/* * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1HeterogeneousCollectorPolicy.hpp" #include "logging/log.hpp" #include "runtime/globals_extension.hpp" #include "runtime/os.hpp" #include "utilities/formatBuffer.hpp" const double G1HeterogeneousCollectorPolicy::MaxRamFractionForYoung = 0.8; size_t G1HeterogeneousCollectorPolicy::MaxMemoryForYoung; static size_t calculate_reasonable_max_memory_for_young(FormatBuffer<100> &calc_str, double max_ram_fraction_for_young) { julong phys_mem; // If MaxRam is specified, we use that as maximum physical memory available. if (FLAG_IS_DEFAULT(MaxRAM)) { phys_mem = os::physical_memory(); calc_str.append("Physical_Memory"); } else { phys_mem = (julong)MaxRAM; calc_str.append("MaxRAM"); } julong reasonable_max = phys_mem; // If either MaxRAMFraction or MaxRAMPercentage is specified, we use them to calculate // reasonable max size of young generation. if (!FLAG_IS_DEFAULT(MaxRAMFraction)) { reasonable_max = (julong)(phys_mem / MaxRAMFraction); calc_str.append(" / MaxRAMFraction"); } else if (!FLAG_IS_DEFAULT(MaxRAMPercentage)) { reasonable_max = (julong)((phys_mem * MaxRAMPercentage) / 100); calc_str.append(" * MaxRAMPercentage / 100"); } else { // We use our own fraction to calculate max size of young generation. reasonable_max = phys_mem * max_ram_fraction_for_young; calc_str.append(" * %0.2f", max_ram_fraction_for_young); } return (size_t)reasonable_max; } void G1HeterogeneousCollectorPolicy::initialize_flags() { FormatBuffer<100> calc_str(""); MaxMemoryForYoung = calculate_reasonable_max_memory_for_young(calc_str, MaxRamFractionForYoung); if (MaxNewSize > MaxMemoryForYoung) { if (FLAG_IS_CMDLINE(MaxNewSize)) { log_warning(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))", MaxMemoryForYoung, calc_str.buffer()); } else { log_info(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s)). " "Dram usage can be lowered by setting MaxNewSize to a lower value", MaxMemoryForYoung, calc_str.buffer()); } MaxNewSize = MaxMemoryForYoung; } if (NewSize > MaxMemoryForYoung) { if (FLAG_IS_CMDLINE(NewSize)) { log_warning(gc, ergo)("Setting NewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))", MaxMemoryForYoung, calc_str.buffer()); } NewSize = MaxMemoryForYoung; } // After setting new size flags, call base class initialize_flags() G1CollectorPolicy::initialize_flags(); } size_t G1HeterogeneousCollectorPolicy::reasonable_max_memory_for_young() { return MaxMemoryForYoung; } size_t G1HeterogeneousCollectorPolicy::heap_reserved_size_bytes() const { return 2 * _max_heap_byte_size; } bool G1HeterogeneousCollectorPolicy::is_heterogeneous_heap() const { return true; }