1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.inline.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.inline.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/access.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/java.hpp"
  40 
  41 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  42 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  44 
  45 void referenceProcessor_init() {
  46   ReferenceProcessor::init_statics();
  47 }
  48 
  49 void ReferenceProcessor::init_statics() {
  50   // We need a monotonically non-decreasing time in ms but
  51   // os::javaTimeMillis() does not guarantee monotonicity.
  52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  53 
  54   // Initialize the soft ref timestamp clock.
  55   _soft_ref_timestamp_clock = now;
  56   // Also update the soft ref clock in j.l.r.SoftReference
  57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  58 
  59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  60   if (is_server_compilation_mode_vm()) {
  61     _default_soft_ref_policy = new LRUMaxHeapPolicy();
  62   } else {
  63     _default_soft_ref_policy = new LRUCurrentHeapPolicy();
  64   }
  65   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  66     vm_exit_during_initialization("Could not allocate reference policy object");
  67   }
  68   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  69             RefDiscoveryPolicy == ReferentBasedDiscovery,
  70             "Unrecognized RefDiscoveryPolicy");
  71 }
  72 
  73 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  74 #ifdef ASSERT
  75   // Verify that we're not currently discovering refs
  76   assert(!_discovering_refs, "nested call?");
  77 
  78   if (check_no_refs) {
  79     // Verify that the discovered lists are empty
  80     verify_no_references_recorded();
  81   }
  82 #endif // ASSERT
  83 
  84   // Someone could have modified the value of the static
  85   // field in the j.l.r.SoftReference class that holds the
  86   // soft reference timestamp clock using reflection or
  87   // Unsafe between GCs. Unconditionally update the static
  88   // field in ReferenceProcessor here so that we use the new
  89   // value during reference discovery.
  90 
  91   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  92   _discovering_refs = true;
  93 }
  94 
  95 ReferenceProcessor::ReferenceProcessor(BoolObjectClosure* is_subject_to_discovery,
  96                                        bool      mt_processing,
  97                                        uint      mt_processing_degree,
  98                                        bool      mt_discovery,
  99                                        uint      mt_discovery_degree,
 100                                        bool      atomic_discovery,
 101                                        BoolObjectClosure* is_alive_non_header)  :
 102   _is_subject_to_discovery(is_subject_to_discovery),
 103   _discovering_refs(false),
 104   _enqueuing_is_done(false),
 105   _is_alive_non_header(is_alive_non_header),
 106   _processing_is_mt(mt_processing),
 107   _next_id(0)
 108 {
 109   assert(is_subject_to_discovery != NULL, "must be set");
 110 
 111   _discovery_is_atomic = atomic_discovery;
 112   _discovery_is_mt     = mt_discovery;
 113   _num_q               = MAX2(1U, mt_processing_degree);
 114   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 115   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 116             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 117 
 118   if (_discovered_refs == NULL) {
 119     vm_exit_during_initialization("Could not allocated RefProc Array");
 120   }
 121   _discoveredSoftRefs    = &_discovered_refs[0];
 122   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 123   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 124   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 125 
 126   // Initialize all entries to NULL
 127   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 128     _discovered_refs[i].set_head(NULL);
 129     _discovered_refs[i].set_length(0);
 130   }
 131 
 132   setup_policy(false /* default soft ref policy */);
 133 }
 134 
 135 SpanReferenceProcessor::SpanReferenceProcessor(MemRegion span,
 136                                                          bool      mt_processing,
 137                                                          uint      mt_processing_degree,
 138                                                          bool      mt_discovery,
 139                                                          uint      mt_discovery_degree,
 140                                                          bool      atomic_discovery,
 141                                                          BoolObjectClosure* is_alive_non_header)  :
 142   ReferenceProcessor(&_span_based_discoverer,
 143                      mt_processing,
 144                      mt_processing_degree,
 145                      mt_discovery,
 146                      mt_discovery_degree,
 147                      atomic_discovery,
 148                      is_alive_non_header),
 149   _span_based_discoverer(span) {
 150 
 151 }
 152 
 153 #ifndef PRODUCT
 154 void ReferenceProcessor::verify_no_references_recorded() {
 155   guarantee(!_discovering_refs, "Discovering refs?");
 156   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 157     guarantee(_discovered_refs[i].is_empty(),
 158               "Found non-empty discovered list at %u", i);
 159   }
 160 }
 161 #endif
 162 
 163 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 164   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 165     if (UseCompressedOops) {
 166       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 167     } else {
 168       f->do_oop((oop*)_discovered_refs[i].adr_head());
 169     }
 170   }
 171 }
 172 
 173 void ReferenceProcessor::update_soft_ref_master_clock() {
 174   // Update (advance) the soft ref master clock field. This must be done
 175   // after processing the soft ref list.
 176 
 177   // We need a monotonically non-decreasing time in ms but
 178   // os::javaTimeMillis() does not guarantee monotonicity.
 179   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 180   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 181   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 182 
 183   NOT_PRODUCT(
 184   if (now < _soft_ref_timestamp_clock) {
 185     log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 186                     _soft_ref_timestamp_clock, now);
 187   }
 188   )
 189   // The values of now and _soft_ref_timestamp_clock are set using
 190   // javaTimeNanos(), which is guaranteed to be monotonically
 191   // non-decreasing provided the underlying platform provides such
 192   // a time source (and it is bug free).
 193   // In product mode, however, protect ourselves from non-monotonicity.
 194   if (now > _soft_ref_timestamp_clock) {
 195     _soft_ref_timestamp_clock = now;
 196     java_lang_ref_SoftReference::set_clock(now);
 197   }
 198   // Else leave clock stalled at its old value until time progresses
 199   // past clock value.
 200 }
 201 
 202 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) const {
 203   size_t total = 0;
 204   for (uint i = 0; i < _max_num_q; ++i) {
 205     total += lists[i].length();
 206   }
 207   return total;
 208 }
 209 
 210 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 211   BoolObjectClosure*            is_alive,
 212   OopClosure*                   keep_alive,
 213   VoidClosure*                  complete_gc,
 214   AbstractRefProcTaskExecutor*  task_executor,
 215   ReferenceProcessorPhaseTimes* phase_times) {
 216 
 217   double start_time = os::elapsedTime();
 218 
 219   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 220   // Stop treating discovered references specially.
 221   disable_discovery();
 222 
 223   // If discovery was concurrent, someone could have modified
 224   // the value of the static field in the j.l.r.SoftReference
 225   // class that holds the soft reference timestamp clock using
 226   // reflection or Unsafe between when discovery was enabled and
 227   // now. Unconditionally update the static field in ReferenceProcessor
 228   // here so that we use the new value during processing of the
 229   // discovered soft refs.
 230 
 231   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 232 
 233   ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
 234                                 total_count(_discoveredWeakRefs),
 235                                 total_count(_discoveredFinalRefs),
 236                                 total_count(_discoveredPhantomRefs));
 237 
 238   // Soft references
 239   {
 240     RefProcPhaseTimesTracker tt(REF_SOFT, phase_times, this);
 241     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 242                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 243   }
 244 
 245   update_soft_ref_master_clock();
 246 
 247   // Weak references
 248   {
 249     RefProcPhaseTimesTracker tt(REF_WEAK, phase_times, this);
 250     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 251                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 252   }
 253 
 254   // Final references
 255   {
 256     RefProcPhaseTimesTracker tt(REF_FINAL, phase_times, this);
 257     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 258                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 259   }
 260 
 261   // Phantom references
 262   {
 263     RefProcPhaseTimesTracker tt(REF_PHANTOM, phase_times, this);
 264     process_discovered_reflist(_discoveredPhantomRefs, NULL, true,
 265                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 266   }
 267 
 268   if (task_executor != NULL) {
 269     // Record the work done by the parallel workers.
 270     task_executor->set_single_threaded_mode();
 271   }
 272 
 273   phase_times->set_total_time_ms((os::elapsedTime() - start_time) * 1000);
 274 
 275   return stats;
 276 }
 277 
 278 void ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor*  task_executor,
 279                                                        ReferenceProcessorPhaseTimes* phase_times) {
 280   // Enqueue references that are not made active again, and
 281   // clear the decks for the next collection (cycle).
 282   enqueue_discovered_reflists(task_executor, phase_times);
 283 
 284   // Stop treating discovered references specially.
 285   disable_discovery();
 286 }
 287 
 288 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list) {
 289   // Given a list of refs linked through the "discovered" field
 290   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 291   // thus distinguishing them from active References, then
 292   // prepend them to the pending list.
 293   //
 294   // The Java threads will see the Reference objects linked together through
 295   // the discovered field. Instead of trying to do the write barrier updates
 296   // in all places in the reference processor where we manipulate the discovered
 297   // field we make sure to do the barrier here where we anyway iterate through
 298   // all linked Reference objects. Note that it is important to not dirty any
 299   // cards during reference processing since this will cause card table
 300   // verification to fail for G1.
 301   log_develop_trace(gc, ref)("ReferenceProcessor::enqueue_discovered_reflist list " INTPTR_FORMAT, p2i(&refs_list));
 302 
 303   oop obj = NULL;
 304   oop next_d = refs_list.head();
 305   // Walk down the list, self-looping the next field
 306   // so that the References are not considered active.
 307   while (obj != next_d) {
 308     obj = next_d;
 309     assert(obj->is_instance(), "should be an instance object");
 310     assert(InstanceKlass::cast(obj->klass())->is_reference_instance_klass(), "should be reference object");
 311     next_d = java_lang_ref_Reference::discovered(obj);
 312     log_develop_trace(gc, ref)("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT, p2i(obj), p2i(next_d));
 313     assert(java_lang_ref_Reference::next(obj) == NULL,
 314            "Reference not active; should not be discovered");
 315     // Self-loop next, so as to make Ref not active.
 316     java_lang_ref_Reference::set_next_raw(obj, obj);
 317     if (next_d != obj) {
 318       HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(obj, java_lang_ref_Reference::discovered_offset, next_d);
 319     } else {
 320       // This is the last object.
 321       // Swap refs_list into pending list and set obj's
 322       // discovered to what we read from the pending list.
 323       oop old = Universe::swap_reference_pending_list(refs_list.head());
 324       HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(obj, java_lang_ref_Reference::discovered_offset, old);
 325     }
 326   }
 327 }
 328 
 329 // Parallel enqueue task
 330 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 331 public:
 332   RefProcEnqueueTask(ReferenceProcessor&           ref_processor,
 333                      DiscoveredList                discovered_refs[],
 334                      int                           n_queues,
 335                      ReferenceProcessorPhaseTimes* phase_times)
 336     : EnqueueTask(ref_processor, discovered_refs, n_queues, phase_times)
 337   { }
 338 
 339   virtual void work(unsigned int work_id) {
 340     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefEnqueue, _phase_times, work_id);
 341 
 342     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 343     // Simplest first cut: static partitioning.
 344     int index = work_id;
 345     // The increment on "index" must correspond to the maximum number of queues
 346     // (n_queues) with which that ReferenceProcessor was created.  That
 347     // is because of the "clever" way the discovered references lists were
 348     // allocated and are indexed into.
 349     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 350     for (int j = 0;
 351          j < ReferenceProcessor::number_of_subclasses_of_ref();
 352          j++, index += _n_queues) {
 353       _ref_processor.enqueue_discovered_reflist(_refs_lists[index]);
 354       _refs_lists[index].set_head(NULL);
 355       _refs_lists[index].set_length(0);
 356     }
 357   }
 358 };
 359 
 360 // Enqueue references that are not made active again
 361 void ReferenceProcessor::enqueue_discovered_reflists(AbstractRefProcTaskExecutor*  task_executor,
 362                                                      ReferenceProcessorPhaseTimes* phase_times) {
 363 
 364   ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
 365                                 total_count(_discoveredWeakRefs),
 366                                 total_count(_discoveredFinalRefs),
 367                                 total_count(_discoveredPhantomRefs));
 368 
 369   RefProcEnqueueTimeTracker tt(phase_times, stats);
 370 
 371   if (_processing_is_mt && task_executor != NULL) {
 372     // Parallel code
 373     RefProcEnqueueTask tsk(*this, _discovered_refs, _max_num_q, phase_times);
 374     task_executor->execute(tsk);
 375   } else {
 376     // Serial code: call the parent class's implementation
 377     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 378       enqueue_discovered_reflist(_discovered_refs[i]);
 379       _discovered_refs[i].set_head(NULL);
 380       _discovered_refs[i].set_length(0);
 381     }
 382   }
 383 }
 384 
 385 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 386   _discovered_addr = java_lang_ref_Reference::discovered_addr_raw(_ref);
 387   oop discovered = java_lang_ref_Reference::discovered(_ref);
 388   assert(_discovered_addr && oopDesc::is_oop_or_null(discovered),
 389          "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
 390   _next = discovered;
 391   _referent_addr = java_lang_ref_Reference::referent_addr_raw(_ref);
 392   _referent = java_lang_ref_Reference::referent(_ref);
 393   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 394          "Wrong oop found in java.lang.Reference object");
 395   assert(allow_null_referent ?
 396              oopDesc::is_oop_or_null(_referent)
 397            : oopDesc::is_oop(_referent),
 398          "Expected an oop%s for referent field at " PTR_FORMAT,
 399          (allow_null_referent ? " or NULL" : ""),
 400          p2i(_referent));
 401 }
 402 
 403 void DiscoveredListIterator::remove() {
 404   assert(oopDesc::is_oop(_ref), "Dropping a bad reference");
 405   RawAccess<>::oop_store(_discovered_addr, oop(NULL));
 406 
 407   // First _prev_next ref actually points into DiscoveredList (gross).
 408   oop new_next;
 409   if (_next == _ref) {
 410     // At the end of the list, we should make _prev point to itself.
 411     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 412     // and _prev will be NULL.
 413     new_next = _prev;
 414   } else {
 415     new_next = _next;
 416   }
 417   // Remove Reference object from discovered list. Note that G1 does not need a
 418   // pre-barrier here because we know the Reference has already been found/marked,
 419   // that's how it ended up in the discovered list in the first place.
 420   RawAccess<>::oop_store(_prev_next, new_next);
 421   NOT_PRODUCT(_removed++);
 422   _refs_list.dec_length(1);
 423 }
 424 
 425 void DiscoveredListIterator::clear_referent() {
 426   RawAccess<>::oop_store(_referent_addr, oop(NULL));
 427 }
 428 
 429 // NOTE: process_phase*() are largely similar, and at a high level
 430 // merely iterate over the extant list applying a predicate to
 431 // each of its elements and possibly removing that element from the
 432 // list and applying some further closures to that element.
 433 // We should consider the possibility of replacing these
 434 // process_phase*() methods by abstracting them into
 435 // a single general iterator invocation that receives appropriate
 436 // closures that accomplish this work.
 437 
 438 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 439 // referents are not alive, but that should be kept alive for policy reasons.
 440 // Keep alive the transitive closure of all such referents.
 441 void
 442 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 443                                    ReferencePolicy*   policy,
 444                                    BoolObjectClosure* is_alive,
 445                                    OopClosure*        keep_alive,
 446                                    VoidClosure*       complete_gc) {
 447   assert(policy != NULL, "Must have a non-NULL policy");
 448   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 449   // Decide which softly reachable refs should be kept alive.
 450   while (iter.has_next()) {
 451     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 452     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 453     if (referent_is_dead &&
 454         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 455       log_develop_trace(gc, ref)("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 456                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 457       // Remove Reference object from list
 458       iter.remove();
 459       // keep the referent around
 460       iter.make_referent_alive();
 461       iter.move_to_next();
 462     } else {
 463       iter.next();
 464     }
 465   }
 466   // Close the reachable set
 467   complete_gc->do_void();
 468   log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT,
 469                              iter.removed(), iter.processed(), p2i(&refs_list));
 470 }
 471 
 472 void ReferenceProcessor::process_phase2(DiscoveredList&    refs_list,
 473                                         BoolObjectClosure* is_alive,
 474                                         OopClosure*        keep_alive,
 475                                         VoidClosure*       complete_gc) {
 476   if (discovery_is_atomic()) {
 477     // complete_gc is ignored in this case for this phase
 478     pp2_work(refs_list, is_alive, keep_alive);
 479   } else {
 480     assert(complete_gc != NULL, "Error");
 481     pp2_work_concurrent_discovery(refs_list, is_alive,
 482                                   keep_alive, complete_gc);
 483   }
 484 }
 485 // Traverse the list and remove any Refs that are not active, or
 486 // whose referents are either alive or NULL.
 487 void
 488 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 489                              BoolObjectClosure* is_alive,
 490                              OopClosure*        keep_alive) {
 491   assert(discovery_is_atomic(), "Error");
 492   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 493   while (iter.has_next()) {
 494     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 495     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 496     assert(next == NULL, "Should not discover inactive Reference");
 497     if (iter.is_referent_alive()) {
 498       log_develop_trace(gc, ref)("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 499                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 500       // The referent is reachable after all.
 501       // Remove Reference object from list.
 502       iter.remove();
 503       // Update the referent pointer as necessary: Note that this
 504       // should not entail any recursive marking because the
 505       // referent must already have been traversed.
 506       iter.make_referent_alive();
 507       iter.move_to_next();
 508     } else {
 509       iter.next();
 510     }
 511   }
 512   NOT_PRODUCT(
 513     if (iter.processed() > 0) {
 514       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 515         " Refs in discovered list " INTPTR_FORMAT,
 516         iter.removed(), iter.processed(), p2i(&refs_list));
 517     }
 518   )
 519 }
 520 
 521 void
 522 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 523                                                   BoolObjectClosure* is_alive,
 524                                                   OopClosure*        keep_alive,
 525                                                   VoidClosure*       complete_gc) {
 526   assert(!discovery_is_atomic(), "Error");
 527   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 528   while (iter.has_next()) {
 529     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 530     HeapWord* next_addr = java_lang_ref_Reference::next_addr_raw(iter.obj());
 531     oop next = java_lang_ref_Reference::next(iter.obj());
 532     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 533          next != NULL)) {
 534       assert(oopDesc::is_oop_or_null(next), "Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next));
 535       // Remove Reference object from list
 536       iter.remove();
 537       // Trace the cohorts
 538       iter.make_referent_alive();
 539       if (UseCompressedOops) {
 540         keep_alive->do_oop((narrowOop*)next_addr);
 541       } else {
 542         keep_alive->do_oop((oop*)next_addr);
 543       }
 544       iter.move_to_next();
 545     } else {
 546       iter.next();
 547     }
 548   }
 549   // Now close the newly reachable set
 550   complete_gc->do_void();
 551   NOT_PRODUCT(
 552     if (iter.processed() > 0) {
 553       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 554         " Refs in discovered list " INTPTR_FORMAT,
 555         iter.removed(), iter.processed(), p2i(&refs_list));
 556     }
 557   )
 558 }
 559 
 560 // Traverse the list and process the referents, by either
 561 // clearing them or keeping them (and their reachable
 562 // closure) alive.
 563 void
 564 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 565                                    bool               clear_referent,
 566                                    BoolObjectClosure* is_alive,
 567                                    OopClosure*        keep_alive,
 568                                    VoidClosure*       complete_gc) {
 569   ResourceMark rm;
 570   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 571   while (iter.has_next()) {
 572     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 573     if (clear_referent) {
 574       // NULL out referent pointer
 575       iter.clear_referent();
 576     } else {
 577       // keep the referent around
 578       iter.make_referent_alive();
 579     }
 580     log_develop_trace(gc, ref)("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 581                                clear_referent ? "cleared " : "", p2i(iter.obj()), iter.obj()->klass()->internal_name());
 582     assert(oopDesc::is_oop(iter.obj(), UseConcMarkSweepGC), "Adding a bad reference");
 583     iter.next();
 584   }
 585   // Close the reachable set
 586   complete_gc->do_void();
 587 }
 588 
 589 void
 590 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 591   oop obj = NULL;
 592   oop next = refs_list.head();
 593   while (next != obj) {
 594     obj = next;
 595     next = java_lang_ref_Reference::discovered(obj);
 596     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 597   }
 598   refs_list.set_head(NULL);
 599   refs_list.set_length(0);
 600 }
 601 
 602 void ReferenceProcessor::abandon_partial_discovery() {
 603   // loop over the lists
 604   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 605     if ((i % _max_num_q) == 0) {
 606       log_develop_trace(gc, ref)("Abandoning %s discovered list", list_name(i));
 607     }
 608     clear_discovered_references(_discovered_refs[i]);
 609   }
 610 }
 611 
 612 size_t ReferenceProcessor::total_reference_count(ReferenceType type) const {
 613   DiscoveredList* list = NULL;
 614 
 615   switch (type) {
 616     case REF_SOFT:
 617       list = _discoveredSoftRefs;
 618       break;
 619     case REF_WEAK:
 620       list = _discoveredWeakRefs;
 621       break;
 622     case REF_FINAL:
 623       list = _discoveredFinalRefs;
 624       break;
 625     case REF_PHANTOM:
 626       list = _discoveredPhantomRefs;
 627       break;
 628     case REF_OTHER:
 629     case REF_NONE:
 630     default:
 631       ShouldNotReachHere();
 632   }
 633   return total_count(list);
 634 }
 635 
 636 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 637 public:
 638   RefProcPhase1Task(ReferenceProcessor&           ref_processor,
 639                     DiscoveredList                refs_lists[],
 640                     ReferencePolicy*              policy,
 641                     bool                          marks_oops_alive,
 642                     ReferenceProcessorPhaseTimes* phase_times)
 643     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times),
 644       _policy(policy)
 645   { }
 646   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 647                     OopClosure& keep_alive,
 648                     VoidClosure& complete_gc)
 649   {
 650     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase1, _phase_times, i);
 651 
 652     _ref_processor.process_phase1(_refs_lists[i], _policy,
 653                                   &is_alive, &keep_alive, &complete_gc);
 654   }
 655 private:
 656   ReferencePolicy* _policy;
 657 };
 658 
 659 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 660 public:
 661   RefProcPhase2Task(ReferenceProcessor&           ref_processor,
 662                     DiscoveredList                refs_lists[],
 663                     bool                          marks_oops_alive,
 664                     ReferenceProcessorPhaseTimes* phase_times)
 665     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times)
 666   { }
 667   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 668                     OopClosure& keep_alive,
 669                     VoidClosure& complete_gc)
 670   {
 671     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase2, _phase_times, i);
 672 
 673     _ref_processor.process_phase2(_refs_lists[i],
 674                                   &is_alive, &keep_alive, &complete_gc);
 675   }
 676 };
 677 
 678 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 679 public:
 680   RefProcPhase3Task(ReferenceProcessor&           ref_processor,
 681                     DiscoveredList                refs_lists[],
 682                     bool                         clear_referent,
 683                     bool                          marks_oops_alive,
 684                     ReferenceProcessorPhaseTimes* phase_times)
 685     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times),
 686       _clear_referent(clear_referent)
 687   { }
 688   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 689                     OopClosure& keep_alive,
 690                     VoidClosure& complete_gc)
 691   {
 692     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase3, _phase_times, i);
 693 
 694     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 695                                   &is_alive, &keep_alive, &complete_gc);
 696   }
 697 private:
 698   bool _clear_referent;
 699 };
 700 
 701 #ifndef PRODUCT
 702 void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_refs) {
 703   if (!log_is_enabled(Trace, gc, ref)) {
 704     return;
 705   }
 706 
 707   stringStream st;
 708   for (uint i = 0; i < active_length; ++i) {
 709     st.print(SIZE_FORMAT " ", ref_lists[i].length());
 710   }
 711   log_develop_trace(gc, ref)("%s= " SIZE_FORMAT, st.as_string(), total_refs);
 712 #ifdef ASSERT
 713   for (uint i = active_length; i < _max_num_q; i++) {
 714     assert(ref_lists[i].length() == 0, SIZE_FORMAT " unexpected References in %u",
 715            ref_lists[i].length(), i);
 716   }
 717 #endif
 718 }
 719 #endif
 720 
 721 void ReferenceProcessor::set_active_mt_degree(uint v) {
 722   _num_q = v;
 723   _next_id = 0;
 724 }
 725 
 726 // Balances reference queues.
 727 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 728 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 729 // corresponding to the active workers will be processed.
 730 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 731 {
 732   // calculate total length
 733   size_t total_refs = 0;
 734   log_develop_trace(gc, ref)("Balance ref_lists ");
 735 
 736   for (uint i = 0; i < _max_num_q; ++i) {
 737     total_refs += ref_lists[i].length();
 738   }
 739   log_reflist_counts(ref_lists, _max_num_q, total_refs);
 740   size_t avg_refs = total_refs / _num_q + 1;
 741   uint to_idx = 0;
 742   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 743     bool move_all = false;
 744     if (from_idx >= _num_q) {
 745       move_all = ref_lists[from_idx].length() > 0;
 746     }
 747     while ((ref_lists[from_idx].length() > avg_refs) ||
 748            move_all) {
 749       assert(to_idx < _num_q, "Sanity Check!");
 750       if (ref_lists[to_idx].length() < avg_refs) {
 751         // move superfluous refs
 752         size_t refs_to_move;
 753         // Move all the Ref's if the from queue will not be processed.
 754         if (move_all) {
 755           refs_to_move = MIN2(ref_lists[from_idx].length(),
 756                               avg_refs - ref_lists[to_idx].length());
 757         } else {
 758           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 759                               avg_refs - ref_lists[to_idx].length());
 760         }
 761 
 762         assert(refs_to_move > 0, "otherwise the code below will fail");
 763 
 764         oop move_head = ref_lists[from_idx].head();
 765         oop move_tail = move_head;
 766         oop new_head  = move_head;
 767         // find an element to split the list on
 768         for (size_t j = 0; j < refs_to_move; ++j) {
 769           move_tail = new_head;
 770           new_head = java_lang_ref_Reference::discovered(new_head);
 771         }
 772 
 773         // Add the chain to the to list.
 774         if (ref_lists[to_idx].head() == NULL) {
 775           // to list is empty. Make a loop at the end.
 776           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 777         } else {
 778           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 779         }
 780         ref_lists[to_idx].set_head(move_head);
 781         ref_lists[to_idx].inc_length(refs_to_move);
 782 
 783         // Remove the chain from the from list.
 784         if (move_tail == new_head) {
 785           // We found the end of the from list.
 786           ref_lists[from_idx].set_head(NULL);
 787         } else {
 788           ref_lists[from_idx].set_head(new_head);
 789         }
 790         ref_lists[from_idx].dec_length(refs_to_move);
 791         if (ref_lists[from_idx].length() == 0) {
 792           break;
 793         }
 794       } else {
 795         to_idx = (to_idx + 1) % _num_q;
 796       }
 797     }
 798   }
 799 #ifdef ASSERT
 800   size_t balanced_total_refs = 0;
 801   for (uint i = 0; i < _num_q; ++i) {
 802     balanced_total_refs += ref_lists[i].length();
 803   }
 804   log_reflist_counts(ref_lists, _num_q, balanced_total_refs);
 805   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 806 #endif
 807 }
 808 
 809 void ReferenceProcessor::balance_all_queues() {
 810   balance_queues(_discoveredSoftRefs);
 811   balance_queues(_discoveredWeakRefs);
 812   balance_queues(_discoveredFinalRefs);
 813   balance_queues(_discoveredPhantomRefs);
 814 }
 815 
 816 void ReferenceProcessor::process_discovered_reflist(
 817   DiscoveredList                refs_lists[],
 818   ReferencePolicy*              policy,
 819   bool                          clear_referent,
 820   BoolObjectClosure*            is_alive,
 821   OopClosure*                   keep_alive,
 822   VoidClosure*                  complete_gc,
 823   AbstractRefProcTaskExecutor*  task_executor,
 824   ReferenceProcessorPhaseTimes* phase_times)
 825 {
 826   bool mt_processing = task_executor != NULL && _processing_is_mt;
 827 
 828   phase_times->set_processing_is_mt(mt_processing);
 829 
 830   if (mt_processing && ParallelRefProcBalancingEnabled) {
 831     RefProcBalanceQueuesTimeTracker tt(phase_times);
 832     balance_queues(refs_lists);
 833   }
 834 
 835   // Phase 1 (soft refs only):
 836   // . Traverse the list and remove any SoftReferences whose
 837   //   referents are not alive, but that should be kept alive for
 838   //   policy reasons. Keep alive the transitive closure of all
 839   //   such referents.
 840   if (policy != NULL) {
 841     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase1, phase_times);
 842 
 843     if (mt_processing) {
 844       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/, phase_times);
 845       task_executor->execute(phase1);
 846     } else {
 847       for (uint i = 0; i < _max_num_q; i++) {
 848         process_phase1(refs_lists[i], policy,
 849                        is_alive, keep_alive, complete_gc);
 850       }
 851     }
 852   } else { // policy == NULL
 853     assert(refs_lists != _discoveredSoftRefs,
 854            "Policy must be specified for soft references.");
 855   }
 856 
 857   // Phase 2:
 858   // . Traverse the list and remove any refs whose referents are alive.
 859   {
 860     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase2, phase_times);
 861 
 862     if (mt_processing) {
 863       RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/, phase_times);
 864       task_executor->execute(phase2);
 865     } else {
 866       for (uint i = 0; i < _max_num_q; i++) {
 867         process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 868       }
 869     }
 870   }
 871 
 872   // Phase 3:
 873   // . Traverse the list and process referents as appropriate.
 874   {
 875     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase3, phase_times);
 876 
 877     if (mt_processing) {
 878       RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/, phase_times);
 879       task_executor->execute(phase3);
 880     } else {
 881       for (uint i = 0; i < _max_num_q; i++) {
 882         process_phase3(refs_lists[i], clear_referent,
 883                        is_alive, keep_alive, complete_gc);
 884       }
 885     }
 886   }
 887 }
 888 
 889 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 890   uint id = 0;
 891   // Determine the queue index to use for this object.
 892   if (_discovery_is_mt) {
 893     // During a multi-threaded discovery phase,
 894     // each thread saves to its "own" list.
 895     Thread* thr = Thread::current();
 896     id = thr->as_Worker_thread()->id();
 897   } else {
 898     // single-threaded discovery, we save in round-robin
 899     // fashion to each of the lists.
 900     if (_processing_is_mt) {
 901       id = next_id();
 902     }
 903   }
 904   assert(id < _max_num_q, "Id is out-of-bounds id %u and max id %u)", id, _max_num_q);
 905 
 906   // Get the discovered queue to which we will add
 907   DiscoveredList* list = NULL;
 908   switch (rt) {
 909     case REF_OTHER:
 910       // Unknown reference type, no special treatment
 911       break;
 912     case REF_SOFT:
 913       list = &_discoveredSoftRefs[id];
 914       break;
 915     case REF_WEAK:
 916       list = &_discoveredWeakRefs[id];
 917       break;
 918     case REF_FINAL:
 919       list = &_discoveredFinalRefs[id];
 920       break;
 921     case REF_PHANTOM:
 922       list = &_discoveredPhantomRefs[id];
 923       break;
 924     case REF_NONE:
 925       // we should not reach here if we are an InstanceRefKlass
 926     default:
 927       ShouldNotReachHere();
 928   }
 929   log_develop_trace(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
 930   return list;
 931 }
 932 
 933 inline void
 934 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
 935                                               oop             obj,
 936                                               HeapWord*       discovered_addr) {
 937   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
 938   // First we must make sure this object is only enqueued once. CAS in a non null
 939   // discovered_addr.
 940   oop current_head = refs_list.head();
 941   // The last ref must have its discovered field pointing to itself.
 942   oop next_discovered = (current_head != NULL) ? current_head : obj;
 943 
 944   oop retest = RawAccess<>::oop_atomic_cmpxchg(next_discovered, discovered_addr, oop(NULL));
 945 
 946   if (retest == NULL) {
 947     // This thread just won the right to enqueue the object.
 948     // We have separate lists for enqueueing, so no synchronization
 949     // is necessary.
 950     refs_list.set_head(obj);
 951     refs_list.inc_length(1);
 952 
 953     log_develop_trace(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
 954                                p2i(obj), obj->klass()->internal_name());
 955   } else {
 956     // If retest was non NULL, another thread beat us to it:
 957     // The reference has already been discovered...
 958     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
 959                                p2i(obj), obj->klass()->internal_name());
 960   }
 961 }
 962 
 963 #ifndef PRODUCT
 964 // Non-atomic (i.e. concurrent) discovery might allow us
 965 // to observe j.l.References with NULL referents, being those
 966 // cleared concurrently by mutators during (or after) discovery.
 967 void ReferenceProcessor::verify_referent(oop obj) {
 968   bool da = discovery_is_atomic();
 969   oop referent = java_lang_ref_Reference::referent(obj);
 970   assert(da ? oopDesc::is_oop(referent) : oopDesc::is_oop_or_null(referent),
 971          "Bad referent " INTPTR_FORMAT " found in Reference "
 972          INTPTR_FORMAT " during %satomic discovery ",
 973          p2i(referent), p2i(obj), da ? "" : "non-");
 974 }
 975 #endif
 976 
 977 template <class T>
 978 bool ReferenceProcessor::is_subject_to_discovery(T const obj) const {
 979   return _is_subject_to_discovery->do_object_b(obj);
 980 }
 981 
 982 // We mention two of several possible choices here:
 983 // #0: if the reference object is not in the "originating generation"
 984 //     (or part of the heap being collected, indicated by our "span"
 985 //     we don't treat it specially (i.e. we scan it as we would
 986 //     a normal oop, treating its references as strong references).
 987 //     This means that references can't be discovered unless their
 988 //     referent is also in the same span. This is the simplest,
 989 //     most "local" and most conservative approach, albeit one
 990 //     that may cause weak references to be enqueued least promptly.
 991 //     We call this choice the "ReferenceBasedDiscovery" policy.
 992 // #1: the reference object may be in any generation (span), but if
 993 //     the referent is in the generation (span) being currently collected
 994 //     then we can discover the reference object, provided
 995 //     the object has not already been discovered by
 996 //     a different concurrently running collector (as may be the
 997 //     case, for instance, if the reference object is in CMS and
 998 //     the referent in DefNewGeneration), and provided the processing
 999 //     of this reference object by the current collector will
1000 //     appear atomic to every other collector in the system.
1001 //     (Thus, for instance, a concurrent collector may not
1002 //     discover references in other generations even if the
1003 //     referent is in its own generation). This policy may,
1004 //     in certain cases, enqueue references somewhat sooner than
1005 //     might Policy #0 above, but at marginally increased cost
1006 //     and complexity in processing these references.
1007 //     We call this choice the "RefeferentBasedDiscovery" policy.
1008 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1009   // Make sure we are discovering refs (rather than processing discovered refs).
1010   if (!_discovering_refs || !RegisterReferences) {
1011     return false;
1012   }
1013   // We only discover active references.
1014   oop next = java_lang_ref_Reference::next(obj);
1015   if (next != NULL) {   // Ref is no longer active
1016     return false;
1017   }
1018 
1019   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1020       !is_subject_to_discovery(obj)) {
1021     // Reference is not in the originating generation;
1022     // don't treat it specially (i.e. we want to scan it as a normal
1023     // object with strong references).
1024     return false;
1025   }
1026 
1027   // We only discover references whose referents are not (yet)
1028   // known to be strongly reachable.
1029   if (is_alive_non_header() != NULL) {
1030     verify_referent(obj);
1031     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1032       return false;  // referent is reachable
1033     }
1034   }
1035   if (rt == REF_SOFT) {
1036     // For soft refs we can decide now if these are not
1037     // current candidates for clearing, in which case we
1038     // can mark through them now, rather than delaying that
1039     // to the reference-processing phase. Since all current
1040     // time-stamp policies advance the soft-ref clock only
1041     // at a full collection cycle, this is always currently
1042     // accurate.
1043     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1044       return false;
1045     }
1046   }
1047 
1048   ResourceMark rm;      // Needed for tracing.
1049 
1050   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr_raw(obj);
1051   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1052   assert(oopDesc::is_oop_or_null(discovered), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
1053   if (discovered != NULL) {
1054     // The reference has already been discovered...
1055     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
1056                                p2i(obj), obj->klass()->internal_name());
1057     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1058       // assumes that an object is not processed twice;
1059       // if it's been already discovered it must be on another
1060       // generation's discovered list; so we won't discover it.
1061       return false;
1062     } else {
1063       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1064              "Unrecognized policy");
1065       // Check assumption that an object is not potentially
1066       // discovered twice except by concurrent collectors that potentially
1067       // trace the same Reference object twice.
1068       assert(UseConcMarkSweepGC || UseG1GC,
1069              "Only possible with a concurrent marking collector");
1070       return true;
1071     }
1072   }
1073 
1074   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1075     verify_referent(obj);
1076     // Discover if and only if EITHER:
1077     // .. reference is in our span, OR
1078     // .. we are an atomic collector and referent is in our span
1079     if (is_subject_to_discovery(obj) ||
1080         (discovery_is_atomic() &&
1081          is_subject_to_discovery(java_lang_ref_Reference::referent(obj)))) {
1082     } else {
1083       return false;
1084     }
1085   } else {
1086     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1087            is_subject_to_discovery(obj), "code inconsistency");
1088   }
1089 
1090   // Get the right type of discovered queue head.
1091   DiscoveredList* list = get_discovered_list(rt);
1092   if (list == NULL) {
1093     return false;   // nothing special needs to be done
1094   }
1095 
1096   if (_discovery_is_mt) {
1097     add_to_discovered_list_mt(*list, obj, discovered_addr);
1098   } else {
1099     // We do a raw store here: the field will be visited later when processing
1100     // the discovered references.
1101     oop current_head = list->head();
1102     // The last ref must have its discovered field pointing to itself.
1103     oop next_discovered = (current_head != NULL) ? current_head : obj;
1104 
1105     assert(discovered == NULL, "control point invariant");
1106     RawAccess<>::oop_store(discovered_addr, next_discovered);
1107     list->set_head(obj);
1108     list->inc_length(1);
1109 
1110     log_develop_trace(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)", p2i(obj), obj->klass()->internal_name());
1111   }
1112   assert(oopDesc::is_oop(obj), "Discovered a bad reference");
1113   verify_referent(obj);
1114   return true;
1115 }
1116 
1117 bool ReferenceProcessor::has_discovered_references() {
1118   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
1119     if (!_discovered_refs[i].is_empty()) {
1120       return true;
1121     }
1122   }
1123   return false;
1124 }
1125 
1126 // Preclean the discovered references by removing those
1127 // whose referents are alive, and by marking from those that
1128 // are not active. These lists can be handled here
1129 // in any order and, indeed, concurrently.
1130 void ReferenceProcessor::preclean_discovered_references(
1131   BoolObjectClosure* is_alive,
1132   OopClosure* keep_alive,
1133   VoidClosure* complete_gc,
1134   YieldClosure* yield,
1135   GCTimer* gc_timer) {
1136 
1137   // Soft references
1138   {
1139     GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences", gc_timer);
1140     for (uint i = 0; i < _max_num_q; i++) {
1141       if (yield->should_return()) {
1142         return;
1143       }
1144       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1145                                   keep_alive, complete_gc, yield);
1146     }
1147   }
1148 
1149   // Weak references
1150   {
1151     GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences", gc_timer);
1152     for (uint i = 0; i < _max_num_q; i++) {
1153       if (yield->should_return()) {
1154         return;
1155       }
1156       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1157                                   keep_alive, complete_gc, yield);
1158     }
1159   }
1160 
1161   // Final references
1162   {
1163     GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences", gc_timer);
1164     for (uint i = 0; i < _max_num_q; i++) {
1165       if (yield->should_return()) {
1166         return;
1167       }
1168       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1169                                   keep_alive, complete_gc, yield);
1170     }
1171   }
1172 
1173   // Phantom references
1174   {
1175     GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences", gc_timer);
1176     for (uint i = 0; i < _max_num_q; i++) {
1177       if (yield->should_return()) {
1178         return;
1179       }
1180       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1181                                   keep_alive, complete_gc, yield);
1182     }
1183   }
1184 }
1185 
1186 // Walk the given discovered ref list, and remove all reference objects
1187 // whose referents are still alive, whose referents are NULL or which
1188 // are not active (have a non-NULL next field). NOTE: When we are
1189 // thus precleaning the ref lists (which happens single-threaded today),
1190 // we do not disable refs discovery to honor the correct semantics of
1191 // java.lang.Reference. As a result, we need to be careful below
1192 // that ref removal steps interleave safely with ref discovery steps
1193 // (in this thread).
1194 void
1195 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1196                                                 BoolObjectClosure* is_alive,
1197                                                 OopClosure*        keep_alive,
1198                                                 VoidClosure*       complete_gc,
1199                                                 YieldClosure*      yield) {
1200   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1201   while (iter.has_next()) {
1202     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1203     oop obj = iter.obj();
1204     oop next = java_lang_ref_Reference::next(obj);
1205     if (iter.referent() == NULL || iter.is_referent_alive() ||
1206         next != NULL) {
1207       // The referent has been cleared, or is alive, or the Reference is not
1208       // active; we need to trace and mark its cohort.
1209       log_develop_trace(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1210                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
1211       // Remove Reference object from list
1212       iter.remove();
1213       // Keep alive its cohort.
1214       iter.make_referent_alive();
1215       if (UseCompressedOops) {
1216         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr_raw(obj);
1217         keep_alive->do_oop(next_addr);
1218       } else {
1219         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr_raw(obj);
1220         keep_alive->do_oop(next_addr);
1221       }
1222       iter.move_to_next();
1223     } else {
1224       iter.next();
1225     }
1226   }
1227   // Close the reachable set
1228   complete_gc->do_void();
1229 
1230   NOT_PRODUCT(
1231     if (iter.processed() > 0) {
1232       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT,
1233         iter.removed(), iter.processed(), p2i(&refs_list));
1234     }
1235   )
1236 }
1237 
1238 const char* ReferenceProcessor::list_name(uint i) {
1239    assert(i <= _max_num_q * number_of_subclasses_of_ref(),
1240           "Out of bounds index");
1241 
1242    int j = i / _max_num_q;
1243    switch (j) {
1244      case 0: return "SoftRef";
1245      case 1: return "WeakRef";
1246      case 2: return "FinalRef";
1247      case 3: return "PhantomRef";
1248    }
1249    ShouldNotReachHere();
1250    return NULL;
1251 }