1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/parallel/mutableNUMASpace.hpp"
  27 #include "gc/parallel/parallelScavengeHeap.hpp"
  28 #include "gc/parallel/psMarkSweepDecorator.hpp"
  29 #include "gc/parallel/psScavenge.hpp"
  30 #include "gc/parallel/psYoungGen.hpp"
  31 #include "gc/shared/gcUtil.hpp"
  32 #include "gc/shared/genArguments.hpp"
  33 #include "gc/shared/spaceDecorator.hpp"
  34 #include "logging/log.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "runtime/java.hpp"
  37 #include "utilities/align.hpp"
  38 
  39 PSYoungGen::PSYoungGen(size_t initial_size, size_t min_size, size_t max_size) :
  40   _reserved(),
  41   _virtual_space(NULL),
  42   _eden_space(NULL),
  43   _from_space(NULL),
  44   _to_space(NULL),
  45   _eden_mark_sweep(NULL),
  46   _from_mark_sweep(NULL),
  47   _to_mark_sweep(NULL),
  48   _init_gen_size(initial_size),
  49   _min_gen_size(min_size),
  50   _max_gen_size(max_size),
  51   _gen_counters(NULL),
  52   _eden_counters(NULL),
  53   _from_counters(NULL),
  54   _to_counters(NULL)
  55 {}
  56 
  57 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
  58   assert(_init_gen_size != 0, "Should have a finite size");
  59   _virtual_space = new PSVirtualSpace(rs, alignment);
  60   if (!virtual_space()->expand_by(_init_gen_size)) {
  61     vm_exit_during_initialization("Could not reserve enough space for "
  62                                   "object heap");
  63   }
  64 }
  65 
  66 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
  67   initialize_virtual_space(rs, alignment);
  68   initialize_work();
  69 }
  70 
  71 void PSYoungGen::initialize_work() {
  72 
  73   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
  74                         (HeapWord*)virtual_space()->high_boundary());
  75 
  76   MemRegion cmr((HeapWord*)virtual_space()->low(),
  77                 (HeapWord*)virtual_space()->high());
  78   ParallelScavengeHeap::heap()->card_table()->resize_covered_region(cmr);
  79 
  80   if (ZapUnusedHeapArea) {
  81     // Mangle newly committed space immediately because it
  82     // can be done here more simply that after the new
  83     // spaces have been computed.
  84     SpaceMangler::mangle_region(cmr);
  85   }
  86 
  87   if (UseNUMA) {
  88     _eden_space = new MutableNUMASpace(virtual_space()->alignment());
  89   } else {
  90     _eden_space = new MutableSpace(virtual_space()->alignment());
  91   }
  92   _from_space = new MutableSpace(virtual_space()->alignment());
  93   _to_space   = new MutableSpace(virtual_space()->alignment());
  94 
  95   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
  96     vm_exit_during_initialization("Could not allocate a young gen space");
  97   }
  98 
  99   // Allocate the mark sweep views of spaces
 100   _eden_mark_sweep =
 101       new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
 102   _from_mark_sweep =
 103       new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
 104   _to_mark_sweep =
 105       new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
 106 
 107   if (_eden_mark_sweep == NULL ||
 108       _from_mark_sweep == NULL ||
 109       _to_mark_sweep == NULL) {
 110     vm_exit_during_initialization("Could not complete allocation"
 111                                   " of the young generation");
 112   }
 113 
 114   // Generation Counters - generation 0, 3 subspaces
 115   _gen_counters = new PSGenerationCounters("new", 0, 3, _min_gen_size,
 116                                            _max_gen_size, _virtual_space);
 117 
 118   // Compute maximum space sizes for performance counters
 119   size_t alignment = SpaceAlignment;
 120   size_t size = virtual_space()->reserved_size();
 121 
 122   size_t max_survivor_size;
 123   size_t max_eden_size;
 124 
 125   if (UseAdaptiveSizePolicy) {
 126     max_survivor_size = size / MinSurvivorRatio;
 127 
 128     // round the survivor space size down to the nearest alignment
 129     // and make sure its size is greater than 0.
 130     max_survivor_size = align_down(max_survivor_size, alignment);
 131     max_survivor_size = MAX2(max_survivor_size, alignment);
 132 
 133     // set the maximum size of eden to be the size of the young gen
 134     // less two times the minimum survivor size. The minimum survivor
 135     // size for UseAdaptiveSizePolicy is one alignment.
 136     max_eden_size = size - 2 * alignment;
 137   } else {
 138     max_survivor_size = size / InitialSurvivorRatio;
 139 
 140     // round the survivor space size down to the nearest alignment
 141     // and make sure its size is greater than 0.
 142     max_survivor_size = align_down(max_survivor_size, alignment);
 143     max_survivor_size = MAX2(max_survivor_size, alignment);
 144 
 145     // set the maximum size of eden to be the size of the young gen
 146     // less two times the survivor size when the generation is 100%
 147     // committed. The minimum survivor size for -UseAdaptiveSizePolicy
 148     // is dependent on the committed portion (current capacity) of the
 149     // generation - the less space committed, the smaller the survivor
 150     // space, possibly as small as an alignment. However, we are interested
 151     // in the case where the young generation is 100% committed, as this
 152     // is the point where eden reaches its maximum size. At this point,
 153     // the size of a survivor space is max_survivor_size.
 154     max_eden_size = size - 2 * max_survivor_size;
 155   }
 156 
 157   _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
 158                                      _gen_counters);
 159   _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
 160                                      _gen_counters);
 161   _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
 162                                    _gen_counters);
 163 
 164   compute_initial_space_boundaries();
 165 }
 166 
 167 void PSYoungGen::compute_initial_space_boundaries() {
 168   // Compute sizes
 169   size_t size = virtual_space()->committed_size();
 170   assert(size >= 3 * SpaceAlignment, "Young space is not large enough for eden + 2 survivors");
 171 
 172   size_t survivor_size = size / InitialSurvivorRatio;
 173   survivor_size = align_down(survivor_size, SpaceAlignment);
 174   // ... but never less than an alignment
 175   survivor_size = MAX2(survivor_size, SpaceAlignment);
 176 
 177   // Young generation is eden + 2 survivor spaces
 178   size_t eden_size = size - (2 * survivor_size);
 179 
 180   // Now go ahead and set 'em.
 181   set_space_boundaries(eden_size, survivor_size);
 182   space_invariants();
 183 
 184   if (UsePerfData) {
 185     _eden_counters->update_capacity();
 186     _from_counters->update_capacity();
 187     _to_counters->update_capacity();
 188   }
 189 }
 190 
 191 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
 192   assert(eden_size < virtual_space()->committed_size(), "just checking");
 193   assert(eden_size > 0  && survivor_size > 0, "just checking");
 194 
 195   // Initial layout is Eden, to, from. After swapping survivor spaces,
 196   // that leaves us with Eden, from, to, which is step one in our two
 197   // step resize-with-live-data procedure.
 198   char *eden_start = virtual_space()->low();
 199   char *to_start   = eden_start + eden_size;
 200   char *from_start = to_start   + survivor_size;
 201   char *from_end   = from_start + survivor_size;
 202 
 203   assert(from_end == virtual_space()->high(), "just checking");
 204   assert(is_object_aligned(eden_start), "checking alignment");
 205   assert(is_object_aligned(to_start),   "checking alignment");
 206   assert(is_object_aligned(from_start), "checking alignment");
 207 
 208   MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
 209   MemRegion to_mr  ((HeapWord*)to_start, (HeapWord*)from_start);
 210   MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
 211 
 212   eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
 213     to_space()->initialize(to_mr  , true, ZapUnusedHeapArea);
 214   from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
 215 }
 216 
 217 #ifndef PRODUCT
 218 void PSYoungGen::space_invariants() {
 219   // Currently, our eden size cannot shrink to zero
 220   guarantee(eden_space()->capacity_in_bytes() >= SpaceAlignment, "eden too small");
 221   guarantee(from_space()->capacity_in_bytes() >= SpaceAlignment, "from too small");
 222   guarantee(to_space()->capacity_in_bytes() >= SpaceAlignment, "to too small");
 223 
 224   // Relationship of spaces to each other
 225   char* eden_start = (char*)eden_space()->bottom();
 226   char* eden_end   = (char*)eden_space()->end();
 227   char* from_start = (char*)from_space()->bottom();
 228   char* from_end   = (char*)from_space()->end();
 229   char* to_start   = (char*)to_space()->bottom();
 230   char* to_end     = (char*)to_space()->end();
 231 
 232   guarantee(eden_start >= virtual_space()->low(), "eden bottom");
 233   guarantee(eden_start < eden_end, "eden space consistency");
 234   guarantee(from_start < from_end, "from space consistency");
 235   guarantee(to_start < to_end, "to space consistency");
 236 
 237   // Check whether from space is below to space
 238   if (from_start < to_start) {
 239     // Eden, from, to
 240     guarantee(eden_end <= from_start, "eden/from boundary");
 241     guarantee(from_end <= to_start,   "from/to boundary");
 242     guarantee(to_end <= virtual_space()->high(), "to end");
 243   } else {
 244     // Eden, to, from
 245     guarantee(eden_end <= to_start, "eden/to boundary");
 246     guarantee(to_end <= from_start, "to/from boundary");
 247     guarantee(from_end <= virtual_space()->high(), "from end");
 248   }
 249 
 250   // More checks that the virtual space is consistent with the spaces
 251   assert(virtual_space()->committed_size() >=
 252     (eden_space()->capacity_in_bytes() +
 253      to_space()->capacity_in_bytes() +
 254      from_space()->capacity_in_bytes()), "Committed size is inconsistent");
 255   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
 256     "Space invariant");
 257   char* eden_top = (char*)eden_space()->top();
 258   char* from_top = (char*)from_space()->top();
 259   char* to_top = (char*)to_space()->top();
 260   assert(eden_top <= virtual_space()->high(), "eden top");
 261   assert(from_top <= virtual_space()->high(), "from top");
 262   assert(to_top <= virtual_space()->high(), "to top");
 263 
 264   virtual_space()->verify();
 265 }
 266 #endif
 267 
 268 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
 269   // Resize the generation if needed. If the generation resize
 270   // reports false, do not attempt to resize the spaces.
 271   if (resize_generation(eden_size, survivor_size)) {
 272     // Then we lay out the spaces inside the generation
 273     resize_spaces(eden_size, survivor_size);
 274 
 275     space_invariants();
 276 
 277     log_trace(gc, ergo)("Young generation size: "
 278                         "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
 279                         " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
 280                         " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
 281                         eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
 282                         _max_gen_size, min_gen_size());
 283   }
 284 }
 285 
 286 
 287 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
 288   const size_t alignment = virtual_space()->alignment();
 289   size_t orig_size = virtual_space()->committed_size();
 290   bool size_changed = false;
 291 
 292   // There used to be this guarantee there.
 293   // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
 294   // Code below forces this requirement.  In addition the desired eden
 295   // size and desired survivor sizes are desired goals and may
 296   // exceed the total generation size.
 297 
 298   assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
 299 
 300   // Adjust new generation size
 301   const size_t eden_plus_survivors =
 302           align_up(eden_size + 2 * survivor_size, alignment);
 303   size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
 304                              min_gen_size());
 305   assert(desired_size <= max_size(), "just checking");
 306 
 307   if (desired_size > orig_size) {
 308     // Grow the generation
 309     size_t change = desired_size - orig_size;
 310     assert(change % alignment == 0, "just checking");
 311     HeapWord* prev_high = (HeapWord*) virtual_space()->high();
 312     if (!virtual_space()->expand_by(change)) {
 313       return false; // Error if we fail to resize!
 314     }
 315     if (ZapUnusedHeapArea) {
 316       // Mangle newly committed space immediately because it
 317       // can be done here more simply that after the new
 318       // spaces have been computed.
 319       HeapWord* new_high = (HeapWord*) virtual_space()->high();
 320       MemRegion mangle_region(prev_high, new_high);
 321       SpaceMangler::mangle_region(mangle_region);
 322     }
 323     size_changed = true;
 324   } else if (desired_size < orig_size) {
 325     size_t desired_change = orig_size - desired_size;
 326     assert(desired_change % alignment == 0, "just checking");
 327 
 328     desired_change = limit_gen_shrink(desired_change);
 329 
 330     if (desired_change > 0) {
 331       virtual_space()->shrink_by(desired_change);
 332       reset_survivors_after_shrink();
 333 
 334       size_changed = true;
 335     }
 336   } else {
 337     if (orig_size == gen_size_limit()) {
 338       log_trace(gc)("PSYoung generation size at maximum: " SIZE_FORMAT "K", orig_size/K);
 339     } else if (orig_size == min_gen_size()) {
 340       log_trace(gc)("PSYoung generation size at minium: " SIZE_FORMAT "K", orig_size/K);
 341     }
 342   }
 343 
 344   if (size_changed) {
 345     post_resize();
 346     log_trace(gc)("PSYoung generation size changed: " SIZE_FORMAT "K->" SIZE_FORMAT "K",
 347                   orig_size/K, virtual_space()->committed_size()/K);
 348   }
 349 
 350   guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
 351             virtual_space()->committed_size() == max_size(), "Sanity");
 352 
 353   return true;
 354 }
 355 
 356 #ifndef PRODUCT
 357 // In the numa case eden is not mangled so a survivor space
 358 // moving into a region previously occupied by a survivor
 359 // may find an unmangled region.  Also in the PS case eden
 360 // to-space and from-space may not touch (i.e., there may be
 361 // gaps between them due to movement while resizing the
 362 // spaces).  Those gaps must be mangled.
 363 void PSYoungGen::mangle_survivors(MutableSpace* s1,
 364                                   MemRegion s1MR,
 365                                   MutableSpace* s2,
 366                                   MemRegion s2MR) {
 367   // Check eden and gap between eden and from-space, in deciding
 368   // what to mangle in from-space.  Check the gap between from-space
 369   // and to-space when deciding what to mangle.
 370   //
 371   //      +--------+   +----+    +---+
 372   //      | eden   |   |s1  |    |s2 |
 373   //      +--------+   +----+    +---+
 374   //                 +-------+ +-----+
 375   //                 |s1MR   | |s2MR |
 376   //                 +-------+ +-----+
 377   // All of survivor-space is properly mangled so find the
 378   // upper bound on the mangling for any portion above current s1.
 379   HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
 380   MemRegion delta1_left;
 381   if (s1MR.start() < delta_end) {
 382     delta1_left = MemRegion(s1MR.start(), delta_end);
 383     s1->mangle_region(delta1_left);
 384   }
 385   // Find any portion to the right of the current s1.
 386   HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
 387   MemRegion delta1_right;
 388   if (delta_start < s1MR.end()) {
 389     delta1_right = MemRegion(delta_start, s1MR.end());
 390     s1->mangle_region(delta1_right);
 391   }
 392 
 393   // Similarly for the second survivor space except that
 394   // any of the new region that overlaps with the current
 395   // region of the first survivor space has already been
 396   // mangled.
 397   delta_end = MIN2(s2->bottom(), s2MR.end());
 398   delta_start = MAX2(s2MR.start(), s1->end());
 399   MemRegion delta2_left;
 400   if (s2MR.start() < delta_end) {
 401     delta2_left = MemRegion(s2MR.start(), delta_end);
 402     s2->mangle_region(delta2_left);
 403   }
 404   delta_start = MAX2(s2->end(), s2MR.start());
 405   MemRegion delta2_right;
 406   if (delta_start < s2MR.end()) {
 407     s2->mangle_region(delta2_right);
 408   }
 409 
 410   // s1
 411   log_develop_trace(gc)("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 412     "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 413     p2i(s1->bottom()), p2i(s1->end()),
 414     p2i(s1MR.start()), p2i(s1MR.end()));
 415   log_develop_trace(gc)("    Mangle before: [" PTR_FORMAT ", "
 416     PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 417     p2i(delta1_left.start()), p2i(delta1_left.end()),
 418     p2i(delta1_right.start()), p2i(delta1_right.end()));
 419 
 420   // s2
 421   log_develop_trace(gc)("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 422     "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 423     p2i(s2->bottom()), p2i(s2->end()),
 424     p2i(s2MR.start()), p2i(s2MR.end()));
 425   log_develop_trace(gc)("    Mangle before: [" PTR_FORMAT ", "
 426     PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 427     p2i(delta2_left.start()), p2i(delta2_left.end()),
 428     p2i(delta2_right.start()), p2i(delta2_right.end()));
 429 }
 430 #endif // NOT PRODUCT
 431 
 432 void PSYoungGen::resize_spaces(size_t requested_eden_size,
 433                                size_t requested_survivor_size) {
 434   assert(UseAdaptiveSizePolicy, "sanity check");
 435   assert(requested_eden_size > 0  && requested_survivor_size > 0,
 436          "just checking");
 437 
 438   // We require eden and to space to be empty
 439   if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
 440     return;
 441   }
 442 
 443   log_trace(gc, ergo)("PSYoungGen::resize_spaces(requested_eden_size: " SIZE_FORMAT ", requested_survivor_size: " SIZE_FORMAT ")",
 444                       requested_eden_size, requested_survivor_size);
 445   log_trace(gc, ergo)("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
 446                       p2i(eden_space()->bottom()),
 447                       p2i(eden_space()->end()),
 448                       pointer_delta(eden_space()->end(),
 449                                     eden_space()->bottom(),
 450                                     sizeof(char)));
 451   log_trace(gc, ergo)("    from: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
 452                       p2i(from_space()->bottom()),
 453                       p2i(from_space()->end()),
 454                       pointer_delta(from_space()->end(),
 455                                     from_space()->bottom(),
 456                                     sizeof(char)));
 457   log_trace(gc, ergo)("      to: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
 458                       p2i(to_space()->bottom()),
 459                       p2i(to_space()->end()),
 460                       pointer_delta(  to_space()->end(),
 461                                       to_space()->bottom(),
 462                                       sizeof(char)));
 463 
 464   // There's nothing to do if the new sizes are the same as the current
 465   if (requested_survivor_size == to_space()->capacity_in_bytes() &&
 466       requested_survivor_size == from_space()->capacity_in_bytes() &&
 467       requested_eden_size == eden_space()->capacity_in_bytes()) {
 468     log_trace(gc, ergo)("    capacities are the right sizes, returning");
 469     return;
 470   }
 471 
 472   char* eden_start = (char*)eden_space()->bottom();
 473   char* eden_end   = (char*)eden_space()->end();
 474   char* from_start = (char*)from_space()->bottom();
 475   char* from_end   = (char*)from_space()->end();
 476   char* to_start   = (char*)to_space()->bottom();
 477   char* to_end     = (char*)to_space()->end();
 478 
 479   const bool maintain_minimum =
 480     (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
 481 
 482   bool eden_from_to_order = from_start < to_start;
 483   // Check whether from space is below to space
 484   if (eden_from_to_order) {
 485     // Eden, from, to
 486     eden_from_to_order = true;
 487     log_trace(gc, ergo)("  Eden, from, to:");
 488 
 489     // Set eden
 490     // "requested_eden_size" is a goal for the size of eden
 491     // and may not be attainable.  "eden_size" below is
 492     // calculated based on the location of from-space and
 493     // the goal for the size of eden.  from-space is
 494     // fixed in place because it contains live data.
 495     // The calculation is done this way to avoid 32bit
 496     // overflow (i.e., eden_start + requested_eden_size
 497     // may too large for representation in 32bits).
 498     size_t eden_size;
 499     if (maintain_minimum) {
 500       // Only make eden larger than the requested size if
 501       // the minimum size of the generation has to be maintained.
 502       // This could be done in general but policy at a higher
 503       // level is determining a requested size for eden and that
 504       // should be honored unless there is a fundamental reason.
 505       eden_size = pointer_delta(from_start,
 506                                 eden_start,
 507                                 sizeof(char));
 508     } else {
 509       eden_size = MIN2(requested_eden_size,
 510                        pointer_delta(from_start, eden_start, sizeof(char)));
 511     }
 512 
 513     eden_end = eden_start + eden_size;
 514     assert(eden_end >= eden_start, "addition overflowed");
 515 
 516     // To may resize into from space as long as it is clear of live data.
 517     // From space must remain page aligned, though, so we need to do some
 518     // extra calculations.
 519 
 520     // First calculate an optimal to-space
 521     to_end   = (char*)virtual_space()->high();
 522     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 523                                     sizeof(char));
 524 
 525     // Does the optimal to-space overlap from-space?
 526     if (to_start < (char*)from_space()->end()) {
 527       // Calculate the minimum offset possible for from_end
 528       size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
 529 
 530       // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
 531       if (from_size == 0) {
 532         from_size = SpaceAlignment;
 533       } else {
 534         from_size = align_up(from_size, SpaceAlignment);
 535       }
 536 
 537       from_end = from_start + from_size;
 538       assert(from_end > from_start, "addition overflow or from_size problem");
 539 
 540       guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
 541 
 542       // Now update to_start with the new from_end
 543       to_start = MAX2(from_end, to_start);
 544     }
 545 
 546     guarantee(to_start != to_end, "to space is zero sized");
 547 
 548     log_trace(gc, ergo)("    [eden_start .. eden_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 549                         p2i(eden_start),
 550                         p2i(eden_end),
 551                         pointer_delta(eden_end, eden_start, sizeof(char)));
 552     log_trace(gc, ergo)("    [from_start .. from_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 553                         p2i(from_start),
 554                         p2i(from_end),
 555                         pointer_delta(from_end, from_start, sizeof(char)));
 556     log_trace(gc, ergo)("    [  to_start ..   to_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 557                         p2i(to_start),
 558                         p2i(to_end),
 559                         pointer_delta(  to_end,   to_start, sizeof(char)));
 560   } else {
 561     // Eden, to, from
 562     log_trace(gc, ergo)("  Eden, to, from:");
 563 
 564     // To space gets priority over eden resizing. Note that we position
 565     // to space as if we were able to resize from space, even though from
 566     // space is not modified.
 567     // Giving eden priority was tried and gave poorer performance.
 568     to_end   = (char*)pointer_delta(virtual_space()->high(),
 569                                     (char*)requested_survivor_size,
 570                                     sizeof(char));
 571     to_end   = MIN2(to_end, from_start);
 572     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 573                                     sizeof(char));
 574     // if the space sizes are to be increased by several times then
 575     // 'to_start' will point beyond the young generation. In this case
 576     // 'to_start' should be adjusted.
 577     to_start = MAX2(to_start, eden_start + SpaceAlignment);
 578 
 579     // Compute how big eden can be, then adjust end.
 580     // See  comments above on calculating eden_end.
 581     size_t eden_size;
 582     if (maintain_minimum) {
 583       eden_size = pointer_delta(to_start, eden_start, sizeof(char));
 584     } else {
 585       eden_size = MIN2(requested_eden_size,
 586                        pointer_delta(to_start, eden_start, sizeof(char)));
 587     }
 588     eden_end = eden_start + eden_size;
 589     assert(eden_end >= eden_start, "addition overflowed");
 590 
 591     // Could choose to not let eden shrink
 592     // to_start = MAX2(to_start, eden_end);
 593 
 594     // Don't let eden shrink down to 0 or less.
 595     eden_end = MAX2(eden_end, eden_start + SpaceAlignment);
 596     to_start = MAX2(to_start, eden_end);
 597 
 598     log_trace(gc, ergo)("    [eden_start .. eden_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 599                         p2i(eden_start),
 600                         p2i(eden_end),
 601                         pointer_delta(eden_end, eden_start, sizeof(char)));
 602     log_trace(gc, ergo)("    [  to_start ..   to_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 603                         p2i(to_start),
 604                         p2i(to_end),
 605                         pointer_delta(  to_end,   to_start, sizeof(char)));
 606     log_trace(gc, ergo)("    [from_start .. from_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 607                         p2i(from_start),
 608                         p2i(from_end),
 609                         pointer_delta(from_end, from_start, sizeof(char)));
 610   }
 611 
 612 
 613   guarantee((HeapWord*)from_start <= from_space()->bottom(),
 614             "from start moved to the right");
 615   guarantee((HeapWord*)from_end >= from_space()->top(),
 616             "from end moved into live data");
 617   assert(is_object_aligned(eden_start), "checking alignment");
 618   assert(is_object_aligned(from_start), "checking alignment");
 619   assert(is_object_aligned(to_start), "checking alignment");
 620 
 621   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
 622   MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
 623   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
 624 
 625   // Let's make sure the call to initialize doesn't reset "top"!
 626   HeapWord* old_from_top = from_space()->top();
 627 
 628   // For logging block  below
 629   size_t old_from = from_space()->capacity_in_bytes();
 630   size_t old_to   = to_space()->capacity_in_bytes();
 631 
 632   if (ZapUnusedHeapArea) {
 633     // NUMA is a special case because a numa space is not mangled
 634     // in order to not prematurely bind its address to memory to
 635     // the wrong memory (i.e., don't want the GC thread to first
 636     // touch the memory).  The survivor spaces are not numa
 637     // spaces and are mangled.
 638     if (UseNUMA) {
 639       if (eden_from_to_order) {
 640         mangle_survivors(from_space(), fromMR, to_space(), toMR);
 641       } else {
 642         mangle_survivors(to_space(), toMR, from_space(), fromMR);
 643       }
 644     }
 645 
 646     // If not mangling the spaces, do some checking to verify that
 647     // the spaces are already mangled.
 648     // The spaces should be correctly mangled at this point so
 649     // do some checking here. Note that they are not being mangled
 650     // in the calls to initialize().
 651     // Must check mangling before the spaces are reshaped.  Otherwise,
 652     // the bottom or end of one space may have moved into an area
 653     // covered by another space and a failure of the check may
 654     // not correctly indicate which space is not properly mangled.
 655     HeapWord* limit = (HeapWord*) virtual_space()->high();
 656     eden_space()->check_mangled_unused_area(limit);
 657     from_space()->check_mangled_unused_area(limit);
 658       to_space()->check_mangled_unused_area(limit);
 659   }
 660   // When an existing space is being initialized, it is not
 661   // mangled because the space has been previously mangled.
 662   eden_space()->initialize(edenMR,
 663                            SpaceDecorator::Clear,
 664                            SpaceDecorator::DontMangle);
 665     to_space()->initialize(toMR,
 666                            SpaceDecorator::Clear,
 667                            SpaceDecorator::DontMangle);
 668   from_space()->initialize(fromMR,
 669                            SpaceDecorator::DontClear,
 670                            SpaceDecorator::DontMangle);
 671 
 672   assert(from_space()->top() == old_from_top, "from top changed!");
 673 
 674   log_trace(gc, ergo)("AdaptiveSizePolicy::survivor space sizes: collection: %d (" SIZE_FORMAT ", " SIZE_FORMAT ") -> (" SIZE_FORMAT ", " SIZE_FORMAT ") ",
 675                       ParallelScavengeHeap::heap()->total_collections(),
 676                       old_from, old_to,
 677                       from_space()->capacity_in_bytes(),
 678                       to_space()->capacity_in_bytes());
 679 }
 680 
 681 void PSYoungGen::swap_spaces() {
 682   MutableSpace* s    = from_space();
 683   _from_space        = to_space();
 684   _to_space          = s;
 685 
 686   // Now update the decorators.
 687   PSMarkSweepDecorator* md = from_mark_sweep();
 688   _from_mark_sweep           = to_mark_sweep();
 689   _to_mark_sweep             = md;
 690 
 691   assert(from_mark_sweep()->space() == from_space(), "Sanity");
 692   assert(to_mark_sweep()->space() == to_space(), "Sanity");
 693 }
 694 
 695 size_t PSYoungGen::capacity_in_bytes() const {
 696   return eden_space()->capacity_in_bytes()
 697        + from_space()->capacity_in_bytes();  // to_space() is only used during scavenge
 698 }
 699 
 700 
 701 size_t PSYoungGen::used_in_bytes() const {
 702   return eden_space()->used_in_bytes()
 703        + from_space()->used_in_bytes();      // to_space() is only used during scavenge
 704 }
 705 
 706 
 707 size_t PSYoungGen::free_in_bytes() const {
 708   return eden_space()->free_in_bytes()
 709        + from_space()->free_in_bytes();      // to_space() is only used during scavenge
 710 }
 711 
 712 size_t PSYoungGen::capacity_in_words() const {
 713   return eden_space()->capacity_in_words()
 714        + from_space()->capacity_in_words();  // to_space() is only used during scavenge
 715 }
 716 
 717 
 718 size_t PSYoungGen::used_in_words() const {
 719   return eden_space()->used_in_words()
 720        + from_space()->used_in_words();      // to_space() is only used during scavenge
 721 }
 722 
 723 
 724 size_t PSYoungGen::free_in_words() const {
 725   return eden_space()->free_in_words()
 726        + from_space()->free_in_words();      // to_space() is only used during scavenge
 727 }
 728 
 729 void PSYoungGen::object_iterate(ObjectClosure* blk) {
 730   eden_space()->object_iterate(blk);
 731   from_space()->object_iterate(blk);
 732   to_space()->object_iterate(blk);
 733 }
 734 
 735 #if INCLUDE_SERIALGC
 736 
 737 void PSYoungGen::precompact() {
 738   eden_mark_sweep()->precompact();
 739   from_mark_sweep()->precompact();
 740   to_mark_sweep()->precompact();
 741 }
 742 
 743 void PSYoungGen::adjust_pointers() {
 744   eden_mark_sweep()->adjust_pointers();
 745   from_mark_sweep()->adjust_pointers();
 746   to_mark_sweep()->adjust_pointers();
 747 }
 748 
 749 void PSYoungGen::compact() {
 750   eden_mark_sweep()->compact(ZapUnusedHeapArea);
 751   from_mark_sweep()->compact(ZapUnusedHeapArea);
 752   // Mark sweep stores preserved markWords in to space, don't disturb!
 753   to_mark_sweep()->compact(false);
 754 }
 755 
 756 #endif // INCLUDE_SERIALGC
 757 
 758 void PSYoungGen::print() const { print_on(tty); }
 759 void PSYoungGen::print_on(outputStream* st) const {
 760   st->print(" %-15s", "PSYoungGen");
 761   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 762              capacity_in_bytes()/K, used_in_bytes()/K);
 763   virtual_space()->print_space_boundaries_on(st);
 764   st->print("  eden"); eden_space()->print_on(st);
 765   st->print("  from"); from_space()->print_on(st);
 766   st->print("  to  "); to_space()->print_on(st);
 767 }
 768 
 769 size_t PSYoungGen::available_for_expansion() {
 770   ShouldNotReachHere();
 771   return 0;
 772 }
 773 
 774 size_t PSYoungGen::available_for_contraction() {
 775   ShouldNotReachHere();
 776   return 0;
 777 }
 778 
 779 size_t PSYoungGen::available_to_min_gen() {
 780   assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
 781   return virtual_space()->committed_size() - min_gen_size();
 782 }
 783 
 784 // This method assumes that from-space has live data and that
 785 // any shrinkage of the young gen is limited by location of
 786 // from-space.
 787 size_t PSYoungGen::available_to_live() {
 788   size_t delta_in_survivor = 0;
 789   MutableSpace* space_shrinking = NULL;
 790   if (from_space()->end() > to_space()->end()) {
 791     space_shrinking = from_space();
 792   } else {
 793     space_shrinking = to_space();
 794   }
 795 
 796   // Include any space that is committed but not included in
 797   // the survivor spaces.
 798   assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
 799     "Survivor space beyond high end");
 800   size_t unused_committed = pointer_delta(virtual_space()->high(),
 801     space_shrinking->end(), sizeof(char));
 802 
 803   if (space_shrinking->is_empty()) {
 804     // Don't let the space shrink to 0
 805     assert(space_shrinking->capacity_in_bytes() >= SpaceAlignment,
 806       "Space is too small");
 807     delta_in_survivor = space_shrinking->capacity_in_bytes() - SpaceAlignment;
 808   } else {
 809     delta_in_survivor = pointer_delta(space_shrinking->end(),
 810                                       space_shrinking->top(),
 811                                       sizeof(char));
 812   }
 813 
 814   size_t delta_in_bytes = unused_committed + delta_in_survivor;
 815   delta_in_bytes = align_down(delta_in_bytes, GenAlignment);
 816   return delta_in_bytes;
 817 }
 818 
 819 // Return the number of bytes available for resizing down the young
 820 // generation.  This is the minimum of
 821 //      input "bytes"
 822 //      bytes to the minimum young gen size
 823 //      bytes to the size currently being used + some small extra
 824 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
 825   // Allow shrinkage into the current eden but keep eden large enough
 826   // to maintain the minimum young gen size
 827   bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
 828   return align_down(bytes, virtual_space()->alignment());
 829 }
 830 
 831 void PSYoungGen::reset_after_change() {
 832   ShouldNotReachHere();
 833 }
 834 
 835 void PSYoungGen::reset_survivors_after_shrink() {
 836   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
 837                         (HeapWord*)virtual_space()->high_boundary());
 838   PSScavenge::set_subject_to_discovery_span(_reserved);
 839 
 840   MutableSpace* space_shrinking = NULL;
 841   if (from_space()->end() > to_space()->end()) {
 842     space_shrinking = from_space();
 843   } else {
 844     space_shrinking = to_space();
 845   }
 846 
 847   HeapWord* new_end = (HeapWord*)virtual_space()->high();
 848   assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
 849   // Was there a shrink of the survivor space?
 850   if (new_end < space_shrinking->end()) {
 851     MemRegion mr(space_shrinking->bottom(), new_end);
 852     space_shrinking->initialize(mr,
 853                                 SpaceDecorator::DontClear,
 854                                 SpaceDecorator::Mangle);
 855   }
 856 }
 857 
 858 // This method currently does not expect to expand into eden (i.e.,
 859 // the virtual space boundaries is expected to be consistent
 860 // with the eden boundaries..
 861 void PSYoungGen::post_resize() {
 862   assert_locked_or_safepoint(Heap_lock);
 863   assert((eden_space()->bottom() < to_space()->bottom()) &&
 864          (eden_space()->bottom() < from_space()->bottom()),
 865          "Eden is assumed to be below the survivor spaces");
 866 
 867   MemRegion cmr((HeapWord*)virtual_space()->low(),
 868                 (HeapWord*)virtual_space()->high());
 869   ParallelScavengeHeap::heap()->card_table()->resize_covered_region(cmr);
 870   space_invariants();
 871 }
 872 
 873 
 874 
 875 void PSYoungGen::update_counters() {
 876   if (UsePerfData) {
 877     _eden_counters->update_all();
 878     _from_counters->update_all();
 879     _to_counters->update_all();
 880     _gen_counters->update_all();
 881   }
 882 }
 883 
 884 void PSYoungGen::verify() {
 885   eden_space()->verify();
 886   from_space()->verify();
 887   to_space()->verify();
 888 }
 889 
 890 #ifndef PRODUCT
 891 void PSYoungGen::record_spaces_top() {
 892   assert(ZapUnusedHeapArea, "Not mangling unused space");
 893   eden_space()->set_top_for_allocations();
 894   from_space()->set_top_for_allocations();
 895   to_space()->set_top_for_allocations();
 896 }
 897 #endif