1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentMarkThread.inline.hpp"
  27 #include "gc/g1/g1Analytics.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1ConcurrentMark.hpp"
  31 #include "gc/g1/g1ConcurrentRefine.hpp"
  32 #include "gc/g1/g1HotCardCache.hpp"
  33 #include "gc/g1/g1IHOPControl.hpp"
  34 #include "gc/g1/g1GCPhaseTimes.hpp"
  35 #include "gc/g1/g1Policy.hpp"
  36 #include "gc/g1/g1SurvivorRegions.hpp"
  37 #include "gc/g1/g1YoungGenSizer.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/shared/gcPolicyCounters.hpp"
  41 #include "logging/logStream.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/mutexLocker.hpp"
  45 #include "utilities/debug.hpp"
  46 #include "utilities/growableArray.hpp"
  47 #include "utilities/pair.hpp"
  48 
  49 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  50   _predictor(G1ConfidencePercent / 100.0),
  51   _analytics(new G1Analytics(&_predictor)),
  52   _remset_tracker(),
  53   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  54   _ihop_control(create_ihop_control(&_predictor)),
  55   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  56   _young_list_fixed_length(0),
  57   _short_lived_surv_rate_group(new SurvRateGroup()),
  58   _survivor_surv_rate_group(new SurvRateGroup()),
  59   _reserve_factor((double) G1ReservePercent / 100.0),
  60   _reserve_regions(0),
  61   _rs_lengths_prediction(0),
  62   _bytes_allocated_in_old_since_last_gc(0),
  63   _initial_mark_to_mixed(),
  64   _collection_set(NULL),
  65   _g1(NULL),
  66   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
  67   _tenuring_threshold(MaxTenuringThreshold),
  68   _max_survivor_regions(0),
  69   _survivors_age_table(true),
  70   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC) {
  71 }
  72 
  73 G1Policy::~G1Policy() {
  74   delete _ihop_control;
  75 }
  76 
  77 G1CollectorState* G1Policy::collector_state() const { return _g1->collector_state(); }
  78 
  79 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
  80   _g1 = g1h;
  81   _collection_set = collection_set;
  82 
  83   assert(Heap_lock->owned_by_self(), "Locking discipline.");
  84 
  85   if (!adaptive_young_list_length()) {
  86     _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
  87   }
  88   _young_gen_sizer.adjust_max_new_size(_g1->max_regions());
  89 
  90   _free_regions_at_end_of_collection = _g1->num_free_regions();
  91 
  92   update_young_list_max_and_target_length();
  93   // We may immediately start allocating regions and placing them on the
  94   // collection set list. Initialize the per-collection set info
  95   _collection_set->start_incremental_building();
  96 }
  97 
  98 void G1Policy::note_gc_start() {
  99   phase_times()->note_gc_start();
 100 }
 101 
 102 class G1YoungLengthPredictor {
 103   const bool _during_cm;
 104   const double _base_time_ms;
 105   const double _base_free_regions;
 106   const double _target_pause_time_ms;
 107   const G1Policy* const _policy;
 108 
 109  public:
 110   G1YoungLengthPredictor(bool during_cm,
 111                          double base_time_ms,
 112                          double base_free_regions,
 113                          double target_pause_time_ms,
 114                          const G1Policy* policy) :
 115     _during_cm(during_cm),
 116     _base_time_ms(base_time_ms),
 117     _base_free_regions(base_free_regions),
 118     _target_pause_time_ms(target_pause_time_ms),
 119     _policy(policy) {}
 120 
 121   bool will_fit(uint young_length) const {
 122     if (young_length >= _base_free_regions) {
 123       // end condition 1: not enough space for the young regions
 124       return false;
 125     }
 126 
 127     const double accum_surv_rate = _policy->accum_yg_surv_rate_pred((int) young_length - 1);
 128     const size_t bytes_to_copy =
 129                  (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 130     const double copy_time_ms =
 131       _policy->analytics()->predict_object_copy_time_ms(bytes_to_copy, _during_cm);
 132     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 133     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 134     log_debug(gc)("younglengthpred: length %u base_time_ms %.3f accum_surv_rate %.3f bytes_to_copy " SIZE_FORMAT " copy_time_ms %.3f young_other_time_ms %.3f pause_time_ms %.3f",
 135                   young_length, _base_time_ms, accum_surv_rate, bytes_to_copy, copy_time_ms, young_other_time_ms, pause_time_ms);
 136     if (pause_time_ms > _target_pause_time_ms) {
 137       // end condition 2: prediction is over the target pause time
 138       return false;
 139     }
 140 
 141     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 142 
 143     // When copying, we will likely need more bytes free than is live in the region.
 144     // Add some safety margin to factor in the confidence of our guess, and the
 145     // natural expected waste.
 146     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 147     // of the calculation: the lower the confidence, the more headroom.
 148     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 149     // copying due to anticipated waste in the PLABs.
 150     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 151     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 152 
 153     if (expected_bytes_to_copy > free_bytes) {
 154       // end condition 3: out-of-space
 155       return false;
 156     }
 157 
 158     // success!
 159     return true;
 160   }
 161 };
 162 
 163 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 164   // re-calculate the necessary reserve
 165   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 166   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 167   // smaller than 1.0) we'll get 1.
 168   _reserve_regions = (uint) ceil(reserve_regions_d);
 169 
 170   _young_gen_sizer.heap_size_changed(new_number_of_regions);
 171 
 172   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 173 }
 174 
 175 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
 176   uint desired_min_length = 0;
 177   if (adaptive_young_list_length()) {
 178     if (_analytics->num_alloc_rate_ms() > 3) {
 179       double now_sec = os::elapsedTime();
 180       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 181       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 182       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 183     } else {
 184       // otherwise we don't have enough info to make the prediction
 185     }
 186   }
 187   desired_min_length += base_min_length;
 188   // make sure we don't go below any user-defined minimum bound
 189   return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
 190 }
 191 
 192 uint G1Policy::calculate_young_list_desired_max_length() const {
 193   // Here, we might want to also take into account any additional
 194   // constraints (i.e., user-defined minimum bound). Currently, we
 195   // effectively don't set this bound.
 196   return _young_gen_sizer.max_desired_young_length();
 197 }
 198 
 199 uint G1Policy::update_young_list_max_and_target_length() {
 200   return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
 201 }
 202 
 203 uint G1Policy::update_young_list_max_and_target_length(size_t rs_lengths) {
 204   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 205   update_max_gc_locker_expansion();
 206   return unbounded_target_length;
 207 }
 208 
 209 uint G1Policy::update_young_list_target_length(size_t rs_lengths) {
 210   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 211   _young_list_target_length = young_lengths.first;
 212   return young_lengths.second;
 213 }
 214 
 215 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_lengths) const {
 216   YoungTargetLengths result;
 217 
 218   // Calculate the absolute and desired min bounds first.
 219 
 220   // This is how many young regions we already have (currently: the survivors).
 221   const uint base_min_length = _g1->survivor_regions_count();
 222   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 223   // This is the absolute minimum young length. Ensure that we
 224   // will at least have one eden region available for allocation.
 225   uint absolute_min_length = base_min_length + MAX2(_g1->eden_regions_count(), (uint)1);
 226   // If we shrank the young list target it should not shrink below the current size.
 227   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 228   // Calculate the absolute and desired max bounds.
 229 
 230   uint desired_max_length = calculate_young_list_desired_max_length();
 231 
 232   uint young_list_target_length = 0;
 233   if (adaptive_young_list_length()) {
 234     if (collector_state()->in_young_only_phase()) {
 235       young_list_target_length =
 236                         calculate_young_list_target_length(rs_lengths,
 237                                                            base_min_length,
 238                                                            desired_min_length,
 239                                                            desired_max_length);
 240     } else {
 241       // Don't calculate anything and let the code below bound it to
 242       // the desired_min_length, i.e., do the next GC as soon as
 243       // possible to maximize how many old regions we can add to it.
 244     }
 245   } else {
 246     // The user asked for a fixed young gen so we'll fix the young gen
 247     // whether the next GC is young or mixed.
 248     young_list_target_length = _young_list_fixed_length;
 249   }
 250 
 251   result.second = young_list_target_length;
 252 
 253   // We will try our best not to "eat" into the reserve.
 254   uint absolute_max_length = 0;
 255   if (_free_regions_at_end_of_collection > _reserve_regions) {
 256     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 257   }
 258   if (desired_max_length > absolute_max_length) {
 259     desired_max_length = absolute_max_length;
 260   }
 261 
 262   // Make sure we don't go over the desired max length, nor under the
 263   // desired min length. In case they clash, desired_min_length wins
 264   // which is why that test is second.
 265   if (young_list_target_length > desired_max_length) {
 266     young_list_target_length = desired_max_length;
 267   }
 268   if (young_list_target_length < desired_min_length) {
 269     young_list_target_length = desired_min_length;
 270   }
 271 
 272   assert(young_list_target_length > base_min_length,
 273          "we should be able to allocate at least one eden region");
 274   assert(young_list_target_length >= absolute_min_length, "post-condition");
 275 
 276   result.first = young_list_target_length;
 277   return result;
 278 }
 279 
 280 uint
 281 G1Policy::calculate_young_list_target_length(size_t rs_lengths,
 282                                                     uint base_min_length,
 283                                                     uint desired_min_length,
 284                                                     uint desired_max_length) const {
 285   assert(adaptive_young_list_length(), "pre-condition");
 286   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
 287 
 288   // In case some edge-condition makes the desired max length too small...
 289   if (desired_max_length <= desired_min_length) {
 290     return desired_min_length;
 291   }
 292 
 293   // We'll adjust min_young_length and max_young_length not to include
 294   // the already allocated young regions (i.e., so they reflect the
 295   // min and max eden regions we'll allocate). The base_min_length
 296   // will be reflected in the predictions by the
 297   // survivor_regions_evac_time prediction.
 298   assert(desired_min_length > base_min_length, "invariant");
 299   uint min_young_length = desired_min_length - base_min_length;
 300   assert(desired_max_length > base_min_length, "invariant");
 301   uint max_young_length = desired_max_length - base_min_length;
 302 
 303   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 304   const double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 305   const size_t pending_cards = _analytics->predict_pending_cards();
 306   const size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
 307   const size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, true /* for_young_gc */);
 308   const double base_time_ms =
 309     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 310     survivor_regions_evac_time;
 311   const uint available_free_regions = _free_regions_at_end_of_collection;
 312   const uint base_free_regions =
 313     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 314 
 315   // Here, we will make sure that the shortest young length that
 316   // makes sense fits within the target pause time.
 317 
 318   G1YoungLengthPredictor p(collector_state()->mark_or_rebuild_in_progress(),
 319                            base_time_ms,
 320                            base_free_regions,
 321                            target_pause_time_ms,
 322                            this);
 323   if (p.will_fit(min_young_length)) {
 324     // The shortest young length will fit into the target pause time;
 325     // we'll now check whether the absolute maximum number of young
 326     // regions will fit in the target pause time. If not, we'll do
 327     // a binary search between min_young_length and max_young_length.
 328     if (p.will_fit(max_young_length)) {
 329       // The maximum young length will fit into the target pause time.
 330       // We are done so set min young length to the maximum length (as
 331       // the result is assumed to be returned in min_young_length).
 332       min_young_length = max_young_length;
 333     } else {
 334       // The maximum possible number of young regions will not fit within
 335       // the target pause time so we'll search for the optimal
 336       // length. The loop invariants are:
 337       //
 338       // min_young_length < max_young_length
 339       // min_young_length is known to fit into the target pause time
 340       // max_young_length is known not to fit into the target pause time
 341       //
 342       // Going into the loop we know the above hold as we've just
 343       // checked them. Every time around the loop we check whether
 344       // the middle value between min_young_length and
 345       // max_young_length fits into the target pause time. If it
 346       // does, it becomes the new min. If it doesn't, it becomes
 347       // the new max. This way we maintain the loop invariants.
 348 
 349       assert(min_young_length < max_young_length, "invariant");
 350       uint diff = (max_young_length - min_young_length) / 2;
 351       while (diff > 0) {
 352         uint young_length = min_young_length + diff;
 353         if (p.will_fit(young_length)) {
 354           min_young_length = young_length;
 355         } else {
 356           max_young_length = young_length;
 357         }
 358         assert(min_young_length <  max_young_length, "invariant");
 359         diff = (max_young_length - min_young_length) / 2;
 360       }
 361       // The results is min_young_length which, according to the
 362       // loop invariants, should fit within the target pause time.
 363 
 364       // These are the post-conditions of the binary search above:
 365       assert(min_young_length < max_young_length,
 366              "otherwise we should have discovered that max_young_length "
 367              "fits into the pause target and not done the binary search");
 368       assert(p.will_fit(min_young_length),
 369              "min_young_length, the result of the binary search, should "
 370              "fit into the pause target");
 371       assert(!p.will_fit(min_young_length + 1),
 372              "min_young_length, the result of the binary search, should be "
 373              "optimal, so no larger length should fit into the pause target");
 374     }
 375   } else {
 376     // Even the minimum length doesn't fit into the pause time
 377     // target, return it as the result nevertheless.
 378   }
 379   return base_min_length + min_young_length;
 380 }
 381 
 382 double G1Policy::predict_survivor_regions_evac_time() const {
 383   double survivor_regions_evac_time = 0.0;
 384   const GrowableArray<HeapRegion*>* survivor_regions = _g1->survivor()->regions();
 385 
 386   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 387        it != survivor_regions->end();
 388        ++it) {
 389     survivor_regions_evac_time += predict_region_elapsed_time_ms(*it, collector_state()->in_young_only_phase());
 390   }
 391   return survivor_regions_evac_time;
 392 }
 393 
 394 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 395   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 396 
 397   if (rs_lengths > _rs_lengths_prediction) {
 398     // add 10% to avoid having to recalculate often
 399     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 400     update_rs_lengths_prediction(rs_lengths_prediction);
 401 
 402     update_young_list_max_and_target_length(rs_lengths_prediction);
 403   }
 404 }
 405 
 406 void G1Policy::update_rs_lengths_prediction() {
 407   update_rs_lengths_prediction(_analytics->predict_rs_lengths());
 408 }
 409 
 410 void G1Policy::update_rs_lengths_prediction(size_t prediction) {
 411   if (collector_state()->in_young_only_phase() && adaptive_young_list_length()) {
 412     _rs_lengths_prediction = prediction;
 413   }
 414 }
 415 
 416 void G1Policy::record_full_collection_start() {
 417   _full_collection_start_sec = os::elapsedTime();
 418   // Release the future to-space so that it is available for compaction into.
 419   collector_state()->set_in_young_only_phase(false);
 420   collector_state()->set_in_full_gc(true);
 421   cset_chooser()->clear();
 422 }
 423 
 424 void G1Policy::record_full_collection_end() {
 425   // Consider this like a collection pause for the purposes of allocation
 426   // since last pause.
 427   double end_sec = os::elapsedTime();
 428   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 429   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 430 
 431   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 432 
 433   collector_state()->set_in_full_gc(false);
 434 
 435   // "Nuke" the heuristics that control the young/mixed GC
 436   // transitions and make sure we start with young GCs after the Full GC.
 437   collector_state()->set_in_young_only_phase(true);
 438   collector_state()->set_in_young_gc_before_mixed(false);
 439   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 440   collector_state()->set_in_initial_mark_gc(false);
 441   collector_state()->set_mark_or_rebuild_in_progress(false);
 442 
 443   _short_lived_surv_rate_group->start_adding_regions();
 444   // also call this on any additional surv rate groups
 445 
 446   _free_regions_at_end_of_collection = _g1->num_free_regions();
 447   // Reset survivors SurvRateGroup.
 448   _survivor_surv_rate_group->reset();
 449   update_young_list_max_and_target_length();
 450   update_rs_lengths_prediction();
 451 
 452   _bytes_allocated_in_old_since_last_gc = 0;
 453 
 454   record_pause(FullGC, _full_collection_start_sec, end_sec);
 455 }
 456 
 457 void G1Policy::record_collection_pause_start(double start_time_sec) {
 458   // We only need to do this here as the policy will only be applied
 459   // to the GC we're about to start. so, no point is calculating this
 460   // every time we calculate / recalculate the target young length.
 461   update_survivors_policy();
 462 
 463   assert(_g1->used() == _g1->recalculate_used(),
 464          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 465          _g1->used(), _g1->recalculate_used());
 466 
 467   phase_times()->record_cur_collection_start_sec(start_time_sec);
 468   _pending_cards = _g1->pending_card_num();
 469 
 470   _collection_set->reset_bytes_used_before();
 471   _bytes_copied_during_gc = 0;
 472 
 473   // do that for any other surv rate groups
 474   _short_lived_surv_rate_group->stop_adding_regions();
 475   _survivors_age_table.clear();
 476 
 477   assert(_g1->collection_set()->verify_young_ages(), "region age verification failed");
 478 }
 479 
 480 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 481   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 482   collector_state()->set_in_initial_mark_gc(false);
 483 }
 484 
 485 void G1Policy::record_concurrent_mark_remark_start() {
 486   _mark_remark_start_sec = os::elapsedTime();
 487 }
 488 
 489 void G1Policy::record_concurrent_mark_remark_end() {
 490   double end_time_sec = os::elapsedTime();
 491   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 492   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 493   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 494 
 495   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 496 }
 497 
 498 void G1Policy::record_concurrent_mark_cleanup_start() {
 499   _mark_cleanup_start_sec = os::elapsedTime();
 500 }
 501 
 502 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 503   return phase_times()->average_time_ms(phase);
 504 }
 505 
 506 double G1Policy::young_other_time_ms() const {
 507   return phase_times()->young_cset_choice_time_ms() +
 508          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 509 }
 510 
 511 double G1Policy::non_young_other_time_ms() const {
 512   return phase_times()->non_young_cset_choice_time_ms() +
 513          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 514 }
 515 
 516 double G1Policy::other_time_ms(double pause_time_ms) const {
 517   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 518 }
 519 
 520 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
 521   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms();
 522 }
 523 
 524 CollectionSetChooser* G1Policy::cset_chooser() const {
 525   return _collection_set->cset_chooser();
 526 }
 527 
 528 bool G1Policy::about_to_start_mixed_phase() const {
 529   return _g1->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
 530 }
 531 
 532 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 533   if (about_to_start_mixed_phase()) {
 534     return false;
 535   }
 536 
 537   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 538 
 539   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 540   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 541   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 542 
 543   bool result = false;
 544   if (marking_request_bytes > marking_initiating_used_threshold) {
 545     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
 546     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 547                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 548                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 549   }
 550 
 551   return result;
 552 }
 553 
 554 // Anything below that is considered to be zero
 555 #define MIN_TIMER_GRANULARITY 0.0000001
 556 
 557 void G1Policy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 558   double end_time_sec = os::elapsedTime();
 559 
 560   size_t cur_used_bytes = _g1->used();
 561   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 562   bool this_pause_included_initial_mark = false;
 563   bool this_pause_was_young_only = collector_state()->in_young_only_phase();
 564 
 565   bool update_stats = !_g1->evacuation_failed();
 566 
 567   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 568 
 569   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 570 
 571   this_pause_included_initial_mark = collector_state()->in_initial_mark_gc();
 572   if (this_pause_included_initial_mark) {
 573     record_concurrent_mark_init_end(0.0);
 574   } else {
 575     maybe_start_marking();
 576   }
 577 
 578   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 579   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 580     // This usually happens due to the timer not having the required
 581     // granularity. Some Linuxes are the usual culprits.
 582     // We'll just set it to something (arbitrarily) small.
 583     app_time_ms = 1.0;
 584   }
 585 
 586   if (update_stats) {
 587     // We maintain the invariant that all objects allocated by mutator
 588     // threads will be allocated out of eden regions. So, we can use
 589     // the eden region number allocated since the previous GC to
 590     // calculate the application's allocate rate. The only exception
 591     // to that is humongous objects that are allocated separately. But
 592     // given that humongous object allocations do not really affect
 593     // either the pause's duration nor when the next pause will take
 594     // place we can safely ignore them here.
 595     uint regions_allocated = _collection_set->eden_region_length();
 596     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 597     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 598 
 599     double interval_ms =
 600       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 601     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 602     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 603   }
 604 
 605   if (collector_state()->in_young_gc_before_mixed()) {
 606     assert(!this_pause_included_initial_mark, "The young GC before mixed is not allowed to be an initial mark GC");
 607     // This has been the young GC before we start doing mixed GCs. We already
 608     // decided to start mixed GCs much earlier, so there is nothing to do except
 609     // advancing the state.
 610     collector_state()->set_in_young_only_phase(false);
 611     collector_state()->set_in_young_gc_before_mixed(false);
 612   } else if (!this_pause_was_young_only) {
 613     // This is a mixed GC. Here we decide whether to continue doing more
 614     // mixed GCs or not.
 615     if (!next_gc_should_be_mixed("continue mixed GCs",
 616                                  "do not continue mixed GCs")) {
 617       collector_state()->set_in_young_only_phase(true);
 618 
 619       clear_collection_set_candidates();
 620       maybe_start_marking();
 621     }
 622   }
 623 
 624   _short_lived_surv_rate_group->start_adding_regions();
 625   // Do that for any other surv rate groups
 626 
 627   double scan_hcc_time_ms = G1HotCardCache::default_use_cache() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 628 
 629   if (update_stats) {
 630     double cost_per_card_ms = 0.0;
 631     if (_pending_cards > 0) {
 632       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
 633       _analytics->report_cost_per_card_ms(cost_per_card_ms);
 634     }
 635     _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
 636 
 637     double cost_per_entry_ms = 0.0;
 638     if (cards_scanned > 10) {
 639       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 640       _analytics->report_cost_per_entry_ms(cost_per_entry_ms, this_pause_was_young_only);
 641     }
 642 
 643     if (_max_rs_lengths > 0) {
 644       double cards_per_entry_ratio =
 645         (double) cards_scanned / (double) _max_rs_lengths;
 646       _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, this_pause_was_young_only);
 647     }
 648 
 649     // This is defensive. For a while _max_rs_lengths could get
 650     // smaller than _recorded_rs_lengths which was causing
 651     // rs_length_diff to get very large and mess up the RSet length
 652     // predictions. The reason was unsafe concurrent updates to the
 653     // _inc_cset_recorded_rs_lengths field which the code below guards
 654     // against (see CR 7118202). This bug has now been fixed (see CR
 655     // 7119027). However, I'm still worried that
 656     // _inc_cset_recorded_rs_lengths might still end up somewhat
 657     // inaccurate. The concurrent refinement thread calculates an
 658     // RSet's length concurrently with other CR threads updating it
 659     // which might cause it to calculate the length incorrectly (if,
 660     // say, it's in mid-coarsening). So I'll leave in the defensive
 661     // conditional below just in case.
 662     size_t rs_length_diff = 0;
 663     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 664     if (_max_rs_lengths > recorded_rs_lengths) {
 665       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 666     }
 667     _analytics->report_rs_length_diff((double) rs_length_diff);
 668 
 669     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 670     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 671     double cost_per_byte_ms = 0.0;
 672 
 673     if (copied_bytes > 0) {
 674       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 675       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
 676     }
 677 
 678     if (_collection_set->young_region_length() > 0) {
 679       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 680                                                         _collection_set->young_region_length());
 681     }
 682 
 683     if (_collection_set->old_region_length() > 0) {
 684       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 685                                                             _collection_set->old_region_length());
 686     }
 687 
 688     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 689 
 690     // Do not update RS lengths with information from mixed gc: this one is wildly different
 691     // to during young only gc and messes up young gen sizing right after the mixed gc phase.
 692     // During mixed gc we do not use it anyway for young gen sizing.
 693     if (this_pause_was_young_only) {
 694       _analytics->report_pending_cards((double) _pending_cards);
 695       _analytics->report_rs_lengths((double) _max_rs_lengths);
 696     }
 697   }
 698 
 699   assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
 700          "If the last pause has been an initial mark, we should not have been in the marking window");
 701   if (this_pause_included_initial_mark) {
 702     collector_state()->set_mark_or_rebuild_in_progress(true);
 703   }
 704 
 705   _free_regions_at_end_of_collection = _g1->num_free_regions();
 706   // IHOP control wants to know the expected young gen length if it were not
 707   // restrained by the heap reserve. Using the actual length would make the
 708   // prediction too small and the limit the young gen every time we get to the
 709   // predicted target occupancy.
 710   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 711   update_rs_lengths_prediction();
 712 
 713   update_ihop_prediction(app_time_ms / 1000.0,
 714                          _bytes_allocated_in_old_since_last_gc,
 715                          last_unrestrained_young_length * HeapRegion::GrainBytes,
 716                          this_pause_was_young_only);
 717   _bytes_allocated_in_old_since_last_gc = 0;
 718 
 719   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
 720 
 721   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 722   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 723 
 724   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
 725     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 726                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
 727                                 update_rs_time_goal_ms, scan_hcc_time_ms);
 728 
 729     update_rs_time_goal_ms = 0;
 730   } else {
 731     update_rs_time_goal_ms -= scan_hcc_time_ms;
 732   }
 733   _g1->concurrent_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
 734                                    phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
 735                                    update_rs_time_goal_ms);
 736 
 737   cset_chooser()->verify();
 738 }
 739 
 740 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 741   if (G1UseAdaptiveIHOP) {
 742     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 743                                      predictor,
 744                                      G1ReservePercent,
 745                                      G1HeapWastePercent);
 746   } else {
 747     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 748   }
 749 }
 750 
 751 void G1Policy::update_ihop_prediction(double mutator_time_s,
 752                                       size_t mutator_alloc_bytes,
 753                                       size_t young_gen_size,
 754                                       bool this_gc_was_young_only) {
 755   // Always try to update IHOP prediction. Even evacuation failures give information
 756   // about e.g. whether to start IHOP earlier next time.
 757 
 758   // Avoid using really small application times that might create samples with
 759   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 760   double const min_valid_time = 1e-6;
 761 
 762   bool report = false;
 763 
 764   double marking_to_mixed_time = -1.0;
 765   if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
 766     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 767     assert(marking_to_mixed_time > 0.0,
 768            "Initial mark to mixed time must be larger than zero but is %.3f",
 769            marking_to_mixed_time);
 770     if (marking_to_mixed_time > min_valid_time) {
 771       _ihop_control->update_marking_length(marking_to_mixed_time);
 772       report = true;
 773     }
 774   }
 775 
 776   // As an approximation for the young gc promotion rates during marking we use
 777   // all of them. In many applications there are only a few if any young gcs during
 778   // marking, which makes any prediction useless. This increases the accuracy of the
 779   // prediction.
 780   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 781     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 782     report = true;
 783   }
 784 
 785   if (report) {
 786     report_ihop_statistics();
 787   }
 788 }
 789 
 790 void G1Policy::report_ihop_statistics() {
 791   _ihop_control->print();
 792 }
 793 
 794 void G1Policy::print_phases() {
 795   phase_times()->print();
 796 }
 797 
 798 double G1Policy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
 799   TruncatedSeq* seq = surv_rate_group->get_seq(age);
 800   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
 801   double pred = _predictor.get_new_prediction(seq);
 802   if (pred > 1.0) {
 803     pred = 1.0;
 804   }
 805   return pred;
 806 }
 807 
 808 double G1Policy::accum_yg_surv_rate_pred(int age) const {
 809   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 810 }
 811 
 812 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
 813                                               size_t scanned_cards) const {
 814   return
 815     _analytics->predict_rs_update_time_ms(pending_cards) +
 816     _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->in_young_only_phase()) +
 817     _analytics->predict_constant_other_time_ms();
 818 }
 819 
 820 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 821   size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
 822   size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->in_young_only_phase());
 823   return predict_base_elapsed_time_ms(pending_cards, card_num);
 824 }
 825 
 826 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
 827   size_t bytes_to_copy;
 828   if (hr->is_marked())
 829     bytes_to_copy = hr->max_live_bytes();
 830   else {
 831     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
 832     int age = hr->age_in_surv_rate_group();
 833     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
 834     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
 835   }
 836   return bytes_to_copy;
 837 }
 838 
 839 double G1Policy::predict_region_elapsed_time_ms(HeapRegion* hr,
 840                                                 bool for_young_gc) const {
 841   size_t rs_length = hr->rem_set()->occupied();
 842   // Predicting the number of cards is based on which type of GC
 843   // we're predicting for.
 844   size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
 845   size_t bytes_to_copy = predict_bytes_to_copy(hr);
 846 
 847   double region_elapsed_time_ms =
 848     _analytics->predict_rs_scan_time_ms(card_num, collector_state()->in_young_only_phase()) +
 849     _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
 850 
 851   // The prediction of the "other" time for this region is based
 852   // upon the region type and NOT the GC type.
 853   if (hr->is_young()) {
 854     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 855   } else {
 856     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 857   }
 858   return region_elapsed_time_ms;
 859 }
 860 
 861 bool G1Policy::should_allocate_mutator_region() const {
 862   uint young_list_length = _g1->young_regions_count();
 863   uint young_list_target_length = _young_list_target_length;
 864   return young_list_length < young_list_target_length;
 865 }
 866 
 867 bool G1Policy::can_expand_young_list() const {
 868   uint young_list_length = _g1->young_regions_count();
 869   uint young_list_max_length = _young_list_max_length;
 870   return young_list_length < young_list_max_length;
 871 }
 872 
 873 bool G1Policy::adaptive_young_list_length() const {
 874   return _young_gen_sizer.adaptive_young_list_length();
 875 }
 876 
 877 size_t G1Policy::desired_survivor_size() const {
 878   size_t const survivor_capacity = HeapRegion::GrainWords * _max_survivor_regions;
 879   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 880 }
 881 
 882 void G1Policy::print_age_table() {
 883   _survivors_age_table.print_age_table(_tenuring_threshold);
 884 }
 885 
 886 void G1Policy::update_max_gc_locker_expansion() {
 887   uint expansion_region_num = 0;
 888   if (GCLockerEdenExpansionPercent > 0) {
 889     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 890     double expansion_region_num_d = perc * (double) _young_list_target_length;
 891     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 892     // less than 1.0) we'll get 1.
 893     expansion_region_num = (uint) ceil(expansion_region_num_d);
 894   } else {
 895     assert(expansion_region_num == 0, "sanity");
 896   }
 897   _young_list_max_length = _young_list_target_length + expansion_region_num;
 898   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
 899 }
 900 
 901 // Calculates survivor space parameters.
 902 void G1Policy::update_survivors_policy() {
 903   double max_survivor_regions_d =
 904                  (double) _young_list_target_length / (double) SurvivorRatio;
 905   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
 906   // smaller than 1.0) we'll get 1.
 907   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
 908 
 909   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(desired_survivor_size());
 910   if (UsePerfData) {
 911     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
 912     _policy_counters->desired_survivor_size()->set_value(desired_survivor_size() * oopSize);
 913   }
 914 }
 915 
 916 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
 917   // We actually check whether we are marking here and not if we are in a
 918   // reclamation phase. This means that we will schedule a concurrent mark
 919   // even while we are still in the process of reclaiming memory.
 920   bool during_cycle = _g1->concurrent_mark()->cm_thread()->during_cycle();
 921   if (!during_cycle) {
 922     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
 923     collector_state()->set_initiate_conc_mark_if_possible(true);
 924     return true;
 925   } else {
 926     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
 927     return false;
 928   }
 929 }
 930 
 931 void G1Policy::initiate_conc_mark() {
 932   collector_state()->set_in_initial_mark_gc(true);
 933   collector_state()->set_initiate_conc_mark_if_possible(false);
 934 }
 935 
 936 void G1Policy::decide_on_conc_mark_initiation() {
 937   // We are about to decide on whether this pause will be an
 938   // initial-mark pause.
 939 
 940   // First, collector_state()->in_initial_mark_gc() should not be already set. We
 941   // will set it here if we have to. However, it should be cleared by
 942   // the end of the pause (it's only set for the duration of an
 943   // initial-mark pause).
 944   assert(!collector_state()->in_initial_mark_gc(), "pre-condition");
 945 
 946   if (collector_state()->initiate_conc_mark_if_possible()) {
 947     // We had noticed on a previous pause that the heap occupancy has
 948     // gone over the initiating threshold and we should start a
 949     // concurrent marking cycle. So we might initiate one.
 950 
 951     if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
 952       // Initiate a new initial mark if there is no marking or reclamation going on.
 953       initiate_conc_mark();
 954       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
 955     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
 956       // Initiate a user requested initial mark. An initial mark must be young only
 957       // GC, so the collector state must be updated to reflect this.
 958       collector_state()->set_in_young_only_phase(true);
 959       collector_state()->set_in_young_gc_before_mixed(false);
 960 
 961       // We might have ended up coming here about to start a mixed phase with a collection set
 962       // active. The following remark might change the change the "evacuation efficiency" of
 963       // the regions in this set, leading to failing asserts later.
 964       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
 965       clear_collection_set_candidates();
 966       abort_time_to_mixed_tracking();
 967       initiate_conc_mark();
 968       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
 969     } else {
 970       // The concurrent marking thread is still finishing up the
 971       // previous cycle. If we start one right now the two cycles
 972       // overlap. In particular, the concurrent marking thread might
 973       // be in the process of clearing the next marking bitmap (which
 974       // we will use for the next cycle if we start one). Starting a
 975       // cycle now will be bad given that parts of the marking
 976       // information might get cleared by the marking thread. And we
 977       // cannot wait for the marking thread to finish the cycle as it
 978       // periodically yields while clearing the next marking bitmap
 979       // and, if it's in a yield point, it's waiting for us to
 980       // finish. So, at this point we will not start a cycle and we'll
 981       // let the concurrent marking thread complete the last one.
 982       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
 983     }
 984   }
 985 }
 986 
 987 void G1Policy::record_concurrent_mark_cleanup_end() {
 988   cset_chooser()->rebuild(_g1->workers(), _g1->num_regions());
 989 
 990   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
 991   if (!mixed_gc_pending) {
 992     clear_collection_set_candidates();
 993     abort_time_to_mixed_tracking();
 994   }
 995   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
 996   collector_state()->set_mark_or_rebuild_in_progress(false);
 997 
 998   double end_sec = os::elapsedTime();
 999   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1000   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1001   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1002 
1003   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1004 }
1005 
1006 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1007   return percent_of(reclaimable_bytes, _g1->capacity());
1008 }
1009 
1010 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
1011   virtual bool do_heap_region(HeapRegion* r) {
1012     r->rem_set()->clear_locked(true /* only_cardset */);
1013     return false;
1014   }
1015 };
1016 
1017 void G1Policy::clear_collection_set_candidates() {
1018   // Clear remembered sets of remaining candidate regions and the actual candidate
1019   // list.
1020   G1ClearCollectionSetCandidateRemSets cl;
1021   cset_chooser()->iterate(&cl);
1022   cset_chooser()->clear();
1023 }
1024 
1025 void G1Policy::maybe_start_marking() {
1026   if (need_to_start_conc_mark("end of GC")) {
1027     // Note: this might have already been set, if during the last
1028     // pause we decided to start a cycle but at the beginning of
1029     // this pause we decided to postpone it. That's OK.
1030     collector_state()->set_initiate_conc_mark_if_possible(true);
1031   }
1032 }
1033 
1034 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1035   assert(!collector_state()->in_full_gc(), "must be");
1036   if (collector_state()->in_initial_mark_gc()) {
1037     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1038     return InitialMarkGC;
1039   } else if (collector_state()->in_young_gc_before_mixed()) {
1040     assert(!collector_state()->in_initial_mark_gc(), "must be");
1041     return LastYoungGC;
1042   } else if (collector_state()->in_mixed_phase()) {
1043     assert(!collector_state()->in_initial_mark_gc(), "must be");
1044     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1045     return MixedGC;
1046   } else {
1047     assert(!collector_state()->in_initial_mark_gc(), "must be");
1048     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1049     return YoungOnlyGC;
1050   }
1051 }
1052 
1053 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1054   // Manage the MMU tracker. For some reason it ignores Full GCs.
1055   if (kind != FullGC) {
1056     _mmu_tracker->add_pause(start, end);
1057   }
1058   // Manage the mutator time tracking from initial mark to first mixed gc.
1059   switch (kind) {
1060     case FullGC:
1061       abort_time_to_mixed_tracking();
1062       break;
1063     case Cleanup:
1064     case Remark:
1065     case YoungOnlyGC:
1066     case LastYoungGC:
1067       _initial_mark_to_mixed.add_pause(end - start);
1068       break;
1069     case InitialMarkGC:
1070       _initial_mark_to_mixed.record_initial_mark_end(end);
1071       break;
1072     case MixedGC:
1073       _initial_mark_to_mixed.record_mixed_gc_start(start);
1074       break;
1075     default:
1076       ShouldNotReachHere();
1077   }
1078 }
1079 
1080 void G1Policy::abort_time_to_mixed_tracking() {
1081   _initial_mark_to_mixed.reset();
1082 }
1083 
1084 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1085                                        const char* false_action_str) const {
1086   if (cset_chooser()->is_empty()) {
1087     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1088     return false;
1089   }
1090 
1091   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1092   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1093   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1094   double threshold = (double) G1HeapWastePercent;
1095   if (reclaimable_percent <= threshold) {
1096     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1097                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1098     return false;
1099   }
1100   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1101                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1102   return true;
1103 }
1104 
1105 uint G1Policy::calc_min_old_cset_length() const {
1106   // The min old CSet region bound is based on the maximum desired
1107   // number of mixed GCs after a cycle. I.e., even if some old regions
1108   // look expensive, we should add them to the CSet anyway to make
1109   // sure we go through the available old regions in no more than the
1110   // maximum desired number of mixed GCs.
1111   //
1112   // The calculation is based on the number of marked regions we added
1113   // to the CSet chooser in the first place, not how many remain, so
1114   // that the result is the same during all mixed GCs that follow a cycle.
1115 
1116   const size_t region_num = (size_t) cset_chooser()->length();
1117   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1118   size_t result = region_num / gc_num;
1119   // emulate ceiling
1120   if (result * gc_num < region_num) {
1121     result += 1;
1122   }
1123   return (uint) result;
1124 }
1125 
1126 uint G1Policy::calc_max_old_cset_length() const {
1127   // The max old CSet region bound is based on the threshold expressed
1128   // as a percentage of the heap size. I.e., it should bound the
1129   // number of old regions added to the CSet irrespective of how many
1130   // of them are available.
1131 
1132   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1133   const size_t region_num = g1h->num_regions();
1134   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1135   size_t result = region_num * perc / 100;
1136   // emulate ceiling
1137   if (100 * result < region_num * perc) {
1138     result += 1;
1139   }
1140   return (uint) result;
1141 }
1142 
1143 void G1Policy::finalize_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor) {
1144   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms, survivor);
1145   _collection_set->finalize_old_part(time_remaining_ms);
1146 }
1147 
1148 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1149 
1150   // Add survivor regions to SurvRateGroup.
1151   note_start_adding_survivor_regions();
1152   finished_recalculating_age_indexes(true /* is_survivors */);
1153 
1154   HeapRegion* last = NULL;
1155   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1156        it != survivors->regions()->end();
1157        ++it) {
1158     HeapRegion* curr = *it;
1159     set_region_survivor(curr);
1160 
1161     // The region is a non-empty survivor so let's add it to
1162     // the incremental collection set for the next evacuation
1163     // pause.
1164     _collection_set->add_survivor_regions(curr);
1165 
1166     last = curr;
1167   }
1168   note_stop_adding_survivor_regions();
1169 
1170   // Don't clear the survivor list handles until the start of
1171   // the next evacuation pause - we need it in order to re-tag
1172   // the survivor regions from this evacuation pause as 'young'
1173   // at the start of the next.
1174 
1175   finished_recalculating_age_indexes(false /* is_survivors */);
1176 }