2243 void G1CMTask::regular_clock_call() {
2244   if (has_aborted()) return;
2245 
2246   // First, we need to recalculate the words scanned and refs reached
2247   // limits for the next clock call.
2248   recalculate_limits();
2249 
2250   // During the regular clock call we do the following
2251 
2252   // (1) If an overflow has been flagged, then we abort.
2253   if (_cm->has_overflown()) {
2254     set_has_aborted();
2255     return;
2256   }
2257 
2258   // If we are not concurrent (i.e. we're doing remark) we don't need
2259   // to check anything else. The other steps are only needed during
2260   // the concurrent marking phase.
2261   if (!concurrent()) return;
2262 
2263   // (2) If marking has been aborted for Full GC, then we also abort.
2264   if (_cm->has_aborted()) {
2265     set_has_aborted();
2266     return;
2267   }
2268 
2269   double curr_time_ms = os::elapsedVTime() * 1000.0;
2270 
2271   // (4) We check whether we should yield. If we have to, then we abort.
2272   if (SuspendibleThreadSet::should_yield()) {
2273     // We should yield. To do this we abort the task. The caller is
2274     // responsible for yielding.
2275     set_has_aborted();
2276     return;
2277   }
2278 
2279   // (5) We check whether we've reached our time quota. If we have,
2280   // then we abort.
2281   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2282   if (elapsed_time_ms > _time_target_ms) {
2283     set_has_aborted();
2284     _has_timed_out = true;
2285     return;
2286   }
2287 
2288   // (6) Finally, we check whether there are enough completed STAB
2289   // buffers available for processing. If there are, we abort.
2290   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2291   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2292     // we do need to process SATB buffers, we'll abort and restart
2293     // the marking task to do so
2294     set_has_aborted();
2295     return;
2296   }
2297 }
2298 
2299 void G1CMTask::recalculate_limits() {
2300   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2301   _words_scanned_limit      = _real_words_scanned_limit;
2302 
2303   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2304   _refs_reached_limit       = _real_refs_reached_limit;
2305 }
2306 
2307 void G1CMTask::decrease_limits() {
2308   // This is called when we believe that we're going to do an infrequent
2309   // operation which will increase the per byte scanned cost (i.e. move
2310   // entries to/from the global stack). It basically tries to decrease the
2311   // scanning limit so that the clock is called earlier.
2312 
2313   _words_scanned_limit = _real_words_scanned_limit -
2314     3 * words_scanned_period / 4;
2315   _refs_reached_limit  = _real_refs_reached_limit -
2316     3 * refs_reached_period / 4;
2317 }
2318 
2319 void G1CMTask::move_entries_to_global_stack() {
2320   // Local array where we'll store the entries that will be popped
2321   // from the local queue.
2322   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2323 
2324   size_t n = 0;
2325   G1TaskQueueEntry task_entry;
2326   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2327     buffer[n] = task_entry;
2328     ++n;
2329   }
2330   if (n < G1CMMarkStack::EntriesPerChunk) {
2331     buffer[n] = G1TaskQueueEntry();
2332   }
2333 
2334   if (n > 0) {
2335     if (!_cm->mark_stack_push(buffer)) {
2336       set_has_aborted();
2337     }
2338   }
2339 
2340   // This operation was quite expensive, so decrease the limits.
2341   decrease_limits();
2342 }
2343 
2344 bool G1CMTask::get_entries_from_global_stack() {
2345   // Local array where we'll store the entries that will be popped
2346   // from the global stack.
2347   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2348 
2349   if (!_cm->mark_stack_pop(buffer)) {
2350     return false;
2351   }
2352 
2353   // We did actually pop at least one entry.
2354   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2355     G1TaskQueueEntry task_entry = buffer[i];
2356     if (task_entry.is_null()) {
2357       break;
2358     }
2359     assert(task_entry.is_array_slice() || task_entry.obj()->is_oop(), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2360     bool success = _task_queue->push(task_entry);
2361     // We only call this when the local queue is empty or under a
2362     // given target limit. So, we do not expect this push to fail.
2363     assert(success, "invariant");
2364   }
2365 
2366   // This operation was quite expensive, so decrease the limits
2367   decrease_limits();
2368   return true;
2369 }
2370 
2371 void G1CMTask::drain_local_queue(bool partially) {
2372   if (has_aborted()) {
2373     return;
2374   }
2375 
2376   // Decide what the target size is, depending whether we're going to
2377   // drain it partially (so that other tasks can steal if they run out
2378   // of things to do) or totally (at the very end).
2379   size_t target_size;
2380   if (partially) {
2381     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2382   } else {
2383     target_size = 0;
2384   }
2385 
2386   if (_task_queue->size() > target_size) {
2387     G1TaskQueueEntry entry;
2388     bool ret = _task_queue->pop_local(entry);
2389     while (ret) {
2390       scan_task_entry(entry);
2391       if (_task_queue->size() <= target_size || has_aborted()) {
2392         ret = false;
2393       } else {
2394         ret = _task_queue->pop_local(entry);
2395       }
2396     }
2397   }
2398 }
2399 
2400 void G1CMTask::drain_global_stack(bool partially) {
2401   if (has_aborted()) return;
2402 
2403   // We have a policy to drain the local queue before we attempt to
2404   // drain the global stack.
2405   assert(partially || _task_queue->size() == 0, "invariant");
2406 
2407   // Decide what the target size is, depending whether we're going to
2408   // drain it partially (so that other tasks can steal if they run out
2409   // of things to do) or totally (at the very end).
2410   // Notice that when draining the global mark stack partially, due to the racyness
2411   // of the mark stack size update we might in fact drop below the target. But,
2412   // this is not a problem.
2413   // In case of total draining, we simply process until the global mark stack is
2414   // totally empty, disregarding the size counter.
2415   if (partially) {
2416     size_t const target_size = _cm->partial_mark_stack_size_target();
2417     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2418       if (get_entries_from_global_stack()) {
2419         drain_local_queue(partially);
2420       }
2421     }
2422   } else {
2423     while (!has_aborted() && get_entries_from_global_stack()) {
2424       drain_local_queue(partially);
2425     }
2426   }
2427 }
2428 
2429 // SATB Queue has several assumptions on whether to call the par or
2430 // non-par versions of the methods. this is why some of the code is
2431 // replicated. We should really get rid of the single-threaded version
2432 // of the code to simplify things.
2433 void G1CMTask::drain_satb_buffers() {
2434   if (has_aborted()) return;
2435 
2436   // We set this so that the regular clock knows that we're in the
2437   // middle of draining buffers and doesn't set the abort flag when it
2438   // notices that SATB buffers are available for draining. It'd be
2439   // very counter productive if it did that. :-)
2440   _draining_satb_buffers = true;
2441 
2442   G1CMSATBBufferClosure satb_cl(this, _g1h);
2443   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2444 
2445   // This keeps claiming and applying the closure to completed buffers
2446   // until we run out of buffers or we need to abort.
2447   while (!has_aborted() &&
2448          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2449     regular_clock_call();
2450   }
2451 
2452   _draining_satb_buffers = false;
2453 
2454   assert(has_aborted() ||
2455          concurrent() ||
2456          satb_mq_set.completed_buffers_num() == 0, "invariant");
2457 
2458   // again, this was a potentially expensive operation, decrease the
2459   // limits to get the regular clock call early
2460   decrease_limits();
2461 }
2462 
2463 void G1CMTask::print_stats() {
2464   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
2465                        _worker_id, _calls);
2466   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2467                        _elapsed_time_ms, _termination_time_ms);
2468   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2469                        _step_times_ms.num(), _step_times_ms.avg(),
2470                        _step_times_ms.sd());
2471   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2472                        _step_times_ms.maximum(), _step_times_ms.sum());
2473 }
2474 
2475 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2476   return _task_queues->steal(worker_id, hash_seed, task_entry);
2477 }
2478 
2479 /*****************************************************************************
2480 
2481     The do_marking_step(time_target_ms, ...) method is the building
2482     block of the parallel marking framework. It can be called in parallel
2483     with other invocations of do_marking_step() on different tasks
2484     (but only one per task, obviously) and concurrently with the
2485     mutator threads, or during remark, hence it eliminates the need
2486     for two versions of the code. When called during remark, it will
2487     pick up from where the task left off during the concurrent marking
2488     phase. Interestingly, tasks are also claimable during evacuation
2489     pauses too, since do_marking_step() ensures that it aborts before
2490     it needs to yield.
2491 
2492     The data structures that it uses to do marking work are the
2493     following:
2494 
2495       (1) Marking Bitmap. If there are gray objects that appear only
2496       on the bitmap (this happens either when dealing with an overflow
2497       or when the initial marking phase has simply marked the roots
2498       and didn't push them on the stack), then tasks claim heap
2499       regions whose bitmap they then scan to find gray objects. A
2500       global finger indicates where the end of the last claimed region
2501       is. A local finger indicates how far into the region a task has
2502       scanned. The two fingers are used to determine how to gray an
2503       object (i.e. whether simply marking it is OK, as it will be
2504       visited by a task in the future, or whether it needs to be also
2505       pushed on a stack).
2506 
2507       (2) Local Queue. The local queue of the task which is accessed
2508       reasonably efficiently by the task. Other tasks can steal from
2509       it when they run out of work. Throughout the marking phase, a
2510       task attempts to keep its local queue short but not totally
2511       empty, so that entries are available for stealing by other
2512       tasks. Only when there is no more work, a task will totally
2513       drain its local queue.
2514 
2515       (3) Global Mark Stack. This handles local queue overflow. During
2516       marking only sets of entries are moved between it and the local
2517       queues, as access to it requires a mutex and more fine-grain
2518       interaction with it which might cause contention. If it
2519       overflows, then the marking phase should restart and iterate
2520       over the bitmap to identify gray objects. Throughout the marking
2521       phase, tasks attempt to keep the global mark stack at a small
2522       length but not totally empty, so that entries are available for
2523       popping by other tasks. Only when there is no more work, tasks
2524       will totally drain the global mark stack.
2525 
2526       (4) SATB Buffer Queue. This is where completed SATB buffers are
2527       made available. Buffers are regularly removed from this queue
2528       and scanned for roots, so that the queue doesn't get too
2529       long. During remark, all completed buffers are processed, as
2530       well as the filled in parts of any uncompleted buffers.
2531 
2532     The do_marking_step() method tries to abort when the time target
2533     has been reached. There are a few other cases when the
2534     do_marking_step() method also aborts:
2535 
2536       (1) When the marking phase has been aborted (after a Full GC).
2537 
2538       (2) When a global overflow (on the global stack) has been
2539       triggered. Before the task aborts, it will actually sync up with
2540       the other tasks to ensure that all the marking data structures
2541       (local queues, stacks, fingers etc.)  are re-initialized so that
2542       when do_marking_step() completes, the marking phase can
2543       immediately restart.
2544 
2545       (3) When enough completed SATB buffers are available. The
2546       do_marking_step() method only tries to drain SATB buffers right
2547       at the beginning. So, if enough buffers are available, the
2548       marking step aborts and the SATB buffers are processed at
2549       the beginning of the next invocation.
2550 
2551       (4) To yield. when we have to yield then we abort and yield
2552       right at the end of do_marking_step(). This saves us from a lot
2553       of hassle as, by yielding we might allow a Full GC. If this
2554       happens then objects will be compacted underneath our feet, the
2555       heap might shrink, etc. We save checking for this by just
2556       aborting and doing the yield right at the end.
2557 
2558     From the above it follows that the do_marking_step() method should
2559     be called in a loop (or, otherwise, regularly) until it completes.
2560 
2561     If a marking step completes without its has_aborted() flag being
2562     true, it means it has completed the current marking phase (and
2563     also all other marking tasks have done so and have all synced up).
2564 
2565     A method called regular_clock_call() is invoked "regularly" (in
2566     sub ms intervals) throughout marking. It is this clock method that
2567     checks all the abort conditions which were mentioned above and
2568     decides when the task should abort. A work-based scheme is used to
2569     trigger this clock method: when the number of object words the
2570     marking phase has scanned or the number of references the marking
2571     phase has visited reach a given limit. Additional invocations to
2572     the method clock have been planted in a few other strategic places
2573     too. The initial reason for the clock method was to avoid calling
2574     vtime too regularly, as it is quite expensive. So, once it was in
2575     place, it was natural to piggy-back all the other conditions on it
2576     too and not constantly check them throughout the code.
2577 
2578     If do_termination is true then do_marking_step will enter its
2579     termination protocol.
2580 
2581     The value of is_serial must be true when do_marking_step is being
2582     called serially (i.e. by the VMThread) and do_marking_step should
2583     skip any synchronization in the termination and overflow code.
2584     Examples include the serial remark code and the serial reference
2585     processing closures.
2586 
2587     The value of is_serial must be false when do_marking_step is
2588     being called by any of the worker threads in a work gang.
2589     Examples include the concurrent marking code (CMMarkingTask),
2590     the MT remark code, and the MT reference processing closures.
2591 
2592  *****************************************************************************/
2593 
2594 void G1CMTask::do_marking_step(double time_target_ms,
2595                                bool do_termination,
2596                                bool is_serial) {
2597   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2598   assert(concurrent() == _cm->concurrent(), "they should be the same");
2599 
2600   G1Policy* g1_policy = _g1h->g1_policy();
2601   assert(_task_queues != NULL, "invariant");
2602   assert(_task_queue != NULL, "invariant");
2603   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
2604 
2605   assert(!_claimed,
2606          "only one thread should claim this task at any one time");
2607 
2608   // OK, this doesn't safeguard again all possible scenarios, as it is
2609   // possible for two threads to set the _claimed flag at the same
2610   // time. But it is only for debugging purposes anyway and it will
2611   // catch most problems.
2612   _claimed = true;
2613 
2614   _start_time_ms = os::elapsedVTime() * 1000.0;
2615 
2616   // If do_stealing is true then do_marking_step will attempt to
2617   // steal work from the other G1CMTasks. It only makes sense to
2618   // enable stealing when the termination protocol is enabled
2619   // and do_marking_step() is not being called serially.
2620   bool do_stealing = do_termination && !is_serial;
2621 
2622   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2623   _time_target_ms = time_target_ms - diff_prediction_ms;
2624 
2625   // set up the variables that are used in the work-based scheme to
2626   // call the regular clock method
2627   _words_scanned = 0;
2628   _refs_reached  = 0;
2629   recalculate_limits();
2630 
2631   // clear all flags
2632   clear_has_aborted();
2633   _has_timed_out = false;
2634   _draining_satb_buffers = false;
2635 
2636   ++_calls;
2637 
2638   // Set up the bitmap and oop closures. Anything that uses them is
2639   // eventually called from this method, so it is OK to allocate these
2640   // statically.
2641   G1CMBitMapClosure bitmap_closure(this, _cm);
2642   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
2643   set_cm_oop_closure(&cm_oop_closure);
2644 
2645   if (_cm->has_overflown()) {
2646     // This can happen if the mark stack overflows during a GC pause
2647     // and this task, after a yield point, restarts. We have to abort
2648     // as we need to get into the overflow protocol which happens
2649     // right at the end of this task.
2650     set_has_aborted();
2651   }
2652 
2653   // First drain any available SATB buffers. After this, we will not
2654   // look at SATB buffers before the next invocation of this method.
2655   // If enough completed SATB buffers are queued up, the regular clock
2656   // will abort this task so that it restarts.
2657   drain_satb_buffers();
2658   // ...then partially drain the local queue and the global stack
2659   drain_local_queue(true);
2660   drain_global_stack(true);
2661 
2662   do {
2663     if (!has_aborted() && _curr_region != NULL) {
2664       // This means that we're already holding on to a region.
2665       assert(_finger != NULL, "if region is not NULL, then the finger "
2666              "should not be NULL either");
2667 
2668       // We might have restarted this task after an evacuation pause
2669       // which might have evacuated the region we're holding on to
2670       // underneath our feet. Let's read its limit again to make sure
2671       // that we do not iterate over a region of the heap that
2672       // contains garbage (update_region_limit() will also move
2673       // _finger to the start of the region if it is found empty).
2674       update_region_limit();
2675       // We will start from _finger not from the start of the region,
2676       // as we might be restarting this task after aborting half-way
2677       // through scanning this region. In this case, _finger points to
2678       // the address where we last found a marked object. If this is a
2679       // fresh region, _finger points to start().
2680       MemRegion mr = MemRegion(_finger, _region_limit);
2681 
2682       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2683              "humongous regions should go around loop once only");
2684 
2685       // Some special cases:
2686       // If the memory region is empty, we can just give up the region.
2687       // If the current region is humongous then we only need to check
2688       // the bitmap for the bit associated with the start of the object,
2689       // scan the object if it's live, and give up the region.
2690       // Otherwise, let's iterate over the bitmap of the part of the region
2691       // that is left.
2692       // If the iteration is successful, give up the region.
2693       if (mr.is_empty()) {
2694         giveup_current_region();
2695         regular_clock_call();
2696       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2697         if (_nextMarkBitMap->is_marked(mr.start())) {
2698           // The object is marked - apply the closure
2699           bitmap_closure.do_addr(mr.start());
2700         }
2701         // Even if this task aborted while scanning the humongous object
2702         // we can (and should) give up the current region.
2703         giveup_current_region();
2704         regular_clock_call();
2705       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
2706         giveup_current_region();
2707         regular_clock_call();
2708       } else {
2709         assert(has_aborted(), "currently the only way to do so");
2710         // The only way to abort the bitmap iteration is to return
2711         // false from the do_bit() method. However, inside the
2712         // do_bit() method we move the _finger to point to the
2713         // object currently being looked at. So, if we bail out, we
2714         // have definitely set _finger to something non-null.
2715         assert(_finger != NULL, "invariant");
2716 
2717         // Region iteration was actually aborted. So now _finger
2718         // points to the address of the object we last scanned. If we
2719         // leave it there, when we restart this task, we will rescan
2720         // the object. It is easy to avoid this. We move the finger by
2721         // enough to point to the next possible object header.
2722         assert(_finger < _region_limit, "invariant");
2723         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2724         // Check if bitmap iteration was aborted while scanning the last object
2725         if (new_finger >= _region_limit) {
2726           giveup_current_region();
2727         } else {
2728           move_finger_to(new_finger);
2729         }
2730       }
2731     }
2732     // At this point we have either completed iterating over the
2733     // region we were holding on to, or we have aborted.
2734 
2735     // We then partially drain the local queue and the global stack.
2736     // (Do we really need this?)
2737     drain_local_queue(true);
2738     drain_global_stack(true);
2739 
2740     // Read the note on the claim_region() method on why it might
2741     // return NULL with potentially more regions available for
2742     // claiming and why we have to check out_of_regions() to determine
2743     // whether we're done or not.
2744     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2745       // We are going to try to claim a new region. We should have
2746       // given up on the previous one.
2747       // Separated the asserts so that we know which one fires.
2748       assert(_curr_region  == NULL, "invariant");
2749       assert(_finger       == NULL, "invariant");
2750       assert(_region_limit == NULL, "invariant");
2751       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2752       if (claimed_region != NULL) {
2753         // Yes, we managed to claim one
2754         setup_for_region(claimed_region);
2755         assert(_curr_region == claimed_region, "invariant");
2756       }
2757       // It is important to call the regular clock here. It might take
2758       // a while to claim a region if, for example, we hit a large
2759       // block of empty regions. So we need to call the regular clock
2760       // method once round the loop to make sure it's called
2761       // frequently enough.
2762       regular_clock_call();
2763     }
2764 
2765     if (!has_aborted() && _curr_region == NULL) {
2766       assert(_cm->out_of_regions(),
2767              "at this point we should be out of regions");
2768     }
2769   } while ( _curr_region != NULL && !has_aborted());
2770 
2771   if (!has_aborted()) {
2772     // We cannot check whether the global stack is empty, since other
2773     // tasks might be pushing objects to it concurrently.
2774     assert(_cm->out_of_regions(),
2775            "at this point we should be out of regions");
2776     // Try to reduce the number of available SATB buffers so that
2777     // remark has less work to do.
2778     drain_satb_buffers();
2779   }
2780 
2781   // Since we've done everything else, we can now totally drain the
2782   // local queue and global stack.
2783   drain_local_queue(false);
2784   drain_global_stack(false);
2785 
2786   // Attempt at work stealing from other task's queues.
2787   if (do_stealing && !has_aborted()) {
2788     // We have not aborted. This means that we have finished all that
2789     // we could. Let's try to do some stealing...
2790 
2791     // We cannot check whether the global stack is empty, since other
2792     // tasks might be pushing objects to it concurrently.
2793     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2794            "only way to reach here");
2795     while (!has_aborted()) {
2796       G1TaskQueueEntry entry;
2797       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2798         scan_task_entry(entry);
2799 
2800         // And since we're towards the end, let's totally drain the
2801         // local queue and global stack.
2802         drain_local_queue(false);
2803         drain_global_stack(false);
2804       } else {
2805         break;
2806       }
2807     }
2808   }
2809 
2810   // We still haven't aborted. Now, let's try to get into the
2811   // termination protocol.
2812   if (do_termination && !has_aborted()) {
2813     // We cannot check whether the global stack is empty, since other
2814     // tasks might be concurrently pushing objects on it.
2815     // Separated the asserts so that we know which one fires.
2816     assert(_cm->out_of_regions(), "only way to reach here");
2817     assert(_task_queue->size() == 0, "only way to reach here");
2818     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2819 
2820     // The G1CMTask class also extends the TerminatorTerminator class,
2821     // hence its should_exit_termination() method will also decide
2822     // whether to exit the termination protocol or not.
2823     bool finished = (is_serial ||
2824                      _cm->terminator()->offer_termination(this));
2825     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2826     _termination_time_ms +=
2827       termination_end_time_ms - _termination_start_time_ms;
2828 
2829     if (finished) {
2830       // We're all done.
2831 
2832       if (_worker_id == 0) {
2833         // let's allow task 0 to do this
2834         if (concurrent()) {
2835           assert(_cm->concurrent_marking_in_progress(), "invariant");
2836           // we need to set this to false before the next
2837           // safepoint. This way we ensure that the marking phase
2838           // doesn't observe any more heap expansions.
2839           _cm->clear_concurrent_marking_in_progress();
2840         }
2841       }
2842 
2843       // We can now guarantee that the global stack is empty, since
2844       // all other tasks have finished. We separated the guarantees so
2845       // that, if a condition is false, we can immediately find out
2846       // which one.
2847       guarantee(_cm->out_of_regions(), "only way to reach here");
2848       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2849       guarantee(_task_queue->size() == 0, "only way to reach here");
2850       guarantee(!_cm->has_overflown(), "only way to reach here");
2851     } else {
2852       // Apparently there's more work to do. Let's abort this task. It
2853       // will restart it and we can hopefully find more things to do.
2854       set_has_aborted();
2855     }
2856   }
2857 
2858   // Mainly for debugging purposes to make sure that a pointer to the
2859   // closure which was statically allocated in this frame doesn't
2860   // escape it by accident.
2861   set_cm_oop_closure(NULL);
2862   double end_time_ms = os::elapsedVTime() * 1000.0;
2863   double elapsed_time_ms = end_time_ms - _start_time_ms;
2864   // Update the step history.
2865   _step_times_ms.add(elapsed_time_ms);
2866 
2867   if (has_aborted()) {
2868     // The task was aborted for some reason.
2869     if (_has_timed_out) {
2870       double diff_ms = elapsed_time_ms - _time_target_ms;
2871       // Keep statistics of how well we did with respect to hitting
2872       // our target only if we actually timed out (if we aborted for
2873       // other reasons, then the results might get skewed).
2874       _marking_step_diffs_ms.add(diff_ms);
2875     }
2876 
2877     if (_cm->has_overflown()) {
2878       // This is the interesting one. We aborted because a global
2879       // overflow was raised. This means we have to restart the
2880       // marking phase and start iterating over regions. However, in
2881       // order to do this we have to make sure that all tasks stop
2882       // what they are doing and re-initialize in a safe manner. We
2883       // will achieve this with the use of two barrier sync points.
2884 
2885       if (!is_serial) {
2886         // We only need to enter the sync barrier if being called
2887         // from a parallel context
2888         _cm->enter_first_sync_barrier(_worker_id);
2889 
2890         // When we exit this sync barrier we know that all tasks have
2891         // stopped doing marking work. So, it's now safe to
2892         // re-initialize our data structures. At the end of this method,
2893         // task 0 will clear the global data structures.
2894       }
2895 
2896       // We clear the local state of this task...
2897       clear_region_fields();
2898 
2899       if (!is_serial) {
2900         // ...and enter the second barrier.
2901         _cm->enter_second_sync_barrier(_worker_id);
2902       }
2903       // At this point, if we're during the concurrent phase of
2904       // marking, everything has been re-initialized and we're
2905       // ready to restart.
2906     }
2907   }
2908 
2909   _claimed = false;
2910 }
2911 
2912 G1CMTask::G1CMTask(uint worker_id,
2913                    G1ConcurrentMark* cm,
2914                    G1CMTaskQueue* task_queue,
2915                    G1CMTaskQueueSet* task_queues)
2916   : _g1h(G1CollectedHeap::heap()),
2917     _worker_id(worker_id), _cm(cm),
2918     _objArray_processor(this),
2919     _claimed(false),
2920     _nextMarkBitMap(NULL), _hash_seed(17),
2921     _task_queue(task_queue),
2922     _task_queues(task_queues),
2923     _cm_oop_closure(NULL) {
2924   guarantee(task_queue != NULL, "invariant");
2925   guarantee(task_queues != NULL, "invariant");
2926 
2927   _marking_step_diffs_ms.add(0.5);
2928 }
2929 
2930 // These are formatting macros that are used below to ensure
2931 // consistent formatting. The *_H_* versions are used to format the
2932 // header for a particular value and they should be kept consistent
2933 // with the corresponding macro. Also note that most of the macros add
2934 // the necessary white space (as a prefix) which makes them a bit
2935 // easier to compose.
2936 
2937 // All the output lines are prefixed with this string to be able to
2938 // identify them easily in a large log file.
2939 #define G1PPRL_LINE_PREFIX            "###"
2940 
2941 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2942 #ifdef _LP64
2943 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2944 #else // _LP64
2945 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2946 #endif // _LP64
2947 
2948 // For per-region info
2949 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2950 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2951 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2952 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2953 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2954 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2955 
2956 // For summary info
2957 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2958 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2959 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2960 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2961 
2962 G1PrintRegionLivenessInfoClosure::
2963 G1PrintRegionLivenessInfoClosure(const char* phase_name)
2964   : _total_used_bytes(0), _total_capacity_bytes(0),
2965     _total_prev_live_bytes(0), _total_next_live_bytes(0),
2966     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
2967   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2968   MemRegion g1_reserved = g1h->g1_reserved();
2969   double now = os::elapsedTime();
2970 
2971   // Print the header of the output.
2972   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2973   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2974                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2975                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2976                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2977                           HeapRegion::GrainBytes);
2978   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2979   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2980                           G1PPRL_TYPE_H_FORMAT
2981                           G1PPRL_ADDR_BASE_H_FORMAT
2982                           G1PPRL_BYTE_H_FORMAT
2983                           G1PPRL_BYTE_H_FORMAT
2984                           G1PPRL_BYTE_H_FORMAT
2985                           G1PPRL_DOUBLE_H_FORMAT
2986                           G1PPRL_BYTE_H_FORMAT
2987                           G1PPRL_BYTE_H_FORMAT,
2988                           "type", "address-range",
2989                           "used", "prev-live", "next-live", "gc-eff",
2990                           "remset", "code-roots");
2991   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2992                           G1PPRL_TYPE_H_FORMAT
2993                           G1PPRL_ADDR_BASE_H_FORMAT
2994                           G1PPRL_BYTE_H_FORMAT
2995                           G1PPRL_BYTE_H_FORMAT
2996                           G1PPRL_BYTE_H_FORMAT
2997                           G1PPRL_DOUBLE_H_FORMAT
2998                           G1PPRL_BYTE_H_FORMAT
2999                           G1PPRL_BYTE_H_FORMAT,
3000                           "", "",
3001                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3002                           "(bytes)", "(bytes)");
3003 }
3004 
3005 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3006   const char* type       = r->get_type_str();
3007   HeapWord* bottom       = r->bottom();
3008   HeapWord* end          = r->end();
3009   size_t capacity_bytes  = r->capacity();
3010   size_t used_bytes      = r->used();
3011   size_t prev_live_bytes = r->live_bytes();
3012   size_t next_live_bytes = r->next_live_bytes();
3013   double gc_eff          = r->gc_efficiency();
3014   size_t remset_bytes    = r->rem_set()->mem_size();
3015   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3016 
3017   _total_used_bytes      += used_bytes;
3018   _total_capacity_bytes  += capacity_bytes;
3019   _total_prev_live_bytes += prev_live_bytes;
3020   _total_next_live_bytes += next_live_bytes;
3021   _total_remset_bytes    += remset_bytes;
3022   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3023 
3024   // Print a line for this particular region.
3025   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3026                           G1PPRL_TYPE_FORMAT
3027                           G1PPRL_ADDR_BASE_FORMAT
3028                           G1PPRL_BYTE_FORMAT
3029                           G1PPRL_BYTE_FORMAT
3030                           G1PPRL_BYTE_FORMAT
3031                           G1PPRL_DOUBLE_FORMAT
3032                           G1PPRL_BYTE_FORMAT
3033                           G1PPRL_BYTE_FORMAT,
3034                           type, p2i(bottom), p2i(end),
3035                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3036                           remset_bytes, strong_code_roots_bytes);
3037 
3038   return false;
3039 }
3040 
3041 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3042   // add static memory usages to remembered set sizes
3043   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3044   // Print the footer of the output.
3045   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3046   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3047                          " SUMMARY"
3048                          G1PPRL_SUM_MB_FORMAT("capacity")
3049                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3050                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3051                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3052                          G1PPRL_SUM_MB_FORMAT("remset")
3053                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3054                          bytes_to_mb(_total_capacity_bytes),
3055                          bytes_to_mb(_total_used_bytes),
3056                          perc(_total_used_bytes, _total_capacity_bytes),
3057                          bytes_to_mb(_total_prev_live_bytes),
3058                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3059                          bytes_to_mb(_total_next_live_bytes),
3060                          perc(_total_next_live_bytes, _total_capacity_bytes),
3061                          bytes_to_mb(_total_remset_bytes),
3062                          bytes_to_mb(_total_strong_code_roots_bytes));
3063 }