1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "gc/g1/g1ConcurrentMarkBitMap.hpp"
  29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
  30 #include "gc/g1/g1HeapVerifier.hpp"
  31 #include "gc/g1/g1RegionMarkStatsCache.hpp"
  32 #include "gc/g1/heapRegionSet.hpp"
  33 #include "gc/shared/taskqueue.hpp"
  34 #include "gc/shared/verifyOption.hpp"
  35 #include "gc/shared/workgroup.hpp"
  36 #include "memory/allocation.hpp"
  37 #include "utilities/compilerWarnings.hpp"
  38 
  39 class ConcurrentGCTimer;
  40 class G1ConcurrentMarkThread;
  41 class G1CollectedHeap;
  42 class G1CMOopClosure;
  43 class G1CMTask;
  44 class G1ConcurrentMark;
  45 class G1OldTracer;
  46 class G1RegionToSpaceMapper;
  47 class G1SurvivorRegions;
  48 
  49 PRAGMA_DIAG_PUSH
  50 // warning C4522: multiple assignment operators specified
  51 PRAGMA_DISABLE_MSVC_WARNING(4522)
  52 
  53 // This is a container class for either an oop or a continuation address for
  54 // mark stack entries. Both are pushed onto the mark stack.
  55 class G1TaskQueueEntry {
  56 private:
  57   void* _holder;
  58 
  59   static const uintptr_t ArraySliceBit = 1;
  60 
  61   G1TaskQueueEntry(oop obj) : _holder(obj) {
  62     assert(_holder != NULL, "Not allowed to set NULL task queue element");
  63   }
  64   G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
  65 public:
  66   G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; }
  67   G1TaskQueueEntry() : _holder(NULL) { }
  68 
  69   static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
  70   static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
  71 
  72   G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) {
  73     _holder = t._holder;
  74     return *this;
  75   }
  76 
  77   volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile {
  78     _holder = t._holder;
  79     return *this;
  80   }
  81 
  82   oop obj() const {
  83     assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
  84     return (oop)_holder;
  85   }
  86 
  87   HeapWord* slice() const {
  88     assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
  89     return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
  90   }
  91 
  92   bool is_oop() const { return !is_array_slice(); }
  93   bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
  94   bool is_null() const { return _holder == NULL; }
  95 };
  96 
  97 PRAGMA_DIAG_POP
  98 
  99 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
 100 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
 101 
 102 // Closure used by CM during concurrent reference discovery
 103 // and reference processing (during remarking) to determine
 104 // if a particular object is alive. It is primarily used
 105 // to determine if referents of discovered reference objects
 106 // are alive. An instance is also embedded into the
 107 // reference processor as the _is_alive_non_header field
 108 class G1CMIsAliveClosure : public BoolObjectClosure {
 109   G1CollectedHeap* _g1h;
 110 public:
 111   G1CMIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
 112   bool do_object_b(oop obj);
 113 };
 114 
 115 class G1CMSubjectToDiscoveryClosure : public BoolObjectClosure {
 116   G1CollectedHeap* _g1h;
 117 public:
 118   G1CMSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
 119   bool do_object_b(oop obj);
 120 };
 121 
 122 // Represents the overflow mark stack used by concurrent marking.
 123 //
 124 // Stores oops in a huge buffer in virtual memory that is always fully committed.
 125 // Resizing may only happen during a STW pause when the stack is empty.
 126 //
 127 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
 128 // stack memory is split into evenly sized chunks of oops. Users can only
 129 // add or remove entries on that basis.
 130 // Chunks are filled in increasing address order. Not completely filled chunks
 131 // have a NULL element as a terminating element.
 132 //
 133 // Every chunk has a header containing a single pointer element used for memory
 134 // management. This wastes some space, but is negligible (< .1% with current sizing).
 135 //
 136 // Memory management is done using a mix of tracking a high water-mark indicating
 137 // that all chunks at a lower address are valid chunks, and a singly linked free
 138 // list connecting all empty chunks.
 139 class G1CMMarkStack {
 140 public:
 141   // Number of TaskQueueEntries that can fit in a single chunk.
 142   static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
 143 private:
 144   struct TaskQueueEntryChunk {
 145     TaskQueueEntryChunk* next;
 146     G1TaskQueueEntry data[EntriesPerChunk];
 147   };
 148 
 149   size_t _max_chunk_capacity;    // Maximum number of TaskQueueEntryChunk elements on the stack.
 150 
 151   TaskQueueEntryChunk* _base;    // Bottom address of allocated memory area.
 152   size_t _chunk_capacity;        // Current maximum number of TaskQueueEntryChunk elements.
 153 
 154   char _pad0[DEFAULT_CACHE_LINE_SIZE];
 155   TaskQueueEntryChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
 156   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)];
 157   TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data.
 158   volatile size_t _chunks_in_chunk_list;
 159   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)];
 160 
 161   volatile size_t _hwm;          // High water mark within the reserved space.
 162   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
 163 
 164   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
 165   // NULL if out of memory.
 166   TaskQueueEntryChunk* allocate_new_chunk();
 167 
 168   // Atomically add the given chunk to the list.
 169   void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem);
 170   // Atomically remove and return a chunk from the given list. Returns NULL if the
 171   // list is empty.
 172   TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list);
 173 
 174   void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem);
 175   void add_chunk_to_free_list(TaskQueueEntryChunk* elem);
 176 
 177   TaskQueueEntryChunk* remove_chunk_from_chunk_list();
 178   TaskQueueEntryChunk* remove_chunk_from_free_list();
 179 
 180   // Resizes the mark stack to the given new capacity. Releases any previous
 181   // memory if successful.
 182   bool resize(size_t new_capacity);
 183 
 184  public:
 185   G1CMMarkStack();
 186   ~G1CMMarkStack();
 187 
 188   // Alignment and minimum capacity of this mark stack in number of oops.
 189   static size_t capacity_alignment();
 190 
 191   // Allocate and initialize the mark stack with the given number of oops.
 192   bool initialize(size_t initial_capacity, size_t max_capacity);
 193 
 194   // Pushes the given buffer containing at most EntriesPerChunk elements on the mark
 195   // stack. If less than EntriesPerChunk elements are to be pushed, the array must
 196   // be terminated with a NULL.
 197   // Returns whether the buffer contents were successfully pushed to the global mark
 198   // stack.
 199   bool par_push_chunk(G1TaskQueueEntry* buffer);
 200 
 201   // Pops a chunk from this mark stack, copying them into the given buffer. This
 202   // chunk may contain up to EntriesPerChunk elements. If there are less, the last
 203   // element in the array is a NULL pointer.
 204   bool par_pop_chunk(G1TaskQueueEntry* buffer);
 205 
 206   // Return whether the chunk list is empty. Racy due to unsynchronized access to
 207   // _chunk_list.
 208   bool is_empty() const { return _chunk_list == NULL; }
 209 
 210   size_t capacity() const  { return _chunk_capacity; }
 211 
 212   // Expand the stack, typically in response to an overflow condition
 213   void expand();
 214 
 215   // Return the approximate number of oops on this mark stack. Racy due to
 216   // unsynchronized access to _chunks_in_chunk_list.
 217   size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
 218 
 219   void set_empty();
 220 
 221   // Apply Fn to every oop on the mark stack. The mark stack must not
 222   // be modified while iterating.
 223   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
 224 };
 225 
 226 // Root MemRegions are memory areas that contain objects which references are
 227 // roots wrt to the marking. They must be scanned before marking to maintain the
 228 // SATB invariant.
 229 // Typically they contain the areas from nTAMS to top of the regions.
 230 // We could scan and mark through these objects during the initial-mark pause, but for
 231 // pause time reasons we move this work to the concurrent phase.
 232 // We need to complete this procedure before the next GC because it might determine
 233 // that some of these "root objects" are dead, potentially dropping some required
 234 // references.
 235 // Root MemRegions comprise of the contents of survivor regions at the end
 236 // of the GC, and any objects copied into the old gen during GC.
 237 class G1CMRootMemRegions {
 238   // The set of root MemRegions.
 239   MemRegion*   _root_regions;
 240   size_t const _max_regions;
 241 
 242   volatile size_t _num_root_regions; // Actual number of root regions.
 243 
 244   volatile size_t _claimed_root_regions; // Number of root regions currently claimed.
 245 
 246   volatile bool _scan_in_progress;
 247   volatile bool _should_abort;
 248 
 249   void notify_scan_done();
 250 
 251 public:
 252   G1CMRootMemRegions(uint const max_regions);
 253   ~G1CMRootMemRegions();
 254 
 255   // Reset the data structure to allow addition of new root regions.
 256   void reset();
 257 
 258   void add(HeapWord* start, HeapWord* end);
 259 
 260   // Reset the claiming / scanning of the root regions.
 261   void prepare_for_scan();
 262 
 263   // Forces get_next() to return NULL so that the iteration aborts early.
 264   void abort() { _should_abort = true; }
 265 
 266   // Return true if the CM thread are actively scanning root regions,
 267   // false otherwise.
 268   bool scan_in_progress() { return _scan_in_progress; }
 269 
 270   // Claim the next root MemRegion to scan atomically, or return NULL if
 271   // all have been claimed.
 272   const MemRegion* claim_next();
 273 
 274   // The number of root regions to scan.
 275   uint num_root_regions() const;
 276 
 277   void cancel_scan();
 278 
 279   // Flag that we're done with root region scanning and notify anyone
 280   // who's waiting on it. If aborted is false, assume that all regions
 281   // have been claimed.
 282   void scan_finished();
 283 
 284   // If CM threads are still scanning root regions, wait until they
 285   // are done. Return true if we had to wait, false otherwise.
 286   bool wait_until_scan_finished();
 287 };
 288 
 289 // This class manages data structures and methods for doing liveness analysis in
 290 // G1's concurrent cycle.
 291 class G1ConcurrentMark : public CHeapObj<mtGC> {
 292   friend class G1ConcurrentMarkThread;
 293   friend class G1CMRefProcTaskProxy;
 294   friend class G1CMRefProcTaskExecutor;
 295   friend class G1CMKeepAliveAndDrainClosure;
 296   friend class G1CMDrainMarkingStackClosure;
 297   friend class G1CMBitMapClosure;
 298   friend class G1CMConcurrentMarkingTask;
 299   friend class G1CMRemarkTask;
 300   friend class G1CMTask;
 301 
 302   G1ConcurrentMarkThread* _cm_thread;     // The thread doing the work
 303   G1CollectedHeap*        _g1h;           // The heap
 304   bool                    _completed_initialization; // Set to true when initialization is complete
 305 
 306   // Concurrent marking support structures
 307   G1CMBitMap              _mark_bitmap_1;
 308   G1CMBitMap              _mark_bitmap_2;
 309   G1CMBitMap*             _prev_mark_bitmap; // Completed mark bitmap
 310   G1CMBitMap*             _next_mark_bitmap; // Under-construction mark bitmap
 311 
 312   // Heap bounds
 313   MemRegion const         _heap;
 314 
 315   // Root region tracking and claiming
 316   G1CMRootMemRegions         _root_regions;
 317 
 318   // For grey objects
 319   G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
 320   HeapWord* volatile      _finger;            // The global finger, region aligned,
 321                                               // always pointing to the end of the
 322                                               // last claimed region
 323 
 324   uint                    _worker_id_offset;
 325   uint                    _max_num_tasks;    // Maximum number of marking tasks
 326   uint                    _num_active_tasks; // Number of tasks currently active
 327   G1CMTask**              _tasks;            // Task queue array (max_worker_id length)
 328 
 329   G1CMTaskQueueSet*       _task_queues; // Task queue set
 330   TaskTerminator          _terminator;  // For termination
 331 
 332   // Two sync barriers that are used to synchronize tasks when an
 333   // overflow occurs. The algorithm is the following. All tasks enter
 334   // the first one to ensure that they have all stopped manipulating
 335   // the global data structures. After they exit it, they re-initialize
 336   // their data structures and task 0 re-initializes the global data
 337   // structures. Then, they enter the second sync barrier. This
 338   // ensure, that no task starts doing work before all data
 339   // structures (local and global) have been re-initialized. When they
 340   // exit it, they are free to start working again.
 341   WorkGangBarrierSync     _first_overflow_barrier_sync;
 342   WorkGangBarrierSync     _second_overflow_barrier_sync;
 343 
 344   // This is set by any task, when an overflow on the global data
 345   // structures is detected
 346   volatile bool           _has_overflown;
 347   // True: marking is concurrent, false: we're in remark
 348   volatile bool           _concurrent;
 349   // Set at the end of a Full GC so that marking aborts
 350   volatile bool           _has_aborted;
 351 
 352   // Used when remark aborts due to an overflow to indicate that
 353   // another concurrent marking phase should start
 354   volatile bool           _restart_for_overflow;
 355 
 356   ConcurrentGCTimer*      _gc_timer_cm;
 357 
 358   G1OldTracer*            _gc_tracer_cm;
 359 
 360   // Timing statistics. All of them are in ms
 361   NumberSeq _init_times;
 362   NumberSeq _remark_times;
 363   NumberSeq _remark_mark_times;
 364   NumberSeq _remark_weak_ref_times;
 365   NumberSeq _cleanup_times;
 366   double    _total_cleanup_time;
 367 
 368   double*   _accum_task_vtime;   // Accumulated task vtime
 369 
 370   WorkGang* _concurrent_workers;
 371   uint      _num_concurrent_workers; // The number of marking worker threads we're using
 372   uint      _max_concurrent_workers; // Maximum number of marking worker threads
 373 
 374   void verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller);
 375 
 376   void finalize_marking();
 377 
 378   void weak_refs_work_parallel_part(BoolObjectClosure* is_alive, bool purged_classes);
 379   void weak_refs_work(bool clear_all_soft_refs);
 380 
 381   void report_object_count(bool mark_completed);
 382 
 383   void swap_mark_bitmaps();
 384 
 385   void reclaim_empty_regions();
 386 
 387   // After reclaiming empty regions, update heap sizes.
 388   void compute_new_sizes();
 389 
 390   // Clear statistics gathered during the concurrent cycle for the given region after
 391   // it has been reclaimed.
 392   void clear_statistics(HeapRegion* r);
 393 
 394   // Resets the global marking data structures, as well as the
 395   // task local ones; should be called during initial mark.
 396   void reset();
 397 
 398   // Resets all the marking data structures. Called when we have to restart
 399   // marking or when marking completes (via set_non_marking_state below).
 400   void reset_marking_for_restart();
 401 
 402   // We do this after we're done with marking so that the marking data
 403   // structures are initialized to a sensible and predictable state.
 404   void reset_at_marking_complete();
 405 
 406   // Called to indicate how many threads are currently active.
 407   void set_concurrency(uint active_tasks);
 408 
 409   // Should be called to indicate which phase we're in (concurrent
 410   // mark or remark) and how many threads are currently active.
 411   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 412 
 413   // Prints all gathered CM-related statistics
 414   void print_stats();
 415 
 416   HeapWord*               finger()           { return _finger;   }
 417   bool                    concurrent()       { return _concurrent; }
 418   uint                    active_tasks()     { return _num_active_tasks; }
 419   ParallelTaskTerminator* terminator() const { return _terminator.terminator(); }
 420 
 421   // Claims the next available region to be scanned by a marking
 422   // task/thread. It might return NULL if the next region is empty or
 423   // we have run out of regions. In the latter case, out_of_regions()
 424   // determines whether we've really run out of regions or the task
 425   // should call claim_region() again. This might seem a bit
 426   // awkward. Originally, the code was written so that claim_region()
 427   // either successfully returned with a non-empty region or there
 428   // were no more regions to be claimed. The problem with this was
 429   // that, in certain circumstances, it iterated over large chunks of
 430   // the heap finding only empty regions and, while it was working, it
 431   // was preventing the calling task to call its regular clock
 432   // method. So, this way, each task will spend very little time in
 433   // claim_region() and is allowed to call the regular clock method
 434   // frequently.
 435   HeapRegion* claim_region(uint worker_id);
 436 
 437   // Determines whether we've run out of regions to scan. Note that
 438   // the finger can point past the heap end in case the heap was expanded
 439   // to satisfy an allocation without doing a GC. This is fine, because all
 440   // objects in those regions will be considered live anyway because of
 441   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 442   bool out_of_regions() { return _finger >= _heap.end(); }
 443 
 444   // Returns the task with the given id
 445   G1CMTask* task(uint id) {
 446     // During initial mark we use the parallel gc threads to do some work, so
 447     // we can only compare against _max_num_tasks.
 448     assert(id < _max_num_tasks, "Task id %u not within bounds up to %u", id, _max_num_tasks);
 449     return _tasks[id];
 450   }
 451 
 452   // Access / manipulation of the overflow flag which is set to
 453   // indicate that the global stack has overflown
 454   bool has_overflown()           { return _has_overflown; }
 455   void set_has_overflown()       { _has_overflown = true; }
 456   void clear_has_overflown()     { _has_overflown = false; }
 457   bool restart_for_overflow()    { return _restart_for_overflow; }
 458 
 459   // Methods to enter the two overflow sync barriers
 460   void enter_first_sync_barrier(uint worker_id);
 461   void enter_second_sync_barrier(uint worker_id);
 462 
 463   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 464   // true, periodically insert checks to see if this method should exit prematurely.
 465   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 466 
 467   // Region statistics gathered during marking.
 468   G1RegionMarkStats* _region_mark_stats;
 469   // Top pointer for each region at the start of the rebuild remembered set process
 470   // for regions which remembered sets need to be rebuilt. A NULL for a given region
 471   // means that this region does not be scanned during the rebuilding remembered
 472   // set phase at all.
 473   HeapWord* volatile* _top_at_rebuild_starts;
 474 public:
 475   void add_to_liveness(uint worker_id, oop const obj, size_t size);
 476   // Liveness of the given region as determined by concurrent marking, i.e. the amount of
 477   // live words between bottom and nTAMS.
 478   size_t liveness(uint region) const { return _region_mark_stats[region]._live_words; }
 479 
 480   // Sets the internal top_at_region_start for the given region to current top of the region.
 481   inline void update_top_at_rebuild_start(HeapRegion* r);
 482   // TARS for the given region during remembered set rebuilding.
 483   inline HeapWord* top_at_rebuild_start(uint region) const;
 484 
 485   // Clear statistics gathered during the concurrent cycle for the given region after
 486   // it has been reclaimed.
 487   void clear_statistics_in_region(uint region_idx);
 488   // Notification for eagerly reclaimed regions to clean up.
 489   void humongous_object_eagerly_reclaimed(HeapRegion* r);
 490   // Manipulation of the global mark stack.
 491   // The push and pop operations are used by tasks for transfers
 492   // between task-local queues and the global mark stack.
 493   bool mark_stack_push(G1TaskQueueEntry* arr) {
 494     if (!_global_mark_stack.par_push_chunk(arr)) {
 495       set_has_overflown();
 496       return false;
 497     }
 498     return true;
 499   }
 500   bool mark_stack_pop(G1TaskQueueEntry* arr) {
 501     return _global_mark_stack.par_pop_chunk(arr);
 502   }
 503   size_t mark_stack_size() const                { return _global_mark_stack.size(); }
 504   size_t partial_mark_stack_size_target() const { return _global_mark_stack.capacity() / 3; }
 505   bool mark_stack_empty() const                 { return _global_mark_stack.is_empty(); }
 506 
 507   G1CMRootMemRegions* root_regions() { return &_root_regions; }
 508 
 509   void concurrent_cycle_start();
 510   // Abandon current marking iteration due to a Full GC.
 511   void concurrent_cycle_abort();
 512   void concurrent_cycle_end();
 513 
 514   void update_accum_task_vtime(int i, double vtime) {
 515     _accum_task_vtime[i] += vtime;
 516   }
 517 
 518   double all_task_accum_vtime() {
 519     double ret = 0.0;
 520     for (uint i = 0; i < _max_num_tasks; ++i)
 521       ret += _accum_task_vtime[i];
 522     return ret;
 523   }
 524 
 525   // Attempts to steal an object from the task queues of other tasks
 526   bool try_stealing(uint worker_id, G1TaskQueueEntry& task_entry);
 527 
 528   G1ConcurrentMark(G1CollectedHeap* g1h,
 529                    G1RegionToSpaceMapper* prev_bitmap_storage,
 530                    G1RegionToSpaceMapper* next_bitmap_storage);
 531   ~G1ConcurrentMark();
 532 
 533   G1ConcurrentMarkThread* cm_thread() { return _cm_thread; }
 534 
 535   const G1CMBitMap* const prev_mark_bitmap() const { return _prev_mark_bitmap; }
 536   G1CMBitMap* next_mark_bitmap() const { return _next_mark_bitmap; }
 537 
 538   // Calculates the number of concurrent GC threads to be used in the marking phase.
 539   uint calc_active_marking_workers();
 540 
 541   // Moves all per-task cached data into global state.
 542   void flush_all_task_caches();
 543   // Prepare internal data structures for the next mark cycle. This includes clearing
 544   // the next mark bitmap and some internal data structures. This method is intended
 545   // to be called concurrently to the mutator. It will yield to safepoint requests.
 546   void cleanup_for_next_mark();
 547 
 548   // Clear the previous marking bitmap during safepoint.
 549   void clear_prev_bitmap(WorkGang* workers);
 550 
 551   // These two methods do the work that needs to be done at the start and end of the
 552   // initial mark pause.
 553   void pre_initial_mark();
 554   void post_initial_mark();
 555 
 556   // Scan all the root regions and mark everything reachable from
 557   // them.
 558   void scan_root_regions();
 559 
 560   // Scan a single root MemRegion to mark everything reachable from it.
 561   void scan_root_region(const MemRegion* region, uint worker_id);
 562 
 563   // Do concurrent phase of marking, to a tentative transitive closure.
 564   void mark_from_roots();
 565 
 566   // Do concurrent preclean work.
 567   void preclean();
 568 
 569   void remark();
 570 
 571   void cleanup();
 572   // Mark in the previous bitmap. Caution: the prev bitmap is usually read-only, so use
 573   // this carefully.
 574   inline void mark_in_prev_bitmap(oop p);
 575 
 576   // Clears marks for all objects in the given range, for the prev or
 577   // next bitmaps.  Caution: the previous bitmap is usually
 578   // read-only, so use this carefully!
 579   void clear_range_in_prev_bitmap(MemRegion mr);
 580 
 581   inline bool is_marked_in_prev_bitmap(oop p) const;
 582 
 583   // Verify that there are no collection set oops on the stacks (taskqueues /
 584   // global mark stack) and fingers (global / per-task).
 585   // If marking is not in progress, it's a no-op.
 586   void verify_no_collection_set_oops() PRODUCT_RETURN;
 587 
 588   inline bool do_yield_check();
 589 
 590   bool has_aborted()      { return _has_aborted; }
 591 
 592   void print_summary_info();
 593 
 594   void print_worker_threads_on(outputStream* st) const;
 595   void threads_do(ThreadClosure* tc) const;
 596 
 597   void print_on_error(outputStream* st) const;
 598 
 599   // Mark the given object on the next bitmap if it is below nTAMS.
 600   inline bool mark_in_next_bitmap(uint worker_id, HeapRegion* const hr, oop const obj);
 601   inline bool mark_in_next_bitmap(uint worker_id, oop const obj);
 602 
 603   inline bool is_marked_in_next_bitmap(oop p) const;
 604 
 605   // Returns true if initialization was successfully completed.
 606   bool completed_initialization() const {
 607     return _completed_initialization;
 608   }
 609 
 610   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 611   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 612 
 613 private:
 614   // Rebuilds the remembered sets for chosen regions in parallel and concurrently to the application.
 615   void rebuild_rem_set_concurrently();
 616 };
 617 
 618 // A class representing a marking task.
 619 class G1CMTask : public TerminatorTerminator {
 620 private:
 621   enum PrivateConstants {
 622     // The regular clock call is called once the scanned words reaches
 623     // this limit
 624     words_scanned_period          = 12*1024,
 625     // The regular clock call is called once the number of visited
 626     // references reaches this limit
 627     refs_reached_period           = 1024,
 628     // Initial value for the hash seed, used in the work stealing code
 629     init_hash_seed                = 17
 630   };
 631 
 632   // Number of entries in the per-task stats entry. This seems enough to have a very
 633   // low cache miss rate.
 634   static const uint RegionMarkStatsCacheSize = 1024;
 635 
 636   G1CMObjArrayProcessor       _objArray_processor;
 637 
 638   uint                        _worker_id;
 639   G1CollectedHeap*            _g1h;
 640   G1ConcurrentMark*           _cm;
 641   G1CMBitMap*                 _next_mark_bitmap;
 642   // the task queue of this task
 643   G1CMTaskQueue*              _task_queue;
 644 
 645   G1RegionMarkStatsCache      _mark_stats_cache;
 646   // Number of calls to this task
 647   uint                        _calls;
 648 
 649   // When the virtual timer reaches this time, the marking step should exit
 650   double                      _time_target_ms;
 651   // Start time of the current marking step
 652   double                      _start_time_ms;
 653 
 654   // Oop closure used for iterations over oops
 655   G1CMOopClosure*             _cm_oop_closure;
 656 
 657   // Region this task is scanning, NULL if we're not scanning any
 658   HeapRegion*                 _curr_region;
 659   // Local finger of this task, NULL if we're not scanning a region
 660   HeapWord*                   _finger;
 661   // Limit of the region this task is scanning, NULL if we're not scanning one
 662   HeapWord*                   _region_limit;
 663 
 664   // Number of words this task has scanned
 665   size_t                      _words_scanned;
 666   // When _words_scanned reaches this limit, the regular clock is
 667   // called. Notice that this might be decreased under certain
 668   // circumstances (i.e. when we believe that we did an expensive
 669   // operation).
 670   size_t                      _words_scanned_limit;
 671   // Initial value of _words_scanned_limit (i.e. what it was
 672   // before it was decreased).
 673   size_t                      _real_words_scanned_limit;
 674 
 675   // Number of references this task has visited
 676   size_t                      _refs_reached;
 677   // When _refs_reached reaches this limit, the regular clock is
 678   // called. Notice this this might be decreased under certain
 679   // circumstances (i.e. when we believe that we did an expensive
 680   // operation).
 681   size_t                      _refs_reached_limit;
 682   // Initial value of _refs_reached_limit (i.e. what it was before
 683   // it was decreased).
 684   size_t                      _real_refs_reached_limit;
 685 
 686   // If true, then the task has aborted for some reason
 687   bool                        _has_aborted;
 688   // Set when the task aborts because it has met its time quota
 689   bool                        _has_timed_out;
 690   // True when we're draining SATB buffers; this avoids the task
 691   // aborting due to SATB buffers being available (as we're already
 692   // dealing with them)
 693   bool                        _draining_satb_buffers;
 694 
 695   // Number sequence of past step times
 696   NumberSeq                   _step_times_ms;
 697   // Elapsed time of this task
 698   double                      _elapsed_time_ms;
 699   // Termination time of this task
 700   double                      _termination_time_ms;
 701   // When this task got into the termination protocol
 702   double                      _termination_start_time_ms;
 703 
 704   TruncatedSeq                _marking_step_diff_ms;
 705 
 706   // Updates the local fields after this task has claimed
 707   // a new region to scan
 708   void setup_for_region(HeapRegion* hr);
 709   // Makes the limit of the region up-to-date
 710   void update_region_limit();
 711 
 712   // Called when either the words scanned or the refs visited limit
 713   // has been reached
 714   void reached_limit();
 715   // Recalculates the words scanned and refs visited limits
 716   void recalculate_limits();
 717   // Decreases the words scanned and refs visited limits when we reach
 718   // an expensive operation
 719   void decrease_limits();
 720   // Checks whether the words scanned or refs visited reached their
 721   // respective limit and calls reached_limit() if they have
 722   void check_limits() {
 723     if (_words_scanned >= _words_scanned_limit ||
 724         _refs_reached >= _refs_reached_limit) {
 725       reached_limit();
 726     }
 727   }
 728   // Supposed to be called regularly during a marking step as
 729   // it checks a bunch of conditions that might cause the marking step
 730   // to abort
 731   // Return true if the marking step should continue. Otherwise, return false to abort
 732   bool regular_clock_call();
 733 
 734   // Set abort flag if regular_clock_call() check fails
 735   inline void abort_marking_if_regular_check_fail();
 736 
 737   // Test whether obj might have already been passed over by the
 738   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 739   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 740 
 741   template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
 742 public:
 743   // Apply the closure on the given area of the objArray. Return the number of words
 744   // scanned.
 745   inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
 746   // Resets the task; should be called right at the beginning of a marking phase.
 747   void reset(G1CMBitMap* next_mark_bitmap);
 748   // Clears all the fields that correspond to a claimed region.
 749   void clear_region_fields();
 750 
 751   // The main method of this class which performs a marking step
 752   // trying not to exceed the given duration. However, it might exit
 753   // prematurely, according to some conditions (i.e. SATB buffers are
 754   // available for processing).
 755   void do_marking_step(double target_ms,
 756                        bool do_termination,
 757                        bool is_serial);
 758 
 759   // These two calls start and stop the timer
 760   void record_start_time() {
 761     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 762   }
 763   void record_end_time() {
 764     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 765   }
 766 
 767   // Returns the worker ID associated with this task.
 768   uint worker_id() { return _worker_id; }
 769 
 770   // From TerminatorTerminator. It determines whether this task should
 771   // exit the termination protocol after it's entered it.
 772   virtual bool should_exit_termination();
 773 
 774   // Resets the local region fields after a task has finished scanning a
 775   // region; or when they have become stale as a result of the region
 776   // being evacuated.
 777   void giveup_current_region();
 778 
 779   HeapWord* finger()            { return _finger; }
 780 
 781   bool has_aborted()            { return _has_aborted; }
 782   void set_has_aborted()        { _has_aborted = true; }
 783   void clear_has_aborted()      { _has_aborted = false; }
 784 
 785   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 786 
 787   // Increment the number of references this task has visited.
 788   void increment_refs_reached() { ++_refs_reached; }
 789 
 790   // Grey the object by marking it.  If not already marked, push it on
 791   // the local queue if below the finger. obj is required to be below its region's NTAMS.
 792   // Returns whether there has been a mark to the bitmap.
 793   inline bool make_reference_grey(oop obj);
 794 
 795   // Grey the object (by calling make_grey_reference) if required,
 796   // e.g. obj is below its containing region's NTAMS.
 797   // Precondition: obj is a valid heap object.
 798   // Returns true if the reference caused a mark to be set in the next bitmap.
 799   template <class T>
 800   inline bool deal_with_reference(T* p);
 801 
 802   // Scans an object and visits its children.
 803   inline void scan_task_entry(G1TaskQueueEntry task_entry);
 804 
 805   // Pushes an object on the local queue.
 806   inline void push(G1TaskQueueEntry task_entry);
 807 
 808   // Move entries to the global stack.
 809   void move_entries_to_global_stack();
 810   // Move entries from the global stack, return true if we were successful to do so.
 811   bool get_entries_from_global_stack();
 812 
 813   // Pops and scans objects from the local queue. If partially is
 814   // true, then it stops when the queue size is of a given limit. If
 815   // partially is false, then it stops when the queue is empty.
 816   void drain_local_queue(bool partially);
 817   // Moves entries from the global stack to the local queue and
 818   // drains the local queue. If partially is true, then it stops when
 819   // both the global stack and the local queue reach a given size. If
 820   // partially if false, it tries to empty them totally.
 821   void drain_global_stack(bool partially);
 822   // Keeps picking SATB buffers and processing them until no SATB
 823   // buffers are available.
 824   void drain_satb_buffers();
 825 
 826   // Moves the local finger to a new location
 827   inline void move_finger_to(HeapWord* new_finger) {
 828     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 829     _finger = new_finger;
 830   }
 831 
 832   G1CMTask(uint worker_id,
 833            G1ConcurrentMark *cm,
 834            G1CMTaskQueue* task_queue,
 835            G1RegionMarkStats* mark_stats,
 836            uint max_regions);
 837 
 838   inline void update_liveness(oop const obj, size_t const obj_size);
 839 
 840   // Clear (without flushing) the mark cache entry for the given region.
 841   void clear_mark_stats_cache(uint region_idx);
 842   // Evict the whole statistics cache into the global statistics. Returns the
 843   // number of cache hits and misses so far.
 844   Pair<size_t, size_t> flush_mark_stats_cache();
 845   // Prints statistics associated with this task
 846   void print_stats();
 847 };
 848 
 849 // Class that's used to to print out per-region liveness
 850 // information. It's currently used at the end of marking and also
 851 // after we sort the old regions at the end of the cleanup operation.
 852 class G1PrintRegionLivenessInfoClosure : public HeapRegionClosure {
 853   // Accumulators for these values.
 854   size_t _total_used_bytes;
 855   size_t _total_capacity_bytes;
 856   size_t _total_prev_live_bytes;
 857   size_t _total_next_live_bytes;
 858 
 859   // Accumulator for the remembered set size
 860   size_t _total_remset_bytes;
 861 
 862   // Accumulator for strong code roots memory size
 863   size_t _total_strong_code_roots_bytes;
 864 
 865   static double bytes_to_mb(size_t val) {
 866     return (double) val / (double) M;
 867   }
 868 
 869 public:
 870   // The header and footer are printed in the constructor and
 871   // destructor respectively.
 872   G1PrintRegionLivenessInfoClosure(const char* phase_name);
 873   virtual bool do_heap_region(HeapRegion* r);
 874   ~G1PrintRegionLivenessInfoClosure();
 875 };
 876 
 877 #endif // SHARE_GC_G1_G1CONCURRENTMARK_HPP