1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1CardLiveData.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/g1/suspendibleThreadSet.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 #include "utilities/align.hpp"
  61 #include "utilities/growableArray.hpp"
  62 
  63 G1CMMarkStack::G1CMMarkStack() :
  64   _max_chunk_capacity(0),
  65   _base(NULL),
  66   _chunk_capacity(0) {
  67   set_empty();
  68 }
  69 
  70 bool G1CMMarkStack::resize(size_t new_capacity) {
  71   assert(is_empty(), "Only resize when stack is empty.");
  72   assert(new_capacity <= _max_chunk_capacity,
  73          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  74 
  75   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::allocate_or_null(new_capacity);
  76 
  77   if (new_base == NULL) {
  78     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
  79     return false;
  80   }
  81   // Release old mapping.
  82   if (_base != NULL) {
  83     MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::free(_base, _chunk_capacity);
  84   }
  85 
  86   _base = new_base;
  87   _chunk_capacity = new_capacity;
  88   set_empty();
  89 
  90   return true;
  91 }
  92 
  93 size_t G1CMMarkStack::capacity_alignment() {
  94   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
  95 }
  96 
  97 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
  98   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
  99 
 100   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 101 
 102   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 103   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 104 
 105   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 106             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 107             _max_chunk_capacity,
 108             initial_chunk_capacity);
 109 
 110   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 111                 initial_chunk_capacity, _max_chunk_capacity);
 112 
 113   return resize(initial_chunk_capacity);
 114 }
 115 
 116 void G1CMMarkStack::expand() {
 117   if (_chunk_capacity == _max_chunk_capacity) {
 118     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 119     return;
 120   }
 121   size_t old_capacity = _chunk_capacity;
 122   // Double capacity if possible
 123   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 124 
 125   if (resize(new_capacity)) {
 126     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 127                   old_capacity, new_capacity);
 128   } else {
 129     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 130                     old_capacity, new_capacity);
 131   }
 132 }
 133 
 134 G1CMMarkStack::~G1CMMarkStack() {
 135   if (_base != NULL) {
 136     MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::free(_base, _chunk_capacity);
 137   }
 138 }
 139 
 140 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 141   elem->next = *list;
 142   *list = elem;
 143 }
 144 
 145 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 146   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 147   add_chunk_to_list(&_chunk_list, elem);
 148   _chunks_in_chunk_list++;
 149 }
 150 
 151 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 152   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 153   add_chunk_to_list(&_free_list, elem);
 154 }
 155 
 156 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 157   TaskQueueEntryChunk* result = *list;
 158   if (result != NULL) {
 159     *list = (*list)->next;
 160   }
 161   return result;
 162 }
 163 
 164 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 165   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 166   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 167   if (result != NULL) {
 168     _chunks_in_chunk_list--;
 169   }
 170   return result;
 171 }
 172 
 173 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 174   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 175   return remove_chunk_from_list(&_free_list);
 176 }
 177 
 178 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 179   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 180   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 181   // wraparound of _hwm.
 182   if (_hwm >= _chunk_capacity) {
 183     return NULL;
 184   }
 185 
 186   size_t cur_idx = Atomic::add(1, &_hwm) - 1;
 187   if (cur_idx >= _chunk_capacity) {
 188     return NULL;
 189   }
 190 
 191   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 192   result->next = NULL;
 193   return result;
 194 }
 195 
 196 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 197   // Get a new chunk.
 198   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 199 
 200   if (new_chunk == NULL) {
 201     // Did not get a chunk from the free list. Allocate from backing memory.
 202     new_chunk = allocate_new_chunk();
 203 
 204     if (new_chunk == NULL) {
 205       return false;
 206     }
 207   }
 208 
 209   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 210 
 211   add_chunk_to_chunk_list(new_chunk);
 212 
 213   return true;
 214 }
 215 
 216 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 217   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 218 
 219   if (cur == NULL) {
 220     return false;
 221   }
 222 
 223   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 224 
 225   add_chunk_to_free_list(cur);
 226   return true;
 227 }
 228 
 229 void G1CMMarkStack::set_empty() {
 230   _chunks_in_chunk_list = 0;
 231   _hwm = 0;
 232   _chunk_list = NULL;
 233   _free_list = NULL;
 234 }
 235 
 236 G1CMRootRegions::G1CMRootRegions() :
 237   _cm(NULL), _scan_in_progress(false),
 238   _should_abort(false), _claimed_survivor_index(0) { }
 239 
 240 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 241   _survivors = survivors;
 242   _cm = cm;
 243 }
 244 
 245 void G1CMRootRegions::prepare_for_scan() {
 246   assert(!scan_in_progress(), "pre-condition");
 247 
 248   // Currently, only survivors can be root regions.
 249   _claimed_survivor_index = 0;
 250   _scan_in_progress = _survivors->regions()->is_nonempty();
 251   _should_abort = false;
 252 }
 253 
 254 HeapRegion* G1CMRootRegions::claim_next() {
 255   if (_should_abort) {
 256     // If someone has set the should_abort flag, we return NULL to
 257     // force the caller to bail out of their loop.
 258     return NULL;
 259   }
 260 
 261   // Currently, only survivors can be root regions.
 262   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 263 
 264   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 265   if (claimed_index < survivor_regions->length()) {
 266     return survivor_regions->at(claimed_index);
 267   }
 268   return NULL;
 269 }
 270 
 271 uint G1CMRootRegions::num_root_regions() const {
 272   return (uint)_survivors->regions()->length();
 273 }
 274 
 275 void G1CMRootRegions::notify_scan_done() {
 276   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 277   _scan_in_progress = false;
 278   RootRegionScan_lock->notify_all();
 279 }
 280 
 281 void G1CMRootRegions::cancel_scan() {
 282   notify_scan_done();
 283 }
 284 
 285 void G1CMRootRegions::scan_finished() {
 286   assert(scan_in_progress(), "pre-condition");
 287 
 288   // Currently, only survivors can be root regions.
 289   if (!_should_abort) {
 290     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 291     assert((uint)_claimed_survivor_index >= _survivors->length(),
 292            "we should have claimed all survivors, claimed index = %u, length = %u",
 293            (uint)_claimed_survivor_index, _survivors->length());
 294   }
 295 
 296   notify_scan_done();
 297 }
 298 
 299 bool G1CMRootRegions::wait_until_scan_finished() {
 300   if (!scan_in_progress()) return false;
 301 
 302   {
 303     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 304     while (scan_in_progress()) {
 305       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 306     }
 307   }
 308   return true;
 309 }
 310 
 311 uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 312   return MAX2((n_par_threads + 2) / 4, 1U);
 313 }
 314 
 315 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 316   _g1h(g1h),
 317   _markBitMap1(),
 318   _markBitMap2(),
 319   _parallel_marking_threads(0),
 320   _max_parallel_marking_threads(0),
 321   _sleep_factor(0.0),
 322   _marking_task_overhead(1.0),
 323   _cleanup_list("Cleanup List"),
 324 
 325   _prevMarkBitMap(&_markBitMap1),
 326   _nextMarkBitMap(&_markBitMap2),
 327 
 328   _global_mark_stack(),
 329   // _finger set in set_non_marking_state
 330 
 331   _max_worker_id(ParallelGCThreads),
 332   // _active_tasks set in set_non_marking_state
 333   // _tasks set inside the constructor
 334   _task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
 335   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 336 
 337   _has_overflown(false),
 338   _concurrent(false),
 339   _has_aborted(false),
 340   _restart_for_overflow(false),
 341   _concurrent_marking_in_progress(false),
 342   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 343   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 344 
 345   // _verbose_level set below
 346 
 347   _init_times(),
 348   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 349   _cleanup_times(),
 350   _total_counting_time(0.0),
 351   _total_rs_scrub_time(0.0),
 352 
 353   _parallel_workers(NULL),
 354 
 355   _completed_initialization(false) {
 356 
 357   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 358   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 359 
 360   // Create & start a ConcurrentMark thread.
 361   _cmThread = new ConcurrentMarkThread(this);
 362   assert(cmThread() != NULL, "CM Thread should have been created");
 363   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 364   if (_cmThread->osthread() == NULL) {
 365       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 366   }
 367 
 368   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 369 
 370   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 371   satb_qs.set_buffer_size(G1SATBBufferSize);
 372 
 373   _root_regions.init(_g1h->survivor(), this);
 374 
 375   if (ConcGCThreads > ParallelGCThreads) {
 376     log_warning(gc)("Can't have more ConcGCThreads (%u) than ParallelGCThreads (%u).",
 377                     ConcGCThreads, ParallelGCThreads);
 378     return;
 379   }
 380   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 381     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 382     // if both are set
 383     _sleep_factor             = 0.0;
 384     _marking_task_overhead    = 1.0;
 385   } else if (G1MarkingOverheadPercent > 0) {
 386     // We will calculate the number of parallel marking threads based
 387     // on a target overhead with respect to the soft real-time goal
 388     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 389     double overall_cm_overhead =
 390       (double) MaxGCPauseMillis * marking_overhead /
 391       (double) GCPauseIntervalMillis;
 392     double cpu_ratio = 1.0 / os::initial_active_processor_count();
 393     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 394     double marking_task_overhead =
 395       overall_cm_overhead / marking_thread_num * os::initial_active_processor_count();
 396     double sleep_factor =
 397                        (1.0 - marking_task_overhead) / marking_task_overhead;
 398 
 399     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 400     _sleep_factor             = sleep_factor;
 401     _marking_task_overhead    = marking_task_overhead;
 402   } else {
 403     // Calculate the number of parallel marking threads by scaling
 404     // the number of parallel GC threads.
 405     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 406     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 407     _sleep_factor             = 0.0;
 408     _marking_task_overhead    = 1.0;
 409   }
 410 
 411   assert(ConcGCThreads > 0, "Should have been set");
 412   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 413   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 414   _parallel_marking_threads = ConcGCThreads;
 415   _max_parallel_marking_threads = _parallel_marking_threads;
 416 
 417   _parallel_workers = new WorkGang("G1 Marker",
 418        _max_parallel_marking_threads, false, true);
 419   if (_parallel_workers == NULL) {
 420     vm_exit_during_initialization("Failed necessary allocation.");
 421   } else {
 422     _parallel_workers->initialize_workers();
 423   }
 424 
 425   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 426     size_t mark_stack_size =
 427       MIN2(MarkStackSizeMax,
 428           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 429     // Verify that the calculated value for MarkStackSize is in range.
 430     // It would be nice to use the private utility routine from Arguments.
 431     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 432       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 433                       "must be between 1 and " SIZE_FORMAT,
 434                       mark_stack_size, MarkStackSizeMax);
 435       return;
 436     }
 437     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 438   } else {
 439     // Verify MarkStackSize is in range.
 440     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 441       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 442         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 443           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 444                           "must be between 1 and " SIZE_FORMAT,
 445                           MarkStackSize, MarkStackSizeMax);
 446           return;
 447         }
 448       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 449         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 450           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 451                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 452                           MarkStackSize, MarkStackSizeMax);
 453           return;
 454         }
 455       }
 456     }
 457   }
 458 
 459   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 460     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 461   }
 462 
 463   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
 464   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 465 
 466   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 467   _active_tasks = _max_worker_id;
 468 
 469   for (uint i = 0; i < _max_worker_id; ++i) {
 470     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 471     task_queue->initialize();
 472     _task_queues->register_queue(i, task_queue);
 473 
 474     _tasks[i] = new G1CMTask(i, this, task_queue, _task_queues);
 475 
 476     _accum_task_vtime[i] = 0.0;
 477   }
 478 
 479   // so that the call below can read a sensible value
 480   _heap_start = g1h->reserved_region().start();
 481   set_non_marking_state();
 482   _completed_initialization = true;
 483 }
 484 
 485 void G1ConcurrentMark::reset() {
 486   // Starting values for these two. This should be called in a STW
 487   // phase.
 488   MemRegion reserved = _g1h->g1_reserved();
 489   _heap_start = reserved.start();
 490   _heap_end   = reserved.end();
 491 
 492   // Separated the asserts so that we know which one fires.
 493   assert(_heap_start != NULL, "heap bounds should look ok");
 494   assert(_heap_end != NULL, "heap bounds should look ok");
 495   assert(_heap_start < _heap_end, "heap bounds should look ok");
 496 
 497   // Reset all the marking data structures and any necessary flags
 498   reset_marking_state();
 499 
 500   // We do reset all of them, since different phases will use
 501   // different number of active threads. So, it's easiest to have all
 502   // of them ready.
 503   for (uint i = 0; i < _max_worker_id; ++i) {
 504     _tasks[i]->reset(_nextMarkBitMap);
 505   }
 506 
 507   // we need this to make sure that the flag is on during the evac
 508   // pause with initial mark piggy-backed
 509   set_concurrent_marking_in_progress();
 510 }
 511 
 512 
 513 void G1ConcurrentMark::reset_marking_state() {
 514   _global_mark_stack.set_empty();
 515 
 516   // Expand the marking stack, if we have to and if we can.
 517   if (has_overflown()) {
 518     _global_mark_stack.expand();
 519   }
 520 
 521   clear_has_overflown();
 522   _finger = _heap_start;
 523 
 524   for (uint i = 0; i < _max_worker_id; ++i) {
 525     G1CMTaskQueue* queue = _task_queues->queue(i);
 526     queue->set_empty();
 527   }
 528 }
 529 
 530 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 531   assert(active_tasks <= _max_worker_id, "we should not have more");
 532 
 533   _active_tasks = active_tasks;
 534   // Need to update the three data structures below according to the
 535   // number of active threads for this phase.
 536   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 537   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 538   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 539 }
 540 
 541 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 542   set_concurrency(active_tasks);
 543 
 544   _concurrent = concurrent;
 545   // We propagate this to all tasks, not just the active ones.
 546   for (uint i = 0; i < _max_worker_id; ++i)
 547     _tasks[i]->set_concurrent(concurrent);
 548 
 549   if (concurrent) {
 550     set_concurrent_marking_in_progress();
 551   } else {
 552     // We currently assume that the concurrent flag has been set to
 553     // false before we start remark. At this point we should also be
 554     // in a STW phase.
 555     assert(!concurrent_marking_in_progress(), "invariant");
 556     assert(out_of_regions(),
 557            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 558            p2i(_finger), p2i(_heap_end));
 559   }
 560 }
 561 
 562 void G1ConcurrentMark::set_non_marking_state() {
 563   // We set the global marking state to some default values when we're
 564   // not doing marking.
 565   reset_marking_state();
 566   _active_tasks = 0;
 567   clear_concurrent_marking_in_progress();
 568 }
 569 
 570 G1ConcurrentMark::~G1ConcurrentMark() {
 571   // The G1ConcurrentMark instance is never freed.
 572   ShouldNotReachHere();
 573 }
 574 
 575 class G1ClearBitMapTask : public AbstractGangTask {
 576 public:
 577   static size_t chunk_size() { return M; }
 578 
 579 private:
 580   // Heap region closure used for clearing the given mark bitmap.
 581   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 582   private:
 583     G1CMBitMap* _bitmap;
 584     G1ConcurrentMark* _cm;
 585   public:
 586     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 587     }
 588 
 589     virtual bool doHeapRegion(HeapRegion* r) {
 590       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 591 
 592       HeapWord* cur = r->bottom();
 593       HeapWord* const end = r->end();
 594 
 595       while (cur < end) {
 596         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 597         _bitmap->clear_range(mr);
 598 
 599         cur += chunk_size_in_words;
 600 
 601         // Abort iteration if after yielding the marking has been aborted.
 602         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 603           return true;
 604         }
 605         // Repeat the asserts from before the start of the closure. We will do them
 606         // as asserts here to minimize their overhead on the product. However, we
 607         // will have them as guarantees at the beginning / end of the bitmap
 608         // clearing to get some checking in the product.
 609         assert(_cm == NULL || _cm->cmThread()->during_cycle(), "invariant");
 610         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 611       }
 612       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 613 
 614       return false;
 615     }
 616   };
 617 
 618   G1ClearBitmapHRClosure _cl;
 619   HeapRegionClaimer _hr_claimer;
 620   bool _suspendible; // If the task is suspendible, workers must join the STS.
 621 
 622 public:
 623   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 624     AbstractGangTask("G1 Clear Bitmap"),
 625     _cl(bitmap, suspendible ? cm : NULL),
 626     _hr_claimer(n_workers),
 627     _suspendible(suspendible)
 628   { }
 629 
 630   void work(uint worker_id) {
 631     SuspendibleThreadSetJoiner sts_join(_suspendible);
 632     G1CollectedHeap::heap()->heap_region_par_iterate(&_cl, worker_id, &_hr_claimer);
 633   }
 634 
 635   bool is_complete() {
 636     return _cl.complete();
 637   }
 638 };
 639 
 640 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 641   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 642 
 643   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 644   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 645 
 646   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 647 
 648   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 649 
 650   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 651   workers->run_task(&cl, num_workers);
 652   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 653 }
 654 
 655 void G1ConcurrentMark::cleanup_for_next_mark() {
 656   // Make sure that the concurrent mark thread looks to still be in
 657   // the current cycle.
 658   guarantee(cmThread()->during_cycle(), "invariant");
 659 
 660   // We are finishing up the current cycle by clearing the next
 661   // marking bitmap and getting it ready for the next cycle. During
 662   // this time no other cycle can start. So, let's make sure that this
 663   // is the case.
 664   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 665 
 666   clear_bitmap(_nextMarkBitMap, _parallel_workers, true);
 667 
 668   // Clear the live count data. If the marking has been aborted, the abort()
 669   // call already did that.
 670   if (!has_aborted()) {
 671     clear_live_data(_parallel_workers);
 672     DEBUG_ONLY(verify_live_data_clear());
 673   }
 674 
 675   // Repeat the asserts from above.
 676   guarantee(cmThread()->during_cycle(), "invariant");
 677   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 678 }
 679 
 680 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 681   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 682   clear_bitmap(_prevMarkBitMap, workers, false);
 683 }
 684 
 685 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 686   G1CMBitMap* _bitmap;
 687   bool _error;
 688  public:
 689   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 690   }
 691 
 692   virtual bool doHeapRegion(HeapRegion* r) {
 693     // This closure can be called concurrently to the mutator, so we must make sure
 694     // that the result of the getNextMarkedWordAddress() call is compared to the
 695     // value passed to it as limit to detect any found bits.
 696     // end never changes in G1.
 697     HeapWord* end = r->end();
 698     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 699   }
 700 };
 701 
 702 bool G1ConcurrentMark::nextMarkBitmapIsClear() {
 703   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 704   _g1h->heap_region_iterate(&cl);
 705   return cl.complete();
 706 }
 707 
 708 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 709 public:
 710   bool doHeapRegion(HeapRegion* r) {
 711     r->note_start_of_marking();
 712     return false;
 713   }
 714 };
 715 
 716 void G1ConcurrentMark::checkpointRootsInitialPre() {
 717   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 718 
 719   _has_aborted = false;
 720 
 721   // Initialize marking structures. This has to be done in a STW phase.
 722   reset();
 723 
 724   // For each region note start of marking.
 725   NoteStartOfMarkHRClosure startcl;
 726   g1h->heap_region_iterate(&startcl);
 727 }
 728 
 729 
 730 void G1ConcurrentMark::checkpointRootsInitialPost() {
 731   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 732 
 733   // Start Concurrent Marking weak-reference discovery.
 734   ReferenceProcessor* rp = g1h->ref_processor_cm();
 735   // enable ("weak") refs discovery
 736   rp->enable_discovery();
 737   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 738 
 739   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 740   // This is the start of  the marking cycle, we're expected all
 741   // threads to have SATB queues with active set to false.
 742   satb_mq_set.set_active_all_threads(true, /* new active value */
 743                                      false /* expected_active */);
 744 
 745   _root_regions.prepare_for_scan();
 746 
 747   // update_g1_committed() will be called at the end of an evac pause
 748   // when marking is on. So, it's also called at the end of the
 749   // initial-mark pause to update the heap end, if the heap expands
 750   // during it. No need to call it here.
 751 }
 752 
 753 /*
 754  * Notice that in the next two methods, we actually leave the STS
 755  * during the barrier sync and join it immediately afterwards. If we
 756  * do not do this, the following deadlock can occur: one thread could
 757  * be in the barrier sync code, waiting for the other thread to also
 758  * sync up, whereas another one could be trying to yield, while also
 759  * waiting for the other threads to sync up too.
 760  *
 761  * Note, however, that this code is also used during remark and in
 762  * this case we should not attempt to leave / enter the STS, otherwise
 763  * we'll either hit an assert (debug / fastdebug) or deadlock
 764  * (product). So we should only leave / enter the STS if we are
 765  * operating concurrently.
 766  *
 767  * Because the thread that does the sync barrier has left the STS, it
 768  * is possible to be suspended for a Full GC or an evacuation pause
 769  * could occur. This is actually safe, since the entering the sync
 770  * barrier is one of the last things do_marking_step() does, and it
 771  * doesn't manipulate any data structures afterwards.
 772  */
 773 
 774 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 775   bool barrier_aborted;
 776   {
 777     SuspendibleThreadSetLeaver sts_leave(concurrent());
 778     barrier_aborted = !_first_overflow_barrier_sync.enter();
 779   }
 780 
 781   // at this point everyone should have synced up and not be doing any
 782   // more work
 783 
 784   if (barrier_aborted) {
 785     // If the barrier aborted we ignore the overflow condition and
 786     // just abort the whole marking phase as quickly as possible.
 787     return;
 788   }
 789 
 790   // If we're executing the concurrent phase of marking, reset the marking
 791   // state; otherwise the marking state is reset after reference processing,
 792   // during the remark pause.
 793   // If we reset here as a result of an overflow during the remark we will
 794   // see assertion failures from any subsequent set_concurrency_and_phase()
 795   // calls.
 796   if (concurrent()) {
 797     // let the task associated with with worker 0 do this
 798     if (worker_id == 0) {
 799       // task 0 is responsible for clearing the global data structures
 800       // We should be here because of an overflow. During STW we should
 801       // not clear the overflow flag since we rely on it being true when
 802       // we exit this method to abort the pause and restart concurrent
 803       // marking.
 804       reset_marking_state();
 805 
 806       log_info(gc, marking)("Concurrent Mark reset for overflow");
 807     }
 808   }
 809 
 810   // after this, each task should reset its own data structures then
 811   // then go into the second barrier
 812 }
 813 
 814 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 815   SuspendibleThreadSetLeaver sts_leave(concurrent());
 816   _second_overflow_barrier_sync.enter();
 817 
 818   // at this point everything should be re-initialized and ready to go
 819 }
 820 
 821 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 822 private:
 823   G1ConcurrentMark*     _cm;
 824   ConcurrentMarkThread* _cmt;
 825 
 826 public:
 827   void work(uint worker_id) {
 828     assert(Thread::current()->is_ConcurrentGC_thread(),
 829            "this should only be done by a conc GC thread");
 830     ResourceMark rm;
 831 
 832     double start_vtime = os::elapsedVTime();
 833 
 834     {
 835       SuspendibleThreadSetJoiner sts_join;
 836 
 837       assert(worker_id < _cm->active_tasks(), "invariant");
 838       G1CMTask* the_task = _cm->task(worker_id);
 839       the_task->record_start_time();
 840       if (!_cm->has_aborted()) {
 841         do {
 842           double start_vtime_sec = os::elapsedVTime();
 843           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 844 
 845           the_task->do_marking_step(mark_step_duration_ms,
 846                                     true  /* do_termination */,
 847                                     false /* is_serial*/);
 848 
 849           double end_vtime_sec = os::elapsedVTime();
 850           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 851           _cm->do_yield_check();
 852 
 853           jlong sleep_time_ms;
 854           if (!_cm->has_aborted() && the_task->has_aborted()) {
 855             sleep_time_ms =
 856               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 857             {
 858               SuspendibleThreadSetLeaver sts_leave;
 859               os::sleep(Thread::current(), sleep_time_ms, false);
 860             }
 861           }
 862         } while (!_cm->has_aborted() && the_task->has_aborted());
 863       }
 864       the_task->record_end_time();
 865       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 866     }
 867 
 868     double end_vtime = os::elapsedVTime();
 869     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 870   }
 871 
 872   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 873                             ConcurrentMarkThread* cmt) :
 874       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 875 
 876   ~G1CMConcurrentMarkingTask() { }
 877 };
 878 
 879 // Calculates the number of active workers for a concurrent
 880 // phase.
 881 uint G1ConcurrentMark::calc_parallel_marking_threads() {
 882   uint n_conc_workers = 0;
 883   if (!UseDynamicNumberOfGCThreads ||
 884       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 885        !ForceDynamicNumberOfGCThreads)) {
 886     n_conc_workers = max_parallel_marking_threads();
 887   } else {
 888     n_conc_workers =
 889       AdaptiveSizePolicy::calc_default_active_workers(max_parallel_marking_threads(),
 890                                                       1, /* Minimum workers */
 891                                                       parallel_marking_threads(),
 892                                                       Threads::number_of_non_daemon_threads());
 893     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 894     // that scaling has already gone into "_max_parallel_marking_threads".
 895   }
 896   assert(n_conc_workers > 0 && n_conc_workers <= max_parallel_marking_threads(),
 897          "Calculated number of workers must be larger than zero and at most the maximum %u, but is %u",
 898          max_parallel_marking_threads(), n_conc_workers);
 899   return n_conc_workers;
 900 }
 901 
 902 void G1ConcurrentMark::scanRootRegion(HeapRegion* hr) {
 903   // Currently, only survivors can be root regions.
 904   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 905   G1RootRegionScanClosure cl(_g1h, this);
 906 
 907   const uintx interval = PrefetchScanIntervalInBytes;
 908   HeapWord* curr = hr->bottom();
 909   const HeapWord* end = hr->top();
 910   while (curr < end) {
 911     Prefetch::read(curr, interval);
 912     oop obj = oop(curr);
 913     int size = obj->oop_iterate_size(&cl);
 914     assert(size == obj->size(), "sanity");
 915     curr += size;
 916   }
 917 }
 918 
 919 class G1CMRootRegionScanTask : public AbstractGangTask {
 920 private:
 921   G1ConcurrentMark* _cm;
 922 
 923 public:
 924   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 925     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 926 
 927   void work(uint worker_id) {
 928     assert(Thread::current()->is_ConcurrentGC_thread(),
 929            "this should only be done by a conc GC thread");
 930 
 931     G1CMRootRegions* root_regions = _cm->root_regions();
 932     HeapRegion* hr = root_regions->claim_next();
 933     while (hr != NULL) {
 934       _cm->scanRootRegion(hr);
 935       hr = root_regions->claim_next();
 936     }
 937   }
 938 };
 939 
 940 void G1ConcurrentMark::scan_root_regions() {
 941   // scan_in_progress() will have been set to true only if there was
 942   // at least one root region to scan. So, if it's false, we
 943   // should not attempt to do any further work.
 944   if (root_regions()->scan_in_progress()) {
 945     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 946 
 947     _parallel_marking_threads = MIN2(calc_parallel_marking_threads(),
 948                                      // We distribute work on a per-region basis, so starting
 949                                      // more threads than that is useless.
 950                                      root_regions()->num_root_regions());
 951     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 952            "Maximum number of marking threads exceeded");
 953 
 954     G1CMRootRegionScanTask task(this);
 955     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 956                         task.name(), _parallel_marking_threads, root_regions()->num_root_regions());
 957     _parallel_workers->run_task(&task, _parallel_marking_threads);
 958 
 959     // It's possible that has_aborted() is true here without actually
 960     // aborting the survivor scan earlier. This is OK as it's
 961     // mainly used for sanity checking.
 962     root_regions()->scan_finished();
 963   }
 964 }
 965 
 966 void G1ConcurrentMark::concurrent_cycle_start() {
 967   _gc_timer_cm->register_gc_start();
 968 
 969   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 970 
 971   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 972 }
 973 
 974 void G1ConcurrentMark::concurrent_cycle_end() {
 975   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 976 
 977   if (has_aborted()) {
 978     _gc_tracer_cm->report_concurrent_mode_failure();
 979   }
 980 
 981   _gc_timer_cm->register_gc_end();
 982 
 983   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 984 }
 985 
 986 void G1ConcurrentMark::mark_from_roots() {
 987   // we might be tempted to assert that:
 988   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
 989   //        "inconsistent argument?");
 990   // However that wouldn't be right, because it's possible that
 991   // a safepoint is indeed in progress as a younger generation
 992   // stop-the-world GC happens even as we mark in this generation.
 993 
 994   _restart_for_overflow = false;
 995 
 996   // _g1h has _n_par_threads
 997   _parallel_marking_threads = calc_parallel_marking_threads();
 998   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 999     "Maximum number of marking threads exceeded");
1000 
1001   uint active_workers = MAX2(1U, parallel_marking_threads());
1002   assert(active_workers > 0, "Should have been set");
1003 
1004   // Setting active workers is not guaranteed since fewer
1005   // worker threads may currently exist and more may not be
1006   // available.
1007   active_workers = _parallel_workers->update_active_workers(active_workers);
1008   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _parallel_workers->total_workers());
1009 
1010   // Parallel task terminator is set in "set_concurrency_and_phase()"
1011   set_concurrency_and_phase(active_workers, true /* concurrent */);
1012 
1013   G1CMConcurrentMarkingTask markingTask(this, cmThread());
1014   _parallel_workers->run_task(&markingTask);
1015   print_stats();
1016 }
1017 
1018 void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1019   // world is stopped at this checkpoint
1020   assert(SafepointSynchronize::is_at_safepoint(),
1021          "world should be stopped");
1022 
1023   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1024 
1025   // If a full collection has happened, we shouldn't do this.
1026   if (has_aborted()) {
1027     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1028     return;
1029   }
1030 
1031   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1032 
1033   if (VerifyDuringGC) {
1034     HandleMark hm;  // handle scope
1035     g1h->prepare_for_verify();
1036     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1037   }
1038   g1h->verifier()->check_bitmaps("Remark Start");
1039 
1040   G1Policy* g1p = g1h->g1_policy();
1041   g1p->record_concurrent_mark_remark_start();
1042 
1043   double start = os::elapsedTime();
1044 
1045   checkpointRootsFinalWork();
1046 
1047   double mark_work_end = os::elapsedTime();
1048 
1049   weakRefsWork(clear_all_soft_refs);
1050 
1051   if (has_overflown()) {
1052     // We overflowed.  Restart concurrent marking.
1053     _restart_for_overflow = true;
1054 
1055     // Verify the heap w.r.t. the previous marking bitmap.
1056     if (VerifyDuringGC) {
1057       HandleMark hm;  // handle scope
1058       g1h->prepare_for_verify();
1059       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1060     }
1061 
1062     // Clear the marking state because we will be restarting
1063     // marking due to overflowing the global mark stack.
1064     reset_marking_state();
1065   } else {
1066     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1067     // We're done with marking.
1068     // This is the end of  the marking cycle, we're expected all
1069     // threads to have SATB queues with active set to true.
1070     satb_mq_set.set_active_all_threads(false, /* new active value */
1071                                        true /* expected_active */);
1072 
1073     if (VerifyDuringGC) {
1074       HandleMark hm;  // handle scope
1075       g1h->prepare_for_verify();
1076       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1077     }
1078     g1h->verifier()->check_bitmaps("Remark End");
1079     assert(!restart_for_overflow(), "sanity");
1080     // Completely reset the marking state since marking completed
1081     set_non_marking_state();
1082   }
1083 
1084   // Statistics
1085   double now = os::elapsedTime();
1086   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1087   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1088   _remark_times.add((now - start) * 1000.0);
1089 
1090   g1p->record_concurrent_mark_remark_end();
1091 
1092   G1CMIsAliveClosure is_alive(g1h);
1093   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1094 }
1095 
1096 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1097   G1CollectedHeap* _g1;
1098   size_t _freed_bytes;
1099   FreeRegionList* _local_cleanup_list;
1100   uint _old_regions_removed;
1101   uint _humongous_regions_removed;
1102   HRRSCleanupTask* _hrrs_cleanup_task;
1103 
1104 public:
1105   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1106                              FreeRegionList* local_cleanup_list,
1107                              HRRSCleanupTask* hrrs_cleanup_task) :
1108     _g1(g1),
1109     _freed_bytes(0),
1110     _local_cleanup_list(local_cleanup_list),
1111     _old_regions_removed(0),
1112     _humongous_regions_removed(0),
1113     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1114 
1115   size_t freed_bytes() { return _freed_bytes; }
1116   const uint old_regions_removed() { return _old_regions_removed; }
1117   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1118 
1119   bool doHeapRegion(HeapRegion *hr) {
1120     if (hr->is_archive()) {
1121       return false;
1122     }
1123     _g1->reset_gc_time_stamps(hr);
1124     hr->note_end_of_marking();
1125 
1126     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1127       _freed_bytes += hr->used();
1128       hr->set_containing_set(NULL);
1129       if (hr->is_humongous()) {
1130         _humongous_regions_removed++;
1131         _g1->free_humongous_region(hr, _local_cleanup_list, true /* skip_remset */);
1132       } else {
1133         _old_regions_removed++;
1134         _g1->free_region(hr, _local_cleanup_list, true /* skip_remset */);
1135       }
1136     } else {
1137       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1138     }
1139 
1140     return false;
1141   }
1142 };
1143 
1144 class G1ParNoteEndTask: public AbstractGangTask {
1145   friend class G1NoteEndOfConcMarkClosure;
1146 
1147 protected:
1148   G1CollectedHeap* _g1h;
1149   FreeRegionList* _cleanup_list;
1150   HeapRegionClaimer _hrclaimer;
1151 
1152 public:
1153   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1154       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1155   }
1156 
1157   void work(uint worker_id) {
1158     FreeRegionList local_cleanup_list("Local Cleanup List");
1159     HRRSCleanupTask hrrs_cleanup_task;
1160     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1161                                            &hrrs_cleanup_task);
1162     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1163     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1164 
1165     // Now update the lists
1166     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1167     {
1168       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1169       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1170 
1171       // If we iterate over the global cleanup list at the end of
1172       // cleanup to do this printing we will not guarantee to only
1173       // generate output for the newly-reclaimed regions (the list
1174       // might not be empty at the beginning of cleanup; we might
1175       // still be working on its previous contents). So we do the
1176       // printing here, before we append the new regions to the global
1177       // cleanup list.
1178 
1179       G1HRPrinter* hr_printer = _g1h->hr_printer();
1180       if (hr_printer->is_active()) {
1181         FreeRegionListIterator iter(&local_cleanup_list);
1182         while (iter.more_available()) {
1183           HeapRegion* hr = iter.get_next();
1184           hr_printer->cleanup(hr);
1185         }
1186       }
1187 
1188       _cleanup_list->add_ordered(&local_cleanup_list);
1189       assert(local_cleanup_list.is_empty(), "post-condition");
1190 
1191       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1192     }
1193   }
1194 };
1195 
1196 void G1ConcurrentMark::cleanup() {
1197   // world is stopped at this checkpoint
1198   assert(SafepointSynchronize::is_at_safepoint(),
1199          "world should be stopped");
1200   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1201 
1202   // If a full collection has happened, we shouldn't do this.
1203   if (has_aborted()) {
1204     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1205     return;
1206   }
1207 
1208   g1h->verifier()->verify_region_sets_optional();
1209 
1210   if (VerifyDuringGC) {
1211     HandleMark hm;  // handle scope
1212     g1h->prepare_for_verify();
1213     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1214   }
1215   g1h->verifier()->check_bitmaps("Cleanup Start");
1216 
1217   G1Policy* g1p = g1h->g1_policy();
1218   g1p->record_concurrent_mark_cleanup_start();
1219 
1220   double start = os::elapsedTime();
1221 
1222   HeapRegionRemSet::reset_for_cleanup_tasks();
1223 
1224   {
1225     GCTraceTime(Debug, gc)("Finalize Live Data");
1226     finalize_live_data();
1227   }
1228 
1229   if (VerifyDuringGC) {
1230     GCTraceTime(Debug, gc)("Verify Live Data");
1231     verify_live_data();
1232   }
1233 
1234   g1h->collector_state()->set_mark_in_progress(false);
1235 
1236   double count_end = os::elapsedTime();
1237   double this_final_counting_time = (count_end - start);
1238   _total_counting_time += this_final_counting_time;
1239 
1240   if (log_is_enabled(Trace, gc, liveness)) {
1241     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1242     _g1h->heap_region_iterate(&cl);
1243   }
1244 
1245   // Install newly created mark bitMap as "prev".
1246   swapMarkBitMaps();
1247 
1248   g1h->reset_gc_time_stamp();
1249 
1250   uint n_workers = _g1h->workers()->active_workers();
1251 
1252   // Note end of marking in all heap regions.
1253   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1254   g1h->workers()->run_task(&g1_par_note_end_task);
1255   g1h->check_gc_time_stamps();
1256 
1257   if (!cleanup_list_is_empty()) {
1258     // The cleanup list is not empty, so we'll have to process it
1259     // concurrently. Notify anyone else that might be wanting free
1260     // regions that there will be more free regions coming soon.
1261     g1h->set_free_regions_coming();
1262   }
1263 
1264   // call below, since it affects the metric by which we sort the heap
1265   // regions.
1266   if (G1ScrubRemSets) {
1267     double rs_scrub_start = os::elapsedTime();
1268     g1h->scrub_rem_set();
1269     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1270   }
1271 
1272   // this will also free any regions totally full of garbage objects,
1273   // and sort the regions.
1274   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1275 
1276   // Statistics.
1277   double end = os::elapsedTime();
1278   _cleanup_times.add((end - start) * 1000.0);
1279 
1280   // Clean up will have freed any regions completely full of garbage.
1281   // Update the soft reference policy with the new heap occupancy.
1282   Universe::update_heap_info_at_gc();
1283 
1284   if (VerifyDuringGC) {
1285     HandleMark hm;  // handle scope
1286     g1h->prepare_for_verify();
1287     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1288   }
1289 
1290   g1h->verifier()->check_bitmaps("Cleanup End");
1291 
1292   g1h->verifier()->verify_region_sets_optional();
1293 
1294   // We need to make this be a "collection" so any collection pause that
1295   // races with it goes around and waits for completeCleanup to finish.
1296   g1h->increment_total_collections();
1297 
1298   // Clean out dead classes and update Metaspace sizes.
1299   if (ClassUnloadingWithConcurrentMark) {
1300     ClassLoaderDataGraph::purge();
1301   }
1302   MetaspaceGC::compute_new_size();
1303 
1304   // We reclaimed old regions so we should calculate the sizes to make
1305   // sure we update the old gen/space data.
1306   g1h->g1mm()->update_sizes();
1307   g1h->allocation_context_stats().update_after_mark();
1308 }
1309 
1310 void G1ConcurrentMark::complete_cleanup() {
1311   if (has_aborted()) return;
1312 
1313   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1314 
1315   _cleanup_list.verify_optional();
1316   FreeRegionList tmp_free_list("Tmp Free List");
1317 
1318   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1319                                   "cleanup list has %u entries",
1320                                   _cleanup_list.length());
1321 
1322   // No one else should be accessing the _cleanup_list at this point,
1323   // so it is not necessary to take any locks
1324   while (!_cleanup_list.is_empty()) {
1325     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1326     assert(hr != NULL, "Got NULL from a non-empty list");
1327     hr->par_clear();
1328     tmp_free_list.add_ordered(hr);
1329 
1330     // Instead of adding one region at a time to the secondary_free_list,
1331     // we accumulate them in the local list and move them a few at a
1332     // time. This also cuts down on the number of notify_all() calls
1333     // we do during this process. We'll also append the local list when
1334     // _cleanup_list is empty (which means we just removed the last
1335     // region from the _cleanup_list).
1336     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1337         _cleanup_list.is_empty()) {
1338       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1339                                       "appending %u entries to the secondary_free_list, "
1340                                       "cleanup list still has %u entries",
1341                                       tmp_free_list.length(),
1342                                       _cleanup_list.length());
1343 
1344       {
1345         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1346         g1h->secondary_free_list_add(&tmp_free_list);
1347         SecondaryFreeList_lock->notify_all();
1348       }
1349 #ifndef PRODUCT
1350       if (G1StressConcRegionFreeing) {
1351         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1352           os::sleep(Thread::current(), (jlong) 1, false);
1353         }
1354       }
1355 #endif
1356     }
1357   }
1358   assert(tmp_free_list.is_empty(), "post-condition");
1359 }
1360 
1361 // Supporting Object and Oop closures for reference discovery
1362 // and processing in during marking
1363 
1364 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1365   HeapWord* addr = (HeapWord*)obj;
1366   return addr != NULL &&
1367          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1368 }
1369 
1370 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1371 // Uses the G1CMTask associated with a worker thread (for serial reference
1372 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1373 // trace referent objects.
1374 //
1375 // Using the G1CMTask and embedded local queues avoids having the worker
1376 // threads operating on the global mark stack. This reduces the risk
1377 // of overflowing the stack - which we would rather avoid at this late
1378 // state. Also using the tasks' local queues removes the potential
1379 // of the workers interfering with each other that could occur if
1380 // operating on the global stack.
1381 
1382 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1383   G1ConcurrentMark* _cm;
1384   G1CMTask*         _task;
1385   int               _ref_counter_limit;
1386   int               _ref_counter;
1387   bool              _is_serial;
1388  public:
1389   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1390     _cm(cm), _task(task), _is_serial(is_serial),
1391     _ref_counter_limit(G1RefProcDrainInterval) {
1392     assert(_ref_counter_limit > 0, "sanity");
1393     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1394     _ref_counter = _ref_counter_limit;
1395   }
1396 
1397   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1398   virtual void do_oop(      oop* p) { do_oop_work(p); }
1399 
1400   template <class T> void do_oop_work(T* p) {
1401     if (!_cm->has_overflown()) {
1402       oop obj = oopDesc::load_decode_heap_oop(p);
1403       _task->deal_with_reference(obj);
1404       _ref_counter--;
1405 
1406       if (_ref_counter == 0) {
1407         // We have dealt with _ref_counter_limit references, pushing them
1408         // and objects reachable from them on to the local stack (and
1409         // possibly the global stack). Call G1CMTask::do_marking_step() to
1410         // process these entries.
1411         //
1412         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1413         // there's nothing more to do (i.e. we're done with the entries that
1414         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1415         // above) or we overflow.
1416         //
1417         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1418         // flag while there may still be some work to do. (See the comment at
1419         // the beginning of G1CMTask::do_marking_step() for those conditions -
1420         // one of which is reaching the specified time target.) It is only
1421         // when G1CMTask::do_marking_step() returns without setting the
1422         // has_aborted() flag that the marking step has completed.
1423         do {
1424           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1425           _task->do_marking_step(mark_step_duration_ms,
1426                                  false      /* do_termination */,
1427                                  _is_serial);
1428         } while (_task->has_aborted() && !_cm->has_overflown());
1429         _ref_counter = _ref_counter_limit;
1430       }
1431     }
1432   }
1433 };
1434 
1435 // 'Drain' oop closure used by both serial and parallel reference processing.
1436 // Uses the G1CMTask associated with a given worker thread (for serial
1437 // reference processing the G1CMtask for worker 0 is used). Calls the
1438 // do_marking_step routine, with an unbelievably large timeout value,
1439 // to drain the marking data structures of the remaining entries
1440 // added by the 'keep alive' oop closure above.
1441 
1442 class G1CMDrainMarkingStackClosure: public VoidClosure {
1443   G1ConcurrentMark* _cm;
1444   G1CMTask*         _task;
1445   bool              _is_serial;
1446  public:
1447   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1448     _cm(cm), _task(task), _is_serial(is_serial) {
1449     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1450   }
1451 
1452   void do_void() {
1453     do {
1454       // We call G1CMTask::do_marking_step() to completely drain the local
1455       // and global marking stacks of entries pushed by the 'keep alive'
1456       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1457       //
1458       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1459       // if there's nothing more to do (i.e. we've completely drained the
1460       // entries that were pushed as a a result of applying the 'keep alive'
1461       // closure to the entries on the discovered ref lists) or we overflow
1462       // the global marking stack.
1463       //
1464       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1465       // flag while there may still be some work to do. (See the comment at
1466       // the beginning of G1CMTask::do_marking_step() for those conditions -
1467       // one of which is reaching the specified time target.) It is only
1468       // when G1CMTask::do_marking_step() returns without setting the
1469       // has_aborted() flag that the marking step has completed.
1470 
1471       _task->do_marking_step(1000000000.0 /* something very large */,
1472                              true         /* do_termination */,
1473                              _is_serial);
1474     } while (_task->has_aborted() && !_cm->has_overflown());
1475   }
1476 };
1477 
1478 // Implementation of AbstractRefProcTaskExecutor for parallel
1479 // reference processing at the end of G1 concurrent marking
1480 
1481 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1482 private:
1483   G1CollectedHeap*  _g1h;
1484   G1ConcurrentMark* _cm;
1485   WorkGang*         _workers;
1486   uint              _active_workers;
1487 
1488 public:
1489   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1490                           G1ConcurrentMark* cm,
1491                           WorkGang* workers,
1492                           uint n_workers) :
1493     _g1h(g1h), _cm(cm),
1494     _workers(workers), _active_workers(n_workers) { }
1495 
1496   // Executes the given task using concurrent marking worker threads.
1497   virtual void execute(ProcessTask& task);
1498   virtual void execute(EnqueueTask& task);
1499 };
1500 
1501 class G1CMRefProcTaskProxy: public AbstractGangTask {
1502   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1503   ProcessTask&      _proc_task;
1504   G1CollectedHeap*  _g1h;
1505   G1ConcurrentMark* _cm;
1506 
1507 public:
1508   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1509                        G1CollectedHeap* g1h,
1510                        G1ConcurrentMark* cm) :
1511     AbstractGangTask("Process reference objects in parallel"),
1512     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1513     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1514     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1515   }
1516 
1517   virtual void work(uint worker_id) {
1518     ResourceMark rm;
1519     HandleMark hm;
1520     G1CMTask* task = _cm->task(worker_id);
1521     G1CMIsAliveClosure g1_is_alive(_g1h);
1522     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1523     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1524 
1525     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1526   }
1527 };
1528 
1529 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1530   assert(_workers != NULL, "Need parallel worker threads.");
1531   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1532 
1533   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1534 
1535   // We need to reset the concurrency level before each
1536   // proxy task execution, so that the termination protocol
1537   // and overflow handling in G1CMTask::do_marking_step() knows
1538   // how many workers to wait for.
1539   _cm->set_concurrency(_active_workers);
1540   _workers->run_task(&proc_task_proxy);
1541 }
1542 
1543 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1544   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1545   EnqueueTask& _enq_task;
1546 
1547 public:
1548   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1549     AbstractGangTask("Enqueue reference objects in parallel"),
1550     _enq_task(enq_task) { }
1551 
1552   virtual void work(uint worker_id) {
1553     _enq_task.work(worker_id);
1554   }
1555 };
1556 
1557 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1558   assert(_workers != NULL, "Need parallel worker threads.");
1559   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1560 
1561   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1562 
1563   // Not strictly necessary but...
1564   //
1565   // We need to reset the concurrency level before each
1566   // proxy task execution, so that the termination protocol
1567   // and overflow handling in G1CMTask::do_marking_step() knows
1568   // how many workers to wait for.
1569   _cm->set_concurrency(_active_workers);
1570   _workers->run_task(&enq_task_proxy);
1571 }
1572 
1573 void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
1574   if (has_overflown()) {
1575     // Skip processing the discovered references if we have
1576     // overflown the global marking stack. Reference objects
1577     // only get discovered once so it is OK to not
1578     // de-populate the discovered reference lists. We could have,
1579     // but the only benefit would be that, when marking restarts,
1580     // less reference objects are discovered.
1581     return;
1582   }
1583 
1584   ResourceMark rm;
1585   HandleMark   hm;
1586 
1587   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1588 
1589   // Is alive closure.
1590   G1CMIsAliveClosure g1_is_alive(g1h);
1591 
1592   // Inner scope to exclude the cleaning of the string and symbol
1593   // tables from the displayed time.
1594   {
1595     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1596 
1597     ReferenceProcessor* rp = g1h->ref_processor_cm();
1598 
1599     // See the comment in G1CollectedHeap::ref_processing_init()
1600     // about how reference processing currently works in G1.
1601 
1602     // Set the soft reference policy
1603     rp->setup_policy(clear_all_soft_refs);
1604     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1605 
1606     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1607     // in serial reference processing. Note these closures are also
1608     // used for serially processing (by the the current thread) the
1609     // JNI references during parallel reference processing.
1610     //
1611     // These closures do not need to synchronize with the worker
1612     // threads involved in parallel reference processing as these
1613     // instances are executed serially by the current thread (e.g.
1614     // reference processing is not multi-threaded and is thus
1615     // performed by the current thread instead of a gang worker).
1616     //
1617     // The gang tasks involved in parallel reference processing create
1618     // their own instances of these closures, which do their own
1619     // synchronization among themselves.
1620     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1621     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1622 
1623     // We need at least one active thread. If reference processing
1624     // is not multi-threaded we use the current (VMThread) thread,
1625     // otherwise we use the work gang from the G1CollectedHeap and
1626     // we utilize all the worker threads we can.
1627     bool processing_is_mt = rp->processing_is_mt();
1628     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
1629     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
1630 
1631     // Parallel processing task executor.
1632     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
1633                                               g1h->workers(), active_workers);
1634     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1635 
1636     // Set the concurrency level. The phase was already set prior to
1637     // executing the remark task.
1638     set_concurrency(active_workers);
1639 
1640     // Set the degree of MT processing here.  If the discovery was done MT,
1641     // the number of threads involved during discovery could differ from
1642     // the number of active workers.  This is OK as long as the discovered
1643     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1644     rp->set_active_mt_degree(active_workers);
1645 
1646     // Process the weak references.
1647     const ReferenceProcessorStats& stats =
1648         rp->process_discovered_references(&g1_is_alive,
1649                                           &g1_keep_alive,
1650                                           &g1_drain_mark_stack,
1651                                           executor,
1652                                           _gc_timer_cm);
1653     _gc_tracer_cm->report_gc_reference_stats(stats);
1654 
1655     // The do_oop work routines of the keep_alive and drain_marking_stack
1656     // oop closures will set the has_overflown flag if we overflow the
1657     // global marking stack.
1658 
1659     assert(has_overflown() || _global_mark_stack.is_empty(),
1660             "Mark stack should be empty (unless it has overflown)");
1661 
1662     assert(rp->num_q() == active_workers, "why not");
1663 
1664     rp->enqueue_discovered_references(executor);
1665 
1666     rp->verify_no_references_recorded();
1667     assert(!rp->discovery_enabled(), "Post condition");
1668   }
1669 
1670   if (has_overflown()) {
1671     // We can not trust g1_is_alive if the marking stack overflowed
1672     return;
1673   }
1674 
1675   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1676 
1677   // Unload Klasses, String, Symbols, Code Cache, etc.
1678   if (ClassUnloadingWithConcurrentMark) {
1679     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1680     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1681     g1h->complete_cleaning(&g1_is_alive, purged_classes);
1682   } else {
1683     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1684     // No need to clean string table and symbol table as they are treated as strong roots when
1685     // class unloading is disabled.
1686     g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1687 
1688   }
1689 }
1690 
1691 void G1ConcurrentMark::swapMarkBitMaps() {
1692   G1CMBitMap* temp = _prevMarkBitMap;
1693   _prevMarkBitMap  = _nextMarkBitMap;
1694   _nextMarkBitMap  = temp;
1695 }
1696 
1697 // Closure for marking entries in SATB buffers.
1698 class G1CMSATBBufferClosure : public SATBBufferClosure {
1699 private:
1700   G1CMTask* _task;
1701   G1CollectedHeap* _g1h;
1702 
1703   // This is very similar to G1CMTask::deal_with_reference, but with
1704   // more relaxed requirements for the argument, so this must be more
1705   // circumspect about treating the argument as an object.
1706   void do_entry(void* entry) const {
1707     _task->increment_refs_reached();
1708     oop const obj = static_cast<oop>(entry);
1709     _task->make_reference_grey(obj);
1710   }
1711 
1712 public:
1713   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1714     : _task(task), _g1h(g1h) { }
1715 
1716   virtual void do_buffer(void** buffer, size_t size) {
1717     for (size_t i = 0; i < size; ++i) {
1718       do_entry(buffer[i]);
1719     }
1720   }
1721 };
1722 
1723 class G1RemarkThreadsClosure : public ThreadClosure {
1724   G1CMSATBBufferClosure _cm_satb_cl;
1725   G1CMOopClosure _cm_cl;
1726   MarkingCodeBlobClosure _code_cl;
1727   int _thread_parity;
1728 
1729  public:
1730   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1731     _cm_satb_cl(task, g1h),
1732     _cm_cl(g1h, g1h->concurrent_mark(), task),
1733     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1734     _thread_parity(Threads::thread_claim_parity()) {}
1735 
1736   void do_thread(Thread* thread) {
1737     if (thread->is_Java_thread()) {
1738       if (thread->claim_oops_do(true, _thread_parity)) {
1739         JavaThread* jt = (JavaThread*)thread;
1740 
1741         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1742         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1743         // * Alive if on the stack of an executing method
1744         // * Weakly reachable otherwise
1745         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1746         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1747         jt->nmethods_do(&_code_cl);
1748 
1749         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1750       }
1751     } else if (thread->is_VM_thread()) {
1752       if (thread->claim_oops_do(true, _thread_parity)) {
1753         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1754       }
1755     }
1756   }
1757 };
1758 
1759 class G1CMRemarkTask: public AbstractGangTask {
1760 private:
1761   G1ConcurrentMark* _cm;
1762 public:
1763   void work(uint worker_id) {
1764     // Since all available tasks are actually started, we should
1765     // only proceed if we're supposed to be active.
1766     if (worker_id < _cm->active_tasks()) {
1767       G1CMTask* task = _cm->task(worker_id);
1768       task->record_start_time();
1769       {
1770         ResourceMark rm;
1771         HandleMark hm;
1772 
1773         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1774         Threads::threads_do(&threads_f);
1775       }
1776 
1777       do {
1778         task->do_marking_step(1000000000.0 /* something very large */,
1779                               true         /* do_termination       */,
1780                               false        /* is_serial            */);
1781       } while (task->has_aborted() && !_cm->has_overflown());
1782       // If we overflow, then we do not want to restart. We instead
1783       // want to abort remark and do concurrent marking again.
1784       task->record_end_time();
1785     }
1786   }
1787 
1788   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1789     AbstractGangTask("Par Remark"), _cm(cm) {
1790     _cm->terminator()->reset_for_reuse(active_workers);
1791   }
1792 };
1793 
1794 void G1ConcurrentMark::checkpointRootsFinalWork() {
1795   ResourceMark rm;
1796   HandleMark   hm;
1797   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1798 
1799   GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1800 
1801   g1h->ensure_parsability(false);
1802 
1803   // this is remark, so we'll use up all active threads
1804   uint active_workers = g1h->workers()->active_workers();
1805   set_concurrency_and_phase(active_workers, false /* concurrent */);
1806   // Leave _parallel_marking_threads at it's
1807   // value originally calculated in the G1ConcurrentMark
1808   // constructor and pass values of the active workers
1809   // through the gang in the task.
1810 
1811   {
1812     StrongRootsScope srs(active_workers);
1813 
1814     G1CMRemarkTask remarkTask(this, active_workers);
1815     // We will start all available threads, even if we decide that the
1816     // active_workers will be fewer. The extra ones will just bail out
1817     // immediately.
1818     g1h->workers()->run_task(&remarkTask);
1819   }
1820 
1821   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1822   guarantee(has_overflown() ||
1823             satb_mq_set.completed_buffers_num() == 0,
1824             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1825             BOOL_TO_STR(has_overflown()),
1826             satb_mq_set.completed_buffers_num());
1827 
1828   print_stats();
1829 }
1830 
1831 void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
1832   _prevMarkBitMap->clear_range(mr);
1833 }
1834 
1835 HeapRegion*
1836 G1ConcurrentMark::claim_region(uint worker_id) {
1837   // "checkpoint" the finger
1838   HeapWord* finger = _finger;
1839 
1840   // _heap_end will not change underneath our feet; it only changes at
1841   // yield points.
1842   while (finger < _heap_end) {
1843     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1844 
1845     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1846     // Make sure that the reads below do not float before loading curr_region.
1847     OrderAccess::loadload();
1848     // Above heap_region_containing may return NULL as we always scan claim
1849     // until the end of the heap. In this case, just jump to the next region.
1850     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1851 
1852     // Is the gap between reading the finger and doing the CAS too long?
1853     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
1854     if (res == finger && curr_region != NULL) {
1855       // we succeeded
1856       HeapWord*   bottom        = curr_region->bottom();
1857       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1858 
1859       // notice that _finger == end cannot be guaranteed here since,
1860       // someone else might have moved the finger even further
1861       assert(_finger >= end, "the finger should have moved forward");
1862 
1863       if (limit > bottom) {
1864         return curr_region;
1865       } else {
1866         assert(limit == bottom,
1867                "the region limit should be at bottom");
1868         // we return NULL and the caller should try calling
1869         // claim_region() again.
1870         return NULL;
1871       }
1872     } else {
1873       assert(_finger > finger, "the finger should have moved forward");
1874       // read it again
1875       finger = _finger;
1876     }
1877   }
1878 
1879   return NULL;
1880 }
1881 
1882 #ifndef PRODUCT
1883 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
1884 private:
1885   G1CollectedHeap* _g1h;
1886   const char* _phase;
1887   int _info;
1888 
1889 public:
1890   VerifyNoCSetOops(const char* phase, int info = -1) :
1891     _g1h(G1CollectedHeap::heap()),
1892     _phase(phase),
1893     _info(info)
1894   { }
1895 
1896   void operator()(G1TaskQueueEntry task_entry) const {
1897     if (task_entry.is_array_slice()) {
1898       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1899       return;
1900     }
1901     guarantee(task_entry.obj()->is_oop(),
1902               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1903               p2i(task_entry.obj()), _phase, _info);
1904     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1905               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1906               p2i(task_entry.obj()), _phase, _info);
1907   }
1908 };
1909 
1910 void G1ConcurrentMark::verify_no_cset_oops() {
1911   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1912   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
1913     return;
1914   }
1915 
1916   // Verify entries on the global mark stack
1917   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1918 
1919   // Verify entries on the task queues
1920   for (uint i = 0; i < _max_worker_id; ++i) {
1921     G1CMTaskQueue* queue = _task_queues->queue(i);
1922     queue->iterate(VerifyNoCSetOops("Queue", i));
1923   }
1924 
1925   // Verify the global finger
1926   HeapWord* global_finger = finger();
1927   if (global_finger != NULL && global_finger < _heap_end) {
1928     // Since we always iterate over all regions, we might get a NULL HeapRegion
1929     // here.
1930     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1931     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1932               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1933               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1934   }
1935 
1936   // Verify the task fingers
1937   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
1938   for (uint i = 0; i < parallel_marking_threads(); ++i) {
1939     G1CMTask* task = _tasks[i];
1940     HeapWord* task_finger = task->finger();
1941     if (task_finger != NULL && task_finger < _heap_end) {
1942       // See above note on the global finger verification.
1943       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1944       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1945                 !task_hr->in_collection_set(),
1946                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1947                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1948     }
1949   }
1950 }
1951 #endif // PRODUCT
1952 void G1ConcurrentMark::create_live_data() {
1953   _g1h->g1_rem_set()->create_card_live_data(_parallel_workers, _nextMarkBitMap);
1954 }
1955 
1956 void G1ConcurrentMark::finalize_live_data() {
1957   _g1h->g1_rem_set()->finalize_card_live_data(_g1h->workers(), _nextMarkBitMap);
1958 }
1959 
1960 void G1ConcurrentMark::verify_live_data() {
1961   _g1h->g1_rem_set()->verify_card_live_data(_g1h->workers(), _nextMarkBitMap);
1962 }
1963 
1964 void G1ConcurrentMark::clear_live_data(WorkGang* workers) {
1965   _g1h->g1_rem_set()->clear_card_live_data(workers);
1966 }
1967 
1968 #ifdef ASSERT
1969 void G1ConcurrentMark::verify_live_data_clear() {
1970   _g1h->g1_rem_set()->verify_card_live_data_is_clear();
1971 }
1972 #endif
1973 
1974 void G1ConcurrentMark::print_stats() {
1975   if (!log_is_enabled(Debug, gc, stats)) {
1976     return;
1977   }
1978   log_debug(gc, stats)("---------------------------------------------------------------------");
1979   for (size_t i = 0; i < _active_tasks; ++i) {
1980     _tasks[i]->print_stats();
1981     log_debug(gc, stats)("---------------------------------------------------------------------");
1982   }
1983 }
1984 
1985 void G1ConcurrentMark::abort() {
1986   if (!cmThread()->during_cycle() || _has_aborted) {
1987     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1988     return;
1989   }
1990 
1991   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1992   // concurrent bitmap clearing.
1993   {
1994     GCTraceTime(Debug, gc)("Clear Next Bitmap");
1995     clear_bitmap(_nextMarkBitMap, _g1h->workers(), false);
1996   }
1997   // Note we cannot clear the previous marking bitmap here
1998   // since VerifyDuringGC verifies the objects marked during
1999   // a full GC against the previous bitmap.
2000 
2001   {
2002     GCTraceTime(Debug, gc)("Clear Live Data");
2003     clear_live_data(_g1h->workers());
2004   }
2005   DEBUG_ONLY({
2006     GCTraceTime(Debug, gc)("Verify Live Data Clear");
2007     verify_live_data_clear();
2008   })
2009   // Empty mark stack
2010   reset_marking_state();
2011   for (uint i = 0; i < _max_worker_id; ++i) {
2012     _tasks[i]->clear_region_fields();
2013   }
2014   _first_overflow_barrier_sync.abort();
2015   _second_overflow_barrier_sync.abort();
2016   _has_aborted = true;
2017 
2018   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2019   satb_mq_set.abandon_partial_marking();
2020   // This can be called either during or outside marking, we'll read
2021   // the expected_active value from the SATB queue set.
2022   satb_mq_set.set_active_all_threads(
2023                                  false, /* new active value */
2024                                  satb_mq_set.is_active() /* expected_active */);
2025 }
2026 
2027 static void print_ms_time_info(const char* prefix, const char* name,
2028                                NumberSeq& ns) {
2029   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2030                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2031   if (ns.num() > 0) {
2032     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2033                            prefix, ns.sd(), ns.maximum());
2034   }
2035 }
2036 
2037 void G1ConcurrentMark::print_summary_info() {
2038   Log(gc, marking) log;
2039   if (!log.is_trace()) {
2040     return;
2041   }
2042 
2043   log.trace(" Concurrent marking:");
2044   print_ms_time_info("  ", "init marks", _init_times);
2045   print_ms_time_info("  ", "remarks", _remark_times);
2046   {
2047     print_ms_time_info("     ", "final marks", _remark_mark_times);
2048     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2049 
2050   }
2051   print_ms_time_info("  ", "cleanups", _cleanup_times);
2052   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2053             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2054   if (G1ScrubRemSets) {
2055     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2056               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2057   }
2058   log.trace("  Total stop_world time = %8.2f s.",
2059             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2060   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2061             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2062 }
2063 
2064 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2065   _parallel_workers->print_worker_threads_on(st);
2066 }
2067 
2068 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2069   _parallel_workers->threads_do(tc);
2070 }
2071 
2072 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2073   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2074       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2075   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2076   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2077 }
2078 
2079 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
2080   assert(addr < _cm->finger(), "invariant");
2081   assert(addr >= _task->finger(), "invariant");
2082 
2083   // We move that task's local finger along.
2084   _task->move_finger_to(addr);
2085 
2086   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
2087   // we only partially drain the local queue and global stack
2088   _task->drain_local_queue(true);
2089   _task->drain_global_stack(true);
2090 
2091   // if the has_aborted flag has been raised, we need to bail out of
2092   // the iteration
2093   return !_task->has_aborted();
2094 }
2095 
2096 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2097   ReferenceProcessor* result = g1h->ref_processor_cm();
2098   assert(result != NULL, "CM reference processor should not be NULL");
2099   return result;
2100 }
2101 
2102 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2103                                G1ConcurrentMark* cm,
2104                                G1CMTask* task)
2105   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2106     _g1h(g1h), _cm(cm), _task(task)
2107 { }
2108 
2109 void G1CMTask::setup_for_region(HeapRegion* hr) {
2110   assert(hr != NULL,
2111         "claim_region() should have filtered out NULL regions");
2112   _curr_region  = hr;
2113   _finger       = hr->bottom();
2114   update_region_limit();
2115 }
2116 
2117 void G1CMTask::update_region_limit() {
2118   HeapRegion* hr            = _curr_region;
2119   HeapWord* bottom          = hr->bottom();
2120   HeapWord* limit           = hr->next_top_at_mark_start();
2121 
2122   if (limit == bottom) {
2123     // The region was collected underneath our feet.
2124     // We set the finger to bottom to ensure that the bitmap
2125     // iteration that will follow this will not do anything.
2126     // (this is not a condition that holds when we set the region up,
2127     // as the region is not supposed to be empty in the first place)
2128     _finger = bottom;
2129   } else if (limit >= _region_limit) {
2130     assert(limit >= _finger, "peace of mind");
2131   } else {
2132     assert(limit < _region_limit, "only way to get here");
2133     // This can happen under some pretty unusual circumstances.  An
2134     // evacuation pause empties the region underneath our feet (NTAMS
2135     // at bottom). We then do some allocation in the region (NTAMS
2136     // stays at bottom), followed by the region being used as a GC
2137     // alloc region (NTAMS will move to top() and the objects
2138     // originally below it will be grayed). All objects now marked in
2139     // the region are explicitly grayed, if below the global finger,
2140     // and we do not need in fact to scan anything else. So, we simply
2141     // set _finger to be limit to ensure that the bitmap iteration
2142     // doesn't do anything.
2143     _finger = limit;
2144   }
2145 
2146   _region_limit = limit;
2147 }
2148 
2149 void G1CMTask::giveup_current_region() {
2150   assert(_curr_region != NULL, "invariant");
2151   clear_region_fields();
2152 }
2153 
2154 void G1CMTask::clear_region_fields() {
2155   // Values for these three fields that indicate that we're not
2156   // holding on to a region.
2157   _curr_region   = NULL;
2158   _finger        = NULL;
2159   _region_limit  = NULL;
2160 }
2161 
2162 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2163   if (cm_oop_closure == NULL) {
2164     assert(_cm_oop_closure != NULL, "invariant");
2165   } else {
2166     assert(_cm_oop_closure == NULL, "invariant");
2167   }
2168   _cm_oop_closure = cm_oop_closure;
2169 }
2170 
2171 void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
2172   guarantee(nextMarkBitMap != NULL, "invariant");
2173   _nextMarkBitMap                = nextMarkBitMap;
2174   clear_region_fields();
2175 
2176   _calls                         = 0;
2177   _elapsed_time_ms               = 0.0;
2178   _termination_time_ms           = 0.0;
2179   _termination_start_time_ms     = 0.0;
2180 }
2181 
2182 bool G1CMTask::should_exit_termination() {
2183   regular_clock_call();
2184   // This is called when we are in the termination protocol. We should
2185   // quit if, for some reason, this task wants to abort or the global
2186   // stack is not empty (this means that we can get work from it).
2187   return !_cm->mark_stack_empty() || has_aborted();
2188 }
2189 
2190 void G1CMTask::reached_limit() {
2191   assert(_words_scanned >= _words_scanned_limit ||
2192          _refs_reached >= _refs_reached_limit ,
2193          "shouldn't have been called otherwise");
2194   regular_clock_call();
2195 }
2196 
2197 void G1CMTask::regular_clock_call() {
2198   if (has_aborted()) return;
2199 
2200   // First, we need to recalculate the words scanned and refs reached
2201   // limits for the next clock call.
2202   recalculate_limits();
2203 
2204   // During the regular clock call we do the following
2205 
2206   // (1) If an overflow has been flagged, then we abort.
2207   if (_cm->has_overflown()) {
2208     set_has_aborted();
2209     return;
2210   }
2211 
2212   // If we are not concurrent (i.e. we're doing remark) we don't need
2213   // to check anything else. The other steps are only needed during
2214   // the concurrent marking phase.
2215   if (!concurrent()) return;
2216 
2217   // (2) If marking has been aborted for Full GC, then we also abort.
2218   if (_cm->has_aborted()) {
2219     set_has_aborted();
2220     return;
2221   }
2222 
2223   double curr_time_ms = os::elapsedVTime() * 1000.0;
2224 
2225   // (4) We check whether we should yield. If we have to, then we abort.
2226   if (SuspendibleThreadSet::should_yield()) {
2227     // We should yield. To do this we abort the task. The caller is
2228     // responsible for yielding.
2229     set_has_aborted();
2230     return;
2231   }
2232 
2233   // (5) We check whether we've reached our time quota. If we have,
2234   // then we abort.
2235   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2236   if (elapsed_time_ms > _time_target_ms) {
2237     set_has_aborted();
2238     _has_timed_out = true;
2239     return;
2240   }
2241 
2242   // (6) Finally, we check whether there are enough completed STAB
2243   // buffers available for processing. If there are, we abort.
2244   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2245   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2246     // we do need to process SATB buffers, we'll abort and restart
2247     // the marking task to do so
2248     set_has_aborted();
2249     return;
2250   }
2251 }
2252 
2253 void G1CMTask::recalculate_limits() {
2254   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2255   _words_scanned_limit      = _real_words_scanned_limit;
2256 
2257   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2258   _refs_reached_limit       = _real_refs_reached_limit;
2259 }
2260 
2261 void G1CMTask::decrease_limits() {
2262   // This is called when we believe that we're going to do an infrequent
2263   // operation which will increase the per byte scanned cost (i.e. move
2264   // entries to/from the global stack). It basically tries to decrease the
2265   // scanning limit so that the clock is called earlier.
2266 
2267   _words_scanned_limit = _real_words_scanned_limit -
2268     3 * words_scanned_period / 4;
2269   _refs_reached_limit  = _real_refs_reached_limit -
2270     3 * refs_reached_period / 4;
2271 }
2272 
2273 void G1CMTask::move_entries_to_global_stack() {
2274   // Local array where we'll store the entries that will be popped
2275   // from the local queue.
2276   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2277 
2278   size_t n = 0;
2279   G1TaskQueueEntry task_entry;
2280   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2281     buffer[n] = task_entry;
2282     ++n;
2283   }
2284   if (n < G1CMMarkStack::EntriesPerChunk) {
2285     buffer[n] = G1TaskQueueEntry();
2286   }
2287 
2288   if (n > 0) {
2289     if (!_cm->mark_stack_push(buffer)) {
2290       set_has_aborted();
2291     }
2292   }
2293 
2294   // This operation was quite expensive, so decrease the limits.
2295   decrease_limits();
2296 }
2297 
2298 bool G1CMTask::get_entries_from_global_stack() {
2299   // Local array where we'll store the entries that will be popped
2300   // from the global stack.
2301   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2302 
2303   if (!_cm->mark_stack_pop(buffer)) {
2304     return false;
2305   }
2306 
2307   // We did actually pop at least one entry.
2308   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2309     G1TaskQueueEntry task_entry = buffer[i];
2310     if (task_entry.is_null()) {
2311       break;
2312     }
2313     assert(task_entry.is_array_slice() || task_entry.obj()->is_oop(), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2314     bool success = _task_queue->push(task_entry);
2315     // We only call this when the local queue is empty or under a
2316     // given target limit. So, we do not expect this push to fail.
2317     assert(success, "invariant");
2318   }
2319 
2320   // This operation was quite expensive, so decrease the limits
2321   decrease_limits();
2322   return true;
2323 }
2324 
2325 void G1CMTask::drain_local_queue(bool partially) {
2326   if (has_aborted()) {
2327     return;
2328   }
2329 
2330   // Decide what the target size is, depending whether we're going to
2331   // drain it partially (so that other tasks can steal if they run out
2332   // of things to do) or totally (at the very end).
2333   size_t target_size;
2334   if (partially) {
2335     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2336   } else {
2337     target_size = 0;
2338   }
2339 
2340   if (_task_queue->size() > target_size) {
2341     G1TaskQueueEntry entry;
2342     bool ret = _task_queue->pop_local(entry);
2343     while (ret) {
2344       scan_task_entry(entry);
2345       if (_task_queue->size() <= target_size || has_aborted()) {
2346         ret = false;
2347       } else {
2348         ret = _task_queue->pop_local(entry);
2349       }
2350     }
2351   }
2352 }
2353 
2354 void G1CMTask::drain_global_stack(bool partially) {
2355   if (has_aborted()) return;
2356 
2357   // We have a policy to drain the local queue before we attempt to
2358   // drain the global stack.
2359   assert(partially || _task_queue->size() == 0, "invariant");
2360 
2361   // Decide what the target size is, depending whether we're going to
2362   // drain it partially (so that other tasks can steal if they run out
2363   // of things to do) or totally (at the very end).
2364   // Notice that when draining the global mark stack partially, due to the racyness
2365   // of the mark stack size update we might in fact drop below the target. But,
2366   // this is not a problem.
2367   // In case of total draining, we simply process until the global mark stack is
2368   // totally empty, disregarding the size counter.
2369   if (partially) {
2370     size_t const target_size = _cm->partial_mark_stack_size_target();
2371     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2372       if (get_entries_from_global_stack()) {
2373         drain_local_queue(partially);
2374       }
2375     }
2376   } else {
2377     while (!has_aborted() && get_entries_from_global_stack()) {
2378       drain_local_queue(partially);
2379     }
2380   }
2381 }
2382 
2383 // SATB Queue has several assumptions on whether to call the par or
2384 // non-par versions of the methods. this is why some of the code is
2385 // replicated. We should really get rid of the single-threaded version
2386 // of the code to simplify things.
2387 void G1CMTask::drain_satb_buffers() {
2388   if (has_aborted()) return;
2389 
2390   // We set this so that the regular clock knows that we're in the
2391   // middle of draining buffers and doesn't set the abort flag when it
2392   // notices that SATB buffers are available for draining. It'd be
2393   // very counter productive if it did that. :-)
2394   _draining_satb_buffers = true;
2395 
2396   G1CMSATBBufferClosure satb_cl(this, _g1h);
2397   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2398 
2399   // This keeps claiming and applying the closure to completed buffers
2400   // until we run out of buffers or we need to abort.
2401   while (!has_aborted() &&
2402          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2403     regular_clock_call();
2404   }
2405 
2406   _draining_satb_buffers = false;
2407 
2408   assert(has_aborted() ||
2409          concurrent() ||
2410          satb_mq_set.completed_buffers_num() == 0, "invariant");
2411 
2412   // again, this was a potentially expensive operation, decrease the
2413   // limits to get the regular clock call early
2414   decrease_limits();
2415 }
2416 
2417 void G1CMTask::print_stats() {
2418   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
2419                        _worker_id, _calls);
2420   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2421                        _elapsed_time_ms, _termination_time_ms);
2422   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2423                        _step_times_ms.num(), _step_times_ms.avg(),
2424                        _step_times_ms.sd());
2425   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2426                        _step_times_ms.maximum(), _step_times_ms.sum());
2427 }
2428 
2429 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2430   return _task_queues->steal(worker_id, hash_seed, task_entry);
2431 }
2432 
2433 /*****************************************************************************
2434 
2435     The do_marking_step(time_target_ms, ...) method is the building
2436     block of the parallel marking framework. It can be called in parallel
2437     with other invocations of do_marking_step() on different tasks
2438     (but only one per task, obviously) and concurrently with the
2439     mutator threads, or during remark, hence it eliminates the need
2440     for two versions of the code. When called during remark, it will
2441     pick up from where the task left off during the concurrent marking
2442     phase. Interestingly, tasks are also claimable during evacuation
2443     pauses too, since do_marking_step() ensures that it aborts before
2444     it needs to yield.
2445 
2446     The data structures that it uses to do marking work are the
2447     following:
2448 
2449       (1) Marking Bitmap. If there are gray objects that appear only
2450       on the bitmap (this happens either when dealing with an overflow
2451       or when the initial marking phase has simply marked the roots
2452       and didn't push them on the stack), then tasks claim heap
2453       regions whose bitmap they then scan to find gray objects. A
2454       global finger indicates where the end of the last claimed region
2455       is. A local finger indicates how far into the region a task has
2456       scanned. The two fingers are used to determine how to gray an
2457       object (i.e. whether simply marking it is OK, as it will be
2458       visited by a task in the future, or whether it needs to be also
2459       pushed on a stack).
2460 
2461       (2) Local Queue. The local queue of the task which is accessed
2462       reasonably efficiently by the task. Other tasks can steal from
2463       it when they run out of work. Throughout the marking phase, a
2464       task attempts to keep its local queue short but not totally
2465       empty, so that entries are available for stealing by other
2466       tasks. Only when there is no more work, a task will totally
2467       drain its local queue.
2468 
2469       (3) Global Mark Stack. This handles local queue overflow. During
2470       marking only sets of entries are moved between it and the local
2471       queues, as access to it requires a mutex and more fine-grain
2472       interaction with it which might cause contention. If it
2473       overflows, then the marking phase should restart and iterate
2474       over the bitmap to identify gray objects. Throughout the marking
2475       phase, tasks attempt to keep the global mark stack at a small
2476       length but not totally empty, so that entries are available for
2477       popping by other tasks. Only when there is no more work, tasks
2478       will totally drain the global mark stack.
2479 
2480       (4) SATB Buffer Queue. This is where completed SATB buffers are
2481       made available. Buffers are regularly removed from this queue
2482       and scanned for roots, so that the queue doesn't get too
2483       long. During remark, all completed buffers are processed, as
2484       well as the filled in parts of any uncompleted buffers.
2485 
2486     The do_marking_step() method tries to abort when the time target
2487     has been reached. There are a few other cases when the
2488     do_marking_step() method also aborts:
2489 
2490       (1) When the marking phase has been aborted (after a Full GC).
2491 
2492       (2) When a global overflow (on the global stack) has been
2493       triggered. Before the task aborts, it will actually sync up with
2494       the other tasks to ensure that all the marking data structures
2495       (local queues, stacks, fingers etc.)  are re-initialized so that
2496       when do_marking_step() completes, the marking phase can
2497       immediately restart.
2498 
2499       (3) When enough completed SATB buffers are available. The
2500       do_marking_step() method only tries to drain SATB buffers right
2501       at the beginning. So, if enough buffers are available, the
2502       marking step aborts and the SATB buffers are processed at
2503       the beginning of the next invocation.
2504 
2505       (4) To yield. when we have to yield then we abort and yield
2506       right at the end of do_marking_step(). This saves us from a lot
2507       of hassle as, by yielding we might allow a Full GC. If this
2508       happens then objects will be compacted underneath our feet, the
2509       heap might shrink, etc. We save checking for this by just
2510       aborting and doing the yield right at the end.
2511 
2512     From the above it follows that the do_marking_step() method should
2513     be called in a loop (or, otherwise, regularly) until it completes.
2514 
2515     If a marking step completes without its has_aborted() flag being
2516     true, it means it has completed the current marking phase (and
2517     also all other marking tasks have done so and have all synced up).
2518 
2519     A method called regular_clock_call() is invoked "regularly" (in
2520     sub ms intervals) throughout marking. It is this clock method that
2521     checks all the abort conditions which were mentioned above and
2522     decides when the task should abort. A work-based scheme is used to
2523     trigger this clock method: when the number of object words the
2524     marking phase has scanned or the number of references the marking
2525     phase has visited reach a given limit. Additional invocations to
2526     the method clock have been planted in a few other strategic places
2527     too. The initial reason for the clock method was to avoid calling
2528     vtime too regularly, as it is quite expensive. So, once it was in
2529     place, it was natural to piggy-back all the other conditions on it
2530     too and not constantly check them throughout the code.
2531 
2532     If do_termination is true then do_marking_step will enter its
2533     termination protocol.
2534 
2535     The value of is_serial must be true when do_marking_step is being
2536     called serially (i.e. by the VMThread) and do_marking_step should
2537     skip any synchronization in the termination and overflow code.
2538     Examples include the serial remark code and the serial reference
2539     processing closures.
2540 
2541     The value of is_serial must be false when do_marking_step is
2542     being called by any of the worker threads in a work gang.
2543     Examples include the concurrent marking code (CMMarkingTask),
2544     the MT remark code, and the MT reference processing closures.
2545 
2546  *****************************************************************************/
2547 
2548 void G1CMTask::do_marking_step(double time_target_ms,
2549                                bool do_termination,
2550                                bool is_serial) {
2551   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2552   assert(concurrent() == _cm->concurrent(), "they should be the same");
2553 
2554   G1Policy* g1_policy = _g1h->g1_policy();
2555   assert(_task_queues != NULL, "invariant");
2556   assert(_task_queue != NULL, "invariant");
2557   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
2558 
2559   assert(!_claimed,
2560          "only one thread should claim this task at any one time");
2561 
2562   // OK, this doesn't safeguard again all possible scenarios, as it is
2563   // possible for two threads to set the _claimed flag at the same
2564   // time. But it is only for debugging purposes anyway and it will
2565   // catch most problems.
2566   _claimed = true;
2567 
2568   _start_time_ms = os::elapsedVTime() * 1000.0;
2569 
2570   // If do_stealing is true then do_marking_step will attempt to
2571   // steal work from the other G1CMTasks. It only makes sense to
2572   // enable stealing when the termination protocol is enabled
2573   // and do_marking_step() is not being called serially.
2574   bool do_stealing = do_termination && !is_serial;
2575 
2576   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2577   _time_target_ms = time_target_ms - diff_prediction_ms;
2578 
2579   // set up the variables that are used in the work-based scheme to
2580   // call the regular clock method
2581   _words_scanned = 0;
2582   _refs_reached  = 0;
2583   recalculate_limits();
2584 
2585   // clear all flags
2586   clear_has_aborted();
2587   _has_timed_out = false;
2588   _draining_satb_buffers = false;
2589 
2590   ++_calls;
2591 
2592   // Set up the bitmap and oop closures. Anything that uses them is
2593   // eventually called from this method, so it is OK to allocate these
2594   // statically.
2595   G1CMBitMapClosure bitmap_closure(this, _cm);
2596   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
2597   set_cm_oop_closure(&cm_oop_closure);
2598 
2599   if (_cm->has_overflown()) {
2600     // This can happen if the mark stack overflows during a GC pause
2601     // and this task, after a yield point, restarts. We have to abort
2602     // as we need to get into the overflow protocol which happens
2603     // right at the end of this task.
2604     set_has_aborted();
2605   }
2606 
2607   // First drain any available SATB buffers. After this, we will not
2608   // look at SATB buffers before the next invocation of this method.
2609   // If enough completed SATB buffers are queued up, the regular clock
2610   // will abort this task so that it restarts.
2611   drain_satb_buffers();
2612   // ...then partially drain the local queue and the global stack
2613   drain_local_queue(true);
2614   drain_global_stack(true);
2615 
2616   do {
2617     if (!has_aborted() && _curr_region != NULL) {
2618       // This means that we're already holding on to a region.
2619       assert(_finger != NULL, "if region is not NULL, then the finger "
2620              "should not be NULL either");
2621 
2622       // We might have restarted this task after an evacuation pause
2623       // which might have evacuated the region we're holding on to
2624       // underneath our feet. Let's read its limit again to make sure
2625       // that we do not iterate over a region of the heap that
2626       // contains garbage (update_region_limit() will also move
2627       // _finger to the start of the region if it is found empty).
2628       update_region_limit();
2629       // We will start from _finger not from the start of the region,
2630       // as we might be restarting this task after aborting half-way
2631       // through scanning this region. In this case, _finger points to
2632       // the address where we last found a marked object. If this is a
2633       // fresh region, _finger points to start().
2634       MemRegion mr = MemRegion(_finger, _region_limit);
2635 
2636       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2637              "humongous regions should go around loop once only");
2638 
2639       // Some special cases:
2640       // If the memory region is empty, we can just give up the region.
2641       // If the current region is humongous then we only need to check
2642       // the bitmap for the bit associated with the start of the object,
2643       // scan the object if it's live, and give up the region.
2644       // Otherwise, let's iterate over the bitmap of the part of the region
2645       // that is left.
2646       // If the iteration is successful, give up the region.
2647       if (mr.is_empty()) {
2648         giveup_current_region();
2649         regular_clock_call();
2650       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2651         if (_nextMarkBitMap->is_marked(mr.start())) {
2652           // The object is marked - apply the closure
2653           bitmap_closure.do_addr(mr.start());
2654         }
2655         // Even if this task aborted while scanning the humongous object
2656         // we can (and should) give up the current region.
2657         giveup_current_region();
2658         regular_clock_call();
2659       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
2660         giveup_current_region();
2661         regular_clock_call();
2662       } else {
2663         assert(has_aborted(), "currently the only way to do so");
2664         // The only way to abort the bitmap iteration is to return
2665         // false from the do_bit() method. However, inside the
2666         // do_bit() method we move the _finger to point to the
2667         // object currently being looked at. So, if we bail out, we
2668         // have definitely set _finger to something non-null.
2669         assert(_finger != NULL, "invariant");
2670 
2671         // Region iteration was actually aborted. So now _finger
2672         // points to the address of the object we last scanned. If we
2673         // leave it there, when we restart this task, we will rescan
2674         // the object. It is easy to avoid this. We move the finger by
2675         // enough to point to the next possible object header (the
2676         // bitmap knows by how much we need to move it as it knows its
2677         // granularity).
2678         assert(_finger < _region_limit, "invariant");
2679         HeapWord* new_finger = _nextMarkBitMap->addr_after_obj(_finger);
2680         // Check if bitmap iteration was aborted while scanning the last object
2681         if (new_finger >= _region_limit) {
2682           giveup_current_region();
2683         } else {
2684           move_finger_to(new_finger);
2685         }
2686       }
2687     }
2688     // At this point we have either completed iterating over the
2689     // region we were holding on to, or we have aborted.
2690 
2691     // We then partially drain the local queue and the global stack.
2692     // (Do we really need this?)
2693     drain_local_queue(true);
2694     drain_global_stack(true);
2695 
2696     // Read the note on the claim_region() method on why it might
2697     // return NULL with potentially more regions available for
2698     // claiming and why we have to check out_of_regions() to determine
2699     // whether we're done or not.
2700     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2701       // We are going to try to claim a new region. We should have
2702       // given up on the previous one.
2703       // Separated the asserts so that we know which one fires.
2704       assert(_curr_region  == NULL, "invariant");
2705       assert(_finger       == NULL, "invariant");
2706       assert(_region_limit == NULL, "invariant");
2707       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2708       if (claimed_region != NULL) {
2709         // Yes, we managed to claim one
2710         setup_for_region(claimed_region);
2711         assert(_curr_region == claimed_region, "invariant");
2712       }
2713       // It is important to call the regular clock here. It might take
2714       // a while to claim a region if, for example, we hit a large
2715       // block of empty regions. So we need to call the regular clock
2716       // method once round the loop to make sure it's called
2717       // frequently enough.
2718       regular_clock_call();
2719     }
2720 
2721     if (!has_aborted() && _curr_region == NULL) {
2722       assert(_cm->out_of_regions(),
2723              "at this point we should be out of regions");
2724     }
2725   } while ( _curr_region != NULL && !has_aborted());
2726 
2727   if (!has_aborted()) {
2728     // We cannot check whether the global stack is empty, since other
2729     // tasks might be pushing objects to it concurrently.
2730     assert(_cm->out_of_regions(),
2731            "at this point we should be out of regions");
2732     // Try to reduce the number of available SATB buffers so that
2733     // remark has less work to do.
2734     drain_satb_buffers();
2735   }
2736 
2737   // Since we've done everything else, we can now totally drain the
2738   // local queue and global stack.
2739   drain_local_queue(false);
2740   drain_global_stack(false);
2741 
2742   // Attempt at work stealing from other task's queues.
2743   if (do_stealing && !has_aborted()) {
2744     // We have not aborted. This means that we have finished all that
2745     // we could. Let's try to do some stealing...
2746 
2747     // We cannot check whether the global stack is empty, since other
2748     // tasks might be pushing objects to it concurrently.
2749     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2750            "only way to reach here");
2751     while (!has_aborted()) {
2752       G1TaskQueueEntry entry;
2753       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2754         scan_task_entry(entry);
2755 
2756         // And since we're towards the end, let's totally drain the
2757         // local queue and global stack.
2758         drain_local_queue(false);
2759         drain_global_stack(false);
2760       } else {
2761         break;
2762       }
2763     }
2764   }
2765 
2766   // We still haven't aborted. Now, let's try to get into the
2767   // termination protocol.
2768   if (do_termination && !has_aborted()) {
2769     // We cannot check whether the global stack is empty, since other
2770     // tasks might be concurrently pushing objects on it.
2771     // Separated the asserts so that we know which one fires.
2772     assert(_cm->out_of_regions(), "only way to reach here");
2773     assert(_task_queue->size() == 0, "only way to reach here");
2774     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2775 
2776     // The G1CMTask class also extends the TerminatorTerminator class,
2777     // hence its should_exit_termination() method will also decide
2778     // whether to exit the termination protocol or not.
2779     bool finished = (is_serial ||
2780                      _cm->terminator()->offer_termination(this));
2781     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2782     _termination_time_ms +=
2783       termination_end_time_ms - _termination_start_time_ms;
2784 
2785     if (finished) {
2786       // We're all done.
2787 
2788       if (_worker_id == 0) {
2789         // let's allow task 0 to do this
2790         if (concurrent()) {
2791           assert(_cm->concurrent_marking_in_progress(), "invariant");
2792           // we need to set this to false before the next
2793           // safepoint. This way we ensure that the marking phase
2794           // doesn't observe any more heap expansions.
2795           _cm->clear_concurrent_marking_in_progress();
2796         }
2797       }
2798 
2799       // We can now guarantee that the global stack is empty, since
2800       // all other tasks have finished. We separated the guarantees so
2801       // that, if a condition is false, we can immediately find out
2802       // which one.
2803       guarantee(_cm->out_of_regions(), "only way to reach here");
2804       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2805       guarantee(_task_queue->size() == 0, "only way to reach here");
2806       guarantee(!_cm->has_overflown(), "only way to reach here");
2807     } else {
2808       // Apparently there's more work to do. Let's abort this task. It
2809       // will restart it and we can hopefully find more things to do.
2810       set_has_aborted();
2811     }
2812   }
2813 
2814   // Mainly for debugging purposes to make sure that a pointer to the
2815   // closure which was statically allocated in this frame doesn't
2816   // escape it by accident.
2817   set_cm_oop_closure(NULL);
2818   double end_time_ms = os::elapsedVTime() * 1000.0;
2819   double elapsed_time_ms = end_time_ms - _start_time_ms;
2820   // Update the step history.
2821   _step_times_ms.add(elapsed_time_ms);
2822 
2823   if (has_aborted()) {
2824     // The task was aborted for some reason.
2825     if (_has_timed_out) {
2826       double diff_ms = elapsed_time_ms - _time_target_ms;
2827       // Keep statistics of how well we did with respect to hitting
2828       // our target only if we actually timed out (if we aborted for
2829       // other reasons, then the results might get skewed).
2830       _marking_step_diffs_ms.add(diff_ms);
2831     }
2832 
2833     if (_cm->has_overflown()) {
2834       // This is the interesting one. We aborted because a global
2835       // overflow was raised. This means we have to restart the
2836       // marking phase and start iterating over regions. However, in
2837       // order to do this we have to make sure that all tasks stop
2838       // what they are doing and re-initialize in a safe manner. We
2839       // will achieve this with the use of two barrier sync points.
2840 
2841       if (!is_serial) {
2842         // We only need to enter the sync barrier if being called
2843         // from a parallel context
2844         _cm->enter_first_sync_barrier(_worker_id);
2845 
2846         // When we exit this sync barrier we know that all tasks have
2847         // stopped doing marking work. So, it's now safe to
2848         // re-initialize our data structures. At the end of this method,
2849         // task 0 will clear the global data structures.
2850       }
2851 
2852       // We clear the local state of this task...
2853       clear_region_fields();
2854 
2855       if (!is_serial) {
2856         // ...and enter the second barrier.
2857         _cm->enter_second_sync_barrier(_worker_id);
2858       }
2859       // At this point, if we're during the concurrent phase of
2860       // marking, everything has been re-initialized and we're
2861       // ready to restart.
2862     }
2863   }
2864 
2865   _claimed = false;
2866 }
2867 
2868 G1CMTask::G1CMTask(uint worker_id,
2869                    G1ConcurrentMark* cm,
2870                    G1CMTaskQueue* task_queue,
2871                    G1CMTaskQueueSet* task_queues)
2872   : _g1h(G1CollectedHeap::heap()),
2873     _worker_id(worker_id), _cm(cm),
2874     _objArray_processor(this),
2875     _claimed(false),
2876     _nextMarkBitMap(NULL), _hash_seed(17),
2877     _task_queue(task_queue),
2878     _task_queues(task_queues),
2879     _cm_oop_closure(NULL) {
2880   guarantee(task_queue != NULL, "invariant");
2881   guarantee(task_queues != NULL, "invariant");
2882 
2883   _marking_step_diffs_ms.add(0.5);
2884 }
2885 
2886 // These are formatting macros that are used below to ensure
2887 // consistent formatting. The *_H_* versions are used to format the
2888 // header for a particular value and they should be kept consistent
2889 // with the corresponding macro. Also note that most of the macros add
2890 // the necessary white space (as a prefix) which makes them a bit
2891 // easier to compose.
2892 
2893 // All the output lines are prefixed with this string to be able to
2894 // identify them easily in a large log file.
2895 #define G1PPRL_LINE_PREFIX            "###"
2896 
2897 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2898 #ifdef _LP64
2899 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2900 #else // _LP64
2901 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2902 #endif // _LP64
2903 
2904 // For per-region info
2905 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2906 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2907 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2908 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2909 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2910 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2911 
2912 // For summary info
2913 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2914 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2915 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2916 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2917 
2918 G1PrintRegionLivenessInfoClosure::
2919 G1PrintRegionLivenessInfoClosure(const char* phase_name)
2920   : _total_used_bytes(0), _total_capacity_bytes(0),
2921     _total_prev_live_bytes(0), _total_next_live_bytes(0),
2922     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
2923   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2924   MemRegion g1_reserved = g1h->g1_reserved();
2925   double now = os::elapsedTime();
2926 
2927   // Print the header of the output.
2928   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2929   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2930                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2931                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2932                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2933                           HeapRegion::GrainBytes);
2934   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2935   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2936                           G1PPRL_TYPE_H_FORMAT
2937                           G1PPRL_ADDR_BASE_H_FORMAT
2938                           G1PPRL_BYTE_H_FORMAT
2939                           G1PPRL_BYTE_H_FORMAT
2940                           G1PPRL_BYTE_H_FORMAT
2941                           G1PPRL_DOUBLE_H_FORMAT
2942                           G1PPRL_BYTE_H_FORMAT
2943                           G1PPRL_BYTE_H_FORMAT,
2944                           "type", "address-range",
2945                           "used", "prev-live", "next-live", "gc-eff",
2946                           "remset", "code-roots");
2947   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2948                           G1PPRL_TYPE_H_FORMAT
2949                           G1PPRL_ADDR_BASE_H_FORMAT
2950                           G1PPRL_BYTE_H_FORMAT
2951                           G1PPRL_BYTE_H_FORMAT
2952                           G1PPRL_BYTE_H_FORMAT
2953                           G1PPRL_DOUBLE_H_FORMAT
2954                           G1PPRL_BYTE_H_FORMAT
2955                           G1PPRL_BYTE_H_FORMAT,
2956                           "", "",
2957                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2958                           "(bytes)", "(bytes)");
2959 }
2960 
2961 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
2962   const char* type       = r->get_type_str();
2963   HeapWord* bottom       = r->bottom();
2964   HeapWord* end          = r->end();
2965   size_t capacity_bytes  = r->capacity();
2966   size_t used_bytes      = r->used();
2967   size_t prev_live_bytes = r->live_bytes();
2968   size_t next_live_bytes = r->next_live_bytes();
2969   double gc_eff          = r->gc_efficiency();
2970   size_t remset_bytes    = r->rem_set()->mem_size();
2971   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2972 
2973   _total_used_bytes      += used_bytes;
2974   _total_capacity_bytes  += capacity_bytes;
2975   _total_prev_live_bytes += prev_live_bytes;
2976   _total_next_live_bytes += next_live_bytes;
2977   _total_remset_bytes    += remset_bytes;
2978   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2979 
2980   // Print a line for this particular region.
2981   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2982                           G1PPRL_TYPE_FORMAT
2983                           G1PPRL_ADDR_BASE_FORMAT
2984                           G1PPRL_BYTE_FORMAT
2985                           G1PPRL_BYTE_FORMAT
2986                           G1PPRL_BYTE_FORMAT
2987                           G1PPRL_DOUBLE_FORMAT
2988                           G1PPRL_BYTE_FORMAT
2989                           G1PPRL_BYTE_FORMAT,
2990                           type, p2i(bottom), p2i(end),
2991                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2992                           remset_bytes, strong_code_roots_bytes);
2993 
2994   return false;
2995 }
2996 
2997 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2998   // add static memory usages to remembered set sizes
2999   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3000   // Print the footer of the output.
3001   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3002   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3003                          " SUMMARY"
3004                          G1PPRL_SUM_MB_FORMAT("capacity")
3005                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3006                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3007                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3008                          G1PPRL_SUM_MB_FORMAT("remset")
3009                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3010                          bytes_to_mb(_total_capacity_bytes),
3011                          bytes_to_mb(_total_used_bytes),
3012                          perc(_total_used_bytes, _total_capacity_bytes),
3013                          bytes_to_mb(_total_prev_live_bytes),
3014                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3015                          bytes_to_mb(_total_next_live_bytes),
3016                          perc(_total_next_live_bytes, _total_capacity_bytes),
3017                          bytes_to_mb(_total_remset_bytes),
3018                          bytes_to_mb(_total_strong_code_roots_bytes));
3019 }