1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "gc/g1/g1ConcurrentMarkBitMap.hpp"
  29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
  30 #include "gc/g1/g1RegionMarkStatsCache.hpp"
  31 #include "gc/g1/heapRegionSet.hpp"
  32 #include "gc/shared/taskqueue.hpp"
  33 #include "memory/allocation.hpp"
  34 
  35 class ConcurrentGCTimer;
  36 class ConcurrentMarkThread;
  37 class G1CollectedHeap;
  38 class G1CMTask;
  39 class G1ConcurrentMark;
  40 class G1OldTracer;
  41 class G1RegionToSpaceMapper;
  42 class G1SurvivorRegions;
  43 
  44 #ifdef _MSC_VER
  45 #pragma warning(push)
  46 // warning C4522: multiple assignment operators specified
  47 #pragma warning(disable:4522)
  48 #endif
  49 
  50 // This is a container class for either an oop or a continuation address for
  51 // mark stack entries. Both are pushed onto the mark stack.
  52 class G1TaskQueueEntry {
  53 private:
  54   void* _holder;
  55 
  56   static const uintptr_t ArraySliceBit = 1;
  57 
  58   G1TaskQueueEntry(oop obj) : _holder(obj) {
  59     assert(_holder != NULL, "Not allowed to set NULL task queue element");
  60   }
  61   G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
  62 public:
  63   G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; }
  64   G1TaskQueueEntry() : _holder(NULL) { }
  65 
  66   static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
  67   static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
  68 
  69   G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) {
  70     _holder = t._holder;
  71     return *this;
  72   }
  73 
  74   volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile {
  75     _holder = t._holder;
  76     return *this;
  77   }
  78 
  79   oop obj() const {
  80     assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
  81     return (oop)_holder;
  82   }
  83 
  84   HeapWord* slice() const {
  85     assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
  86     return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
  87   }
  88 
  89   bool is_oop() const { return !is_array_slice(); }
  90   bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
  91   bool is_null() const { return _holder == NULL; }
  92 };
  93 
  94 #ifdef _MSC_VER
  95 #pragma warning(pop)
  96 #endif
  97 
  98 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
  99 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
 100 
 101 // Closure used by CM during concurrent reference discovery
 102 // and reference processing (during remarking) to determine
 103 // if a particular object is alive. It is primarily used
 104 // to determine if referents of discovered reference objects
 105 // are alive. An instance is also embedded into the
 106 // reference processor as the _is_alive_non_header field
 107 class G1CMIsAliveClosure : public BoolObjectClosure {
 108   G1CollectedHeap* _g1h;
 109  public:
 110   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1h(g1) { }
 111 
 112   bool do_object_b(oop obj);
 113 };
 114 
 115 // Represents the overflow mark stack used by concurrent marking.
 116 //
 117 // Stores oops in a huge buffer in virtual memory that is always fully committed.
 118 // Resizing may only happen during a STW pause when the stack is empty.
 119 //
 120 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
 121 // stack memory is split into evenly sized chunks of oops. Users can only
 122 // add or remove entries on that basis.
 123 // Chunks are filled in increasing address order. Not completely filled chunks
 124 // have a NULL element as a terminating element.
 125 //
 126 // Every chunk has a header containing a single pointer element used for memory
 127 // management. This wastes some space, but is negligible (< .1% with current sizing).
 128 //
 129 // Memory management is done using a mix of tracking a high water-mark indicating
 130 // that all chunks at a lower address are valid chunks, and a singly linked free
 131 // list connecting all empty chunks.
 132 class G1CMMarkStack {
 133 public:
 134   // Number of TaskQueueEntries that can fit in a single chunk.
 135   static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
 136 private:
 137   struct TaskQueueEntryChunk {
 138     TaskQueueEntryChunk* next;
 139     G1TaskQueueEntry data[EntriesPerChunk];
 140   };
 141 
 142   size_t _max_chunk_capacity;    // Maximum number of TaskQueueEntryChunk elements on the stack.
 143 
 144   TaskQueueEntryChunk* _base;    // Bottom address of allocated memory area.
 145   size_t _chunk_capacity;        // Current maximum number of TaskQueueEntryChunk elements.
 146 
 147   char _pad0[DEFAULT_CACHE_LINE_SIZE];
 148   TaskQueueEntryChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
 149   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)];
 150   TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data.
 151   volatile size_t _chunks_in_chunk_list;
 152   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)];
 153 
 154   volatile size_t _hwm;          // High water mark within the reserved space.
 155   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
 156 
 157   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
 158   // NULL if out of memory.
 159   TaskQueueEntryChunk* allocate_new_chunk();
 160 
 161   // Atomically add the given chunk to the list.
 162   void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem);
 163   // Atomically remove and return a chunk from the given list. Returns NULL if the
 164   // list is empty.
 165   TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list);
 166 
 167   void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem);
 168   void add_chunk_to_free_list(TaskQueueEntryChunk* elem);
 169 
 170   TaskQueueEntryChunk* remove_chunk_from_chunk_list();
 171   TaskQueueEntryChunk* remove_chunk_from_free_list();
 172 
 173   // Resizes the mark stack to the given new capacity. Releases any previous
 174   // memory if successful.
 175   bool resize(size_t new_capacity);
 176 
 177  public:
 178   G1CMMarkStack();
 179   ~G1CMMarkStack();
 180 
 181   // Alignment and minimum capacity of this mark stack in number of oops.
 182   static size_t capacity_alignment();
 183 
 184   // Allocate and initialize the mark stack with the given number of oops.
 185   bool initialize(size_t initial_capacity, size_t max_capacity);
 186 
 187   // Pushes the given buffer containing at most EntriesPerChunk elements on the mark
 188   // stack. If less than EntriesPerChunk elements are to be pushed, the array must
 189   // be terminated with a NULL.
 190   // Returns whether the buffer contents were successfully pushed to the global mark
 191   // stack.
 192   bool par_push_chunk(G1TaskQueueEntry* buffer);
 193 
 194   // Pops a chunk from this mark stack, copying them into the given buffer. This
 195   // chunk may contain up to EntriesPerChunk elements. If there are less, the last
 196   // element in the array is a NULL pointer.
 197   bool par_pop_chunk(G1TaskQueueEntry* buffer);
 198 
 199   // Return whether the chunk list is empty. Racy due to unsynchronized access to
 200   // _chunk_list.
 201   bool is_empty() const { return _chunk_list == NULL; }
 202 
 203   size_t capacity() const  { return _chunk_capacity; }
 204 
 205   // Expand the stack, typically in response to an overflow condition
 206   void expand();
 207 
 208   // Return the approximate number of oops on this mark stack. Racy due to
 209   // unsynchronized access to _chunks_in_chunk_list.
 210   size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
 211 
 212   void set_empty();
 213 
 214   // Apply Fn to every oop on the mark stack. The mark stack must not
 215   // be modified while iterating.
 216   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
 217 };
 218 
 219 // Root Regions are regions that are not empty at the beginning of a
 220 // marking cycle and which we might collect during an evacuation pause
 221 // while the cycle is active. Given that, during evacuation pauses, we
 222 // do not copy objects that are explicitly marked, what we have to do
 223 // for the root regions is to scan them and mark all objects reachable
 224 // from them. According to the SATB assumptions, we only need to visit
 225 // each object once during marking. So, as long as we finish this scan
 226 // before the next evacuation pause, we can copy the objects from the
 227 // root regions without having to mark them or do anything else to them.
 228 //
 229 // Currently, we only support root region scanning once (at the start
 230 // of the marking cycle) and the root regions are all the survivor
 231 // regions populated during the initial-mark pause.
 232 class G1CMRootRegions {
 233 private:
 234   const G1SurvivorRegions* _survivors;
 235   G1ConcurrentMark*        _cm;
 236 
 237   volatile bool            _scan_in_progress;
 238   volatile bool            _should_abort;
 239   volatile int             _claimed_survivor_index;
 240 
 241   void notify_scan_done();
 242 
 243 public:
 244   G1CMRootRegions();
 245   // We actually do most of the initialization in this method.
 246   void init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm);
 247 
 248   // Reset the claiming / scanning of the root regions.
 249   void prepare_for_scan();
 250 
 251   // Forces get_next() to return NULL so that the iteration aborts early.
 252   void abort() { _should_abort = true; }
 253 
 254   // Return true if the CM thread are actively scanning root regions,
 255   // false otherwise.
 256   bool scan_in_progress() { return _scan_in_progress; }
 257 
 258   // Claim the next root region to scan atomically, or return NULL if
 259   // all have been claimed.
 260   HeapRegion* claim_next();
 261 
 262   // The number of root regions to scan.
 263   uint num_root_regions() const;
 264 
 265   void cancel_scan();
 266 
 267   // Flag that we're done with root region scanning and notify anyone
 268   // who's waiting on it. If aborted is false, assume that all regions
 269   // have been claimed.
 270   void scan_finished();
 271 
 272   // If CM threads are still scanning root regions, wait until they
 273   // are done. Return true if we had to wait, false otherwise.
 274   bool wait_until_scan_finished();
 275 };
 276 
 277 // This class manages data structures and methods for doing liveness analysis in
 278 // G1's concurrent cycle.
 279 class G1ConcurrentMark : public CHeapObj<mtGC> {
 280   friend class ConcurrentMarkThread;
 281   friend class G1CMRefProcTaskProxy;
 282   friend class G1CMRefProcTaskExecutor;
 283   friend class G1CMKeepAliveAndDrainClosure;
 284   friend class G1CMDrainMarkingStackClosure;
 285   friend class G1CMBitMapClosure;
 286   friend class G1CMConcurrentMarkingTask;
 287   friend class G1CMRemarkTask;
 288   friend class G1CMTask;
 289 
 290   ConcurrentMarkThread*  _cm_thread;     // The thread doing the work
 291   G1CollectedHeap*       _g1h;           // The heap
 292   bool                   _completed_initialization; // Set to true when initialization is complete
 293 
 294   // Concurrent marking support structures
 295   G1CMBitMap             _mark_bitmap_1;
 296   G1CMBitMap             _mark_bitmap_2;
 297   G1CMBitMap*            _prev_mark_bitmap; // Completed mark bitmap
 298   G1CMBitMap*            _next_mark_bitmap; // Under-construction mark bitmap
 299 
 300   // Heap bounds
 301   MemRegion const        _heap;
 302 
 303   // Root region tracking and claiming
 304   G1CMRootRegions        _root_regions;
 305 
 306   // For grey objects
 307   G1CMMarkStack          _global_mark_stack; // Grey objects behind global finger
 308   HeapWord* volatile     _finger;            // The global finger, region aligned,
 309                                              // always pointing to the end of the
 310                                              // last claimed region
 311 
 312   uint                   _worker_id_offset;
 313   uint                   _max_num_tasks;    // Maximum number of marking tasks
 314   uint                   _num_active_tasks; // Number of tasks currently active
 315   G1CMTask**             _tasks;            // Task queue array (max_worker_id length)
 316 
 317   G1CMTaskQueueSet*      _task_queues;      // Task queue set
 318   ParallelTaskTerminator _terminator;       // For termination
 319 
 320   // Two sync barriers that are used to synchronize tasks when an
 321   // overflow occurs. The algorithm is the following. All tasks enter
 322   // the first one to ensure that they have all stopped manipulating
 323   // the global data structures. After they exit it, they re-initialize
 324   // their data structures and task 0 re-initializes the global data
 325   // structures. Then, they enter the second sync barrier. This
 326   // ensure, that no task starts doing work before all data
 327   // structures (local and global) have been re-initialized. When they
 328   // exit it, they are free to start working again.
 329   WorkGangBarrierSync    _first_overflow_barrier_sync;
 330   WorkGangBarrierSync    _second_overflow_barrier_sync;
 331 
 332   // This is set by any task, when an overflow on the global data
 333   // structures is detected
 334   volatile bool          _has_overflown;
 335   // True: marking is concurrent, false: we're in remark
 336   volatile bool          _concurrent;
 337   // Set at the end of a Full GC so that marking aborts
 338   volatile bool          _has_aborted;
 339 
 340   // Used when remark aborts due to an overflow to indicate that
 341   // another concurrent marking phase should start
 342   volatile bool          _restart_for_overflow;
 343 
 344   // This is true from the very start of concurrent marking until the
 345   // point when all the tasks complete their work. It is really used
 346   // to determine the points between the end of concurrent marking and
 347   // time of remark.
 348   volatile bool          _concurrent_marking_in_progress;
 349 
 350   ConcurrentGCTimer*     _gc_timer_cm;
 351 
 352   G1OldTracer*           _gc_tracer_cm;
 353 
 354   // Timing statistics. All of them are in ms
 355   NumberSeq _init_times;
 356   NumberSeq _remark_times;
 357   NumberSeq _remark_mark_times;
 358   NumberSeq _remark_weak_ref_times;
 359   NumberSeq _cleanup_times;
 360   double    _total_cleanup_time;
 361 
 362   double*   _accum_task_vtime;   // Accumulated task vtime
 363 
 364   WorkGang* _concurrent_workers;
 365   uint      _num_concurrent_workers; // The number of marking worker threads we're using
 366   uint      _max_concurrent_workers; // Maximum number of marking worker threads
 367 
 368   void finalize_marking();
 369 
 370   void weak_refs_work_parallel_part(BoolObjectClosure* is_alive, bool purged_classes);
 371   void weak_refs_work(bool clear_all_soft_refs);
 372 
 373   void swap_mark_bitmaps();
 374 
 375   void reclaim_empty_regions();
 376 
 377   // Resets the global marking data structures, as well as the
 378   // task local ones; should be called during initial mark.
 379   void reset();
 380 
 381   // Resets all the marking data structures. Called when we have to restart
 382   // marking or when marking completes (via set_non_marking_state below).
 383   void reset_marking_for_restart();
 384 
 385   // We do this after we're done with marking so that the marking data
 386   // structures are initialized to a sensible and predictable state.
 387   void reset_at_marking_complete();
 388 
 389   // Called to indicate how many threads are currently active.
 390   void set_concurrency(uint active_tasks);
 391 
 392   // Should be called to indicate which phase we're in (concurrent
 393   // mark or remark) and how many threads are currently active.
 394   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 395 
 396   // Prints all gathered CM-related statistics
 397   void print_stats();
 398 
 399   HeapWord*               finger()          { return _finger;   }
 400   bool                    concurrent()      { return _concurrent; }
 401   uint                    active_tasks()    { return _num_active_tasks; }
 402   ParallelTaskTerminator* terminator()      { return &_terminator; }
 403 
 404   // Claims the next available region to be scanned by a marking
 405   // task/thread. It might return NULL if the next region is empty or
 406   // we have run out of regions. In the latter case, out_of_regions()
 407   // determines whether we've really run out of regions or the task
 408   // should call claim_region() again. This might seem a bit
 409   // awkward. Originally, the code was written so that claim_region()
 410   // either successfully returned with a non-empty region or there
 411   // were no more regions to be claimed. The problem with this was
 412   // that, in certain circumstances, it iterated over large chunks of
 413   // the heap finding only empty regions and, while it was working, it
 414   // was preventing the calling task to call its regular clock
 415   // method. So, this way, each task will spend very little time in
 416   // claim_region() and is allowed to call the regular clock method
 417   // frequently.
 418   HeapRegion* claim_region(uint worker_id);
 419 
 420   // Determines whether we've run out of regions to scan. Note that
 421   // the finger can point past the heap end in case the heap was expanded
 422   // to satisfy an allocation without doing a GC. This is fine, because all
 423   // objects in those regions will be considered live anyway because of
 424   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 425   bool out_of_regions() { return _finger >= _heap.end(); }
 426 
 427   // Returns the task with the given id
 428   G1CMTask* task(uint id) {
 429     // During initial mark we use the parallel gc threads to do some work, so
 430     // we can only compare against _max_num_tasks.
 431     assert(id < _max_num_tasks, "Task id %u not within bounds up to %u", id, _max_num_tasks);
 432     return _tasks[id];
 433   }
 434 
 435   // Access / manipulation of the overflow flag which is set to
 436   // indicate that the global stack has overflown
 437   bool has_overflown()           { return _has_overflown; }
 438   void set_has_overflown()       { _has_overflown = true; }
 439   void clear_has_overflown()     { _has_overflown = false; }
 440   bool restart_for_overflow()    { return _restart_for_overflow; }
 441 
 442   // Methods to enter the two overflow sync barriers
 443   void enter_first_sync_barrier(uint worker_id);
 444   void enter_second_sync_barrier(uint worker_id);
 445 
 446   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 447   // true, periodically insert checks to see if this method should exit prematurely.
 448   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 449 
 450   // Clear statistics gathered during the concurrent cycle for the given region after
 451   // it has been reclaimed.
 452   void clear_statistics_in_region(uint region_idx);
 453   // Region statistics gathered during marking.
 454   G1RegionMarkStats* _region_mark_stats;
 455   // Top pointer for each region at the start of the rebuild remembered set process
 456   // for regions which remembered sets need to be rebuilt. A NULL for a given region
 457   // means that this region does not be scanned during the rebuilding remembered
 458   // set phase at all.
 459   HeapWord* volatile* _top_at_rebuild_starts;
 460 public:
 461   void add_to_liveness(uint worker_id, oop const obj, size_t size);
 462   // Liveness of the given region as determined by concurrent marking, i.e. the amount of
 463   // live words between bottom and nTAMS.
 464   size_t liveness(uint region)  { return _region_mark_stats[region]._live_words; }
 465 
 466   // Sets the internal top_at_region_start for the given region to current top of the region.
 467   inline void update_top_at_rebuild_start(HeapRegion* r);
 468   // TARS for the given region during remembered set rebuilding.
 469   inline HeapWord* top_at_rebuild_start(uint region) const;
 470 
 471   // Notification for eagerly reclaimed regions to clean up.
 472   void humongous_object_eagerly_reclaimed(HeapRegion* r);
 473   // Manipulation of the global mark stack.
 474   // The push and pop operations are used by tasks for transfers
 475   // between task-local queues and the global mark stack.
 476   bool mark_stack_push(G1TaskQueueEntry* arr) {
 477     if (!_global_mark_stack.par_push_chunk(arr)) {
 478       set_has_overflown();
 479       return false;
 480     }
 481     return true;
 482   }
 483   bool mark_stack_pop(G1TaskQueueEntry* arr) {
 484     return _global_mark_stack.par_pop_chunk(arr);
 485   }
 486   size_t mark_stack_size() const                { return _global_mark_stack.size(); }
 487   size_t partial_mark_stack_size_target() const { return _global_mark_stack.capacity() / 3; }
 488   bool mark_stack_empty() const                 { return _global_mark_stack.is_empty(); }
 489 
 490   G1CMRootRegions* root_regions() { return &_root_regions; }
 491 
 492   bool concurrent_marking_in_progress() const {
 493     return _concurrent_marking_in_progress;
 494   }
 495   void set_concurrent_marking_in_progress() {
 496     _concurrent_marking_in_progress = true;
 497   }
 498   void clear_concurrent_marking_in_progress() {
 499     _concurrent_marking_in_progress = false;
 500   }
 501 
 502   void concurrent_cycle_start();
 503   // Abandon current marking iteration due to a Full GC.
 504   void concurrent_cycle_abort();
 505   void concurrent_cycle_end();
 506 
 507   void update_accum_task_vtime(int i, double vtime) {
 508     _accum_task_vtime[i] += vtime;
 509   }
 510 
 511   double all_task_accum_vtime() {
 512     double ret = 0.0;
 513     for (uint i = 0; i < _max_num_tasks; ++i)
 514       ret += _accum_task_vtime[i];
 515     return ret;
 516   }
 517 
 518   // Attempts to steal an object from the task queues of other tasks
 519   bool try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry);
 520 
 521   G1ConcurrentMark(G1CollectedHeap* g1h,
 522                    G1RegionToSpaceMapper* prev_bitmap_storage,
 523                    G1RegionToSpaceMapper* next_bitmap_storage);
 524   ~G1ConcurrentMark();
 525 
 526   ConcurrentMarkThread* cm_thread() { return _cm_thread; }
 527 
 528   const G1CMBitMap* const prev_mark_bitmap() const { return _prev_mark_bitmap; }
 529   G1CMBitMap* next_mark_bitmap() const { return _next_mark_bitmap; }
 530 
 531   // Calculates the number of concurrent GC threads to be used in the marking phase.
 532   uint calc_active_marking_workers();
 533 
 534   // Moves all per-task cached data into global state.
 535   void flush_all_task_caches();
 536   // Prepare internal data structures for the next mark cycle. This includes clearing
 537   // the next mark bitmap and some internal data structures. This method is intended
 538   // to be called concurrently to the mutator. It will yield to safepoint requests.
 539   void cleanup_for_next_mark();
 540 
 541   // Clear the previous marking bitmap during safepoint.
 542   void clear_prev_bitmap(WorkGang* workers);
 543 
 544   // Return whether the next mark bitmap has no marks set. To be used for assertions
 545   // only. Will not yield to pause requests.
 546   bool next_mark_bitmap_is_clear();
 547 
 548   // These two methods do the work that needs to be done at the start and end of the
 549   // initial mark pause.
 550   void pre_initial_mark();
 551   void post_initial_mark();
 552 
 553   // Scan all the root regions and mark everything reachable from
 554   // them.
 555   void scan_root_regions();
 556 
 557   // Scan a single root region and mark everything reachable from it.
 558   void scan_root_region(HeapRegion* hr, uint worker_id);
 559 
 560   // Do concurrent phase of marking, to a tentative transitive closure.
 561   void mark_from_roots();
 562 
 563   void remark();
 564 
 565   void cleanup();
 566   // Mark in the previous bitmap. Caution: the prev bitmap is usually read-only, so use
 567   // this carefully.
 568   inline void mark_in_prev_bitmap(oop p);
 569 
 570   // Clears marks for all objects in the given range, for the prev or
 571   // next bitmaps.  Caution: the previous bitmap is usually
 572   // read-only, so use this carefully!
 573   void clear_range_in_prev_bitmap(MemRegion mr);
 574 
 575   inline bool is_marked_in_prev_bitmap(oop p) const;
 576 
 577   // Verify that there are no collection set oops on the stacks (taskqueues /
 578   // global mark stack) and fingers (global / per-task).
 579   // If marking is not in progress, it's a no-op.
 580   void verify_no_cset_oops() PRODUCT_RETURN;
 581 
 582   inline bool do_yield_check();
 583 
 584   bool has_aborted()      { return _has_aborted; }
 585 
 586   void print_summary_info();
 587 
 588   void print_worker_threads_on(outputStream* st) const;
 589   void threads_do(ThreadClosure* tc) const;
 590 
 591   void print_on_error(outputStream* st) const;
 592 
 593   // Mark the given object on the next bitmap if it is below nTAMS.
 594   // If the passed obj_size is zero, it is recalculated from the given object if
 595   // needed. This is to be as lazy as possible with accessing the object's size.
 596   inline bool mark_in_next_bitmap(uint worker_id, HeapRegion* const hr, oop const obj, size_t const obj_size = 0);
 597   inline bool mark_in_next_bitmap(uint worker_id, oop const obj, size_t const obj_size = 0);
 598 
 599   // Returns true if initialization was successfully completed.
 600   bool completed_initialization() const {
 601     return _completed_initialization;
 602   }
 603 
 604   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 605   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 606 
 607 private:
 608   // Rebuilds the remembered sets for chosen regions in parallel and concurrently to the application.
 609   void rebuild_rem_set_concurrently();
 610 };
 611 
 612 // A class representing a marking task.
 613 class G1CMTask : public TerminatorTerminator {
 614 private:
 615   enum PrivateConstants {
 616     // The regular clock call is called once the scanned words reaches
 617     // this limit
 618     words_scanned_period          = 12*1024,
 619     // The regular clock call is called once the number of visited
 620     // references reaches this limit
 621     refs_reached_period           = 1024,
 622     // Initial value for the hash seed, used in the work stealing code
 623     init_hash_seed                = 17
 624   };
 625 
 626   // Number of entries in the per-task stats entry. This seems enough to have a very
 627   // low cache miss rate.
 628   static const uint RegionMarkStatsCacheSize = 1024;
 629 
 630   G1CMObjArrayProcessor       _objArray_processor;
 631 
 632   uint                        _worker_id;
 633   G1CollectedHeap*            _g1h;
 634   G1ConcurrentMark*           _cm;
 635   G1CMBitMap*                 _next_mark_bitmap;
 636   // the task queue of this task
 637   G1CMTaskQueue*              _task_queue;
 638 
 639   G1RegionMarkStatsCache      _mark_stats_cache;
 640   // Number of calls to this task
 641   uint                        _calls;
 642 
 643   // When the virtual timer reaches this time, the marking step should exit
 644   double                      _time_target_ms;
 645   // Start time of the current marking step
 646   double                      _start_time_ms;
 647 
 648   // Oop closure used for iterations over oops
 649   G1CMOopClosure*             _cm_oop_closure;
 650 
 651   // Region this task is scanning, NULL if we're not scanning any
 652   HeapRegion*                 _curr_region;
 653   // Local finger of this task, NULL if we're not scanning a region
 654   HeapWord*                   _finger;
 655   // Limit of the region this task is scanning, NULL if we're not scanning one
 656   HeapWord*                   _region_limit;
 657 
 658   // Number of words this task has scanned
 659   size_t                      _words_scanned;
 660   // When _words_scanned reaches this limit, the regular clock is
 661   // called. Notice that this might be decreased under certain
 662   // circumstances (i.e. when we believe that we did an expensive
 663   // operation).
 664   size_t                      _words_scanned_limit;
 665   // Initial value of _words_scanned_limit (i.e. what it was
 666   // before it was decreased).
 667   size_t                      _real_words_scanned_limit;
 668 
 669   // Number of references this task has visited
 670   size_t                      _refs_reached;
 671   // When _refs_reached reaches this limit, the regular clock is
 672   // called. Notice this this might be decreased under certain
 673   // circumstances (i.e. when we believe that we did an expensive
 674   // operation).
 675   size_t                      _refs_reached_limit;
 676   // Initial value of _refs_reached_limit (i.e. what it was before
 677   // it was decreased).
 678   size_t                      _real_refs_reached_limit;
 679 
 680   // Used by the work stealing
 681   int                         _hash_seed;
 682   // If true, then the task has aborted for some reason
 683   bool                        _has_aborted;
 684   // Set when the task aborts because it has met its time quota
 685   bool                        _has_timed_out;
 686   // True when we're draining SATB buffers; this avoids the task
 687   // aborting due to SATB buffers being available (as we're already
 688   // dealing with them)
 689   bool                        _draining_satb_buffers;
 690 
 691   // Number sequence of past step times
 692   NumberSeq                   _step_times_ms;
 693   // Elapsed time of this task
 694   double                      _elapsed_time_ms;
 695   // Termination time of this task
 696   double                      _termination_time_ms;
 697   // When this task got into the termination protocol
 698   double                      _termination_start_time_ms;
 699 
 700   // True when the task is during a concurrent phase, false when it is
 701   // in the remark phase (so, in the latter case, we do not have to
 702   // check all the things that we have to check during the concurrent
 703   // phase, i.e. SATB buffer availability...)
 704   bool                        _concurrent;
 705 
 706   TruncatedSeq                _marking_step_diffs_ms;
 707 
 708   // Updates the local fields after this task has claimed
 709   // a new region to scan
 710   void setup_for_region(HeapRegion* hr);
 711   // Makes the limit of the region up-to-date
 712   void update_region_limit();
 713 
 714   // Called when either the words scanned or the refs visited limit
 715   // has been reached
 716   void reached_limit();
 717   // Recalculates the words scanned and refs visited limits
 718   void recalculate_limits();
 719   // Decreases the words scanned and refs visited limits when we reach
 720   // an expensive operation
 721   void decrease_limits();
 722   // Checks whether the words scanned or refs visited reached their
 723   // respective limit and calls reached_limit() if they have
 724   void check_limits() {
 725     if (_words_scanned >= _words_scanned_limit ||
 726         _refs_reached >= _refs_reached_limit) {
 727       reached_limit();
 728     }
 729   }
 730   // Supposed to be called regularly during a marking step as
 731   // it checks a bunch of conditions that might cause the marking step
 732   // to abort
 733   void regular_clock_call();
 734 
 735   // Test whether obj might have already been passed over by the
 736   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 737   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 738 
 739   template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
 740 public:
 741   // Apply the closure on the given area of the objArray. Return the number of words
 742   // scanned.
 743   inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
 744   // Resets the task; should be called right at the beginning of a marking phase.
 745   void reset(G1CMBitMap* next_mark_bitmap);
 746   // Clears all the fields that correspond to a claimed region.
 747   void clear_region_fields();
 748 
 749   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 750 
 751   // The main method of this class which performs a marking step
 752   // trying not to exceed the given duration. However, it might exit
 753   // prematurely, according to some conditions (i.e. SATB buffers are
 754   // available for processing).
 755   void do_marking_step(double target_ms,
 756                        bool do_termination,
 757                        bool is_serial);
 758 
 759   // These two calls start and stop the timer
 760   void record_start_time() {
 761     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 762   }
 763   void record_end_time() {
 764     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 765   }
 766 
 767   // Returns the worker ID associated with this task.
 768   uint worker_id() { return _worker_id; }
 769 
 770   // From TerminatorTerminator. It determines whether this task should
 771   // exit the termination protocol after it's entered it.
 772   virtual bool should_exit_termination();
 773 
 774   // Resets the local region fields after a task has finished scanning a
 775   // region; or when they have become stale as a result of the region
 776   // being evacuated.
 777   void giveup_current_region();
 778 
 779   HeapWord* finger()            { return _finger; }
 780 
 781   bool has_aborted()            { return _has_aborted; }
 782   void set_has_aborted()        { _has_aborted = true; }
 783   void clear_has_aborted()      { _has_aborted = false; }
 784 
 785   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 786 
 787   // Increment the number of references this task has visited.
 788   void increment_refs_reached() { ++_refs_reached; }
 789 
 790   // Grey the object by marking it.  If not already marked, push it on
 791   // the local queue if below the finger.
 792   // obj is below its region's NTAMS.
 793   inline void make_reference_grey(oop obj);
 794 
 795   // Grey the object (by calling make_grey_reference) if required,
 796   // e.g. obj is below its containing region's NTAMS.
 797   // Precondition: obj is a valid heap object.
 798   template <class T>
 799   inline void deal_with_reference(T* p);
 800 
 801   // Scans an object and visits its children.
 802   inline void scan_task_entry(G1TaskQueueEntry task_entry);
 803 
 804   // Pushes an object on the local queue.
 805   inline void push(G1TaskQueueEntry task_entry);
 806 
 807   // Move entries to the global stack.
 808   void move_entries_to_global_stack();
 809   // Move entries from the global stack, return true if we were successful to do so.
 810   bool get_entries_from_global_stack();
 811 
 812   // Pops and scans objects from the local queue. If partially is
 813   // true, then it stops when the queue size is of a given limit. If
 814   // partially is false, then it stops when the queue is empty.
 815   void drain_local_queue(bool partially);
 816   // Moves entries from the global stack to the local queue and
 817   // drains the local queue. If partially is true, then it stops when
 818   // both the global stack and the local queue reach a given size. If
 819   // partially if false, it tries to empty them totally.
 820   void drain_global_stack(bool partially);
 821   // Keeps picking SATB buffers and processing them until no SATB
 822   // buffers are available.
 823   void drain_satb_buffers();
 824 
 825   // Moves the local finger to a new location
 826   inline void move_finger_to(HeapWord* new_finger) {
 827     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 828     _finger = new_finger;
 829   }
 830 
 831   G1CMTask(uint worker_id,
 832            G1ConcurrentMark *cm,
 833            G1CMTaskQueue* task_queue,
 834            G1RegionMarkStats* mark_stats,
 835            uint max_regions);
 836 
 837   inline void update_liveness(oop const obj, size_t const obj_size);
 838 
 839   // Clear (without flushing) the mark cache entry for the given region.
 840   void clear_mark_stats_cache(uint region_idx);
 841   // Evict the whole statistics cache into the global statistics. Returns the
 842   // number of cache hits and misses so far.
 843   Pair<size_t, size_t> flush_mark_stats_cache();
 844   // Prints statistics associated with this task
 845   void print_stats();
 846 };
 847 
 848 // Class that's used to to print out per-region liveness
 849 // information. It's currently used at the end of marking and also
 850 // after we sort the old regions at the end of the cleanup operation.
 851 class G1PrintRegionLivenessInfoClosure : public HeapRegionClosure {
 852 private:
 853   // Accumulators for these values.
 854   size_t _total_used_bytes;
 855   size_t _total_capacity_bytes;
 856   size_t _total_prev_live_bytes;
 857   size_t _total_next_live_bytes;
 858 
 859   // Accumulator for the remembered set size
 860   size_t _total_remset_bytes;
 861 
 862   // Accumulator for strong code roots memory size
 863   size_t _total_strong_code_roots_bytes;
 864 
 865   static double bytes_to_mb(size_t val) {
 866     return (double) val / (double) M;
 867   }
 868 
 869 public:
 870   // The header and footer are printed in the constructor and
 871   // destructor respectively.
 872   G1PrintRegionLivenessInfoClosure(const char* phase_name);
 873   virtual bool do_heap_region(HeapRegion* r);
 874   ~G1PrintRegionLivenessInfoClosure();
 875 };
 876 
 877 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP