1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1Policy.hpp"
  36 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/shared/adaptiveSizePolicy.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/suspendibleThreadSet.hpp"
  50 #include "gc/shared/taskqueue.inline.hpp"
  51 #include "gc/shared/vmGCOperations.hpp"
  52 #include "gc/shared/weakProcessor.hpp"
  53 #include "include/jvm.h"
  54 #include "logging/log.hpp"
  55 #include "memory/allocation.hpp"
  56 #include "memory/resourceArea.hpp"
  57 #include "oops/access.inline.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "runtime/atomic.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/prefetch.inline.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "utilities/align.hpp"
  65 #include "utilities/growableArray.hpp"
  66 
  67 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  68   assert(addr < _cm->finger(), "invariant");
  69   assert(addr >= _task->finger(), "invariant");
  70 
  71   // We move that task's local finger along.
  72   _task->move_finger_to(addr);
  73 
  74   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  75   // we only partially drain the local queue and global stack
  76   _task->drain_local_queue(true);
  77   _task->drain_global_stack(true);
  78 
  79   // if the has_aborted flag has been raised, we need to bail out of
  80   // the iteration
  81   return !_task->has_aborted();
  82 }
  83 
  84 G1CMMarkStack::G1CMMarkStack() :
  85   _max_chunk_capacity(0),
  86   _base(NULL),
  87   _chunk_capacity(0) {
  88   set_empty();
  89 }
  90 
  91 bool G1CMMarkStack::resize(size_t new_capacity) {
  92   assert(is_empty(), "Only resize when stack is empty.");
  93   assert(new_capacity <= _max_chunk_capacity,
  94          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  95 
  96   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  97 
  98   if (new_base == NULL) {
  99     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 100     return false;
 101   }
 102   // Release old mapping.
 103   if (_base != NULL) {
 104     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 105   }
 106 
 107   _base = new_base;
 108   _chunk_capacity = new_capacity;
 109   set_empty();
 110 
 111   return true;
 112 }
 113 
 114 size_t G1CMMarkStack::capacity_alignment() {
 115   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 116 }
 117 
 118 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 119   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 120 
 121   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 122 
 123   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 124   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 125 
 126   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 127             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 128             _max_chunk_capacity,
 129             initial_chunk_capacity);
 130 
 131   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 132                 initial_chunk_capacity, _max_chunk_capacity);
 133 
 134   return resize(initial_chunk_capacity);
 135 }
 136 
 137 void G1CMMarkStack::expand() {
 138   if (_chunk_capacity == _max_chunk_capacity) {
 139     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 140     return;
 141   }
 142   size_t old_capacity = _chunk_capacity;
 143   // Double capacity if possible
 144   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 145 
 146   if (resize(new_capacity)) {
 147     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 148                   old_capacity, new_capacity);
 149   } else {
 150     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 151                     old_capacity, new_capacity);
 152   }
 153 }
 154 
 155 G1CMMarkStack::~G1CMMarkStack() {
 156   if (_base != NULL) {
 157     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 158   }
 159 }
 160 
 161 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 162   elem->next = *list;
 163   *list = elem;
 164 }
 165 
 166 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 167   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 168   add_chunk_to_list(&_chunk_list, elem);
 169   _chunks_in_chunk_list++;
 170 }
 171 
 172 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 173   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 174   add_chunk_to_list(&_free_list, elem);
 175 }
 176 
 177 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 178   TaskQueueEntryChunk* result = *list;
 179   if (result != NULL) {
 180     *list = (*list)->next;
 181   }
 182   return result;
 183 }
 184 
 185 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 186   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 187   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 188   if (result != NULL) {
 189     _chunks_in_chunk_list--;
 190   }
 191   return result;
 192 }
 193 
 194 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 195   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 196   return remove_chunk_from_list(&_free_list);
 197 }
 198 
 199 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 200   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 201   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 202   // wraparound of _hwm.
 203   if (_hwm >= _chunk_capacity) {
 204     return NULL;
 205   }
 206 
 207   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 208   if (cur_idx >= _chunk_capacity) {
 209     return NULL;
 210   }
 211 
 212   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 213   result->next = NULL;
 214   return result;
 215 }
 216 
 217 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 218   // Get a new chunk.
 219   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 220 
 221   if (new_chunk == NULL) {
 222     // Did not get a chunk from the free list. Allocate from backing memory.
 223     new_chunk = allocate_new_chunk();
 224 
 225     if (new_chunk == NULL) {
 226       return false;
 227     }
 228   }
 229 
 230   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 231 
 232   add_chunk_to_chunk_list(new_chunk);
 233 
 234   return true;
 235 }
 236 
 237 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 238   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 239 
 240   if (cur == NULL) {
 241     return false;
 242   }
 243 
 244   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 245 
 246   add_chunk_to_free_list(cur);
 247   return true;
 248 }
 249 
 250 void G1CMMarkStack::set_empty() {
 251   _chunks_in_chunk_list = 0;
 252   _hwm = 0;
 253   _chunk_list = NULL;
 254   _free_list = NULL;
 255 }
 256 
 257 G1CMRootRegions::G1CMRootRegions() :
 258   _survivors(NULL), _cm(NULL), _scan_in_progress(false),
 259   _should_abort(false), _claimed_survivor_index(0) { }
 260 
 261 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 262   _survivors = survivors;
 263   _cm = cm;
 264 }
 265 
 266 void G1CMRootRegions::prepare_for_scan() {
 267   assert(!scan_in_progress(), "pre-condition");
 268 
 269   // Currently, only survivors can be root regions.
 270   _claimed_survivor_index = 0;
 271   _scan_in_progress = _survivors->regions()->is_nonempty();
 272   _should_abort = false;
 273 }
 274 
 275 HeapRegion* G1CMRootRegions::claim_next() {
 276   if (_should_abort) {
 277     // If someone has set the should_abort flag, we return NULL to
 278     // force the caller to bail out of their loop.
 279     return NULL;
 280   }
 281 
 282   // Currently, only survivors can be root regions.
 283   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 284 
 285   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 286   if (claimed_index < survivor_regions->length()) {
 287     return survivor_regions->at(claimed_index);
 288   }
 289   return NULL;
 290 }
 291 
 292 uint G1CMRootRegions::num_root_regions() const {
 293   return (uint)_survivors->regions()->length();
 294 }
 295 
 296 void G1CMRootRegions::notify_scan_done() {
 297   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 298   _scan_in_progress = false;
 299   RootRegionScan_lock->notify_all();
 300 }
 301 
 302 void G1CMRootRegions::cancel_scan() {
 303   notify_scan_done();
 304 }
 305 
 306 void G1CMRootRegions::scan_finished() {
 307   assert(scan_in_progress(), "pre-condition");
 308 
 309   // Currently, only survivors can be root regions.
 310   if (!_should_abort) {
 311     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 312     assert((uint)_claimed_survivor_index >= _survivors->length(),
 313            "we should have claimed all survivors, claimed index = %u, length = %u",
 314            (uint)_claimed_survivor_index, _survivors->length());
 315   }
 316 
 317   notify_scan_done();
 318 }
 319 
 320 bool G1CMRootRegions::wait_until_scan_finished() {
 321   if (!scan_in_progress()) {
 322     return false;
 323   }
 324 
 325   {
 326     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 327     while (scan_in_progress()) {
 328       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 329     }
 330   }
 331   return true;
 332 }
 333 
 334 // Returns the maximum number of workers to be used in a concurrent
 335 // phase based on the number of GC workers being used in a STW
 336 // phase.
 337 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 338   return MAX2((num_gc_workers + 2) / 4, 1U);
 339 }
 340 
 341 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 342                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 343                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 344   // _cm_thread set inside the constructor
 345   _g1h(g1h),
 346   _completed_initialization(false),
 347 
 348   _mark_bitmap_1(),
 349   _mark_bitmap_2(),
 350   _prev_mark_bitmap(&_mark_bitmap_1),
 351   _next_mark_bitmap(&_mark_bitmap_2),
 352 
 353   _heap(_g1h->reserved_region()),
 354 
 355   _root_regions(),
 356 
 357   _global_mark_stack(),
 358 
 359   // _finger set in set_non_marking_state
 360 
 361   _worker_id_offset(DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 362   _max_num_tasks(ParallelGCThreads),
 363   // _num_active_tasks set in set_non_marking_state()
 364   // _tasks set inside the constructor
 365 
 366   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 367   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 368 
 369   _first_overflow_barrier_sync(),
 370   _second_overflow_barrier_sync(),
 371 
 372   _has_overflown(false),
 373   _concurrent(false),
 374   _has_aborted(false),
 375   _restart_for_overflow(false),
 376   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 377   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 378 
 379   // _verbose_level set below
 380 
 381   _init_times(),
 382   _remark_times(),
 383   _remark_mark_times(),
 384   _remark_weak_ref_times(),
 385   _cleanup_times(),
 386   _total_cleanup_time(0.0),
 387 
 388   _accum_task_vtime(NULL),
 389 
 390   _concurrent_workers(NULL),
 391   _num_concurrent_workers(0),
 392   _max_concurrent_workers(0),
 393 
 394   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 395   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 396 {
 397   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 398   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 399 
 400   // Create & start ConcurrentMark thread.
 401   _cm_thread = new G1ConcurrentMarkThread(this);
 402   if (_cm_thread->osthread() == NULL) {
 403     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 404   }
 405 
 406   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 407 
 408   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 409   satb_qs.set_buffer_size(G1SATBBufferSize);
 410 
 411   _root_regions.init(_g1h->survivor(), this);
 412 
 413   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 414     // Calculate the number of concurrent worker threads by scaling
 415     // the number of parallel GC threads.
 416     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 417     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 418   }
 419 
 420   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 421   if (ConcGCThreads > ParallelGCThreads) {
 422     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 423                     ConcGCThreads, ParallelGCThreads);
 424     return;
 425   }
 426 
 427   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 428   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 429 
 430   _num_concurrent_workers = ConcGCThreads;
 431   _max_concurrent_workers = _num_concurrent_workers;
 432 
 433   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 434   _concurrent_workers->initialize_workers();
 435 
 436   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 437     size_t mark_stack_size =
 438       MIN2(MarkStackSizeMax,
 439           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 440     // Verify that the calculated value for MarkStackSize is in range.
 441     // It would be nice to use the private utility routine from Arguments.
 442     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 443       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 444                       "must be between 1 and " SIZE_FORMAT,
 445                       mark_stack_size, MarkStackSizeMax);
 446       return;
 447     }
 448     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 449   } else {
 450     // Verify MarkStackSize is in range.
 451     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 452       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 453         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 454           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 455                           "must be between 1 and " SIZE_FORMAT,
 456                           MarkStackSize, MarkStackSizeMax);
 457           return;
 458         }
 459       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 460         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 461           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 462                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 463                           MarkStackSize, MarkStackSizeMax);
 464           return;
 465         }
 466       }
 467     }
 468   }
 469 
 470   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 471     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 472   }
 473 
 474   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 475   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 476 
 477   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 478   _num_active_tasks = _max_num_tasks;
 479 
 480   for (uint i = 0; i < _max_num_tasks; ++i) {
 481     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 482     task_queue->initialize();
 483     _task_queues->register_queue(i, task_queue);
 484 
 485     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 486 
 487     _accum_task_vtime[i] = 0.0;
 488   }
 489 
 490   reset_at_marking_complete();
 491   _completed_initialization = true;
 492 }
 493 
 494 void G1ConcurrentMark::reset() {
 495   _has_aborted = false;
 496 
 497   reset_marking_for_restart();
 498 
 499   // Reset all tasks, since different phases will use different number of active
 500   // threads. So, it's easiest to have all of them ready.
 501   for (uint i = 0; i < _max_num_tasks; ++i) {
 502     _tasks[i]->reset(_next_mark_bitmap);
 503   }
 504 
 505   uint max_regions = _g1h->max_regions();
 506   for (uint i = 0; i < max_regions; i++) {
 507     _top_at_rebuild_starts[i] = NULL;
 508     _region_mark_stats[i].clear();
 509   }
 510 }
 511 
 512 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 513   for (uint j = 0; j < _max_num_tasks; ++j) {
 514     _tasks[j]->clear_mark_stats_cache(region_idx);
 515   }
 516   _top_at_rebuild_starts[region_idx] = NULL;
 517   _region_mark_stats[region_idx].clear();
 518 }
 519 
 520 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 521   uint const region_idx = r->hrm_index();
 522   if (r->is_humongous()) {
 523     assert(r->is_starts_humongous(), "Got humongous continues region here");
 524     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 525     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 526       clear_statistics_in_region(j);
 527     }
 528   } else {
 529     clear_statistics_in_region(region_idx);
 530   }
 531 }
 532 
 533 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 534   if (bitmap->is_marked(addr)) {
 535     bitmap->clear(addr);
 536   }
 537 }
 538 
 539 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 540   assert_at_safepoint_on_vm_thread();
 541 
 542   // Need to clear all mark bits of the humongous object.
 543   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 544   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 545 
 546   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 547     return;
 548   }
 549 
 550   // Clear any statistics about the region gathered so far.
 551   clear_statistics(r);
 552 }
 553 
 554 void G1ConcurrentMark::reset_marking_for_restart() {
 555   _global_mark_stack.set_empty();
 556 
 557   // Expand the marking stack, if we have to and if we can.
 558   if (has_overflown()) {
 559     _global_mark_stack.expand();
 560 
 561     uint max_regions = _g1h->max_regions();
 562     for (uint i = 0; i < max_regions; i++) {
 563       _region_mark_stats[i].clear_during_overflow();
 564     }
 565   }
 566 
 567   clear_has_overflown();
 568   _finger = _heap.start();
 569 
 570   for (uint i = 0; i < _max_num_tasks; ++i) {
 571     G1CMTaskQueue* queue = _task_queues->queue(i);
 572     queue->set_empty();
 573   }
 574 }
 575 
 576 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 577   assert(active_tasks <= _max_num_tasks, "we should not have more");
 578 
 579   _num_active_tasks = active_tasks;
 580   // Need to update the three data structures below according to the
 581   // number of active threads for this phase.
 582   _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
 583   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 584   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 585 }
 586 
 587 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 588   set_concurrency(active_tasks);
 589 
 590   _concurrent = concurrent;
 591 
 592   if (!concurrent) {
 593     // At this point we should be in a STW phase, and completed marking.
 594     assert_at_safepoint_on_vm_thread();
 595     assert(out_of_regions(),
 596            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 597            p2i(_finger), p2i(_heap.end()));
 598   }
 599 }
 600 
 601 void G1ConcurrentMark::reset_at_marking_complete() {
 602   // We set the global marking state to some default values when we're
 603   // not doing marking.
 604   reset_marking_for_restart();
 605   _num_active_tasks = 0;
 606 }
 607 
 608 G1ConcurrentMark::~G1ConcurrentMark() {
 609   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 610   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 611   // The G1ConcurrentMark instance is never freed.
 612   ShouldNotReachHere();
 613 }
 614 
 615 class G1ClearBitMapTask : public AbstractGangTask {
 616 public:
 617   static size_t chunk_size() { return M; }
 618 
 619 private:
 620   // Heap region closure used for clearing the given mark bitmap.
 621   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 622   private:
 623     G1CMBitMap* _bitmap;
 624     G1ConcurrentMark* _cm;
 625   public:
 626     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 627     }
 628 
 629     virtual bool do_heap_region(HeapRegion* r) {
 630       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 631 
 632       HeapWord* cur = r->bottom();
 633       HeapWord* const end = r->end();
 634 
 635       while (cur < end) {
 636         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 637         _bitmap->clear_range(mr);
 638 
 639         cur += chunk_size_in_words;
 640 
 641         // Abort iteration if after yielding the marking has been aborted.
 642         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 643           return true;
 644         }
 645         // Repeat the asserts from before the start of the closure. We will do them
 646         // as asserts here to minimize their overhead on the product. However, we
 647         // will have them as guarantees at the beginning / end of the bitmap
 648         // clearing to get some checking in the product.
 649         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 650         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 651       }
 652       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 653 
 654       return false;
 655     }
 656   };
 657 
 658   G1ClearBitmapHRClosure _cl;
 659   HeapRegionClaimer _hr_claimer;
 660   bool _suspendible; // If the task is suspendible, workers must join the STS.
 661 
 662 public:
 663   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 664     AbstractGangTask("G1 Clear Bitmap"),
 665     _cl(bitmap, suspendible ? cm : NULL),
 666     _hr_claimer(n_workers),
 667     _suspendible(suspendible)
 668   { }
 669 
 670   void work(uint worker_id) {
 671     SuspendibleThreadSetJoiner sts_join(_suspendible);
 672     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 673   }
 674 
 675   bool is_complete() {
 676     return _cl.is_complete();
 677   }
 678 };
 679 
 680 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 681   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 682 
 683   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 684   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 685 
 686   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 687 
 688   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 689 
 690   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 691   workers->run_task(&cl, num_workers);
 692   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 693 }
 694 
 695 void G1ConcurrentMark::cleanup_for_next_mark() {
 696   // Make sure that the concurrent mark thread looks to still be in
 697   // the current cycle.
 698   guarantee(cm_thread()->during_cycle(), "invariant");
 699 
 700   // We are finishing up the current cycle by clearing the next
 701   // marking bitmap and getting it ready for the next cycle. During
 702   // this time no other cycle can start. So, let's make sure that this
 703   // is the case.
 704   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 705 
 706   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 707 
 708   // Repeat the asserts from above.
 709   guarantee(cm_thread()->during_cycle(), "invariant");
 710   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 711 }
 712 
 713 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 714   assert_at_safepoint_on_vm_thread();
 715   clear_bitmap(_prev_mark_bitmap, workers, false);
 716 }
 717 
 718 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 719   G1CMBitMap* _bitmap;
 720  public:
 721   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 722   }
 723 
 724   virtual bool do_heap_region(HeapRegion* r) {
 725     // This closure can be called concurrently to the mutator, so we must make sure
 726     // that the result of the getNextMarkedWordAddress() call is compared to the
 727     // value passed to it as limit to detect any found bits.
 728     // end never changes in G1.
 729     HeapWord* end = r->end();
 730     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 731   }
 732 };
 733 
 734 bool G1ConcurrentMark::next_mark_bitmap_is_clear() {
 735   CheckBitmapClearHRClosure cl(_next_mark_bitmap);
 736   _g1h->heap_region_iterate(&cl);
 737   return cl.is_complete();
 738 }
 739 
 740 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 741 public:
 742   bool do_heap_region(HeapRegion* r) {
 743     r->note_start_of_marking();
 744     return false;
 745   }
 746 };
 747 
 748 void G1ConcurrentMark::pre_initial_mark() {
 749   // Initialize marking structures. This has to be done in a STW phase.
 750   reset();
 751 
 752   // For each region note start of marking.
 753   NoteStartOfMarkHRClosure startcl;
 754   _g1h->heap_region_iterate(&startcl);
 755 }
 756 
 757 
 758 void G1ConcurrentMark::post_initial_mark() {
 759   // Start Concurrent Marking weak-reference discovery.
 760   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 761   // enable ("weak") refs discovery
 762   rp->enable_discovery();
 763   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 764 
 765   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 766   // This is the start of  the marking cycle, we're expected all
 767   // threads to have SATB queues with active set to false.
 768   satb_mq_set.set_active_all_threads(true, /* new active value */
 769                                      false /* expected_active */);
 770 
 771   _root_regions.prepare_for_scan();
 772 
 773   // update_g1_committed() will be called at the end of an evac pause
 774   // when marking is on. So, it's also called at the end of the
 775   // initial-mark pause to update the heap end, if the heap expands
 776   // during it. No need to call it here.
 777 }
 778 
 779 /*
 780  * Notice that in the next two methods, we actually leave the STS
 781  * during the barrier sync and join it immediately afterwards. If we
 782  * do not do this, the following deadlock can occur: one thread could
 783  * be in the barrier sync code, waiting for the other thread to also
 784  * sync up, whereas another one could be trying to yield, while also
 785  * waiting for the other threads to sync up too.
 786  *
 787  * Note, however, that this code is also used during remark and in
 788  * this case we should not attempt to leave / enter the STS, otherwise
 789  * we'll either hit an assert (debug / fastdebug) or deadlock
 790  * (product). So we should only leave / enter the STS if we are
 791  * operating concurrently.
 792  *
 793  * Because the thread that does the sync barrier has left the STS, it
 794  * is possible to be suspended for a Full GC or an evacuation pause
 795  * could occur. This is actually safe, since the entering the sync
 796  * barrier is one of the last things do_marking_step() does, and it
 797  * doesn't manipulate any data structures afterwards.
 798  */
 799 
 800 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 801   bool barrier_aborted;
 802   {
 803     SuspendibleThreadSetLeaver sts_leave(concurrent());
 804     barrier_aborted = !_first_overflow_barrier_sync.enter();
 805   }
 806 
 807   // at this point everyone should have synced up and not be doing any
 808   // more work
 809 
 810   if (barrier_aborted) {
 811     // If the barrier aborted we ignore the overflow condition and
 812     // just abort the whole marking phase as quickly as possible.
 813     return;
 814   }
 815 }
 816 
 817 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 818   SuspendibleThreadSetLeaver sts_leave(concurrent());
 819   _second_overflow_barrier_sync.enter();
 820 
 821   // at this point everything should be re-initialized and ready to go
 822 }
 823 
 824 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 825   G1ConcurrentMark*     _cm;
 826 
 827 public:
 828   void work(uint worker_id) {
 829     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 830     ResourceMark rm;
 831 
 832     double start_vtime = os::elapsedVTime();
 833 
 834     {
 835       SuspendibleThreadSetJoiner sts_join;
 836 
 837       assert(worker_id < _cm->active_tasks(), "invariant");
 838 
 839       G1CMTask* task = _cm->task(worker_id);
 840       task->record_start_time();
 841       if (!_cm->has_aborted()) {
 842         do {
 843           task->do_marking_step(G1ConcMarkStepDurationMillis,
 844                                 true  /* do_termination */,
 845                                 false /* is_serial*/);
 846 
 847           _cm->do_yield_check();
 848         } while (!_cm->has_aborted() && task->has_aborted());
 849       }
 850       task->record_end_time();
 851       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 852     }
 853 
 854     double end_vtime = os::elapsedVTime();
 855     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 856   }
 857 
 858   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 859       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 860 
 861   ~G1CMConcurrentMarkingTask() { }
 862 };
 863 
 864 uint G1ConcurrentMark::calc_active_marking_workers() {
 865   uint result = 0;
 866   if (!UseDynamicNumberOfGCThreads ||
 867       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 868        !ForceDynamicNumberOfGCThreads)) {
 869     result = _max_concurrent_workers;
 870   } else {
 871     result =
 872       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 873                                                       1, /* Minimum workers */
 874                                                       _num_concurrent_workers,
 875                                                       Threads::number_of_non_daemon_threads());
 876     // Don't scale the result down by scale_concurrent_workers() because
 877     // that scaling has already gone into "_max_concurrent_workers".
 878   }
 879   assert(result > 0 && result <= _max_concurrent_workers,
 880          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 881          _max_concurrent_workers, result);
 882   return result;
 883 }
 884 
 885 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) {
 886   // Currently, only survivors can be root regions.
 887   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 888   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 889 
 890   const uintx interval = PrefetchScanIntervalInBytes;
 891   HeapWord* curr = hr->bottom();
 892   const HeapWord* end = hr->top();
 893   while (curr < end) {
 894     Prefetch::read(curr, interval);
 895     oop obj = oop(curr);
 896     int size = obj->oop_iterate_size(&cl);
 897     assert(size == obj->size(), "sanity");
 898     curr += size;
 899   }
 900 }
 901 
 902 class G1CMRootRegionScanTask : public AbstractGangTask {
 903   G1ConcurrentMark* _cm;
 904 public:
 905   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 906     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 907 
 908   void work(uint worker_id) {
 909     assert(Thread::current()->is_ConcurrentGC_thread(),
 910            "this should only be done by a conc GC thread");
 911 
 912     G1CMRootRegions* root_regions = _cm->root_regions();
 913     HeapRegion* hr = root_regions->claim_next();
 914     while (hr != NULL) {
 915       _cm->scan_root_region(hr, worker_id);
 916       hr = root_regions->claim_next();
 917     }
 918   }
 919 };
 920 
 921 void G1ConcurrentMark::scan_root_regions() {
 922   // scan_in_progress() will have been set to true only if there was
 923   // at least one root region to scan. So, if it's false, we
 924   // should not attempt to do any further work.
 925   if (root_regions()->scan_in_progress()) {
 926     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 927 
 928     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 929                                    // We distribute work on a per-region basis, so starting
 930                                    // more threads than that is useless.
 931                                    root_regions()->num_root_regions());
 932     assert(_num_concurrent_workers <= _max_concurrent_workers,
 933            "Maximum number of marking threads exceeded");
 934 
 935     G1CMRootRegionScanTask task(this);
 936     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 937                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 938     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 939 
 940     // It's possible that has_aborted() is true here without actually
 941     // aborting the survivor scan earlier. This is OK as it's
 942     // mainly used for sanity checking.
 943     root_regions()->scan_finished();
 944   }
 945 }
 946 
 947 void G1ConcurrentMark::concurrent_cycle_start() {
 948   _gc_timer_cm->register_gc_start();
 949 
 950   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 951 
 952   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 953 }
 954 
 955 void G1ConcurrentMark::concurrent_cycle_end() {
 956   _g1h->collector_state()->set_clearing_next_bitmap(false);
 957 
 958   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 959 
 960   if (has_aborted()) {
 961     log_info(gc, marking)("Concurrent Mark Abort");
 962     _gc_tracer_cm->report_concurrent_mode_failure();
 963   }
 964 
 965   _gc_timer_cm->register_gc_end();
 966 
 967   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 968 }
 969 
 970 void G1ConcurrentMark::mark_from_roots() {
 971   _restart_for_overflow = false;
 972 
 973   _num_concurrent_workers = calc_active_marking_workers();
 974 
 975   uint active_workers = MAX2(1U, _num_concurrent_workers);
 976 
 977   // Setting active workers is not guaranteed since fewer
 978   // worker threads may currently exist and more may not be
 979   // available.
 980   active_workers = _concurrent_workers->update_active_workers(active_workers);
 981   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 982 
 983   // Parallel task terminator is set in "set_concurrency_and_phase()"
 984   set_concurrency_and_phase(active_workers, true /* concurrent */);
 985 
 986   G1CMConcurrentMarkingTask marking_task(this);
 987   _concurrent_workers->run_task(&marking_task);
 988   print_stats();
 989 }
 990 
 991 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 992   G1HeapVerifier* verifier = _g1h->verifier();
 993 
 994   verifier->verify_region_sets_optional();
 995 
 996   if (VerifyDuringGC) {
 997     GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm);
 998 
 999     size_t const BufLen = 512;
1000     char buffer[BufLen];
1001 
1002     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
1003     verifier->verify(type, vo, buffer);
1004   }
1005 
1006   verifier->check_bitmaps(caller);
1007 }
1008 
1009 class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
1010   G1CollectedHeap* _g1h;
1011   G1ConcurrentMark* _cm;
1012 
1013   G1PrintRegionLivenessInfoClosure _cl;
1014 
1015   uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1016 
1017   void update_remset_before_rebuild(HeapRegion * hr) {
1018     G1RemSetTrackingPolicy* tracking_policy = _g1h->g1_policy()->remset_tracker();
1019 
1020     size_t live_bytes = _cm->liveness(hr->hrm_index()) * HeapWordSize;
1021     bool selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1022     if (selected_for_rebuild) {
1023       _num_regions_selected_for_rebuild++;
1024     }
1025     _cm->update_top_at_rebuild_start(hr);
1026   }
1027 
1028   void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
1029     uint const region_idx = hr->hrm_index();
1030     uint num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(marked_words);
1031 
1032     for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1033       HeapRegion* const r = _g1h->region_at(i);
1034       size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1035       assert(words_to_add > 0, "Out of space to distribute before end of humongous object in region %u (starts %u)", i, region_idx);
1036 
1037       log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)", 
1038                              words_to_add, i, r->get_type_str());
1039       r->add_to_marked_bytes(words_to_add * HeapWordSize);
1040       marked_words -= words_to_add;
1041     }
1042     assert(marked_words == 0,
1043            SIZE_FORMAT " words left after distributing space across %u regions",
1044            marked_words, num_regions_in_humongous);
1045   }
1046 
1047   void update_marked_bytes(HeapRegion* hr) {
1048     uint const region_idx = hr->hrm_index();
1049     size_t marked_words = _cm->liveness(region_idx);
1050     // The marking attributes the object's size completely to the humongous starts
1051     // region. We need to distribute this value across the entire set of regions a
1052     // humongous object spans.
1053     if (hr->is_humongous()) {
1054       assert(hr->is_starts_humongous() || marked_words == 0,
1055              "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1056              marked_words, region_idx, hr->get_type_str());
1057 
1058       if (marked_words > 0) {
1059         distribute_marked_bytes(hr, marked_words);
1060       }
1061     } else {
1062       log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1063       hr->add_to_marked_bytes(marked_words * HeapWordSize);
1064     }
1065   }
1066 
1067 public:
1068   G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm) :
1069     _g1h(g1h), _cm(cm), _cl("Post-Marking"), _num_regions_selected_for_rebuild(0) { }
1070 
1071   virtual bool do_heap_region(HeapRegion* r) {
1072     update_remset_before_rebuild(r);
1073     update_marked_bytes(r);
1074     if (log_is_enabled(Trace, gc, liveness)) {
1075       _cl.do_heap_region(r);
1076     }
1077     r->note_end_of_marking();
1078     return false;
1079   }
1080 
1081   uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1082 };
1083 
1084 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1085   G1CollectedHeap* _g1h;
1086 public:
1087   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1088 
1089   virtual bool do_heap_region(HeapRegion* r) {
1090     _g1h->g1_policy()->remset_tracker()->update_after_rebuild(r);
1091     return false;
1092   }
1093 };
1094 
1095 void G1ConcurrentMark::remark() {
1096   assert_at_safepoint_on_vm_thread();
1097 
1098   // If a full collection has happened, we should not continue. However we might
1099   // have ended up here as the Remark VM operation has been scheduled already.
1100   if (has_aborted()) {
1101     return;
1102   }
1103 
1104   G1Policy* g1p = _g1h->g1_policy();
1105   g1p->record_concurrent_mark_remark_start();
1106 
1107   double start = os::elapsedTime();
1108 
1109   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1110 
1111   {
1112     GCTraceTime(Debug, gc, phases) debug("Finalize Marking", _gc_timer_cm);
1113     finalize_marking();
1114   }
1115 
1116   double mark_work_end = os::elapsedTime();
1117 
1118   bool const mark_finished = !has_overflown();
1119   if (mark_finished) {
1120     weak_refs_work(false /* clear_all_soft_refs */);
1121 
1122     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1123     // We're done with marking.
1124     // This is the end of the marking cycle, we're expected all
1125     // threads to have SATB queues with active set to true.
1126     satb_mq_set.set_active_all_threads(false, /* new active value */
1127                                        true /* expected_active */);
1128 
1129     {
1130       GCTraceTime(Debug, gc, phases) debug("Flush Task Caches", _gc_timer_cm);
1131       flush_all_task_caches();
1132     }
1133 
1134     // Install newly created mark bitmap as "prev".
1135     swap_mark_bitmaps();
1136     {
1137       GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1138       G1UpdateRemSetTrackingBeforeRebuild cl(_g1h, this);
1139       _g1h->heap_region_iterate(&cl);
1140       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1141                                       _g1h->num_regions(), cl.num_selected_for_rebuild());
1142     }
1143     {
1144       GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions", _gc_timer_cm);
1145       reclaim_empty_regions();
1146     }
1147 
1148     // Clean out dead classes
1149     if (ClassUnloadingWithConcurrentMark) {
1150       GCTraceTime(Debug, gc, phases) debug("Purge Metaspace", _gc_timer_cm);
1151       ClassLoaderDataGraph::purge();
1152     }
1153 
1154     compute_new_sizes();
1155 
1156     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1157 
1158     assert(!restart_for_overflow(), "sanity");
1159     // Completely reset the marking state since marking completed
1160     reset_at_marking_complete();
1161   } else {
1162     // We overflowed.  Restart concurrent marking.
1163     _restart_for_overflow = true;
1164 
1165     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1166 
1167     // Clear the marking state because we will be restarting
1168     // marking due to overflowing the global mark stack.
1169     reset_marking_for_restart();
1170   }
1171 
1172   {
1173     GCTraceTime(Debug, gc, phases) debug("Report Object Count", _gc_timer_cm);
1174     report_object_count(mark_finished);
1175   }
1176 
1177   // Statistics
1178   double now = os::elapsedTime();
1179   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1180   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1181   _remark_times.add((now - start) * 1000.0);
1182 
1183   g1p->record_concurrent_mark_remark_end();
1184 }
1185 
1186 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1187   // Per-region work during the Cleanup pause.
1188   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1189     G1CollectedHeap* _g1h;
1190     size_t _freed_bytes;
1191     FreeRegionList* _local_cleanup_list;
1192     uint _old_regions_removed;
1193     uint _humongous_regions_removed;
1194     HRRSCleanupTask* _hrrs_cleanup_task;
1195 
1196   public:
1197     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1198                                  FreeRegionList* local_cleanup_list,
1199                                  HRRSCleanupTask* hrrs_cleanup_task) :
1200       _g1h(g1h),
1201       _freed_bytes(0),
1202       _local_cleanup_list(local_cleanup_list),
1203       _old_regions_removed(0),
1204       _humongous_regions_removed(0),
1205       _hrrs_cleanup_task(hrrs_cleanup_task) { }
1206 
1207     size_t freed_bytes() { return _freed_bytes; }
1208     const uint old_regions_removed() { return _old_regions_removed; }
1209     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1210 
1211     bool do_heap_region(HeapRegion *hr) {
1212       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1213         _freed_bytes += hr->used();
1214         hr->set_containing_set(NULL);
1215         if (hr->is_humongous()) {
1216           _humongous_regions_removed++;
1217           _g1h->free_humongous_region(hr, _local_cleanup_list);
1218         } else {
1219           _old_regions_removed++;
1220           _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
1221         }
1222         hr->clear_cardtable();
1223         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1224         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1225       } else {
1226         hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1227       }
1228 
1229       return false;
1230     }
1231   };
1232 
1233   G1CollectedHeap* _g1h;
1234   FreeRegionList* _cleanup_list;
1235   HeapRegionClaimer _hrclaimer;
1236 
1237 public:
1238   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1239     AbstractGangTask("G1 Cleanup"),
1240     _g1h(g1h),
1241     _cleanup_list(cleanup_list),
1242     _hrclaimer(n_workers) {
1243 
1244     HeapRegionRemSet::reset_for_cleanup_tasks();
1245   }
1246 
1247   void work(uint worker_id) {
1248     FreeRegionList local_cleanup_list("Local Cleanup List");
1249     HRRSCleanupTask hrrs_cleanup_task;
1250     G1ReclaimEmptyRegionsClosure cl(_g1h,
1251                                     &local_cleanup_list,
1252                                     &hrrs_cleanup_task);
1253     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1254     assert(cl.is_complete(), "Shouldn't have aborted!");
1255 
1256     // Now update the old/humongous region sets
1257     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1258     {
1259       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1260       _g1h->decrement_summary_bytes(cl.freed_bytes());
1261 
1262       _cleanup_list->add_ordered(&local_cleanup_list);
1263       assert(local_cleanup_list.is_empty(), "post-condition");
1264 
1265       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1266     }
1267   }
1268 };
1269 
1270 void G1ConcurrentMark::reclaim_empty_regions() {
1271   WorkGang* workers = _g1h->workers();
1272   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1273 
1274   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1275   workers->run_task(&cl);
1276 
1277   if (!empty_regions_list.is_empty()) {
1278     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1279     // Now print the empty regions list.
1280     G1HRPrinter* hrp = _g1h->hr_printer();
1281     if (hrp->is_active()) {
1282       FreeRegionListIterator iter(&empty_regions_list);
1283       while (iter.more_available()) {
1284         HeapRegion* hr = iter.get_next();
1285         hrp->cleanup(hr);
1286       }
1287     }
1288     // And actually make them available.
1289     _g1h->prepend_to_freelist(&empty_regions_list);
1290   }
1291 }
1292 
1293 void G1ConcurrentMark::compute_new_sizes() {
1294   MetaspaceGC::compute_new_size();
1295 
1296   // Cleanup will have freed any regions completely full of garbage.
1297   // Update the soft reference policy with the new heap occupancy.
1298   Universe::update_heap_info_at_gc();
1299 
1300   // We reclaimed old regions so we should calculate the sizes to make
1301   // sure we update the old gen/space data.
1302   _g1h->g1mm()->update_sizes();
1303 }
1304 
1305 void G1ConcurrentMark::cleanup() {
1306   assert_at_safepoint_on_vm_thread();
1307 
1308   // If a full collection has happened, we shouldn't do this.
1309   if (has_aborted()) {
1310     return;
1311   }
1312 
1313   G1Policy* g1p = _g1h->g1_policy();
1314   g1p->record_concurrent_mark_cleanup_start();
1315 
1316   double start = os::elapsedTime();
1317 
1318   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1319 
1320   {
1321     GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1322     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1323     _g1h->heap_region_iterate(&cl);
1324   }
1325 
1326   if (log_is_enabled(Trace, gc, liveness)) {
1327     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1328     _g1h->heap_region_iterate(&cl);
1329   }
1330 
1331   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1332 
1333   // We need to make this be a "collection" so any collection pause that
1334   // races with it goes around and waits for Cleanup to finish.
1335   _g1h->increment_total_collections();
1336 
1337   // Local statistics
1338   double recent_cleanup_time = (os::elapsedTime() - start);
1339   _total_cleanup_time += recent_cleanup_time;
1340   _cleanup_times.add(recent_cleanup_time);
1341 
1342   {
1343     GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1344     _g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1345   }
1346 }
1347 
1348 // Supporting Object and Oop closures for reference discovery
1349 // and processing in during marking
1350 
1351 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1352   HeapWord* addr = (HeapWord*)obj;
1353   return addr != NULL &&
1354          (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_ill(obj));
1355 }
1356 
1357 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1358 // Uses the G1CMTask associated with a worker thread (for serial reference
1359 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1360 // trace referent objects.
1361 //
1362 // Using the G1CMTask and embedded local queues avoids having the worker
1363 // threads operating on the global mark stack. This reduces the risk
1364 // of overflowing the stack - which we would rather avoid at this late
1365 // state. Also using the tasks' local queues removes the potential
1366 // of the workers interfering with each other that could occur if
1367 // operating on the global stack.
1368 
1369 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1370   G1ConcurrentMark* _cm;
1371   G1CMTask*         _task;
1372   int               _ref_counter_limit;
1373   int               _ref_counter;
1374   bool              _is_serial;
1375 public:
1376   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1377     _cm(cm), _task(task), _is_serial(is_serial),
1378     _ref_counter_limit(G1RefProcDrainInterval) {
1379     assert(_ref_counter_limit > 0, "sanity");
1380     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1381     _ref_counter = _ref_counter_limit;
1382   }
1383 
1384   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1385   virtual void do_oop(      oop* p) { do_oop_work(p); }
1386 
1387   template <class T> void do_oop_work(T* p) {
1388     if (!_cm->has_overflown()) {
1389       _task->deal_with_reference(p);
1390       _ref_counter--;
1391 
1392       if (_ref_counter == 0) {
1393         // We have dealt with _ref_counter_limit references, pushing them
1394         // and objects reachable from them on to the local stack (and
1395         // possibly the global stack). Call G1CMTask::do_marking_step() to
1396         // process these entries.
1397         //
1398         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1399         // there's nothing more to do (i.e. we're done with the entries that
1400         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1401         // above) or we overflow.
1402         //
1403         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1404         // flag while there may still be some work to do. (See the comment at
1405         // the beginning of G1CMTask::do_marking_step() for those conditions -
1406         // one of which is reaching the specified time target.) It is only
1407         // when G1CMTask::do_marking_step() returns without setting the
1408         // has_aborted() flag that the marking step has completed.
1409         do {
1410           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1411           _task->do_marking_step(mark_step_duration_ms,
1412                                  false      /* do_termination */,
1413                                  _is_serial);
1414         } while (_task->has_aborted() && !_cm->has_overflown());
1415         _ref_counter = _ref_counter_limit;
1416       }
1417     }
1418   }
1419 };
1420 
1421 // 'Drain' oop closure used by both serial and parallel reference processing.
1422 // Uses the G1CMTask associated with a given worker thread (for serial
1423 // reference processing the G1CMtask for worker 0 is used). Calls the
1424 // do_marking_step routine, with an unbelievably large timeout value,
1425 // to drain the marking data structures of the remaining entries
1426 // added by the 'keep alive' oop closure above.
1427 
1428 class G1CMDrainMarkingStackClosure : public VoidClosure {
1429   G1ConcurrentMark* _cm;
1430   G1CMTask*         _task;
1431   bool              _is_serial;
1432  public:
1433   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1434     _cm(cm), _task(task), _is_serial(is_serial) {
1435     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1436   }
1437 
1438   void do_void() {
1439     do {
1440       // We call G1CMTask::do_marking_step() to completely drain the local
1441       // and global marking stacks of entries pushed by the 'keep alive'
1442       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1443       //
1444       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1445       // if there's nothing more to do (i.e. we've completely drained the
1446       // entries that were pushed as a a result of applying the 'keep alive'
1447       // closure to the entries on the discovered ref lists) or we overflow
1448       // the global marking stack.
1449       //
1450       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1451       // flag while there may still be some work to do. (See the comment at
1452       // the beginning of G1CMTask::do_marking_step() for those conditions -
1453       // one of which is reaching the specified time target.) It is only
1454       // when G1CMTask::do_marking_step() returns without setting the
1455       // has_aborted() flag that the marking step has completed.
1456 
1457       _task->do_marking_step(1000000000.0 /* something very large */,
1458                              true         /* do_termination */,
1459                              _is_serial);
1460     } while (_task->has_aborted() && !_cm->has_overflown());
1461   }
1462 };
1463 
1464 // Implementation of AbstractRefProcTaskExecutor for parallel
1465 // reference processing at the end of G1 concurrent marking
1466 
1467 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1468 private:
1469   G1CollectedHeap*  _g1h;
1470   G1ConcurrentMark* _cm;
1471   WorkGang*         _workers;
1472   uint              _active_workers;
1473 
1474 public:
1475   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1476                           G1ConcurrentMark* cm,
1477                           WorkGang* workers,
1478                           uint n_workers) :
1479     _g1h(g1h), _cm(cm),
1480     _workers(workers), _active_workers(n_workers) { }
1481 
1482   // Executes the given task using concurrent marking worker threads.
1483   virtual void execute(ProcessTask& task);
1484   virtual void execute(EnqueueTask& task);
1485 };
1486 
1487 class G1CMRefProcTaskProxy : public AbstractGangTask {
1488   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1489   ProcessTask&      _proc_task;
1490   G1CollectedHeap*  _g1h;
1491   G1ConcurrentMark* _cm;
1492 
1493 public:
1494   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1495                        G1CollectedHeap* g1h,
1496                        G1ConcurrentMark* cm) :
1497     AbstractGangTask("Process reference objects in parallel"),
1498     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1499     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1500     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1501   }
1502 
1503   virtual void work(uint worker_id) {
1504     ResourceMark rm;
1505     HandleMark hm;
1506     G1CMTask* task = _cm->task(worker_id);
1507     G1CMIsAliveClosure g1_is_alive(_g1h);
1508     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1509     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1510 
1511     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1512   }
1513 };
1514 
1515 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1516   assert(_workers != NULL, "Need parallel worker threads.");
1517   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1518 
1519   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1520 
1521   // We need to reset the concurrency level before each
1522   // proxy task execution, so that the termination protocol
1523   // and overflow handling in G1CMTask::do_marking_step() knows
1524   // how many workers to wait for.
1525   _cm->set_concurrency(_active_workers);
1526   _workers->run_task(&proc_task_proxy);
1527 }
1528 
1529 class G1CMRefEnqueueTaskProxy : public AbstractGangTask {
1530   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1531   EnqueueTask& _enq_task;
1532 
1533 public:
1534   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1535     AbstractGangTask("Enqueue reference objects in parallel"),
1536     _enq_task(enq_task) { }
1537 
1538   virtual void work(uint worker_id) {
1539     _enq_task.work(worker_id);
1540   }
1541 };
1542 
1543 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1544   assert(_workers != NULL, "Need parallel worker threads.");
1545   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1546 
1547   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1548 
1549   // Not strictly necessary but...
1550   //
1551   // We need to reset the concurrency level before each
1552   // proxy task execution, so that the termination protocol
1553   // and overflow handling in G1CMTask::do_marking_step() knows
1554   // how many workers to wait for.
1555   _cm->set_concurrency(_active_workers);
1556   _workers->run_task(&enq_task_proxy);
1557 }
1558 
1559 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1560   ResourceMark rm;
1561   HandleMark   hm;
1562 
1563   // Is alive closure.
1564   G1CMIsAliveClosure g1_is_alive(_g1h);
1565 
1566   // Inner scope to exclude the cleaning of the string and symbol
1567   // tables from the displayed time.
1568   {
1569     GCTraceTime(Debug, gc, phases) debug("Reference Processing", _gc_timer_cm);
1570 
1571     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1572 
1573     // See the comment in G1CollectedHeap::ref_processing_init()
1574     // about how reference processing currently works in G1.
1575 
1576     // Set the soft reference policy
1577     rp->setup_policy(clear_all_soft_refs);
1578     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1579 
1580     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1581     // in serial reference processing. Note these closures are also
1582     // used for serially processing (by the the current thread) the
1583     // JNI references during parallel reference processing.
1584     //
1585     // These closures do not need to synchronize with the worker
1586     // threads involved in parallel reference processing as these
1587     // instances are executed serially by the current thread (e.g.
1588     // reference processing is not multi-threaded and is thus
1589     // performed by the current thread instead of a gang worker).
1590     //
1591     // The gang tasks involved in parallel reference processing create
1592     // their own instances of these closures, which do their own
1593     // synchronization among themselves.
1594     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1595     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1596 
1597     // We need at least one active thread. If reference processing
1598     // is not multi-threaded we use the current (VMThread) thread,
1599     // otherwise we use the work gang from the G1CollectedHeap and
1600     // we utilize all the worker threads we can.
1601     bool processing_is_mt = rp->processing_is_mt();
1602     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1603     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1604 
1605     // Parallel processing task executor.
1606     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1607                                               _g1h->workers(), active_workers);
1608     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1609 
1610     // Set the concurrency level. The phase was already set prior to
1611     // executing the remark task.
1612     set_concurrency(active_workers);
1613 
1614     // Set the degree of MT processing here.  If the discovery was done MT,
1615     // the number of threads involved during discovery could differ from
1616     // the number of active workers.  This is OK as long as the discovered
1617     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1618     rp->set_active_mt_degree(active_workers);
1619 
1620     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
1621 
1622     // Process the weak references.
1623     const ReferenceProcessorStats& stats =
1624         rp->process_discovered_references(&g1_is_alive,
1625                                           &g1_keep_alive,
1626                                           &g1_drain_mark_stack,
1627                                           executor,
1628                                           &pt);
1629     _gc_tracer_cm->report_gc_reference_stats(stats);
1630     pt.print_all_references();
1631 
1632     // The do_oop work routines of the keep_alive and drain_marking_stack
1633     // oop closures will set the has_overflown flag if we overflow the
1634     // global marking stack.
1635 
1636     assert(has_overflown() || _global_mark_stack.is_empty(),
1637            "Mark stack should be empty (unless it has overflown)");
1638 
1639     assert(rp->num_q() == active_workers, "why not");
1640 
1641     rp->enqueue_discovered_references(executor, &pt);
1642 
1643     rp->verify_no_references_recorded();
1644 
1645     pt.print_enqueue_phase();
1646 
1647     assert(!rp->discovery_enabled(), "Post condition");
1648   }
1649 
1650   assert(has_overflown() || _global_mark_stack.is_empty(),
1651          "Mark stack should be empty (unless it has overflown)");
1652 
1653   {
1654     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1655     WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl);
1656   }
1657 
1658   if (has_overflown()) {
1659     // We can not trust g1_is_alive if the marking stack overflowed
1660     return;
1661   }
1662 
1663   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1664 
1665   // Unload Klasses, String, Symbols, Code Cache, etc.
1666   if (ClassUnloadingWithConcurrentMark) {
1667     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1668     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1669     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1670   } else {
1671     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1672     // No need to clean string table and symbol table as they are treated as strong roots when
1673     // class unloading is disabled.
1674     _g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1675   }
1676 }
1677 
1678 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1679 // the prev bitmap determining liveness.
1680 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1681   G1CollectedHeap* _g1h;
1682 public:
1683   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1684 
1685   bool do_object_b(oop obj) {
1686     HeapWord* addr = (HeapWord*)obj;
1687     return addr != NULL &&
1688            (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_dead(obj));
1689   }
1690 };
1691 
1692 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1693   // Depending on the completion of the marking liveness needs to be determined
1694   // using either the next or prev bitmap.
1695   if (mark_completed) {
1696     G1ObjectCountIsAliveClosure is_alive(_g1h);
1697     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1698   } else {
1699     G1CMIsAliveClosure is_alive(_g1h);
1700     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1701   }
1702 }
1703 
1704 
1705 void G1ConcurrentMark::swap_mark_bitmaps() {
1706   G1CMBitMap* temp = _prev_mark_bitmap;
1707   _prev_mark_bitmap = _next_mark_bitmap;
1708   _next_mark_bitmap = temp;
1709   _g1h->collector_state()->set_clearing_next_bitmap(true);
1710 }
1711 
1712 // Closure for marking entries in SATB buffers.
1713 class G1CMSATBBufferClosure : public SATBBufferClosure {
1714 private:
1715   G1CMTask* _task;
1716   G1CollectedHeap* _g1h;
1717 
1718   // This is very similar to G1CMTask::deal_with_reference, but with
1719   // more relaxed requirements for the argument, so this must be more
1720   // circumspect about treating the argument as an object.
1721   void do_entry(void* entry) const {
1722     _task->increment_refs_reached();
1723     oop const obj = static_cast<oop>(entry);
1724     _task->make_reference_grey(obj);
1725   }
1726 
1727 public:
1728   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1729     : _task(task), _g1h(g1h) { }
1730 
1731   virtual void do_buffer(void** buffer, size_t size) {
1732     for (size_t i = 0; i < size; ++i) {
1733       do_entry(buffer[i]);
1734     }
1735   }
1736 };
1737 
1738 class G1RemarkThreadsClosure : public ThreadClosure {
1739   G1CMSATBBufferClosure _cm_satb_cl;
1740   G1CMOopClosure _cm_cl;
1741   MarkingCodeBlobClosure _code_cl;
1742   int _thread_parity;
1743 
1744  public:
1745   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1746     _cm_satb_cl(task, g1h),
1747     _cm_cl(g1h, task),
1748     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1749     _thread_parity(Threads::thread_claim_parity()) {}
1750 
1751   void do_thread(Thread* thread) {
1752     if (thread->is_Java_thread()) {
1753       if (thread->claim_oops_do(true, _thread_parity)) {
1754         JavaThread* jt = (JavaThread*)thread;
1755 
1756         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1757         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1758         // * Alive if on the stack of an executing method
1759         // * Weakly reachable otherwise
1760         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1761         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1762         jt->nmethods_do(&_code_cl);
1763 
1764         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1765       }
1766     } else if (thread->is_VM_thread()) {
1767       if (thread->claim_oops_do(true, _thread_parity)) {
1768         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1769       }
1770     }
1771   }
1772 };
1773 
1774 class G1CMRemarkTask : public AbstractGangTask {
1775   G1ConcurrentMark* _cm;
1776 public:
1777   void work(uint worker_id) {
1778     G1CMTask* task = _cm->task(worker_id);
1779     task->record_start_time();
1780     {
1781       ResourceMark rm;
1782       HandleMark hm;
1783 
1784       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1785       Threads::threads_do(&threads_f);
1786     }
1787 
1788     do {
1789       task->do_marking_step(1000000000.0 /* something very large */,
1790                             true         /* do_termination       */,
1791                             false        /* is_serial            */);
1792     } while (task->has_aborted() && !_cm->has_overflown());
1793     // If we overflow, then we do not want to restart. We instead
1794     // want to abort remark and do concurrent marking again.
1795     task->record_end_time();
1796   }
1797 
1798   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1799     AbstractGangTask("Par Remark"), _cm(cm) {
1800     _cm->terminator()->reset_for_reuse(active_workers);
1801   }
1802 };
1803 
1804 void G1ConcurrentMark::finalize_marking() {
1805   ResourceMark rm;
1806   HandleMark   hm;
1807 
1808   _g1h->ensure_parsability(false);
1809 
1810   // this is remark, so we'll use up all active threads
1811   uint active_workers = _g1h->workers()->active_workers();
1812   set_concurrency_and_phase(active_workers, false /* concurrent */);
1813   // Leave _parallel_marking_threads at it's
1814   // value originally calculated in the G1ConcurrentMark
1815   // constructor and pass values of the active workers
1816   // through the gang in the task.
1817 
1818   {
1819     StrongRootsScope srs(active_workers);
1820 
1821     G1CMRemarkTask remarkTask(this, active_workers);
1822     // We will start all available threads, even if we decide that the
1823     // active_workers will be fewer. The extra ones will just bail out
1824     // immediately.
1825     _g1h->workers()->run_task(&remarkTask);
1826   }
1827 
1828   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1829   guarantee(has_overflown() ||
1830             satb_mq_set.completed_buffers_num() == 0,
1831             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1832             BOOL_TO_STR(has_overflown()),
1833             satb_mq_set.completed_buffers_num());
1834 
1835   print_stats();
1836 }
1837 
1838 void G1ConcurrentMark::flush_all_task_caches() {
1839   size_t hits = 0;
1840   size_t misses = 0;
1841   for (uint i = 0; i < _max_num_tasks; i++) {
1842     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1843     hits += stats.first;
1844     misses += stats.second;
1845   }
1846   size_t sum = hits + misses;
1847   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1848                        hits, misses, percent_of(hits, sum));
1849 }
1850 
1851 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1852   _prev_mark_bitmap->clear_range(mr);
1853 }
1854 
1855 HeapRegion*
1856 G1ConcurrentMark::claim_region(uint worker_id) {
1857   // "checkpoint" the finger
1858   HeapWord* finger = _finger;
1859 
1860   while (finger < _heap.end()) {
1861     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1862 
1863     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1864     // Make sure that the reads below do not float before loading curr_region.
1865     OrderAccess::loadload();
1866     // Above heap_region_containing may return NULL as we always scan claim
1867     // until the end of the heap. In this case, just jump to the next region.
1868     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1869 
1870     // Is the gap between reading the finger and doing the CAS too long?
1871     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1872     if (res == finger && curr_region != NULL) {
1873       // we succeeded
1874       HeapWord*   bottom        = curr_region->bottom();
1875       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1876 
1877       // notice that _finger == end cannot be guaranteed here since,
1878       // someone else might have moved the finger even further
1879       assert(_finger >= end, "the finger should have moved forward");
1880 
1881       if (limit > bottom) {
1882         return curr_region;
1883       } else {
1884         assert(limit == bottom,
1885                "the region limit should be at bottom");
1886         // we return NULL and the caller should try calling
1887         // claim_region() again.
1888         return NULL;
1889       }
1890     } else {
1891       assert(_finger > finger, "the finger should have moved forward");
1892       // read it again
1893       finger = _finger;
1894     }
1895   }
1896 
1897   return NULL;
1898 }
1899 
1900 #ifndef PRODUCT
1901 class VerifyNoCSetOops {
1902   G1CollectedHeap* _g1h;
1903   const char* _phase;
1904   int _info;
1905 
1906 public:
1907   VerifyNoCSetOops(const char* phase, int info = -1) :
1908     _g1h(G1CollectedHeap::heap()),
1909     _phase(phase),
1910     _info(info)
1911   { }
1912 
1913   void operator()(G1TaskQueueEntry task_entry) const {
1914     if (task_entry.is_array_slice()) {
1915       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1916       return;
1917     }
1918     guarantee(oopDesc::is_oop(task_entry.obj()),
1919               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1920               p2i(task_entry.obj()), _phase, _info);
1921     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1922               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1923               p2i(task_entry.obj()), _phase, _info);
1924   }
1925 };
1926 
1927 void G1ConcurrentMark::verify_no_cset_oops() {
1928   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1929   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1930     return;
1931   }
1932 
1933   // Verify entries on the global mark stack
1934   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1935 
1936   // Verify entries on the task queues
1937   for (uint i = 0; i < _max_num_tasks; ++i) {
1938     G1CMTaskQueue* queue = _task_queues->queue(i);
1939     queue->iterate(VerifyNoCSetOops("Queue", i));
1940   }
1941 
1942   // Verify the global finger
1943   HeapWord* global_finger = finger();
1944   if (global_finger != NULL && global_finger < _heap.end()) {
1945     // Since we always iterate over all regions, we might get a NULL HeapRegion
1946     // here.
1947     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1948     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1949               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1950               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1951   }
1952 
1953   // Verify the task fingers
1954   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1955   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1956     G1CMTask* task = _tasks[i];
1957     HeapWord* task_finger = task->finger();
1958     if (task_finger != NULL && task_finger < _heap.end()) {
1959       // See above note on the global finger verification.
1960       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1961       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1962                 !task_hr->in_collection_set(),
1963                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1964                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1965     }
1966   }
1967 }
1968 #endif // PRODUCT
1969 
1970 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1971   _g1h->g1_rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1972 }
1973 
1974 void G1ConcurrentMark::print_stats() {
1975   if (!log_is_enabled(Debug, gc, stats)) {
1976     return;
1977   }
1978   log_debug(gc, stats)("---------------------------------------------------------------------");
1979   for (size_t i = 0; i < _num_active_tasks; ++i) {
1980     _tasks[i]->print_stats();
1981     log_debug(gc, stats)("---------------------------------------------------------------------");
1982   }
1983 }
1984 
1985 void G1ConcurrentMark::concurrent_cycle_abort() {
1986   if (!cm_thread()->during_cycle() || _has_aborted) {
1987     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1988     return;
1989   }
1990 
1991   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1992   // concurrent bitmap clearing.
1993   {
1994     GCTraceTime(Debug, gc) debug("Clear Next Bitmap");
1995     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1996   }
1997   // Note we cannot clear the previous marking bitmap here
1998   // since VerifyDuringGC verifies the objects marked during
1999   // a full GC against the previous bitmap.
2000 
2001   // Empty mark stack
2002   reset_marking_for_restart();
2003   for (uint i = 0; i < _max_num_tasks; ++i) {
2004     _tasks[i]->clear_region_fields();
2005   }
2006   _first_overflow_barrier_sync.abort();
2007   _second_overflow_barrier_sync.abort();
2008   _has_aborted = true;
2009 
2010   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2011   satb_mq_set.abandon_partial_marking();
2012   // This can be called either during or outside marking, we'll read
2013   // the expected_active value from the SATB queue set.
2014   satb_mq_set.set_active_all_threads(
2015                                  false, /* new active value */
2016                                  satb_mq_set.is_active() /* expected_active */);
2017 }
2018 
2019 static void print_ms_time_info(const char* prefix, const char* name,
2020                                NumberSeq& ns) {
2021   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2022                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2023   if (ns.num() > 0) {
2024     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2025                            prefix, ns.sd(), ns.maximum());
2026   }
2027 }
2028 
2029 void G1ConcurrentMark::print_summary_info() {
2030   Log(gc, marking) log;
2031   if (!log.is_trace()) {
2032     return;
2033   }
2034 
2035   log.trace(" Concurrent marking:");
2036   print_ms_time_info("  ", "init marks", _init_times);
2037   print_ms_time_info("  ", "remarks", _remark_times);
2038   {
2039     print_ms_time_info("     ", "final marks", _remark_mark_times);
2040     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2041 
2042   }
2043   print_ms_time_info("  ", "cleanups", _cleanup_times);
2044   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2045             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2046   log.trace("  Total stop_world time = %8.2f s.",
2047             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2048   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2049             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2050 }
2051 
2052 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2053   _concurrent_workers->print_worker_threads_on(st);
2054 }
2055 
2056 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2057   _concurrent_workers->threads_do(tc);
2058 }
2059 
2060 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2061   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2062                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2063   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2064   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2065 }
2066 
2067 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2068   ReferenceProcessor* result = g1h->ref_processor_cm();
2069   assert(result != NULL, "CM reference processor should not be NULL");
2070   return result;
2071 }
2072 
2073 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2074                                G1CMTask* task)
2075   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2076     _g1h(g1h), _task(task)
2077 { }
2078 
2079 void G1CMTask::setup_for_region(HeapRegion* hr) {
2080   assert(hr != NULL,
2081         "claim_region() should have filtered out NULL regions");
2082   _curr_region  = hr;
2083   _finger       = hr->bottom();
2084   update_region_limit();
2085 }
2086 
2087 void G1CMTask::update_region_limit() {
2088   HeapRegion* hr            = _curr_region;
2089   HeapWord* bottom          = hr->bottom();
2090   HeapWord* limit           = hr->next_top_at_mark_start();
2091 
2092   if (limit == bottom) {
2093     // The region was collected underneath our feet.
2094     // We set the finger to bottom to ensure that the bitmap
2095     // iteration that will follow this will not do anything.
2096     // (this is not a condition that holds when we set the region up,
2097     // as the region is not supposed to be empty in the first place)
2098     _finger = bottom;
2099   } else if (limit >= _region_limit) {
2100     assert(limit >= _finger, "peace of mind");
2101   } else {
2102     assert(limit < _region_limit, "only way to get here");
2103     // This can happen under some pretty unusual circumstances.  An
2104     // evacuation pause empties the region underneath our feet (NTAMS
2105     // at bottom). We then do some allocation in the region (NTAMS
2106     // stays at bottom), followed by the region being used as a GC
2107     // alloc region (NTAMS will move to top() and the objects
2108     // originally below it will be grayed). All objects now marked in
2109     // the region are explicitly grayed, if below the global finger,
2110     // and we do not need in fact to scan anything else. So, we simply
2111     // set _finger to be limit to ensure that the bitmap iteration
2112     // doesn't do anything.
2113     _finger = limit;
2114   }
2115 
2116   _region_limit = limit;
2117 }
2118 
2119 void G1CMTask::giveup_current_region() {
2120   assert(_curr_region != NULL, "invariant");
2121   clear_region_fields();
2122 }
2123 
2124 void G1CMTask::clear_region_fields() {
2125   // Values for these three fields that indicate that we're not
2126   // holding on to a region.
2127   _curr_region   = NULL;
2128   _finger        = NULL;
2129   _region_limit  = NULL;
2130 }
2131 
2132 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2133   if (cm_oop_closure == NULL) {
2134     assert(_cm_oop_closure != NULL, "invariant");
2135   } else {
2136     assert(_cm_oop_closure == NULL, "invariant");
2137   }
2138   _cm_oop_closure = cm_oop_closure;
2139 }
2140 
2141 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2142   guarantee(next_mark_bitmap != NULL, "invariant");
2143   _next_mark_bitmap              = next_mark_bitmap;
2144   clear_region_fields();
2145 
2146   _calls                         = 0;
2147   _elapsed_time_ms               = 0.0;
2148   _termination_time_ms           = 0.0;
2149   _termination_start_time_ms     = 0.0;
2150 
2151   _mark_stats_cache.reset();
2152 }
2153 
2154 bool G1CMTask::should_exit_termination() {
2155   regular_clock_call();
2156   // This is called when we are in the termination protocol. We should
2157   // quit if, for some reason, this task wants to abort or the global
2158   // stack is not empty (this means that we can get work from it).
2159   return !_cm->mark_stack_empty() || has_aborted();
2160 }
2161 
2162 void G1CMTask::reached_limit() {
2163   assert(_words_scanned >= _words_scanned_limit ||
2164          _refs_reached >= _refs_reached_limit ,
2165          "shouldn't have been called otherwise");
2166   regular_clock_call();
2167 }
2168 
2169 void G1CMTask::regular_clock_call() {
2170   if (has_aborted()) {
2171     return;
2172   }
2173 
2174   // First, we need to recalculate the words scanned and refs reached
2175   // limits for the next clock call.
2176   recalculate_limits();
2177 
2178   // During the regular clock call we do the following
2179 
2180   // (1) If an overflow has been flagged, then we abort.
2181   if (_cm->has_overflown()) {
2182     set_has_aborted();
2183     return;
2184   }
2185 
2186   // If we are not concurrent (i.e. we're doing remark) we don't need
2187   // to check anything else. The other steps are only needed during
2188   // the concurrent marking phase.
2189   if (!_cm->concurrent()) {
2190     return;
2191   }
2192 
2193   // (2) If marking has been aborted for Full GC, then we also abort.
2194   if (_cm->has_aborted()) {
2195     set_has_aborted();
2196     return;
2197   }
2198 
2199   double curr_time_ms = os::elapsedVTime() * 1000.0;
2200 
2201   // (4) We check whether we should yield. If we have to, then we abort.
2202   if (SuspendibleThreadSet::should_yield()) {
2203     // We should yield. To do this we abort the task. The caller is
2204     // responsible for yielding.
2205     set_has_aborted();
2206     return;
2207   }
2208 
2209   // (5) We check whether we've reached our time quota. If we have,
2210   // then we abort.
2211   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2212   if (elapsed_time_ms > _time_target_ms) {
2213     set_has_aborted();
2214     _has_timed_out = true;
2215     return;
2216   }
2217 
2218   // (6) Finally, we check whether there are enough completed STAB
2219   // buffers available for processing. If there are, we abort.
2220   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2221   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2222     // we do need to process SATB buffers, we'll abort and restart
2223     // the marking task to do so
2224     set_has_aborted();
2225     return;
2226   }
2227 }
2228 
2229 void G1CMTask::recalculate_limits() {
2230   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2231   _words_scanned_limit      = _real_words_scanned_limit;
2232 
2233   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2234   _refs_reached_limit       = _real_refs_reached_limit;
2235 }
2236 
2237 void G1CMTask::decrease_limits() {
2238   // This is called when we believe that we're going to do an infrequent
2239   // operation which will increase the per byte scanned cost (i.e. move
2240   // entries to/from the global stack). It basically tries to decrease the
2241   // scanning limit so that the clock is called earlier.
2242 
2243   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2244   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2245 }
2246 
2247 void G1CMTask::move_entries_to_global_stack() {
2248   // Local array where we'll store the entries that will be popped
2249   // from the local queue.
2250   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2251 
2252   size_t n = 0;
2253   G1TaskQueueEntry task_entry;
2254   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2255     buffer[n] = task_entry;
2256     ++n;
2257   }
2258   if (n < G1CMMarkStack::EntriesPerChunk) {
2259     buffer[n] = G1TaskQueueEntry();
2260   }
2261 
2262   if (n > 0) {
2263     if (!_cm->mark_stack_push(buffer)) {
2264       set_has_aborted();
2265     }
2266   }
2267 
2268   // This operation was quite expensive, so decrease the limits.
2269   decrease_limits();
2270 }
2271 
2272 bool G1CMTask::get_entries_from_global_stack() {
2273   // Local array where we'll store the entries that will be popped
2274   // from the global stack.
2275   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2276 
2277   if (!_cm->mark_stack_pop(buffer)) {
2278     return false;
2279   }
2280 
2281   // We did actually pop at least one entry.
2282   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2283     G1TaskQueueEntry task_entry = buffer[i];
2284     if (task_entry.is_null()) {
2285       break;
2286     }
2287     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2288     bool success = _task_queue->push(task_entry);
2289     // We only call this when the local queue is empty or under a
2290     // given target limit. So, we do not expect this push to fail.
2291     assert(success, "invariant");
2292   }
2293 
2294   // This operation was quite expensive, so decrease the limits
2295   decrease_limits();
2296   return true;
2297 }
2298 
2299 void G1CMTask::drain_local_queue(bool partially) {
2300   if (has_aborted()) {
2301     return;
2302   }
2303 
2304   // Decide what the target size is, depending whether we're going to
2305   // drain it partially (so that other tasks can steal if they run out
2306   // of things to do) or totally (at the very end).
2307   size_t target_size;
2308   if (partially) {
2309     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2310   } else {
2311     target_size = 0;
2312   }
2313 
2314   if (_task_queue->size() > target_size) {
2315     G1TaskQueueEntry entry;
2316     bool ret = _task_queue->pop_local(entry);
2317     while (ret) {
2318       scan_task_entry(entry);
2319       if (_task_queue->size() <= target_size || has_aborted()) {
2320         ret = false;
2321       } else {
2322         ret = _task_queue->pop_local(entry);
2323       }
2324     }
2325   }
2326 }
2327 
2328 void G1CMTask::drain_global_stack(bool partially) {
2329   if (has_aborted()) {
2330     return;
2331   }
2332 
2333   // We have a policy to drain the local queue before we attempt to
2334   // drain the global stack.
2335   assert(partially || _task_queue->size() == 0, "invariant");
2336 
2337   // Decide what the target size is, depending whether we're going to
2338   // drain it partially (so that other tasks can steal if they run out
2339   // of things to do) or totally (at the very end).
2340   // Notice that when draining the global mark stack partially, due to the racyness
2341   // of the mark stack size update we might in fact drop below the target. But,
2342   // this is not a problem.
2343   // In case of total draining, we simply process until the global mark stack is
2344   // totally empty, disregarding the size counter.
2345   if (partially) {
2346     size_t const target_size = _cm->partial_mark_stack_size_target();
2347     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2348       if (get_entries_from_global_stack()) {
2349         drain_local_queue(partially);
2350       }
2351     }
2352   } else {
2353     while (!has_aborted() && get_entries_from_global_stack()) {
2354       drain_local_queue(partially);
2355     }
2356   }
2357 }
2358 
2359 // SATB Queue has several assumptions on whether to call the par or
2360 // non-par versions of the methods. this is why some of the code is
2361 // replicated. We should really get rid of the single-threaded version
2362 // of the code to simplify things.
2363 void G1CMTask::drain_satb_buffers() {
2364   if (has_aborted()) {
2365     return;
2366   }
2367 
2368   // We set this so that the regular clock knows that we're in the
2369   // middle of draining buffers and doesn't set the abort flag when it
2370   // notices that SATB buffers are available for draining. It'd be
2371   // very counter productive if it did that. :-)
2372   _draining_satb_buffers = true;
2373 
2374   G1CMSATBBufferClosure satb_cl(this, _g1h);
2375   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2376 
2377   // This keeps claiming and applying the closure to completed buffers
2378   // until we run out of buffers or we need to abort.
2379   while (!has_aborted() &&
2380          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2381     regular_clock_call();
2382   }
2383 
2384   _draining_satb_buffers = false;
2385 
2386   assert(has_aborted() ||
2387          _cm->concurrent() ||
2388          satb_mq_set.completed_buffers_num() == 0, "invariant");
2389 
2390   // again, this was a potentially expensive operation, decrease the
2391   // limits to get the regular clock call early
2392   decrease_limits();
2393 }
2394 
2395 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2396   _mark_stats_cache.reset(region_idx);
2397 }
2398 
2399 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2400   return _mark_stats_cache.evict_all();
2401 }
2402 
2403 void G1CMTask::print_stats() {
2404   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2405   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2406                        _elapsed_time_ms, _termination_time_ms);
2407   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2408                        _step_times_ms.num(),
2409                        _step_times_ms.avg(),
2410                        _step_times_ms.sd(),
2411                        _step_times_ms.maximum(),
2412                        _step_times_ms.sum());
2413   size_t const hits = _mark_stats_cache.hits();
2414   size_t const misses = _mark_stats_cache.misses();
2415   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2416                        hits, misses, percent_of(hits, hits + misses));
2417 }
2418 
2419 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2420   return _task_queues->steal(worker_id, hash_seed, task_entry);
2421 }
2422 
2423 /*****************************************************************************
2424 
2425     The do_marking_step(time_target_ms, ...) method is the building
2426     block of the parallel marking framework. It can be called in parallel
2427     with other invocations of do_marking_step() on different tasks
2428     (but only one per task, obviously) and concurrently with the
2429     mutator threads, or during remark, hence it eliminates the need
2430     for two versions of the code. When called during remark, it will
2431     pick up from where the task left off during the concurrent marking
2432     phase. Interestingly, tasks are also claimable during evacuation
2433     pauses too, since do_marking_step() ensures that it aborts before
2434     it needs to yield.
2435 
2436     The data structures that it uses to do marking work are the
2437     following:
2438 
2439       (1) Marking Bitmap. If there are gray objects that appear only
2440       on the bitmap (this happens either when dealing with an overflow
2441       or when the initial marking phase has simply marked the roots
2442       and didn't push them on the stack), then tasks claim heap
2443       regions whose bitmap they then scan to find gray objects. A
2444       global finger indicates where the end of the last claimed region
2445       is. A local finger indicates how far into the region a task has
2446       scanned. The two fingers are used to determine how to gray an
2447       object (i.e. whether simply marking it is OK, as it will be
2448       visited by a task in the future, or whether it needs to be also
2449       pushed on a stack).
2450 
2451       (2) Local Queue. The local queue of the task which is accessed
2452       reasonably efficiently by the task. Other tasks can steal from
2453       it when they run out of work. Throughout the marking phase, a
2454       task attempts to keep its local queue short but not totally
2455       empty, so that entries are available for stealing by other
2456       tasks. Only when there is no more work, a task will totally
2457       drain its local queue.
2458 
2459       (3) Global Mark Stack. This handles local queue overflow. During
2460       marking only sets of entries are moved between it and the local
2461       queues, as access to it requires a mutex and more fine-grain
2462       interaction with it which might cause contention. If it
2463       overflows, then the marking phase should restart and iterate
2464       over the bitmap to identify gray objects. Throughout the marking
2465       phase, tasks attempt to keep the global mark stack at a small
2466       length but not totally empty, so that entries are available for
2467       popping by other tasks. Only when there is no more work, tasks
2468       will totally drain the global mark stack.
2469 
2470       (4) SATB Buffer Queue. This is where completed SATB buffers are
2471       made available. Buffers are regularly removed from this queue
2472       and scanned for roots, so that the queue doesn't get too
2473       long. During remark, all completed buffers are processed, as
2474       well as the filled in parts of any uncompleted buffers.
2475 
2476     The do_marking_step() method tries to abort when the time target
2477     has been reached. There are a few other cases when the
2478     do_marking_step() method also aborts:
2479 
2480       (1) When the marking phase has been aborted (after a Full GC).
2481 
2482       (2) When a global overflow (on the global stack) has been
2483       triggered. Before the task aborts, it will actually sync up with
2484       the other tasks to ensure that all the marking data structures
2485       (local queues, stacks, fingers etc.)  are re-initialized so that
2486       when do_marking_step() completes, the marking phase can
2487       immediately restart.
2488 
2489       (3) When enough completed SATB buffers are available. The
2490       do_marking_step() method only tries to drain SATB buffers right
2491       at the beginning. So, if enough buffers are available, the
2492       marking step aborts and the SATB buffers are processed at
2493       the beginning of the next invocation.
2494 
2495       (4) To yield. when we have to yield then we abort and yield
2496       right at the end of do_marking_step(). This saves us from a lot
2497       of hassle as, by yielding we might allow a Full GC. If this
2498       happens then objects will be compacted underneath our feet, the
2499       heap might shrink, etc. We save checking for this by just
2500       aborting and doing the yield right at the end.
2501 
2502     From the above it follows that the do_marking_step() method should
2503     be called in a loop (or, otherwise, regularly) until it completes.
2504 
2505     If a marking step completes without its has_aborted() flag being
2506     true, it means it has completed the current marking phase (and
2507     also all other marking tasks have done so and have all synced up).
2508 
2509     A method called regular_clock_call() is invoked "regularly" (in
2510     sub ms intervals) throughout marking. It is this clock method that
2511     checks all the abort conditions which were mentioned above and
2512     decides when the task should abort. A work-based scheme is used to
2513     trigger this clock method: when the number of object words the
2514     marking phase has scanned or the number of references the marking
2515     phase has visited reach a given limit. Additional invocations to
2516     the method clock have been planted in a few other strategic places
2517     too. The initial reason for the clock method was to avoid calling
2518     vtime too regularly, as it is quite expensive. So, once it was in
2519     place, it was natural to piggy-back all the other conditions on it
2520     too and not constantly check them throughout the code.
2521 
2522     If do_termination is true then do_marking_step will enter its
2523     termination protocol.
2524 
2525     The value of is_serial must be true when do_marking_step is being
2526     called serially (i.e. by the VMThread) and do_marking_step should
2527     skip any synchronization in the termination and overflow code.
2528     Examples include the serial remark code and the serial reference
2529     processing closures.
2530 
2531     The value of is_serial must be false when do_marking_step is
2532     being called by any of the worker threads in a work gang.
2533     Examples include the concurrent marking code (CMMarkingTask),
2534     the MT remark code, and the MT reference processing closures.
2535 
2536  *****************************************************************************/
2537 
2538 void G1CMTask::do_marking_step(double time_target_ms,
2539                                bool do_termination,
2540                                bool is_serial) {
2541   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2542 
2543   _start_time_ms = os::elapsedVTime() * 1000.0;
2544 
2545   // If do_stealing is true then do_marking_step will attempt to
2546   // steal work from the other G1CMTasks. It only makes sense to
2547   // enable stealing when the termination protocol is enabled
2548   // and do_marking_step() is not being called serially.
2549   bool do_stealing = do_termination && !is_serial;
2550 
2551   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2552   _time_target_ms = time_target_ms - diff_prediction_ms;
2553 
2554   // set up the variables that are used in the work-based scheme to
2555   // call the regular clock method
2556   _words_scanned = 0;
2557   _refs_reached  = 0;
2558   recalculate_limits();
2559 
2560   // clear all flags
2561   clear_has_aborted();
2562   _has_timed_out = false;
2563   _draining_satb_buffers = false;
2564 
2565   ++_calls;
2566 
2567   // Set up the bitmap and oop closures. Anything that uses them is
2568   // eventually called from this method, so it is OK to allocate these
2569   // statically.
2570   G1CMBitMapClosure bitmap_closure(this, _cm);
2571   G1CMOopClosure cm_oop_closure(_g1h, this);
2572   set_cm_oop_closure(&cm_oop_closure);
2573 
2574   if (_cm->has_overflown()) {
2575     // This can happen if the mark stack overflows during a GC pause
2576     // and this task, after a yield point, restarts. We have to abort
2577     // as we need to get into the overflow protocol which happens
2578     // right at the end of this task.
2579     set_has_aborted();
2580   }
2581 
2582   // First drain any available SATB buffers. After this, we will not
2583   // look at SATB buffers before the next invocation of this method.
2584   // If enough completed SATB buffers are queued up, the regular clock
2585   // will abort this task so that it restarts.
2586   drain_satb_buffers();
2587   // ...then partially drain the local queue and the global stack
2588   drain_local_queue(true);
2589   drain_global_stack(true);
2590 
2591   do {
2592     if (!has_aborted() && _curr_region != NULL) {
2593       // This means that we're already holding on to a region.
2594       assert(_finger != NULL, "if region is not NULL, then the finger "
2595              "should not be NULL either");
2596 
2597       // We might have restarted this task after an evacuation pause
2598       // which might have evacuated the region we're holding on to
2599       // underneath our feet. Let's read its limit again to make sure
2600       // that we do not iterate over a region of the heap that
2601       // contains garbage (update_region_limit() will also move
2602       // _finger to the start of the region if it is found empty).
2603       update_region_limit();
2604       // We will start from _finger not from the start of the region,
2605       // as we might be restarting this task after aborting half-way
2606       // through scanning this region. In this case, _finger points to
2607       // the address where we last found a marked object. If this is a
2608       // fresh region, _finger points to start().
2609       MemRegion mr = MemRegion(_finger, _region_limit);
2610 
2611       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2612              "humongous regions should go around loop once only");
2613 
2614       // Some special cases:
2615       // If the memory region is empty, we can just give up the region.
2616       // If the current region is humongous then we only need to check
2617       // the bitmap for the bit associated with the start of the object,
2618       // scan the object if it's live, and give up the region.
2619       // Otherwise, let's iterate over the bitmap of the part of the region
2620       // that is left.
2621       // If the iteration is successful, give up the region.
2622       if (mr.is_empty()) {
2623         giveup_current_region();
2624         regular_clock_call();
2625       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2626         if (_next_mark_bitmap->is_marked(mr.start())) {
2627           // The object is marked - apply the closure
2628           bitmap_closure.do_addr(mr.start());
2629         }
2630         // Even if this task aborted while scanning the humongous object
2631         // we can (and should) give up the current region.
2632         giveup_current_region();
2633         regular_clock_call();
2634       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2635         giveup_current_region();
2636         regular_clock_call();
2637       } else {
2638         assert(has_aborted(), "currently the only way to do so");
2639         // The only way to abort the bitmap iteration is to return
2640         // false from the do_bit() method. However, inside the
2641         // do_bit() method we move the _finger to point to the
2642         // object currently being looked at. So, if we bail out, we
2643         // have definitely set _finger to something non-null.
2644         assert(_finger != NULL, "invariant");
2645 
2646         // Region iteration was actually aborted. So now _finger
2647         // points to the address of the object we last scanned. If we
2648         // leave it there, when we restart this task, we will rescan
2649         // the object. It is easy to avoid this. We move the finger by
2650         // enough to point to the next possible object header.
2651         assert(_finger < _region_limit, "invariant");
2652         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2653         // Check if bitmap iteration was aborted while scanning the last object
2654         if (new_finger >= _region_limit) {
2655           giveup_current_region();
2656         } else {
2657           move_finger_to(new_finger);
2658         }
2659       }
2660     }
2661     // At this point we have either completed iterating over the
2662     // region we were holding on to, or we have aborted.
2663 
2664     // We then partially drain the local queue and the global stack.
2665     // (Do we really need this?)
2666     drain_local_queue(true);
2667     drain_global_stack(true);
2668 
2669     // Read the note on the claim_region() method on why it might
2670     // return NULL with potentially more regions available for
2671     // claiming and why we have to check out_of_regions() to determine
2672     // whether we're done or not.
2673     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2674       // We are going to try to claim a new region. We should have
2675       // given up on the previous one.
2676       // Separated the asserts so that we know which one fires.
2677       assert(_curr_region  == NULL, "invariant");
2678       assert(_finger       == NULL, "invariant");
2679       assert(_region_limit == NULL, "invariant");
2680       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2681       if (claimed_region != NULL) {
2682         // Yes, we managed to claim one
2683         setup_for_region(claimed_region);
2684         assert(_curr_region == claimed_region, "invariant");
2685       }
2686       // It is important to call the regular clock here. It might take
2687       // a while to claim a region if, for example, we hit a large
2688       // block of empty regions. So we need to call the regular clock
2689       // method once round the loop to make sure it's called
2690       // frequently enough.
2691       regular_clock_call();
2692     }
2693 
2694     if (!has_aborted() && _curr_region == NULL) {
2695       assert(_cm->out_of_regions(),
2696              "at this point we should be out of regions");
2697     }
2698   } while ( _curr_region != NULL && !has_aborted());
2699 
2700   if (!has_aborted()) {
2701     // We cannot check whether the global stack is empty, since other
2702     // tasks might be pushing objects to it concurrently.
2703     assert(_cm->out_of_regions(),
2704            "at this point we should be out of regions");
2705     // Try to reduce the number of available SATB buffers so that
2706     // remark has less work to do.
2707     drain_satb_buffers();
2708   }
2709 
2710   // Since we've done everything else, we can now totally drain the
2711   // local queue and global stack.
2712   drain_local_queue(false);
2713   drain_global_stack(false);
2714 
2715   // Attempt at work stealing from other task's queues.
2716   if (do_stealing && !has_aborted()) {
2717     // We have not aborted. This means that we have finished all that
2718     // we could. Let's try to do some stealing...
2719 
2720     // We cannot check whether the global stack is empty, since other
2721     // tasks might be pushing objects to it concurrently.
2722     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2723            "only way to reach here");
2724     while (!has_aborted()) {
2725       G1TaskQueueEntry entry;
2726       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2727         scan_task_entry(entry);
2728 
2729         // And since we're towards the end, let's totally drain the
2730         // local queue and global stack.
2731         drain_local_queue(false);
2732         drain_global_stack(false);
2733       } else {
2734         break;
2735       }
2736     }
2737   }
2738 
2739   // We still haven't aborted. Now, let's try to get into the
2740   // termination protocol.
2741   if (do_termination && !has_aborted()) {
2742     // We cannot check whether the global stack is empty, since other
2743     // tasks might be concurrently pushing objects on it.
2744     // Separated the asserts so that we know which one fires.
2745     assert(_cm->out_of_regions(), "only way to reach here");
2746     assert(_task_queue->size() == 0, "only way to reach here");
2747     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2748 
2749     // The G1CMTask class also extends the TerminatorTerminator class,
2750     // hence its should_exit_termination() method will also decide
2751     // whether to exit the termination protocol or not.
2752     bool finished = (is_serial ||
2753                      _cm->terminator()->offer_termination(this));
2754     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2755     _termination_time_ms +=
2756       termination_end_time_ms - _termination_start_time_ms;
2757 
2758     if (finished) {
2759       // We're all done.
2760 
2761       // We can now guarantee that the global stack is empty, since
2762       // all other tasks have finished. We separated the guarantees so
2763       // that, if a condition is false, we can immediately find out
2764       // which one.
2765       guarantee(_cm->out_of_regions(), "only way to reach here");
2766       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2767       guarantee(_task_queue->size() == 0, "only way to reach here");
2768       guarantee(!_cm->has_overflown(), "only way to reach here");
2769     } else {
2770       // Apparently there's more work to do. Let's abort this task. It
2771       // will restart it and we can hopefully find more things to do.
2772       set_has_aborted();
2773     }
2774   }
2775 
2776   // Mainly for debugging purposes to make sure that a pointer to the
2777   // closure which was statically allocated in this frame doesn't
2778   // escape it by accident.
2779   set_cm_oop_closure(NULL);
2780   double end_time_ms = os::elapsedVTime() * 1000.0;
2781   double elapsed_time_ms = end_time_ms - _start_time_ms;
2782   // Update the step history.
2783   _step_times_ms.add(elapsed_time_ms);
2784 
2785   if (has_aborted()) {
2786     // The task was aborted for some reason.
2787     if (_has_timed_out) {
2788       double diff_ms = elapsed_time_ms - _time_target_ms;
2789       // Keep statistics of how well we did with respect to hitting
2790       // our target only if we actually timed out (if we aborted for
2791       // other reasons, then the results might get skewed).
2792       _marking_step_diffs_ms.add(diff_ms);
2793     }
2794 
2795     if (_cm->has_overflown()) {
2796       // This is the interesting one. We aborted because a global
2797       // overflow was raised. This means we have to restart the
2798       // marking phase and start iterating over regions. However, in
2799       // order to do this we have to make sure that all tasks stop
2800       // what they are doing and re-initialize in a safe manner. We
2801       // will achieve this with the use of two barrier sync points.
2802 
2803       if (!is_serial) {
2804         // We only need to enter the sync barrier if being called
2805         // from a parallel context
2806         _cm->enter_first_sync_barrier(_worker_id);
2807 
2808         // When we exit this sync barrier we know that all tasks have
2809         // stopped doing marking work. So, it's now safe to
2810         // re-initialize our data structures.
2811       }
2812 
2813       clear_region_fields();
2814       flush_mark_stats_cache();
2815 
2816       if (!is_serial) {
2817         // If we're executing the concurrent phase of marking, reset the marking
2818         // state; otherwise the marking state is reset after reference processing,
2819         // during the remark pause.
2820         // If we reset here as a result of an overflow during the remark we will
2821         // see assertion failures from any subsequent set_concurrency_and_phase()
2822         // calls.
2823         if (_cm->concurrent() && _worker_id == 0) {
2824           // Worker 0 is responsible for clearing the global data structures because
2825           // of an overflow. During STW we should not clear the overflow flag (in
2826           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2827           // method to abort the pause and restart concurrent marking.
2828           _cm->reset_marking_for_restart();
2829 
2830           log_info(gc, marking)("Concurrent Mark reset for overflow");
2831         }
2832 
2833         // ...and enter the second barrier.
2834         _cm->enter_second_sync_barrier(_worker_id);
2835       }
2836       // At this point, if we're during the concurrent phase of
2837       // marking, everything has been re-initialized and we're
2838       // ready to restart.
2839     }
2840   }
2841 }
2842 
2843 G1CMTask::G1CMTask(uint worker_id,
2844                    G1ConcurrentMark* cm,
2845                    G1CMTaskQueue* task_queue,
2846                    G1RegionMarkStats* mark_stats,
2847                    uint max_regions) :
2848   _objArray_processor(this),
2849   _worker_id(worker_id),
2850   _g1h(G1CollectedHeap::heap()),
2851   _cm(cm),
2852   _next_mark_bitmap(NULL),
2853   _task_queue(task_queue),
2854   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2855   _calls(0),
2856   _time_target_ms(0.0),
2857   _start_time_ms(0.0),
2858   _cm_oop_closure(NULL),
2859   _curr_region(NULL),
2860   _finger(NULL),
2861   _region_limit(NULL),
2862   _words_scanned(0),
2863   _words_scanned_limit(0),
2864   _real_words_scanned_limit(0),
2865   _refs_reached(0),
2866   _refs_reached_limit(0),
2867   _real_refs_reached_limit(0),
2868   _hash_seed(17),
2869   _has_aborted(false),
2870   _has_timed_out(false),
2871   _draining_satb_buffers(false),
2872   _step_times_ms(),
2873   _elapsed_time_ms(0.0),
2874   _termination_time_ms(0.0),
2875   _termination_start_time_ms(0.0),
2876   _marking_step_diffs_ms()
2877 {
2878   guarantee(task_queue != NULL, "invariant");
2879 
2880   _marking_step_diffs_ms.add(0.5);
2881 }
2882 
2883 // These are formatting macros that are used below to ensure
2884 // consistent formatting. The *_H_* versions are used to format the
2885 // header for a particular value and they should be kept consistent
2886 // with the corresponding macro. Also note that most of the macros add
2887 // the necessary white space (as a prefix) which makes them a bit
2888 // easier to compose.
2889 
2890 // All the output lines are prefixed with this string to be able to
2891 // identify them easily in a large log file.
2892 #define G1PPRL_LINE_PREFIX            "###"
2893 
2894 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2895 #ifdef _LP64
2896 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2897 #else // _LP64
2898 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2899 #endif // _LP64
2900 
2901 // For per-region info
2902 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2903 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2904 #define G1PPRL_STATE_FORMAT           "   %-5s"
2905 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2906 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2907 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2908 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2909 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2910 
2911 // For summary info
2912 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2913 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2914 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2915 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2916 
2917 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2918   _total_used_bytes(0), _total_capacity_bytes(0),
2919   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2920   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2921 {
2922   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2923   MemRegion g1_reserved = g1h->g1_reserved();
2924   double now = os::elapsedTime();
2925 
2926   // Print the header of the output.
2927   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2928   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2929                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2930                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2931                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2932                           HeapRegion::GrainBytes);
2933   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2934   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2935                           G1PPRL_TYPE_H_FORMAT
2936                           G1PPRL_ADDR_BASE_H_FORMAT
2937                           G1PPRL_BYTE_H_FORMAT
2938                           G1PPRL_BYTE_H_FORMAT
2939                           G1PPRL_BYTE_H_FORMAT
2940                           G1PPRL_DOUBLE_H_FORMAT
2941                           G1PPRL_BYTE_H_FORMAT
2942                           G1PPRL_STATE_H_FORMAT
2943                           G1PPRL_BYTE_H_FORMAT,
2944                           "type", "address-range",
2945                           "used", "prev-live", "next-live", "gc-eff",
2946                           "remset", "state", "code-roots");
2947   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2948                           G1PPRL_TYPE_H_FORMAT
2949                           G1PPRL_ADDR_BASE_H_FORMAT
2950                           G1PPRL_BYTE_H_FORMAT
2951                           G1PPRL_BYTE_H_FORMAT
2952                           G1PPRL_BYTE_H_FORMAT
2953                           G1PPRL_DOUBLE_H_FORMAT
2954                           G1PPRL_BYTE_H_FORMAT
2955                           G1PPRL_STATE_H_FORMAT
2956                           G1PPRL_BYTE_H_FORMAT,
2957                           "", "",
2958                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2959                           "(bytes)", "", "(bytes)");
2960 }
2961 
2962 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2963   const char* type       = r->get_type_str();
2964   HeapWord* bottom       = r->bottom();
2965   HeapWord* end          = r->end();
2966   size_t capacity_bytes  = r->capacity();
2967   size_t used_bytes      = r->used();
2968   size_t prev_live_bytes = r->live_bytes();
2969   size_t next_live_bytes = r->next_live_bytes();
2970   double gc_eff          = r->gc_efficiency();
2971   size_t remset_bytes    = r->rem_set()->mem_size();
2972   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2973   const char* remset_type = r->rem_set()->get_short_state_str();
2974 
2975   _total_used_bytes      += used_bytes;
2976   _total_capacity_bytes  += capacity_bytes;
2977   _total_prev_live_bytes += prev_live_bytes;
2978   _total_next_live_bytes += next_live_bytes;
2979   _total_remset_bytes    += remset_bytes;
2980   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2981 
2982   // Print a line for this particular region.
2983   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2984                           G1PPRL_TYPE_FORMAT
2985                           G1PPRL_ADDR_BASE_FORMAT
2986                           G1PPRL_BYTE_FORMAT
2987                           G1PPRL_BYTE_FORMAT
2988                           G1PPRL_BYTE_FORMAT
2989                           G1PPRL_DOUBLE_FORMAT
2990                           G1PPRL_BYTE_FORMAT
2991                           G1PPRL_STATE_FORMAT
2992                           G1PPRL_BYTE_FORMAT,
2993                           type, p2i(bottom), p2i(end),
2994                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2995                           remset_bytes, remset_type, strong_code_roots_bytes);
2996 
2997   return false;
2998 }
2999 
3000 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3001   // add static memory usages to remembered set sizes
3002   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3003   // Print the footer of the output.
3004   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3005   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3006                          " SUMMARY"
3007                          G1PPRL_SUM_MB_FORMAT("capacity")
3008                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3009                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3010                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3011                          G1PPRL_SUM_MB_FORMAT("remset")
3012                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3013                          bytes_to_mb(_total_capacity_bytes),
3014                          bytes_to_mb(_total_used_bytes),
3015                          percent_of(_total_used_bytes, _total_capacity_bytes),
3016                          bytes_to_mb(_total_prev_live_bytes),
3017                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3018                          bytes_to_mb(_total_next_live_bytes),
3019                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3020                          bytes_to_mb(_total_remset_bytes),
3021                          bytes_to_mb(_total_strong_code_roots_bytes));
3022 }