1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1DirtyCardQueue.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  38 #include "gc/g1/g1StringDedup.hpp"
  39 #include "gc/g1/g1ThreadLocalData.hpp"
  40 #include "gc/g1/g1Trace.hpp"
  41 #include "gc/g1/heapRegion.inline.hpp"
  42 #include "gc/g1/heapRegionRemSet.hpp"
  43 #include "gc/g1/heapRegionSet.inline.hpp"
  44 #include "gc/shared/gcId.hpp"
  45 #include "gc/shared/gcTimer.hpp"
  46 #include "gc/shared/gcTraceTime.inline.hpp"
  47 #include "gc/shared/gcVMOperations.hpp"
  48 #include "gc/shared/genOopClosures.inline.hpp"
  49 #include "gc/shared/referencePolicy.hpp"
  50 #include "gc/shared/strongRootsScope.hpp"
  51 #include "gc/shared/suspendibleThreadSet.hpp"
  52 #include "gc/shared/taskTerminator.hpp"
  53 #include "gc/shared/taskqueue.inline.hpp"
  54 #include "gc/shared/weakProcessor.inline.hpp"
  55 #include "gc/shared/workerPolicy.hpp"
  56 #include "include/jvm.h"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.hpp"
  60 #include "memory/resourceArea.hpp"
  61 #include "memory/universe.hpp"
  62 #include "oops/access.inline.hpp"
  63 #include "oops/oop.inline.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/orderAccess.hpp"
  68 #include "runtime/prefetch.inline.hpp"
  69 #include "services/memTracker.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/growableArray.hpp"
  72 
  73 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  74   assert(addr < _cm->finger(), "invariant");
  75   assert(addr >= _task->finger(), "invariant");
  76 
  77   // We move that task's local finger along.
  78   _task->move_finger_to(addr);
  79 
  80   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  81   // we only partially drain the local queue and global stack
  82   _task->drain_local_queue(true);
  83   _task->drain_global_stack(true);
  84 
  85   // if the has_aborted flag has been raised, we need to bail out of
  86   // the iteration
  87   return !_task->has_aborted();
  88 }
  89 
  90 G1CMMarkStack::G1CMMarkStack() :
  91   _max_chunk_capacity(0),
  92   _base(NULL),
  93   _chunk_capacity(0) {
  94   set_empty();
  95 }
  96 
  97 bool G1CMMarkStack::resize(size_t new_capacity) {
  98   assert(is_empty(), "Only resize when stack is empty.");
  99   assert(new_capacity <= _max_chunk_capacity,
 100          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
 101 
 102   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
 103 
 104   if (new_base == NULL) {
 105     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 106     return false;
 107   }
 108   // Release old mapping.
 109   if (_base != NULL) {
 110     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 111   }
 112 
 113   _base = new_base;
 114   _chunk_capacity = new_capacity;
 115   set_empty();
 116 
 117   return true;
 118 }
 119 
 120 size_t G1CMMarkStack::capacity_alignment() {
 121   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 122 }
 123 
 124 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 125   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 126 
 127   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 128 
 129   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 130   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 131 
 132   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 133             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 134             _max_chunk_capacity,
 135             initial_chunk_capacity);
 136 
 137   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 138                 initial_chunk_capacity, _max_chunk_capacity);
 139 
 140   return resize(initial_chunk_capacity);
 141 }
 142 
 143 void G1CMMarkStack::expand() {
 144   if (_chunk_capacity == _max_chunk_capacity) {
 145     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 146     return;
 147   }
 148   size_t old_capacity = _chunk_capacity;
 149   // Double capacity if possible
 150   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 151 
 152   if (resize(new_capacity)) {
 153     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 154                   old_capacity, new_capacity);
 155   } else {
 156     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 157                     old_capacity, new_capacity);
 158   }
 159 }
 160 
 161 G1CMMarkStack::~G1CMMarkStack() {
 162   if (_base != NULL) {
 163     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 164   }
 165 }
 166 
 167 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 168   elem->next = *list;
 169   *list = elem;
 170 }
 171 
 172 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 173   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 174   add_chunk_to_list(&_chunk_list, elem);
 175   _chunks_in_chunk_list++;
 176 }
 177 
 178 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 179   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 180   add_chunk_to_list(&_free_list, elem);
 181 }
 182 
 183 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 184   TaskQueueEntryChunk* result = *list;
 185   if (result != NULL) {
 186     *list = (*list)->next;
 187   }
 188   return result;
 189 }
 190 
 191 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 192   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 193   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 194   if (result != NULL) {
 195     _chunks_in_chunk_list--;
 196   }
 197   return result;
 198 }
 199 
 200 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 201   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 202   return remove_chunk_from_list(&_free_list);
 203 }
 204 
 205 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 206   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 207   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 208   // wraparound of _hwm.
 209   if (_hwm >= _chunk_capacity) {
 210     return NULL;
 211   }
 212 
 213   size_t cur_idx = Atomic::fetch_and_add(&_hwm, 1u);
 214   if (cur_idx >= _chunk_capacity) {
 215     return NULL;
 216   }
 217 
 218   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 219   result->next = NULL;
 220   return result;
 221 }
 222 
 223 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 224   // Get a new chunk.
 225   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 226 
 227   if (new_chunk == NULL) {
 228     // Did not get a chunk from the free list. Allocate from backing memory.
 229     new_chunk = allocate_new_chunk();
 230 
 231     if (new_chunk == NULL) {
 232       return false;
 233     }
 234   }
 235 
 236   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 237 
 238   add_chunk_to_chunk_list(new_chunk);
 239 
 240   return true;
 241 }
 242 
 243 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 244   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 245 
 246   if (cur == NULL) {
 247     return false;
 248   }
 249 
 250   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 251 
 252   add_chunk_to_free_list(cur);
 253   return true;
 254 }
 255 
 256 void G1CMMarkStack::set_empty() {
 257   _chunks_in_chunk_list = 0;
 258   _hwm = 0;
 259   _chunk_list = NULL;
 260   _free_list = NULL;
 261 }
 262 
 263 G1CMRootMemRegions::G1CMRootMemRegions(uint const max_regions) :
 264     _root_regions(MemRegion::create_array(max_regions, mtGC)),
 265     _max_regions(max_regions),
 266     _num_root_regions(0),
 267     _claimed_root_regions(0),
 268     _scan_in_progress(false),
 269     _should_abort(false) { }
 270 
 271 G1CMRootMemRegions::~G1CMRootMemRegions() {
 272   MemRegion::destroy_array(_root_regions, _max_regions);
 273 }
 274 
 275 void G1CMRootMemRegions::reset() {
 276   _num_root_regions = 0;
 277 }
 278 
 279 void G1CMRootMemRegions::add(HeapWord* start, HeapWord* end) {
 280   assert_at_safepoint();
 281   size_t idx = Atomic::fetch_and_add(&_num_root_regions, 1u);
 282   assert(idx < _max_regions, "Trying to add more root MemRegions than there is space " SIZE_FORMAT, _max_regions);
 283   assert(start != NULL && end != NULL && start <= end, "Start (" PTR_FORMAT ") should be less or equal to "
 284          "end (" PTR_FORMAT ")", p2i(start), p2i(end));
 285   _root_regions[idx].set_start(start);
 286   _root_regions[idx].set_end(end);
 287 }
 288 
 289 void G1CMRootMemRegions::prepare_for_scan() {
 290   assert(!scan_in_progress(), "pre-condition");
 291 
 292   _scan_in_progress = _num_root_regions > 0;
 293 
 294   _claimed_root_regions = 0;
 295   _should_abort = false;
 296 }
 297 
 298 const MemRegion* G1CMRootMemRegions::claim_next() {
 299   if (_should_abort) {
 300     // If someone has set the should_abort flag, we return NULL to
 301     // force the caller to bail out of their loop.
 302     return NULL;
 303   }
 304 
 305   if (_claimed_root_regions >= _num_root_regions) {
 306     return NULL;
 307   }
 308 
 309   size_t claimed_index = Atomic::fetch_and_add(&_claimed_root_regions, 1u);
 310   if (claimed_index < _num_root_regions) {
 311     return &_root_regions[claimed_index];
 312   }
 313   return NULL;
 314 }
 315 
 316 uint G1CMRootMemRegions::num_root_regions() const {
 317   return (uint)_num_root_regions;
 318 }
 319 
 320 void G1CMRootMemRegions::notify_scan_done() {
 321   MutexLocker x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 322   _scan_in_progress = false;
 323   RootRegionScan_lock->notify_all();
 324 }
 325 
 326 void G1CMRootMemRegions::cancel_scan() {
 327   notify_scan_done();
 328 }
 329 
 330 void G1CMRootMemRegions::scan_finished() {
 331   assert(scan_in_progress(), "pre-condition");
 332 
 333   if (!_should_abort) {
 334     assert(_claimed_root_regions >= num_root_regions(),
 335            "we should have claimed all root regions, claimed " SIZE_FORMAT ", length = %u",
 336            _claimed_root_regions, num_root_regions());
 337   }
 338 
 339   notify_scan_done();
 340 }
 341 
 342 bool G1CMRootMemRegions::wait_until_scan_finished() {
 343   if (!scan_in_progress()) {
 344     return false;
 345   }
 346 
 347   {
 348     MonitorLocker ml(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 349     while (scan_in_progress()) {
 350       ml.wait();
 351     }
 352   }
 353   return true;
 354 }
 355 
 356 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 357                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 358                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 359   // _cm_thread set inside the constructor
 360   _g1h(g1h),
 361 
 362   _mark_bitmap_1(),
 363   _mark_bitmap_2(),
 364   _prev_mark_bitmap(&_mark_bitmap_1),
 365   _next_mark_bitmap(&_mark_bitmap_2),
 366 
 367   _heap(_g1h->reserved_region()),
 368 
 369   _root_regions(_g1h->max_regions()),
 370 
 371   _global_mark_stack(),
 372 
 373   // _finger set in set_non_marking_state
 374 
 375   _worker_id_offset(G1DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 376   _max_num_tasks(ParallelGCThreads),
 377   // _num_active_tasks set in set_non_marking_state()
 378   // _tasks set inside the constructor
 379 
 380   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 381   _terminator((int) _max_num_tasks, _task_queues),
 382 
 383   _first_overflow_barrier_sync(),
 384   _second_overflow_barrier_sync(),
 385 
 386   _has_overflown(false),
 387   _concurrent(false),
 388   _has_aborted(false),
 389   _restart_for_overflow(false),
 390   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 391   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 392 
 393   // _verbose_level set below
 394 
 395   _init_times(),
 396   _remark_times(),
 397   _remark_mark_times(),
 398   _remark_weak_ref_times(),
 399   _cleanup_times(),
 400   _total_cleanup_time(0.0),
 401 
 402   _accum_task_vtime(NULL),
 403 
 404   _concurrent_workers(NULL),
 405   _num_concurrent_workers(0),
 406   _max_concurrent_workers(0),
 407 
 408   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 409   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 410 {
 411   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 412 
 413   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 414   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 415 
 416   // Create & start ConcurrentMark thread.
 417   _cm_thread = new G1ConcurrentMarkThread(this);
 418   if (_cm_thread->osthread() == NULL) {
 419     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 420   }
 421 
 422   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 423   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 424 
 425   _num_concurrent_workers = ConcGCThreads;
 426   _max_concurrent_workers = _num_concurrent_workers;
 427 
 428   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 429   _concurrent_workers->initialize_workers();
 430 
 431   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 432     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 433   }
 434 
 435   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 436   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 437 
 438   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 439   _num_active_tasks = _max_num_tasks;
 440 
 441   for (uint i = 0; i < _max_num_tasks; ++i) {
 442     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 443     task_queue->initialize();
 444     _task_queues->register_queue(i, task_queue);
 445 
 446     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 447 
 448     _accum_task_vtime[i] = 0.0;
 449   }
 450 
 451   reset_at_marking_complete();
 452 }
 453 
 454 void G1ConcurrentMark::reset() {
 455   _has_aborted = false;
 456 
 457   reset_marking_for_restart();
 458 
 459   // Reset all tasks, since different phases will use different number of active
 460   // threads. So, it's easiest to have all of them ready.
 461   for (uint i = 0; i < _max_num_tasks; ++i) {
 462     _tasks[i]->reset(_next_mark_bitmap);
 463   }
 464 
 465   uint max_regions = _g1h->max_regions();
 466   for (uint i = 0; i < max_regions; i++) {
 467     _top_at_rebuild_starts[i] = NULL;
 468     _region_mark_stats[i].clear();
 469   }
 470 }
 471 
 472 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 473   for (uint j = 0; j < _max_num_tasks; ++j) {
 474     _tasks[j]->clear_mark_stats_cache(region_idx);
 475   }
 476   _top_at_rebuild_starts[region_idx] = NULL;
 477   _region_mark_stats[region_idx].clear();
 478 }
 479 
 480 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 481   uint const region_idx = r->hrm_index();
 482   if (r->is_humongous()) {
 483     assert(r->is_starts_humongous(), "Got humongous continues region here");
 484     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 485     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 486       clear_statistics_in_region(j);
 487     }
 488   } else {
 489     clear_statistics_in_region(region_idx);
 490   }
 491 }
 492 
 493 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 494   if (bitmap->is_marked(addr)) {
 495     bitmap->clear(addr);
 496   }
 497 }
 498 
 499 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 500   assert_at_safepoint_on_vm_thread();
 501 
 502   // Need to clear all mark bits of the humongous object.
 503   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 504   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 505 
 506   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 507     return;
 508   }
 509 
 510   // Clear any statistics about the region gathered so far.
 511   clear_statistics(r);
 512 }
 513 
 514 void G1ConcurrentMark::reset_marking_for_restart() {
 515   _global_mark_stack.set_empty();
 516 
 517   // Expand the marking stack, if we have to and if we can.
 518   if (has_overflown()) {
 519     _global_mark_stack.expand();
 520 
 521     uint max_regions = _g1h->max_regions();
 522     for (uint i = 0; i < max_regions; i++) {
 523       _region_mark_stats[i].clear_during_overflow();
 524     }
 525   }
 526 
 527   clear_has_overflown();
 528   _finger = _heap.start();
 529 
 530   for (uint i = 0; i < _max_num_tasks; ++i) {
 531     G1CMTaskQueue* queue = _task_queues->queue(i);
 532     queue->set_empty();
 533   }
 534 }
 535 
 536 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 537   assert(active_tasks <= _max_num_tasks, "we should not have more");
 538 
 539   _num_active_tasks = active_tasks;
 540   // Need to update the three data structures below according to the
 541   // number of active threads for this phase.
 542   _terminator.reset_for_reuse(active_tasks);
 543   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 544   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 545 }
 546 
 547 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 548   set_concurrency(active_tasks);
 549 
 550   _concurrent = concurrent;
 551 
 552   if (!concurrent) {
 553     // At this point we should be in a STW phase, and completed marking.
 554     assert_at_safepoint_on_vm_thread();
 555     assert(out_of_regions(),
 556            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 557            p2i(_finger), p2i(_heap.end()));
 558   }
 559 }
 560 
 561 void G1ConcurrentMark::reset_at_marking_complete() {
 562   // We set the global marking state to some default values when we're
 563   // not doing marking.
 564   reset_marking_for_restart();
 565   _num_active_tasks = 0;
 566 }
 567 
 568 G1ConcurrentMark::~G1ConcurrentMark() {
 569   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 570   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 571   // The G1ConcurrentMark instance is never freed.
 572   ShouldNotReachHere();
 573 }
 574 
 575 class G1ClearBitMapTask : public AbstractGangTask {
 576 public:
 577   static size_t chunk_size() { return M; }
 578 
 579 private:
 580   // Heap region closure used for clearing the given mark bitmap.
 581   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 582   private:
 583     G1CMBitMap* _bitmap;
 584     G1ConcurrentMark* _cm;
 585   public:
 586     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _bitmap(bitmap), _cm(cm) {
 587     }
 588 
 589     virtual bool do_heap_region(HeapRegion* r) {
 590       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 591 
 592       HeapWord* cur = r->bottom();
 593       HeapWord* const end = r->end();
 594 
 595       while (cur < end) {
 596         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 597         _bitmap->clear_range(mr);
 598 
 599         cur += chunk_size_in_words;
 600 
 601         // Abort iteration if after yielding the marking has been aborted.
 602         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 603           return true;
 604         }
 605         // Repeat the asserts from before the start of the closure. We will do them
 606         // as asserts here to minimize their overhead on the product. However, we
 607         // will have them as guarantees at the beginning / end of the bitmap
 608         // clearing to get some checking in the product.
 609         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 610         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 611       }
 612       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 613 
 614       return false;
 615     }
 616   };
 617 
 618   G1ClearBitmapHRClosure _cl;
 619   HeapRegionClaimer _hr_claimer;
 620   bool _suspendible; // If the task is suspendible, workers must join the STS.
 621 
 622 public:
 623   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 624     AbstractGangTask("G1 Clear Bitmap"),
 625     _cl(bitmap, suspendible ? cm : NULL),
 626     _hr_claimer(n_workers),
 627     _suspendible(suspendible)
 628   { }
 629 
 630   void work(uint worker_id) {
 631     SuspendibleThreadSetJoiner sts_join(_suspendible);
 632     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 633   }
 634 
 635   bool is_complete() {
 636     return _cl.is_complete();
 637   }
 638 };
 639 
 640 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 641   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 642 
 643   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 644   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 645 
 646   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 647 
 648   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 649 
 650   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 651   workers->run_task(&cl, num_workers);
 652   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 653 }
 654 
 655 void G1ConcurrentMark::cleanup_for_next_mark() {
 656   // Make sure that the concurrent mark thread looks to still be in
 657   // the current cycle.
 658   guarantee(cm_thread()->during_cycle(), "invariant");
 659 
 660   // We are finishing up the current cycle by clearing the next
 661   // marking bitmap and getting it ready for the next cycle. During
 662   // this time no other cycle can start. So, let's make sure that this
 663   // is the case.
 664   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 665 
 666   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 667 
 668   // Repeat the asserts from above.
 669   guarantee(cm_thread()->during_cycle(), "invariant");
 670   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 671 }
 672 
 673 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 674   assert_at_safepoint_on_vm_thread();
 675   clear_bitmap(_prev_mark_bitmap, workers, false);
 676 }
 677 
 678 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 679 public:
 680   bool do_heap_region(HeapRegion* r) {
 681     r->note_start_of_marking();
 682     return false;
 683   }
 684 };
 685 
 686 void G1ConcurrentMark::pre_concurrent_start() {
 687   assert_at_safepoint_on_vm_thread();
 688 
 689   // Reset marking state.
 690   reset();
 691 
 692   // For each region note start of marking.
 693   NoteStartOfMarkHRClosure startcl;
 694   _g1h->heap_region_iterate(&startcl);
 695 
 696   _root_regions.reset();
 697 }
 698 
 699 
 700 void G1ConcurrentMark::post_concurrent_start() {
 701   // Start Concurrent Marking weak-reference discovery.
 702   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 703   // enable ("weak") refs discovery
 704   rp->enable_discovery();
 705   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 706 
 707   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
 708   // This is the start of  the marking cycle, we're expected all
 709   // threads to have SATB queues with active set to false.
 710   satb_mq_set.set_active_all_threads(true, /* new active value */
 711                                      false /* expected_active */);
 712 
 713   _root_regions.prepare_for_scan();
 714 
 715   // update_g1_committed() will be called at the end of an evac pause
 716   // when marking is on. So, it's also called at the end of the
 717   // concurrent start pause to update the heap end, if the heap expands
 718   // during it. No need to call it here.
 719 }
 720 
 721 /*
 722  * Notice that in the next two methods, we actually leave the STS
 723  * during the barrier sync and join it immediately afterwards. If we
 724  * do not do this, the following deadlock can occur: one thread could
 725  * be in the barrier sync code, waiting for the other thread to also
 726  * sync up, whereas another one could be trying to yield, while also
 727  * waiting for the other threads to sync up too.
 728  *
 729  * Note, however, that this code is also used during remark and in
 730  * this case we should not attempt to leave / enter the STS, otherwise
 731  * we'll either hit an assert (debug / fastdebug) or deadlock
 732  * (product). So we should only leave / enter the STS if we are
 733  * operating concurrently.
 734  *
 735  * Because the thread that does the sync barrier has left the STS, it
 736  * is possible to be suspended for a Full GC or an evacuation pause
 737  * could occur. This is actually safe, since the entering the sync
 738  * barrier is one of the last things do_marking_step() does, and it
 739  * doesn't manipulate any data structures afterwards.
 740  */
 741 
 742 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 743   bool barrier_aborted;
 744   {
 745     SuspendibleThreadSetLeaver sts_leave(concurrent());
 746     barrier_aborted = !_first_overflow_barrier_sync.enter();
 747   }
 748 
 749   // at this point everyone should have synced up and not be doing any
 750   // more work
 751 
 752   if (barrier_aborted) {
 753     // If the barrier aborted we ignore the overflow condition and
 754     // just abort the whole marking phase as quickly as possible.
 755     return;
 756   }
 757 }
 758 
 759 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 760   SuspendibleThreadSetLeaver sts_leave(concurrent());
 761   _second_overflow_barrier_sync.enter();
 762 
 763   // at this point everything should be re-initialized and ready to go
 764 }
 765 
 766 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 767   G1ConcurrentMark*     _cm;
 768 
 769 public:
 770   void work(uint worker_id) {
 771     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 772     ResourceMark rm;
 773 
 774     double start_vtime = os::elapsedVTime();
 775 
 776     {
 777       SuspendibleThreadSetJoiner sts_join;
 778 
 779       assert(worker_id < _cm->active_tasks(), "invariant");
 780 
 781       G1CMTask* task = _cm->task(worker_id);
 782       task->record_start_time();
 783       if (!_cm->has_aborted()) {
 784         do {
 785           task->do_marking_step(G1ConcMarkStepDurationMillis,
 786                                 true  /* do_termination */,
 787                                 false /* is_serial*/);
 788 
 789           _cm->do_yield_check();
 790         } while (!_cm->has_aborted() && task->has_aborted());
 791       }
 792       task->record_end_time();
 793       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 794     }
 795 
 796     double end_vtime = os::elapsedVTime();
 797     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 798   }
 799 
 800   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 801       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 802 
 803   ~G1CMConcurrentMarkingTask() { }
 804 };
 805 
 806 uint G1ConcurrentMark::calc_active_marking_workers() {
 807   uint result = 0;
 808   if (!UseDynamicNumberOfGCThreads || !FLAG_IS_DEFAULT(ConcGCThreads)) {
 809     result = _max_concurrent_workers;
 810   } else {
 811     result =
 812       WorkerPolicy::calc_default_active_workers(_max_concurrent_workers,
 813                                                 1, /* Minimum workers */
 814                                                 _num_concurrent_workers,
 815                                                 Threads::number_of_non_daemon_threads());
 816     // Don't scale the result down by scale_concurrent_workers() because
 817     // that scaling has already gone into "_max_concurrent_workers".
 818   }
 819   assert(result > 0 && result <= _max_concurrent_workers,
 820          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 821          _max_concurrent_workers, result);
 822   return result;
 823 }
 824 
 825 void G1ConcurrentMark::scan_root_region(const MemRegion* region, uint worker_id) {
 826 #ifdef ASSERT
 827   HeapWord* last = region->last();
 828   HeapRegion* hr = _g1h->heap_region_containing(last);
 829   assert(hr->is_old() || hr->next_top_at_mark_start() == hr->bottom(),
 830          "Root regions must be old or survivor/eden but region %u is %s", hr->hrm_index(), hr->get_type_str());
 831   assert(hr->next_top_at_mark_start() == region->start(),
 832          "MemRegion start should be equal to nTAMS");
 833 #endif
 834 
 835   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 836 
 837   const uintx interval = PrefetchScanIntervalInBytes;
 838   HeapWord* curr = region->start();
 839   const HeapWord* end = region->end();
 840   while (curr < end) {
 841     Prefetch::read(curr, interval);
 842     oop obj = oop(curr);
 843     int size = obj->oop_iterate_size(&cl);
 844     assert(size == obj->size(), "sanity");
 845     curr += size;
 846   }
 847 }
 848 
 849 class G1CMRootRegionScanTask : public AbstractGangTask {
 850   G1ConcurrentMark* _cm;
 851 public:
 852   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 853     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 854 
 855   void work(uint worker_id) {
 856     assert(Thread::current()->is_ConcurrentGC_thread(),
 857            "this should only be done by a conc GC thread");
 858 
 859     G1CMRootMemRegions* root_regions = _cm->root_regions();
 860     const MemRegion* region = root_regions->claim_next();
 861     while (region != NULL) {
 862       _cm->scan_root_region(region, worker_id);
 863       region = root_regions->claim_next();
 864     }
 865   }
 866 };
 867 
 868 void G1ConcurrentMark::scan_root_regions() {
 869   // scan_in_progress() will have been set to true only if there was
 870   // at least one root region to scan. So, if it's false, we
 871   // should not attempt to do any further work.
 872   if (root_regions()->scan_in_progress()) {
 873     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 874 
 875     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 876                                    // We distribute work on a per-region basis, so starting
 877                                    // more threads than that is useless.
 878                                    root_regions()->num_root_regions());
 879     assert(_num_concurrent_workers <= _max_concurrent_workers,
 880            "Maximum number of marking threads exceeded");
 881 
 882     G1CMRootRegionScanTask task(this);
 883     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 884                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 885     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 886 
 887     // It's possible that has_aborted() is true here without actually
 888     // aborting the survivor scan earlier. This is OK as it's
 889     // mainly used for sanity checking.
 890     root_regions()->scan_finished();
 891   }
 892 }
 893 
 894 void G1ConcurrentMark::concurrent_cycle_start() {
 895   _gc_timer_cm->register_gc_start();
 896 
 897   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 898 
 899   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 900 }
 901 
 902 void G1ConcurrentMark::concurrent_cycle_end() {
 903   _g1h->collector_state()->set_clearing_next_bitmap(false);
 904 
 905   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 906 
 907   if (has_aborted()) {
 908     log_info(gc, marking)("Concurrent Mark Abort");
 909     _gc_tracer_cm->report_concurrent_mode_failure();
 910   }
 911 
 912   _gc_timer_cm->register_gc_end();
 913 
 914   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 915 }
 916 
 917 void G1ConcurrentMark::mark_from_roots() {
 918   _restart_for_overflow = false;
 919 
 920   _num_concurrent_workers = calc_active_marking_workers();
 921 
 922   uint active_workers = MAX2(1U, _num_concurrent_workers);
 923 
 924   // Setting active workers is not guaranteed since fewer
 925   // worker threads may currently exist and more may not be
 926   // available.
 927   active_workers = _concurrent_workers->update_active_workers(active_workers);
 928   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 929 
 930   // Parallel task terminator is set in "set_concurrency_and_phase()"
 931   set_concurrency_and_phase(active_workers, true /* concurrent */);
 932 
 933   G1CMConcurrentMarkingTask marking_task(this);
 934   _concurrent_workers->run_task(&marking_task);
 935   print_stats();
 936 }
 937 
 938 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 939   G1HeapVerifier* verifier = _g1h->verifier();
 940 
 941   verifier->verify_region_sets_optional();
 942 
 943   if (VerifyDuringGC) {
 944     GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm);
 945 
 946     size_t const BufLen = 512;
 947     char buffer[BufLen];
 948 
 949     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
 950     verifier->verify(type, vo, buffer);
 951   }
 952 
 953   verifier->check_bitmaps(caller);
 954 }
 955 
 956 class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask {
 957   G1CollectedHeap* _g1h;
 958   G1ConcurrentMark* _cm;
 959   HeapRegionClaimer _hrclaimer;
 960   uint volatile _total_selected_for_rebuild;
 961 
 962   G1PrintRegionLivenessInfoClosure _cl;
 963 
 964   class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
 965     G1CollectedHeap* _g1h;
 966     G1ConcurrentMark* _cm;
 967 
 968     G1PrintRegionLivenessInfoClosure* _cl;
 969 
 970     uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
 971 
 972     void update_remset_before_rebuild(HeapRegion* hr) {
 973       G1RemSetTrackingPolicy* tracking_policy = _g1h->policy()->remset_tracker();
 974 
 975       bool selected_for_rebuild;
 976       if (hr->is_humongous()) {
 977         bool const is_live = _cm->liveness(hr->humongous_start_region()->hrm_index()) > 0;
 978         selected_for_rebuild = tracking_policy->update_humongous_before_rebuild(hr, is_live);
 979       } else {
 980         size_t const live_bytes = _cm->liveness(hr->hrm_index());
 981         selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
 982       }
 983       if (selected_for_rebuild) {
 984         _num_regions_selected_for_rebuild++;
 985       }
 986       _cm->update_top_at_rebuild_start(hr);
 987     }
 988 
 989     // Distribute the given words across the humongous object starting with hr and
 990     // note end of marking.
 991     void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
 992       uint const region_idx = hr->hrm_index();
 993       size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size();
 994       uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words);
 995 
 996       // "Distributing" zero words means that we only note end of marking for these
 997       // regions.
 998       assert(marked_words == 0 || obj_size_in_words == marked_words,
 999              "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT,
1000              obj_size_in_words, marked_words);
1001 
1002       for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1003         HeapRegion* const r = _g1h->region_at(i);
1004         size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1005 
1006         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)",
1007                                words_to_add, i, r->get_type_str());
1008         add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize);
1009         marked_words -= words_to_add;
1010       }
1011       assert(marked_words == 0,
1012              SIZE_FORMAT " words left after distributing space across %u regions",
1013              marked_words, num_regions_in_humongous);
1014     }
1015 
1016     void update_marked_bytes(HeapRegion* hr) {
1017       uint const region_idx = hr->hrm_index();
1018       size_t const marked_words = _cm->liveness(region_idx);
1019       // The marking attributes the object's size completely to the humongous starts
1020       // region. We need to distribute this value across the entire set of regions a
1021       // humongous object spans.
1022       if (hr->is_humongous()) {
1023         assert(hr->is_starts_humongous() || marked_words == 0,
1024                "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1025                marked_words, region_idx, hr->get_type_str());
1026         if (hr->is_starts_humongous()) {
1027           distribute_marked_bytes(hr, marked_words);
1028         }
1029       } else {
1030         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1031         add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize);
1032       }
1033     }
1034 
1035     void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) {
1036       hr->add_to_marked_bytes(marked_bytes);
1037       _cl->do_heap_region(hr);
1038       hr->note_end_of_marking();
1039     }
1040 
1041   public:
1042     G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) :
1043       _g1h(g1h), _cm(cm), _cl(cl), _num_regions_selected_for_rebuild(0) { }
1044 
1045     virtual bool do_heap_region(HeapRegion* r) {
1046       update_remset_before_rebuild(r);
1047       update_marked_bytes(r);
1048 
1049       return false;
1050     }
1051 
1052     uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1053   };
1054 
1055 public:
1056   G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) :
1057     AbstractGangTask("G1 Update RemSet Tracking Before Rebuild"),
1058     _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking") { }
1059 
1060   virtual void work(uint worker_id) {
1061     G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl);
1062     _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id);
1063     Atomic::add(&_total_selected_for_rebuild, update_cl.num_selected_for_rebuild());
1064   }
1065 
1066   uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
1067 
1068   // Number of regions for which roughly one thread should be spawned for this work.
1069   static const uint RegionsPerThread = 384;
1070 };
1071 
1072 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1073   G1CollectedHeap* _g1h;
1074 public:
1075   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1076 
1077   virtual bool do_heap_region(HeapRegion* r) {
1078     _g1h->policy()->remset_tracker()->update_after_rebuild(r);
1079     return false;
1080   }
1081 };
1082 
1083 void G1ConcurrentMark::remark() {
1084   assert_at_safepoint_on_vm_thread();
1085 
1086   // If a full collection has happened, we should not continue. However we might
1087   // have ended up here as the Remark VM operation has been scheduled already.
1088   if (has_aborted()) {
1089     return;
1090   }
1091 
1092   G1Policy* policy = _g1h->policy();
1093   policy->record_concurrent_mark_remark_start();
1094 
1095   double start = os::elapsedTime();
1096 
1097   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1098 
1099   {
1100     GCTraceTime(Debug, gc, phases) debug("Finalize Marking", _gc_timer_cm);
1101     finalize_marking();
1102   }
1103 
1104   double mark_work_end = os::elapsedTime();
1105 
1106   bool const mark_finished = !has_overflown();
1107   if (mark_finished) {
1108     weak_refs_work(false /* clear_all_soft_refs */);
1109 
1110     SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1111     // We're done with marking.
1112     // This is the end of the marking cycle, we're expected all
1113     // threads to have SATB queues with active set to true.
1114     satb_mq_set.set_active_all_threads(false, /* new active value */
1115                                        true /* expected_active */);
1116 
1117     {
1118       GCTraceTime(Debug, gc, phases) debug("Flush Task Caches", _gc_timer_cm);
1119       flush_all_task_caches();
1120     }
1121 
1122     // Install newly created mark bitmap as "prev".
1123     swap_mark_bitmaps();
1124     {
1125       GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1126 
1127       uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) /
1128                                        G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread;
1129       uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity);
1130 
1131       G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers);
1132       log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap", cl.name(), num_workers, _g1h->num_regions());
1133       _g1h->workers()->run_task(&cl, num_workers);
1134 
1135       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1136                                       _g1h->num_regions(), cl.total_selected_for_rebuild());
1137     }
1138     {
1139       GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions", _gc_timer_cm);
1140       reclaim_empty_regions();
1141     }
1142 
1143     // Clean out dead classes
1144     if (ClassUnloadingWithConcurrentMark) {
1145       GCTraceTime(Debug, gc, phases) debug("Purge Metaspace", _gc_timer_cm);
1146       ClassLoaderDataGraph::purge();
1147     }
1148 
1149     _g1h->resize_heap_if_necessary();
1150 
1151     compute_new_sizes();
1152 
1153     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1154 
1155     assert(!restart_for_overflow(), "sanity");
1156     // Completely reset the marking state since marking completed
1157     reset_at_marking_complete();
1158   } else {
1159     // We overflowed.  Restart concurrent marking.
1160     _restart_for_overflow = true;
1161 
1162     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1163 
1164     // Clear the marking state because we will be restarting
1165     // marking due to overflowing the global mark stack.
1166     reset_marking_for_restart();
1167   }
1168 
1169   {
1170     GCTraceTime(Debug, gc, phases) debug("Report Object Count", _gc_timer_cm);
1171     report_object_count(mark_finished);
1172   }
1173 
1174   // Statistics
1175   double now = os::elapsedTime();
1176   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1177   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1178   _remark_times.add((now - start) * 1000.0);
1179 
1180   policy->record_concurrent_mark_remark_end();
1181 }
1182 
1183 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1184   // Per-region work during the Cleanup pause.
1185   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1186     G1CollectedHeap* _g1h;
1187     size_t _freed_bytes;
1188     FreeRegionList* _local_cleanup_list;
1189     uint _old_regions_removed;
1190     uint _humongous_regions_removed;
1191 
1192   public:
1193     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1194                                  FreeRegionList* local_cleanup_list) :
1195       _g1h(g1h),
1196       _freed_bytes(0),
1197       _local_cleanup_list(local_cleanup_list),
1198       _old_regions_removed(0),
1199       _humongous_regions_removed(0) { }
1200 
1201     size_t freed_bytes() { return _freed_bytes; }
1202     const uint old_regions_removed() { return _old_regions_removed; }
1203     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1204 
1205     bool do_heap_region(HeapRegion *hr) {
1206       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1207         _freed_bytes += hr->used();
1208         hr->set_containing_set(NULL);
1209         if (hr->is_humongous()) {
1210           _humongous_regions_removed++;
1211           _g1h->free_humongous_region(hr, _local_cleanup_list);
1212         } else {
1213           _old_regions_removed++;
1214           _g1h->free_region(hr, _local_cleanup_list);
1215         }
1216         hr->clear_cardtable();
1217         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1218         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1219       }
1220 
1221       return false;
1222     }
1223   };
1224 
1225   G1CollectedHeap* _g1h;
1226   FreeRegionList* _cleanup_list;
1227   HeapRegionClaimer _hrclaimer;
1228 
1229 public:
1230   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1231     AbstractGangTask("G1 Cleanup"),
1232     _g1h(g1h),
1233     _cleanup_list(cleanup_list),
1234     _hrclaimer(n_workers) {
1235   }
1236 
1237   void work(uint worker_id) {
1238     FreeRegionList local_cleanup_list("Local Cleanup List");
1239     G1ReclaimEmptyRegionsClosure cl(_g1h, &local_cleanup_list);
1240     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1241     assert(cl.is_complete(), "Shouldn't have aborted!");
1242 
1243     // Now update the old/humongous region sets
1244     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1245     {
1246       MutexLocker x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1247       _g1h->decrement_summary_bytes(cl.freed_bytes());
1248 
1249       _cleanup_list->add_ordered(&local_cleanup_list);
1250       assert(local_cleanup_list.is_empty(), "post-condition");
1251     }
1252   }
1253 };
1254 
1255 void G1ConcurrentMark::reclaim_empty_regions() {
1256   WorkGang* workers = _g1h->workers();
1257   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1258 
1259   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1260   workers->run_task(&cl);
1261 
1262   if (!empty_regions_list.is_empty()) {
1263     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1264     // Now print the empty regions list.
1265     G1HRPrinter* hrp = _g1h->hr_printer();
1266     if (hrp->is_active()) {
1267       FreeRegionListIterator iter(&empty_regions_list);
1268       while (iter.more_available()) {
1269         HeapRegion* hr = iter.get_next();
1270         hrp->cleanup(hr);
1271       }
1272     }
1273     // And actually make them available.
1274     _g1h->prepend_to_freelist(&empty_regions_list);
1275   }
1276 }
1277 
1278 void G1ConcurrentMark::compute_new_sizes() {
1279   MetaspaceGC::compute_new_size();
1280 
1281   // Cleanup will have freed any regions completely full of garbage.
1282   // Update the soft reference policy with the new heap occupancy.
1283   Universe::update_heap_info_at_gc();
1284 
1285   // We reclaimed old regions so we should calculate the sizes to make
1286   // sure we update the old gen/space data.
1287   _g1h->g1mm()->update_sizes();
1288 }
1289 
1290 void G1ConcurrentMark::cleanup() {
1291   assert_at_safepoint_on_vm_thread();
1292 
1293   // If a full collection has happened, we shouldn't do this.
1294   if (has_aborted()) {
1295     return;
1296   }
1297 
1298   G1Policy* policy = _g1h->policy();
1299   policy->record_concurrent_mark_cleanup_start();
1300 
1301   double start = os::elapsedTime();
1302 
1303   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1304 
1305   {
1306     GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1307     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1308     _g1h->heap_region_iterate(&cl);
1309   }
1310 
1311   if (log_is_enabled(Trace, gc, liveness)) {
1312     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1313     _g1h->heap_region_iterate(&cl);
1314   }
1315 
1316   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1317 
1318   // We need to make this be a "collection" so any collection pause that
1319   // races with it goes around and waits for Cleanup to finish.
1320   _g1h->increment_total_collections();
1321 
1322   // Local statistics
1323   double recent_cleanup_time = (os::elapsedTime() - start);
1324   _total_cleanup_time += recent_cleanup_time;
1325   _cleanup_times.add(recent_cleanup_time);
1326 
1327   {
1328     GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1329     policy->record_concurrent_mark_cleanup_end();
1330   }
1331 }
1332 
1333 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1334 // Uses the G1CMTask associated with a worker thread (for serial reference
1335 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1336 // trace referent objects.
1337 //
1338 // Using the G1CMTask and embedded local queues avoids having the worker
1339 // threads operating on the global mark stack. This reduces the risk
1340 // of overflowing the stack - which we would rather avoid at this late
1341 // state. Also using the tasks' local queues removes the potential
1342 // of the workers interfering with each other that could occur if
1343 // operating on the global stack.
1344 
1345 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1346   G1ConcurrentMark* _cm;
1347   G1CMTask*         _task;
1348   uint              _ref_counter_limit;
1349   uint              _ref_counter;
1350   bool              _is_serial;
1351 public:
1352   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1353     _cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval),
1354     _ref_counter(_ref_counter_limit), _is_serial(is_serial) {
1355     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1356   }
1357 
1358   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1359   virtual void do_oop(      oop* p) { do_oop_work(p); }
1360 
1361   template <class T> void do_oop_work(T* p) {
1362     if (_cm->has_overflown()) {
1363       return;
1364     }
1365     if (!_task->deal_with_reference(p)) {
1366       // We did not add anything to the mark bitmap (or mark stack), so there is
1367       // no point trying to drain it.
1368       return;
1369     }
1370     _ref_counter--;
1371 
1372     if (_ref_counter == 0) {
1373       // We have dealt with _ref_counter_limit references, pushing them
1374       // and objects reachable from them on to the local stack (and
1375       // possibly the global stack). Call G1CMTask::do_marking_step() to
1376       // process these entries.
1377       //
1378       // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1379       // there's nothing more to do (i.e. we're done with the entries that
1380       // were pushed as a result of the G1CMTask::deal_with_reference() calls
1381       // above) or we overflow.
1382       //
1383       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1384       // flag while there may still be some work to do. (See the comment at
1385       // the beginning of G1CMTask::do_marking_step() for those conditions -
1386       // one of which is reaching the specified time target.) It is only
1387       // when G1CMTask::do_marking_step() returns without setting the
1388       // has_aborted() flag that the marking step has completed.
1389       do {
1390         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1391         _task->do_marking_step(mark_step_duration_ms,
1392                                false      /* do_termination */,
1393                                _is_serial);
1394       } while (_task->has_aborted() && !_cm->has_overflown());
1395       _ref_counter = _ref_counter_limit;
1396     }
1397   }
1398 };
1399 
1400 // 'Drain' oop closure used by both serial and parallel reference processing.
1401 // Uses the G1CMTask associated with a given worker thread (for serial
1402 // reference processing the G1CMtask for worker 0 is used). Calls the
1403 // do_marking_step routine, with an unbelievably large timeout value,
1404 // to drain the marking data structures of the remaining entries
1405 // added by the 'keep alive' oop closure above.
1406 
1407 class G1CMDrainMarkingStackClosure : public VoidClosure {
1408   G1ConcurrentMark* _cm;
1409   G1CMTask*         _task;
1410   bool              _is_serial;
1411  public:
1412   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1413     _cm(cm), _task(task), _is_serial(is_serial) {
1414     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1415   }
1416 
1417   void do_void() {
1418     do {
1419       // We call G1CMTask::do_marking_step() to completely drain the local
1420       // and global marking stacks of entries pushed by the 'keep alive'
1421       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1422       //
1423       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1424       // if there's nothing more to do (i.e. we've completely drained the
1425       // entries that were pushed as a a result of applying the 'keep alive'
1426       // closure to the entries on the discovered ref lists) or we overflow
1427       // the global marking stack.
1428       //
1429       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1430       // flag while there may still be some work to do. (See the comment at
1431       // the beginning of G1CMTask::do_marking_step() for those conditions -
1432       // one of which is reaching the specified time target.) It is only
1433       // when G1CMTask::do_marking_step() returns without setting the
1434       // has_aborted() flag that the marking step has completed.
1435 
1436       _task->do_marking_step(1000000000.0 /* something very large */,
1437                              true         /* do_termination */,
1438                              _is_serial);
1439     } while (_task->has_aborted() && !_cm->has_overflown());
1440   }
1441 };
1442 
1443 // Implementation of AbstractRefProcTaskExecutor for parallel
1444 // reference processing at the end of G1 concurrent marking
1445 
1446 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1447 private:
1448   G1CollectedHeap*  _g1h;
1449   G1ConcurrentMark* _cm;
1450   WorkGang*         _workers;
1451   uint              _active_workers;
1452 
1453 public:
1454   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1455                           G1ConcurrentMark* cm,
1456                           WorkGang* workers,
1457                           uint n_workers) :
1458     _g1h(g1h), _cm(cm),
1459     _workers(workers), _active_workers(n_workers) { }
1460 
1461   virtual void execute(ProcessTask& task, uint ergo_workers);
1462 };
1463 
1464 class G1CMRefProcTaskProxy : public AbstractGangTask {
1465   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1466   ProcessTask&      _proc_task;
1467   G1CollectedHeap*  _g1h;
1468   G1ConcurrentMark* _cm;
1469 
1470 public:
1471   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1472                        G1CollectedHeap* g1h,
1473                        G1ConcurrentMark* cm) :
1474     AbstractGangTask("Process reference objects in parallel"),
1475     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1476     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1477     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1478   }
1479 
1480   virtual void work(uint worker_id) {
1481     ResourceMark rm;
1482     HandleMark hm;
1483     G1CMTask* task = _cm->task(worker_id);
1484     G1CMIsAliveClosure g1_is_alive(_g1h);
1485     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1486     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1487 
1488     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1489   }
1490 };
1491 
1492 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
1493   assert(_workers != NULL, "Need parallel worker threads.");
1494   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1495   assert(_workers->active_workers() >= ergo_workers,
1496          "Ergonomically chosen workers(%u) should be less than or equal to active workers(%u)",
1497          ergo_workers, _workers->active_workers());
1498 
1499   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1500 
1501   // We need to reset the concurrency level before each
1502   // proxy task execution, so that the termination protocol
1503   // and overflow handling in G1CMTask::do_marking_step() knows
1504   // how many workers to wait for.
1505   _cm->set_concurrency(ergo_workers);
1506   _workers->run_task(&proc_task_proxy, ergo_workers);
1507 }
1508 
1509 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1510   ResourceMark rm;
1511   HandleMark   hm;
1512 
1513   // Is alive closure.
1514   G1CMIsAliveClosure g1_is_alive(_g1h);
1515 
1516   // Inner scope to exclude the cleaning of the string table
1517   // from the displayed time.
1518   {
1519     GCTraceTime(Debug, gc, phases) debug("Reference Processing", _gc_timer_cm);
1520 
1521     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1522 
1523     // See the comment in G1CollectedHeap::ref_processing_init()
1524     // about how reference processing currently works in G1.
1525 
1526     // Set the soft reference policy
1527     rp->setup_policy(clear_all_soft_refs);
1528     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1529 
1530     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1531     // in serial reference processing. Note these closures are also
1532     // used for serially processing (by the the current thread) the
1533     // JNI references during parallel reference processing.
1534     //
1535     // These closures do not need to synchronize with the worker
1536     // threads involved in parallel reference processing as these
1537     // instances are executed serially by the current thread (e.g.
1538     // reference processing is not multi-threaded and is thus
1539     // performed by the current thread instead of a gang worker).
1540     //
1541     // The gang tasks involved in parallel reference processing create
1542     // their own instances of these closures, which do their own
1543     // synchronization among themselves.
1544     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1545     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1546 
1547     // We need at least one active thread. If reference processing
1548     // is not multi-threaded we use the current (VMThread) thread,
1549     // otherwise we use the work gang from the G1CollectedHeap and
1550     // we utilize all the worker threads we can.
1551     bool processing_is_mt = rp->processing_is_mt();
1552     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1553     active_workers = clamp(active_workers, 1u, _max_num_tasks);
1554 
1555     // Parallel processing task executor.
1556     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1557                                               _g1h->workers(), active_workers);
1558     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1559 
1560     // Set the concurrency level. The phase was already set prior to
1561     // executing the remark task.
1562     set_concurrency(active_workers);
1563 
1564     // Set the degree of MT processing here.  If the discovery was done MT,
1565     // the number of threads involved during discovery could differ from
1566     // the number of active workers.  This is OK as long as the discovered
1567     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1568     rp->set_active_mt_degree(active_workers);
1569 
1570     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
1571 
1572     // Process the weak references.
1573     const ReferenceProcessorStats& stats =
1574         rp->process_discovered_references(&g1_is_alive,
1575                                           &g1_keep_alive,
1576                                           &g1_drain_mark_stack,
1577                                           executor,
1578                                           &pt);
1579     _gc_tracer_cm->report_gc_reference_stats(stats);
1580     pt.print_all_references();
1581 
1582     // The do_oop work routines of the keep_alive and drain_marking_stack
1583     // oop closures will set the has_overflown flag if we overflow the
1584     // global marking stack.
1585 
1586     assert(has_overflown() || _global_mark_stack.is_empty(),
1587            "Mark stack should be empty (unless it has overflown)");
1588 
1589     assert(rp->num_queues() == active_workers, "why not");
1590 
1591     rp->verify_no_references_recorded();
1592     assert(!rp->discovery_enabled(), "Post condition");
1593   }
1594 
1595   if (has_overflown()) {
1596     // We can not trust g1_is_alive and the contents of the heap if the marking stack
1597     // overflowed while processing references. Exit the VM.
1598     fatal("Overflow during reference processing, can not continue. Please "
1599           "increase MarkStackSizeMax (current value: " SIZE_FORMAT ") and "
1600           "restart.", MarkStackSizeMax);
1601     return;
1602   }
1603 
1604   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1605 
1606   {
1607     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1608     WeakProcessor::weak_oops_do(_g1h->workers(), &g1_is_alive, &do_nothing_cl, 1);
1609   }
1610 
1611   // Unload Klasses, String, Code Cache, etc.
1612   if (ClassUnloadingWithConcurrentMark) {
1613     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1614     bool purged_classes = SystemDictionary::do_unloading(_gc_timer_cm);
1615     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1616   } else if (StringDedup::is_enabled()) {
1617     GCTraceTime(Debug, gc, phases) debug("String Deduplication", _gc_timer_cm);
1618     _g1h->string_dedup_cleaning(&g1_is_alive, NULL);
1619   }
1620 }
1621 
1622 class G1PrecleanYieldClosure : public YieldClosure {
1623   G1ConcurrentMark* _cm;
1624 
1625 public:
1626   G1PrecleanYieldClosure(G1ConcurrentMark* cm) : _cm(cm) { }
1627 
1628   virtual bool should_return() {
1629     return _cm->has_aborted();
1630   }
1631 
1632   virtual bool should_return_fine_grain() {
1633     _cm->do_yield_check();
1634     return _cm->has_aborted();
1635   }
1636 };
1637 
1638 void G1ConcurrentMark::preclean() {
1639   assert(G1UseReferencePrecleaning, "Precleaning must be enabled.");
1640 
1641   SuspendibleThreadSetJoiner joiner;
1642 
1643   G1CMKeepAliveAndDrainClosure keep_alive(this, task(0), true /* is_serial */);
1644   G1CMDrainMarkingStackClosure drain_mark_stack(this, task(0), true /* is_serial */);
1645 
1646   set_concurrency_and_phase(1, true);
1647 
1648   G1PrecleanYieldClosure yield_cl(this);
1649 
1650   ReferenceProcessor* rp = _g1h->ref_processor_cm();
1651   // Precleaning is single threaded. Temporarily disable MT discovery.
1652   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
1653   rp->preclean_discovered_references(rp->is_alive_non_header(),
1654                                      &keep_alive,
1655                                      &drain_mark_stack,
1656                                      &yield_cl,
1657                                      _gc_timer_cm);
1658 }
1659 
1660 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1661 // the prev bitmap determining liveness.
1662 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1663   G1CollectedHeap* _g1h;
1664 public:
1665   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1666 
1667   bool do_object_b(oop obj) {
1668     return obj != NULL &&
1669            (!_g1h->is_in_g1_reserved(obj) || !_g1h->is_obj_dead(obj));
1670   }
1671 };
1672 
1673 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1674   // Depending on the completion of the marking liveness needs to be determined
1675   // using either the next or prev bitmap.
1676   if (mark_completed) {
1677     G1ObjectCountIsAliveClosure is_alive(_g1h);
1678     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1679   } else {
1680     G1CMIsAliveClosure is_alive(_g1h);
1681     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1682   }
1683 }
1684 
1685 
1686 void G1ConcurrentMark::swap_mark_bitmaps() {
1687   G1CMBitMap* temp = _prev_mark_bitmap;
1688   _prev_mark_bitmap = _next_mark_bitmap;
1689   _next_mark_bitmap = temp;
1690   _g1h->collector_state()->set_clearing_next_bitmap(true);
1691 }
1692 
1693 // Closure for marking entries in SATB buffers.
1694 class G1CMSATBBufferClosure : public SATBBufferClosure {
1695 private:
1696   G1CMTask* _task;
1697   G1CollectedHeap* _g1h;
1698 
1699   // This is very similar to G1CMTask::deal_with_reference, but with
1700   // more relaxed requirements for the argument, so this must be more
1701   // circumspect about treating the argument as an object.
1702   void do_entry(void* entry) const {
1703     _task->increment_refs_reached();
1704     oop const obj = static_cast<oop>(entry);
1705     _task->make_reference_grey(obj);
1706   }
1707 
1708 public:
1709   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1710     : _task(task), _g1h(g1h) { }
1711 
1712   virtual void do_buffer(void** buffer, size_t size) {
1713     for (size_t i = 0; i < size; ++i) {
1714       do_entry(buffer[i]);
1715     }
1716   }
1717 };
1718 
1719 class G1RemarkThreadsClosure : public ThreadClosure {
1720   G1CMSATBBufferClosure _cm_satb_cl;
1721   G1CMOopClosure _cm_cl;
1722   MarkingCodeBlobClosure _code_cl;
1723   uintx _claim_token;
1724 
1725  public:
1726   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1727     _cm_satb_cl(task, g1h),
1728     _cm_cl(g1h, task),
1729     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1730     _claim_token(Threads::thread_claim_token()) {}
1731 
1732   void do_thread(Thread* thread) {
1733     if (thread->claim_threads_do(true, _claim_token)) {
1734       SATBMarkQueue& queue = G1ThreadLocalData::satb_mark_queue(thread);
1735       queue.apply_closure_and_empty(&_cm_satb_cl);
1736       if (thread->is_Java_thread()) {
1737         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1738         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1739         // * Alive if on the stack of an executing method
1740         // * Weakly reachable otherwise
1741         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1742         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1743         JavaThread* jt = (JavaThread*)thread;
1744         jt->nmethods_do(&_code_cl);
1745       }
1746     }
1747   }
1748 };
1749 
1750 class G1CMRemarkTask : public AbstractGangTask {
1751   G1ConcurrentMark* _cm;
1752 public:
1753   void work(uint worker_id) {
1754     G1CMTask* task = _cm->task(worker_id);
1755     task->record_start_time();
1756     {
1757       ResourceMark rm;
1758       HandleMark hm;
1759 
1760       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1761       Threads::threads_do(&threads_f);
1762     }
1763 
1764     do {
1765       task->do_marking_step(1000000000.0 /* something very large */,
1766                             true         /* do_termination       */,
1767                             false        /* is_serial            */);
1768     } while (task->has_aborted() && !_cm->has_overflown());
1769     // If we overflow, then we do not want to restart. We instead
1770     // want to abort remark and do concurrent marking again.
1771     task->record_end_time();
1772   }
1773 
1774   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1775     AbstractGangTask("Par Remark"), _cm(cm) {
1776     _cm->terminator()->reset_for_reuse(active_workers);
1777   }
1778 };
1779 
1780 void G1ConcurrentMark::finalize_marking() {
1781   ResourceMark rm;
1782   HandleMark   hm;
1783 
1784   _g1h->ensure_parsability(false);
1785 
1786   // this is remark, so we'll use up all active threads
1787   uint active_workers = _g1h->workers()->active_workers();
1788   set_concurrency_and_phase(active_workers, false /* concurrent */);
1789   // Leave _parallel_marking_threads at it's
1790   // value originally calculated in the G1ConcurrentMark
1791   // constructor and pass values of the active workers
1792   // through the gang in the task.
1793 
1794   {
1795     StrongRootsScope srs(active_workers);
1796 
1797     G1CMRemarkTask remarkTask(this, active_workers);
1798     // We will start all available threads, even if we decide that the
1799     // active_workers will be fewer. The extra ones will just bail out
1800     // immediately.
1801     _g1h->workers()->run_task(&remarkTask);
1802   }
1803 
1804   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1805   guarantee(has_overflown() ||
1806             satb_mq_set.completed_buffers_num() == 0,
1807             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1808             BOOL_TO_STR(has_overflown()),
1809             satb_mq_set.completed_buffers_num());
1810 
1811   print_stats();
1812 }
1813 
1814 void G1ConcurrentMark::flush_all_task_caches() {
1815   size_t hits = 0;
1816   size_t misses = 0;
1817   for (uint i = 0; i < _max_num_tasks; i++) {
1818     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1819     hits += stats.first;
1820     misses += stats.second;
1821   }
1822   size_t sum = hits + misses;
1823   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1824                        hits, misses, percent_of(hits, sum));
1825 }
1826 
1827 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1828   _prev_mark_bitmap->clear_range(mr);
1829 }
1830 
1831 HeapRegion*
1832 G1ConcurrentMark::claim_region(uint worker_id) {
1833   // "checkpoint" the finger
1834   HeapWord* finger = _finger;
1835 
1836   while (finger < _heap.end()) {
1837     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1838 
1839     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1840     // Make sure that the reads below do not float before loading curr_region.
1841     OrderAccess::loadload();
1842     // Above heap_region_containing may return NULL as we always scan claim
1843     // until the end of the heap. In this case, just jump to the next region.
1844     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1845 
1846     // Is the gap between reading the finger and doing the CAS too long?
1847     HeapWord* res = Atomic::cmpxchg(&_finger, finger, end);
1848     if (res == finger && curr_region != NULL) {
1849       // we succeeded
1850       HeapWord*   bottom        = curr_region->bottom();
1851       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1852 
1853       // notice that _finger == end cannot be guaranteed here since,
1854       // someone else might have moved the finger even further
1855       assert(_finger >= end, "the finger should have moved forward");
1856 
1857       if (limit > bottom) {
1858         return curr_region;
1859       } else {
1860         assert(limit == bottom,
1861                "the region limit should be at bottom");
1862         // we return NULL and the caller should try calling
1863         // claim_region() again.
1864         return NULL;
1865       }
1866     } else {
1867       assert(_finger > finger, "the finger should have moved forward");
1868       // read it again
1869       finger = _finger;
1870     }
1871   }
1872 
1873   return NULL;
1874 }
1875 
1876 #ifndef PRODUCT
1877 class VerifyNoCSetOops {
1878   G1CollectedHeap* _g1h;
1879   const char* _phase;
1880   int _info;
1881 
1882 public:
1883   VerifyNoCSetOops(const char* phase, int info = -1) :
1884     _g1h(G1CollectedHeap::heap()),
1885     _phase(phase),
1886     _info(info)
1887   { }
1888 
1889   void operator()(G1TaskQueueEntry task_entry) const {
1890     if (task_entry.is_array_slice()) {
1891       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1892       return;
1893     }
1894     guarantee(oopDesc::is_oop(task_entry.obj()),
1895               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1896               p2i(task_entry.obj()), _phase, _info);
1897     HeapRegion* r = _g1h->heap_region_containing(task_entry.obj());
1898     guarantee(!(r->in_collection_set() || r->has_index_in_opt_cset()),
1899               "obj " PTR_FORMAT " from %s (%d) in region %u in (optional) collection set",
1900               p2i(task_entry.obj()), _phase, _info, r->hrm_index());
1901   }
1902 };
1903 
1904 void G1ConcurrentMark::verify_no_collection_set_oops() {
1905   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1906   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1907     return;
1908   }
1909 
1910   // Verify entries on the global mark stack
1911   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1912 
1913   // Verify entries on the task queues
1914   for (uint i = 0; i < _max_num_tasks; ++i) {
1915     G1CMTaskQueue* queue = _task_queues->queue(i);
1916     queue->iterate(VerifyNoCSetOops("Queue", i));
1917   }
1918 
1919   // Verify the global finger
1920   HeapWord* global_finger = finger();
1921   if (global_finger != NULL && global_finger < _heap.end()) {
1922     // Since we always iterate over all regions, we might get a NULL HeapRegion
1923     // here.
1924     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1925     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1926               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1927               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1928   }
1929 
1930   // Verify the task fingers
1931   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1932   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1933     G1CMTask* task = _tasks[i];
1934     HeapWord* task_finger = task->finger();
1935     if (task_finger != NULL && task_finger < _heap.end()) {
1936       // See above note on the global finger verification.
1937       HeapRegion* r = _g1h->heap_region_containing(task_finger);
1938       guarantee(r == NULL || task_finger == r->bottom() ||
1939                 !r->in_collection_set() || !r->has_index_in_opt_cset(),
1940                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1941                 p2i(task_finger), HR_FORMAT_PARAMS(r));
1942     }
1943   }
1944 }
1945 #endif // PRODUCT
1946 
1947 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1948   _g1h->rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1949 }
1950 
1951 void G1ConcurrentMark::print_stats() {
1952   if (!log_is_enabled(Debug, gc, stats)) {
1953     return;
1954   }
1955   log_debug(gc, stats)("---------------------------------------------------------------------");
1956   for (size_t i = 0; i < _num_active_tasks; ++i) {
1957     _tasks[i]->print_stats();
1958     log_debug(gc, stats)("---------------------------------------------------------------------");
1959   }
1960 }
1961 
1962 void G1ConcurrentMark::concurrent_cycle_abort() {
1963   if (!cm_thread()->during_cycle() || _has_aborted) {
1964     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1965     return;
1966   }
1967 
1968   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1969   // concurrent bitmap clearing.
1970   {
1971     GCTraceTime(Debug, gc) debug("Clear Next Bitmap");
1972     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1973   }
1974   // Note we cannot clear the previous marking bitmap here
1975   // since VerifyDuringGC verifies the objects marked during
1976   // a full GC against the previous bitmap.
1977 
1978   // Empty mark stack
1979   reset_marking_for_restart();
1980   for (uint i = 0; i < _max_num_tasks; ++i) {
1981     _tasks[i]->clear_region_fields();
1982   }
1983   _first_overflow_barrier_sync.abort();
1984   _second_overflow_barrier_sync.abort();
1985   _has_aborted = true;
1986 
1987   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1988   satb_mq_set.abandon_partial_marking();
1989   // This can be called either during or outside marking, we'll read
1990   // the expected_active value from the SATB queue set.
1991   satb_mq_set.set_active_all_threads(
1992                                  false, /* new active value */
1993                                  satb_mq_set.is_active() /* expected_active */);
1994 }
1995 
1996 static void print_ms_time_info(const char* prefix, const char* name,
1997                                NumberSeq& ns) {
1998   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
1999                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2000   if (ns.num() > 0) {
2001     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2002                            prefix, ns.sd(), ns.maximum());
2003   }
2004 }
2005 
2006 void G1ConcurrentMark::print_summary_info() {
2007   Log(gc, marking) log;
2008   if (!log.is_trace()) {
2009     return;
2010   }
2011 
2012   log.trace(" Concurrent marking:");
2013   print_ms_time_info("  ", "init marks", _init_times);
2014   print_ms_time_info("  ", "remarks", _remark_times);
2015   {
2016     print_ms_time_info("     ", "final marks", _remark_mark_times);
2017     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2018 
2019   }
2020   print_ms_time_info("  ", "cleanups", _cleanup_times);
2021   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2022             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2023   log.trace("  Total stop_world time = %8.2f s.",
2024             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2025   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2026             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2027 }
2028 
2029 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2030   _concurrent_workers->threads_do(tc);
2031 }
2032 
2033 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2034   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2035                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2036   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2037   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2038 }
2039 
2040 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2041   ReferenceProcessor* result = g1h->ref_processor_cm();
2042   assert(result != NULL, "CM reference processor should not be NULL");
2043   return result;
2044 }
2045 
2046 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2047                                G1CMTask* task)
2048   : MetadataVisitingOopIterateClosure(get_cm_oop_closure_ref_processor(g1h)),
2049     _g1h(g1h), _task(task)
2050 { }
2051 
2052 void G1CMTask::setup_for_region(HeapRegion* hr) {
2053   assert(hr != NULL,
2054         "claim_region() should have filtered out NULL regions");
2055   _curr_region  = hr;
2056   _finger       = hr->bottom();
2057   update_region_limit();
2058 }
2059 
2060 void G1CMTask::update_region_limit() {
2061   HeapRegion* hr            = _curr_region;
2062   HeapWord* bottom          = hr->bottom();
2063   HeapWord* limit           = hr->next_top_at_mark_start();
2064 
2065   if (limit == bottom) {
2066     // The region was collected underneath our feet.
2067     // We set the finger to bottom to ensure that the bitmap
2068     // iteration that will follow this will not do anything.
2069     // (this is not a condition that holds when we set the region up,
2070     // as the region is not supposed to be empty in the first place)
2071     _finger = bottom;
2072   } else if (limit >= _region_limit) {
2073     assert(limit >= _finger, "peace of mind");
2074   } else {
2075     assert(limit < _region_limit, "only way to get here");
2076     // This can happen under some pretty unusual circumstances.  An
2077     // evacuation pause empties the region underneath our feet (NTAMS
2078     // at bottom). We then do some allocation in the region (NTAMS
2079     // stays at bottom), followed by the region being used as a GC
2080     // alloc region (NTAMS will move to top() and the objects
2081     // originally below it will be grayed). All objects now marked in
2082     // the region are explicitly grayed, if below the global finger,
2083     // and we do not need in fact to scan anything else. So, we simply
2084     // set _finger to be limit to ensure that the bitmap iteration
2085     // doesn't do anything.
2086     _finger = limit;
2087   }
2088 
2089   _region_limit = limit;
2090 }
2091 
2092 void G1CMTask::giveup_current_region() {
2093   assert(_curr_region != NULL, "invariant");
2094   clear_region_fields();
2095 }
2096 
2097 void G1CMTask::clear_region_fields() {
2098   // Values for these three fields that indicate that we're not
2099   // holding on to a region.
2100   _curr_region   = NULL;
2101   _finger        = NULL;
2102   _region_limit  = NULL;
2103 }
2104 
2105 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2106   if (cm_oop_closure == NULL) {
2107     assert(_cm_oop_closure != NULL, "invariant");
2108   } else {
2109     assert(_cm_oop_closure == NULL, "invariant");
2110   }
2111   _cm_oop_closure = cm_oop_closure;
2112 }
2113 
2114 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2115   guarantee(next_mark_bitmap != NULL, "invariant");
2116   _next_mark_bitmap              = next_mark_bitmap;
2117   clear_region_fields();
2118 
2119   _calls                         = 0;
2120   _elapsed_time_ms               = 0.0;
2121   _termination_time_ms           = 0.0;
2122   _termination_start_time_ms     = 0.0;
2123 
2124   _mark_stats_cache.reset();
2125 }
2126 
2127 bool G1CMTask::should_exit_termination() {
2128   if (!regular_clock_call()) {
2129     return true;
2130   }
2131 
2132   // This is called when we are in the termination protocol. We should
2133   // quit if, for some reason, this task wants to abort or the global
2134   // stack is not empty (this means that we can get work from it).
2135   return !_cm->mark_stack_empty() || has_aborted();
2136 }
2137 
2138 void G1CMTask::reached_limit() {
2139   assert(_words_scanned >= _words_scanned_limit ||
2140          _refs_reached >= _refs_reached_limit ,
2141          "shouldn't have been called otherwise");
2142   abort_marking_if_regular_check_fail();
2143 }
2144 
2145 bool G1CMTask::regular_clock_call() {
2146   if (has_aborted()) {
2147     return false;
2148   }
2149 
2150   // First, we need to recalculate the words scanned and refs reached
2151   // limits for the next clock call.
2152   recalculate_limits();
2153 
2154   // During the regular clock call we do the following
2155 
2156   // (1) If an overflow has been flagged, then we abort.
2157   if (_cm->has_overflown()) {
2158     return false;
2159   }
2160 
2161   // If we are not concurrent (i.e. we're doing remark) we don't need
2162   // to check anything else. The other steps are only needed during
2163   // the concurrent marking phase.
2164   if (!_cm->concurrent()) {
2165     return true;
2166   }
2167 
2168   // (2) If marking has been aborted for Full GC, then we also abort.
2169   if (_cm->has_aborted()) {
2170     return false;
2171   }
2172 
2173   double curr_time_ms = os::elapsedVTime() * 1000.0;
2174 
2175   // (4) We check whether we should yield. If we have to, then we abort.
2176   if (SuspendibleThreadSet::should_yield()) {
2177     // We should yield. To do this we abort the task. The caller is
2178     // responsible for yielding.
2179     return false;
2180   }
2181 
2182   // (5) We check whether we've reached our time quota. If we have,
2183   // then we abort.
2184   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2185   if (elapsed_time_ms > _time_target_ms) {
2186     _has_timed_out = true;
2187     return false;
2188   }
2189 
2190   // (6) Finally, we check whether there are enough completed STAB
2191   // buffers available for processing. If there are, we abort.
2192   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2193   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2194     // we do need to process SATB buffers, we'll abort and restart
2195     // the marking task to do so
2196     return false;
2197   }
2198   return true;
2199 }
2200 
2201 void G1CMTask::recalculate_limits() {
2202   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2203   _words_scanned_limit      = _real_words_scanned_limit;
2204 
2205   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2206   _refs_reached_limit       = _real_refs_reached_limit;
2207 }
2208 
2209 void G1CMTask::decrease_limits() {
2210   // This is called when we believe that we're going to do an infrequent
2211   // operation which will increase the per byte scanned cost (i.e. move
2212   // entries to/from the global stack). It basically tries to decrease the
2213   // scanning limit so that the clock is called earlier.
2214 
2215   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2216   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2217 }
2218 
2219 void G1CMTask::move_entries_to_global_stack() {
2220   // Local array where we'll store the entries that will be popped
2221   // from the local queue.
2222   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2223 
2224   size_t n = 0;
2225   G1TaskQueueEntry task_entry;
2226   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2227     buffer[n] = task_entry;
2228     ++n;
2229   }
2230   if (n < G1CMMarkStack::EntriesPerChunk) {
2231     buffer[n] = G1TaskQueueEntry();
2232   }
2233 
2234   if (n > 0) {
2235     if (!_cm->mark_stack_push(buffer)) {
2236       set_has_aborted();
2237     }
2238   }
2239 
2240   // This operation was quite expensive, so decrease the limits.
2241   decrease_limits();
2242 }
2243 
2244 bool G1CMTask::get_entries_from_global_stack() {
2245   // Local array where we'll store the entries that will be popped
2246   // from the global stack.
2247   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2248 
2249   if (!_cm->mark_stack_pop(buffer)) {
2250     return false;
2251   }
2252 
2253   // We did actually pop at least one entry.
2254   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2255     G1TaskQueueEntry task_entry = buffer[i];
2256     if (task_entry.is_null()) {
2257       break;
2258     }
2259     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2260     bool success = _task_queue->push(task_entry);
2261     // We only call this when the local queue is empty or under a
2262     // given target limit. So, we do not expect this push to fail.
2263     assert(success, "invariant");
2264   }
2265 
2266   // This operation was quite expensive, so decrease the limits
2267   decrease_limits();
2268   return true;
2269 }
2270 
2271 void G1CMTask::drain_local_queue(bool partially) {
2272   if (has_aborted()) {
2273     return;
2274   }
2275 
2276   // Decide what the target size is, depending whether we're going to
2277   // drain it partially (so that other tasks can steal if they run out
2278   // of things to do) or totally (at the very end).
2279   size_t target_size;
2280   if (partially) {
2281     target_size = MIN2((size_t)_task_queue->max_elems()/3, (size_t)GCDrainStackTargetSize);
2282   } else {
2283     target_size = 0;
2284   }
2285 
2286   if (_task_queue->size() > target_size) {
2287     G1TaskQueueEntry entry;
2288     bool ret = _task_queue->pop_local(entry);
2289     while (ret) {
2290       scan_task_entry(entry);
2291       if (_task_queue->size() <= target_size || has_aborted()) {
2292         ret = false;
2293       } else {
2294         ret = _task_queue->pop_local(entry);
2295       }
2296     }
2297   }
2298 }
2299 
2300 void G1CMTask::drain_global_stack(bool partially) {
2301   if (has_aborted()) {
2302     return;
2303   }
2304 
2305   // We have a policy to drain the local queue before we attempt to
2306   // drain the global stack.
2307   assert(partially || _task_queue->size() == 0, "invariant");
2308 
2309   // Decide what the target size is, depending whether we're going to
2310   // drain it partially (so that other tasks can steal if they run out
2311   // of things to do) or totally (at the very end).
2312   // Notice that when draining the global mark stack partially, due to the racyness
2313   // of the mark stack size update we might in fact drop below the target. But,
2314   // this is not a problem.
2315   // In case of total draining, we simply process until the global mark stack is
2316   // totally empty, disregarding the size counter.
2317   if (partially) {
2318     size_t const target_size = _cm->partial_mark_stack_size_target();
2319     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2320       if (get_entries_from_global_stack()) {
2321         drain_local_queue(partially);
2322       }
2323     }
2324   } else {
2325     while (!has_aborted() && get_entries_from_global_stack()) {
2326       drain_local_queue(partially);
2327     }
2328   }
2329 }
2330 
2331 // SATB Queue has several assumptions on whether to call the par or
2332 // non-par versions of the methods. this is why some of the code is
2333 // replicated. We should really get rid of the single-threaded version
2334 // of the code to simplify things.
2335 void G1CMTask::drain_satb_buffers() {
2336   if (has_aborted()) {
2337     return;
2338   }
2339 
2340   // We set this so that the regular clock knows that we're in the
2341   // middle of draining buffers and doesn't set the abort flag when it
2342   // notices that SATB buffers are available for draining. It'd be
2343   // very counter productive if it did that. :-)
2344   _draining_satb_buffers = true;
2345 
2346   G1CMSATBBufferClosure satb_cl(this, _g1h);
2347   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2348 
2349   // This keeps claiming and applying the closure to completed buffers
2350   // until we run out of buffers or we need to abort.
2351   while (!has_aborted() &&
2352          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2353     abort_marking_if_regular_check_fail();
2354   }
2355 
2356   // Can't assert qset is empty here, even if not aborted.  If concurrent,
2357   // some other thread might be adding to the queue.  If not concurrent,
2358   // some other thread might have won the race for the last buffer, but
2359   // has not yet decremented the count.
2360 
2361   _draining_satb_buffers = false;
2362 
2363   // again, this was a potentially expensive operation, decrease the
2364   // limits to get the regular clock call early
2365   decrease_limits();
2366 }
2367 
2368 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2369   _mark_stats_cache.reset(region_idx);
2370 }
2371 
2372 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2373   return _mark_stats_cache.evict_all();
2374 }
2375 
2376 void G1CMTask::print_stats() {
2377   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2378   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2379                        _elapsed_time_ms, _termination_time_ms);
2380   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2381                        _step_times_ms.num(),
2382                        _step_times_ms.avg(),
2383                        _step_times_ms.sd(),
2384                        _step_times_ms.maximum(),
2385                        _step_times_ms.sum());
2386   size_t const hits = _mark_stats_cache.hits();
2387   size_t const misses = _mark_stats_cache.misses();
2388   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2389                        hits, misses, percent_of(hits, hits + misses));
2390 }
2391 
2392 bool G1ConcurrentMark::try_stealing(uint worker_id, G1TaskQueueEntry& task_entry) {
2393   return _task_queues->steal(worker_id, task_entry);
2394 }
2395 
2396 /*****************************************************************************
2397 
2398     The do_marking_step(time_target_ms, ...) method is the building
2399     block of the parallel marking framework. It can be called in parallel
2400     with other invocations of do_marking_step() on different tasks
2401     (but only one per task, obviously) and concurrently with the
2402     mutator threads, or during remark, hence it eliminates the need
2403     for two versions of the code. When called during remark, it will
2404     pick up from where the task left off during the concurrent marking
2405     phase. Interestingly, tasks are also claimable during evacuation
2406     pauses too, since do_marking_step() ensures that it aborts before
2407     it needs to yield.
2408 
2409     The data structures that it uses to do marking work are the
2410     following:
2411 
2412       (1) Marking Bitmap. If there are gray objects that appear only
2413       on the bitmap (this happens either when dealing with an overflow
2414       or when the concurrent start pause has simply marked the roots
2415       and didn't push them on the stack), then tasks claim heap
2416       regions whose bitmap they then scan to find gray objects. A
2417       global finger indicates where the end of the last claimed region
2418       is. A local finger indicates how far into the region a task has
2419       scanned. The two fingers are used to determine how to gray an
2420       object (i.e. whether simply marking it is OK, as it will be
2421       visited by a task in the future, or whether it needs to be also
2422       pushed on a stack).
2423 
2424       (2) Local Queue. The local queue of the task which is accessed
2425       reasonably efficiently by the task. Other tasks can steal from
2426       it when they run out of work. Throughout the marking phase, a
2427       task attempts to keep its local queue short but not totally
2428       empty, so that entries are available for stealing by other
2429       tasks. Only when there is no more work, a task will totally
2430       drain its local queue.
2431 
2432       (3) Global Mark Stack. This handles local queue overflow. During
2433       marking only sets of entries are moved between it and the local
2434       queues, as access to it requires a mutex and more fine-grain
2435       interaction with it which might cause contention. If it
2436       overflows, then the marking phase should restart and iterate
2437       over the bitmap to identify gray objects. Throughout the marking
2438       phase, tasks attempt to keep the global mark stack at a small
2439       length but not totally empty, so that entries are available for
2440       popping by other tasks. Only when there is no more work, tasks
2441       will totally drain the global mark stack.
2442 
2443       (4) SATB Buffer Queue. This is where completed SATB buffers are
2444       made available. Buffers are regularly removed from this queue
2445       and scanned for roots, so that the queue doesn't get too
2446       long. During remark, all completed buffers are processed, as
2447       well as the filled in parts of any uncompleted buffers.
2448 
2449     The do_marking_step() method tries to abort when the time target
2450     has been reached. There are a few other cases when the
2451     do_marking_step() method also aborts:
2452 
2453       (1) When the marking phase has been aborted (after a Full GC).
2454 
2455       (2) When a global overflow (on the global stack) has been
2456       triggered. Before the task aborts, it will actually sync up with
2457       the other tasks to ensure that all the marking data structures
2458       (local queues, stacks, fingers etc.)  are re-initialized so that
2459       when do_marking_step() completes, the marking phase can
2460       immediately restart.
2461 
2462       (3) When enough completed SATB buffers are available. The
2463       do_marking_step() method only tries to drain SATB buffers right
2464       at the beginning. So, if enough buffers are available, the
2465       marking step aborts and the SATB buffers are processed at
2466       the beginning of the next invocation.
2467 
2468       (4) To yield. when we have to yield then we abort and yield
2469       right at the end of do_marking_step(). This saves us from a lot
2470       of hassle as, by yielding we might allow a Full GC. If this
2471       happens then objects will be compacted underneath our feet, the
2472       heap might shrink, etc. We save checking for this by just
2473       aborting and doing the yield right at the end.
2474 
2475     From the above it follows that the do_marking_step() method should
2476     be called in a loop (or, otherwise, regularly) until it completes.
2477 
2478     If a marking step completes without its has_aborted() flag being
2479     true, it means it has completed the current marking phase (and
2480     also all other marking tasks have done so and have all synced up).
2481 
2482     A method called regular_clock_call() is invoked "regularly" (in
2483     sub ms intervals) throughout marking. It is this clock method that
2484     checks all the abort conditions which were mentioned above and
2485     decides when the task should abort. A work-based scheme is used to
2486     trigger this clock method: when the number of object words the
2487     marking phase has scanned or the number of references the marking
2488     phase has visited reach a given limit. Additional invocations to
2489     the method clock have been planted in a few other strategic places
2490     too. The initial reason for the clock method was to avoid calling
2491     vtime too regularly, as it is quite expensive. So, once it was in
2492     place, it was natural to piggy-back all the other conditions on it
2493     too and not constantly check them throughout the code.
2494 
2495     If do_termination is true then do_marking_step will enter its
2496     termination protocol.
2497 
2498     The value of is_serial must be true when do_marking_step is being
2499     called serially (i.e. by the VMThread) and do_marking_step should
2500     skip any synchronization in the termination and overflow code.
2501     Examples include the serial remark code and the serial reference
2502     processing closures.
2503 
2504     The value of is_serial must be false when do_marking_step is
2505     being called by any of the worker threads in a work gang.
2506     Examples include the concurrent marking code (CMMarkingTask),
2507     the MT remark code, and the MT reference processing closures.
2508 
2509  *****************************************************************************/
2510 
2511 void G1CMTask::do_marking_step(double time_target_ms,
2512                                bool do_termination,
2513                                bool is_serial) {
2514   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2515 
2516   _start_time_ms = os::elapsedVTime() * 1000.0;
2517 
2518   // If do_stealing is true then do_marking_step will attempt to
2519   // steal work from the other G1CMTasks. It only makes sense to
2520   // enable stealing when the termination protocol is enabled
2521   // and do_marking_step() is not being called serially.
2522   bool do_stealing = do_termination && !is_serial;
2523 
2524   G1Predictions const& predictor = _g1h->policy()->predictor();
2525   double diff_prediction_ms = predictor.predict_zero_bounded(&_marking_step_diff_ms);
2526   _time_target_ms = time_target_ms - diff_prediction_ms;
2527 
2528   // set up the variables that are used in the work-based scheme to
2529   // call the regular clock method
2530   _words_scanned = 0;
2531   _refs_reached  = 0;
2532   recalculate_limits();
2533 
2534   // clear all flags
2535   clear_has_aborted();
2536   _has_timed_out = false;
2537   _draining_satb_buffers = false;
2538 
2539   ++_calls;
2540 
2541   // Set up the bitmap and oop closures. Anything that uses them is
2542   // eventually called from this method, so it is OK to allocate these
2543   // statically.
2544   G1CMBitMapClosure bitmap_closure(this, _cm);
2545   G1CMOopClosure cm_oop_closure(_g1h, this);
2546   set_cm_oop_closure(&cm_oop_closure);
2547 
2548   if (_cm->has_overflown()) {
2549     // This can happen if the mark stack overflows during a GC pause
2550     // and this task, after a yield point, restarts. We have to abort
2551     // as we need to get into the overflow protocol which happens
2552     // right at the end of this task.
2553     set_has_aborted();
2554   }
2555 
2556   // First drain any available SATB buffers. After this, we will not
2557   // look at SATB buffers before the next invocation of this method.
2558   // If enough completed SATB buffers are queued up, the regular clock
2559   // will abort this task so that it restarts.
2560   drain_satb_buffers();
2561   // ...then partially drain the local queue and the global stack
2562   drain_local_queue(true);
2563   drain_global_stack(true);
2564 
2565   do {
2566     if (!has_aborted() && _curr_region != NULL) {
2567       // This means that we're already holding on to a region.
2568       assert(_finger != NULL, "if region is not NULL, then the finger "
2569              "should not be NULL either");
2570 
2571       // We might have restarted this task after an evacuation pause
2572       // which might have evacuated the region we're holding on to
2573       // underneath our feet. Let's read its limit again to make sure
2574       // that we do not iterate over a region of the heap that
2575       // contains garbage (update_region_limit() will also move
2576       // _finger to the start of the region if it is found empty).
2577       update_region_limit();
2578       // We will start from _finger not from the start of the region,
2579       // as we might be restarting this task after aborting half-way
2580       // through scanning this region. In this case, _finger points to
2581       // the address where we last found a marked object. If this is a
2582       // fresh region, _finger points to start().
2583       MemRegion mr = MemRegion(_finger, _region_limit);
2584 
2585       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2586              "humongous regions should go around loop once only");
2587 
2588       // Some special cases:
2589       // If the memory region is empty, we can just give up the region.
2590       // If the current region is humongous then we only need to check
2591       // the bitmap for the bit associated with the start of the object,
2592       // scan the object if it's live, and give up the region.
2593       // Otherwise, let's iterate over the bitmap of the part of the region
2594       // that is left.
2595       // If the iteration is successful, give up the region.
2596       if (mr.is_empty()) {
2597         giveup_current_region();
2598         abort_marking_if_regular_check_fail();
2599       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2600         if (_next_mark_bitmap->is_marked(mr.start())) {
2601           // The object is marked - apply the closure
2602           bitmap_closure.do_addr(mr.start());
2603         }
2604         // Even if this task aborted while scanning the humongous object
2605         // we can (and should) give up the current region.
2606         giveup_current_region();
2607         abort_marking_if_regular_check_fail();
2608       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2609         giveup_current_region();
2610         abort_marking_if_regular_check_fail();
2611       } else {
2612         assert(has_aborted(), "currently the only way to do so");
2613         // The only way to abort the bitmap iteration is to return
2614         // false from the do_bit() method. However, inside the
2615         // do_bit() method we move the _finger to point to the
2616         // object currently being looked at. So, if we bail out, we
2617         // have definitely set _finger to something non-null.
2618         assert(_finger != NULL, "invariant");
2619 
2620         // Region iteration was actually aborted. So now _finger
2621         // points to the address of the object we last scanned. If we
2622         // leave it there, when we restart this task, we will rescan
2623         // the object. It is easy to avoid this. We move the finger by
2624         // enough to point to the next possible object header.
2625         assert(_finger < _region_limit, "invariant");
2626         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2627         // Check if bitmap iteration was aborted while scanning the last object
2628         if (new_finger >= _region_limit) {
2629           giveup_current_region();
2630         } else {
2631           move_finger_to(new_finger);
2632         }
2633       }
2634     }
2635     // At this point we have either completed iterating over the
2636     // region we were holding on to, or we have aborted.
2637 
2638     // We then partially drain the local queue and the global stack.
2639     // (Do we really need this?)
2640     drain_local_queue(true);
2641     drain_global_stack(true);
2642 
2643     // Read the note on the claim_region() method on why it might
2644     // return NULL with potentially more regions available for
2645     // claiming and why we have to check out_of_regions() to determine
2646     // whether we're done or not.
2647     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2648       // We are going to try to claim a new region. We should have
2649       // given up on the previous one.
2650       // Separated the asserts so that we know which one fires.
2651       assert(_curr_region  == NULL, "invariant");
2652       assert(_finger       == NULL, "invariant");
2653       assert(_region_limit == NULL, "invariant");
2654       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2655       if (claimed_region != NULL) {
2656         // Yes, we managed to claim one
2657         setup_for_region(claimed_region);
2658         assert(_curr_region == claimed_region, "invariant");
2659       }
2660       // It is important to call the regular clock here. It might take
2661       // a while to claim a region if, for example, we hit a large
2662       // block of empty regions. So we need to call the regular clock
2663       // method once round the loop to make sure it's called
2664       // frequently enough.
2665       abort_marking_if_regular_check_fail();
2666     }
2667 
2668     if (!has_aborted() && _curr_region == NULL) {
2669       assert(_cm->out_of_regions(),
2670              "at this point we should be out of regions");
2671     }
2672   } while ( _curr_region != NULL && !has_aborted());
2673 
2674   if (!has_aborted()) {
2675     // We cannot check whether the global stack is empty, since other
2676     // tasks might be pushing objects to it concurrently.
2677     assert(_cm->out_of_regions(),
2678            "at this point we should be out of regions");
2679     // Try to reduce the number of available SATB buffers so that
2680     // remark has less work to do.
2681     drain_satb_buffers();
2682   }
2683 
2684   // Since we've done everything else, we can now totally drain the
2685   // local queue and global stack.
2686   drain_local_queue(false);
2687   drain_global_stack(false);
2688 
2689   // Attempt at work stealing from other task's queues.
2690   if (do_stealing && !has_aborted()) {
2691     // We have not aborted. This means that we have finished all that
2692     // we could. Let's try to do some stealing...
2693 
2694     // We cannot check whether the global stack is empty, since other
2695     // tasks might be pushing objects to it concurrently.
2696     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2697            "only way to reach here");
2698     while (!has_aborted()) {
2699       G1TaskQueueEntry entry;
2700       if (_cm->try_stealing(_worker_id, entry)) {
2701         scan_task_entry(entry);
2702 
2703         // And since we're towards the end, let's totally drain the
2704         // local queue and global stack.
2705         drain_local_queue(false);
2706         drain_global_stack(false);
2707       } else {
2708         break;
2709       }
2710     }
2711   }
2712 
2713   // We still haven't aborted. Now, let's try to get into the
2714   // termination protocol.
2715   if (do_termination && !has_aborted()) {
2716     // We cannot check whether the global stack is empty, since other
2717     // tasks might be concurrently pushing objects on it.
2718     // Separated the asserts so that we know which one fires.
2719     assert(_cm->out_of_regions(), "only way to reach here");
2720     assert(_task_queue->size() == 0, "only way to reach here");
2721     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2722 
2723     // The G1CMTask class also extends the TerminatorTerminator class,
2724     // hence its should_exit_termination() method will also decide
2725     // whether to exit the termination protocol or not.
2726     bool finished = (is_serial ||
2727                      _cm->terminator()->offer_termination(this));
2728     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2729     _termination_time_ms +=
2730       termination_end_time_ms - _termination_start_time_ms;
2731 
2732     if (finished) {
2733       // We're all done.
2734 
2735       // We can now guarantee that the global stack is empty, since
2736       // all other tasks have finished. We separated the guarantees so
2737       // that, if a condition is false, we can immediately find out
2738       // which one.
2739       guarantee(_cm->out_of_regions(), "only way to reach here");
2740       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2741       guarantee(_task_queue->size() == 0, "only way to reach here");
2742       guarantee(!_cm->has_overflown(), "only way to reach here");
2743       guarantee(!has_aborted(), "should never happen if termination has completed");
2744     } else {
2745       // Apparently there's more work to do. Let's abort this task. It
2746       // will restart it and we can hopefully find more things to do.
2747       set_has_aborted();
2748     }
2749   }
2750 
2751   // Mainly for debugging purposes to make sure that a pointer to the
2752   // closure which was statically allocated in this frame doesn't
2753   // escape it by accident.
2754   set_cm_oop_closure(NULL);
2755   double end_time_ms = os::elapsedVTime() * 1000.0;
2756   double elapsed_time_ms = end_time_ms - _start_time_ms;
2757   // Update the step history.
2758   _step_times_ms.add(elapsed_time_ms);
2759 
2760   if (has_aborted()) {
2761     // The task was aborted for some reason.
2762     if (_has_timed_out) {
2763       double diff_ms = elapsed_time_ms - _time_target_ms;
2764       // Keep statistics of how well we did with respect to hitting
2765       // our target only if we actually timed out (if we aborted for
2766       // other reasons, then the results might get skewed).
2767       _marking_step_diff_ms.add(diff_ms);
2768     }
2769 
2770     if (_cm->has_overflown()) {
2771       // This is the interesting one. We aborted because a global
2772       // overflow was raised. This means we have to restart the
2773       // marking phase and start iterating over regions. However, in
2774       // order to do this we have to make sure that all tasks stop
2775       // what they are doing and re-initialize in a safe manner. We
2776       // will achieve this with the use of two barrier sync points.
2777 
2778       if (!is_serial) {
2779         // We only need to enter the sync barrier if being called
2780         // from a parallel context
2781         _cm->enter_first_sync_barrier(_worker_id);
2782 
2783         // When we exit this sync barrier we know that all tasks have
2784         // stopped doing marking work. So, it's now safe to
2785         // re-initialize our data structures.
2786       }
2787 
2788       clear_region_fields();
2789       flush_mark_stats_cache();
2790 
2791       if (!is_serial) {
2792         // If we're executing the concurrent phase of marking, reset the marking
2793         // state; otherwise the marking state is reset after reference processing,
2794         // during the remark pause.
2795         // If we reset here as a result of an overflow during the remark we will
2796         // see assertion failures from any subsequent set_concurrency_and_phase()
2797         // calls.
2798         if (_cm->concurrent() && _worker_id == 0) {
2799           // Worker 0 is responsible for clearing the global data structures because
2800           // of an overflow. During STW we should not clear the overflow flag (in
2801           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2802           // method to abort the pause and restart concurrent marking.
2803           _cm->reset_marking_for_restart();
2804 
2805           log_info(gc, marking)("Concurrent Mark reset for overflow");
2806         }
2807 
2808         // ...and enter the second barrier.
2809         _cm->enter_second_sync_barrier(_worker_id);
2810       }
2811       // At this point, if we're during the concurrent phase of
2812       // marking, everything has been re-initialized and we're
2813       // ready to restart.
2814     }
2815   }
2816 }
2817 
2818 G1CMTask::G1CMTask(uint worker_id,
2819                    G1ConcurrentMark* cm,
2820                    G1CMTaskQueue* task_queue,
2821                    G1RegionMarkStats* mark_stats,
2822                    uint max_regions) :
2823   _objArray_processor(this),
2824   _worker_id(worker_id),
2825   _g1h(G1CollectedHeap::heap()),
2826   _cm(cm),
2827   _next_mark_bitmap(NULL),
2828   _task_queue(task_queue),
2829   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2830   _calls(0),
2831   _time_target_ms(0.0),
2832   _start_time_ms(0.0),
2833   _cm_oop_closure(NULL),
2834   _curr_region(NULL),
2835   _finger(NULL),
2836   _region_limit(NULL),
2837   _words_scanned(0),
2838   _words_scanned_limit(0),
2839   _real_words_scanned_limit(0),
2840   _refs_reached(0),
2841   _refs_reached_limit(0),
2842   _real_refs_reached_limit(0),
2843   _has_aborted(false),
2844   _has_timed_out(false),
2845   _draining_satb_buffers(false),
2846   _step_times_ms(),
2847   _elapsed_time_ms(0.0),
2848   _termination_time_ms(0.0),
2849   _termination_start_time_ms(0.0),
2850   _marking_step_diff_ms()
2851 {
2852   guarantee(task_queue != NULL, "invariant");
2853 
2854   _marking_step_diff_ms.add(0.5);
2855 }
2856 
2857 // These are formatting macros that are used below to ensure
2858 // consistent formatting. The *_H_* versions are used to format the
2859 // header for a particular value and they should be kept consistent
2860 // with the corresponding macro. Also note that most of the macros add
2861 // the necessary white space (as a prefix) which makes them a bit
2862 // easier to compose.
2863 
2864 // All the output lines are prefixed with this string to be able to
2865 // identify them easily in a large log file.
2866 #define G1PPRL_LINE_PREFIX            "###"
2867 
2868 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2869 #ifdef _LP64
2870 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2871 #else // _LP64
2872 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2873 #endif // _LP64
2874 
2875 // For per-region info
2876 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2877 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2878 #define G1PPRL_STATE_FORMAT           "   %-5s"
2879 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2880 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2881 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2882 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2883 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2884 
2885 // For summary info
2886 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2887 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2888 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2889 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2890 
2891 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2892   _total_used_bytes(0), _total_capacity_bytes(0),
2893   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2894   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2895 {
2896   if (!log_is_enabled(Trace, gc, liveness)) {
2897     return;
2898   }
2899 
2900   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2901   MemRegion g1_reserved = g1h->g1_reserved();
2902   double now = os::elapsedTime();
2903 
2904   // Print the header of the output.
2905   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2906   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2907                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2908                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2909                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2910                           HeapRegion::GrainBytes);
2911   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2912   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2913                           G1PPRL_TYPE_H_FORMAT
2914                           G1PPRL_ADDR_BASE_H_FORMAT
2915                           G1PPRL_BYTE_H_FORMAT
2916                           G1PPRL_BYTE_H_FORMAT
2917                           G1PPRL_BYTE_H_FORMAT
2918                           G1PPRL_DOUBLE_H_FORMAT
2919                           G1PPRL_BYTE_H_FORMAT
2920                           G1PPRL_STATE_H_FORMAT
2921                           G1PPRL_BYTE_H_FORMAT,
2922                           "type", "address-range",
2923                           "used", "prev-live", "next-live", "gc-eff",
2924                           "remset", "state", "code-roots");
2925   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2926                           G1PPRL_TYPE_H_FORMAT
2927                           G1PPRL_ADDR_BASE_H_FORMAT
2928                           G1PPRL_BYTE_H_FORMAT
2929                           G1PPRL_BYTE_H_FORMAT
2930                           G1PPRL_BYTE_H_FORMAT
2931                           G1PPRL_DOUBLE_H_FORMAT
2932                           G1PPRL_BYTE_H_FORMAT
2933                           G1PPRL_STATE_H_FORMAT
2934                           G1PPRL_BYTE_H_FORMAT,
2935                           "", "",
2936                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2937                           "(bytes)", "", "(bytes)");
2938 }
2939 
2940 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2941   if (!log_is_enabled(Trace, gc, liveness)) {
2942     return false;
2943   }
2944 
2945   const char* type       = r->get_type_str();
2946   HeapWord* bottom       = r->bottom();
2947   HeapWord* end          = r->end();
2948   size_t capacity_bytes  = r->capacity();
2949   size_t used_bytes      = r->used();
2950   size_t prev_live_bytes = r->live_bytes();
2951   size_t next_live_bytes = r->next_live_bytes();
2952   double gc_eff          = r->gc_efficiency();
2953   size_t remset_bytes    = r->rem_set()->mem_size();
2954   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2955   const char* remset_type = r->rem_set()->get_short_state_str();
2956 
2957   _total_used_bytes      += used_bytes;
2958   _total_capacity_bytes  += capacity_bytes;
2959   _total_prev_live_bytes += prev_live_bytes;
2960   _total_next_live_bytes += next_live_bytes;
2961   _total_remset_bytes    += remset_bytes;
2962   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2963 
2964   // Print a line for this particular region.
2965   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2966                           G1PPRL_TYPE_FORMAT
2967                           G1PPRL_ADDR_BASE_FORMAT
2968                           G1PPRL_BYTE_FORMAT
2969                           G1PPRL_BYTE_FORMAT
2970                           G1PPRL_BYTE_FORMAT
2971                           G1PPRL_DOUBLE_FORMAT
2972                           G1PPRL_BYTE_FORMAT
2973                           G1PPRL_STATE_FORMAT
2974                           G1PPRL_BYTE_FORMAT,
2975                           type, p2i(bottom), p2i(end),
2976                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2977                           remset_bytes, remset_type, strong_code_roots_bytes);
2978 
2979   return false;
2980 }
2981 
2982 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2983   if (!log_is_enabled(Trace, gc, liveness)) {
2984     return;
2985   }
2986 
2987   // add static memory usages to remembered set sizes
2988   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
2989   // Print the footer of the output.
2990   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2991   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2992                          " SUMMARY"
2993                          G1PPRL_SUM_MB_FORMAT("capacity")
2994                          G1PPRL_SUM_MB_PERC_FORMAT("used")
2995                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
2996                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
2997                          G1PPRL_SUM_MB_FORMAT("remset")
2998                          G1PPRL_SUM_MB_FORMAT("code-roots"),
2999                          bytes_to_mb(_total_capacity_bytes),
3000                          bytes_to_mb(_total_used_bytes),
3001                          percent_of(_total_used_bytes, _total_capacity_bytes),
3002                          bytes_to_mb(_total_prev_live_bytes),
3003                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3004                          bytes_to_mb(_total_next_live_bytes),
3005                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3006                          bytes_to_mb(_total_remset_bytes),
3007                          bytes_to_mb(_total_strong_code_roots_bytes));
3008 }