1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Analytics.hpp"
  27 #include "gc/g1/g1Arguments.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectionSetCandidates.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1ConcurrentRefine.hpp"
  34 #include "gc/g1/g1ConcurrentRefineStats.hpp"
  35 #include "gc/g1/g1CollectionSetChooser.hpp"
  36 #include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
  37 #include "gc/g1/g1HotCardCache.hpp"
  38 #include "gc/g1/g1IHOPControl.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Policy.hpp"
  41 #include "gc/g1/g1SurvivorRegions.hpp"
  42 #include "gc/g1/g1YoungGenSizer.hpp"
  43 #include "gc/g1/heapRegion.inline.hpp"
  44 #include "gc/g1/heapRegionRemSet.hpp"
  45 #include "gc/shared/concurrentGCBreakpoints.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "logging/log.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "utilities/debug.hpp"
  52 #include "utilities/growableArray.hpp"
  53 #include "utilities/pair.hpp"
  54 
  55 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  56   _predictor(G1ConfidencePercent / 100.0),
  57   _analytics(new G1Analytics(&_predictor)),
  58   _remset_tracker(),
  59   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  60   _ihop_control(create_ihop_control(&_predictor)),
  61   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  62   _full_collection_start_sec(0.0),
  63   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC),
  64   _young_list_target_length(0),
  65   _young_list_fixed_length(0),
  66   _young_list_max_length(0),
  67   _eden_surv_rate_group(new G1SurvRateGroup()),
  68   _survivor_surv_rate_group(new G1SurvRateGroup()),
  69   _reserve_factor((double) G1ReservePercent / 100.0),
  70   _reserve_regions(0),
  71   _young_gen_sizer(G1YoungGenSizer::create_gen_sizer()),
  72   _free_regions_at_end_of_collection(0),
  73   _rs_length(0),
  74   _rs_length_prediction(0),
  75   _pending_cards_at_gc_start(0),
  76   _old_gen_alloc_tracker(),
  77   _concurrent_start_to_mixed(),
  78   _collection_set(NULL),
  79   _g1h(NULL),
  80   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
  81   _mark_remark_start_sec(0),
  82   _mark_cleanup_start_sec(0),
  83   _tenuring_threshold(MaxTenuringThreshold),
  84   _max_survivor_regions(0),
  85   _survivors_age_table(true)
  86 {
  87 }
  88 
  89 G1Policy::~G1Policy() {
  90   delete _ihop_control;
  91   delete _young_gen_sizer;
  92 }
  93 
  94 G1Policy* G1Policy::create_policy(STWGCTimer* gc_timer_stw) {
  95   if (G1Arguments::is_heterogeneous_heap()) {
  96     return new G1HeterogeneousHeapPolicy(gc_timer_stw);
  97   } else {
  98     return new G1Policy(gc_timer_stw);
  99   }
 100 }
 101 
 102 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
 103 
 104 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
 105   _g1h = g1h;
 106   _collection_set = collection_set;
 107 
 108   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 109 
 110   if (!use_adaptive_young_list_length()) {
 111     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 112   }
 113   _young_gen_sizer->adjust_max_new_size(_g1h->max_expandable_regions());
 114 
 115   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 116 
 117   update_young_list_max_and_target_length();
 118   // We may immediately start allocating regions and placing them on the
 119   // collection set list. Initialize the per-collection set info
 120   _collection_set->start_incremental_building();
 121 }
 122 
 123 void G1Policy::note_gc_start() {
 124   phase_times()->note_gc_start();
 125 }
 126 
 127 class G1YoungLengthPredictor {
 128   const double _base_time_ms;
 129   const double _base_free_regions;
 130   const double _target_pause_time_ms;
 131   const G1Policy* const _policy;
 132 
 133  public:
 134   G1YoungLengthPredictor(double base_time_ms,
 135                          double base_free_regions,
 136                          double target_pause_time_ms,
 137                          const G1Policy* policy) :
 138     _base_time_ms(base_time_ms),
 139     _base_free_regions(base_free_regions),
 140     _target_pause_time_ms(target_pause_time_ms),
 141     _policy(policy) {}
 142 
 143   bool will_fit(uint young_length) const {
 144     if (young_length >= _base_free_regions) {
 145       // end condition 1: not enough space for the young regions
 146       return false;
 147     }
 148 
 149     size_t bytes_to_copy = 0;
 150     const double copy_time_ms = _policy->predict_eden_copy_time_ms(young_length, &bytes_to_copy);
 151     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 152     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 153     if (pause_time_ms > _target_pause_time_ms) {
 154       // end condition 2: prediction is over the target pause time
 155       return false;
 156     }
 157 
 158     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 159 
 160     // When copying, we will likely need more bytes free than is live in the region.
 161     // Add some safety margin to factor in the confidence of our guess, and the
 162     // natural expected waste.
 163     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 164     // of the calculation: the lower the confidence, the more headroom.
 165     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 166     // copying due to anticipated waste in the PLABs.
 167     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 168     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 169 
 170     if (expected_bytes_to_copy > free_bytes) {
 171       // end condition 3: out-of-space
 172       return false;
 173     }
 174 
 175     // success!
 176     return true;
 177   }
 178 };
 179 
 180 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 181   // re-calculate the necessary reserve
 182   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 183   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 184   // smaller than 1.0) we'll get 1.
 185   _reserve_regions = (uint) ceil(reserve_regions_d);
 186 
 187   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 188 
 189   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 190 }
 191 
 192 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
 193   uint desired_min_length = 0;
 194   if (use_adaptive_young_list_length()) {
 195     if (_analytics->num_alloc_rate_ms() > 3) {
 196       double now_sec = os::elapsedTime();
 197       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 198       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 199       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 200     } else {
 201       // otherwise we don't have enough info to make the prediction
 202     }
 203   }
 204   desired_min_length += base_min_length;
 205   // make sure we don't go below any user-defined minimum bound
 206   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 207 }
 208 
 209 uint G1Policy::calculate_young_list_desired_max_length() const {
 210   // Here, we might want to also take into account any additional
 211   // constraints (i.e., user-defined minimum bound). Currently, we
 212   // effectively don't set this bound.
 213   return _young_gen_sizer->max_desired_young_length();
 214 }
 215 
 216 uint G1Policy::update_young_list_max_and_target_length() {
 217   return update_young_list_max_and_target_length(_analytics->predict_rs_length());
 218 }
 219 
 220 uint G1Policy::update_young_list_max_and_target_length(size_t rs_length) {
 221   uint unbounded_target_length = update_young_list_target_length(rs_length);
 222   update_max_gc_locker_expansion();
 223   return unbounded_target_length;
 224 }
 225 
 226 uint G1Policy::update_young_list_target_length(size_t rs_length) {
 227   YoungTargetLengths young_lengths = young_list_target_lengths(rs_length);
 228   _young_list_target_length = young_lengths.first;
 229 
 230   return young_lengths.second;
 231 }
 232 
 233 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_length) const {
 234   YoungTargetLengths result;
 235 
 236   // Calculate the absolute and desired min bounds first.
 237 
 238   // This is how many young regions we already have (currently: the survivors).
 239   const uint base_min_length = _g1h->survivor_regions_count();
 240   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 241   // This is the absolute minimum young length. Ensure that we
 242   // will at least have one eden region available for allocation.
 243   uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
 244   // If we shrank the young list target it should not shrink below the current size.
 245   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 246   // Calculate the absolute and desired max bounds.
 247 
 248   uint desired_max_length = calculate_young_list_desired_max_length();
 249 
 250   uint young_list_target_length = 0;
 251   if (use_adaptive_young_list_length()) {
 252     if (collector_state()->in_young_only_phase()) {
 253       young_list_target_length =
 254                         calculate_young_list_target_length(rs_length,
 255                                                            base_min_length,
 256                                                            desired_min_length,
 257                                                            desired_max_length);
 258     } else {
 259       // Don't calculate anything and let the code below bound it to
 260       // the desired_min_length, i.e., do the next GC as soon as
 261       // possible to maximize how many old regions we can add to it.
 262     }
 263   } else {
 264     // The user asked for a fixed young gen so we'll fix the young gen
 265     // whether the next GC is young or mixed.
 266     young_list_target_length = _young_list_fixed_length;
 267   }
 268 
 269   result.second = young_list_target_length;
 270 
 271   // We will try our best not to "eat" into the reserve.
 272   uint absolute_max_length = 0;
 273   if (_free_regions_at_end_of_collection > _reserve_regions) {
 274     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 275   }
 276   if (desired_max_length > absolute_max_length) {
 277     desired_max_length = absolute_max_length;
 278   }
 279 
 280   // Make sure we don't go over the desired max length, nor under the
 281   // desired min length. In case they clash, desired_min_length wins
 282   // which is why that test is second.
 283   if (young_list_target_length > desired_max_length) {
 284     young_list_target_length = desired_max_length;
 285   }
 286   if (young_list_target_length < desired_min_length) {
 287     young_list_target_length = desired_min_length;
 288   }
 289 
 290   assert(young_list_target_length > base_min_length,
 291          "we should be able to allocate at least one eden region");
 292   assert(young_list_target_length >= absolute_min_length, "post-condition");
 293 
 294   result.first = young_list_target_length;
 295   return result;
 296 }
 297 
 298 uint G1Policy::calculate_young_list_target_length(size_t rs_length,
 299                                                   uint base_min_length,
 300                                                   uint desired_min_length,
 301                                                   uint desired_max_length) const {
 302   assert(use_adaptive_young_list_length(), "pre-condition");
 303   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
 304 
 305   // In case some edge-condition makes the desired max length too small...
 306   if (desired_max_length <= desired_min_length) {
 307     return desired_min_length;
 308   }
 309 
 310   // We'll adjust min_young_length and max_young_length not to include
 311   // the already allocated young regions (i.e., so they reflect the
 312   // min and max eden regions we'll allocate). The base_min_length
 313   // will be reflected in the predictions by the
 314   // survivor_regions_evac_time prediction.
 315   assert(desired_min_length > base_min_length, "invariant");
 316   uint min_young_length = desired_min_length - base_min_length;
 317   assert(desired_max_length > base_min_length, "invariant");
 318   uint max_young_length = desired_max_length - base_min_length;
 319 
 320   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 321   const size_t pending_cards = _analytics->predict_pending_cards();
 322   const double base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
 323   const uint available_free_regions = _free_regions_at_end_of_collection;
 324   const uint base_free_regions =
 325     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 326 
 327   // Here, we will make sure that the shortest young length that
 328   // makes sense fits within the target pause time.
 329 
 330   G1YoungLengthPredictor p(base_time_ms,
 331                            base_free_regions,
 332                            target_pause_time_ms,
 333                            this);
 334   if (p.will_fit(min_young_length)) {
 335     // The shortest young length will fit into the target pause time;
 336     // we'll now check whether the absolute maximum number of young
 337     // regions will fit in the target pause time. If not, we'll do
 338     // a binary search between min_young_length and max_young_length.
 339     if (p.will_fit(max_young_length)) {
 340       // The maximum young length will fit into the target pause time.
 341       // We are done so set min young length to the maximum length (as
 342       // the result is assumed to be returned in min_young_length).
 343       min_young_length = max_young_length;
 344     } else {
 345       // The maximum possible number of young regions will not fit within
 346       // the target pause time so we'll search for the optimal
 347       // length. The loop invariants are:
 348       //
 349       // min_young_length < max_young_length
 350       // min_young_length is known to fit into the target pause time
 351       // max_young_length is known not to fit into the target pause time
 352       //
 353       // Going into the loop we know the above hold as we've just
 354       // checked them. Every time around the loop we check whether
 355       // the middle value between min_young_length and
 356       // max_young_length fits into the target pause time. If it
 357       // does, it becomes the new min. If it doesn't, it becomes
 358       // the new max. This way we maintain the loop invariants.
 359 
 360       assert(min_young_length < max_young_length, "invariant");
 361       uint diff = (max_young_length - min_young_length) / 2;
 362       while (diff > 0) {
 363         uint young_length = min_young_length + diff;
 364         if (p.will_fit(young_length)) {
 365           min_young_length = young_length;
 366         } else {
 367           max_young_length = young_length;
 368         }
 369         assert(min_young_length <  max_young_length, "invariant");
 370         diff = (max_young_length - min_young_length) / 2;
 371       }
 372       // The results is min_young_length which, according to the
 373       // loop invariants, should fit within the target pause time.
 374 
 375       // These are the post-conditions of the binary search above:
 376       assert(min_young_length < max_young_length,
 377              "otherwise we should have discovered that max_young_length "
 378              "fits into the pause target and not done the binary search");
 379       assert(p.will_fit(min_young_length),
 380              "min_young_length, the result of the binary search, should "
 381              "fit into the pause target");
 382       assert(!p.will_fit(min_young_length + 1),
 383              "min_young_length, the result of the binary search, should be "
 384              "optimal, so no larger length should fit into the pause target");
 385     }
 386   } else {
 387     // Even the minimum length doesn't fit into the pause time
 388     // target, return it as the result nevertheless.
 389   }
 390   return base_min_length + min_young_length;
 391 }
 392 
 393 double G1Policy::predict_survivor_regions_evac_time() const {
 394   double survivor_regions_evac_time = 0.0;
 395   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 396   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 397        it != survivor_regions->end();
 398        ++it) {
 399     survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
 400   }
 401   return survivor_regions_evac_time;
 402 }
 403 
 404 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
 405   guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
 406 
 407   if (rs_length > _rs_length_prediction) {
 408     // add 10% to avoid having to recalculate often
 409     size_t rs_length_prediction = rs_length * 1100 / 1000;
 410     update_rs_length_prediction(rs_length_prediction);
 411 
 412     update_young_list_max_and_target_length(rs_length_prediction);
 413   }
 414 }
 415 
 416 void G1Policy::update_rs_length_prediction() {
 417   update_rs_length_prediction(_analytics->predict_rs_length());
 418 }
 419 
 420 void G1Policy::update_rs_length_prediction(size_t prediction) {
 421   if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
 422     _rs_length_prediction = prediction;
 423   }
 424 }
 425 
 426 void G1Policy::record_full_collection_start() {
 427   _full_collection_start_sec = os::elapsedTime();
 428   // Release the future to-space so that it is available for compaction into.
 429   collector_state()->set_in_young_only_phase(false);
 430   collector_state()->set_in_full_gc(true);
 431   _collection_set->clear_candidates();
 432   _pending_cards_at_gc_start = 0;
 433 }
 434 
 435 void G1Policy::record_full_collection_end() {
 436   // Consider this like a collection pause for the purposes of allocation
 437   // since last pause.
 438   double end_sec = os::elapsedTime();
 439   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 440   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 441 
 442   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 443 
 444   collector_state()->set_in_full_gc(false);
 445 
 446   // "Nuke" the heuristics that control the young/mixed GC
 447   // transitions and make sure we start with young GCs after the Full GC.
 448   collector_state()->set_in_young_only_phase(true);
 449   collector_state()->set_in_young_gc_before_mixed(false);
 450   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 451   collector_state()->set_in_concurrent_start_gc(false);
 452   collector_state()->set_mark_or_rebuild_in_progress(false);
 453   collector_state()->set_clearing_next_bitmap(false);
 454 
 455   _eden_surv_rate_group->start_adding_regions();
 456   // also call this on any additional surv rate groups
 457 
 458   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 459   _survivor_surv_rate_group->reset();
 460   update_young_list_max_and_target_length();
 461   update_rs_length_prediction();
 462 
 463   _old_gen_alloc_tracker.reset_after_full_gc();
 464 
 465   record_pause(FullGC, _full_collection_start_sec, end_sec);
 466 }
 467 
 468 static void log_refinement_stats(const char* kind, const G1ConcurrentRefineStats& stats) {
 469   log_debug(gc, refine, stats)
 470            ("%s refinement: %.2fms, refined: " SIZE_FORMAT
 471             ", precleaned: " SIZE_FORMAT ", dirtied: " SIZE_FORMAT,
 472             kind,
 473             stats.refinement_time().seconds() * MILLIUNITS,
 474             stats.refined_cards(),
 475             stats.precleaned_cards(),
 476             stats.dirtied_cards());
 477 }
 478 
 479 void G1Policy::record_concurrent_refinement_stats() {
 480   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 481   _pending_cards_at_gc_start = dcqs.num_cards();
 482 
 483   // Collect per-thread stats, mostly from mutator activity.
 484   G1ConcurrentRefineStats mut_stats = dcqs.get_and_reset_refinement_stats();
 485 
 486   // Collect specialized concurrent refinement thread stats.
 487   G1ConcurrentRefine* cr = _g1h->concurrent_refine();
 488   G1ConcurrentRefineStats cr_stats = cr->get_and_reset_refinement_stats();
 489 
 490   G1ConcurrentRefineStats total_stats = mut_stats + cr_stats;
 491 
 492   log_refinement_stats("Mutator", mut_stats);
 493   log_refinement_stats("Concurrent", cr_stats);
 494   log_refinement_stats("Total", total_stats);
 495 
 496   // Record the rate at which cards were refined.
 497   // Don't update the rate if the current sample is empty or time is zero.
 498   Tickspan refinement_time = total_stats.refinement_time();
 499   size_t refined_cards = total_stats.refined_cards();
 500   if ((refined_cards > 0) && (refinement_time > Tickspan())) {
 501     double rate = refined_cards / (refinement_time.seconds() * MILLIUNITS);
 502     _analytics->report_concurrent_refine_rate_ms(rate);
 503     log_debug(gc, refine, stats)("Concurrent refinement rate: %.2f cards/ms", rate);
 504   }
 505 
 506   // Record mutator's card logging rate.
 507   double mut_start_time = _analytics->prev_collection_pause_end_ms();
 508   double mut_end_time = phase_times()->cur_collection_start_sec() * MILLIUNITS;
 509   double mut_time = mut_end_time - mut_start_time;
 510   // Unlike above for conc-refine rate, here we should not require a
 511   // non-empty sample, since an application could go some time with only
 512   // young-gen or filtered out writes.  But we'll ignore unusually short
 513   // sample periods, as they may just pollute the predictions.
 514   if (mut_time > 1.0) {   // Require > 1ms sample time.
 515     double dirtied_rate = total_stats.dirtied_cards() / mut_time;
 516     _analytics->report_dirtied_cards_rate_ms(dirtied_rate);
 517     log_debug(gc, refine, stats)("Generate dirty cards rate: %.2f cards/ms", dirtied_rate);
 518   }
 519 }
 520 
 521 void G1Policy::record_collection_pause_start(double start_time_sec) {
 522   // We only need to do this here as the policy will only be applied
 523   // to the GC we're about to start. so, no point is calculating this
 524   // every time we calculate / recalculate the target young length.
 525   update_survivors_policy();
 526 
 527   assert(max_survivor_regions() + _g1h->num_used_regions() <= _g1h->max_regions(),
 528          "Maximum survivor regions %u plus used regions %u exceeds max regions %u",
 529          max_survivor_regions(), _g1h->num_used_regions(), _g1h->max_regions());
 530   assert_used_and_recalculate_used_equal(_g1h);
 531 
 532   phase_times()->record_cur_collection_start_sec(start_time_sec);
 533 
 534   record_concurrent_refinement_stats();
 535 
 536   _collection_set->reset_bytes_used_before();
 537 
 538   // do that for any other surv rate groups
 539   _eden_surv_rate_group->stop_adding_regions();
 540   _survivors_age_table.clear();
 541 
 542   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
 543 }
 544 
 545 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 546   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 547   collector_state()->set_in_concurrent_start_gc(false);
 548 }
 549 
 550 void G1Policy::record_concurrent_mark_remark_start() {
 551   _mark_remark_start_sec = os::elapsedTime();
 552 }
 553 
 554 void G1Policy::record_concurrent_mark_remark_end() {
 555   double end_time_sec = os::elapsedTime();
 556   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 557   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 558   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 559 
 560   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 561 }
 562 
 563 void G1Policy::record_concurrent_mark_cleanup_start() {
 564   _mark_cleanup_start_sec = os::elapsedTime();
 565 }
 566 
 567 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 568   return phase_times()->average_time_ms(phase);
 569 }
 570 
 571 double G1Policy::young_other_time_ms() const {
 572   return phase_times()->young_cset_choice_time_ms() +
 573          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 574 }
 575 
 576 double G1Policy::non_young_other_time_ms() const {
 577   return phase_times()->non_young_cset_choice_time_ms() +
 578          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 579 }
 580 
 581 double G1Policy::other_time_ms(double pause_time_ms) const {
 582   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 583 }
 584 
 585 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
 586   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms() - phase_times()->total_rebuild_freelist_time_ms();
 587 }
 588 
 589 bool G1Policy::about_to_start_mixed_phase() const {
 590   return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
 591 }
 592 
 593 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 594   if (about_to_start_mixed_phase()) {
 595     return false;
 596   }
 597 
 598   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 599 
 600   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
 601   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 602   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 603 
 604   bool result = false;
 605   if (marking_request_bytes > marking_initiating_used_threshold) {
 606     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
 607     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 608                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 609                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
 610   }
 611 
 612   return result;
 613 }
 614 
 615 double G1Policy::logged_cards_processing_time() const {
 616   double all_cards_processing_time = average_time_ms(G1GCPhaseTimes::ScanHR) + average_time_ms(G1GCPhaseTimes::OptScanHR);
 617   size_t logged_dirty_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 618   size_t scan_heap_roots_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 619                                  phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 620   // This may happen if there are duplicate cards in different log buffers.
 621   if (logged_dirty_cards > scan_heap_roots_cards) {
 622     return all_cards_processing_time + average_time_ms(G1GCPhaseTimes::MergeLB);
 623   }
 624   return (all_cards_processing_time * logged_dirty_cards / scan_heap_roots_cards) + average_time_ms(G1GCPhaseTimes::MergeLB);
 625 }
 626 
 627 // Anything below that is considered to be zero
 628 #define MIN_TIMER_GRANULARITY 0.0000001
 629 
 630 void G1Policy::record_collection_pause_end(double pause_time_ms) {
 631   G1GCPhaseTimes* p = phase_times();
 632 
 633   double end_time_sec = os::elapsedTime();
 634 
 635   PauseKind this_pause = young_gc_pause_kind();
 636 
 637   bool update_stats = !_g1h->evacuation_failed();
 638 
 639   record_pause(this_pause, end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 640 
 641   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 642 
 643   if (is_concurrent_start_pause(this_pause)) {
 644     record_concurrent_mark_init_end(0.0);
 645   } else {
 646     maybe_start_marking();
 647   }
 648 
 649   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 650   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 651     // This usually happens due to the timer not having the required
 652     // granularity. Some Linuxes are the usual culprits.
 653     // We'll just set it to something (arbitrarily) small.
 654     app_time_ms = 1.0;
 655   }
 656 
 657   if (update_stats) {
 658     // We maintain the invariant that all objects allocated by mutator
 659     // threads will be allocated out of eden regions. So, we can use
 660     // the eden region number allocated since the previous GC to
 661     // calculate the application's allocate rate. The only exception
 662     // to that is humongous objects that are allocated separately. But
 663     // given that humongous object allocations do not really affect
 664     // either the pause's duration nor when the next pause will take
 665     // place we can safely ignore them here.
 666     uint regions_allocated = _collection_set->eden_region_length();
 667     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 668     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 669 
 670     _analytics->compute_pause_time_ratios(end_time_sec, pause_time_ms);
 671     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 672   }
 673 
 674   if (is_last_young_pause(this_pause)) {
 675     assert(!is_concurrent_start_pause(this_pause),
 676            "The young GC before mixed is not allowed to be concurrent start GC");
 677     // This has been the young GC before we start doing mixed GCs. We already
 678     // decided to start mixed GCs much earlier, so there is nothing to do except
 679     // advancing the state.
 680     collector_state()->set_in_young_only_phase(false);
 681     collector_state()->set_in_young_gc_before_mixed(false);
 682   } else if (is_mixed_pause(this_pause)) {
 683     // This is a mixed GC. Here we decide whether to continue doing more
 684     // mixed GCs or not.
 685     if (!next_gc_should_be_mixed("continue mixed GCs",
 686                                  "do not continue mixed GCs")) {
 687       collector_state()->set_in_young_only_phase(true);
 688 
 689       clear_collection_set_candidates();
 690       maybe_start_marking();
 691     }
 692   } else {
 693     assert(is_young_only_pause(this_pause), "must be");
 694   }
 695 
 696   _eden_surv_rate_group->start_adding_regions();
 697 
 698   double merge_hcc_time_ms = average_time_ms(G1GCPhaseTimes::MergeHCC);
 699   if (update_stats) {
 700     size_t const total_log_buffer_cards = p->sum_thread_work_items(G1GCPhaseTimes::MergeHCC, G1GCPhaseTimes::MergeHCCDirtyCards) +
 701                                           p->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 702     // Update prediction for card merge; MergeRSDirtyCards includes the cards from the Eager Reclaim phase.
 703     size_t const total_cards_merged = p->sum_thread_work_items(G1GCPhaseTimes::MergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 704                                       p->sum_thread_work_items(G1GCPhaseTimes::OptMergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 705                                       total_log_buffer_cards;
 706 
 707     // The threshold for the number of cards in a given sampling which we consider
 708     // large enough so that the impact from setup and other costs is negligible.
 709     size_t const CardsNumSamplingThreshold = 10;
 710 
 711     if (total_cards_merged > CardsNumSamplingThreshold) {
 712       double avg_time_merge_cards = average_time_ms(G1GCPhaseTimes::MergeER) +
 713                                     average_time_ms(G1GCPhaseTimes::MergeRS) +
 714                                     average_time_ms(G1GCPhaseTimes::MergeHCC) +
 715                                     average_time_ms(G1GCPhaseTimes::MergeLB) +
 716                                     average_time_ms(G1GCPhaseTimes::OptMergeRS);
 717       _analytics->report_cost_per_card_merge_ms(avg_time_merge_cards / total_cards_merged,
 718                                                 is_young_only_pause(this_pause));
 719     }
 720 
 721     // Update prediction for card scan
 722     size_t const total_cards_scanned = p->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 723                                        p->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 724 
 725     if (total_cards_scanned > CardsNumSamplingThreshold) {
 726       double avg_time_dirty_card_scan = average_time_ms(G1GCPhaseTimes::ScanHR) +
 727                                         average_time_ms(G1GCPhaseTimes::OptScanHR);
 728 
 729       _analytics->report_cost_per_card_scan_ms(avg_time_dirty_card_scan / total_cards_scanned,
 730                                                is_young_only_pause(this_pause));
 731     }
 732 
 733     // Update prediction for the ratio between cards from the remembered
 734     // sets and actually scanned cards from the remembered sets.
 735     // Cards from the remembered sets are all cards not duplicated by cards from
 736     // the logs.
 737     // Due to duplicates in the log buffers, the number of actually scanned cards
 738     // can be smaller than the cards in the log buffers.
 739     const size_t from_rs_length_cards = (total_cards_scanned > total_log_buffer_cards) ? total_cards_scanned - total_log_buffer_cards : 0;
 740     double merge_to_scan_ratio = 0.0;
 741     if (total_cards_scanned > 0) {
 742       merge_to_scan_ratio = (double) from_rs_length_cards / total_cards_scanned;
 743     }
 744     _analytics->report_card_merge_to_scan_ratio(merge_to_scan_ratio,
 745                                                 is_young_only_pause(this_pause));
 746 
 747     const size_t recorded_rs_length = _collection_set->recorded_rs_length();
 748     const size_t rs_length_diff = _rs_length > recorded_rs_length ? _rs_length - recorded_rs_length : 0;
 749     _analytics->report_rs_length_diff(rs_length_diff);
 750 
 751     // Update prediction for copy cost per byte
 752     size_t copied_bytes = p->sum_thread_work_items(G1GCPhaseTimes::MergePSS, G1GCPhaseTimes::MergePSSCopiedBytes);
 753 
 754     if (copied_bytes > 0) {
 755       double cost_per_byte_ms = (average_time_ms(G1GCPhaseTimes::ObjCopy) + average_time_ms(G1GCPhaseTimes::OptObjCopy)) / copied_bytes;
 756       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
 757     }
 758 
 759     if (_collection_set->young_region_length() > 0) {
 760       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 761                                                         _collection_set->young_region_length());
 762     }
 763 
 764     if (_collection_set->old_region_length() > 0) {
 765       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 766                                                             _collection_set->old_region_length());
 767     }
 768 
 769     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 770 
 771     // Do not update RS lengths and the number of pending cards with information from mixed gc:
 772     // these are is wildly different to during young only gc and mess up young gen sizing right
 773     // after the mixed gc phase.
 774     // During mixed gc we do not use them for young gen sizing.
 775     if (is_young_only_pause(this_pause)) {
 776       _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
 777       _analytics->report_rs_length((double) _rs_length);
 778     }
 779   }
 780 
 781   assert(!(is_concurrent_start_pause(this_pause) && collector_state()->mark_or_rebuild_in_progress()),
 782          "If the last pause has been concurrent start, we should not have been in the marking window");
 783   if (is_concurrent_start_pause(this_pause)) {
 784     collector_state()->set_mark_or_rebuild_in_progress(true);
 785   }
 786 
 787   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 788 
 789   update_rs_length_prediction();
 790 
 791   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
 792   // that in this case we are not running in a "normal" operating mode.
 793   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
 794     // IHOP control wants to know the expected young gen length if it were not
 795     // restrained by the heap reserve. Using the actual length would make the
 796     // prediction too small and the limit the young gen every time we get to the
 797     // predicted target occupancy.
 798     size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 799 
 800     _old_gen_alloc_tracker.reset_after_young_gc(app_time_ms / 1000.0);
 801     update_ihop_prediction(_old_gen_alloc_tracker.last_cycle_duration(),
 802                            _old_gen_alloc_tracker.last_cycle_old_bytes(),
 803                            last_unrestrained_young_length * HeapRegion::GrainBytes,
 804                            is_young_only_pause(this_pause));
 805 
 806     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 807   } else {
 808     // Any garbage collection triggered as periodic collection resets the time-to-mixed
 809     // measurement. Periodic collection typically means that the application is "inactive", i.e.
 810     // the marking threads may have received an uncharacterisic amount of cpu time
 811     // for completing the marking, i.e. are faster than expected.
 812     // This skews the predicted marking length towards smaller values which might cause
 813     // the mark start being too late.
 814     _concurrent_start_to_mixed.reset();
 815   }
 816 
 817   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 818   double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 819 
 820   if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
 821     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 822                                 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
 823                                 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);
 824 
 825     scan_logged_cards_time_goal_ms = 0;
 826   } else {
 827     scan_logged_cards_time_goal_ms -= merge_hcc_time_ms;
 828   }
 829 
 830   double const logged_cards_time = logged_cards_processing_time();
 831 
 832   log_debug(gc, ergo, refine)("Concurrent refinement times: Logged Cards Scan time goal: %1.2fms Logged Cards Scan time: %1.2fms HCC time: %1.2fms",
 833                               scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
 834 
 835   _g1h->concurrent_refine()->adjust(logged_cards_time,
 836                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
 837                                     scan_logged_cards_time_goal_ms);
 838 }
 839 
 840 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 841   if (G1UseAdaptiveIHOP) {
 842     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 843                                      predictor,
 844                                      G1ReservePercent,
 845                                      G1HeapWastePercent);
 846   } else {
 847     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 848   }
 849 }
 850 
 851 void G1Policy::update_ihop_prediction(double mutator_time_s,
 852                                       size_t mutator_alloc_bytes,
 853                                       size_t young_gen_size,
 854                                       bool this_gc_was_young_only) {
 855   // Always try to update IHOP prediction. Even evacuation failures give information
 856   // about e.g. whether to start IHOP earlier next time.
 857 
 858   // Avoid using really small application times that might create samples with
 859   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 860   double const min_valid_time = 1e-6;
 861 
 862   bool report = false;
 863 
 864   double marking_to_mixed_time = -1.0;
 865   if (!this_gc_was_young_only && _concurrent_start_to_mixed.has_result()) {
 866     marking_to_mixed_time = _concurrent_start_to_mixed.last_marking_time();
 867     assert(marking_to_mixed_time > 0.0,
 868            "Concurrent start to mixed time must be larger than zero but is %.3f",
 869            marking_to_mixed_time);
 870     if (marking_to_mixed_time > min_valid_time) {
 871       _ihop_control->update_marking_length(marking_to_mixed_time);
 872       report = true;
 873     }
 874   }
 875 
 876   // As an approximation for the young gc promotion rates during marking we use
 877   // all of them. In many applications there are only a few if any young gcs during
 878   // marking, which makes any prediction useless. This increases the accuracy of the
 879   // prediction.
 880   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 881     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 882     report = true;
 883   }
 884 
 885   if (report) {
 886     report_ihop_statistics();
 887   }
 888 }
 889 
 890 void G1Policy::report_ihop_statistics() {
 891   _ihop_control->print();
 892 }
 893 
 894 void G1Policy::print_phases() {
 895   phase_times()->print();
 896 }
 897 
 898 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
 899                                               size_t rs_length) const {
 900   size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());
 901   return
 902     _analytics->predict_card_merge_time_ms(pending_cards + rs_length, collector_state()->in_young_only_phase()) +
 903     _analytics->predict_card_scan_time_ms(effective_scanned_cards, collector_state()->in_young_only_phase()) +
 904     _analytics->predict_constant_other_time_ms() +
 905     predict_survivor_regions_evac_time();
 906 }
 907 
 908 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 909   size_t rs_length = _analytics->predict_rs_length();
 910   return predict_base_elapsed_time_ms(pending_cards, rs_length);
 911 }
 912 
 913 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
 914   size_t bytes_to_copy;
 915   if (!hr->is_young()) {
 916     bytes_to_copy = hr->max_live_bytes();
 917   } else {
 918     bytes_to_copy = (size_t) (hr->used() * hr->surv_rate_prediction(_predictor));
 919   }
 920   return bytes_to_copy;
 921 }
 922 
 923 double G1Policy::predict_eden_copy_time_ms(uint count, size_t* bytes_to_copy) const {
 924   if (count == 0) {
 925     return 0.0;
 926   }
 927   size_t const expected_bytes = _eden_surv_rate_group->accum_surv_rate_pred(count) * HeapRegion::GrainBytes;
 928   if (bytes_to_copy != NULL) {
 929     *bytes_to_copy = expected_bytes;
 930   }
 931   return _analytics->predict_object_copy_time_ms(expected_bytes, collector_state()->mark_or_rebuild_in_progress());
 932 }
 933 
 934 double G1Policy::predict_region_copy_time_ms(HeapRegion* hr) const {
 935   size_t const bytes_to_copy = predict_bytes_to_copy(hr);
 936   return _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
 937 }
 938 
 939 double G1Policy::predict_region_non_copy_time_ms(HeapRegion* hr,
 940                                                  bool for_young_gc) const {
 941   size_t rs_length = hr->rem_set()->occupied();
 942   size_t scan_card_num = _analytics->predict_scan_card_num(rs_length, for_young_gc);
 943 
 944   double region_elapsed_time_ms =
 945     _analytics->predict_card_merge_time_ms(rs_length, collector_state()->in_young_only_phase()) +
 946     _analytics->predict_card_scan_time_ms(scan_card_num, collector_state()->in_young_only_phase());
 947 
 948   // The prediction of the "other" time for this region is based
 949   // upon the region type and NOT the GC type.
 950   if (hr->is_young()) {
 951     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 952   } else {
 953     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 954   }
 955   return region_elapsed_time_ms;
 956 }
 957 
 958 double G1Policy::predict_region_total_time_ms(HeapRegion* hr, bool for_young_gc) const {
 959   return predict_region_non_copy_time_ms(hr, for_young_gc) + predict_region_copy_time_ms(hr);
 960 }
 961 
 962 bool G1Policy::should_allocate_mutator_region() const {
 963   uint young_list_length = _g1h->young_regions_count();
 964   uint young_list_target_length = _young_list_target_length;
 965   return young_list_length < young_list_target_length;
 966 }
 967 
 968 bool G1Policy::can_expand_young_list() const {
 969   uint young_list_length = _g1h->young_regions_count();
 970   uint young_list_max_length = _young_list_max_length;
 971   return young_list_length < young_list_max_length;
 972 }
 973 
 974 bool G1Policy::use_adaptive_young_list_length() const {
 975   return _young_gen_sizer->use_adaptive_young_list_length();
 976 }
 977 
 978 size_t G1Policy::desired_survivor_size(uint max_regions) const {
 979   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
 980   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 981 }
 982 
 983 void G1Policy::print_age_table() {
 984   _survivors_age_table.print_age_table(_tenuring_threshold);
 985 }
 986 
 987 void G1Policy::update_max_gc_locker_expansion() {
 988   uint expansion_region_num = 0;
 989   if (GCLockerEdenExpansionPercent > 0) {
 990     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 991     double expansion_region_num_d = perc * (double) _young_list_target_length;
 992     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 993     // less than 1.0) we'll get 1.
 994     expansion_region_num = (uint) ceil(expansion_region_num_d);
 995   } else {
 996     assert(expansion_region_num == 0, "sanity");
 997   }
 998   _young_list_max_length = _young_list_target_length + expansion_region_num;
 999   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1000 }
1001 
1002 // Calculates survivor space parameters.
1003 void G1Policy::update_survivors_policy() {
1004   double max_survivor_regions_d =
1005                  (double) _young_list_target_length / (double) SurvivorRatio;
1006 
1007   // Calculate desired survivor size based on desired max survivor regions (unconstrained
1008   // by remaining heap). Otherwise we may cause undesired promotions as we are
1009   // already getting close to end of the heap, impacting performance even more.
1010   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1011   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1012 
1013   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1014   if (UsePerfData) {
1015     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1016     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1017   }
1018   // The real maximum survivor size is bounded by the number of regions that can
1019   // be allocated into.
1020   _max_survivor_regions = MIN2(desired_max_survivor_regions,
1021                                _g1h->num_free_or_available_regions());
1022 }
1023 
1024 bool G1Policy::force_concurrent_start_if_outside_cycle(GCCause::Cause gc_cause) {
1025   // We actually check whether we are marking here and not if we are in a
1026   // reclamation phase. This means that we will schedule a concurrent mark
1027   // even while we are still in the process of reclaiming memory.
1028   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
1029   if (!during_cycle) {
1030     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). "
1031                         "GC cause: %s",
1032                         GCCause::to_string(gc_cause));
1033     collector_state()->set_initiate_conc_mark_if_possible(true);
1034     return true;
1035   } else {
1036     log_debug(gc, ergo)("Do not request concurrent cycle initiation "
1037                         "(concurrent cycle already in progress). GC cause: %s",
1038                         GCCause::to_string(gc_cause));
1039     return false;
1040   }
1041 }
1042 
1043 void G1Policy::initiate_conc_mark() {
1044   collector_state()->set_in_concurrent_start_gc(true);
1045   collector_state()->set_initiate_conc_mark_if_possible(false);
1046 }
1047 
1048 void G1Policy::decide_on_conc_mark_initiation() {
1049   // We are about to decide on whether this pause will be a
1050   // concurrent start pause.
1051 
1052   // First, collector_state()->in_concurrent_start_gc() should not be already set. We
1053   // will set it here if we have to. However, it should be cleared by
1054   // the end of the pause (it's only set for the duration of a
1055   // concurrent start pause).
1056   assert(!collector_state()->in_concurrent_start_gc(), "pre-condition");
1057 
1058   if (collector_state()->initiate_conc_mark_if_possible()) {
1059     // We had noticed on a previous pause that the heap occupancy has
1060     // gone over the initiating threshold and we should start a
1061     // concurrent marking cycle.  Or we've been explicitly requested
1062     // to start a concurrent marking cycle.  Either way, we initiate
1063     // one if not inhibited for some reason.
1064 
1065     GCCause::Cause cause = _g1h->gc_cause();
1066     if ((cause != GCCause::_wb_breakpoint) &&
1067         ConcurrentGCBreakpoints::is_controlled()) {
1068       log_debug(gc, ergo)("Do not initiate concurrent cycle (whitebox controlled)");
1069     } else if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
1070       // Initiate a new concurrent start if there is no marking or reclamation going on.
1071       initiate_conc_mark();
1072       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1073     } else if (_g1h->is_user_requested_concurrent_full_gc(cause) ||
1074                (cause == GCCause::_wb_breakpoint)) {
1075       // Initiate a user requested concurrent start or run to a breakpoint.
1076       // A concurrent start must be young only GC, so the collector state
1077       // must be updated to reflect this.
1078       collector_state()->set_in_young_only_phase(true);
1079       collector_state()->set_in_young_gc_before_mixed(false);
1080 
1081       // We might have ended up coming here about to start a mixed phase with a collection set
1082       // active. The following remark might change the change the "evacuation efficiency" of
1083       // the regions in this set, leading to failing asserts later.
1084       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
1085       clear_collection_set_candidates();
1086       abort_time_to_mixed_tracking();
1087       initiate_conc_mark();
1088       log_debug(gc, ergo)("Initiate concurrent cycle (%s requested concurrent cycle)",
1089                           (cause == GCCause::_wb_breakpoint) ? "run_to breakpoint" : "user");
1090     } else {
1091       // The concurrent marking thread is still finishing up the
1092       // previous cycle. If we start one right now the two cycles
1093       // overlap. In particular, the concurrent marking thread might
1094       // be in the process of clearing the next marking bitmap (which
1095       // we will use for the next cycle if we start one). Starting a
1096       // cycle now will be bad given that parts of the marking
1097       // information might get cleared by the marking thread. And we
1098       // cannot wait for the marking thread to finish the cycle as it
1099       // periodically yields while clearing the next marking bitmap
1100       // and, if it's in a yield point, it's waiting for us to
1101       // finish. So, at this point we will not start a cycle and we'll
1102       // let the concurrent marking thread complete the last one.
1103       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1104     }
1105   }
1106 }
1107 
1108 void G1Policy::record_concurrent_mark_cleanup_end() {
1109   G1CollectionSetCandidates* candidates = G1CollectionSetChooser::build(_g1h->workers(), _g1h->num_regions());
1110   _collection_set->set_candidates(candidates);
1111 
1112   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1113   if (!mixed_gc_pending) {
1114     clear_collection_set_candidates();
1115     abort_time_to_mixed_tracking();
1116   }
1117   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1118   collector_state()->set_mark_or_rebuild_in_progress(false);
1119 
1120   double end_sec = os::elapsedTime();
1121   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1122   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1123   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1124 
1125   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1126 }
1127 
1128 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1129   return percent_of(reclaimable_bytes, _g1h->capacity());
1130 }
1131 
1132 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
1133   virtual bool do_heap_region(HeapRegion* r) {
1134     r->rem_set()->clear_locked(true /* only_cardset */);
1135     return false;
1136   }
1137 };
1138 
1139 void G1Policy::clear_collection_set_candidates() {
1140   // Clear remembered sets of remaining candidate regions and the actual candidate
1141   // set.
1142   G1ClearCollectionSetCandidateRemSets cl;
1143   _collection_set->candidates()->iterate(&cl);
1144   _collection_set->clear_candidates();
1145 }
1146 
1147 void G1Policy::maybe_start_marking() {
1148   if (need_to_start_conc_mark("end of GC")) {
1149     // Note: this might have already been set, if during the last
1150     // pause we decided to start a cycle but at the beginning of
1151     // this pause we decided to postpone it. That's OK.
1152     collector_state()->set_initiate_conc_mark_if_possible(true);
1153   }
1154 }
1155 
1156 bool G1Policy::is_young_only_pause(PauseKind kind) {
1157   assert(kind != FullGC, "must be");
1158   assert(kind != Remark, "must be");
1159   assert(kind != Cleanup, "must be");
1160   return kind == ConcurrentStartGC || kind == LastYoungGC || kind == YoungOnlyGC;
1161 }
1162 
1163 bool G1Policy::is_mixed_pause(PauseKind kind) {
1164   assert(kind != FullGC, "must be");
1165   assert(kind != Remark, "must be");
1166   assert(kind != Cleanup, "must be");
1167   return kind == MixedGC;
1168 }
1169 
1170 bool G1Policy::is_last_young_pause(PauseKind kind) {
1171   return kind == LastYoungGC;
1172 }
1173 
1174 bool G1Policy::is_concurrent_start_pause(PauseKind kind) {
1175   return kind == ConcurrentStartGC;
1176 }
1177 
1178 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1179   assert(!collector_state()->in_full_gc(), "must be");
1180   if (collector_state()->in_concurrent_start_gc()) {
1181     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1182     return ConcurrentStartGC;
1183   } else if (collector_state()->in_young_gc_before_mixed()) {
1184     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1185     return LastYoungGC;
1186   } else if (collector_state()->in_mixed_phase()) {
1187     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1188     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1189     return MixedGC;
1190   } else {
1191     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1192     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1193     return YoungOnlyGC;
1194   }
1195 }
1196 
1197 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1198   // Manage the MMU tracker. For some reason it ignores Full GCs.
1199   if (kind != FullGC) {
1200     _mmu_tracker->add_pause(start, end);
1201   }
1202   // Manage the mutator time tracking from concurrent start to first mixed gc.
1203   switch (kind) {
1204     case FullGC:
1205       abort_time_to_mixed_tracking();
1206       break;
1207     case Cleanup:
1208     case Remark:
1209     case YoungOnlyGC:
1210     case LastYoungGC:
1211       _concurrent_start_to_mixed.add_pause(end - start);
1212       break;
1213     case ConcurrentStartGC:
1214       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1215         _concurrent_start_to_mixed.record_concurrent_start_end(end);
1216       }
1217       break;
1218     case MixedGC:
1219       _concurrent_start_to_mixed.record_mixed_gc_start(start);
1220       break;
1221     default:
1222       ShouldNotReachHere();
1223   }
1224 }
1225 
1226 void G1Policy::abort_time_to_mixed_tracking() {
1227   _concurrent_start_to_mixed.reset();
1228 }
1229 
1230 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1231                                        const char* false_action_str) const {
1232   G1CollectionSetCandidates* candidates = _collection_set->candidates();
1233 
1234   if (candidates->is_empty()) {
1235     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1236     return false;
1237   }
1238 
1239   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1240   size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1241   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1242   double threshold = (double) G1HeapWastePercent;
1243   if (reclaimable_percent <= threshold) {
1244     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1245                         false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1246     return false;
1247   }
1248   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1249                       true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1250   return true;
1251 }
1252 
1253 uint G1Policy::calc_min_old_cset_length() const {
1254   // The min old CSet region bound is based on the maximum desired
1255   // number of mixed GCs after a cycle. I.e., even if some old regions
1256   // look expensive, we should add them to the CSet anyway to make
1257   // sure we go through the available old regions in no more than the
1258   // maximum desired number of mixed GCs.
1259   //
1260   // The calculation is based on the number of marked regions we added
1261   // to the CSet candidates in the first place, not how many remain, so
1262   // that the result is the same during all mixed GCs that follow a cycle.
1263 
1264   const size_t region_num = _collection_set->candidates()->num_regions();
1265   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1266   size_t result = region_num / gc_num;
1267   // emulate ceiling
1268   if (result * gc_num < region_num) {
1269     result += 1;
1270   }
1271   return (uint) result;
1272 }
1273 
1274 uint G1Policy::calc_max_old_cset_length() const {
1275   // The max old CSet region bound is based on the threshold expressed
1276   // as a percentage of the heap size. I.e., it should bound the
1277   // number of old regions added to the CSet irrespective of how many
1278   // of them are available.
1279 
1280   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1281   const size_t region_num = g1h->num_regions();
1282   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1283   size_t result = region_num * perc / 100;
1284   // emulate ceiling
1285   if (100 * result < region_num * perc) {
1286     result += 1;
1287   }
1288   return (uint) result;
1289 }
1290 
1291 void G1Policy::calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates,
1292                                                     double time_remaining_ms,
1293                                                     uint& num_initial_regions,
1294                                                     uint& num_optional_regions) {
1295   assert(candidates != NULL, "Must be");
1296 
1297   num_initial_regions = 0;
1298   num_optional_regions = 0;
1299   uint num_expensive_regions = 0;
1300 
1301   double predicted_old_time_ms = 0.0;
1302   double predicted_initial_time_ms = 0.0;
1303   double predicted_optional_time_ms = 0.0;
1304 
1305   double optional_threshold_ms = time_remaining_ms * optional_prediction_fraction();
1306 
1307   const uint min_old_cset_length = calc_min_old_cset_length();
1308   const uint max_old_cset_length = MAX2(min_old_cset_length, calc_max_old_cset_length());
1309   const uint max_optional_regions = max_old_cset_length - min_old_cset_length;
1310   bool check_time_remaining = use_adaptive_young_list_length();
1311 
1312   uint candidate_idx = candidates->cur_idx();
1313 
1314   log_debug(gc, ergo, cset)("Start adding old regions to collection set. Min %u regions, max %u regions, "
1315                             "time remaining %1.2fms, optional threshold %1.2fms",
1316                             min_old_cset_length, max_old_cset_length, time_remaining_ms, optional_threshold_ms);
1317 
1318   HeapRegion* hr = candidates->at(candidate_idx);
1319   while (hr != NULL) {
1320     if (num_initial_regions + num_optional_regions >= max_old_cset_length) {
1321       // Added maximum number of old regions to the CSet.
1322       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Maximum number of regions). "
1323                                 "Initial %u regions, optional %u regions",
1324                                 num_initial_regions, num_optional_regions);
1325       break;
1326     }
1327 
1328     // Stop adding regions if the remaining reclaimable space is
1329     // not above G1HeapWastePercent.
1330     size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1331     double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1332     double threshold = (double) G1HeapWastePercent;
1333     if (reclaimable_percent <= threshold) {
1334       // We've added enough old regions that the amount of uncollected
1335       // reclaimable space is at or below the waste threshold. Stop
1336       // adding old regions to the CSet.
1337       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Reclaimable percentage below threshold). "
1338                                 "Reclaimable: " SIZE_FORMAT "%s (%1.2f%%) threshold: " UINTX_FORMAT "%%",
1339                                 byte_size_in_proper_unit(reclaimable_bytes), proper_unit_for_byte_size(reclaimable_bytes),
1340                                 reclaimable_percent, G1HeapWastePercent);
1341       break;
1342     }
1343 
1344     double predicted_time_ms = predict_region_total_time_ms(hr, false);
1345     time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
1346     // Add regions to old set until we reach the minimum amount
1347     if (num_initial_regions < min_old_cset_length) {
1348       predicted_old_time_ms += predicted_time_ms;
1349       num_initial_regions++;
1350       // Record the number of regions added with no time remaining
1351       if (time_remaining_ms == 0.0) {
1352         num_expensive_regions++;
1353       }
1354     } else if (!check_time_remaining) {
1355       // In the non-auto-tuning case, we'll finish adding regions
1356       // to the CSet if we reach the minimum.
1357       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Region amount reached min).");
1358       break;
1359     } else {
1360       // Keep adding regions to old set until we reach the optional threshold
1361       if (time_remaining_ms > optional_threshold_ms) {
1362         predicted_old_time_ms += predicted_time_ms;
1363         num_initial_regions++;
1364       } else if (time_remaining_ms > 0) {
1365         // Keep adding optional regions until time is up.
1366         assert(num_optional_regions < max_optional_regions, "Should not be possible.");
1367         predicted_optional_time_ms += predicted_time_ms;
1368         num_optional_regions++;
1369       } else {
1370         log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Predicted time too high).");
1371         break;
1372       }
1373     }
1374     hr = candidates->at(++candidate_idx);
1375   }
1376   if (hr == NULL) {
1377     log_debug(gc, ergo, cset)("Old candidate collection set empty.");
1378   }
1379 
1380   if (num_expensive_regions > 0) {
1381     log_debug(gc, ergo, cset)("Added %u initial old regions to collection set although the predicted time was too high.",
1382                               num_expensive_regions);
1383   }
1384 
1385   log_debug(gc, ergo, cset)("Finish choosing collection set old regions. Initial: %u, optional: %u, "
1386                             "predicted old time: %1.2fms, predicted optional time: %1.2fms, time remaining: %1.2f",
1387                             num_initial_regions, num_optional_regions,
1388                             predicted_initial_time_ms, predicted_optional_time_ms, time_remaining_ms);
1389 }
1390 
1391 void G1Policy::calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates,
1392                                                          uint const max_optional_regions,
1393                                                          double time_remaining_ms,
1394                                                          uint& num_optional_regions) {
1395   assert(_g1h->collector_state()->in_mixed_phase(), "Should only be called in mixed phase");
1396 
1397   num_optional_regions = 0;
1398   double prediction_ms = 0;
1399   uint candidate_idx = candidates->cur_idx();
1400 
1401   HeapRegion* r = candidates->at(candidate_idx);
1402   while (num_optional_regions < max_optional_regions) {
1403     assert(r != NULL, "Region must exist");
1404     prediction_ms += predict_region_total_time_ms(r, false);
1405 
1406     if (prediction_ms > time_remaining_ms) {
1407       log_debug(gc, ergo, cset)("Prediction %.3fms for region %u does not fit remaining time: %.3fms.",
1408                                 prediction_ms, r->hrm_index(), time_remaining_ms);
1409       break;
1410     }
1411     // This region will be included in the next optional evacuation.
1412 
1413     time_remaining_ms -= prediction_ms;
1414     num_optional_regions++;
1415     r = candidates->at(++candidate_idx);
1416   }
1417 
1418   log_debug(gc, ergo, cset)("Prepared %u regions out of %u for optional evacuation. Predicted time: %.3fms",
1419                             num_optional_regions, max_optional_regions, prediction_ms);
1420 }
1421 
1422 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1423   note_start_adding_survivor_regions();
1424 
1425   HeapRegion* last = NULL;
1426   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1427        it != survivors->regions()->end();
1428        ++it) {
1429     HeapRegion* curr = *it;
1430     set_region_survivor(curr);
1431 
1432     // The region is a non-empty survivor so let's add it to
1433     // the incremental collection set for the next evacuation
1434     // pause.
1435     _collection_set->add_survivor_regions(curr);
1436 
1437     last = curr;
1438   }
1439   note_stop_adding_survivor_regions();
1440 
1441   // Don't clear the survivor list handles until the start of
1442   // the next evacuation pause - we need it in order to re-tag
1443   // the survivor regions from this evacuation pause as 'young'
1444   // at the start of the next.
1445 }