1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1Allocator.inline.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  58 #include "gc/g1/heapRegion.inline.hpp"
  59 #include "gc/g1/heapRegionRemSet.hpp"
  60 #include "gc/g1/heapRegionSet.inline.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/adaptiveSizePolicy.hpp"
  63 #include "gc/shared/gcHeapSummary.hpp"
  64 #include "gc/shared/gcId.hpp"
  65 #include "gc/shared/gcLocker.hpp"
  66 #include "gc/shared/gcTimer.hpp"
  67 #include "gc/shared/gcTrace.hpp"
  68 #include "gc/shared/gcTraceTime.inline.hpp"
  69 #include "gc/shared/generationSpec.hpp"
  70 #include "gc/shared/isGCActiveMark.hpp"
  71 #include "gc/shared/preservedMarks.inline.hpp"
  72 #include "gc/shared/suspendibleThreadSet.hpp"
  73 #include "gc/shared/referenceProcessor.inline.hpp"
  74 #include "gc/shared/taskqueue.inline.hpp"
  75 #include "gc/shared/weakProcessor.hpp"
  76 #include "logging/log.hpp"
  77 #include "memory/allocation.hpp"
  78 #include "memory/iterator.hpp"
  79 #include "memory/resourceArea.hpp"
  80 #include "oops/access.inline.hpp"
  81 #include "oops/compressedOops.inline.hpp"
  82 #include "oops/oop.inline.hpp"
  83 #include "prims/resolvedMethodTable.hpp"
  84 #include "runtime/atomic.hpp"
  85 #include "runtime/handles.inline.hpp"
  86 #include "runtime/init.hpp"
  87 #include "runtime/orderAccess.inline.hpp"
  88 #include "runtime/threadSMR.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "utilities/align.hpp"
  91 #include "utilities/globalDefinitions.hpp"
  92 #include "utilities/stack.inline.hpp"
  93 
  94 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  95 
  96 // INVARIANTS/NOTES
  97 //
  98 // All allocation activity covered by the G1CollectedHeap interface is
  99 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 100 // and allocate_new_tlab, which are the "entry" points to the
 101 // allocation code from the rest of the JVM.  (Note that this does not
 102 // apply to TLAB allocation, which is not part of this interface: it
 103 // is done by clients of this interface.)
 104 
 105 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 106  private:
 107   size_t _num_dirtied;
 108   G1CollectedHeap* _g1h;
 109   G1CardTable* _g1_ct;
 110 
 111   HeapRegion* region_for_card(jbyte* card_ptr) const {
 112     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 113   }
 114 
 115   bool will_become_free(HeapRegion* hr) const {
 116     // A region will be freed by free_collection_set if the region is in the
 117     // collection set and has not had an evacuation failure.
 118     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 119   }
 120 
 121  public:
 122   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 123     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 124 
 125   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 126     HeapRegion* hr = region_for_card(card_ptr);
 127 
 128     // Should only dirty cards in regions that won't be freed.
 129     if (!will_become_free(hr)) {
 130       *card_ptr = G1CardTable::dirty_card_val();
 131       _num_dirtied++;
 132     }
 133 
 134     return true;
 135   }
 136 
 137   size_t num_dirtied()   const { return _num_dirtied; }
 138 };
 139 
 140 
 141 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 142   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 143 }
 144 
 145 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 146   // The from card cache is not the memory that is actually committed. So we cannot
 147   // take advantage of the zero_filled parameter.
 148   reset_from_card_cache(start_idx, num_regions);
 149 }
 150 
 151 
 152 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 153                                              MemRegion mr) {
 154   return new HeapRegion(hrs_index, bot(), mr);
 155 }
 156 
 157 // Private methods.
 158 
 159 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 160   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 161          "the only time we use this to allocate a humongous region is "
 162          "when we are allocating a single humongous region");
 163 
 164   HeapRegion* res = _hrm.allocate_free_region(is_old);
 165 
 166   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 167     // Currently, only attempts to allocate GC alloc regions set
 168     // do_expand to true. So, we should only reach here during a
 169     // safepoint. If this assumption changes we might have to
 170     // reconsider the use of _expand_heap_after_alloc_failure.
 171     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 172 
 173     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 174                               word_size * HeapWordSize);
 175 
 176     if (expand(word_size * HeapWordSize)) {
 177       // Given that expand() succeeded in expanding the heap, and we
 178       // always expand the heap by an amount aligned to the heap
 179       // region size, the free list should in theory not be empty.
 180       // In either case allocate_free_region() will check for NULL.
 181       res = _hrm.allocate_free_region(is_old);
 182     } else {
 183       _expand_heap_after_alloc_failure = false;
 184     }
 185   }
 186   return res;
 187 }
 188 
 189 HeapWord*
 190 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 191                                                            uint num_regions,
 192                                                            size_t word_size) {
 193   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 194   assert(is_humongous(word_size), "word_size should be humongous");
 195   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 196 
 197   // Index of last region in the series.
 198   uint last = first + num_regions - 1;
 199 
 200   // We need to initialize the region(s) we just discovered. This is
 201   // a bit tricky given that it can happen concurrently with
 202   // refinement threads refining cards on these regions and
 203   // potentially wanting to refine the BOT as they are scanning
 204   // those cards (this can happen shortly after a cleanup; see CR
 205   // 6991377). So we have to set up the region(s) carefully and in
 206   // a specific order.
 207 
 208   // The word size sum of all the regions we will allocate.
 209   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 210   assert(word_size <= word_size_sum, "sanity");
 211 
 212   // This will be the "starts humongous" region.
 213   HeapRegion* first_hr = region_at(first);
 214   // The header of the new object will be placed at the bottom of
 215   // the first region.
 216   HeapWord* new_obj = first_hr->bottom();
 217   // This will be the new top of the new object.
 218   HeapWord* obj_top = new_obj + word_size;
 219 
 220   // First, we need to zero the header of the space that we will be
 221   // allocating. When we update top further down, some refinement
 222   // threads might try to scan the region. By zeroing the header we
 223   // ensure that any thread that will try to scan the region will
 224   // come across the zero klass word and bail out.
 225   //
 226   // NOTE: It would not have been correct to have used
 227   // CollectedHeap::fill_with_object() and make the space look like
 228   // an int array. The thread that is doing the allocation will
 229   // later update the object header to a potentially different array
 230   // type and, for a very short period of time, the klass and length
 231   // fields will be inconsistent. This could cause a refinement
 232   // thread to calculate the object size incorrectly.
 233   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 234 
 235   // Next, pad out the unused tail of the last region with filler
 236   // objects, for improved usage accounting.
 237   // How many words we use for filler objects.
 238   size_t word_fill_size = word_size_sum - word_size;
 239 
 240   // How many words memory we "waste" which cannot hold a filler object.
 241   size_t words_not_fillable = 0;
 242 
 243   if (word_fill_size >= min_fill_size()) {
 244     fill_with_objects(obj_top, word_fill_size);
 245   } else if (word_fill_size > 0) {
 246     // We have space to fill, but we cannot fit an object there.
 247     words_not_fillable = word_fill_size;
 248     word_fill_size = 0;
 249   }
 250 
 251   // We will set up the first region as "starts humongous". This
 252   // will also update the BOT covering all the regions to reflect
 253   // that there is a single object that starts at the bottom of the
 254   // first region.
 255   first_hr->set_starts_humongous(obj_top, word_fill_size);
 256   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 257   // Then, if there are any, we will set up the "continues
 258   // humongous" regions.
 259   HeapRegion* hr = NULL;
 260   for (uint i = first + 1; i <= last; ++i) {
 261     hr = region_at(i);
 262     hr->set_continues_humongous(first_hr);
 263     _g1_policy->remset_tracker()->update_at_allocate(hr);
 264   }
 265 
 266   // Up to this point no concurrent thread would have been able to
 267   // do any scanning on any region in this series. All the top
 268   // fields still point to bottom, so the intersection between
 269   // [bottom,top] and [card_start,card_end] will be empty. Before we
 270   // update the top fields, we'll do a storestore to make sure that
 271   // no thread sees the update to top before the zeroing of the
 272   // object header and the BOT initialization.
 273   OrderAccess::storestore();
 274 
 275   // Now, we will update the top fields of the "continues humongous"
 276   // regions except the last one.
 277   for (uint i = first; i < last; ++i) {
 278     hr = region_at(i);
 279     hr->set_top(hr->end());
 280   }
 281 
 282   hr = region_at(last);
 283   // If we cannot fit a filler object, we must set top to the end
 284   // of the humongous object, otherwise we cannot iterate the heap
 285   // and the BOT will not be complete.
 286   hr->set_top(hr->end() - words_not_fillable);
 287 
 288   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 289          "obj_top should be in last region");
 290 
 291   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 292 
 293   assert(words_not_fillable == 0 ||
 294          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 295          "Miscalculation in humongous allocation");
 296 
 297   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 298 
 299   for (uint i = first; i <= last; ++i) {
 300     hr = region_at(i);
 301     _humongous_set.add(hr);
 302     _hr_printer.alloc(hr);
 303   }
 304 
 305   return new_obj;
 306 }
 307 
 308 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 309   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 310   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 311 }
 312 
 313 // If could fit into free regions w/o expansion, try.
 314 // Otherwise, if can expand, do so.
 315 // Otherwise, if using ex regions might help, try with ex given back.
 316 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 317   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 318 
 319   _verifier->verify_region_sets_optional();
 320 
 321   uint first = G1_NO_HRM_INDEX;
 322   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 323 
 324   if (obj_regions == 1) {
 325     // Only one region to allocate, try to use a fast path by directly allocating
 326     // from the free lists. Do not try to expand here, we will potentially do that
 327     // later.
 328     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 329     if (hr != NULL) {
 330       first = hr->hrm_index();
 331     }
 332   } else {
 333     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 334     // are lucky enough to find some.
 335     first = _hrm.find_contiguous_only_empty(obj_regions);
 336     if (first != G1_NO_HRM_INDEX) {
 337       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 338     }
 339   }
 340 
 341   if (first == G1_NO_HRM_INDEX) {
 342     // Policy: We could not find enough regions for the humongous object in the
 343     // free list. Look through the heap to find a mix of free and uncommitted regions.
 344     // If so, try expansion.
 345     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 346     if (first != G1_NO_HRM_INDEX) {
 347       // We found something. Make sure these regions are committed, i.e. expand
 348       // the heap. Alternatively we could do a defragmentation GC.
 349       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 350                                     word_size * HeapWordSize);
 351 
 352       _hrm.expand_at(first, obj_regions, workers());
 353       g1_policy()->record_new_heap_size(num_regions());
 354 
 355 #ifdef ASSERT
 356       for (uint i = first; i < first + obj_regions; ++i) {
 357         HeapRegion* hr = region_at(i);
 358         assert(hr->is_free(), "sanity");
 359         assert(hr->is_empty(), "sanity");
 360         assert(is_on_master_free_list(hr), "sanity");
 361       }
 362 #endif
 363       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 364     } else {
 365       // Policy: Potentially trigger a defragmentation GC.
 366     }
 367   }
 368 
 369   HeapWord* result = NULL;
 370   if (first != G1_NO_HRM_INDEX) {
 371     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 372     assert(result != NULL, "it should always return a valid result");
 373 
 374     // A successful humongous object allocation changes the used space
 375     // information of the old generation so we need to recalculate the
 376     // sizes and update the jstat counters here.
 377     g1mm()->update_sizes();
 378   }
 379 
 380   _verifier->verify_region_sets_optional();
 381 
 382   return result;
 383 }
 384 
 385 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 386   assert_heap_not_locked_and_not_at_safepoint();
 387   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 388 
 389   return attempt_allocation(word_size);
 390 }
 391 
 392 HeapWord*
 393 G1CollectedHeap::mem_allocate(size_t word_size,
 394                               bool*  gc_overhead_limit_was_exceeded) {
 395   assert_heap_not_locked_and_not_at_safepoint();
 396 
 397   if (is_humongous(word_size)) {
 398     return attempt_allocation_humongous(word_size);
 399   }
 400   return attempt_allocation(word_size);
 401 }
 402 
 403 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 404   ResourceMark rm; // For retrieving the thread names in log messages.
 405 
 406   // Make sure you read the note in attempt_allocation_humongous().
 407 
 408   assert_heap_not_locked_and_not_at_safepoint();
 409   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 410          "be called for humongous allocation requests");
 411 
 412   // We should only get here after the first-level allocation attempt
 413   // (attempt_allocation()) failed to allocate.
 414 
 415   // We will loop until a) we manage to successfully perform the
 416   // allocation or b) we successfully schedule a collection which
 417   // fails to perform the allocation. b) is the only case when we'll
 418   // return NULL.
 419   HeapWord* result = NULL;
 420   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 421     bool should_try_gc;
 422     uint gc_count_before;
 423 
 424     {
 425       MutexLockerEx x(Heap_lock);
 426       result = _allocator->attempt_allocation_locked(word_size);
 427       if (result != NULL) {
 428         return result;
 429       }
 430 
 431       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 432       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 433       // waiting because the GCLocker is active to not wait too long.
 434       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 435         // No need for an ergo message here, can_expand_young_list() does this when
 436         // it returns true.
 437         result = _allocator->attempt_allocation_force(word_size);
 438         if (result != NULL) {
 439           return result;
 440         }
 441       }
 442       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 443       // the GCLocker initiated GC has been performed and then retry. This includes
 444       // the case when the GC Locker is not active but has not been performed.
 445       should_try_gc = !GCLocker::needs_gc();
 446       // Read the GC count while still holding the Heap_lock.
 447       gc_count_before = total_collections();
 448     }
 449 
 450     if (should_try_gc) {
 451       bool succeeded;
 452       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 453                                    GCCause::_g1_inc_collection_pause);
 454       if (result != NULL) {
 455         assert(succeeded, "only way to get back a non-NULL result");
 456         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 457                              Thread::current()->name(), p2i(result));
 458         return result;
 459       }
 460 
 461       if (succeeded) {
 462         // We successfully scheduled a collection which failed to allocate. No
 463         // point in trying to allocate further. We'll just return NULL.
 464         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 465                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 466         return NULL;
 467       }
 468       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 469                            Thread::current()->name(), word_size);
 470     } else {
 471       // Failed to schedule a collection.
 472       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 473         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 474                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 475         return NULL;
 476       }
 477       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 478       // The GCLocker is either active or the GCLocker initiated
 479       // GC has not yet been performed. Stall until it is and
 480       // then retry the allocation.
 481       GCLocker::stall_until_clear();
 482       gclocker_retry_count += 1;
 483     }
 484 
 485     // We can reach here if we were unsuccessful in scheduling a
 486     // collection (because another thread beat us to it) or if we were
 487     // stalled due to the GC locker. In either can we should retry the
 488     // allocation attempt in case another thread successfully
 489     // performed a collection and reclaimed enough space. We do the
 490     // first attempt (without holding the Heap_lock) here and the
 491     // follow-on attempt will be at the start of the next loop
 492     // iteration (after taking the Heap_lock).
 493 
 494     result = _allocator->attempt_allocation(word_size);
 495     if (result != NULL) {
 496       return result;
 497     }
 498 
 499     // Give a warning if we seem to be looping forever.
 500     if ((QueuedAllocationWarningCount > 0) &&
 501         (try_count % QueuedAllocationWarningCount == 0)) {
 502       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 503                              Thread::current()->name(), try_count, word_size);
 504     }
 505   }
 506 
 507   ShouldNotReachHere();
 508   return NULL;
 509 }
 510 
 511 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 512   assert_at_safepoint_on_vm_thread();
 513   if (_archive_allocator == NULL) {
 514     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 515   }
 516 }
 517 
 518 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 519   // Allocations in archive regions cannot be of a size that would be considered
 520   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 521   // may be different at archive-restore time.
 522   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 523 }
 524 
 525 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 526   assert_at_safepoint_on_vm_thread();
 527   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 528   if (is_archive_alloc_too_large(word_size)) {
 529     return NULL;
 530   }
 531   return _archive_allocator->archive_mem_allocate(word_size);
 532 }
 533 
 534 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 535                                               size_t end_alignment_in_bytes) {
 536   assert_at_safepoint_on_vm_thread();
 537   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 538 
 539   // Call complete_archive to do the real work, filling in the MemRegion
 540   // array with the archive regions.
 541   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 542   delete _archive_allocator;
 543   _archive_allocator = NULL;
 544 }
 545 
 546 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 547   assert(ranges != NULL, "MemRegion array NULL");
 548   assert(count != 0, "No MemRegions provided");
 549   MemRegion reserved = _hrm.reserved();
 550   for (size_t i = 0; i < count; i++) {
 551     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 552       return false;
 553     }
 554   }
 555   return true;
 556 }
 557 
 558 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 559                                             size_t count,
 560                                             bool open) {
 561   assert(!is_init_completed(), "Expect to be called at JVM init time");
 562   assert(ranges != NULL, "MemRegion array NULL");
 563   assert(count != 0, "No MemRegions provided");
 564   MutexLockerEx x(Heap_lock);
 565 
 566   MemRegion reserved = _hrm.reserved();
 567   HeapWord* prev_last_addr = NULL;
 568   HeapRegion* prev_last_region = NULL;
 569 
 570   // Temporarily disable pretouching of heap pages. This interface is used
 571   // when mmap'ing archived heap data in, so pre-touching is wasted.
 572   FlagSetting fs(AlwaysPreTouch, false);
 573 
 574   // Enable archive object checking used by G1MarkSweep. We have to let it know
 575   // about each archive range, so that objects in those ranges aren't marked.
 576   G1ArchiveAllocator::enable_archive_object_check();
 577 
 578   // For each specified MemRegion range, allocate the corresponding G1
 579   // regions and mark them as archive regions. We expect the ranges
 580   // in ascending starting address order, without overlap.
 581   for (size_t i = 0; i < count; i++) {
 582     MemRegion curr_range = ranges[i];
 583     HeapWord* start_address = curr_range.start();
 584     size_t word_size = curr_range.word_size();
 585     HeapWord* last_address = curr_range.last();
 586     size_t commits = 0;
 587 
 588     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 589               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 590               p2i(start_address), p2i(last_address));
 591     guarantee(start_address > prev_last_addr,
 592               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 593               p2i(start_address), p2i(prev_last_addr));
 594     prev_last_addr = last_address;
 595 
 596     // Check for ranges that start in the same G1 region in which the previous
 597     // range ended, and adjust the start address so we don't try to allocate
 598     // the same region again. If the current range is entirely within that
 599     // region, skip it, just adjusting the recorded top.
 600     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 601     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 602       start_address = start_region->end();
 603       if (start_address > last_address) {
 604         increase_used(word_size * HeapWordSize);
 605         start_region->set_top(last_address + 1);
 606         continue;
 607       }
 608       start_region->set_top(start_address);
 609       curr_range = MemRegion(start_address, last_address + 1);
 610       start_region = _hrm.addr_to_region(start_address);
 611     }
 612 
 613     // Perform the actual region allocation, exiting if it fails.
 614     // Then note how much new space we have allocated.
 615     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 616       return false;
 617     }
 618     increase_used(word_size * HeapWordSize);
 619     if (commits != 0) {
 620       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 621                                 HeapRegion::GrainWords * HeapWordSize * commits);
 622 
 623     }
 624 
 625     // Mark each G1 region touched by the range as archive, add it to
 626     // the old set, and set top.
 627     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 628     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 629     prev_last_region = last_region;
 630 
 631     while (curr_region != NULL) {
 632       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 633              "Region already in use (index %u)", curr_region->hrm_index());
 634       if (open) {
 635         curr_region->set_open_archive();
 636       } else {
 637         curr_region->set_closed_archive();
 638       }
 639       _hr_printer.alloc(curr_region);
 640       _old_set.add(curr_region);
 641       HeapWord* top;
 642       HeapRegion* next_region;
 643       if (curr_region != last_region) {
 644         top = curr_region->end();
 645         next_region = _hrm.next_region_in_heap(curr_region);
 646       } else {
 647         top = last_address + 1;
 648         next_region = NULL;
 649       }
 650       curr_region->set_top(top);
 651       curr_region->set_first_dead(top);
 652       curr_region->set_end_of_live(top);
 653       curr_region = next_region;
 654     }
 655 
 656     // Notify mark-sweep of the archive
 657     G1ArchiveAllocator::set_range_archive(curr_range, open);
 658   }
 659   return true;
 660 }
 661 
 662 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 663   assert(!is_init_completed(), "Expect to be called at JVM init time");
 664   assert(ranges != NULL, "MemRegion array NULL");
 665   assert(count != 0, "No MemRegions provided");
 666   MemRegion reserved = _hrm.reserved();
 667   HeapWord *prev_last_addr = NULL;
 668   HeapRegion* prev_last_region = NULL;
 669 
 670   // For each MemRegion, create filler objects, if needed, in the G1 regions
 671   // that contain the address range. The address range actually within the
 672   // MemRegion will not be modified. That is assumed to have been initialized
 673   // elsewhere, probably via an mmap of archived heap data.
 674   MutexLockerEx x(Heap_lock);
 675   for (size_t i = 0; i < count; i++) {
 676     HeapWord* start_address = ranges[i].start();
 677     HeapWord* last_address = ranges[i].last();
 678 
 679     assert(reserved.contains(start_address) && reserved.contains(last_address),
 680            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 681            p2i(start_address), p2i(last_address));
 682     assert(start_address > prev_last_addr,
 683            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 684            p2i(start_address), p2i(prev_last_addr));
 685 
 686     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 687     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 688     HeapWord* bottom_address = start_region->bottom();
 689 
 690     // Check for a range beginning in the same region in which the
 691     // previous one ended.
 692     if (start_region == prev_last_region) {
 693       bottom_address = prev_last_addr + 1;
 694     }
 695 
 696     // Verify that the regions were all marked as archive regions by
 697     // alloc_archive_regions.
 698     HeapRegion* curr_region = start_region;
 699     while (curr_region != NULL) {
 700       guarantee(curr_region->is_archive(),
 701                 "Expected archive region at index %u", curr_region->hrm_index());
 702       if (curr_region != last_region) {
 703         curr_region = _hrm.next_region_in_heap(curr_region);
 704       } else {
 705         curr_region = NULL;
 706       }
 707     }
 708 
 709     prev_last_addr = last_address;
 710     prev_last_region = last_region;
 711 
 712     // Fill the memory below the allocated range with dummy object(s),
 713     // if the region bottom does not match the range start, or if the previous
 714     // range ended within the same G1 region, and there is a gap.
 715     if (start_address != bottom_address) {
 716       size_t fill_size = pointer_delta(start_address, bottom_address);
 717       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 718       increase_used(fill_size * HeapWordSize);
 719     }
 720   }
 721 }
 722 
 723 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size) {
 724   assert_heap_not_locked_and_not_at_safepoint();
 725   assert(!is_humongous(word_size), "attempt_allocation() should not "
 726          "be called for humongous allocation requests");
 727 
 728   HeapWord* result = _allocator->attempt_allocation(word_size);
 729 
 730   if (result == NULL) {
 731     result = attempt_allocation_slow(word_size);
 732   }
 733   assert_heap_not_locked();
 734   if (result != NULL) {
 735     dirty_young_block(result, word_size);
 736   }
 737   return result;
 738 }
 739 
 740 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 741   assert(!is_init_completed(), "Expect to be called at JVM init time");
 742   assert(ranges != NULL, "MemRegion array NULL");
 743   assert(count != 0, "No MemRegions provided");
 744   MemRegion reserved = _hrm.reserved();
 745   HeapWord* prev_last_addr = NULL;
 746   HeapRegion* prev_last_region = NULL;
 747   size_t size_used = 0;
 748   size_t uncommitted_regions = 0;
 749 
 750   // For each Memregion, free the G1 regions that constitute it, and
 751   // notify mark-sweep that the range is no longer to be considered 'archive.'
 752   MutexLockerEx x(Heap_lock);
 753   for (size_t i = 0; i < count; i++) {
 754     HeapWord* start_address = ranges[i].start();
 755     HeapWord* last_address = ranges[i].last();
 756 
 757     assert(reserved.contains(start_address) && reserved.contains(last_address),
 758            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 759            p2i(start_address), p2i(last_address));
 760     assert(start_address > prev_last_addr,
 761            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 762            p2i(start_address), p2i(prev_last_addr));
 763     size_used += ranges[i].byte_size();
 764     prev_last_addr = last_address;
 765 
 766     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 767     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 768 
 769     // Check for ranges that start in the same G1 region in which the previous
 770     // range ended, and adjust the start address so we don't try to free
 771     // the same region again. If the current range is entirely within that
 772     // region, skip it.
 773     if (start_region == prev_last_region) {
 774       start_address = start_region->end();
 775       if (start_address > last_address) {
 776         continue;
 777       }
 778       start_region = _hrm.addr_to_region(start_address);
 779     }
 780     prev_last_region = last_region;
 781 
 782     // After verifying that each region was marked as an archive region by
 783     // alloc_archive_regions, set it free and empty and uncommit it.
 784     HeapRegion* curr_region = start_region;
 785     while (curr_region != NULL) {
 786       guarantee(curr_region->is_archive(),
 787                 "Expected archive region at index %u", curr_region->hrm_index());
 788       uint curr_index = curr_region->hrm_index();
 789       _old_set.remove(curr_region);
 790       curr_region->set_free();
 791       curr_region->set_top(curr_region->bottom());
 792       if (curr_region != last_region) {
 793         curr_region = _hrm.next_region_in_heap(curr_region);
 794       } else {
 795         curr_region = NULL;
 796       }
 797       _hrm.shrink_at(curr_index, 1);
 798       uncommitted_regions++;
 799     }
 800 
 801     // Notify mark-sweep that this is no longer an archive range.
 802     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 803   }
 804 
 805   if (uncommitted_regions != 0) {
 806     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 807                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 808   }
 809   decrease_used(size_used);
 810 }
 811 
 812 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 813   ResourceMark rm; // For retrieving the thread names in log messages.
 814 
 815   // The structure of this method has a lot of similarities to
 816   // attempt_allocation_slow(). The reason these two were not merged
 817   // into a single one is that such a method would require several "if
 818   // allocation is not humongous do this, otherwise do that"
 819   // conditional paths which would obscure its flow. In fact, an early
 820   // version of this code did use a unified method which was harder to
 821   // follow and, as a result, it had subtle bugs that were hard to
 822   // track down. So keeping these two methods separate allows each to
 823   // be more readable. It will be good to keep these two in sync as
 824   // much as possible.
 825 
 826   assert_heap_not_locked_and_not_at_safepoint();
 827   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 828          "should only be called for humongous allocations");
 829 
 830   // Humongous objects can exhaust the heap quickly, so we should check if we
 831   // need to start a marking cycle at each humongous object allocation. We do
 832   // the check before we do the actual allocation. The reason for doing it
 833   // before the allocation is that we avoid having to keep track of the newly
 834   // allocated memory while we do a GC.
 835   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 836                                            word_size)) {
 837     collect(GCCause::_g1_humongous_allocation);
 838   }
 839 
 840   // We will loop until a) we manage to successfully perform the
 841   // allocation or b) we successfully schedule a collection which
 842   // fails to perform the allocation. b) is the only case when we'll
 843   // return NULL.
 844   HeapWord* result = NULL;
 845   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 846     bool should_try_gc;
 847     uint gc_count_before;
 848 
 849 
 850     {
 851       MutexLockerEx x(Heap_lock);
 852 
 853       // Given that humongous objects are not allocated in young
 854       // regions, we'll first try to do the allocation without doing a
 855       // collection hoping that there's enough space in the heap.
 856       result = humongous_obj_allocate(word_size);
 857       if (result != NULL) {
 858         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 859         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 860         return result;
 861       }
 862 
 863       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 864       // the GCLocker initiated GC has been performed and then retry. This includes
 865       // the case when the GC Locker is not active but has not been performed.
 866       should_try_gc = !GCLocker::needs_gc();
 867       // Read the GC count while still holding the Heap_lock.
 868       gc_count_before = total_collections();
 869     }
 870 
 871     if (should_try_gc) {
 872       bool succeeded;
 873       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 874                                    GCCause::_g1_humongous_allocation);
 875       if (result != NULL) {
 876         assert(succeeded, "only way to get back a non-NULL result");
 877         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 878                              Thread::current()->name(), p2i(result));
 879         return result;
 880       }
 881 
 882       if (succeeded) {
 883         // We successfully scheduled a collection which failed to allocate. No
 884         // point in trying to allocate further. We'll just return NULL.
 885         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 886                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 887         return NULL;
 888       }
 889       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 890                            Thread::current()->name(), word_size);
 891     } else {
 892       // Failed to schedule a collection.
 893       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 894         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 895                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 896         return NULL;
 897       }
 898       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 899       // The GCLocker is either active or the GCLocker initiated
 900       // GC has not yet been performed. Stall until it is and
 901       // then retry the allocation.
 902       GCLocker::stall_until_clear();
 903       gclocker_retry_count += 1;
 904     }
 905 
 906 
 907     // We can reach here if we were unsuccessful in scheduling a
 908     // collection (because another thread beat us to it) or if we were
 909     // stalled due to the GC locker. In either can we should retry the
 910     // allocation attempt in case another thread successfully
 911     // performed a collection and reclaimed enough space.
 912     // Humongous object allocation always needs a lock, so we wait for the retry
 913     // in the next iteration of the loop, unlike for the regular iteration case.
 914     // Give a warning if we seem to be looping forever.
 915 
 916     if ((QueuedAllocationWarningCount > 0) &&
 917         (try_count % QueuedAllocationWarningCount == 0)) {
 918       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 919                              Thread::current()->name(), try_count, word_size);
 920     }
 921   }
 922 
 923   ShouldNotReachHere();
 924   return NULL;
 925 }
 926 
 927 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 928                                                            bool expect_null_mutator_alloc_region) {
 929   assert_at_safepoint_on_vm_thread();
 930   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 931          "the current alloc region was unexpectedly found to be non-NULL");
 932 
 933   if (!is_humongous(word_size)) {
 934     return _allocator->attempt_allocation_locked(word_size);
 935   } else {
 936     HeapWord* result = humongous_obj_allocate(word_size);
 937     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 938       collector_state()->set_initiate_conc_mark_if_possible(true);
 939     }
 940     return result;
 941   }
 942 
 943   ShouldNotReachHere();
 944 }
 945 
 946 class PostCompactionPrinterClosure: public HeapRegionClosure {
 947 private:
 948   G1HRPrinter* _hr_printer;
 949 public:
 950   bool do_heap_region(HeapRegion* hr) {
 951     assert(!hr->is_young(), "not expecting to find young regions");
 952     _hr_printer->post_compaction(hr);
 953     return false;
 954   }
 955 
 956   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 957     : _hr_printer(hr_printer) { }
 958 };
 959 
 960 void G1CollectedHeap::print_hrm_post_compaction() {
 961   if (_hr_printer.is_active()) {
 962     PostCompactionPrinterClosure cl(hr_printer());
 963     heap_region_iterate(&cl);
 964   }
 965 }
 966 
 967 void G1CollectedHeap::abort_concurrent_cycle() {
 968   // If we start the compaction before the CM threads finish
 969   // scanning the root regions we might trip them over as we'll
 970   // be moving objects / updating references. So let's wait until
 971   // they are done. By telling them to abort, they should complete
 972   // early.
 973   _cm->root_regions()->abort();
 974   _cm->root_regions()->wait_until_scan_finished();
 975 
 976   // Disable discovery and empty the discovered lists
 977   // for the CM ref processor.
 978   ref_processor_cm()->disable_discovery();
 979   ref_processor_cm()->abandon_partial_discovery();
 980   ref_processor_cm()->verify_no_references_recorded();
 981 
 982   // Abandon current iterations of concurrent marking and concurrent
 983   // refinement, if any are in progress.
 984   concurrent_mark()->concurrent_cycle_abort();
 985 }
 986 
 987 void G1CollectedHeap::prepare_heap_for_full_collection() {
 988   // Make sure we'll choose a new allocation region afterwards.
 989   _allocator->release_mutator_alloc_region();
 990   _allocator->abandon_gc_alloc_regions();
 991   g1_rem_set()->cleanupHRRS();
 992 
 993   // We may have added regions to the current incremental collection
 994   // set between the last GC or pause and now. We need to clear the
 995   // incremental collection set and then start rebuilding it afresh
 996   // after this full GC.
 997   abandon_collection_set(collection_set());
 998 
 999   tear_down_region_sets(false /* free_list_only */);
1000 }
1001 
1002 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1003   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1004   assert(used() == recalculate_used(), "Should be equal");
1005   _verifier->verify_region_sets_optional();
1006   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1007   _verifier->check_bitmaps("Full GC Start");
1008 }
1009 
1010 void G1CollectedHeap::prepare_heap_for_mutators() {
1011   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1012   ClassLoaderDataGraph::purge();
1013   MetaspaceUtils::verify_metrics();
1014 
1015   // Prepare heap for normal collections.
1016   assert(num_free_regions() == 0, "we should not have added any free regions");
1017   rebuild_region_sets(false /* free_list_only */);
1018   abort_refinement();
1019   resize_if_necessary_after_full_collection();
1020 
1021   // Rebuild the strong code root lists for each region
1022   rebuild_strong_code_roots();
1023 
1024   // Start a new incremental collection set for the next pause
1025   start_new_collection_set();
1026 
1027   _allocator->init_mutator_alloc_region();
1028 
1029   // Post collection state updates.
1030   MetaspaceGC::compute_new_size();
1031 }
1032 
1033 void G1CollectedHeap::abort_refinement() {
1034   if (_hot_card_cache->use_cache()) {
1035     _hot_card_cache->reset_hot_cache();
1036   }
1037 
1038   // Discard all remembered set updates.
1039   JavaThread::dirty_card_queue_set().abandon_logs();
1040   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1041 }
1042 
1043 void G1CollectedHeap::verify_after_full_collection() {
1044   _hrm.verify_optional();
1045   _verifier->verify_region_sets_optional();
1046   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1047   // Clear the previous marking bitmap, if needed for bitmap verification.
1048   // Note we cannot do this when we clear the next marking bitmap in
1049   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1050   // objects marked during a full GC against the previous bitmap.
1051   // But we need to clear it before calling check_bitmaps below since
1052   // the full GC has compacted objects and updated TAMS but not updated
1053   // the prev bitmap.
1054   if (G1VerifyBitmaps) {
1055     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1056     _cm->clear_prev_bitmap(workers());
1057   }
1058   _verifier->check_bitmaps("Full GC End");
1059 
1060   // At this point there should be no regions in the
1061   // entire heap tagged as young.
1062   assert(check_young_list_empty(), "young list should be empty at this point");
1063 
1064   // Note: since we've just done a full GC, concurrent
1065   // marking is no longer active. Therefore we need not
1066   // re-enable reference discovery for the CM ref processor.
1067   // That will be done at the start of the next marking cycle.
1068   // We also know that the STW processor should no longer
1069   // discover any new references.
1070   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1071   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1072   ref_processor_stw()->verify_no_references_recorded();
1073   ref_processor_cm()->verify_no_references_recorded();
1074 }
1075 
1076 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1077   // Post collection logging.
1078   // We should do this after we potentially resize the heap so
1079   // that all the COMMIT / UNCOMMIT events are generated before
1080   // the compaction events.
1081   print_hrm_post_compaction();
1082   heap_transition->print();
1083   print_heap_after_gc();
1084   print_heap_regions();
1085 #ifdef TRACESPINNING
1086   ParallelTaskTerminator::print_termination_counts();
1087 #endif
1088 }
1089 
1090 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1091                                          bool clear_all_soft_refs) {
1092   assert_at_safepoint_on_vm_thread();
1093 
1094   if (GCLocker::check_active_before_gc()) {
1095     // Full GC was not completed.
1096     return false;
1097   }
1098 
1099   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1100       soft_ref_policy()->should_clear_all_soft_refs();
1101 
1102   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1103   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1104 
1105   collector.prepare_collection();
1106   collector.collect();
1107   collector.complete_collection();
1108 
1109   // Full collection was successfully completed.
1110   return true;
1111 }
1112 
1113 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1114   // Currently, there is no facility in the do_full_collection(bool) API to notify
1115   // the caller that the collection did not succeed (e.g., because it was locked
1116   // out by the GC locker). So, right now, we'll ignore the return value.
1117   bool dummy = do_full_collection(true,                /* explicit_gc */
1118                                   clear_all_soft_refs);
1119 }
1120 
1121 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1122   // Capacity, free and used after the GC counted as full regions to
1123   // include the waste in the following calculations.
1124   const size_t capacity_after_gc = capacity();
1125   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1126 
1127   // This is enforced in arguments.cpp.
1128   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1129          "otherwise the code below doesn't make sense");
1130 
1131   // We don't have floating point command-line arguments
1132   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1133   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1134   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1135   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1136 
1137   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1138   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1139 
1140   // We have to be careful here as these two calculations can overflow
1141   // 32-bit size_t's.
1142   double used_after_gc_d = (double) used_after_gc;
1143   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1144   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1145 
1146   // Let's make sure that they are both under the max heap size, which
1147   // by default will make them fit into a size_t.
1148   double desired_capacity_upper_bound = (double) max_heap_size;
1149   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1150                                     desired_capacity_upper_bound);
1151   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1152                                     desired_capacity_upper_bound);
1153 
1154   // We can now safely turn them into size_t's.
1155   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1156   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1157 
1158   // This assert only makes sense here, before we adjust them
1159   // with respect to the min and max heap size.
1160   assert(minimum_desired_capacity <= maximum_desired_capacity,
1161          "minimum_desired_capacity = " SIZE_FORMAT ", "
1162          "maximum_desired_capacity = " SIZE_FORMAT,
1163          minimum_desired_capacity, maximum_desired_capacity);
1164 
1165   // Should not be greater than the heap max size. No need to adjust
1166   // it with respect to the heap min size as it's a lower bound (i.e.,
1167   // we'll try to make the capacity larger than it, not smaller).
1168   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1169   // Should not be less than the heap min size. No need to adjust it
1170   // with respect to the heap max size as it's an upper bound (i.e.,
1171   // we'll try to make the capacity smaller than it, not greater).
1172   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1173 
1174   if (capacity_after_gc < minimum_desired_capacity) {
1175     // Don't expand unless it's significant
1176     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1177 
1178     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1179                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1180                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1181                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1182 
1183     expand(expand_bytes, _workers);
1184 
1185     // No expansion, now see if we want to shrink
1186   } else if (capacity_after_gc > maximum_desired_capacity) {
1187     // Capacity too large, compute shrinking size
1188     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1189 
1190     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1191                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1192                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1193                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1194 
1195     shrink(shrink_bytes);
1196   }
1197 }
1198 
1199 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1200                                                             bool do_gc,
1201                                                             bool clear_all_soft_refs,
1202                                                             bool expect_null_mutator_alloc_region,
1203                                                             bool* gc_succeeded) {
1204   *gc_succeeded = true;
1205   // Let's attempt the allocation first.
1206   HeapWord* result =
1207     attempt_allocation_at_safepoint(word_size,
1208                                     expect_null_mutator_alloc_region);
1209   if (result != NULL) {
1210     return result;
1211   }
1212 
1213   // In a G1 heap, we're supposed to keep allocation from failing by
1214   // incremental pauses.  Therefore, at least for now, we'll favor
1215   // expansion over collection.  (This might change in the future if we can
1216   // do something smarter than full collection to satisfy a failed alloc.)
1217   result = expand_and_allocate(word_size);
1218   if (result != NULL) {
1219     return result;
1220   }
1221 
1222   if (do_gc) {
1223     // Expansion didn't work, we'll try to do a Full GC.
1224     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1225                                        clear_all_soft_refs);
1226   }
1227 
1228   return NULL;
1229 }
1230 
1231 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1232                                                      bool* succeeded) {
1233   assert_at_safepoint_on_vm_thread();
1234 
1235   // Attempts to allocate followed by Full GC.
1236   HeapWord* result =
1237     satisfy_failed_allocation_helper(word_size,
1238                                      true,  /* do_gc */
1239                                      false, /* clear_all_soft_refs */
1240                                      false, /* expect_null_mutator_alloc_region */
1241                                      succeeded);
1242 
1243   if (result != NULL || !*succeeded) {
1244     return result;
1245   }
1246 
1247   // Attempts to allocate followed by Full GC that will collect all soft references.
1248   result = satisfy_failed_allocation_helper(word_size,
1249                                             true, /* do_gc */
1250                                             true, /* clear_all_soft_refs */
1251                                             true, /* expect_null_mutator_alloc_region */
1252                                             succeeded);
1253 
1254   if (result != NULL || !*succeeded) {
1255     return result;
1256   }
1257 
1258   // Attempts to allocate, no GC
1259   result = satisfy_failed_allocation_helper(word_size,
1260                                             false, /* do_gc */
1261                                             false, /* clear_all_soft_refs */
1262                                             true,  /* expect_null_mutator_alloc_region */
1263                                             succeeded);
1264 
1265   if (result != NULL) {
1266     return result;
1267   }
1268 
1269   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1270          "Flag should have been handled and cleared prior to this point");
1271 
1272   // What else?  We might try synchronous finalization later.  If the total
1273   // space available is large enough for the allocation, then a more
1274   // complete compaction phase than we've tried so far might be
1275   // appropriate.
1276   return NULL;
1277 }
1278 
1279 // Attempting to expand the heap sufficiently
1280 // to support an allocation of the given "word_size".  If
1281 // successful, perform the allocation and return the address of the
1282 // allocated block, or else "NULL".
1283 
1284 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1285   assert_at_safepoint_on_vm_thread();
1286 
1287   _verifier->verify_region_sets_optional();
1288 
1289   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1290   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1291                             word_size * HeapWordSize);
1292 
1293 
1294   if (expand(expand_bytes, _workers)) {
1295     _hrm.verify_optional();
1296     _verifier->verify_region_sets_optional();
1297     return attempt_allocation_at_safepoint(word_size,
1298                                            false /* expect_null_mutator_alloc_region */);
1299   }
1300   return NULL;
1301 }
1302 
1303 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1304   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1305   aligned_expand_bytes = align_up(aligned_expand_bytes,
1306                                        HeapRegion::GrainBytes);
1307 
1308   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1309                             expand_bytes, aligned_expand_bytes);
1310 
1311   if (is_maximal_no_gc()) {
1312     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1313     return false;
1314   }
1315 
1316   double expand_heap_start_time_sec = os::elapsedTime();
1317   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1318   assert(regions_to_expand > 0, "Must expand by at least one region");
1319 
1320   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1321   if (expand_time_ms != NULL) {
1322     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1323   }
1324 
1325   if (expanded_by > 0) {
1326     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1327     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1328     g1_policy()->record_new_heap_size(num_regions());
1329   } else {
1330     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1331 
1332     // The expansion of the virtual storage space was unsuccessful.
1333     // Let's see if it was because we ran out of swap.
1334     if (G1ExitOnExpansionFailure &&
1335         _hrm.available() >= regions_to_expand) {
1336       // We had head room...
1337       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1338     }
1339   }
1340   return regions_to_expand > 0;
1341 }
1342 
1343 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1344   size_t aligned_shrink_bytes =
1345     ReservedSpace::page_align_size_down(shrink_bytes);
1346   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1347                                          HeapRegion::GrainBytes);
1348   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1349 
1350   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1351   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1352 
1353 
1354   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1355                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1356   if (num_regions_removed > 0) {
1357     g1_policy()->record_new_heap_size(num_regions());
1358   } else {
1359     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1360   }
1361 }
1362 
1363 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1364   _verifier->verify_region_sets_optional();
1365 
1366   // We should only reach here at the end of a Full GC which means we
1367   // should not not be holding to any GC alloc regions. The method
1368   // below will make sure of that and do any remaining clean up.
1369   _allocator->abandon_gc_alloc_regions();
1370 
1371   // Instead of tearing down / rebuilding the free lists here, we
1372   // could instead use the remove_all_pending() method on free_list to
1373   // remove only the ones that we need to remove.
1374   tear_down_region_sets(true /* free_list_only */);
1375   shrink_helper(shrink_bytes);
1376   rebuild_region_sets(true /* free_list_only */);
1377 
1378   _hrm.verify_optional();
1379   _verifier->verify_region_sets_optional();
1380 }
1381 
1382 // Public methods.
1383 
1384 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1385   CollectedHeap(),
1386   _young_gen_sampling_thread(NULL),
1387   _collector_policy(collector_policy),
1388   _soft_ref_policy(),
1389   _card_table(NULL),
1390   _memory_manager("G1 Young Generation", "end of minor GC"),
1391   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1392   _eden_pool(NULL),
1393   _survivor_pool(NULL),
1394   _old_pool(NULL),
1395   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1396   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1397   _g1_policy(new G1Policy(_gc_timer_stw)),
1398   _collection_set(this, _g1_policy),
1399   _dirty_card_queue_set(false),
1400   _is_alive_closure_cm(this),
1401   _is_alive_closure_stw(this),
1402   _ref_processor_cm(NULL),
1403   _ref_processor_stw(NULL),
1404   _bot(NULL),
1405   _hot_card_cache(NULL),
1406   _g1_rem_set(NULL),
1407   _cr(NULL),
1408   _g1mm(NULL),
1409   _preserved_marks_set(true /* in_c_heap */),
1410   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1411   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1412   _humongous_reclaim_candidates(),
1413   _has_humongous_reclaim_candidates(false),
1414   _archive_allocator(NULL),
1415   _summary_bytes_used(0),
1416   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1417   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1418   _expand_heap_after_alloc_failure(true),
1419   _old_marking_cycles_started(0),
1420   _old_marking_cycles_completed(0),
1421   _in_cset_fast_test() {
1422 
1423   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1424                           /* are_GC_task_threads */true,
1425                           /* are_ConcurrentGC_threads */false);
1426   _workers->initialize_workers();
1427   _verifier = new G1HeapVerifier(this);
1428 
1429   _allocator = new G1DefaultAllocator(this);
1430 
1431   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1432 
1433   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1434 
1435   // Override the default _filler_array_max_size so that no humongous filler
1436   // objects are created.
1437   _filler_array_max_size = _humongous_object_threshold_in_words;
1438 
1439   uint n_queues = ParallelGCThreads;
1440   _task_queues = new RefToScanQueueSet(n_queues);
1441 
1442   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1443 
1444   for (uint i = 0; i < n_queues; i++) {
1445     RefToScanQueue* q = new RefToScanQueue();
1446     q->initialize();
1447     _task_queues->register_queue(i, q);
1448     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1449   }
1450 
1451   // Initialize the G1EvacuationFailureALot counters and flags.
1452   NOT_PRODUCT(reset_evacuation_should_fail();)
1453 
1454   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1455 }
1456 
1457 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1458                                                                  size_t size,
1459                                                                  size_t translation_factor) {
1460   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1461   // Allocate a new reserved space, preferring to use large pages.
1462   ReservedSpace rs(size, preferred_page_size);
1463   G1RegionToSpaceMapper* result  =
1464     G1RegionToSpaceMapper::create_mapper(rs,
1465                                          size,
1466                                          rs.alignment(),
1467                                          HeapRegion::GrainBytes,
1468                                          translation_factor,
1469                                          mtGC);
1470 
1471   os::trace_page_sizes_for_requested_size(description,
1472                                           size,
1473                                           preferred_page_size,
1474                                           rs.alignment(),
1475                                           rs.base(),
1476                                           rs.size());
1477 
1478   return result;
1479 }
1480 
1481 jint G1CollectedHeap::initialize_concurrent_refinement() {
1482   jint ecode = JNI_OK;
1483   _cr = G1ConcurrentRefine::create(&ecode);
1484   return ecode;
1485 }
1486 
1487 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1488   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1489   if (_young_gen_sampling_thread->osthread() == NULL) {
1490     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1491     return JNI_ENOMEM;
1492   }
1493   return JNI_OK;
1494 }
1495 
1496 jint G1CollectedHeap::initialize() {
1497   os::enable_vtime();
1498 
1499   // Necessary to satisfy locking discipline assertions.
1500 
1501   MutexLocker x(Heap_lock);
1502 
1503   // While there are no constraints in the GC code that HeapWordSize
1504   // be any particular value, there are multiple other areas in the
1505   // system which believe this to be true (e.g. oop->object_size in some
1506   // cases incorrectly returns the size in wordSize units rather than
1507   // HeapWordSize).
1508   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1509 
1510   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1511   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1512   size_t heap_alignment = collector_policy()->heap_alignment();
1513 
1514   // Ensure that the sizes are properly aligned.
1515   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1516   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1517   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1518 
1519   // Reserve the maximum.
1520 
1521   // When compressed oops are enabled, the preferred heap base
1522   // is calculated by subtracting the requested size from the
1523   // 32Gb boundary and using the result as the base address for
1524   // heap reservation. If the requested size is not aligned to
1525   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1526   // into the ReservedHeapSpace constructor) then the actual
1527   // base of the reserved heap may end up differing from the
1528   // address that was requested (i.e. the preferred heap base).
1529   // If this happens then we could end up using a non-optimal
1530   // compressed oops mode.
1531 
1532   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1533                                                  heap_alignment);
1534 
1535   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1536 
1537   // Create the barrier set for the entire reserved region.
1538   G1CardTable* ct = new G1CardTable(reserved_region());
1539   ct->initialize();
1540   G1BarrierSet* bs = new G1BarrierSet(ct);
1541   bs->initialize();
1542   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1543   set_barrier_set(bs);
1544   _card_table = ct;
1545 
1546   // Create the hot card cache.
1547   _hot_card_cache = new G1HotCardCache(this);
1548 
1549   // Carve out the G1 part of the heap.
1550   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1551   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1552   G1RegionToSpaceMapper* heap_storage =
1553     G1RegionToSpaceMapper::create_mapper(g1_rs,
1554                                          g1_rs.size(),
1555                                          page_size,
1556                                          HeapRegion::GrainBytes,
1557                                          1,
1558                                          mtJavaHeap);
1559   os::trace_page_sizes("Heap",
1560                        collector_policy()->min_heap_byte_size(),
1561                        max_byte_size,
1562                        page_size,
1563                        heap_rs.base(),
1564                        heap_rs.size());
1565   heap_storage->set_mapping_changed_listener(&_listener);
1566 
1567   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1568   G1RegionToSpaceMapper* bot_storage =
1569     create_aux_memory_mapper("Block Offset Table",
1570                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1571                              G1BlockOffsetTable::heap_map_factor());
1572 
1573   G1RegionToSpaceMapper* cardtable_storage =
1574     create_aux_memory_mapper("Card Table",
1575                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1576                              G1CardTable::heap_map_factor());
1577 
1578   G1RegionToSpaceMapper* card_counts_storage =
1579     create_aux_memory_mapper("Card Counts Table",
1580                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1581                              G1CardCounts::heap_map_factor());
1582 
1583   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1584   G1RegionToSpaceMapper* prev_bitmap_storage =
1585     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1586   G1RegionToSpaceMapper* next_bitmap_storage =
1587     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1588 
1589   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1590   _card_table->initialize(cardtable_storage);
1591   // Do later initialization work for concurrent refinement.
1592   _hot_card_cache->initialize(card_counts_storage);
1593 
1594   // 6843694 - ensure that the maximum region index can fit
1595   // in the remembered set structures.
1596   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1597   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1598 
1599   // Also create a G1 rem set.
1600   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1601   _g1_rem_set->initialize(max_capacity(), max_regions());
1602 
1603   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1604   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1605   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1606             "too many cards per region");
1607 
1608   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1609 
1610   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1611 
1612   {
1613     HeapWord* start = _hrm.reserved().start();
1614     HeapWord* end = _hrm.reserved().end();
1615     size_t granularity = HeapRegion::GrainBytes;
1616 
1617     _in_cset_fast_test.initialize(start, end, granularity);
1618     _humongous_reclaim_candidates.initialize(start, end, granularity);
1619   }
1620 
1621   // Create the G1ConcurrentMark data structure and thread.
1622   // (Must do this late, so that "max_regions" is defined.)
1623   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1624   if (_cm == NULL || !_cm->completed_initialization()) {
1625     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1626     return JNI_ENOMEM;
1627   }
1628   _cmThread = _cm->cm_thread();
1629 
1630   // Now expand into the initial heap size.
1631   if (!expand(init_byte_size, _workers)) {
1632     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1633     return JNI_ENOMEM;
1634   }
1635 
1636   // Perform any initialization actions delegated to the policy.
1637   g1_policy()->init(this, &_collection_set);
1638 
1639   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1640                                                SATB_Q_FL_lock,
1641                                                G1SATBProcessCompletedThreshold,
1642                                                Shared_SATB_Q_lock);
1643 
1644   jint ecode = initialize_concurrent_refinement();
1645   if (ecode != JNI_OK) {
1646     return ecode;
1647   }
1648 
1649   ecode = initialize_young_gen_sampling_thread();
1650   if (ecode != JNI_OK) {
1651     return ecode;
1652   }
1653 
1654   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1655                                                 DirtyCardQ_FL_lock,
1656                                                 (int)concurrent_refine()->yellow_zone(),
1657                                                 (int)concurrent_refine()->red_zone(),
1658                                                 Shared_DirtyCardQ_lock,
1659                                                 NULL,  // fl_owner
1660                                                 true); // init_free_ids
1661 
1662   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1663                                     DirtyCardQ_FL_lock,
1664                                     -1, // never trigger processing
1665                                     -1, // no limit on length
1666                                     Shared_DirtyCardQ_lock,
1667                                     &JavaThread::dirty_card_queue_set());
1668 
1669   // Here we allocate the dummy HeapRegion that is required by the
1670   // G1AllocRegion class.
1671   HeapRegion* dummy_region = _hrm.get_dummy_region();
1672 
1673   // We'll re-use the same region whether the alloc region will
1674   // require BOT updates or not and, if it doesn't, then a non-young
1675   // region will complain that it cannot support allocations without
1676   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1677   dummy_region->set_eden();
1678   // Make sure it's full.
1679   dummy_region->set_top(dummy_region->end());
1680   G1AllocRegion::setup(this, dummy_region);
1681 
1682   _allocator->init_mutator_alloc_region();
1683 
1684   // Do create of the monitoring and management support so that
1685   // values in the heap have been properly initialized.
1686   _g1mm = new G1MonitoringSupport(this);
1687 
1688   G1StringDedup::initialize();
1689 
1690   _preserved_marks_set.init(ParallelGCThreads);
1691 
1692   _collection_set.initialize(max_regions());
1693 
1694   return JNI_OK;
1695 }
1696 
1697 void G1CollectedHeap::initialize_serviceability() {
1698   _eden_pool = new G1EdenPool(this);
1699   _survivor_pool = new G1SurvivorPool(this);
1700   _old_pool = new G1OldGenPool(this);
1701 
1702   _full_gc_memory_manager.add_pool(_eden_pool);
1703   _full_gc_memory_manager.add_pool(_survivor_pool);
1704   _full_gc_memory_manager.add_pool(_old_pool);
1705 
1706   _memory_manager.add_pool(_eden_pool);
1707   _memory_manager.add_pool(_survivor_pool);
1708 
1709 }
1710 
1711 void G1CollectedHeap::stop() {
1712   // Stop all concurrent threads. We do this to make sure these threads
1713   // do not continue to execute and access resources (e.g. logging)
1714   // that are destroyed during shutdown.
1715   _cr->stop();
1716   _young_gen_sampling_thread->stop();
1717   _cmThread->stop();
1718   if (G1StringDedup::is_enabled()) {
1719     G1StringDedup::stop();
1720   }
1721 }
1722 
1723 void G1CollectedHeap::safepoint_synchronize_begin() {
1724   SuspendibleThreadSet::synchronize();
1725 }
1726 
1727 void G1CollectedHeap::safepoint_synchronize_end() {
1728   SuspendibleThreadSet::desynchronize();
1729 }
1730 
1731 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1732   return HeapRegion::max_region_size();
1733 }
1734 
1735 void G1CollectedHeap::post_initialize() {
1736   CollectedHeap::post_initialize();
1737   ref_processing_init();
1738 }
1739 
1740 void G1CollectedHeap::ref_processing_init() {
1741   // Reference processing in G1 currently works as follows:
1742   //
1743   // * There are two reference processor instances. One is
1744   //   used to record and process discovered references
1745   //   during concurrent marking; the other is used to
1746   //   record and process references during STW pauses
1747   //   (both full and incremental).
1748   // * Both ref processors need to 'span' the entire heap as
1749   //   the regions in the collection set may be dotted around.
1750   //
1751   // * For the concurrent marking ref processor:
1752   //   * Reference discovery is enabled at initial marking.
1753   //   * Reference discovery is disabled and the discovered
1754   //     references processed etc during remarking.
1755   //   * Reference discovery is MT (see below).
1756   //   * Reference discovery requires a barrier (see below).
1757   //   * Reference processing may or may not be MT
1758   //     (depending on the value of ParallelRefProcEnabled
1759   //     and ParallelGCThreads).
1760   //   * A full GC disables reference discovery by the CM
1761   //     ref processor and abandons any entries on it's
1762   //     discovered lists.
1763   //
1764   // * For the STW processor:
1765   //   * Non MT discovery is enabled at the start of a full GC.
1766   //   * Processing and enqueueing during a full GC is non-MT.
1767   //   * During a full GC, references are processed after marking.
1768   //
1769   //   * Discovery (may or may not be MT) is enabled at the start
1770   //     of an incremental evacuation pause.
1771   //   * References are processed near the end of a STW evacuation pause.
1772   //   * For both types of GC:
1773   //     * Discovery is atomic - i.e. not concurrent.
1774   //     * Reference discovery will not need a barrier.
1775 
1776   MemRegion mr = reserved_region();
1777 
1778   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1779 
1780   // Concurrent Mark ref processor
1781   _ref_processor_cm =
1782     new ReferenceProcessor(mr,    // span
1783                            mt_processing,
1784                                 // mt processing
1785                            ParallelGCThreads,
1786                                 // degree of mt processing
1787                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1788                                 // mt discovery
1789                            MAX2(ParallelGCThreads, ConcGCThreads),
1790                                 // degree of mt discovery
1791                            false,
1792                                 // Reference discovery is not atomic
1793                            &_is_alive_closure_cm);
1794                                 // is alive closure
1795                                 // (for efficiency/performance)
1796 
1797   // STW ref processor
1798   _ref_processor_stw =
1799     new ReferenceProcessor(mr,    // span
1800                            mt_processing,
1801                                 // mt processing
1802                            ParallelGCThreads,
1803                                 // degree of mt processing
1804                            (ParallelGCThreads > 1),
1805                                 // mt discovery
1806                            ParallelGCThreads,
1807                                 // degree of mt discovery
1808                            true,
1809                                 // Reference discovery is atomic
1810                            &_is_alive_closure_stw);
1811                                 // is alive closure
1812                                 // (for efficiency/performance)
1813 }
1814 
1815 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1816   return _collector_policy;
1817 }
1818 
1819 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1820   return &_soft_ref_policy;
1821 }
1822 
1823 size_t G1CollectedHeap::capacity() const {
1824   return _hrm.length() * HeapRegion::GrainBytes;
1825 }
1826 
1827 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1828   return _hrm.total_free_bytes();
1829 }
1830 
1831 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1832   _hot_card_cache->drain(cl, worker_i);
1833 }
1834 
1835 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1836   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1837   size_t n_completed_buffers = 0;
1838   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1839     n_completed_buffers++;
1840   }
1841   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1842   dcqs.clear_n_completed_buffers();
1843   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1844 }
1845 
1846 // Computes the sum of the storage used by the various regions.
1847 size_t G1CollectedHeap::used() const {
1848   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1849   if (_archive_allocator != NULL) {
1850     result += _archive_allocator->used();
1851   }
1852   return result;
1853 }
1854 
1855 size_t G1CollectedHeap::used_unlocked() const {
1856   return _summary_bytes_used;
1857 }
1858 
1859 class SumUsedClosure: public HeapRegionClosure {
1860   size_t _used;
1861 public:
1862   SumUsedClosure() : _used(0) {}
1863   bool do_heap_region(HeapRegion* r) {
1864     _used += r->used();
1865     return false;
1866   }
1867   size_t result() { return _used; }
1868 };
1869 
1870 size_t G1CollectedHeap::recalculate_used() const {
1871   double recalculate_used_start = os::elapsedTime();
1872 
1873   SumUsedClosure blk;
1874   heap_region_iterate(&blk);
1875 
1876   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1877   return blk.result();
1878 }
1879 
1880 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1881   switch (cause) {
1882     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1883     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1884     case GCCause::_wb_conc_mark:                        return true;
1885     default :                                           return false;
1886   }
1887 }
1888 
1889 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1890   switch (cause) {
1891     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1892     case GCCause::_g1_humongous_allocation: return true;
1893     default:                                return is_user_requested_concurrent_full_gc(cause);
1894   }
1895 }
1896 
1897 #ifndef PRODUCT
1898 void G1CollectedHeap::allocate_dummy_regions() {
1899   // Let's fill up most of the region
1900   size_t word_size = HeapRegion::GrainWords - 1024;
1901   // And as a result the region we'll allocate will be humongous.
1902   guarantee(is_humongous(word_size), "sanity");
1903 
1904   // _filler_array_max_size is set to humongous object threshold
1905   // but temporarily change it to use CollectedHeap::fill_with_object().
1906   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1907 
1908   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1909     // Let's use the existing mechanism for the allocation
1910     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1911     if (dummy_obj != NULL) {
1912       MemRegion mr(dummy_obj, word_size);
1913       CollectedHeap::fill_with_object(mr);
1914     } else {
1915       // If we can't allocate once, we probably cannot allocate
1916       // again. Let's get out of the loop.
1917       break;
1918     }
1919   }
1920 }
1921 #endif // !PRODUCT
1922 
1923 void G1CollectedHeap::increment_old_marking_cycles_started() {
1924   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1925          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1926          "Wrong marking cycle count (started: %d, completed: %d)",
1927          _old_marking_cycles_started, _old_marking_cycles_completed);
1928 
1929   _old_marking_cycles_started++;
1930 }
1931 
1932 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1933   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1934 
1935   // We assume that if concurrent == true, then the caller is a
1936   // concurrent thread that was joined the Suspendible Thread
1937   // Set. If there's ever a cheap way to check this, we should add an
1938   // assert here.
1939 
1940   // Given that this method is called at the end of a Full GC or of a
1941   // concurrent cycle, and those can be nested (i.e., a Full GC can
1942   // interrupt a concurrent cycle), the number of full collections
1943   // completed should be either one (in the case where there was no
1944   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1945   // behind the number of full collections started.
1946 
1947   // This is the case for the inner caller, i.e. a Full GC.
1948   assert(concurrent ||
1949          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1950          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1951          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1952          "is inconsistent with _old_marking_cycles_completed = %u",
1953          _old_marking_cycles_started, _old_marking_cycles_completed);
1954 
1955   // This is the case for the outer caller, i.e. the concurrent cycle.
1956   assert(!concurrent ||
1957          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1958          "for outer caller (concurrent cycle): "
1959          "_old_marking_cycles_started = %u "
1960          "is inconsistent with _old_marking_cycles_completed = %u",
1961          _old_marking_cycles_started, _old_marking_cycles_completed);
1962 
1963   _old_marking_cycles_completed += 1;
1964 
1965   // We need to clear the "in_progress" flag in the CM thread before
1966   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1967   // is set) so that if a waiter requests another System.gc() it doesn't
1968   // incorrectly see that a marking cycle is still in progress.
1969   if (concurrent) {
1970     _cmThread->set_idle();
1971   }
1972 
1973   // This notify_all() will ensure that a thread that called
1974   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
1975   // and it's waiting for a full GC to finish will be woken up. It is
1976   // waiting in VM_G1CollectForAllocation::doit_epilogue().
1977   FullGCCount_lock->notify_all();
1978 }
1979 
1980 void G1CollectedHeap::collect(GCCause::Cause cause) {
1981   assert_heap_not_locked();
1982 
1983   uint gc_count_before;
1984   uint old_marking_count_before;
1985   uint full_gc_count_before;
1986   bool retry_gc;
1987 
1988   do {
1989     retry_gc = false;
1990 
1991     {
1992       MutexLocker ml(Heap_lock);
1993 
1994       // Read the GC count while holding the Heap_lock
1995       gc_count_before = total_collections();
1996       full_gc_count_before = total_full_collections();
1997       old_marking_count_before = _old_marking_cycles_started;
1998     }
1999 
2000     if (should_do_concurrent_full_gc(cause)) {
2001       // Schedule an initial-mark evacuation pause that will start a
2002       // concurrent cycle. We're setting word_size to 0 which means that
2003       // we are not requesting a post-GC allocation.
2004       VM_G1CollectForAllocation op(0,     /* word_size */
2005                                    gc_count_before,
2006                                    cause,
2007                                    true,  /* should_initiate_conc_mark */
2008                                    g1_policy()->max_pause_time_ms());
2009       VMThread::execute(&op);
2010       if (!op.pause_succeeded()) {
2011         if (old_marking_count_before == _old_marking_cycles_started) {
2012           retry_gc = op.should_retry_gc();
2013         } else {
2014           // A Full GC happened while we were trying to schedule the
2015           // initial-mark GC. No point in starting a new cycle given
2016           // that the whole heap was collected anyway.
2017         }
2018 
2019         if (retry_gc) {
2020           if (GCLocker::is_active_and_needs_gc()) {
2021             GCLocker::stall_until_clear();
2022           }
2023         }
2024       }
2025     } else {
2026       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2027           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2028 
2029         // Schedule a standard evacuation pause. We're setting word_size
2030         // to 0 which means that we are not requesting a post-GC allocation.
2031         VM_G1CollectForAllocation op(0,     /* word_size */
2032                                      gc_count_before,
2033                                      cause,
2034                                      false, /* should_initiate_conc_mark */
2035                                      g1_policy()->max_pause_time_ms());
2036         VMThread::execute(&op);
2037       } else {
2038         // Schedule a Full GC.
2039         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2040         VMThread::execute(&op);
2041       }
2042     }
2043   } while (retry_gc);
2044 }
2045 
2046 bool G1CollectedHeap::is_in(const void* p) const {
2047   if (_hrm.reserved().contains(p)) {
2048     // Given that we know that p is in the reserved space,
2049     // heap_region_containing() should successfully
2050     // return the containing region.
2051     HeapRegion* hr = heap_region_containing(p);
2052     return hr->is_in(p);
2053   } else {
2054     return false;
2055   }
2056 }
2057 
2058 #ifdef ASSERT
2059 bool G1CollectedHeap::is_in_exact(const void* p) const {
2060   bool contains = reserved_region().contains(p);
2061   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2062   if (contains && available) {
2063     return true;
2064   } else {
2065     return false;
2066   }
2067 }
2068 #endif
2069 
2070 // Iteration functions.
2071 
2072 // Iterates an ObjectClosure over all objects within a HeapRegion.
2073 
2074 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2075   ObjectClosure* _cl;
2076 public:
2077   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2078   bool do_heap_region(HeapRegion* r) {
2079     if (!r->is_continues_humongous()) {
2080       r->object_iterate(_cl);
2081     }
2082     return false;
2083   }
2084 };
2085 
2086 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2087   IterateObjectClosureRegionClosure blk(cl);
2088   heap_region_iterate(&blk);
2089 }
2090 
2091 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2092   _hrm.iterate(cl);
2093 }
2094 
2095 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2096                                                                  HeapRegionClaimer *hrclaimer,
2097                                                                  uint worker_id) const {
2098   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2099 }
2100 
2101 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2102                                                          HeapRegionClaimer *hrclaimer) const {
2103   _hrm.par_iterate(cl, hrclaimer, 0);
2104 }
2105 
2106 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2107   _collection_set.iterate(cl);
2108 }
2109 
2110 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2111   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2112 }
2113 
2114 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2115   HeapRegion* hr = heap_region_containing(addr);
2116   return hr->block_start(addr);
2117 }
2118 
2119 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2120   HeapRegion* hr = heap_region_containing(addr);
2121   return hr->block_size(addr);
2122 }
2123 
2124 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2125   HeapRegion* hr = heap_region_containing(addr);
2126   return hr->block_is_obj(addr);
2127 }
2128 
2129 bool G1CollectedHeap::supports_tlab_allocation() const {
2130   return true;
2131 }
2132 
2133 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2134   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2135 }
2136 
2137 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2138   return _eden.length() * HeapRegion::GrainBytes;
2139 }
2140 
2141 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2142 // must be equal to the humongous object limit.
2143 size_t G1CollectedHeap::max_tlab_size() const {
2144   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2145 }
2146 
2147 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2148   return _allocator->unsafe_max_tlab_alloc();
2149 }
2150 
2151 size_t G1CollectedHeap::max_capacity() const {
2152   return _hrm.reserved().byte_size();
2153 }
2154 
2155 jlong G1CollectedHeap::millis_since_last_gc() {
2156   // See the notes in GenCollectedHeap::millis_since_last_gc()
2157   // for more information about the implementation.
2158   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2159     _g1_policy->collection_pause_end_millis();
2160   if (ret_val < 0) {
2161     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2162       ". returning zero instead.", ret_val);
2163     return 0;
2164   }
2165   return ret_val;
2166 }
2167 
2168 void G1CollectedHeap::prepare_for_verify() {
2169   _verifier->prepare_for_verify();
2170 }
2171 
2172 void G1CollectedHeap::verify(VerifyOption vo) {
2173   _verifier->verify(vo);
2174 }
2175 
2176 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2177   return true;
2178 }
2179 
2180 const char* const* G1CollectedHeap::concurrent_phases() const {
2181   return _cmThread->concurrent_phases();
2182 }
2183 
2184 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2185   return _cmThread->request_concurrent_phase(phase);
2186 }
2187 
2188 class PrintRegionClosure: public HeapRegionClosure {
2189   outputStream* _st;
2190 public:
2191   PrintRegionClosure(outputStream* st) : _st(st) {}
2192   bool do_heap_region(HeapRegion* r) {
2193     r->print_on(_st);
2194     return false;
2195   }
2196 };
2197 
2198 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2199                                        const HeapRegion* hr,
2200                                        const VerifyOption vo) const {
2201   switch (vo) {
2202   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2203   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2204   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2205   default:                            ShouldNotReachHere();
2206   }
2207   return false; // keep some compilers happy
2208 }
2209 
2210 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2211                                        const VerifyOption vo) const {
2212   switch (vo) {
2213   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2214   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2215   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2216   default:                            ShouldNotReachHere();
2217   }
2218   return false; // keep some compilers happy
2219 }
2220 
2221 void G1CollectedHeap::print_heap_regions() const {
2222   LogTarget(Trace, gc, heap, region) lt;
2223   if (lt.is_enabled()) {
2224     LogStream ls(lt);
2225     print_regions_on(&ls);
2226   }
2227 }
2228 
2229 void G1CollectedHeap::print_on(outputStream* st) const {
2230   st->print(" %-20s", "garbage-first heap");
2231   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2232             capacity()/K, used_unlocked()/K);
2233   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2234             p2i(_hrm.reserved().start()),
2235             p2i(_hrm.reserved().end()));
2236   st->cr();
2237   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2238   uint young_regions = young_regions_count();
2239   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2240             (size_t) young_regions * HeapRegion::GrainBytes / K);
2241   uint survivor_regions = survivor_regions_count();
2242   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2243             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2244   st->cr();
2245   MetaspaceUtils::print_on(st);
2246 }
2247 
2248 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2249   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2250                "HS=humongous(starts), HC=humongous(continues), "
2251                "CS=collection set, F=free, A=archive, "
2252                "TAMS=top-at-mark-start (previous, next)");
2253   PrintRegionClosure blk(st);
2254   heap_region_iterate(&blk);
2255 }
2256 
2257 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2258   print_on(st);
2259 
2260   // Print the per-region information.
2261   print_regions_on(st);
2262 }
2263 
2264 void G1CollectedHeap::print_on_error(outputStream* st) const {
2265   this->CollectedHeap::print_on_error(st);
2266 
2267   if (_cm != NULL) {
2268     st->cr();
2269     _cm->print_on_error(st);
2270   }
2271 }
2272 
2273 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2274   workers()->print_worker_threads_on(st);
2275   _cmThread->print_on(st);
2276   st->cr();
2277   _cm->print_worker_threads_on(st);
2278   _cr->print_threads_on(st);
2279   _young_gen_sampling_thread->print_on(st);
2280   if (G1StringDedup::is_enabled()) {
2281     G1StringDedup::print_worker_threads_on(st);
2282   }
2283 }
2284 
2285 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2286   workers()->threads_do(tc);
2287   tc->do_thread(_cmThread);
2288   _cm->threads_do(tc);
2289   _cr->threads_do(tc);
2290   tc->do_thread(_young_gen_sampling_thread);
2291   if (G1StringDedup::is_enabled()) {
2292     G1StringDedup::threads_do(tc);
2293   }
2294 }
2295 
2296 void G1CollectedHeap::print_tracing_info() const {
2297   g1_rem_set()->print_summary_info();
2298   concurrent_mark()->print_summary_info();
2299 }
2300 
2301 #ifndef PRODUCT
2302 // Helpful for debugging RSet issues.
2303 
2304 class PrintRSetsClosure : public HeapRegionClosure {
2305 private:
2306   const char* _msg;
2307   size_t _occupied_sum;
2308 
2309 public:
2310   bool do_heap_region(HeapRegion* r) {
2311     HeapRegionRemSet* hrrs = r->rem_set();
2312     size_t occupied = hrrs->occupied();
2313     _occupied_sum += occupied;
2314 
2315     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2316     if (occupied == 0) {
2317       tty->print_cr("  RSet is empty");
2318     } else {
2319       hrrs->print();
2320     }
2321     tty->print_cr("----------");
2322     return false;
2323   }
2324 
2325   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2326     tty->cr();
2327     tty->print_cr("========================================");
2328     tty->print_cr("%s", msg);
2329     tty->cr();
2330   }
2331 
2332   ~PrintRSetsClosure() {
2333     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2334     tty->print_cr("========================================");
2335     tty->cr();
2336   }
2337 };
2338 
2339 void G1CollectedHeap::print_cset_rsets() {
2340   PrintRSetsClosure cl("Printing CSet RSets");
2341   collection_set_iterate(&cl);
2342 }
2343 
2344 void G1CollectedHeap::print_all_rsets() {
2345   PrintRSetsClosure cl("Printing All RSets");;
2346   heap_region_iterate(&cl);
2347 }
2348 #endif // PRODUCT
2349 
2350 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2351 
2352   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2353   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2354   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2355 
2356   size_t eden_capacity_bytes =
2357     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2358 
2359   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2360   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2361                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2362 }
2363 
2364 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2365   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2366                        stats->unused(), stats->used(), stats->region_end_waste(),
2367                        stats->regions_filled(), stats->direct_allocated(),
2368                        stats->failure_used(), stats->failure_waste());
2369 }
2370 
2371 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2372   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2373   gc_tracer->report_gc_heap_summary(when, heap_summary);
2374 
2375   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2376   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2377 }
2378 
2379 G1CollectedHeap* G1CollectedHeap::heap() {
2380   CollectedHeap* heap = Universe::heap();
2381   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2382   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2383   return (G1CollectedHeap*)heap;
2384 }
2385 
2386 void G1CollectedHeap::gc_prologue(bool full) {
2387   // always_do_update_barrier = false;
2388   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2389 
2390   // This summary needs to be printed before incrementing total collections.
2391   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2392 
2393   // Update common counters.
2394   increment_total_collections(full /* full gc */);
2395   if (full) {
2396     increment_old_marking_cycles_started();
2397   }
2398 
2399   // Fill TLAB's and such
2400   double start = os::elapsedTime();
2401   accumulate_statistics_all_tlabs();
2402   ensure_parsability(true);
2403   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2404 }
2405 
2406 void G1CollectedHeap::gc_epilogue(bool full) {
2407   // Update common counters.
2408   if (full) {
2409     // Update the number of full collections that have been completed.
2410     increment_old_marking_cycles_completed(false /* concurrent */);
2411   }
2412 
2413   // We are at the end of the GC. Total collections has already been increased.
2414   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2415 
2416   // FIXME: what is this about?
2417   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2418   // is set.
2419 #if COMPILER2_OR_JVMCI
2420   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2421 #endif
2422   // always_do_update_barrier = true;
2423 
2424   double start = os::elapsedTime();
2425   resize_all_tlabs();
2426   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2427 
2428   MemoryService::track_memory_usage();
2429   // We have just completed a GC. Update the soft reference
2430   // policy with the new heap occupancy
2431   Universe::update_heap_info_at_gc();
2432 }
2433 
2434 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2435                                                uint gc_count_before,
2436                                                bool* succeeded,
2437                                                GCCause::Cause gc_cause) {
2438   assert_heap_not_locked_and_not_at_safepoint();
2439   VM_G1CollectForAllocation op(word_size,
2440                                gc_count_before,
2441                                gc_cause,
2442                                false, /* should_initiate_conc_mark */
2443                                g1_policy()->max_pause_time_ms());
2444   VMThread::execute(&op);
2445 
2446   HeapWord* result = op.result();
2447   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2448   assert(result == NULL || ret_succeeded,
2449          "the result should be NULL if the VM did not succeed");
2450   *succeeded = ret_succeeded;
2451 
2452   assert_heap_not_locked();
2453   return result;
2454 }
2455 
2456 void G1CollectedHeap::do_concurrent_mark() {
2457   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2458   if (!_cmThread->in_progress()) {
2459     _cmThread->set_started();
2460     CGC_lock->notify();
2461   }
2462 }
2463 
2464 size_t G1CollectedHeap::pending_card_num() {
2465   size_t extra_cards = 0;
2466   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2467     DirtyCardQueue& dcq = curr->dirty_card_queue();
2468     extra_cards += dcq.size();
2469   }
2470   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2471   size_t buffer_size = dcqs.buffer_size();
2472   size_t buffer_num = dcqs.completed_buffers_num();
2473 
2474   return buffer_size * buffer_num + extra_cards;
2475 }
2476 
2477 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2478   // We don't nominate objects with many remembered set entries, on
2479   // the assumption that such objects are likely still live.
2480   HeapRegionRemSet* rem_set = r->rem_set();
2481 
2482   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2483          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2484          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2485 }
2486 
2487 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2488  private:
2489   size_t _total_humongous;
2490   size_t _candidate_humongous;
2491 
2492   DirtyCardQueue _dcq;
2493 
2494   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2495     assert(region->is_starts_humongous(), "Must start a humongous object");
2496 
2497     oop obj = oop(region->bottom());
2498 
2499     // Dead objects cannot be eager reclaim candidates. Due to class
2500     // unloading it is unsafe to query their classes so we return early.
2501     if (g1h->is_obj_dead(obj, region)) {
2502       return false;
2503     }
2504 
2505     // If we do not have a complete remembered set for the region, then we can
2506     // not be sure that we have all references to it.
2507     if (!region->rem_set()->is_complete()) {
2508       return false;
2509     }
2510     // Candidate selection must satisfy the following constraints
2511     // while concurrent marking is in progress:
2512     //
2513     // * In order to maintain SATB invariants, an object must not be
2514     // reclaimed if it was allocated before the start of marking and
2515     // has not had its references scanned.  Such an object must have
2516     // its references (including type metadata) scanned to ensure no
2517     // live objects are missed by the marking process.  Objects
2518     // allocated after the start of concurrent marking don't need to
2519     // be scanned.
2520     //
2521     // * An object must not be reclaimed if it is on the concurrent
2522     // mark stack.  Objects allocated after the start of concurrent
2523     // marking are never pushed on the mark stack.
2524     //
2525     // Nominating only objects allocated after the start of concurrent
2526     // marking is sufficient to meet both constraints.  This may miss
2527     // some objects that satisfy the constraints, but the marking data
2528     // structures don't support efficiently performing the needed
2529     // additional tests or scrubbing of the mark stack.
2530     //
2531     // However, we presently only nominate is_typeArray() objects.
2532     // A humongous object containing references induces remembered
2533     // set entries on other regions.  In order to reclaim such an
2534     // object, those remembered sets would need to be cleaned up.
2535     //
2536     // We also treat is_typeArray() objects specially, allowing them
2537     // to be reclaimed even if allocated before the start of
2538     // concurrent mark.  For this we rely on mark stack insertion to
2539     // exclude is_typeArray() objects, preventing reclaiming an object
2540     // that is in the mark stack.  We also rely on the metadata for
2541     // such objects to be built-in and so ensured to be kept live.
2542     // Frequent allocation and drop of large binary blobs is an
2543     // important use case for eager reclaim, and this special handling
2544     // may reduce needed headroom.
2545 
2546     return obj->is_typeArray() &&
2547            g1h->is_potential_eager_reclaim_candidate(region);
2548   }
2549 
2550  public:
2551   RegisterHumongousWithInCSetFastTestClosure()
2552   : _total_humongous(0),
2553     _candidate_humongous(0),
2554     _dcq(&JavaThread::dirty_card_queue_set()) {
2555   }
2556 
2557   virtual bool do_heap_region(HeapRegion* r) {
2558     if (!r->is_starts_humongous()) {
2559       return false;
2560     }
2561     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2562 
2563     bool is_candidate = humongous_region_is_candidate(g1h, r);
2564     uint rindex = r->hrm_index();
2565     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2566     if (is_candidate) {
2567       _candidate_humongous++;
2568       g1h->register_humongous_region_with_cset(rindex);
2569       // Is_candidate already filters out humongous object with large remembered sets.
2570       // If we have a humongous object with a few remembered sets, we simply flush these
2571       // remembered set entries into the DCQS. That will result in automatic
2572       // re-evaluation of their remembered set entries during the following evacuation
2573       // phase.
2574       if (!r->rem_set()->is_empty()) {
2575         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2576                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2577         G1CardTable* ct = g1h->card_table();
2578         HeapRegionRemSetIterator hrrs(r->rem_set());
2579         size_t card_index;
2580         while (hrrs.has_next(card_index)) {
2581           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2582           // The remembered set might contain references to already freed
2583           // regions. Filter out such entries to avoid failing card table
2584           // verification.
2585           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2586             if (*card_ptr != G1CardTable::dirty_card_val()) {
2587               *card_ptr = G1CardTable::dirty_card_val();
2588               _dcq.enqueue(card_ptr);
2589             }
2590           }
2591         }
2592         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2593                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2594                hrrs.n_yielded(), r->rem_set()->occupied());
2595         // We should only clear the card based remembered set here as we will not
2596         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2597         // (and probably never) we do not enter this path if there are other kind of
2598         // remembered sets for this region.
2599         r->rem_set()->clear_locked(true /* only_cardset */);
2600         // Clear_locked() above sets the state to Empty. However we want to continue
2601         // collecting remembered set entries for humongous regions that were not
2602         // reclaimed.
2603         r->rem_set()->set_state_complete();
2604       }
2605       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2606     }
2607     _total_humongous++;
2608 
2609     return false;
2610   }
2611 
2612   size_t total_humongous() const { return _total_humongous; }
2613   size_t candidate_humongous() const { return _candidate_humongous; }
2614 
2615   void flush_rem_set_entries() { _dcq.flush(); }
2616 };
2617 
2618 void G1CollectedHeap::register_humongous_regions_with_cset() {
2619   if (!G1EagerReclaimHumongousObjects) {
2620     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2621     return;
2622   }
2623   double time = os::elapsed_counter();
2624 
2625   // Collect reclaim candidate information and register candidates with cset.
2626   RegisterHumongousWithInCSetFastTestClosure cl;
2627   heap_region_iterate(&cl);
2628 
2629   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2630   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2631                                                                   cl.total_humongous(),
2632                                                                   cl.candidate_humongous());
2633   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2634 
2635   // Finally flush all remembered set entries to re-check into the global DCQS.
2636   cl.flush_rem_set_entries();
2637 }
2638 
2639 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2640   public:
2641     bool do_heap_region(HeapRegion* hr) {
2642       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2643         hr->verify_rem_set();
2644       }
2645       return false;
2646     }
2647 };
2648 
2649 uint G1CollectedHeap::num_task_queues() const {
2650   return _task_queues->size();
2651 }
2652 
2653 #if TASKQUEUE_STATS
2654 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2655   st->print_raw_cr("GC Task Stats");
2656   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2657   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2658 }
2659 
2660 void G1CollectedHeap::print_taskqueue_stats() const {
2661   if (!log_is_enabled(Trace, gc, task, stats)) {
2662     return;
2663   }
2664   Log(gc, task, stats) log;
2665   ResourceMark rm;
2666   LogStream ls(log.trace());
2667   outputStream* st = &ls;
2668 
2669   print_taskqueue_stats_hdr(st);
2670 
2671   TaskQueueStats totals;
2672   const uint n = num_task_queues();
2673   for (uint i = 0; i < n; ++i) {
2674     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2675     totals += task_queue(i)->stats;
2676   }
2677   st->print_raw("tot "); totals.print(st); st->cr();
2678 
2679   DEBUG_ONLY(totals.verify());
2680 }
2681 
2682 void G1CollectedHeap::reset_taskqueue_stats() {
2683   const uint n = num_task_queues();
2684   for (uint i = 0; i < n; ++i) {
2685     task_queue(i)->stats.reset();
2686   }
2687 }
2688 #endif // TASKQUEUE_STATS
2689 
2690 void G1CollectedHeap::wait_for_root_region_scanning() {
2691   double scan_wait_start = os::elapsedTime();
2692   // We have to wait until the CM threads finish scanning the
2693   // root regions as it's the only way to ensure that all the
2694   // objects on them have been correctly scanned before we start
2695   // moving them during the GC.
2696   bool waited = _cm->root_regions()->wait_until_scan_finished();
2697   double wait_time_ms = 0.0;
2698   if (waited) {
2699     double scan_wait_end = os::elapsedTime();
2700     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2701   }
2702   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2703 }
2704 
2705 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2706 private:
2707   G1HRPrinter* _hr_printer;
2708 public:
2709   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2710 
2711   virtual bool do_heap_region(HeapRegion* r) {
2712     _hr_printer->cset(r);
2713     return false;
2714   }
2715 };
2716 
2717 void G1CollectedHeap::start_new_collection_set() {
2718   collection_set()->start_incremental_building();
2719 
2720   clear_cset_fast_test();
2721 
2722   guarantee(_eden.length() == 0, "eden should have been cleared");
2723   g1_policy()->transfer_survivors_to_cset(survivor());
2724 }
2725 
2726 bool
2727 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2728   assert_at_safepoint_on_vm_thread();
2729   guarantee(!is_gc_active(), "collection is not reentrant");
2730 
2731   if (GCLocker::check_active_before_gc()) {
2732     return false;
2733   }
2734 
2735   _gc_timer_stw->register_gc_start();
2736 
2737   GCIdMark gc_id_mark;
2738   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2739 
2740   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2741   ResourceMark rm;
2742 
2743   g1_policy()->note_gc_start();
2744 
2745   wait_for_root_region_scanning();
2746 
2747   print_heap_before_gc();
2748   print_heap_regions();
2749   trace_heap_before_gc(_gc_tracer_stw);
2750 
2751   _verifier->verify_region_sets_optional();
2752   _verifier->verify_dirty_young_regions();
2753 
2754   // We should not be doing initial mark unless the conc mark thread is running
2755   if (!_cmThread->should_terminate()) {
2756     // This call will decide whether this pause is an initial-mark
2757     // pause. If it is, in_initial_mark_gc() will return true
2758     // for the duration of this pause.
2759     g1_policy()->decide_on_conc_mark_initiation();
2760   }
2761 
2762   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2763   assert(!collector_state()->in_initial_mark_gc() ||
2764           collector_state()->in_young_only_phase(), "sanity");
2765 
2766   // We also do not allow mixed GCs during marking.
2767   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2768 
2769   // Record whether this pause is an initial mark. When the current
2770   // thread has completed its logging output and it's safe to signal
2771   // the CM thread, the flag's value in the policy has been reset.
2772   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2773 
2774   // Inner scope for scope based logging, timers, and stats collection
2775   {
2776     EvacuationInfo evacuation_info;
2777 
2778     if (collector_state()->in_initial_mark_gc()) {
2779       // We are about to start a marking cycle, so we increment the
2780       // full collection counter.
2781       increment_old_marking_cycles_started();
2782       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2783     }
2784 
2785     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2786 
2787     GCTraceCPUTime tcpu;
2788 
2789     G1HeapVerifier::G1VerifyType verify_type;
2790     FormatBuffer<> gc_string("Pause ");
2791     if (collector_state()->in_initial_mark_gc()) {
2792       gc_string.append("Initial Mark");
2793       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2794     } else if (collector_state()->in_young_only_phase()) {
2795       gc_string.append("Young");
2796       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2797     } else {
2798       gc_string.append("Mixed");
2799       verify_type = G1HeapVerifier::G1VerifyMixed;
2800     }
2801     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2802 
2803     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2804                                                                   workers()->active_workers(),
2805                                                                   Threads::number_of_non_daemon_threads());
2806     active_workers = workers()->update_active_workers(active_workers);
2807     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2808 
2809     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2810     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2811 
2812     G1HeapTransition heap_transition(this);
2813     size_t heap_used_bytes_before_gc = used();
2814 
2815     // Don't dynamically change the number of GC threads this early.  A value of
2816     // 0 is used to indicate serial work.  When parallel work is done,
2817     // it will be set.
2818 
2819     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2820       IsGCActiveMark x;
2821 
2822       gc_prologue(false);
2823 
2824       if (VerifyRememberedSets) {
2825         log_info(gc, verify)("[Verifying RemSets before GC]");
2826         VerifyRegionRemSetClosure v_cl;
2827         heap_region_iterate(&v_cl);
2828       }
2829 
2830       _verifier->verify_before_gc(verify_type);
2831 
2832       _verifier->check_bitmaps("GC Start");
2833 
2834 #if COMPILER2_OR_JVMCI
2835       DerivedPointerTable::clear();
2836 #endif
2837 
2838       // Please see comment in g1CollectedHeap.hpp and
2839       // G1CollectedHeap::ref_processing_init() to see how
2840       // reference processing currently works in G1.
2841 
2842       // Enable discovery in the STW reference processor
2843       if (g1_policy()->should_process_references()) {
2844         ref_processor_stw()->enable_discovery();
2845       } else {
2846         ref_processor_stw()->disable_discovery();
2847       }
2848 
2849       {
2850         // We want to temporarily turn off discovery by the
2851         // CM ref processor, if necessary, and turn it back on
2852         // on again later if we do. Using a scoped
2853         // NoRefDiscovery object will do this.
2854         NoRefDiscovery no_cm_discovery(ref_processor_cm());
2855 
2856         // Forget the current alloc region (we might even choose it to be part
2857         // of the collection set!).
2858         _allocator->release_mutator_alloc_region();
2859 
2860         // This timing is only used by the ergonomics to handle our pause target.
2861         // It is unclear why this should not include the full pause. We will
2862         // investigate this in CR 7178365.
2863         //
2864         // Preserving the old comment here if that helps the investigation:
2865         //
2866         // The elapsed time induced by the start time below deliberately elides
2867         // the possible verification above.
2868         double sample_start_time_sec = os::elapsedTime();
2869 
2870         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2871 
2872         if (collector_state()->in_initial_mark_gc()) {
2873           concurrent_mark()->pre_initial_mark();
2874         }
2875 
2876         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2877 
2878         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2879 
2880         // Make sure the remembered sets are up to date. This needs to be
2881         // done before register_humongous_regions_with_cset(), because the
2882         // remembered sets are used there to choose eager reclaim candidates.
2883         // If the remembered sets are not up to date we might miss some
2884         // entries that need to be handled.
2885         g1_rem_set()->cleanupHRRS();
2886 
2887         register_humongous_regions_with_cset();
2888 
2889         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2890 
2891         // We call this after finalize_cset() to
2892         // ensure that the CSet has been finalized.
2893         _cm->verify_no_cset_oops();
2894 
2895         if (_hr_printer.is_active()) {
2896           G1PrintCollectionSetClosure cl(&_hr_printer);
2897           _collection_set.iterate(&cl);
2898         }
2899 
2900         // Initialize the GC alloc regions.
2901         _allocator->init_gc_alloc_regions(evacuation_info);
2902 
2903         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2904         pre_evacuate_collection_set();
2905 
2906         // Actually do the work...
2907         evacuate_collection_set(&per_thread_states);
2908 
2909         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2910 
2911         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2912         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2913 
2914         eagerly_reclaim_humongous_regions();
2915 
2916         record_obj_copy_mem_stats();
2917         _survivor_evac_stats.adjust_desired_plab_sz();
2918         _old_evac_stats.adjust_desired_plab_sz();
2919 
2920         double start = os::elapsedTime();
2921         start_new_collection_set();
2922         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2923 
2924         if (evacuation_failed()) {
2925           set_used(recalculate_used());
2926           if (_archive_allocator != NULL) {
2927             _archive_allocator->clear_used();
2928           }
2929           for (uint i = 0; i < ParallelGCThreads; i++) {
2930             if (_evacuation_failed_info_array[i].has_failed()) {
2931               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2932             }
2933           }
2934         } else {
2935           // The "used" of the the collection set have already been subtracted
2936           // when they were freed.  Add in the bytes evacuated.
2937           increase_used(g1_policy()->bytes_copied_during_gc());
2938         }
2939 
2940         if (collector_state()->in_initial_mark_gc()) {
2941           // We have to do this before we notify the CM threads that
2942           // they can start working to make sure that all the
2943           // appropriate initialization is done on the CM object.
2944           concurrent_mark()->post_initial_mark();
2945           // Note that we don't actually trigger the CM thread at
2946           // this point. We do that later when we're sure that
2947           // the current thread has completed its logging output.
2948         }
2949 
2950         allocate_dummy_regions();
2951 
2952         _allocator->init_mutator_alloc_region();
2953 
2954         {
2955           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2956           if (expand_bytes > 0) {
2957             size_t bytes_before = capacity();
2958             // No need for an ergo logging here,
2959             // expansion_amount() does this when it returns a value > 0.
2960             double expand_ms;
2961             if (!expand(expand_bytes, _workers, &expand_ms)) {
2962               // We failed to expand the heap. Cannot do anything about it.
2963             }
2964             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
2965           }
2966         }
2967 
2968         // We redo the verification but now wrt to the new CSet which
2969         // has just got initialized after the previous CSet was freed.
2970         _cm->verify_no_cset_oops();
2971 
2972         // This timing is only used by the ergonomics to handle our pause target.
2973         // It is unclear why this should not include the full pause. We will
2974         // investigate this in CR 7178365.
2975         double sample_end_time_sec = os::elapsedTime();
2976         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
2977         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
2978         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
2979 
2980         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
2981         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
2982 
2983         if (VerifyRememberedSets) {
2984           log_info(gc, verify)("[Verifying RemSets after GC]");
2985           VerifyRegionRemSetClosure v_cl;
2986           heap_region_iterate(&v_cl);
2987         }
2988 
2989         _verifier->verify_after_gc(verify_type);
2990         _verifier->check_bitmaps("GC End");
2991 
2992         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
2993         ref_processor_stw()->verify_no_references_recorded();
2994 
2995         // CM reference discovery will be re-enabled if necessary.
2996       }
2997 
2998 #ifdef TRACESPINNING
2999       ParallelTaskTerminator::print_termination_counts();
3000 #endif
3001 
3002       gc_epilogue(false);
3003     }
3004 
3005     // Print the remainder of the GC log output.
3006     if (evacuation_failed()) {
3007       log_info(gc)("To-space exhausted");
3008     }
3009 
3010     g1_policy()->print_phases();
3011     heap_transition.print();
3012 
3013     // It is not yet to safe to tell the concurrent mark to
3014     // start as we have some optional output below. We don't want the
3015     // output from the concurrent mark thread interfering with this
3016     // logging output either.
3017 
3018     _hrm.verify_optional();
3019     _verifier->verify_region_sets_optional();
3020 
3021     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3022     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3023 
3024     print_heap_after_gc();
3025     print_heap_regions();
3026     trace_heap_after_gc(_gc_tracer_stw);
3027 
3028     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3029     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3030     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3031     // before any GC notifications are raised.
3032     g1mm()->update_sizes();
3033 
3034     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3035     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3036     _gc_timer_stw->register_gc_end();
3037     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3038   }
3039   // It should now be safe to tell the concurrent mark thread to start
3040   // without its logging output interfering with the logging output
3041   // that came from the pause.
3042 
3043   if (should_start_conc_mark) {
3044     // CAUTION: after the doConcurrentMark() call below,
3045     // the concurrent marking thread(s) could be running
3046     // concurrently with us. Make sure that anything after
3047     // this point does not assume that we are the only GC thread
3048     // running. Note: of course, the actual marking work will
3049     // not start until the safepoint itself is released in
3050     // SuspendibleThreadSet::desynchronize().
3051     do_concurrent_mark();
3052   }
3053 
3054   return true;
3055 }
3056 
3057 void G1CollectedHeap::remove_self_forwarding_pointers() {
3058   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3059   workers()->run_task(&rsfp_task);
3060 }
3061 
3062 void G1CollectedHeap::restore_after_evac_failure() {
3063   double remove_self_forwards_start = os::elapsedTime();
3064 
3065   remove_self_forwarding_pointers();
3066   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3067   _preserved_marks_set.restore(&task_executor);
3068 
3069   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3070 }
3071 
3072 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3073   if (!_evacuation_failed) {
3074     _evacuation_failed = true;
3075   }
3076 
3077   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3078   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3079 }
3080 
3081 bool G1ParEvacuateFollowersClosure::offer_termination() {
3082   G1ParScanThreadState* const pss = par_scan_state();
3083   start_term_time();
3084   const bool res = terminator()->offer_termination();
3085   end_term_time();
3086   return res;
3087 }
3088 
3089 void G1ParEvacuateFollowersClosure::do_void() {
3090   G1ParScanThreadState* const pss = par_scan_state();
3091   pss->trim_queue();
3092   do {
3093     pss->steal_and_trim_queue(queues());
3094   } while (!offer_termination());
3095 }
3096 
3097 class G1ParTask : public AbstractGangTask {
3098 protected:
3099   G1CollectedHeap*         _g1h;
3100   G1ParScanThreadStateSet* _pss;
3101   RefToScanQueueSet*       _queues;
3102   G1RootProcessor*         _root_processor;
3103   ParallelTaskTerminator   _terminator;
3104   uint                     _n_workers;
3105 
3106 public:
3107   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3108     : AbstractGangTask("G1 collection"),
3109       _g1h(g1h),
3110       _pss(per_thread_states),
3111       _queues(task_queues),
3112       _root_processor(root_processor),
3113       _terminator(n_workers, _queues),
3114       _n_workers(n_workers)
3115   {}
3116 
3117   void work(uint worker_id) {
3118     if (worker_id >= _n_workers) return;  // no work needed this round
3119 
3120     double start_sec = os::elapsedTime();
3121     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3122 
3123     {
3124       ResourceMark rm;
3125       HandleMark   hm;
3126 
3127       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3128 
3129       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3130       pss->set_ref_processor(rp);
3131 
3132       double start_strong_roots_sec = os::elapsedTime();
3133 
3134       _root_processor->evacuate_roots(pss->closures(), worker_id);
3135 
3136       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3137       // treating the nmethods visited to act as roots for concurrent marking.
3138       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3139       // objects copied by the current evacuation.
3140       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3141                                                       pss->closures()->weak_codeblobs(),
3142                                                       worker_id);
3143 
3144       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3145 
3146       double term_sec = 0.0;
3147       size_t evac_term_attempts = 0;
3148       {
3149         double start = os::elapsedTime();
3150         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3151         evac.do_void();
3152 
3153         evac_term_attempts = evac.term_attempts();
3154         term_sec = evac.term_time();
3155         double elapsed_sec = os::elapsedTime() - start;
3156         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3157         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3158         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3159       }
3160 
3161       assert(pss->queue_is_empty(), "should be empty");
3162 
3163       if (log_is_enabled(Debug, gc, task, stats)) {
3164         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3165         size_t lab_waste;
3166         size_t lab_undo_waste;
3167         pss->waste(lab_waste, lab_undo_waste);
3168         _g1h->print_termination_stats(worker_id,
3169                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3170                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3171                                       term_sec * 1000.0,                          /* evac term time */
3172                                       evac_term_attempts,                         /* evac term attempts */
3173                                       lab_waste,                                  /* alloc buffer waste */
3174                                       lab_undo_waste                              /* undo waste */
3175                                       );
3176       }
3177 
3178       // Close the inner scope so that the ResourceMark and HandleMark
3179       // destructors are executed here and are included as part of the
3180       // "GC Worker Time".
3181     }
3182     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3183   }
3184 };
3185 
3186 void G1CollectedHeap::print_termination_stats_hdr() {
3187   log_debug(gc, task, stats)("GC Termination Stats");
3188   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3189   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3190   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3191 }
3192 
3193 void G1CollectedHeap::print_termination_stats(uint worker_id,
3194                                               double elapsed_ms,
3195                                               double strong_roots_ms,
3196                                               double term_ms,
3197                                               size_t term_attempts,
3198                                               size_t alloc_buffer_waste,
3199                                               size_t undo_waste) const {
3200   log_debug(gc, task, stats)
3201               ("%3d %9.2f %9.2f %6.2f "
3202                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3203                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3204                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3205                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3206                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3207                alloc_buffer_waste * HeapWordSize / K,
3208                undo_waste * HeapWordSize / K);
3209 }
3210 
3211 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3212 private:
3213   BoolObjectClosure* _is_alive;
3214   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3215 
3216   int _initial_string_table_size;
3217   int _initial_symbol_table_size;
3218 
3219   bool  _process_strings;
3220   int _strings_processed;
3221   int _strings_removed;
3222 
3223   bool  _process_symbols;
3224   int _symbols_processed;
3225   int _symbols_removed;
3226 
3227   bool _process_string_dedup;
3228 
3229 public:
3230   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3231     AbstractGangTask("String/Symbol Unlinking"),
3232     _is_alive(is_alive),
3233     _dedup_closure(is_alive, NULL, false),
3234     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3235     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3236     _process_string_dedup(process_string_dedup) {
3237 
3238     _initial_string_table_size = StringTable::the_table()->table_size();
3239     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3240     if (process_strings) {
3241       StringTable::clear_parallel_claimed_index();
3242     }
3243     if (process_symbols) {
3244       SymbolTable::clear_parallel_claimed_index();
3245     }
3246   }
3247 
3248   ~G1StringAndSymbolCleaningTask() {
3249     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3250               "claim value %d after unlink less than initial string table size %d",
3251               StringTable::parallel_claimed_index(), _initial_string_table_size);
3252     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3253               "claim value %d after unlink less than initial symbol table size %d",
3254               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3255 
3256     log_info(gc, stringtable)(
3257         "Cleaned string and symbol table, "
3258         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3259         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3260         strings_processed(), strings_removed(),
3261         symbols_processed(), symbols_removed());
3262   }
3263 
3264   void work(uint worker_id) {
3265     int strings_processed = 0;
3266     int strings_removed = 0;
3267     int symbols_processed = 0;
3268     int symbols_removed = 0;
3269     if (_process_strings) {
3270       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3271       Atomic::add(strings_processed, &_strings_processed);
3272       Atomic::add(strings_removed, &_strings_removed);
3273     }
3274     if (_process_symbols) {
3275       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3276       Atomic::add(symbols_processed, &_symbols_processed);
3277       Atomic::add(symbols_removed, &_symbols_removed);
3278     }
3279     if (_process_string_dedup) {
3280       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3281     }
3282   }
3283 
3284   size_t strings_processed() const { return (size_t)_strings_processed; }
3285   size_t strings_removed()   const { return (size_t)_strings_removed; }
3286 
3287   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3288   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3289 };
3290 
3291 class G1CodeCacheUnloadingTask {
3292 private:
3293   static Monitor* _lock;
3294 
3295   BoolObjectClosure* const _is_alive;
3296   const bool               _unloading_occurred;
3297   const uint               _num_workers;
3298 
3299   // Variables used to claim nmethods.
3300   CompiledMethod* _first_nmethod;
3301   CompiledMethod* volatile _claimed_nmethod;
3302 
3303   // The list of nmethods that need to be processed by the second pass.
3304   CompiledMethod* volatile _postponed_list;
3305   volatile uint            _num_entered_barrier;
3306 
3307  public:
3308   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3309       _is_alive(is_alive),
3310       _unloading_occurred(unloading_occurred),
3311       _num_workers(num_workers),
3312       _first_nmethod(NULL),
3313       _claimed_nmethod(NULL),
3314       _postponed_list(NULL),
3315       _num_entered_barrier(0)
3316   {
3317     CompiledMethod::increase_unloading_clock();
3318     // Get first alive nmethod
3319     CompiledMethodIterator iter = CompiledMethodIterator();
3320     if(iter.next_alive()) {
3321       _first_nmethod = iter.method();
3322     }
3323     _claimed_nmethod = _first_nmethod;
3324   }
3325 
3326   ~G1CodeCacheUnloadingTask() {
3327     CodeCache::verify_clean_inline_caches();
3328 
3329     CodeCache::set_needs_cache_clean(false);
3330     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3331 
3332     CodeCache::verify_icholder_relocations();
3333   }
3334 
3335  private:
3336   void add_to_postponed_list(CompiledMethod* nm) {
3337       CompiledMethod* old;
3338       do {
3339         old = _postponed_list;
3340         nm->set_unloading_next(old);
3341       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3342   }
3343 
3344   void clean_nmethod(CompiledMethod* nm) {
3345     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3346 
3347     if (postponed) {
3348       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3349       add_to_postponed_list(nm);
3350     }
3351 
3352     // Mark that this thread has been cleaned/unloaded.
3353     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3354     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3355   }
3356 
3357   void clean_nmethod_postponed(CompiledMethod* nm) {
3358     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3359   }
3360 
3361   static const int MaxClaimNmethods = 16;
3362 
3363   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3364     CompiledMethod* first;
3365     CompiledMethodIterator last;
3366 
3367     do {
3368       *num_claimed_nmethods = 0;
3369 
3370       first = _claimed_nmethod;
3371       last = CompiledMethodIterator(first);
3372 
3373       if (first != NULL) {
3374 
3375         for (int i = 0; i < MaxClaimNmethods; i++) {
3376           if (!last.next_alive()) {
3377             break;
3378           }
3379           claimed_nmethods[i] = last.method();
3380           (*num_claimed_nmethods)++;
3381         }
3382       }
3383 
3384     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3385   }
3386 
3387   CompiledMethod* claim_postponed_nmethod() {
3388     CompiledMethod* claim;
3389     CompiledMethod* next;
3390 
3391     do {
3392       claim = _postponed_list;
3393       if (claim == NULL) {
3394         return NULL;
3395       }
3396 
3397       next = claim->unloading_next();
3398 
3399     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3400 
3401     return claim;
3402   }
3403 
3404  public:
3405   // Mark that we're done with the first pass of nmethod cleaning.
3406   void barrier_mark(uint worker_id) {
3407     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3408     _num_entered_barrier++;
3409     if (_num_entered_barrier == _num_workers) {
3410       ml.notify_all();
3411     }
3412   }
3413 
3414   // See if we have to wait for the other workers to
3415   // finish their first-pass nmethod cleaning work.
3416   void barrier_wait(uint worker_id) {
3417     if (_num_entered_barrier < _num_workers) {
3418       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3419       while (_num_entered_barrier < _num_workers) {
3420           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3421       }
3422     }
3423   }
3424 
3425   // Cleaning and unloading of nmethods. Some work has to be postponed
3426   // to the second pass, when we know which nmethods survive.
3427   void work_first_pass(uint worker_id) {
3428     // The first nmethods is claimed by the first worker.
3429     if (worker_id == 0 && _first_nmethod != NULL) {
3430       clean_nmethod(_first_nmethod);
3431       _first_nmethod = NULL;
3432     }
3433 
3434     int num_claimed_nmethods;
3435     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3436 
3437     while (true) {
3438       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3439 
3440       if (num_claimed_nmethods == 0) {
3441         break;
3442       }
3443 
3444       for (int i = 0; i < num_claimed_nmethods; i++) {
3445         clean_nmethod(claimed_nmethods[i]);
3446       }
3447     }
3448   }
3449 
3450   void work_second_pass(uint worker_id) {
3451     CompiledMethod* nm;
3452     // Take care of postponed nmethods.
3453     while ((nm = claim_postponed_nmethod()) != NULL) {
3454       clean_nmethod_postponed(nm);
3455     }
3456   }
3457 };
3458 
3459 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3460 
3461 class G1KlassCleaningTask : public StackObj {
3462   BoolObjectClosure*                      _is_alive;
3463   volatile int                            _clean_klass_tree_claimed;
3464   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3465 
3466  public:
3467   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3468       _is_alive(is_alive),
3469       _clean_klass_tree_claimed(0),
3470       _klass_iterator() {
3471   }
3472 
3473  private:
3474   bool claim_clean_klass_tree_task() {
3475     if (_clean_klass_tree_claimed) {
3476       return false;
3477     }
3478 
3479     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3480   }
3481 
3482   InstanceKlass* claim_next_klass() {
3483     Klass* klass;
3484     do {
3485       klass =_klass_iterator.next_klass();
3486     } while (klass != NULL && !klass->is_instance_klass());
3487 
3488     // this can be null so don't call InstanceKlass::cast
3489     return static_cast<InstanceKlass*>(klass);
3490   }
3491 
3492 public:
3493 
3494   void clean_klass(InstanceKlass* ik) {
3495     ik->clean_weak_instanceklass_links(_is_alive);
3496   }
3497 
3498   void work() {
3499     ResourceMark rm;
3500 
3501     // One worker will clean the subklass/sibling klass tree.
3502     if (claim_clean_klass_tree_task()) {
3503       Klass::clean_subklass_tree(_is_alive);
3504     }
3505 
3506     // All workers will help cleaning the classes,
3507     InstanceKlass* klass;
3508     while ((klass = claim_next_klass()) != NULL) {
3509       clean_klass(klass);
3510     }
3511   }
3512 };
3513 
3514 class G1ResolvedMethodCleaningTask : public StackObj {
3515   BoolObjectClosure* _is_alive;
3516   volatile int       _resolved_method_task_claimed;
3517 public:
3518   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3519       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3520 
3521   bool claim_resolved_method_task() {
3522     if (_resolved_method_task_claimed) {
3523       return false;
3524     }
3525     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3526   }
3527 
3528   // These aren't big, one thread can do it all.
3529   void work() {
3530     if (claim_resolved_method_task()) {
3531       ResolvedMethodTable::unlink(_is_alive);
3532     }
3533   }
3534 };
3535 
3536 
3537 // To minimize the remark pause times, the tasks below are done in parallel.
3538 class G1ParallelCleaningTask : public AbstractGangTask {
3539 private:
3540   G1StringAndSymbolCleaningTask _string_symbol_task;
3541   G1CodeCacheUnloadingTask      _code_cache_task;
3542   G1KlassCleaningTask           _klass_cleaning_task;
3543   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3544 
3545 public:
3546   // The constructor is run in the VMThread.
3547   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3548       AbstractGangTask("Parallel Cleaning"),
3549       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3550       _code_cache_task(num_workers, is_alive, unloading_occurred),
3551       _klass_cleaning_task(is_alive),
3552       _resolved_method_cleaning_task(is_alive) {
3553   }
3554 
3555   // The parallel work done by all worker threads.
3556   void work(uint worker_id) {
3557     // Do first pass of code cache cleaning.
3558     _code_cache_task.work_first_pass(worker_id);
3559 
3560     // Let the threads mark that the first pass is done.
3561     _code_cache_task.barrier_mark(worker_id);
3562 
3563     // Clean the Strings and Symbols.
3564     _string_symbol_task.work(worker_id);
3565 
3566     // Clean unreferenced things in the ResolvedMethodTable
3567     _resolved_method_cleaning_task.work();
3568 
3569     // Wait for all workers to finish the first code cache cleaning pass.
3570     _code_cache_task.barrier_wait(worker_id);
3571 
3572     // Do the second code cache cleaning work, which realize on
3573     // the liveness information gathered during the first pass.
3574     _code_cache_task.work_second_pass(worker_id);
3575 
3576     // Clean all klasses that were not unloaded.
3577     _klass_cleaning_task.work();
3578   }
3579 };
3580 
3581 
3582 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3583                                         bool class_unloading_occurred) {
3584   uint n_workers = workers()->active_workers();
3585 
3586   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3587   workers()->run_task(&g1_unlink_task);
3588 }
3589 
3590 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3591                                        bool process_strings,
3592                                        bool process_symbols,
3593                                        bool process_string_dedup) {
3594   if (!process_strings && !process_symbols && !process_string_dedup) {
3595     // Nothing to clean.
3596     return;
3597   }
3598 
3599   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3600   workers()->run_task(&g1_unlink_task);
3601 
3602 }
3603 
3604 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3605  private:
3606   DirtyCardQueueSet* _queue;
3607   G1CollectedHeap* _g1h;
3608  public:
3609   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3610     _queue(queue), _g1h(g1h) { }
3611 
3612   virtual void work(uint worker_id) {
3613     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3614     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3615 
3616     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3617     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3618 
3619     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3620   }
3621 };
3622 
3623 void G1CollectedHeap::redirty_logged_cards() {
3624   double redirty_logged_cards_start = os::elapsedTime();
3625 
3626   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3627   dirty_card_queue_set().reset_for_par_iteration();
3628   workers()->run_task(&redirty_task);
3629 
3630   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3631   dcq.merge_bufferlists(&dirty_card_queue_set());
3632   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3633 
3634   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3635 }
3636 
3637 // Weak Reference Processing support
3638 
3639 // An always "is_alive" closure that is used to preserve referents.
3640 // If the object is non-null then it's alive.  Used in the preservation
3641 // of referent objects that are pointed to by reference objects
3642 // discovered by the CM ref processor.
3643 class G1AlwaysAliveClosure: public BoolObjectClosure {
3644   G1CollectedHeap* _g1;
3645 public:
3646   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3647   bool do_object_b(oop p) {
3648     if (p != NULL) {
3649       return true;
3650     }
3651     return false;
3652   }
3653 };
3654 
3655 bool G1STWIsAliveClosure::do_object_b(oop p) {
3656   // An object is reachable if it is outside the collection set,
3657   // or is inside and copied.
3658   return !_g1->is_in_cset(p) || p->is_forwarded();
3659 }
3660 
3661 // Non Copying Keep Alive closure
3662 class G1KeepAliveClosure: public OopClosure {
3663   G1CollectedHeap* _g1;
3664 public:
3665   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3666   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3667   void do_oop(oop* p) {
3668     oop obj = *p;
3669     assert(obj != NULL, "the caller should have filtered out NULL values");
3670 
3671     const InCSetState cset_state = _g1->in_cset_state(obj);
3672     if (!cset_state.is_in_cset_or_humongous()) {
3673       return;
3674     }
3675     if (cset_state.is_in_cset()) {
3676       assert( obj->is_forwarded(), "invariant" );
3677       *p = obj->forwardee();
3678     } else {
3679       assert(!obj->is_forwarded(), "invariant" );
3680       assert(cset_state.is_humongous(),
3681              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3682       _g1->set_humongous_is_live(obj);
3683     }
3684   }
3685 };
3686 
3687 // Copying Keep Alive closure - can be called from both
3688 // serial and parallel code as long as different worker
3689 // threads utilize different G1ParScanThreadState instances
3690 // and different queues.
3691 
3692 class G1CopyingKeepAliveClosure: public OopClosure {
3693   G1CollectedHeap*         _g1h;
3694   OopClosure*              _copy_non_heap_obj_cl;
3695   G1ParScanThreadState*    _par_scan_state;
3696 
3697 public:
3698   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3699                             OopClosure* non_heap_obj_cl,
3700                             G1ParScanThreadState* pss):
3701     _g1h(g1h),
3702     _copy_non_heap_obj_cl(non_heap_obj_cl),
3703     _par_scan_state(pss)
3704   {}
3705 
3706   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3707   virtual void do_oop(      oop* p) { do_oop_work(p); }
3708 
3709   template <class T> void do_oop_work(T* p) {
3710     oop obj = RawAccess<>::oop_load(p);
3711 
3712     if (_g1h->is_in_cset_or_humongous(obj)) {
3713       // If the referent object has been forwarded (either copied
3714       // to a new location or to itself in the event of an
3715       // evacuation failure) then we need to update the reference
3716       // field and, if both reference and referent are in the G1
3717       // heap, update the RSet for the referent.
3718       //
3719       // If the referent has not been forwarded then we have to keep
3720       // it alive by policy. Therefore we have copy the referent.
3721       //
3722       // If the reference field is in the G1 heap then we can push
3723       // on the PSS queue. When the queue is drained (after each
3724       // phase of reference processing) the object and it's followers
3725       // will be copied, the reference field set to point to the
3726       // new location, and the RSet updated. Otherwise we need to
3727       // use the the non-heap or metadata closures directly to copy
3728       // the referent object and update the pointer, while avoiding
3729       // updating the RSet.
3730 
3731       if (_g1h->is_in_g1_reserved(p)) {
3732         _par_scan_state->push_on_queue(p);
3733       } else {
3734         assert(!Metaspace::contains((const void*)p),
3735                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3736         _copy_non_heap_obj_cl->do_oop(p);
3737       }
3738     }
3739   }
3740 };
3741 
3742 // Serial drain queue closure. Called as the 'complete_gc'
3743 // closure for each discovered list in some of the
3744 // reference processing phases.
3745 
3746 class G1STWDrainQueueClosure: public VoidClosure {
3747 protected:
3748   G1CollectedHeap* _g1h;
3749   G1ParScanThreadState* _par_scan_state;
3750 
3751   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3752 
3753 public:
3754   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3755     _g1h(g1h),
3756     _par_scan_state(pss)
3757   { }
3758 
3759   void do_void() {
3760     G1ParScanThreadState* const pss = par_scan_state();
3761     pss->trim_queue();
3762   }
3763 };
3764 
3765 // Parallel Reference Processing closures
3766 
3767 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3768 // processing during G1 evacuation pauses.
3769 
3770 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3771 private:
3772   G1CollectedHeap*          _g1h;
3773   G1ParScanThreadStateSet*  _pss;
3774   RefToScanQueueSet*        _queues;
3775   WorkGang*                 _workers;
3776   uint                      _active_workers;
3777 
3778 public:
3779   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3780                            G1ParScanThreadStateSet* per_thread_states,
3781                            WorkGang* workers,
3782                            RefToScanQueueSet *task_queues,
3783                            uint n_workers) :
3784     _g1h(g1h),
3785     _pss(per_thread_states),
3786     _queues(task_queues),
3787     _workers(workers),
3788     _active_workers(n_workers)
3789   {
3790     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3791   }
3792 
3793   // Executes the given task using concurrent marking worker threads.
3794   virtual void execute(ProcessTask& task);
3795   virtual void execute(EnqueueTask& task);
3796 };
3797 
3798 // Gang task for possibly parallel reference processing
3799 
3800 class G1STWRefProcTaskProxy: public AbstractGangTask {
3801   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3802   ProcessTask&     _proc_task;
3803   G1CollectedHeap* _g1h;
3804   G1ParScanThreadStateSet* _pss;
3805   RefToScanQueueSet* _task_queues;
3806   ParallelTaskTerminator* _terminator;
3807 
3808 public:
3809   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3810                         G1CollectedHeap* g1h,
3811                         G1ParScanThreadStateSet* per_thread_states,
3812                         RefToScanQueueSet *task_queues,
3813                         ParallelTaskTerminator* terminator) :
3814     AbstractGangTask("Process reference objects in parallel"),
3815     _proc_task(proc_task),
3816     _g1h(g1h),
3817     _pss(per_thread_states),
3818     _task_queues(task_queues),
3819     _terminator(terminator)
3820   {}
3821 
3822   virtual void work(uint worker_id) {
3823     // The reference processing task executed by a single worker.
3824     ResourceMark rm;
3825     HandleMark   hm;
3826 
3827     G1STWIsAliveClosure is_alive(_g1h);
3828 
3829     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3830     pss->set_ref_processor(NULL);
3831 
3832     // Keep alive closure.
3833     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3834 
3835     // Complete GC closure
3836     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3837 
3838     // Call the reference processing task's work routine.
3839     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3840 
3841     // Note we cannot assert that the refs array is empty here as not all
3842     // of the processing tasks (specifically phase2 - pp2_work) execute
3843     // the complete_gc closure (which ordinarily would drain the queue) so
3844     // the queue may not be empty.
3845   }
3846 };
3847 
3848 // Driver routine for parallel reference processing.
3849 // Creates an instance of the ref processing gang
3850 // task and has the worker threads execute it.
3851 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3852   assert(_workers != NULL, "Need parallel worker threads.");
3853 
3854   ParallelTaskTerminator terminator(_active_workers, _queues);
3855   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3856 
3857   _workers->run_task(&proc_task_proxy);
3858 }
3859 
3860 // Gang task for parallel reference enqueueing.
3861 
3862 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
3863   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
3864   EnqueueTask& _enq_task;
3865 
3866 public:
3867   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
3868     AbstractGangTask("Enqueue reference objects in parallel"),
3869     _enq_task(enq_task)
3870   { }
3871 
3872   virtual void work(uint worker_id) {
3873     _enq_task.work(worker_id);
3874   }
3875 };
3876 
3877 // Driver routine for parallel reference enqueueing.
3878 // Creates an instance of the ref enqueueing gang
3879 // task and has the worker threads execute it.
3880 
3881 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
3882   assert(_workers != NULL, "Need parallel worker threads.");
3883 
3884   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
3885 
3886   _workers->run_task(&enq_task_proxy);
3887 }
3888 
3889 // End of weak reference support closures
3890 
3891 // Abstract task used to preserve (i.e. copy) any referent objects
3892 // that are in the collection set and are pointed to by reference
3893 // objects discovered by the CM ref processor.
3894 
3895 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
3896 protected:
3897   G1CollectedHeap*         _g1h;
3898   G1ParScanThreadStateSet* _pss;
3899   RefToScanQueueSet*       _queues;
3900   ParallelTaskTerminator   _terminator;
3901   uint                     _n_workers;
3902 
3903 public:
3904   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
3905     AbstractGangTask("ParPreserveCMReferents"),
3906     _g1h(g1h),
3907     _pss(per_thread_states),
3908     _queues(task_queues),
3909     _terminator(workers, _queues),
3910     _n_workers(workers)
3911   {
3912     g1h->ref_processor_cm()->set_active_mt_degree(workers);
3913   }
3914 
3915   void work(uint worker_id) {
3916     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
3917 
3918     ResourceMark rm;
3919     HandleMark   hm;
3920 
3921     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3922     pss->set_ref_processor(NULL);
3923     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3924 
3925     // Is alive closure
3926     G1AlwaysAliveClosure always_alive(_g1h);
3927 
3928     // Copying keep alive closure. Applied to referent objects that need
3929     // to be copied.
3930     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3931 
3932     ReferenceProcessor* rp = _g1h->ref_processor_cm();
3933 
3934     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
3935     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
3936 
3937     // limit is set using max_num_q() - which was set using ParallelGCThreads.
3938     // So this must be true - but assert just in case someone decides to
3939     // change the worker ids.
3940     assert(worker_id < limit, "sanity");
3941     assert(!rp->discovery_is_atomic(), "check this code");
3942 
3943     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
3944     for (uint idx = worker_id; idx < limit; idx += stride) {
3945       DiscoveredList& ref_list = rp->discovered_refs()[idx];
3946 
3947       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
3948       while (iter.has_next()) {
3949         // Since discovery is not atomic for the CM ref processor, we
3950         // can see some null referent objects.
3951         iter.load_ptrs(DEBUG_ONLY(true));
3952         oop ref = iter.obj();
3953 
3954         // This will filter nulls.
3955         if (iter.is_referent_alive()) {
3956           iter.make_referent_alive();
3957         }
3958         iter.move_to_next();
3959       }
3960     }
3961 
3962     // Drain the queue - which may cause stealing
3963     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
3964     drain_queue.do_void();
3965     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
3966     assert(pss->queue_is_empty(), "should be");
3967   }
3968 };
3969 
3970 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
3971   // Any reference objects, in the collection set, that were 'discovered'
3972   // by the CM ref processor should have already been copied (either by
3973   // applying the external root copy closure to the discovered lists, or
3974   // by following an RSet entry).
3975   //
3976   // But some of the referents, that are in the collection set, that these
3977   // reference objects point to may not have been copied: the STW ref
3978   // processor would have seen that the reference object had already
3979   // been 'discovered' and would have skipped discovering the reference,
3980   // but would not have treated the reference object as a regular oop.
3981   // As a result the copy closure would not have been applied to the
3982   // referent object.
3983   //
3984   // We need to explicitly copy these referent objects - the references
3985   // will be processed at the end of remarking.
3986   //
3987   // We also need to do this copying before we process the reference
3988   // objects discovered by the STW ref processor in case one of these
3989   // referents points to another object which is also referenced by an
3990   // object discovered by the STW ref processor.
3991   double preserve_cm_referents_time = 0.0;
3992 
3993   // To avoid spawning task when there is no work to do, check that
3994   // a concurrent cycle is active and that some references have been
3995   // discovered.
3996   if (concurrent_mark()->cm_thread()->during_cycle() &&
3997       ref_processor_cm()->has_discovered_references()) {
3998     double preserve_cm_referents_start = os::elapsedTime();
3999     uint no_of_gc_workers = workers()->active_workers();
4000     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4001                                                    per_thread_states,
4002                                                    no_of_gc_workers,
4003                                                    _task_queues);
4004     workers()->run_task(&keep_cm_referents);
4005     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4006   }
4007 
4008   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4009 }
4010 
4011 // Weak Reference processing during an evacuation pause (part 1).
4012 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4013   double ref_proc_start = os::elapsedTime();
4014 
4015   ReferenceProcessor* rp = _ref_processor_stw;
4016   assert(rp->discovery_enabled(), "should have been enabled");
4017 
4018   // Closure to test whether a referent is alive.
4019   G1STWIsAliveClosure is_alive(this);
4020 
4021   // Even when parallel reference processing is enabled, the processing
4022   // of JNI refs is serial and performed serially by the current thread
4023   // rather than by a worker. The following PSS will be used for processing
4024   // JNI refs.
4025 
4026   // Use only a single queue for this PSS.
4027   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4028   pss->set_ref_processor(NULL);
4029   assert(pss->queue_is_empty(), "pre-condition");
4030 
4031   // Keep alive closure.
4032   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4033 
4034   // Serial Complete GC closure
4035   G1STWDrainQueueClosure drain_queue(this, pss);
4036 
4037   // Setup the soft refs policy...
4038   rp->setup_policy(false);
4039 
4040   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4041 
4042   ReferenceProcessorStats stats;
4043   if (!rp->processing_is_mt()) {
4044     // Serial reference processing...
4045     stats = rp->process_discovered_references(&is_alive,
4046                                               &keep_alive,
4047                                               &drain_queue,
4048                                               NULL,
4049                                               pt);
4050   } else {
4051     uint no_of_gc_workers = workers()->active_workers();
4052 
4053     // Parallel reference processing
4054     assert(no_of_gc_workers <= rp->max_num_q(),
4055            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4056            no_of_gc_workers,  rp->max_num_q());
4057 
4058     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4059     stats = rp->process_discovered_references(&is_alive,
4060                                               &keep_alive,
4061                                               &drain_queue,
4062                                               &par_task_executor,
4063                                               pt);
4064   }
4065 
4066   _gc_tracer_stw->report_gc_reference_stats(stats);
4067 
4068   // We have completed copying any necessary live referent objects.
4069   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4070 
4071   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4072   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4073 }
4074 
4075 // Weak Reference processing during an evacuation pause (part 2).
4076 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4077   double ref_enq_start = os::elapsedTime();
4078 
4079   ReferenceProcessor* rp = _ref_processor_stw;
4080   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4081 
4082   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4083 
4084   // Now enqueue any remaining on the discovered lists on to
4085   // the pending list.
4086   if (!rp->processing_is_mt()) {
4087     // Serial reference processing...
4088     rp->enqueue_discovered_references(NULL, pt);
4089   } else {
4090     // Parallel reference enqueueing
4091 
4092     uint n_workers = workers()->active_workers();
4093 
4094     assert(n_workers <= rp->max_num_q(),
4095            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4096            n_workers,  rp->max_num_q());
4097 
4098     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4099     rp->enqueue_discovered_references(&par_task_executor, pt);
4100   }
4101 
4102   rp->verify_no_references_recorded();
4103   assert(!rp->discovery_enabled(), "should have been disabled");
4104 
4105   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4106   // ensure that it is marked in the bitmap for concurrent marking to discover.
4107   if (collector_state()->in_initial_mark_gc()) {
4108     oop pll_head = Universe::reference_pending_list();
4109     if (pll_head != NULL) {
4110       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
4111       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
4112     }
4113   }
4114 
4115   // FIXME
4116   // CM's reference processing also cleans up the string and symbol tables.
4117   // Should we do that here also? We could, but it is a serial operation
4118   // and could significantly increase the pause time.
4119 
4120   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4121   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4122 }
4123 
4124 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4125   double merge_pss_time_start = os::elapsedTime();
4126   per_thread_states->flush();
4127   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4128 }
4129 
4130 void G1CollectedHeap::pre_evacuate_collection_set() {
4131   _expand_heap_after_alloc_failure = true;
4132   _evacuation_failed = false;
4133 
4134   // Disable the hot card cache.
4135   _hot_card_cache->reset_hot_cache_claimed_index();
4136   _hot_card_cache->set_use_cache(false);
4137 
4138   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4139   _preserved_marks_set.assert_empty();
4140 
4141   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4142 
4143   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4144   if (collector_state()->in_initial_mark_gc()) {
4145     double start_clear_claimed_marks = os::elapsedTime();
4146 
4147     ClassLoaderDataGraph::clear_claimed_marks();
4148 
4149     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4150     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4151   }
4152 }
4153 
4154 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
4155   // Should G1EvacuationFailureALot be in effect for this GC?
4156   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4157 
4158   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4159 
4160   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4161 
4162   double start_par_time_sec = os::elapsedTime();
4163   double end_par_time_sec;
4164 
4165   {
4166     const uint n_workers = workers()->active_workers();
4167     G1RootProcessor root_processor(this, n_workers);
4168     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4169 
4170     print_termination_stats_hdr();
4171 
4172     workers()->run_task(&g1_par_task);
4173     end_par_time_sec = os::elapsedTime();
4174 
4175     // Closing the inner scope will execute the destructor
4176     // for the G1RootProcessor object. We record the current
4177     // elapsed time before closing the scope so that time
4178     // taken for the destructor is NOT included in the
4179     // reported parallel time.
4180   }
4181 
4182   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4183   phase_times->record_par_time(par_time_ms);
4184 
4185   double code_root_fixup_time_ms =
4186         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4187   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4188 }
4189 
4190 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4191   // Process any discovered reference objects - we have
4192   // to do this _before_ we retire the GC alloc regions
4193   // as we may have to copy some 'reachable' referent
4194   // objects (and their reachable sub-graphs) that were
4195   // not copied during the pause.
4196   if (g1_policy()->should_process_references()) {
4197     preserve_cm_referents(per_thread_states);
4198     process_discovered_references(per_thread_states);
4199   } else {
4200     ref_processor_stw()->verify_no_references_recorded();
4201   }
4202 
4203   G1STWIsAliveClosure is_alive(this);
4204   G1KeepAliveClosure keep_alive(this);
4205 
4206   {
4207     double start = os::elapsedTime();
4208 
4209     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4210 
4211     double time_ms = (os::elapsedTime() - start) * 1000.0;
4212     g1_policy()->phase_times()->record_ref_proc_time(time_ms);
4213   }
4214 
4215   if (G1StringDedup::is_enabled()) {
4216     double fixup_start = os::elapsedTime();
4217 
4218     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4219 
4220     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4221     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4222   }
4223 
4224   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4225 
4226   if (evacuation_failed()) {
4227     restore_after_evac_failure();
4228 
4229     // Reset the G1EvacuationFailureALot counters and flags
4230     // Note: the values are reset only when an actual
4231     // evacuation failure occurs.
4232     NOT_PRODUCT(reset_evacuation_should_fail();)
4233   }
4234 
4235   _preserved_marks_set.assert_empty();
4236 
4237   // Enqueue any remaining references remaining on the STW
4238   // reference processor's discovered lists. We need to do
4239   // this after the card table is cleaned (and verified) as
4240   // the act of enqueueing entries on to the pending list
4241   // will log these updates (and dirty their associated
4242   // cards). We need these updates logged to update any
4243   // RSets.
4244   if (g1_policy()->should_process_references()) {
4245     enqueue_discovered_references(per_thread_states);
4246   } else {
4247     g1_policy()->phase_times()->record_ref_enq_time(0);
4248   }
4249 
4250   _allocator->release_gc_alloc_regions(evacuation_info);
4251 
4252   merge_per_thread_state_info(per_thread_states);
4253 
4254   // Reset and re-enable the hot card cache.
4255   // Note the counts for the cards in the regions in the
4256   // collection set are reset when the collection set is freed.
4257   _hot_card_cache->reset_hot_cache();
4258   _hot_card_cache->set_use_cache(true);
4259 
4260   purge_code_root_memory();
4261 
4262   redirty_logged_cards();
4263 #if COMPILER2_OR_JVMCI
4264   double start = os::elapsedTime();
4265   DerivedPointerTable::update_pointers();
4266   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4267 #endif
4268   g1_policy()->print_age_table();
4269 }
4270 
4271 void G1CollectedHeap::record_obj_copy_mem_stats() {
4272   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4273 
4274   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4275                                                create_g1_evac_summary(&_old_evac_stats));
4276 }
4277 
4278 void G1CollectedHeap::free_region(HeapRegion* hr,
4279                                   FreeRegionList* free_list,
4280                                   bool skip_remset,
4281                                   bool skip_hot_card_cache,
4282                                   bool locked) {
4283   assert(!hr->is_free(), "the region should not be free");
4284   assert(!hr->is_empty(), "the region should not be empty");
4285   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4286   assert(free_list != NULL, "pre-condition");
4287 
4288   if (G1VerifyBitmaps) {
4289     MemRegion mr(hr->bottom(), hr->end());
4290     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4291   }
4292 
4293   // Clear the card counts for this region.
4294   // Note: we only need to do this if the region is not young
4295   // (since we don't refine cards in young regions).
4296   if (!skip_hot_card_cache && !hr->is_young()) {
4297     _hot_card_cache->reset_card_counts(hr);
4298   }
4299   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4300   _g1_policy->remset_tracker()->update_at_free(hr);
4301   free_list->add_ordered(hr);
4302 }
4303 
4304 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4305                                             FreeRegionList* free_list) {
4306   assert(hr->is_humongous(), "this is only for humongous regions");
4307   assert(free_list != NULL, "pre-condition");
4308   hr->clear_humongous();
4309   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4310 }
4311 
4312 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4313                                            const uint humongous_regions_removed) {
4314   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4315     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4316     _old_set.bulk_remove(old_regions_removed);
4317     _humongous_set.bulk_remove(humongous_regions_removed);
4318   }
4319 
4320 }
4321 
4322 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4323   assert(list != NULL, "list can't be null");
4324   if (!list->is_empty()) {
4325     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4326     _hrm.insert_list_into_free_list(list);
4327   }
4328 }
4329 
4330 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4331   decrease_used(bytes);
4332 }
4333 
4334 class G1FreeCollectionSetTask : public AbstractGangTask {
4335 private:
4336 
4337   // Closure applied to all regions in the collection set to do work that needs to
4338   // be done serially in a single thread.
4339   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4340   private:
4341     EvacuationInfo* _evacuation_info;
4342     const size_t* _surviving_young_words;
4343 
4344     // Bytes used in successfully evacuated regions before the evacuation.
4345     size_t _before_used_bytes;
4346     // Bytes used in unsucessfully evacuated regions before the evacuation
4347     size_t _after_used_bytes;
4348 
4349     size_t _bytes_allocated_in_old_since_last_gc;
4350 
4351     size_t _failure_used_words;
4352     size_t _failure_waste_words;
4353 
4354     FreeRegionList _local_free_list;
4355   public:
4356     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4357       HeapRegionClosure(),
4358       _evacuation_info(evacuation_info),
4359       _surviving_young_words(surviving_young_words),
4360       _before_used_bytes(0),
4361       _after_used_bytes(0),
4362       _bytes_allocated_in_old_since_last_gc(0),
4363       _failure_used_words(0),
4364       _failure_waste_words(0),
4365       _local_free_list("Local Region List for CSet Freeing") {
4366     }
4367 
4368     virtual bool do_heap_region(HeapRegion* r) {
4369       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4370 
4371       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4372       g1h->clear_in_cset(r);
4373 
4374       if (r->is_young()) {
4375         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4376                "Young index %d is wrong for region %u of type %s with %u young regions",
4377                r->young_index_in_cset(),
4378                r->hrm_index(),
4379                r->get_type_str(),
4380                g1h->collection_set()->young_region_length());
4381         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4382         r->record_surv_words_in_group(words_survived);
4383       }
4384 
4385       if (!r->evacuation_failed()) {
4386         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4387         _before_used_bytes += r->used();
4388         g1h->free_region(r,
4389                          &_local_free_list,
4390                          true, /* skip_remset */
4391                          true, /* skip_hot_card_cache */
4392                          true  /* locked */);
4393       } else {
4394         r->uninstall_surv_rate_group();
4395         r->set_young_index_in_cset(-1);
4396         r->set_evacuation_failed(false);
4397         // When moving a young gen region to old gen, we "allocate" that whole region
4398         // there. This is in addition to any already evacuated objects. Notify the
4399         // policy about that.
4400         // Old gen regions do not cause an additional allocation: both the objects
4401         // still in the region and the ones already moved are accounted for elsewhere.
4402         if (r->is_young()) {
4403           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4404         }
4405         // The region is now considered to be old.
4406         r->set_old();
4407         // Do some allocation statistics accounting. Regions that failed evacuation
4408         // are always made old, so there is no need to update anything in the young
4409         // gen statistics, but we need to update old gen statistics.
4410         size_t used_words = r->marked_bytes() / HeapWordSize;
4411 
4412         _failure_used_words += used_words;
4413         _failure_waste_words += HeapRegion::GrainWords - used_words;
4414 
4415         g1h->old_set_add(r);
4416         _after_used_bytes += r->used();
4417       }
4418       return false;
4419     }
4420 
4421     void complete_work() {
4422       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4423 
4424       _evacuation_info->set_regions_freed(_local_free_list.length());
4425       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4426 
4427       g1h->prepend_to_freelist(&_local_free_list);
4428       g1h->decrement_summary_bytes(_before_used_bytes);
4429 
4430       G1Policy* policy = g1h->g1_policy();
4431       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4432 
4433       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4434     }
4435   };
4436 
4437   G1CollectionSet* _collection_set;
4438   G1SerialFreeCollectionSetClosure _cl;
4439   const size_t* _surviving_young_words;
4440 
4441   size_t _rs_lengths;
4442 
4443   volatile jint _serial_work_claim;
4444 
4445   struct WorkItem {
4446     uint region_idx;
4447     bool is_young;
4448     bool evacuation_failed;
4449 
4450     WorkItem(HeapRegion* r) {
4451       region_idx = r->hrm_index();
4452       is_young = r->is_young();
4453       evacuation_failed = r->evacuation_failed();
4454     }
4455   };
4456 
4457   volatile size_t _parallel_work_claim;
4458   size_t _num_work_items;
4459   WorkItem* _work_items;
4460 
4461   void do_serial_work() {
4462     // Need to grab the lock to be allowed to modify the old region list.
4463     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4464     _collection_set->iterate(&_cl);
4465   }
4466 
4467   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4468     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4469 
4470     HeapRegion* r = g1h->region_at(region_idx);
4471     assert(!g1h->is_on_master_free_list(r), "sanity");
4472 
4473     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4474 
4475     if (!is_young) {
4476       g1h->_hot_card_cache->reset_card_counts(r);
4477     }
4478 
4479     if (!evacuation_failed) {
4480       r->rem_set()->clear_locked();
4481     }
4482   }
4483 
4484   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4485   private:
4486     size_t _cur_idx;
4487     WorkItem* _work_items;
4488   public:
4489     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4490 
4491     virtual bool do_heap_region(HeapRegion* r) {
4492       _work_items[_cur_idx++] = WorkItem(r);
4493       return false;
4494     }
4495   };
4496 
4497   void prepare_work() {
4498     G1PrepareFreeCollectionSetClosure cl(_work_items);
4499     _collection_set->iterate(&cl);
4500   }
4501 
4502   void complete_work() {
4503     _cl.complete_work();
4504 
4505     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4506     policy->record_max_rs_lengths(_rs_lengths);
4507     policy->cset_regions_freed();
4508   }
4509 public:
4510   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4511     AbstractGangTask("G1 Free Collection Set"),
4512     _cl(evacuation_info, surviving_young_words),
4513     _collection_set(collection_set),
4514     _surviving_young_words(surviving_young_words),
4515     _serial_work_claim(0),
4516     _rs_lengths(0),
4517     _parallel_work_claim(0),
4518     _num_work_items(collection_set->region_length()),
4519     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4520     prepare_work();
4521   }
4522 
4523   ~G1FreeCollectionSetTask() {
4524     complete_work();
4525     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4526   }
4527 
4528   // Chunk size for work distribution. The chosen value has been determined experimentally
4529   // to be a good tradeoff between overhead and achievable parallelism.
4530   static uint chunk_size() { return 32; }
4531 
4532   virtual void work(uint worker_id) {
4533     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4534 
4535     // Claim serial work.
4536     if (_serial_work_claim == 0) {
4537       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4538       if (value == 0) {
4539         double serial_time = os::elapsedTime();
4540         do_serial_work();
4541         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4542       }
4543     }
4544 
4545     // Start parallel work.
4546     double young_time = 0.0;
4547     bool has_young_time = false;
4548     double non_young_time = 0.0;
4549     bool has_non_young_time = false;
4550 
4551     while (true) {
4552       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4553       size_t cur = end - chunk_size();
4554 
4555       if (cur >= _num_work_items) {
4556         break;
4557       }
4558 
4559       double start_time = os::elapsedTime();
4560 
4561       end = MIN2(end, _num_work_items);
4562 
4563       for (; cur < end; cur++) {
4564         bool is_young = _work_items[cur].is_young;
4565 
4566         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4567 
4568         double end_time = os::elapsedTime();
4569         double time_taken = end_time - start_time;
4570         if (is_young) {
4571           young_time += time_taken;
4572           has_young_time = true;
4573         } else {
4574           non_young_time += time_taken;
4575           has_non_young_time = true;
4576         }
4577         start_time = end_time;
4578       }
4579     }
4580 
4581     if (has_young_time) {
4582       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4583     }
4584     if (has_non_young_time) {
4585       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4586     }
4587   }
4588 };
4589 
4590 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4591   _eden.clear();
4592 
4593   double free_cset_start_time = os::elapsedTime();
4594 
4595   {
4596     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4597     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4598 
4599     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4600 
4601     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4602                         cl.name(),
4603                         num_workers,
4604                         _collection_set.region_length());
4605     workers()->run_task(&cl, num_workers);
4606   }
4607   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4608 
4609   collection_set->clear();
4610 }
4611 
4612 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4613  private:
4614   FreeRegionList* _free_region_list;
4615   HeapRegionSet* _proxy_set;
4616   uint _humongous_objects_reclaimed;
4617   uint _humongous_regions_reclaimed;
4618   size_t _freed_bytes;
4619  public:
4620 
4621   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4622     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4623   }
4624 
4625   virtual bool do_heap_region(HeapRegion* r) {
4626     if (!r->is_starts_humongous()) {
4627       return false;
4628     }
4629 
4630     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4631 
4632     oop obj = (oop)r->bottom();
4633     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4634 
4635     // The following checks whether the humongous object is live are sufficient.
4636     // The main additional check (in addition to having a reference from the roots
4637     // or the young gen) is whether the humongous object has a remembered set entry.
4638     //
4639     // A humongous object cannot be live if there is no remembered set for it
4640     // because:
4641     // - there can be no references from within humongous starts regions referencing
4642     // the object because we never allocate other objects into them.
4643     // (I.e. there are no intra-region references that may be missed by the
4644     // remembered set)
4645     // - as soon there is a remembered set entry to the humongous starts region
4646     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4647     // until the end of a concurrent mark.
4648     //
4649     // It is not required to check whether the object has been found dead by marking
4650     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4651     // all objects allocated during that time are considered live.
4652     // SATB marking is even more conservative than the remembered set.
4653     // So if at this point in the collection there is no remembered set entry,
4654     // nobody has a reference to it.
4655     // At the start of collection we flush all refinement logs, and remembered sets
4656     // are completely up-to-date wrt to references to the humongous object.
4657     //
4658     // Other implementation considerations:
4659     // - never consider object arrays at this time because they would pose
4660     // considerable effort for cleaning up the the remembered sets. This is
4661     // required because stale remembered sets might reference locations that
4662     // are currently allocated into.
4663     uint region_idx = r->hrm_index();
4664     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4665         !r->rem_set()->is_empty()) {
4666       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4667                                region_idx,
4668                                (size_t)obj->size() * HeapWordSize,
4669                                p2i(r->bottom()),
4670                                r->rem_set()->occupied(),
4671                                r->rem_set()->strong_code_roots_list_length(),
4672                                next_bitmap->is_marked(r->bottom()),
4673                                g1h->is_humongous_reclaim_candidate(region_idx),
4674                                obj->is_typeArray()
4675                               );
4676       return false;
4677     }
4678 
4679     guarantee(obj->is_typeArray(),
4680               "Only eagerly reclaiming type arrays is supported, but the object "
4681               PTR_FORMAT " is not.", p2i(r->bottom()));
4682 
4683     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4684                              region_idx,
4685                              (size_t)obj->size() * HeapWordSize,
4686                              p2i(r->bottom()),
4687                              r->rem_set()->occupied(),
4688                              r->rem_set()->strong_code_roots_list_length(),
4689                              next_bitmap->is_marked(r->bottom()),
4690                              g1h->is_humongous_reclaim_candidate(region_idx),
4691                              obj->is_typeArray()
4692                             );
4693 
4694     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4695     cm->humongous_object_eagerly_reclaimed(r);
4696     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4697            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4698            region_idx,
4699            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4700            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4701     _humongous_objects_reclaimed++;
4702     do {
4703       HeapRegion* next = g1h->next_region_in_humongous(r);
4704       _freed_bytes += r->used();
4705       r->set_containing_set(NULL);
4706       _humongous_regions_reclaimed++;
4707       g1h->free_humongous_region(r, _free_region_list);
4708       r = next;
4709     } while (r != NULL);
4710 
4711     return false;
4712   }
4713 
4714   uint humongous_objects_reclaimed() {
4715     return _humongous_objects_reclaimed;
4716   }
4717 
4718   uint humongous_regions_reclaimed() {
4719     return _humongous_regions_reclaimed;
4720   }
4721 
4722   size_t bytes_freed() const {
4723     return _freed_bytes;
4724   }
4725 };
4726 
4727 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4728   assert_at_safepoint_on_vm_thread();
4729 
4730   if (!G1EagerReclaimHumongousObjects ||
4731       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4732     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4733     return;
4734   }
4735 
4736   double start_time = os::elapsedTime();
4737 
4738   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4739 
4740   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4741   heap_region_iterate(&cl);
4742 
4743   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4744 
4745   G1HRPrinter* hrp = hr_printer();
4746   if (hrp->is_active()) {
4747     FreeRegionListIterator iter(&local_cleanup_list);
4748     while (iter.more_available()) {
4749       HeapRegion* hr = iter.get_next();
4750       hrp->cleanup(hr);
4751     }
4752   }
4753 
4754   prepend_to_freelist(&local_cleanup_list);
4755   decrement_summary_bytes(cl.bytes_freed());
4756 
4757   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4758                                                                     cl.humongous_objects_reclaimed());
4759 }
4760 
4761 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4762 public:
4763   virtual bool do_heap_region(HeapRegion* r) {
4764     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4765     G1CollectedHeap::heap()->clear_in_cset(r);
4766     r->set_young_index_in_cset(-1);
4767     return false;
4768   }
4769 };
4770 
4771 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4772   G1AbandonCollectionSetClosure cl;
4773   collection_set->iterate(&cl);
4774 
4775   collection_set->clear();
4776   collection_set->stop_incremental_building();
4777 }
4778 
4779 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4780   return _allocator->is_retained_old_region(hr);
4781 }
4782 
4783 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4784   _eden.add(hr);
4785   _g1_policy->set_region_eden(hr);
4786 }
4787 
4788 #ifdef ASSERT
4789 
4790 class NoYoungRegionsClosure: public HeapRegionClosure {
4791 private:
4792   bool _success;
4793 public:
4794   NoYoungRegionsClosure() : _success(true) { }
4795   bool do_heap_region(HeapRegion* r) {
4796     if (r->is_young()) {
4797       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4798                             p2i(r->bottom()), p2i(r->end()));
4799       _success = false;
4800     }
4801     return false;
4802   }
4803   bool success() { return _success; }
4804 };
4805 
4806 bool G1CollectedHeap::check_young_list_empty() {
4807   bool ret = (young_regions_count() == 0);
4808 
4809   NoYoungRegionsClosure closure;
4810   heap_region_iterate(&closure);
4811   ret = ret && closure.success();
4812 
4813   return ret;
4814 }
4815 
4816 #endif // ASSERT
4817 
4818 class TearDownRegionSetsClosure : public HeapRegionClosure {
4819 private:
4820   HeapRegionSet *_old_set;
4821 
4822 public:
4823   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4824 
4825   bool do_heap_region(HeapRegion* r) {
4826     if (r->is_old()) {
4827       _old_set->remove(r);
4828     } else if(r->is_young()) {
4829       r->uninstall_surv_rate_group();
4830     } else {
4831       // We ignore free regions, we'll empty the free list afterwards.
4832       // We ignore humongous regions, we're not tearing down the
4833       // humongous regions set.
4834       assert(r->is_free() || r->is_humongous(),
4835              "it cannot be another type");
4836     }
4837     return false;
4838   }
4839 
4840   ~TearDownRegionSetsClosure() {
4841     assert(_old_set->is_empty(), "post-condition");
4842   }
4843 };
4844 
4845 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4846   assert_at_safepoint_on_vm_thread();
4847 
4848   if (!free_list_only) {
4849     TearDownRegionSetsClosure cl(&_old_set);
4850     heap_region_iterate(&cl);
4851 
4852     // Note that emptying the _young_list is postponed and instead done as
4853     // the first step when rebuilding the regions sets again. The reason for
4854     // this is that during a full GC string deduplication needs to know if
4855     // a collected region was young or old when the full GC was initiated.
4856   }
4857   _hrm.remove_all_free_regions();
4858 }
4859 
4860 void G1CollectedHeap::increase_used(size_t bytes) {
4861   _summary_bytes_used += bytes;
4862 }
4863 
4864 void G1CollectedHeap::decrease_used(size_t bytes) {
4865   assert(_summary_bytes_used >= bytes,
4866          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4867          _summary_bytes_used, bytes);
4868   _summary_bytes_used -= bytes;
4869 }
4870 
4871 void G1CollectedHeap::set_used(size_t bytes) {
4872   _summary_bytes_used = bytes;
4873 }
4874 
4875 class RebuildRegionSetsClosure : public HeapRegionClosure {
4876 private:
4877   bool            _free_list_only;
4878   HeapRegionSet*   _old_set;
4879   HeapRegionManager*   _hrm;
4880   size_t          _total_used;
4881 
4882 public:
4883   RebuildRegionSetsClosure(bool free_list_only,
4884                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
4885     _free_list_only(free_list_only),
4886     _old_set(old_set), _hrm(hrm), _total_used(0) {
4887     assert(_hrm->num_free_regions() == 0, "pre-condition");
4888     if (!free_list_only) {
4889       assert(_old_set->is_empty(), "pre-condition");
4890     }
4891   }
4892 
4893   bool do_heap_region(HeapRegion* r) {
4894     // After full GC, no region should have a remembered set.
4895     r->rem_set()->clear(true);
4896     if (r->is_empty()) {
4897       // Add free regions to the free list
4898       r->set_free();
4899       _hrm->insert_into_free_list(r);
4900     } else if (!_free_list_only) {
4901 
4902       if (r->is_humongous()) {
4903         // We ignore humongous regions. We left the humongous set unchanged.
4904       } else {
4905         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4906         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
4907         r->move_to_old();
4908         _old_set->add(r);
4909       }
4910       _total_used += r->used();
4911     }
4912 
4913     return false;
4914   }
4915 
4916   size_t total_used() {
4917     return _total_used;
4918   }
4919 };
4920 
4921 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4922   assert_at_safepoint_on_vm_thread();
4923 
4924   if (!free_list_only) {
4925     _eden.clear();
4926     _survivor.clear();
4927   }
4928 
4929   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4930   heap_region_iterate(&cl);
4931 
4932   if (!free_list_only) {
4933     set_used(cl.total_used());
4934     if (_archive_allocator != NULL) {
4935       _archive_allocator->clear_used();
4936     }
4937   }
4938   assert(used_unlocked() == recalculate_used(),
4939          "inconsistent used_unlocked(), "
4940          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4941          used_unlocked(), recalculate_used());
4942 }
4943 
4944 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4945   HeapRegion* hr = heap_region_containing(p);
4946   return hr->is_in(p);
4947 }
4948 
4949 // Methods for the mutator alloc region
4950 
4951 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4952                                                       bool force) {
4953   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4954   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4955   if (force || should_allocate) {
4956     HeapRegion* new_alloc_region = new_region(word_size,
4957                                               false /* is_old */,
4958                                               false /* do_expand */);
4959     if (new_alloc_region != NULL) {
4960       set_region_short_lived_locked(new_alloc_region);
4961       _hr_printer.alloc(new_alloc_region, !should_allocate);
4962       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4963       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4964       return new_alloc_region;
4965     }
4966   }
4967   return NULL;
4968 }
4969 
4970 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4971                                                   size_t allocated_bytes) {
4972   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4973   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4974 
4975   collection_set()->add_eden_region(alloc_region);
4976   increase_used(allocated_bytes);
4977   _hr_printer.retire(alloc_region);
4978   // We update the eden sizes here, when the region is retired,
4979   // instead of when it's allocated, since this is the point that its
4980   // used space has been recored in _summary_bytes_used.
4981   g1mm()->update_eden_size();
4982 }
4983 
4984 // Methods for the GC alloc regions
4985 
4986 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4987   if (dest.is_old()) {
4988     return true;
4989   } else {
4990     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4991   }
4992 }
4993 
4994 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4995   assert(FreeList_lock->owned_by_self(), "pre-condition");
4996 
4997   if (!has_more_regions(dest)) {
4998     return NULL;
4999   }
5000 
5001   const bool is_survivor = dest.is_young();
5002 
5003   HeapRegion* new_alloc_region = new_region(word_size,
5004                                             !is_survivor,
5005                                             true /* do_expand */);
5006   if (new_alloc_region != NULL) {
5007     if (is_survivor) {
5008       new_alloc_region->set_survivor();
5009       _survivor.add(new_alloc_region);
5010       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5011     } else {
5012       new_alloc_region->set_old();
5013       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5014     }
5015     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
5016     _hr_printer.alloc(new_alloc_region);
5017     bool during_im = collector_state()->in_initial_mark_gc();
5018     new_alloc_region->note_start_of_copying(during_im);
5019     return new_alloc_region;
5020   }
5021   return NULL;
5022 }
5023 
5024 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5025                                              size_t allocated_bytes,
5026                                              InCSetState dest) {
5027   bool during_im = collector_state()->in_initial_mark_gc();
5028   alloc_region->note_end_of_copying(during_im);
5029   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5030   if (dest.is_old()) {
5031     _old_set.add(alloc_region);
5032   }
5033   _hr_printer.retire(alloc_region);
5034 }
5035 
5036 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5037   bool expanded = false;
5038   uint index = _hrm.find_highest_free(&expanded);
5039 
5040   if (index != G1_NO_HRM_INDEX) {
5041     if (expanded) {
5042       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5043                                 HeapRegion::GrainWords * HeapWordSize);
5044     }
5045     _hrm.allocate_free_regions_starting_at(index, 1);
5046     return region_at(index);
5047   }
5048   return NULL;
5049 }
5050 
5051 // Optimized nmethod scanning
5052 
5053 class RegisterNMethodOopClosure: public OopClosure {
5054   G1CollectedHeap* _g1h;
5055   nmethod* _nm;
5056 
5057   template <class T> void do_oop_work(T* p) {
5058     T heap_oop = RawAccess<>::oop_load(p);
5059     if (!CompressedOops::is_null(heap_oop)) {
5060       oop obj = CompressedOops::decode_not_null(heap_oop);
5061       HeapRegion* hr = _g1h->heap_region_containing(obj);
5062       assert(!hr->is_continues_humongous(),
5063              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5064              " starting at " HR_FORMAT,
5065              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5066 
5067       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5068       hr->add_strong_code_root_locked(_nm);
5069     }
5070   }
5071 
5072 public:
5073   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5074     _g1h(g1h), _nm(nm) {}
5075 
5076   void do_oop(oop* p)       { do_oop_work(p); }
5077   void do_oop(narrowOop* p) { do_oop_work(p); }
5078 };
5079 
5080 class UnregisterNMethodOopClosure: public OopClosure {
5081   G1CollectedHeap* _g1h;
5082   nmethod* _nm;
5083 
5084   template <class T> void do_oop_work(T* p) {
5085     T heap_oop = RawAccess<>::oop_load(p);
5086     if (!CompressedOops::is_null(heap_oop)) {
5087       oop obj = CompressedOops::decode_not_null(heap_oop);
5088       HeapRegion* hr = _g1h->heap_region_containing(obj);
5089       assert(!hr->is_continues_humongous(),
5090              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5091              " starting at " HR_FORMAT,
5092              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5093 
5094       hr->remove_strong_code_root(_nm);
5095     }
5096   }
5097 
5098 public:
5099   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5100     _g1h(g1h), _nm(nm) {}
5101 
5102   void do_oop(oop* p)       { do_oop_work(p); }
5103   void do_oop(narrowOop* p) { do_oop_work(p); }
5104 };
5105 
5106 // Returns true if the reference points to an object that
5107 // can move in an incremental collection.
5108 bool G1CollectedHeap::is_scavengable(oop obj) {
5109   HeapRegion* hr = heap_region_containing(obj);
5110   return !hr->is_pinned();
5111 }
5112 
5113 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5114   guarantee(nm != NULL, "sanity");
5115   RegisterNMethodOopClosure reg_cl(this, nm);
5116   nm->oops_do(&reg_cl);
5117 }
5118 
5119 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5120   guarantee(nm != NULL, "sanity");
5121   UnregisterNMethodOopClosure reg_cl(this, nm);
5122   nm->oops_do(&reg_cl, true);
5123 }
5124 
5125 void G1CollectedHeap::purge_code_root_memory() {
5126   double purge_start = os::elapsedTime();
5127   G1CodeRootSet::purge();
5128   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5129   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5130 }
5131 
5132 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5133   G1CollectedHeap* _g1h;
5134 
5135 public:
5136   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5137     _g1h(g1h) {}
5138 
5139   void do_code_blob(CodeBlob* cb) {
5140     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5141     if (nm == NULL) {
5142       return;
5143     }
5144 
5145     if (ScavengeRootsInCode) {
5146       _g1h->register_nmethod(nm);
5147     }
5148   }
5149 };
5150 
5151 void G1CollectedHeap::rebuild_strong_code_roots() {
5152   RebuildStrongCodeRootClosure blob_cl(this);
5153   CodeCache::blobs_do(&blob_cl);
5154 }
5155 
5156 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
5157   GrowableArray<GCMemoryManager*> memory_managers(2);
5158   memory_managers.append(&_memory_manager);
5159   memory_managers.append(&_full_gc_memory_manager);
5160   return memory_managers;
5161 }
5162 
5163 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
5164   GrowableArray<MemoryPool*> memory_pools(3);
5165   memory_pools.append(_eden_pool);
5166   memory_pools.append(_survivor_pool);
5167   memory_pools.append(_old_pool);
5168   return memory_pools;
5169 }