1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1OopClosures.inline.hpp"
  34 #include "gc/g1/g1Policy.hpp"
  35 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  36 #include "gc/g1/g1StringDedup.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/g1/heapRegionSet.inline.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/suspendibleThreadSet.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "gc/shared/weakProcessor.hpp"
  52 #include "include/jvm.h"
  53 #include "logging/log.hpp"
  54 #include "memory/allocation.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "oops/access.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/java.hpp"
  61 #include "runtime/prefetch.inline.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "utilities/align.hpp"
  64 #include "utilities/growableArray.hpp"
  65 
  66 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  67   assert(addr < _cm->finger(), "invariant");
  68   assert(addr >= _task->finger(), "invariant");
  69 
  70   // We move that task's local finger along.
  71   _task->move_finger_to(addr);
  72 
  73   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  74   // we only partially drain the local queue and global stack
  75   _task->drain_local_queue(true);
  76   _task->drain_global_stack(true);
  77 
  78   // if the has_aborted flag has been raised, we need to bail out of
  79   // the iteration
  80   return !_task->has_aborted();
  81 }
  82 
  83 G1CMMarkStack::G1CMMarkStack() :
  84   _max_chunk_capacity(0),
  85   _base(NULL),
  86   _chunk_capacity(0) {
  87   set_empty();
  88 }
  89 
  90 bool G1CMMarkStack::resize(size_t new_capacity) {
  91   assert(is_empty(), "Only resize when stack is empty.");
  92   assert(new_capacity <= _max_chunk_capacity,
  93          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  94 
  95   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  96 
  97   if (new_base == NULL) {
  98     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
  99     return false;
 100   }
 101   // Release old mapping.
 102   if (_base != NULL) {
 103     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 104   }
 105 
 106   _base = new_base;
 107   _chunk_capacity = new_capacity;
 108   set_empty();
 109 
 110   return true;
 111 }
 112 
 113 size_t G1CMMarkStack::capacity_alignment() {
 114   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 115 }
 116 
 117 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 118   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 119 
 120   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 121 
 122   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 123   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 124 
 125   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 126             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 127             _max_chunk_capacity,
 128             initial_chunk_capacity);
 129 
 130   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 131                 initial_chunk_capacity, _max_chunk_capacity);
 132 
 133   return resize(initial_chunk_capacity);
 134 }
 135 
 136 void G1CMMarkStack::expand() {
 137   if (_chunk_capacity == _max_chunk_capacity) {
 138     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 139     return;
 140   }
 141   size_t old_capacity = _chunk_capacity;
 142   // Double capacity if possible
 143   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 144 
 145   if (resize(new_capacity)) {
 146     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 147                   old_capacity, new_capacity);
 148   } else {
 149     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 150                     old_capacity, new_capacity);
 151   }
 152 }
 153 
 154 G1CMMarkStack::~G1CMMarkStack() {
 155   if (_base != NULL) {
 156     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 157   }
 158 }
 159 
 160 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 161   elem->next = *list;
 162   *list = elem;
 163 }
 164 
 165 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 166   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 167   add_chunk_to_list(&_chunk_list, elem);
 168   _chunks_in_chunk_list++;
 169 }
 170 
 171 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 172   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 173   add_chunk_to_list(&_free_list, elem);
 174 }
 175 
 176 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 177   TaskQueueEntryChunk* result = *list;
 178   if (result != NULL) {
 179     *list = (*list)->next;
 180   }
 181   return result;
 182 }
 183 
 184 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 185   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 186   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 187   if (result != NULL) {
 188     _chunks_in_chunk_list--;
 189   }
 190   return result;
 191 }
 192 
 193 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 194   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 195   return remove_chunk_from_list(&_free_list);
 196 }
 197 
 198 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 199   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 200   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 201   // wraparound of _hwm.
 202   if (_hwm >= _chunk_capacity) {
 203     return NULL;
 204   }
 205 
 206   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 207   if (cur_idx >= _chunk_capacity) {
 208     return NULL;
 209   }
 210 
 211   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 212   result->next = NULL;
 213   return result;
 214 }
 215 
 216 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 217   // Get a new chunk.
 218   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 219 
 220   if (new_chunk == NULL) {
 221     // Did not get a chunk from the free list. Allocate from backing memory.
 222     new_chunk = allocate_new_chunk();
 223 
 224     if (new_chunk == NULL) {
 225       return false;
 226     }
 227   }
 228 
 229   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 230 
 231   add_chunk_to_chunk_list(new_chunk);
 232 
 233   return true;
 234 }
 235 
 236 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 237   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 238 
 239   if (cur == NULL) {
 240     return false;
 241   }
 242 
 243   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 244 
 245   add_chunk_to_free_list(cur);
 246   return true;
 247 }
 248 
 249 void G1CMMarkStack::set_empty() {
 250   _chunks_in_chunk_list = 0;
 251   _hwm = 0;
 252   _chunk_list = NULL;
 253   _free_list = NULL;
 254 }
 255 
 256 G1CMRootRegions::G1CMRootRegions() :
 257   _survivors(NULL), _cm(NULL), _scan_in_progress(false),
 258   _should_abort(false), _claimed_survivor_index(0) { }
 259 
 260 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 261   _survivors = survivors;
 262   _cm = cm;
 263 }
 264 
 265 void G1CMRootRegions::prepare_for_scan() {
 266   assert(!scan_in_progress(), "pre-condition");
 267 
 268   // Currently, only survivors can be root regions.
 269   _claimed_survivor_index = 0;
 270   _scan_in_progress = _survivors->regions()->is_nonempty();
 271   _should_abort = false;
 272 }
 273 
 274 HeapRegion* G1CMRootRegions::claim_next() {
 275   if (_should_abort) {
 276     // If someone has set the should_abort flag, we return NULL to
 277     // force the caller to bail out of their loop.
 278     return NULL;
 279   }
 280 
 281   // Currently, only survivors can be root regions.
 282   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 283 
 284   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 285   if (claimed_index < survivor_regions->length()) {
 286     return survivor_regions->at(claimed_index);
 287   }
 288   return NULL;
 289 }
 290 
 291 uint G1CMRootRegions::num_root_regions() const {
 292   return (uint)_survivors->regions()->length();
 293 }
 294 
 295 void G1CMRootRegions::notify_scan_done() {
 296   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 297   _scan_in_progress = false;
 298   RootRegionScan_lock->notify_all();
 299 }
 300 
 301 void G1CMRootRegions::cancel_scan() {
 302   notify_scan_done();
 303 }
 304 
 305 void G1CMRootRegions::scan_finished() {
 306   assert(scan_in_progress(), "pre-condition");
 307 
 308   // Currently, only survivors can be root regions.
 309   if (!_should_abort) {
 310     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 311     assert((uint)_claimed_survivor_index >= _survivors->length(),
 312            "we should have claimed all survivors, claimed index = %u, length = %u",
 313            (uint)_claimed_survivor_index, _survivors->length());
 314   }
 315 
 316   notify_scan_done();
 317 }
 318 
 319 bool G1CMRootRegions::wait_until_scan_finished() {
 320   if (!scan_in_progress()) {
 321     return false;
 322   }
 323 
 324   {
 325     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 326     while (scan_in_progress()) {
 327       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 328     }
 329   }
 330   return true;
 331 }
 332 
 333 // Returns the maximum number of workers to be used in a concurrent
 334 // phase based on the number of GC workers being used in a STW
 335 // phase.
 336 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 337   return MAX2((num_gc_workers + 2) / 4, 1U);
 338 }
 339 
 340 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 341                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 342                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 343   // _cm_thread set inside the constructor
 344   _g1h(g1h),
 345   _completed_initialization(false),
 346 
 347   _mark_bitmap_1(),
 348   _mark_bitmap_2(),
 349   _prev_mark_bitmap(&_mark_bitmap_1),
 350   _next_mark_bitmap(&_mark_bitmap_2),
 351 
 352   _heap(_g1h->reserved_region()),
 353 
 354   _root_regions(),
 355 
 356   _global_mark_stack(),
 357 
 358   // _finger set in set_non_marking_state
 359 
 360   _worker_id_offset(DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 361   _max_num_tasks(ParallelGCThreads),
 362   // _num_active_tasks set in set_non_marking_state()
 363   // _tasks set inside the constructor
 364 
 365   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 366   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 367 
 368   _first_overflow_barrier_sync(),
 369   _second_overflow_barrier_sync(),
 370 
 371   _has_overflown(false),
 372   _concurrent(false),
 373   _has_aborted(false),
 374   _restart_for_overflow(false),
 375   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 376   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 377 
 378   // _verbose_level set below
 379 
 380   _init_times(),
 381   _remark_times(),
 382   _remark_mark_times(),
 383   _remark_weak_ref_times(),
 384   _cleanup_times(),
 385   _total_cleanup_time(0.0),
 386 
 387   _accum_task_vtime(NULL),
 388 
 389   _concurrent_workers(NULL),
 390   _num_concurrent_workers(0),
 391   _max_concurrent_workers(0),
 392 
 393   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 394   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 395 {
 396   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 397   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 398 
 399   // Create & start ConcurrentMark thread.
 400   _cm_thread = new ConcurrentMarkThread(this);
 401   if (_cm_thread->osthread() == NULL) {
 402     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 403   }
 404 
 405   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 406 
 407   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 408   satb_qs.set_buffer_size(G1SATBBufferSize);
 409 
 410   _root_regions.init(_g1h->survivor(), this);
 411 
 412   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 413     // Calculate the number of concurrent worker threads by scaling
 414     // the number of parallel GC threads.
 415     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 416     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 417   }
 418 
 419   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 420   if (ConcGCThreads > ParallelGCThreads) {
 421     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 422                     ConcGCThreads, ParallelGCThreads);
 423     return;
 424   }
 425 
 426   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 427   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 428 
 429   _num_concurrent_workers = ConcGCThreads;
 430   _max_concurrent_workers = _num_concurrent_workers;
 431 
 432   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 433   _concurrent_workers->initialize_workers();
 434 
 435   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 436     size_t mark_stack_size =
 437       MIN2(MarkStackSizeMax,
 438           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 439     // Verify that the calculated value for MarkStackSize is in range.
 440     // It would be nice to use the private utility routine from Arguments.
 441     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 442       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 443                       "must be between 1 and " SIZE_FORMAT,
 444                       mark_stack_size, MarkStackSizeMax);
 445       return;
 446     }
 447     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 448   } else {
 449     // Verify MarkStackSize is in range.
 450     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 451       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 452         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 453           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 454                           "must be between 1 and " SIZE_FORMAT,
 455                           MarkStackSize, MarkStackSizeMax);
 456           return;
 457         }
 458       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 459         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 460           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 461                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 462                           MarkStackSize, MarkStackSizeMax);
 463           return;
 464         }
 465       }
 466     }
 467   }
 468 
 469   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 470     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 471   }
 472 
 473   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 474   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 475 
 476   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 477   _num_active_tasks = _max_num_tasks;
 478 
 479   for (uint i = 0; i < _max_num_tasks; ++i) {
 480     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 481     task_queue->initialize();
 482     _task_queues->register_queue(i, task_queue);
 483 
 484     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 485 
 486     _accum_task_vtime[i] = 0.0;
 487   }
 488 
 489   reset_at_marking_complete();
 490   _completed_initialization = true;
 491 }
 492 
 493 void G1ConcurrentMark::reset() {
 494   _has_aborted = false;
 495 
 496   reset_marking_for_restart();
 497 
 498   // Reset all tasks, since different phases will use different number of active
 499   // threads. So, it's easiest to have all of them ready.
 500   for (uint i = 0; i < _max_num_tasks; ++i) {
 501     _tasks[i]->reset(_next_mark_bitmap);
 502   }
 503 
 504   uint max_regions = _g1h->max_regions();
 505   for (uint i = 0; i < max_regions; i++) {
 506     _top_at_rebuild_starts[i] = NULL;
 507     _region_mark_stats[i].clear();
 508   }
 509 }
 510 
 511 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 512   for (uint j = 0; j < _max_num_tasks; ++j) {
 513     _tasks[j]->clear_mark_stats_cache(region_idx);
 514   }
 515   _top_at_rebuild_starts[region_idx] = NULL;
 516   _region_mark_stats[region_idx].clear();
 517 }
 518 
 519 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 520   uint const region_idx = r->hrm_index();
 521   if (r->is_humongous()) {
 522     assert(r->is_starts_humongous(), "Got humongous continues region here");
 523     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 524     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 525       clear_statistics_in_region(j);
 526     }
 527   } else {
 528     clear_statistics_in_region(region_idx);
 529   } 
 530 }
 531 
 532 static void maybe_clear_bitmap_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 533   if (bitmap->is_marked(addr)) {
 534     bitmap->clear(addr);
 535   }
 536 }
 537 
 538 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 539   assert_at_safepoint_on_vm_thread();
 540 
 541   // Need to clear all mark bits of the humongous object.
 542   maybe_clear_bitmap_if_set(_prev_mark_bitmap, r->bottom());
 543 
 544   G1CollectorState* collector_state = _g1h->collector_state();
 545   if (collector_state->mark_or_rebuild_in_progress() ||
 546       collector_state->clearing_next_bitmap()) {
 547     maybe_clear_bitmap_if_set(_next_mark_bitmap, r->bottom());
 548   }
 549 
 550   // Clear any statistics about the region gathered so far.
 551   clear_statistics(r);
 552 }
 553 
 554 void G1ConcurrentMark::reset_marking_for_restart() {
 555   _global_mark_stack.set_empty();
 556 
 557   // Expand the marking stack, if we have to and if we can.
 558   if (has_overflown()) {
 559     _global_mark_stack.expand();
 560 
 561     uint max_regions = _g1h->max_regions();
 562     for (uint i = 0; i < max_regions; i++) {
 563       _region_mark_stats[i].clear_during_overflow();
 564     }
 565   }
 566 
 567   clear_has_overflown();
 568   _finger = _heap.start();
 569 
 570   for (uint i = 0; i < _max_num_tasks; ++i) {
 571     G1CMTaskQueue* queue = _task_queues->queue(i);
 572     queue->set_empty();
 573   }
 574 }
 575 
 576 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 577   assert(active_tasks <= _max_num_tasks, "we should not have more");
 578 
 579   _num_active_tasks = active_tasks;
 580   // Need to update the three data structures below according to the
 581   // number of active threads for this phase.
 582   _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
 583   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 584   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 585 }
 586 
 587 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 588   set_concurrency(active_tasks);
 589 
 590   _concurrent = concurrent;
 591 
 592   if (!concurrent) {
 593     // At this point we should be in a STW phase, and completed marking.
 594     assert_at_safepoint_on_vm_thread();
 595     assert(out_of_regions(),
 596            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 597            p2i(_finger), p2i(_heap.end()));
 598   }
 599 }
 600 
 601 void G1ConcurrentMark::reset_at_marking_complete() {
 602   // We set the global marking state to some default values when we're
 603   // not doing marking.
 604   reset_marking_for_restart();
 605   _num_active_tasks = 0;
 606 }
 607 
 608 G1ConcurrentMark::~G1ConcurrentMark() {
 609   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 610   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 611   // The G1ConcurrentMark instance is never freed.
 612   ShouldNotReachHere();
 613 }
 614 
 615 class G1ClearBitMapTask : public AbstractGangTask {
 616 public:
 617   static size_t chunk_size() { return M; }
 618 
 619 private:
 620   // Heap region closure used for clearing the given mark bitmap.
 621   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 622   private:
 623     G1CMBitMap* _bitmap;
 624     G1ConcurrentMark* _cm;
 625   public:
 626     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 627     }
 628 
 629     virtual bool do_heap_region(HeapRegion* r) {
 630       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 631 
 632       HeapWord* cur = r->bottom();
 633       HeapWord* const end = r->end();
 634 
 635       while (cur < end) {
 636         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 637         _bitmap->clear_range(mr);
 638 
 639         cur += chunk_size_in_words;
 640 
 641         // Abort iteration if after yielding the marking has been aborted.
 642         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 643           return true;
 644         }
 645         // Repeat the asserts from before the start of the closure. We will do them
 646         // as asserts here to minimize their overhead on the product. However, we
 647         // will have them as guarantees at the beginning / end of the bitmap
 648         // clearing to get some checking in the product.
 649         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 650         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 651       }
 652       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 653 
 654       return false;
 655     }
 656   };
 657 
 658   G1ClearBitmapHRClosure _cl;
 659   HeapRegionClaimer _hr_claimer;
 660   bool _suspendible; // If the task is suspendible, workers must join the STS.
 661 
 662 public:
 663   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 664     AbstractGangTask("G1 Clear Bitmap"),
 665     _cl(bitmap, suspendible ? cm : NULL),
 666     _hr_claimer(n_workers),
 667     _suspendible(suspendible)
 668   { }
 669 
 670   void work(uint worker_id) {
 671     SuspendibleThreadSetJoiner sts_join(_suspendible);
 672     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 673   }
 674 
 675   bool is_complete() {
 676     return _cl.is_complete();
 677   }
 678 };
 679 
 680 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 681   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 682 
 683   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 684   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 685 
 686   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 687 
 688   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 689 
 690   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 691   workers->run_task(&cl, num_workers);
 692   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 693 }
 694 
 695 void G1ConcurrentMark::cleanup_for_next_mark() {
 696   // Make sure that the concurrent mark thread looks to still be in
 697   // the current cycle.
 698   guarantee(cm_thread()->during_cycle(), "invariant");
 699 
 700   // We are finishing up the current cycle by clearing the next
 701   // marking bitmap and getting it ready for the next cycle. During
 702   // this time no other cycle can start. So, let's make sure that this
 703   // is the case.
 704   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 705 
 706   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 707 
 708   // Repeat the asserts from above.
 709   guarantee(cm_thread()->during_cycle(), "invariant");
 710   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 711 }
 712 
 713 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 714   assert_at_safepoint_on_vm_thread();
 715   clear_bitmap(_prev_mark_bitmap, workers, false);
 716 }
 717 
 718 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 719   G1CMBitMap* _bitmap;
 720  public:
 721   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 722   }
 723 
 724   virtual bool do_heap_region(HeapRegion* r) {
 725     // This closure can be called concurrently to the mutator, so we must make sure
 726     // that the result of the getNextMarkedWordAddress() call is compared to the
 727     // value passed to it as limit to detect any found bits.
 728     // end never changes in G1.
 729     HeapWord* end = r->end();
 730     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 731   }
 732 };
 733 
 734 bool G1ConcurrentMark::next_mark_bitmap_is_clear() {
 735   CheckBitmapClearHRClosure cl(_next_mark_bitmap);
 736   _g1h->heap_region_iterate(&cl);
 737   return cl.is_complete();
 738 }
 739 
 740 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 741 public:
 742   bool do_heap_region(HeapRegion* r) {
 743     r->note_start_of_marking();
 744     return false;
 745   }
 746 };
 747 
 748 void G1ConcurrentMark::pre_initial_mark() {
 749   // Initialize marking structures. This has to be done in a STW phase.
 750   reset();
 751 
 752   // For each region note start of marking.
 753   NoteStartOfMarkHRClosure startcl;
 754   _g1h->heap_region_iterate(&startcl);
 755 }
 756 
 757 
 758 void G1ConcurrentMark::post_initial_mark() {
 759   // Start Concurrent Marking weak-reference discovery.
 760   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 761   // enable ("weak") refs discovery
 762   rp->enable_discovery();
 763   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 764 
 765   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 766   // This is the start of  the marking cycle, we're expected all
 767   // threads to have SATB queues with active set to false.
 768   satb_mq_set.set_active_all_threads(true, /* new active value */
 769                                      false /* expected_active */);
 770 
 771   _root_regions.prepare_for_scan();
 772 
 773   // update_g1_committed() will be called at the end of an evac pause
 774   // when marking is on. So, it's also called at the end of the
 775   // initial-mark pause to update the heap end, if the heap expands
 776   // during it. No need to call it here.
 777 }
 778 
 779 /*
 780  * Notice that in the next two methods, we actually leave the STS
 781  * during the barrier sync and join it immediately afterwards. If we
 782  * do not do this, the following deadlock can occur: one thread could
 783  * be in the barrier sync code, waiting for the other thread to also
 784  * sync up, whereas another one could be trying to yield, while also
 785  * waiting for the other threads to sync up too.
 786  *
 787  * Note, however, that this code is also used during remark and in
 788  * this case we should not attempt to leave / enter the STS, otherwise
 789  * we'll either hit an assert (debug / fastdebug) or deadlock
 790  * (product). So we should only leave / enter the STS if we are
 791  * operating concurrently.
 792  *
 793  * Because the thread that does the sync barrier has left the STS, it
 794  * is possible to be suspended for a Full GC or an evacuation pause
 795  * could occur. This is actually safe, since the entering the sync
 796  * barrier is one of the last things do_marking_step() does, and it
 797  * doesn't manipulate any data structures afterwards.
 798  */
 799 
 800 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 801   bool barrier_aborted;
 802   {
 803     SuspendibleThreadSetLeaver sts_leave(concurrent());
 804     barrier_aborted = !_first_overflow_barrier_sync.enter();
 805   }
 806 
 807   // at this point everyone should have synced up and not be doing any
 808   // more work
 809 
 810   if (barrier_aborted) {
 811     // If the barrier aborted we ignore the overflow condition and
 812     // just abort the whole marking phase as quickly as possible.
 813     return;
 814   }
 815 }
 816 
 817 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 818   SuspendibleThreadSetLeaver sts_leave(concurrent());
 819   _second_overflow_barrier_sync.enter();
 820 
 821   // at this point everything should be re-initialized and ready to go
 822 }
 823 
 824 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 825   G1ConcurrentMark*     _cm;
 826 public:
 827   void work(uint worker_id) {
 828     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 829     ResourceMark rm;
 830 
 831     double start_vtime = os::elapsedVTime();
 832 
 833     {
 834       SuspendibleThreadSetJoiner sts_join;
 835 
 836       assert(worker_id < _cm->active_tasks(), "invariant");
 837 
 838       G1CMTask* task = _cm->task(worker_id);
 839       task->record_start_time();
 840       if (!_cm->has_aborted()) {
 841         do {
 842           task->do_marking_step(G1ConcMarkStepDurationMillis,
 843                                 true  /* do_termination */,
 844                                 false /* is_serial*/);
 845 
 846           _cm->do_yield_check();
 847         } while (!_cm->has_aborted() && task->has_aborted());
 848       }
 849       task->record_end_time();
 850       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 851     }
 852 
 853     double end_vtime = os::elapsedVTime();
 854     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 855   }
 856 
 857   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 858       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 859 
 860   ~G1CMConcurrentMarkingTask() { }
 861 };
 862 
 863 uint G1ConcurrentMark::calc_active_marking_workers() {
 864   uint result = 0;
 865   if (!UseDynamicNumberOfGCThreads ||
 866       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 867        !ForceDynamicNumberOfGCThreads)) {
 868     result = _max_concurrent_workers;
 869   } else {
 870     result =
 871       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 872                                                       1, /* Minimum workers */
 873                                                       _num_concurrent_workers,
 874                                                       Threads::number_of_non_daemon_threads());
 875     // Don't scale the result down by scale_concurrent_workers() because
 876     // that scaling has already gone into "_max_concurrent_workers".
 877   }
 878   assert(result > 0 && result <= _max_concurrent_workers,
 879          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 880          _max_concurrent_workers, result);
 881   return result;
 882 }
 883 
 884 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) {
 885   // Currently, only survivors can be root regions.
 886   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 887   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 888 
 889   const uintx interval = PrefetchScanIntervalInBytes;
 890   HeapWord* curr = hr->bottom();
 891   const HeapWord* end = hr->top();
 892   while (curr < end) {
 893     Prefetch::read(curr, interval);
 894     oop obj = oop(curr);
 895     int size = obj->oop_iterate_size(&cl);
 896     assert(size == obj->size(), "sanity");
 897     curr += size;
 898   }
 899 }
 900 
 901 class G1CMRootRegionScanTask : public AbstractGangTask {
 902   G1ConcurrentMark* _cm;
 903 public:
 904   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 905     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 906 
 907   void work(uint worker_id) {
 908     assert(Thread::current()->is_ConcurrentGC_thread(),
 909            "this should only be done by a conc GC thread");
 910 
 911     G1CMRootRegions* root_regions = _cm->root_regions();
 912     HeapRegion* hr = root_regions->claim_next();
 913     while (hr != NULL) {
 914       _cm->scan_root_region(hr, worker_id);
 915       hr = root_regions->claim_next();
 916     }
 917   }
 918 };
 919 
 920 void G1ConcurrentMark::scan_root_regions() {
 921   // scan_in_progress() will have been set to true only if there was
 922   // at least one root region to scan. So, if it's false, we
 923   // should not attempt to do any further work.
 924   if (root_regions()->scan_in_progress()) {
 925     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 926 
 927     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 928                                    // We distribute work on a per-region basis, so starting
 929                                    // more threads than that is useless.
 930                                    root_regions()->num_root_regions());
 931     assert(_num_concurrent_workers <= _max_concurrent_workers,
 932            "Maximum number of marking threads exceeded");
 933 
 934     G1CMRootRegionScanTask task(this);
 935     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 936                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 937     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 938 
 939     // It's possible that has_aborted() is true here without actually
 940     // aborting the survivor scan earlier. This is OK as it's
 941     // mainly used for sanity checking.
 942     root_regions()->scan_finished();
 943   }
 944 }
 945 
 946 void G1ConcurrentMark::concurrent_cycle_start() {
 947   _gc_timer_cm->register_gc_start();
 948 
 949   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 950 
 951   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 952 }
 953 
 954 void G1ConcurrentMark::concurrent_cycle_end() {
 955   _g1h->collector_state()->set_clearing_next_bitmap(false);
 956 
 957   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 958 
 959   if (has_aborted()) {
 960     log_info(gc, marking)("Concurrent Mark Abort");
 961     _gc_tracer_cm->report_concurrent_mode_failure();
 962   }
 963 
 964   _gc_timer_cm->register_gc_end();
 965 
 966   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 967 }
 968 
 969 void G1ConcurrentMark::mark_from_roots() {
 970   _restart_for_overflow = false;
 971 
 972   _num_concurrent_workers = calc_active_marking_workers();
 973 
 974   uint active_workers = MAX2(1U, _num_concurrent_workers);
 975 
 976   // Setting active workers is not guaranteed since fewer
 977   // worker threads may currently exist and more may not be
 978   // available.
 979   active_workers = _concurrent_workers->update_active_workers(active_workers);
 980   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 981 
 982   // Parallel task terminator is set in "set_concurrency_and_phase()"
 983   set_concurrency_and_phase(active_workers, true /* concurrent */);
 984 
 985   G1CMConcurrentMarkingTask marking_task(this);
 986   _concurrent_workers->run_task(&marking_task);
 987   print_stats();
 988 }
 989 
 990 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 991   G1HeapVerifier* verifier = _g1h->verifier();
 992 
 993   verifier->verify_region_sets_optional();
 994 
 995   if (VerifyDuringGC) {
 996     GCTraceTime(Debug, gc, phases) trace(caller, _gc_timer_cm);
 997 
 998     size_t const BufLen = 512;
 999     char buffer[BufLen];
1000 
1001     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
1002     verifier->verify(type, vo, buffer);
1003   }
1004 
1005   verifier->check_bitmaps(caller);
1006 }
1007 
1008 class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
1009   G1CollectedHeap* _g1h;
1010   G1ConcurrentMark* _cm;
1011 
1012   uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1013 
1014   void update_remset_before_rebuild(HeapRegion * hr) {
1015     G1RemSetTrackingPolicy* tracking_policy = _g1h->g1_policy()->remset_tracker();
1016 
1017     size_t live_bytes = _cm->liveness(hr->hrm_index()) * HeapWordSize;
1018     bool selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1019     if (selected_for_rebuild) {
1020       _num_regions_selected_for_rebuild++;
1021     }
1022     _cm->update_top_at_rebuild_start(hr);
1023   }
1024 
1025 public:
1026   G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm) :
1027     _g1h(g1h), _cm(cm), _num_regions_selected_for_rebuild(0) { }
1028 
1029   virtual bool do_heap_region(HeapRegion* r) {
1030     update_remset_before_rebuild(r);
1031     return false;
1032   }
1033 
1034   uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1035 };
1036 
1037 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1038   G1CollectedHeap* _g1h;
1039 public:
1040   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1041 
1042   virtual bool do_heap_region(HeapRegion* r) {
1043     _g1h->g1_policy()->remset_tracker()->update_after_rebuild(r);
1044     return false;
1045   }
1046 };
1047 
1048 void G1ConcurrentMark::remark() {
1049   assert_at_safepoint_on_vm_thread();
1050 
1051   // If a full collection has happened, we should not continue. However we might
1052   // have ended up here as the Remark VM operation has been scheduled already.
1053   if (has_aborted()) {
1054     return;
1055   }
1056 
1057   G1Policy* g1p = _g1h->g1_policy();
1058   g1p->record_concurrent_mark_remark_start();
1059 
1060   double start = os::elapsedTime();
1061 
1062   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1063 
1064   {
1065     GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1066     finalize_marking();
1067   }
1068 
1069   double mark_work_end = os::elapsedTime();
1070 
1071   bool const mark_finished = !has_overflown();
1072   if (mark_finished) {
1073     weak_refs_work(false /* clear_all_soft_refs */);
1074 
1075     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1076     // We're done with marking.
1077     // This is the end of the marking cycle, we're expected all
1078     // threads to have SATB queues with active set to true.
1079     satb_mq_set.set_active_all_threads(false, /* new active value */
1080                                        true /* expected_active */);
1081 
1082     {
1083       GCTraceTime(Debug, gc, phases)("Flush Task Caches");
1084       flush_all_task_caches();
1085     }
1086 
1087     {
1088       GCTraceTime(Debug, gc, phases)("Update Remembered Set Tracking Before Rebuild");
1089       G1UpdateRemSetTrackingBeforeRebuild cl(_g1h, this);
1090       _g1h->heap_region_iterate(&cl);
1091       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1092                                       _g1h->num_regions(), cl.num_selected_for_rebuild());
1093     }
1094 
1095     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UseNextMarking, "Remark after");
1096 
1097     assert(!restart_for_overflow(), "sanity");
1098     // Completely reset the marking state since marking completed
1099     reset_at_marking_complete();
1100   } else {
1101     // We overflowed.  Restart concurrent marking.
1102     _restart_for_overflow = true;
1103 
1104     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1105 
1106     // Clear the marking state because we will be restarting
1107     // marking due to overflowing the global mark stack.
1108     reset_marking_for_restart();
1109   }
1110 
1111   {
1112     GCTraceTime(Debug, gc, phases)("Report Object Count");
1113     report_object_count();
1114   }
1115 
1116   // Statistics
1117   double now = os::elapsedTime();
1118   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1119   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1120   _remark_times.add((now - start) * 1000.0);
1121 
1122   g1p->record_concurrent_mark_remark_end();
1123 }
1124 
1125 class G1CleanupTask : public AbstractGangTask {
1126   // Per-region work during the Cleanup pause.
1127   class G1CleanupRegionsClosure : public HeapRegionClosure {
1128     G1CollectedHeap* _g1h;
1129     size_t _freed_bytes;
1130     FreeRegionList* _local_cleanup_list;
1131     uint _old_regions_removed;
1132     uint _humongous_regions_removed;
1133     HRRSCleanupTask* _hrrs_cleanup_task;
1134 
1135   public:
1136     G1CleanupRegionsClosure(G1CollectedHeap* g1,
1137                             FreeRegionList* local_cleanup_list,
1138                             HRRSCleanupTask* hrrs_cleanup_task) :
1139       _g1h(g1),
1140       _freed_bytes(0),
1141       _local_cleanup_list(local_cleanup_list),
1142       _old_regions_removed(0),
1143       _humongous_regions_removed(0),
1144       _hrrs_cleanup_task(hrrs_cleanup_task) { }
1145 
1146     size_t freed_bytes() { return _freed_bytes; }
1147     const uint old_regions_removed() { return _old_regions_removed; }
1148     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1149 
1150     bool do_heap_region(HeapRegion *hr) {
1151       hr->note_end_of_marking();
1152 
1153       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1154         _freed_bytes += hr->used();
1155         hr->set_containing_set(NULL);
1156         if (hr->is_humongous()) {
1157           _humongous_regions_removed++;
1158           _g1h->free_humongous_region(hr, _local_cleanup_list);
1159         } else {
1160           _old_regions_removed++;
1161           _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
1162         }
1163         hr->clear_cardtable();
1164         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1165         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1166       } else {
1167         hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1168       }
1169 
1170       return false;
1171     }
1172   };
1173 
1174   G1CollectedHeap* _g1h;
1175   FreeRegionList* _cleanup_list;
1176   HeapRegionClaimer _hrclaimer;
1177 
1178 public:
1179   G1CleanupTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1180     AbstractGangTask("G1 Cleanup"),
1181     _g1h(g1h),
1182     _cleanup_list(cleanup_list),
1183     _hrclaimer(n_workers) {
1184 
1185     HeapRegionRemSet::reset_for_cleanup_tasks();
1186   }
1187 
1188   void work(uint worker_id) {
1189     FreeRegionList local_cleanup_list("Local Cleanup List");
1190     HRRSCleanupTask hrrs_cleanup_task;
1191     G1CleanupRegionsClosure cl(_g1h,
1192                                &local_cleanup_list,
1193                                &hrrs_cleanup_task);
1194     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1195     assert(cl.is_complete(), "Shouldn't have aborted!");
1196 
1197     // Now update the old/humongous region sets
1198     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1199     {
1200       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1201       _g1h->decrement_summary_bytes(cl.freed_bytes());
1202 
1203       _cleanup_list->add_ordered(&local_cleanup_list);
1204       assert(local_cleanup_list.is_empty(), "post-condition");
1205 
1206       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1207     }
1208   }
1209 };
1210 
1211 void G1ConcurrentMark::reclaim_empty_regions() {
1212   WorkGang* workers = _g1h->workers();
1213   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1214 
1215   G1CleanupTask cl(_g1h, &empty_regions_list, workers->active_workers());
1216   workers->run_task(&cl);
1217 
1218   if (!empty_regions_list.is_empty()) {
1219     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1220     // Now print the empty regions list.
1221     G1HRPrinter* hrp = _g1h->hr_printer();
1222     if (hrp->is_active()) {
1223       FreeRegionListIterator iter(&empty_regions_list);
1224       while (iter.more_available()) {
1225         HeapRegion* hr = iter.get_next();
1226         hrp->cleanup(hr);
1227       }
1228     }
1229     // And actually make them available.
1230     _g1h->prepend_to_freelist(&empty_regions_list);
1231   }
1232 }
1233 
1234 void G1ConcurrentMark::cleanup() {
1235   assert_at_safepoint_on_vm_thread();
1236 
1237   // If a full collection has happened, we shouldn't do this.
1238   if (has_aborted()) {
1239     return;
1240   }
1241 
1242   G1Policy* g1p = _g1h->g1_policy();
1243   g1p->record_concurrent_mark_cleanup_start();
1244 
1245   double start = os::elapsedTime();
1246 
1247   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UseNextMarking, "Cleanup before");
1248 
1249   {
1250     GCTraceTime(Debug, gc, phases)("Update Remembered Set Tracking After Rebuild");
1251     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1252     _g1h->heap_region_iterate(&cl);
1253   }
1254 
1255   if (log_is_enabled(Trace, gc, liveness)) {
1256     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1257     _g1h->heap_region_iterate(&cl);
1258   }
1259 
1260   // Install newly created mark bitmap as "prev".
1261   swap_mark_bitmaps();
1262   {
1263     GCTraceTime(Debug, gc, phases)("Reclaim Empty Regions");
1264     reclaim_empty_regions();
1265   }
1266 
1267   // Cleanup will have freed any regions completely full of garbage.
1268   // Update the soft reference policy with the new heap occupancy.
1269   Universe::update_heap_info_at_gc();
1270 
1271   // Clean out dead classes and update Metaspace sizes.
1272   if (ClassUnloadingWithConcurrentMark) {
1273     GCTraceTime(Debug, gc, phases)("Purge Metaspace");
1274     ClassLoaderDataGraph::purge();
1275   }
1276   MetaspaceGC::compute_new_size();
1277 
1278   // We reclaimed old regions so we should calculate the sizes to make
1279   // sure we update the old gen/space data.
1280   _g1h->g1mm()->update_sizes();
1281 
1282   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1283 
1284   // We need to make this be a "collection" so any collection pause that
1285   // races with it goes around and waits for Cleanup to finish.
1286   _g1h->increment_total_collections();
1287 
1288   // Local statistics
1289   double recent_cleanup_time = (os::elapsedTime() - start);
1290   _total_cleanup_time += recent_cleanup_time;
1291   _cleanup_times.add(recent_cleanup_time);
1292 
1293   {
1294     GCTraceTime(Debug, gc, phases)("Finalize Concurrent Mark Cleanup");
1295     _g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1296   }
1297 }
1298 
1299 // Supporting Object and Oop closures for reference discovery
1300 // and processing in during marking
1301 
1302 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1303   HeapWord* addr = (HeapWord*)obj;
1304   return addr != NULL &&
1305          (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_ill(obj));
1306 }
1307 
1308 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1309 // Uses the G1CMTask associated with a worker thread (for serial reference
1310 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1311 // trace referent objects.
1312 //
1313 // Using the G1CMTask and embedded local queues avoids having the worker
1314 // threads operating on the global mark stack. This reduces the risk
1315 // of overflowing the stack - which we would rather avoid at this late
1316 // state. Also using the tasks' local queues removes the potential
1317 // of the workers interfering with each other that could occur if
1318 // operating on the global stack.
1319 
1320 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1321   G1ConcurrentMark* _cm;
1322   G1CMTask*         _task;
1323   int               _ref_counter_limit;
1324   int               _ref_counter;
1325   bool              _is_serial;
1326 public:
1327   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1328     _cm(cm), _task(task), _is_serial(is_serial),
1329     _ref_counter_limit(G1RefProcDrainInterval) {
1330     assert(_ref_counter_limit > 0, "sanity");
1331     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1332     _ref_counter = _ref_counter_limit;
1333   }
1334 
1335   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1336   virtual void do_oop(      oop* p) { do_oop_work(p); }
1337 
1338   template <class T> void do_oop_work(T* p) {
1339     if (!_cm->has_overflown()) {
1340       _task->deal_with_reference(p);
1341       _ref_counter--;
1342 
1343       if (_ref_counter == 0) {
1344         // We have dealt with _ref_counter_limit references, pushing them
1345         // and objects reachable from them on to the local stack (and
1346         // possibly the global stack). Call G1CMTask::do_marking_step() to
1347         // process these entries.
1348         //
1349         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1350         // there's nothing more to do (i.e. we're done with the entries that
1351         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1352         // above) or we overflow.
1353         //
1354         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1355         // flag while there may still be some work to do. (See the comment at
1356         // the beginning of G1CMTask::do_marking_step() for those conditions -
1357         // one of which is reaching the specified time target.) It is only
1358         // when G1CMTask::do_marking_step() returns without setting the
1359         // has_aborted() flag that the marking step has completed.
1360         do {
1361           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1362           _task->do_marking_step(mark_step_duration_ms,
1363                                  false      /* do_termination */,
1364                                  _is_serial);
1365         } while (_task->has_aborted() && !_cm->has_overflown());
1366         _ref_counter = _ref_counter_limit;
1367       }
1368     }
1369   }
1370 };
1371 
1372 // 'Drain' oop closure used by both serial and parallel reference processing.
1373 // Uses the G1CMTask associated with a given worker thread (for serial
1374 // reference processing the G1CMtask for worker 0 is used). Calls the
1375 // do_marking_step routine, with an unbelievably large timeout value,
1376 // to drain the marking data structures of the remaining entries
1377 // added by the 'keep alive' oop closure above.
1378 
1379 class G1CMDrainMarkingStackClosure : public VoidClosure {
1380   G1ConcurrentMark* _cm;
1381   G1CMTask*         _task;
1382   bool              _is_serial;
1383  public:
1384   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1385     _cm(cm), _task(task), _is_serial(is_serial) {
1386     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1387   }
1388 
1389   void do_void() {
1390     do {
1391       // We call G1CMTask::do_marking_step() to completely drain the local
1392       // and global marking stacks of entries pushed by the 'keep alive'
1393       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1394       //
1395       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1396       // if there's nothing more to do (i.e. we've completely drained the
1397       // entries that were pushed as a a result of applying the 'keep alive'
1398       // closure to the entries on the discovered ref lists) or we overflow
1399       // the global marking stack.
1400       //
1401       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1402       // flag while there may still be some work to do. (See the comment at
1403       // the beginning of G1CMTask::do_marking_step() for those conditions -
1404       // one of which is reaching the specified time target.) It is only
1405       // when G1CMTask::do_marking_step() returns without setting the
1406       // has_aborted() flag that the marking step has completed.
1407 
1408       _task->do_marking_step(1000000000.0 /* something very large */,
1409                              true         /* do_termination */,
1410                              _is_serial);
1411     } while (_task->has_aborted() && !_cm->has_overflown());
1412   }
1413 };
1414 
1415 // Implementation of AbstractRefProcTaskExecutor for parallel
1416 // reference processing at the end of G1 concurrent marking
1417 
1418 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1419 private:
1420   G1CollectedHeap*  _g1h;
1421   G1ConcurrentMark* _cm;
1422   WorkGang*         _workers;
1423   uint              _active_workers;
1424 
1425 public:
1426   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1427                           G1ConcurrentMark* cm,
1428                           WorkGang* workers,
1429                           uint n_workers) :
1430     _g1h(g1h), _cm(cm),
1431     _workers(workers), _active_workers(n_workers) { }
1432 
1433   // Executes the given task using concurrent marking worker threads.
1434   virtual void execute(ProcessTask& task);
1435   virtual void execute(EnqueueTask& task);
1436 };
1437 
1438 class G1CMRefProcTaskProxy : public AbstractGangTask {
1439   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1440   ProcessTask&      _proc_task;
1441   G1CollectedHeap*  _g1h;
1442   G1ConcurrentMark* _cm;
1443 
1444 public:
1445   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1446                        G1CollectedHeap* g1h,
1447                        G1ConcurrentMark* cm) :
1448     AbstractGangTask("Process reference objects in parallel"),
1449     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1450     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1451     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1452   }
1453 
1454   virtual void work(uint worker_id) {
1455     ResourceMark rm;
1456     HandleMark hm;
1457     G1CMTask* task = _cm->task(worker_id);
1458     G1CMIsAliveClosure g1_is_alive(_g1h);
1459     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1460     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1461 
1462     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1463   }
1464 };
1465 
1466 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1467   assert(_workers != NULL, "Need parallel worker threads.");
1468   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1469 
1470   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1471 
1472   // We need to reset the concurrency level before each
1473   // proxy task execution, so that the termination protocol
1474   // and overflow handling in G1CMTask::do_marking_step() knows
1475   // how many workers to wait for.
1476   _cm->set_concurrency(_active_workers);
1477   _workers->run_task(&proc_task_proxy);
1478 }
1479 
1480 class G1CMRefEnqueueTaskProxy : public AbstractGangTask {
1481   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1482   EnqueueTask& _enq_task;
1483 
1484 public:
1485   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1486     AbstractGangTask("Enqueue reference objects in parallel"),
1487     _enq_task(enq_task) { }
1488 
1489   virtual void work(uint worker_id) {
1490     _enq_task.work(worker_id);
1491   }
1492 };
1493 
1494 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1495   assert(_workers != NULL, "Need parallel worker threads.");
1496   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1497 
1498   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1499 
1500   // Not strictly necessary but...
1501   //
1502   // We need to reset the concurrency level before each
1503   // proxy task execution, so that the termination protocol
1504   // and overflow handling in G1CMTask::do_marking_step() knows
1505   // how many workers to wait for.
1506   _cm->set_concurrency(_active_workers);
1507   _workers->run_task(&enq_task_proxy);
1508 }
1509 
1510 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1511   ResourceMark rm;
1512   HandleMark   hm;
1513 
1514   // Is alive closure.
1515   G1CMIsAliveClosure g1_is_alive(_g1h);
1516 
1517   // Inner scope to exclude the cleaning of the string and symbol
1518   // tables from the displayed time.
1519   {
1520     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1521 
1522     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1523 
1524     // See the comment in G1CollectedHeap::ref_processing_init()
1525     // about how reference processing currently works in G1.
1526 
1527     // Set the soft reference policy
1528     rp->setup_policy(clear_all_soft_refs);
1529     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1530 
1531     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1532     // in serial reference processing. Note these closures are also
1533     // used for serially processing (by the the current thread) the
1534     // JNI references during parallel reference processing.
1535     //
1536     // These closures do not need to synchronize with the worker
1537     // threads involved in parallel reference processing as these
1538     // instances are executed serially by the current thread (e.g.
1539     // reference processing is not multi-threaded and is thus
1540     // performed by the current thread instead of a gang worker).
1541     //
1542     // The gang tasks involved in parallel reference processing create
1543     // their own instances of these closures, which do their own
1544     // synchronization among themselves.
1545     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1546     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1547 
1548     // We need at least one active thread. If reference processing
1549     // is not multi-threaded we use the current (VMThread) thread,
1550     // otherwise we use the work gang from the G1CollectedHeap and
1551     // we utilize all the worker threads we can.
1552     bool processing_is_mt = rp->processing_is_mt();
1553     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1554     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1555 
1556     // Parallel processing task executor.
1557     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1558                                               _g1h->workers(), active_workers);
1559     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1560 
1561     // Set the concurrency level. The phase was already set prior to
1562     // executing the remark task.
1563     set_concurrency(active_workers);
1564 
1565     // Set the degree of MT processing here.  If the discovery was done MT,
1566     // the number of threads involved during discovery could differ from
1567     // the number of active workers.  This is OK as long as the discovered
1568     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1569     rp->set_active_mt_degree(active_workers);
1570 
1571     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
1572 
1573     // Process the weak references.
1574     const ReferenceProcessorStats& stats =
1575         rp->process_discovered_references(&g1_is_alive,
1576                                           &g1_keep_alive,
1577                                           &g1_drain_mark_stack,
1578                                           executor,
1579                                           &pt);
1580     _gc_tracer_cm->report_gc_reference_stats(stats);
1581     pt.print_all_references();
1582 
1583     // The do_oop work routines of the keep_alive and drain_marking_stack
1584     // oop closures will set the has_overflown flag if we overflow the
1585     // global marking stack.
1586 
1587     assert(has_overflown() || _global_mark_stack.is_empty(),
1588            "Mark stack should be empty (unless it has overflown)");
1589 
1590     assert(rp->num_q() == active_workers, "why not");
1591 
1592     rp->enqueue_discovered_references(executor, &pt);
1593 
1594     rp->verify_no_references_recorded();
1595 
1596     pt.print_enqueue_phase();
1597 
1598     assert(!rp->discovery_enabled(), "Post condition");
1599   }
1600 
1601   assert(has_overflown() || _global_mark_stack.is_empty(),
1602          "Mark stack should be empty (unless it has overflown)");
1603 
1604   {
1605     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1606     WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl);
1607   }
1608 
1609   if (has_overflown()) {
1610     // We can not trust g1_is_alive if the marking stack overflowed
1611     return;
1612   }
1613 
1614   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1615 
1616   // Unload Klasses, String, Symbols, Code Cache, etc.
1617   if (ClassUnloadingWithConcurrentMark) {
1618     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1619     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1620     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1621   } else {
1622     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1623     // No need to clean string table and symbol table as they are treated as strong roots when
1624     // class unloading is disabled.
1625     _g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1626   }
1627 }
1628 
1629 void G1ConcurrentMark::report_object_count() {
1630   G1CMIsAliveClosure is_alive(_g1h);
1631   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1632 }
1633 
1634 void G1ConcurrentMark::swap_mark_bitmaps() {
1635   G1CMBitMap* temp = _prev_mark_bitmap;
1636   _prev_mark_bitmap = _next_mark_bitmap;
1637   _next_mark_bitmap = temp;
1638   _g1h->collector_state()->set_clearing_next_bitmap(true);
1639 }
1640 
1641 // Closure for marking entries in SATB buffers.
1642 class G1CMSATBBufferClosure : public SATBBufferClosure {
1643 private:
1644   G1CMTask* _task;
1645   G1CollectedHeap* _g1h;
1646 
1647   // This is very similar to G1CMTask::deal_with_reference, but with
1648   // more relaxed requirements for the argument, so this must be more
1649   // circumspect about treating the argument as an object.
1650   void do_entry(void* entry) const {
1651     _task->increment_refs_reached();
1652     oop const obj = static_cast<oop>(entry);
1653     _task->make_reference_grey(obj);
1654   }
1655 
1656 public:
1657   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1658     : _task(task), _g1h(g1h) { }
1659 
1660   virtual void do_buffer(void** buffer, size_t size) {
1661     for (size_t i = 0; i < size; ++i) {
1662       do_entry(buffer[i]);
1663     }
1664   }
1665 };
1666 
1667 class G1RemarkThreadsClosure : public ThreadClosure {
1668   G1CMSATBBufferClosure _cm_satb_cl;
1669   G1CMOopClosure _cm_cl;
1670   MarkingCodeBlobClosure _code_cl;
1671   int _thread_parity;
1672 
1673  public:
1674   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1675     _cm_satb_cl(task, g1h),
1676     _cm_cl(g1h, task),
1677     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1678     _thread_parity(Threads::thread_claim_parity()) {}
1679 
1680   void do_thread(Thread* thread) {
1681     if (thread->is_Java_thread()) {
1682       if (thread->claim_oops_do(true, _thread_parity)) {
1683         JavaThread* jt = (JavaThread*)thread;
1684 
1685         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1686         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1687         // * Alive if on the stack of an executing method
1688         // * Weakly reachable otherwise
1689         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1690         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1691         jt->nmethods_do(&_code_cl);
1692 
1693         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1694       }
1695     } else if (thread->is_VM_thread()) {
1696       if (thread->claim_oops_do(true, _thread_parity)) {
1697         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1698       }
1699     }
1700   }
1701 };
1702 
1703 class G1CMRemarkTask : public AbstractGangTask {
1704   G1ConcurrentMark* _cm;
1705 public:
1706   void work(uint worker_id) {
1707     G1CMTask* task = _cm->task(worker_id);
1708     task->record_start_time();
1709     {
1710       ResourceMark rm;
1711       HandleMark hm;
1712 
1713       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1714       Threads::threads_do(&threads_f);
1715     }
1716 
1717     do {
1718       task->do_marking_step(1000000000.0 /* something very large */,
1719                             true         /* do_termination       */,
1720                             false        /* is_serial            */);
1721     } while (task->has_aborted() && !_cm->has_overflown());
1722     // If we overflow, then we do not want to restart. We instead
1723     // want to abort remark and do concurrent marking again.
1724     task->record_end_time();
1725   }
1726 
1727   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1728     AbstractGangTask("Par Remark"), _cm(cm) {
1729     _cm->terminator()->reset_for_reuse(active_workers);
1730   }
1731 };
1732 
1733 void G1ConcurrentMark::finalize_marking() {
1734   ResourceMark rm;
1735   HandleMark   hm;
1736 
1737   _g1h->ensure_parsability(false);
1738 
1739   // this is remark, so we'll use up all active threads
1740   uint active_workers = _g1h->workers()->active_workers();
1741   set_concurrency_and_phase(active_workers, false /* concurrent */);
1742   // Leave _parallel_marking_threads at it's
1743   // value originally calculated in the G1ConcurrentMark
1744   // constructor and pass values of the active workers
1745   // through the gang in the task.
1746 
1747   {
1748     StrongRootsScope srs(active_workers);
1749 
1750     G1CMRemarkTask remarkTask(this, active_workers);
1751     // We will start all available threads, even if we decide that the
1752     // active_workers will be fewer. The extra ones will just bail out
1753     // immediately.
1754     _g1h->workers()->run_task(&remarkTask);
1755   }
1756 
1757   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1758   guarantee(has_overflown() ||
1759             satb_mq_set.completed_buffers_num() == 0,
1760             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1761             BOOL_TO_STR(has_overflown()),
1762             satb_mq_set.completed_buffers_num());
1763 
1764   print_stats();
1765 }
1766 
1767 void G1ConcurrentMark::flush_all_task_caches() {
1768   size_t hits = 0;
1769   size_t misses = 0;
1770   for (uint i = 0; i < _max_num_tasks; i++) {
1771     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1772     hits += stats.first;
1773     misses += stats.second;
1774   }
1775   size_t sum = hits + misses;
1776   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1777                        hits, misses, percent_of(hits, sum));
1778 }
1779 
1780 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1781   _prev_mark_bitmap->clear_range(mr);
1782 }
1783 
1784 HeapRegion*
1785 G1ConcurrentMark::claim_region(uint worker_id) {
1786   // "checkpoint" the finger
1787   HeapWord* finger = _finger;
1788 
1789   while (finger < _heap.end()) {
1790     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1791 
1792     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1793     // Make sure that the reads below do not float before loading curr_region.
1794     OrderAccess::loadload();
1795     // Above heap_region_containing may return NULL as we always scan claim
1796     // until the end of the heap. In this case, just jump to the next region.
1797     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1798 
1799     // Is the gap between reading the finger and doing the CAS too long?
1800     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1801     if (res == finger && curr_region != NULL) {
1802       // we succeeded
1803       HeapWord*   bottom        = curr_region->bottom();
1804       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1805 
1806       // notice that _finger == end cannot be guaranteed here since,
1807       // someone else might have moved the finger even further
1808       assert(_finger >= end, "the finger should have moved forward");
1809 
1810       if (limit > bottom) {
1811         return curr_region;
1812       } else {
1813         assert(limit == bottom,
1814                "the region limit should be at bottom");
1815         // we return NULL and the caller should try calling
1816         // claim_region() again.
1817         return NULL;
1818       }
1819     } else {
1820       assert(_finger > finger, "the finger should have moved forward");
1821       // read it again
1822       finger = _finger;
1823     }
1824   }
1825 
1826   return NULL;
1827 }
1828 
1829 #ifndef PRODUCT
1830 class VerifyNoCSetOops {
1831   G1CollectedHeap* _g1h;
1832   const char* _phase;
1833   int _info;
1834 
1835 public:
1836   VerifyNoCSetOops(const char* phase, int info = -1) :
1837     _g1h(G1CollectedHeap::heap()),
1838     _phase(phase),
1839     _info(info)
1840   { }
1841 
1842   void operator()(G1TaskQueueEntry task_entry) const {
1843     if (task_entry.is_array_slice()) {
1844       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1845       return;
1846     }
1847     guarantee(oopDesc::is_oop(task_entry.obj()),
1848               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1849               p2i(task_entry.obj()), _phase, _info);
1850     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1851               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1852               p2i(task_entry.obj()), _phase, _info);
1853   }
1854 };
1855 
1856 void G1ConcurrentMark::verify_no_cset_oops() {
1857   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1858   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1859     return;
1860   }
1861 
1862   // Verify entries on the global mark stack
1863   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1864 
1865   // Verify entries on the task queues
1866   for (uint i = 0; i < _max_num_tasks; ++i) {
1867     G1CMTaskQueue* queue = _task_queues->queue(i);
1868     queue->iterate(VerifyNoCSetOops("Queue", i));
1869   }
1870 
1871   // Verify the global finger
1872   HeapWord* global_finger = finger();
1873   if (global_finger != NULL && global_finger < _heap.end()) {
1874     // Since we always iterate over all regions, we might get a NULL HeapRegion
1875     // here.
1876     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1877     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1878               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1879               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1880   }
1881 
1882   // Verify the task fingers
1883   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1884   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1885     G1CMTask* task = _tasks[i];
1886     HeapWord* task_finger = task->finger();
1887     if (task_finger != NULL && task_finger < _heap.end()) {
1888       // See above note on the global finger verification.
1889       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1890       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1891                 !task_hr->in_collection_set(),
1892                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1893                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1894     }
1895   }
1896 }
1897 #endif // PRODUCT
1898 
1899 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1900   _g1h->g1_rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1901 }
1902 
1903 void G1ConcurrentMark::print_stats() {
1904   if (!log_is_enabled(Debug, gc, stats)) {
1905     return;
1906   }
1907   log_debug(gc, stats)("---------------------------------------------------------------------");
1908   for (size_t i = 0; i < _num_active_tasks; ++i) {
1909     _tasks[i]->print_stats();
1910     log_debug(gc, stats)("---------------------------------------------------------------------");
1911   }
1912 }
1913 
1914 void G1ConcurrentMark::concurrent_cycle_abort() {
1915   if (!cm_thread()->during_cycle() || _has_aborted) {
1916     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1917     return;
1918   }
1919 
1920   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1921   // concurrent bitmap clearing.
1922   {
1923     GCTraceTime(Debug, gc)("Clear Next Bitmap");
1924     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1925   }
1926   // Note we cannot clear the previous marking bitmap here
1927   // since VerifyDuringGC verifies the objects marked during
1928   // a full GC against the previous bitmap.
1929 
1930   // Empty mark stack
1931   reset_marking_for_restart();
1932   for (uint i = 0; i < _max_num_tasks; ++i) {
1933     _tasks[i]->clear_region_fields();
1934   }
1935   _first_overflow_barrier_sync.abort();
1936   _second_overflow_barrier_sync.abort();
1937   _has_aborted = true;
1938 
1939   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1940   satb_mq_set.abandon_partial_marking();
1941   // This can be called either during or outside marking, we'll read
1942   // the expected_active value from the SATB queue set.
1943   satb_mq_set.set_active_all_threads(
1944                                  false, /* new active value */
1945                                  satb_mq_set.is_active() /* expected_active */);
1946 }
1947 
1948 static void print_ms_time_info(const char* prefix, const char* name,
1949                                NumberSeq& ns) {
1950   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
1951                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
1952   if (ns.num() > 0) {
1953     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
1954                            prefix, ns.sd(), ns.maximum());
1955   }
1956 }
1957 
1958 void G1ConcurrentMark::print_summary_info() {
1959   Log(gc, marking) log;
1960   if (!log.is_trace()) {
1961     return;
1962   }
1963 
1964   log.trace(" Concurrent marking:");
1965   print_ms_time_info("  ", "init marks", _init_times);
1966   print_ms_time_info("  ", "remarks", _remark_times);
1967   {
1968     print_ms_time_info("     ", "final marks", _remark_mark_times);
1969     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
1970 
1971   }
1972   print_ms_time_info("  ", "cleanups", _cleanup_times);
1973   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
1974             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
1975   log.trace("  Total stop_world time = %8.2f s.",
1976             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
1977   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
1978             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
1979 }
1980 
1981 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
1982   _concurrent_workers->print_worker_threads_on(st);
1983 }
1984 
1985 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
1986   _concurrent_workers->threads_do(tc);
1987 }
1988 
1989 void G1ConcurrentMark::print_on_error(outputStream* st) const {
1990   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
1991                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
1992   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
1993   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
1994 }
1995 
1996 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
1997   ReferenceProcessor* result = g1h->ref_processor_cm();
1998   assert(result != NULL, "CM reference processor should not be NULL");
1999   return result;
2000 }
2001 
2002 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2003                                G1CMTask* task)
2004   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2005     _g1h(g1h), _task(task)
2006 { }
2007 
2008 void G1CMTask::setup_for_region(HeapRegion* hr) {
2009   assert(hr != NULL,
2010         "claim_region() should have filtered out NULL regions");
2011   _curr_region  = hr;
2012   _finger       = hr->bottom();
2013   update_region_limit();
2014 }
2015 
2016 void G1CMTask::update_region_limit() {
2017   HeapRegion* hr            = _curr_region;
2018   HeapWord* bottom          = hr->bottom();
2019   HeapWord* limit           = hr->next_top_at_mark_start();
2020 
2021   if (limit == bottom) {
2022     // The region was collected underneath our feet.
2023     // We set the finger to bottom to ensure that the bitmap
2024     // iteration that will follow this will not do anything.
2025     // (this is not a condition that holds when we set the region up,
2026     // as the region is not supposed to be empty in the first place)
2027     _finger = bottom;
2028   } else if (limit >= _region_limit) {
2029     assert(limit >= _finger, "peace of mind");
2030   } else {
2031     assert(limit < _region_limit, "only way to get here");
2032     // This can happen under some pretty unusual circumstances.  An
2033     // evacuation pause empties the region underneath our feet (NTAMS
2034     // at bottom). We then do some allocation in the region (NTAMS
2035     // stays at bottom), followed by the region being used as a GC
2036     // alloc region (NTAMS will move to top() and the objects
2037     // originally below it will be grayed). All objects now marked in
2038     // the region are explicitly grayed, if below the global finger,
2039     // and we do not need in fact to scan anything else. So, we simply
2040     // set _finger to be limit to ensure that the bitmap iteration
2041     // doesn't do anything.
2042     _finger = limit;
2043   }
2044 
2045   _region_limit = limit;
2046 }
2047 
2048 void G1CMTask::giveup_current_region() {
2049   assert(_curr_region != NULL, "invariant");
2050   clear_region_fields();
2051 }
2052 
2053 void G1CMTask::clear_region_fields() {
2054   // Values for these three fields that indicate that we're not
2055   // holding on to a region.
2056   _curr_region   = NULL;
2057   _finger        = NULL;
2058   _region_limit  = NULL;
2059 }
2060 
2061 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2062   if (cm_oop_closure == NULL) {
2063     assert(_cm_oop_closure != NULL, "invariant");
2064   } else {
2065     assert(_cm_oop_closure == NULL, "invariant");
2066   }
2067   _cm_oop_closure = cm_oop_closure;
2068 }
2069 
2070 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2071   guarantee(next_mark_bitmap != NULL, "invariant");
2072   _next_mark_bitmap              = next_mark_bitmap;
2073   clear_region_fields();
2074 
2075   _calls                         = 0;
2076   _elapsed_time_ms               = 0.0;
2077   _termination_time_ms           = 0.0;
2078   _termination_start_time_ms     = 0.0;
2079 
2080   _mark_stats_cache.reset();
2081 }
2082 
2083 bool G1CMTask::should_exit_termination() {
2084   regular_clock_call();
2085   // This is called when we are in the termination protocol. We should
2086   // quit if, for some reason, this task wants to abort or the global
2087   // stack is not empty (this means that we can get work from it).
2088   return !_cm->mark_stack_empty() || has_aborted();
2089 }
2090 
2091 void G1CMTask::reached_limit() {
2092   assert(_words_scanned >= _words_scanned_limit ||
2093          _refs_reached >= _refs_reached_limit ,
2094          "shouldn't have been called otherwise");
2095   regular_clock_call();
2096 }
2097 
2098 void G1CMTask::regular_clock_call() {
2099   if (has_aborted()) {
2100     return;
2101   }
2102 
2103   // First, we need to recalculate the words scanned and refs reached
2104   // limits for the next clock call.
2105   recalculate_limits();
2106 
2107   // During the regular clock call we do the following
2108 
2109   // (1) If an overflow has been flagged, then we abort.
2110   if (_cm->has_overflown()) {
2111     set_has_aborted();
2112     return;
2113   }
2114 
2115   // If we are not concurrent (i.e. we're doing remark) we don't need
2116   // to check anything else. The other steps are only needed during
2117   // the concurrent marking phase.
2118   if (!_cm->concurrent()) {
2119     return;
2120   }
2121 
2122   // (2) If marking has been aborted for Full GC, then we also abort.
2123   if (_cm->has_aborted()) {
2124     set_has_aborted();
2125     return;
2126   }
2127 
2128   double curr_time_ms = os::elapsedVTime() * 1000.0;
2129 
2130   // (4) We check whether we should yield. If we have to, then we abort.
2131   if (SuspendibleThreadSet::should_yield()) {
2132     // We should yield. To do this we abort the task. The caller is
2133     // responsible for yielding.
2134     set_has_aborted();
2135     return;
2136   }
2137 
2138   // (5) We check whether we've reached our time quota. If we have,
2139   // then we abort.
2140   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2141   if (elapsed_time_ms > _time_target_ms) {
2142     set_has_aborted();
2143     _has_timed_out = true;
2144     return;
2145   }
2146 
2147   // (6) Finally, we check whether there are enough completed STAB
2148   // buffers available for processing. If there are, we abort.
2149   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2150   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2151     // we do need to process SATB buffers, we'll abort and restart
2152     // the marking task to do so
2153     set_has_aborted();
2154     return;
2155   }
2156 }
2157 
2158 void G1CMTask::recalculate_limits() {
2159   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2160   _words_scanned_limit      = _real_words_scanned_limit;
2161 
2162   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2163   _refs_reached_limit       = _real_refs_reached_limit;
2164 }
2165 
2166 void G1CMTask::decrease_limits() {
2167   // This is called when we believe that we're going to do an infrequent
2168   // operation which will increase the per byte scanned cost (i.e. move
2169   // entries to/from the global stack). It basically tries to decrease the
2170   // scanning limit so that the clock is called earlier.
2171 
2172   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2173   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2174 }
2175 
2176 void G1CMTask::move_entries_to_global_stack() {
2177   // Local array where we'll store the entries that will be popped
2178   // from the local queue.
2179   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2180 
2181   size_t n = 0;
2182   G1TaskQueueEntry task_entry;
2183   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2184     buffer[n] = task_entry;
2185     ++n;
2186   }
2187   if (n < G1CMMarkStack::EntriesPerChunk) {
2188     buffer[n] = G1TaskQueueEntry();
2189   }
2190 
2191   if (n > 0) {
2192     if (!_cm->mark_stack_push(buffer)) {
2193       set_has_aborted();
2194     }
2195   }
2196 
2197   // This operation was quite expensive, so decrease the limits.
2198   decrease_limits();
2199 }
2200 
2201 bool G1CMTask::get_entries_from_global_stack() {
2202   // Local array where we'll store the entries that will be popped
2203   // from the global stack.
2204   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2205 
2206   if (!_cm->mark_stack_pop(buffer)) {
2207     return false;
2208   }
2209 
2210   // We did actually pop at least one entry.
2211   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2212     G1TaskQueueEntry task_entry = buffer[i];
2213     if (task_entry.is_null()) {
2214       break;
2215     }
2216     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2217     bool success = _task_queue->push(task_entry);
2218     // We only call this when the local queue is empty or under a
2219     // given target limit. So, we do not expect this push to fail.
2220     assert(success, "invariant");
2221   }
2222 
2223   // This operation was quite expensive, so decrease the limits
2224   decrease_limits();
2225   return true;
2226 }
2227 
2228 void G1CMTask::drain_local_queue(bool partially) {
2229   if (has_aborted()) {
2230     return;
2231   }
2232 
2233   // Decide what the target size is, depending whether we're going to
2234   // drain it partially (so that other tasks can steal if they run out
2235   // of things to do) or totally (at the very end).
2236   size_t target_size;
2237   if (partially) {
2238     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2239   } else {
2240     target_size = 0;
2241   }
2242 
2243   if (_task_queue->size() > target_size) {
2244     G1TaskQueueEntry entry;
2245     bool ret = _task_queue->pop_local(entry);
2246     while (ret) {
2247       scan_task_entry(entry);
2248       if (_task_queue->size() <= target_size || has_aborted()) {
2249         ret = false;
2250       } else {
2251         ret = _task_queue->pop_local(entry);
2252       }
2253     }
2254   }
2255 }
2256 
2257 void G1CMTask::drain_global_stack(bool partially) {
2258   if (has_aborted()) {
2259     return;
2260   }
2261 
2262   // We have a policy to drain the local queue before we attempt to
2263   // drain the global stack.
2264   assert(partially || _task_queue->size() == 0, "invariant");
2265 
2266   // Decide what the target size is, depending whether we're going to
2267   // drain it partially (so that other tasks can steal if they run out
2268   // of things to do) or totally (at the very end).
2269   // Notice that when draining the global mark stack partially, due to the racyness
2270   // of the mark stack size update we might in fact drop below the target. But,
2271   // this is not a problem.
2272   // In case of total draining, we simply process until the global mark stack is
2273   // totally empty, disregarding the size counter.
2274   if (partially) {
2275     size_t const target_size = _cm->partial_mark_stack_size_target();
2276     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2277       if (get_entries_from_global_stack()) {
2278         drain_local_queue(partially);
2279       }
2280     }
2281   } else {
2282     while (!has_aborted() && get_entries_from_global_stack()) {
2283       drain_local_queue(partially);
2284     }
2285   }
2286 }
2287 
2288 // SATB Queue has several assumptions on whether to call the par or
2289 // non-par versions of the methods. this is why some of the code is
2290 // replicated. We should really get rid of the single-threaded version
2291 // of the code to simplify things.
2292 void G1CMTask::drain_satb_buffers() {
2293   if (has_aborted()) {
2294     return;
2295   }
2296 
2297   // We set this so that the regular clock knows that we're in the
2298   // middle of draining buffers and doesn't set the abort flag when it
2299   // notices that SATB buffers are available for draining. It'd be
2300   // very counter productive if it did that. :-)
2301   _draining_satb_buffers = true;
2302 
2303   G1CMSATBBufferClosure satb_cl(this, _g1h);
2304   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2305 
2306   // This keeps claiming and applying the closure to completed buffers
2307   // until we run out of buffers or we need to abort.
2308   while (!has_aborted() &&
2309          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2310     regular_clock_call();
2311   }
2312 
2313   _draining_satb_buffers = false;
2314 
2315   assert(has_aborted() ||
2316          _cm->concurrent() ||
2317          satb_mq_set.completed_buffers_num() == 0, "invariant");
2318 
2319   // again, this was a potentially expensive operation, decrease the
2320   // limits to get the regular clock call early
2321   decrease_limits();
2322 }
2323 
2324 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2325   _mark_stats_cache.reset(region_idx);
2326 }
2327 
2328 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2329   return _mark_stats_cache.evict_all();
2330 }
2331 
2332 void G1CMTask::print_stats() {
2333   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2334   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2335                        _elapsed_time_ms, _termination_time_ms);
2336   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2337                        _step_times_ms.num(),
2338                        _step_times_ms.avg(),
2339                        _step_times_ms.sd(),
2340                        _step_times_ms.maximum(),
2341                        _step_times_ms.sum());
2342   size_t const hits = _mark_stats_cache.hits();
2343   size_t const misses = _mark_stats_cache.misses();
2344   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2345                        hits, misses, percent_of(hits, hits + misses));
2346 }
2347 
2348 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2349   return _task_queues->steal(worker_id, hash_seed, task_entry);
2350 }
2351 
2352 /*****************************************************************************
2353 
2354     The do_marking_step(time_target_ms, ...) method is the building
2355     block of the parallel marking framework. It can be called in parallel
2356     with other invocations of do_marking_step() on different tasks
2357     (but only one per task, obviously) and concurrently with the
2358     mutator threads, or during remark, hence it eliminates the need
2359     for two versions of the code. When called during remark, it will
2360     pick up from where the task left off during the concurrent marking
2361     phase. Interestingly, tasks are also claimable during evacuation
2362     pauses too, since do_marking_step() ensures that it aborts before
2363     it needs to yield.
2364 
2365     The data structures that it uses to do marking work are the
2366     following:
2367 
2368       (1) Marking Bitmap. If there are gray objects that appear only
2369       on the bitmap (this happens either when dealing with an overflow
2370       or when the initial marking phase has simply marked the roots
2371       and didn't push them on the stack), then tasks claim heap
2372       regions whose bitmap they then scan to find gray objects. A
2373       global finger indicates where the end of the last claimed region
2374       is. A local finger indicates how far into the region a task has
2375       scanned. The two fingers are used to determine how to gray an
2376       object (i.e. whether simply marking it is OK, as it will be
2377       visited by a task in the future, or whether it needs to be also
2378       pushed on a stack).
2379 
2380       (2) Local Queue. The local queue of the task which is accessed
2381       reasonably efficiently by the task. Other tasks can steal from
2382       it when they run out of work. Throughout the marking phase, a
2383       task attempts to keep its local queue short but not totally
2384       empty, so that entries are available for stealing by other
2385       tasks. Only when there is no more work, a task will totally
2386       drain its local queue.
2387 
2388       (3) Global Mark Stack. This handles local queue overflow. During
2389       marking only sets of entries are moved between it and the local
2390       queues, as access to it requires a mutex and more fine-grain
2391       interaction with it which might cause contention. If it
2392       overflows, then the marking phase should restart and iterate
2393       over the bitmap to identify gray objects. Throughout the marking
2394       phase, tasks attempt to keep the global mark stack at a small
2395       length but not totally empty, so that entries are available for
2396       popping by other tasks. Only when there is no more work, tasks
2397       will totally drain the global mark stack.
2398 
2399       (4) SATB Buffer Queue. This is where completed SATB buffers are
2400       made available. Buffers are regularly removed from this queue
2401       and scanned for roots, so that the queue doesn't get too
2402       long. During remark, all completed buffers are processed, as
2403       well as the filled in parts of any uncompleted buffers.
2404 
2405     The do_marking_step() method tries to abort when the time target
2406     has been reached. There are a few other cases when the
2407     do_marking_step() method also aborts:
2408 
2409       (1) When the marking phase has been aborted (after a Full GC).
2410 
2411       (2) When a global overflow (on the global stack) has been
2412       triggered. Before the task aborts, it will actually sync up with
2413       the other tasks to ensure that all the marking data structures
2414       (local queues, stacks, fingers etc.)  are re-initialized so that
2415       when do_marking_step() completes, the marking phase can
2416       immediately restart.
2417 
2418       (3) When enough completed SATB buffers are available. The
2419       do_marking_step() method only tries to drain SATB buffers right
2420       at the beginning. So, if enough buffers are available, the
2421       marking step aborts and the SATB buffers are processed at
2422       the beginning of the next invocation.
2423 
2424       (4) To yield. when we have to yield then we abort and yield
2425       right at the end of do_marking_step(). This saves us from a lot
2426       of hassle as, by yielding we might allow a Full GC. If this
2427       happens then objects will be compacted underneath our feet, the
2428       heap might shrink, etc. We save checking for this by just
2429       aborting and doing the yield right at the end.
2430 
2431     From the above it follows that the do_marking_step() method should
2432     be called in a loop (or, otherwise, regularly) until it completes.
2433 
2434     If a marking step completes without its has_aborted() flag being
2435     true, it means it has completed the current marking phase (and
2436     also all other marking tasks have done so and have all synced up).
2437 
2438     A method called regular_clock_call() is invoked "regularly" (in
2439     sub ms intervals) throughout marking. It is this clock method that
2440     checks all the abort conditions which were mentioned above and
2441     decides when the task should abort. A work-based scheme is used to
2442     trigger this clock method: when the number of object words the
2443     marking phase has scanned or the number of references the marking
2444     phase has visited reach a given limit. Additional invocations to
2445     the method clock have been planted in a few other strategic places
2446     too. The initial reason for the clock method was to avoid calling
2447     vtime too regularly, as it is quite expensive. So, once it was in
2448     place, it was natural to piggy-back all the other conditions on it
2449     too and not constantly check them throughout the code.
2450 
2451     If do_termination is true then do_marking_step will enter its
2452     termination protocol.
2453 
2454     The value of is_serial must be true when do_marking_step is being
2455     called serially (i.e. by the VMThread) and do_marking_step should
2456     skip any synchronization in the termination and overflow code.
2457     Examples include the serial remark code and the serial reference
2458     processing closures.
2459 
2460     The value of is_serial must be false when do_marking_step is
2461     being called by any of the worker threads in a work gang.
2462     Examples include the concurrent marking code (CMMarkingTask),
2463     the MT remark code, and the MT reference processing closures.
2464 
2465  *****************************************************************************/
2466 
2467 void G1CMTask::do_marking_step(double time_target_ms,
2468                                bool do_termination,
2469                                bool is_serial) {
2470   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2471 
2472   _start_time_ms = os::elapsedVTime() * 1000.0;
2473 
2474   // If do_stealing is true then do_marking_step will attempt to
2475   // steal work from the other G1CMTasks. It only makes sense to
2476   // enable stealing when the termination protocol is enabled
2477   // and do_marking_step() is not being called serially.
2478   bool do_stealing = do_termination && !is_serial;
2479 
2480   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2481   _time_target_ms = time_target_ms - diff_prediction_ms;
2482 
2483   // set up the variables that are used in the work-based scheme to
2484   // call the regular clock method
2485   _words_scanned = 0;
2486   _refs_reached  = 0;
2487   recalculate_limits();
2488 
2489   // clear all flags
2490   clear_has_aborted();
2491   _has_timed_out = false;
2492   _draining_satb_buffers = false;
2493 
2494   ++_calls;
2495 
2496   // Set up the bitmap and oop closures. Anything that uses them is
2497   // eventually called from this method, so it is OK to allocate these
2498   // statically.
2499   G1CMBitMapClosure bitmap_closure(this, _cm);
2500   G1CMOopClosure cm_oop_closure(_g1h, this);
2501   set_cm_oop_closure(&cm_oop_closure);
2502 
2503   if (_cm->has_overflown()) {
2504     // This can happen if the mark stack overflows during a GC pause
2505     // and this task, after a yield point, restarts. We have to abort
2506     // as we need to get into the overflow protocol which happens
2507     // right at the end of this task.
2508     set_has_aborted();
2509   }
2510 
2511   // First drain any available SATB buffers. After this, we will not
2512   // look at SATB buffers before the next invocation of this method.
2513   // If enough completed SATB buffers are queued up, the regular clock
2514   // will abort this task so that it restarts.
2515   drain_satb_buffers();
2516   // ...then partially drain the local queue and the global stack
2517   drain_local_queue(true);
2518   drain_global_stack(true);
2519 
2520   do {
2521     if (!has_aborted() && _curr_region != NULL) {
2522       // This means that we're already holding on to a region.
2523       assert(_finger != NULL, "if region is not NULL, then the finger "
2524              "should not be NULL either");
2525 
2526       // We might have restarted this task after an evacuation pause
2527       // which might have evacuated the region we're holding on to
2528       // underneath our feet. Let's read its limit again to make sure
2529       // that we do not iterate over a region of the heap that
2530       // contains garbage (update_region_limit() will also move
2531       // _finger to the start of the region if it is found empty).
2532       update_region_limit();
2533       // We will start from _finger not from the start of the region,
2534       // as we might be restarting this task after aborting half-way
2535       // through scanning this region. In this case, _finger points to
2536       // the address where we last found a marked object. If this is a
2537       // fresh region, _finger points to start().
2538       MemRegion mr = MemRegion(_finger, _region_limit);
2539 
2540       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2541              "humongous regions should go around loop once only");
2542 
2543       // Some special cases:
2544       // If the memory region is empty, we can just give up the region.
2545       // If the current region is humongous then we only need to check
2546       // the bitmap for the bit associated with the start of the object,
2547       // scan the object if it's live, and give up the region.
2548       // Otherwise, let's iterate over the bitmap of the part of the region
2549       // that is left.
2550       // If the iteration is successful, give up the region.
2551       if (mr.is_empty()) {
2552         giveup_current_region();
2553         regular_clock_call();
2554       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2555         if (_next_mark_bitmap->is_marked(mr.start())) {
2556           // The object is marked - apply the closure
2557           bitmap_closure.do_addr(mr.start());
2558         }
2559         // Even if this task aborted while scanning the humongous object
2560         // we can (and should) give up the current region.
2561         giveup_current_region();
2562         regular_clock_call();
2563       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2564         giveup_current_region();
2565         regular_clock_call();
2566       } else {
2567         assert(has_aborted(), "currently the only way to do so");
2568         // The only way to abort the bitmap iteration is to return
2569         // false from the do_bit() method. However, inside the
2570         // do_bit() method we move the _finger to point to the
2571         // object currently being looked at. So, if we bail out, we
2572         // have definitely set _finger to something non-null.
2573         assert(_finger != NULL, "invariant");
2574 
2575         // Region iteration was actually aborted. So now _finger
2576         // points to the address of the object we last scanned. If we
2577         // leave it there, when we restart this task, we will rescan
2578         // the object. It is easy to avoid this. We move the finger by
2579         // enough to point to the next possible object header.
2580         assert(_finger < _region_limit, "invariant");
2581         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2582         // Check if bitmap iteration was aborted while scanning the last object
2583         if (new_finger >= _region_limit) {
2584           giveup_current_region();
2585         } else {
2586           move_finger_to(new_finger);
2587         }
2588       }
2589     }
2590     // At this point we have either completed iterating over the
2591     // region we were holding on to, or we have aborted.
2592 
2593     // We then partially drain the local queue and the global stack.
2594     // (Do we really need this?)
2595     drain_local_queue(true);
2596     drain_global_stack(true);
2597 
2598     // Read the note on the claim_region() method on why it might
2599     // return NULL with potentially more regions available for
2600     // claiming and why we have to check out_of_regions() to determine
2601     // whether we're done or not.
2602     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2603       // We are going to try to claim a new region. We should have
2604       // given up on the previous one.
2605       // Separated the asserts so that we know which one fires.
2606       assert(_curr_region  == NULL, "invariant");
2607       assert(_finger       == NULL, "invariant");
2608       assert(_region_limit == NULL, "invariant");
2609       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2610       if (claimed_region != NULL) {
2611         // Yes, we managed to claim one
2612         setup_for_region(claimed_region);
2613         assert(_curr_region == claimed_region, "invariant");
2614       }
2615       // It is important to call the regular clock here. It might take
2616       // a while to claim a region if, for example, we hit a large
2617       // block of empty regions. So we need to call the regular clock
2618       // method once round the loop to make sure it's called
2619       // frequently enough.
2620       regular_clock_call();
2621     }
2622 
2623     if (!has_aborted() && _curr_region == NULL) {
2624       assert(_cm->out_of_regions(),
2625              "at this point we should be out of regions");
2626     }
2627   } while ( _curr_region != NULL && !has_aborted());
2628 
2629   if (!has_aborted()) {
2630     // We cannot check whether the global stack is empty, since other
2631     // tasks might be pushing objects to it concurrently.
2632     assert(_cm->out_of_regions(),
2633            "at this point we should be out of regions");
2634     // Try to reduce the number of available SATB buffers so that
2635     // remark has less work to do.
2636     drain_satb_buffers();
2637   }
2638 
2639   // Since we've done everything else, we can now totally drain the
2640   // local queue and global stack.
2641   drain_local_queue(false);
2642   drain_global_stack(false);
2643 
2644   // Attempt at work stealing from other task's queues.
2645   if (do_stealing && !has_aborted()) {
2646     // We have not aborted. This means that we have finished all that
2647     // we could. Let's try to do some stealing...
2648 
2649     // We cannot check whether the global stack is empty, since other
2650     // tasks might be pushing objects to it concurrently.
2651     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2652            "only way to reach here");
2653     while (!has_aborted()) {
2654       G1TaskQueueEntry entry;
2655       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2656         scan_task_entry(entry);
2657 
2658         // And since we're towards the end, let's totally drain the
2659         // local queue and global stack.
2660         drain_local_queue(false);
2661         drain_global_stack(false);
2662       } else {
2663         break;
2664       }
2665     }
2666   }
2667 
2668   // We still haven't aborted. Now, let's try to get into the
2669   // termination protocol.
2670   if (do_termination && !has_aborted()) {
2671     // We cannot check whether the global stack is empty, since other
2672     // tasks might be concurrently pushing objects on it.
2673     // Separated the asserts so that we know which one fires.
2674     assert(_cm->out_of_regions(), "only way to reach here");
2675     assert(_task_queue->size() == 0, "only way to reach here");
2676     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2677 
2678     // The G1CMTask class also extends the TerminatorTerminator class,
2679     // hence its should_exit_termination() method will also decide
2680     // whether to exit the termination protocol or not.
2681     bool finished = (is_serial ||
2682                      _cm->terminator()->offer_termination(this));
2683     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2684     _termination_time_ms +=
2685       termination_end_time_ms - _termination_start_time_ms;
2686 
2687     if (finished) {
2688       // We're all done.
2689 
2690       // We can now guarantee that the global stack is empty, since
2691       // all other tasks have finished. We separated the guarantees so
2692       // that, if a condition is false, we can immediately find out
2693       // which one.
2694       guarantee(_cm->out_of_regions(), "only way to reach here");
2695       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2696       guarantee(_task_queue->size() == 0, "only way to reach here");
2697       guarantee(!_cm->has_overflown(), "only way to reach here");
2698     } else {
2699       // Apparently there's more work to do. Let's abort this task. It
2700       // will restart it and we can hopefully find more things to do.
2701       set_has_aborted();
2702     }
2703   }
2704 
2705   // Mainly for debugging purposes to make sure that a pointer to the
2706   // closure which was statically allocated in this frame doesn't
2707   // escape it by accident.
2708   set_cm_oop_closure(NULL);
2709   double end_time_ms = os::elapsedVTime() * 1000.0;
2710   double elapsed_time_ms = end_time_ms - _start_time_ms;
2711   // Update the step history.
2712   _step_times_ms.add(elapsed_time_ms);
2713 
2714   if (has_aborted()) {
2715     // The task was aborted for some reason.
2716     if (_has_timed_out) {
2717       double diff_ms = elapsed_time_ms - _time_target_ms;
2718       // Keep statistics of how well we did with respect to hitting
2719       // our target only if we actually timed out (if we aborted for
2720       // other reasons, then the results might get skewed).
2721       _marking_step_diffs_ms.add(diff_ms);
2722     }
2723 
2724     if (_cm->has_overflown()) {
2725       // This is the interesting one. We aborted because a global
2726       // overflow was raised. This means we have to restart the
2727       // marking phase and start iterating over regions. However, in
2728       // order to do this we have to make sure that all tasks stop
2729       // what they are doing and re-initialize in a safe manner. We
2730       // will achieve this with the use of two barrier sync points.
2731 
2732       if (!is_serial) {
2733         // We only need to enter the sync barrier if being called
2734         // from a parallel context
2735         _cm->enter_first_sync_barrier(_worker_id);
2736 
2737         // When we exit this sync barrier we know that all tasks have
2738         // stopped doing marking work. So, it's now safe to
2739         // re-initialize our data structures.
2740       }
2741 
2742       clear_region_fields();
2743       flush_mark_stats_cache();
2744 
2745       if (!is_serial) {
2746         // If we're executing the concurrent phase of marking, reset the marking
2747         // state; otherwise the marking state is reset after reference processing,
2748         // during the remark pause.
2749         // If we reset here as a result of an overflow during the remark we will
2750         // see assertion failures from any subsequent set_concurrency_and_phase()
2751         // calls.
2752         if (_cm->concurrent() && _worker_id == 0) {
2753           // Worker 0 is responsible for clearing the global data structures because
2754           // of an overflow. During STW we should not clear the overflow flag (in
2755           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2756           // method to abort the pause and restart concurrent marking.
2757           _cm->reset_marking_for_restart();
2758 
2759           log_info(gc, marking)("Concurrent Mark reset for overflow");
2760         }
2761 
2762         // ...and enter the second barrier.
2763         _cm->enter_second_sync_barrier(_worker_id);
2764       }
2765       // At this point, if we're during the concurrent phase of
2766       // marking, everything has been re-initialized and we're
2767       // ready to restart.
2768     }
2769   }
2770 }
2771 
2772 G1CMTask::G1CMTask(uint worker_id,
2773                    G1ConcurrentMark* cm,
2774                    G1CMTaskQueue* task_queue,
2775                    G1RegionMarkStats* mark_stats,
2776                    uint max_regions) :
2777   _objArray_processor(this),
2778   _worker_id(worker_id),
2779   _g1h(G1CollectedHeap::heap()),
2780   _cm(cm),
2781   _next_mark_bitmap(NULL),
2782   _task_queue(task_queue),
2783   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2784   _calls(0),
2785   _time_target_ms(0.0),
2786   _start_time_ms(0.0),
2787   _cm_oop_closure(NULL),
2788   _curr_region(NULL),
2789   _finger(NULL),
2790   _region_limit(NULL),
2791   _words_scanned(0),
2792   _words_scanned_limit(0),
2793   _real_words_scanned_limit(0),
2794   _refs_reached(0),
2795   _refs_reached_limit(0),
2796   _real_refs_reached_limit(0),
2797   _hash_seed(17),
2798   _has_aborted(false),
2799   _has_timed_out(false),
2800   _draining_satb_buffers(false),
2801   _step_times_ms(),
2802   _elapsed_time_ms(0.0),
2803   _termination_time_ms(0.0),
2804   _termination_start_time_ms(0.0),
2805   _marking_step_diffs_ms()
2806 {
2807   guarantee(task_queue != NULL, "invariant");
2808 
2809   _marking_step_diffs_ms.add(0.5);
2810 }
2811 
2812 // These are formatting macros that are used below to ensure
2813 // consistent formatting. The *_H_* versions are used to format the
2814 // header for a particular value and they should be kept consistent
2815 // with the corresponding macro. Also note that most of the macros add
2816 // the necessary white space (as a prefix) which makes them a bit
2817 // easier to compose.
2818 
2819 // All the output lines are prefixed with this string to be able to
2820 // identify them easily in a large log file.
2821 #define G1PPRL_LINE_PREFIX            "###"
2822 
2823 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2824 #ifdef _LP64
2825 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2826 #else // _LP64
2827 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2828 #endif // _LP64
2829 
2830 // For per-region info
2831 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2832 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2833 #define G1PPRL_STATE_FORMAT           "   %-5s"
2834 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2835 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2836 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2837 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2838 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2839 
2840 // For summary info
2841 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2842 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2843 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2844 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2845 
2846 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2847   _total_used_bytes(0), _total_capacity_bytes(0),
2848   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2849   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2850 {
2851   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2852   MemRegion g1_reserved = g1h->g1_reserved();
2853   double now = os::elapsedTime();
2854 
2855   // Print the header of the output.
2856   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2857   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2858                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2859                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2860                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2861                           HeapRegion::GrainBytes);
2862   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2863   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2864                           G1PPRL_TYPE_H_FORMAT
2865                           G1PPRL_ADDR_BASE_H_FORMAT
2866                           G1PPRL_BYTE_H_FORMAT
2867                           G1PPRL_BYTE_H_FORMAT
2868                           G1PPRL_BYTE_H_FORMAT
2869                           G1PPRL_DOUBLE_H_FORMAT
2870                           G1PPRL_BYTE_H_FORMAT
2871                           G1PPRL_STATE_H_FORMAT
2872                           G1PPRL_BYTE_H_FORMAT,
2873                           "type", "address-range",
2874                           "used", "prev-live", "next-live", "gc-eff",
2875                           "remset", "state", "code-roots");
2876   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2877                           G1PPRL_TYPE_H_FORMAT
2878                           G1PPRL_ADDR_BASE_H_FORMAT
2879                           G1PPRL_BYTE_H_FORMAT
2880                           G1PPRL_BYTE_H_FORMAT
2881                           G1PPRL_BYTE_H_FORMAT
2882                           G1PPRL_DOUBLE_H_FORMAT
2883                           G1PPRL_BYTE_H_FORMAT
2884                           G1PPRL_STATE_H_FORMAT
2885                           G1PPRL_BYTE_H_FORMAT,
2886                           "", "",
2887                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2888                           "(bytes)", "", "(bytes)");
2889 }
2890 
2891 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2892   const char* type       = r->get_type_str();
2893   HeapWord* bottom       = r->bottom();
2894   HeapWord* end          = r->end();
2895   size_t capacity_bytes  = r->capacity();
2896   size_t used_bytes      = r->used();
2897   size_t prev_live_bytes = r->live_bytes();
2898   size_t next_live_bytes = r->next_live_bytes();
2899   double gc_eff          = r->gc_efficiency();
2900   size_t remset_bytes    = r->rem_set()->mem_size();
2901   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2902   const char* remset_type = r->rem_set()->get_short_state_str();
2903 
2904   _total_used_bytes      += used_bytes;
2905   _total_capacity_bytes  += capacity_bytes;
2906   _total_prev_live_bytes += prev_live_bytes;
2907   _total_next_live_bytes += next_live_bytes;
2908   _total_remset_bytes    += remset_bytes;
2909   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2910 
2911   // Print a line for this particular region.
2912   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2913                           G1PPRL_TYPE_FORMAT
2914                           G1PPRL_ADDR_BASE_FORMAT
2915                           G1PPRL_BYTE_FORMAT
2916                           G1PPRL_BYTE_FORMAT
2917                           G1PPRL_BYTE_FORMAT
2918                           G1PPRL_DOUBLE_FORMAT
2919                           G1PPRL_BYTE_FORMAT
2920                           G1PPRL_STATE_FORMAT
2921                           G1PPRL_BYTE_FORMAT,
2922                           type, p2i(bottom), p2i(end),
2923                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2924                           remset_bytes, remset_type, strong_code_roots_bytes);
2925 
2926   return false;
2927 }
2928 
2929 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2930   // add static memory usages to remembered set sizes
2931   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
2932   // Print the footer of the output.
2933   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2934   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2935                          " SUMMARY"
2936                          G1PPRL_SUM_MB_FORMAT("capacity")
2937                          G1PPRL_SUM_MB_PERC_FORMAT("used")
2938                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
2939                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
2940                          G1PPRL_SUM_MB_FORMAT("remset")
2941                          G1PPRL_SUM_MB_FORMAT("code-roots"),
2942                          bytes_to_mb(_total_capacity_bytes),
2943                          bytes_to_mb(_total_used_bytes),
2944                          percent_of(_total_used_bytes, _total_capacity_bytes),
2945                          bytes_to_mb(_total_prev_live_bytes),
2946                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
2947                          bytes_to_mb(_total_next_live_bytes),
2948                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
2949                          bytes_to_mb(_total_remset_bytes),
2950                          bytes_to_mb(_total_strong_code_roots_bytes));
2951 }