1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1BiasedArray.hpp"
  30 #include "gc/g1/g1CardTable.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1DirtyCardQueue.hpp"
  35 #include "gc/g1/g1EdenRegions.hpp"
  36 #include "gc/g1/g1EvacFailure.hpp"
  37 #include "gc/g1/g1EvacStats.hpp"
  38 #include "gc/g1/g1EvacuationInfo.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1HeapTransition.hpp"
  41 #include "gc/g1/g1HeapVerifier.hpp"
  42 #include "gc/g1/g1HRPrinter.hpp"
  43 #include "gc/g1/g1HeapRegionAttr.hpp"
  44 #include "gc/g1/g1MonitoringSupport.hpp"
  45 #include "gc/g1/g1SurvivorRegions.hpp"
  46 #include "gc/g1/g1YCTypes.hpp"
  47 #include "gc/g1/heapRegionManager.hpp"
  48 #include "gc/g1/heapRegionSet.hpp"
  49 #include "gc/g1/heterogeneousHeapRegionManager.hpp"
  50 #include "gc/shared/barrierSet.hpp"
  51 #include "gc/shared/collectedHeap.hpp"
  52 #include "gc/shared/gcHeapSummary.hpp"
  53 #include "gc/shared/plab.hpp"
  54 #include "gc/shared/preservedMarks.hpp"
  55 #include "gc/shared/softRefPolicy.hpp"
  56 #include "memory/memRegion.hpp"
  57 #include "utilities/stack.hpp"
  58 
  59 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  60 // It uses the "Garbage First" heap organization and algorithm, which
  61 // may combine concurrent marking with parallel, incremental compaction of
  62 // heap subsets that will yield large amounts of garbage.
  63 
  64 // Forward declarations
  65 class HeapRegion;
  66 class GenerationSpec;
  67 class G1ParScanThreadState;
  68 class G1ParScanThreadStateSet;
  69 class G1ParScanThreadState;
  70 class MemoryPool;
  71 class MemoryManager;
  72 class ObjectClosure;
  73 class SpaceClosure;
  74 class CompactibleSpaceClosure;
  75 class Space;
  76 class G1CollectionSet;
  77 class G1Policy;
  78 class G1HotCardCache;
  79 class G1RemSet;
  80 class G1YoungRemSetSamplingThread;
  81 class HeapRegionRemSetIterator;
  82 class G1ConcurrentMark;
  83 class G1ConcurrentMarkThread;
  84 class G1ConcurrentRefine;
  85 class GenerationCounters;
  86 class STWGCTimer;
  87 class G1NewTracer;
  88 class EvacuationFailedInfo;
  89 class nmethod;
  90 class WorkGang;
  91 class G1Allocator;
  92 class G1ArchiveAllocator;
  93 class G1FullGCScope;
  94 class G1HeapVerifier;
  95 class G1HeapSizingPolicy;
  96 class G1HeapSummary;
  97 class G1EvacSummary;
  98 
  99 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
 100 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
 101 
 102 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 103 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 104 
 105 // The G1 STW is alive closure.
 106 // An instance is embedded into the G1CH and used as the
 107 // (optional) _is_alive_non_header closure in the STW
 108 // reference processor. It is also extensively used during
 109 // reference processing during STW evacuation pauses.
 110 class G1STWIsAliveClosure : public BoolObjectClosure {
 111   G1CollectedHeap* _g1h;
 112 public:
 113   G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 114   bool do_object_b(oop p);
 115 };
 116 
 117 class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure {
 118   G1CollectedHeap* _g1h;
 119 public:
 120   G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 121   bool do_object_b(oop p);
 122 };
 123 
 124 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 125  private:
 126   void reset_from_card_cache(uint start_idx, size_t num_regions);
 127  public:
 128   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 129 };
 130 
 131 class G1CollectedHeap : public CollectedHeap {
 132   friend class G1FreeCollectionSetTask;
 133   friend class VM_CollectForMetadataAllocation;
 134   friend class VM_G1CollectForAllocation;
 135   friend class VM_G1CollectFull;
 136   friend class VMStructs;
 137   friend class MutatorAllocRegion;
 138   friend class G1FullCollector;
 139   friend class G1GCAllocRegion;
 140   friend class G1HeapVerifier;
 141 
 142   // Closures used in implementation.
 143   friend class G1ParScanThreadState;
 144   friend class G1ParScanThreadStateSet;
 145   friend class G1EvacuateRegionsTask;
 146   friend class G1PLABAllocator;
 147 
 148   // Other related classes.
 149   friend class HeapRegionClaimer;
 150 
 151   // Testing classes.
 152   friend class G1CheckRegionAttrTableClosure;
 153 
 154 private:
 155   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 156 
 157   WorkGang* _workers;
 158   G1CardTable* _card_table;
 159 
 160   SoftRefPolicy      _soft_ref_policy;
 161 
 162   static size_t _humongous_object_threshold_in_words;
 163 
 164   // These sets keep track of old, archive and humongous regions respectively.
 165   HeapRegionSet _old_set;
 166   HeapRegionSet _archive_set;
 167   HeapRegionSet _humongous_set;
 168 
 169   void eagerly_reclaim_humongous_regions();
 170   // Start a new incremental collection set for the next pause.
 171   void start_new_collection_set();
 172 
 173   // The block offset table for the G1 heap.
 174   G1BlockOffsetTable* _bot;
 175 
 176   // Tears down the region sets / lists so that they are empty and the
 177   // regions on the heap do not belong to a region set / list. The
 178   // only exception is the humongous set which we leave unaltered. If
 179   // free_list_only is true, it will only tear down the master free
 180   // list. It is called before a Full GC (free_list_only == false) or
 181   // before heap shrinking (free_list_only == true).
 182   void tear_down_region_sets(bool free_list_only);
 183 
 184   // Rebuilds the region sets / lists so that they are repopulated to
 185   // reflect the contents of the heap. The only exception is the
 186   // humongous set which was not torn down in the first place. If
 187   // free_list_only is true, it will only rebuild the master free
 188   // list. It is called after a Full GC (free_list_only == false) or
 189   // after heap shrinking (free_list_only == true).
 190   void rebuild_region_sets(bool free_list_only);
 191 
 192   // Callback for region mapping changed events.
 193   G1RegionMappingChangedListener _listener;
 194 
 195   // The sequence of all heap regions in the heap.
 196   HeapRegionManager* _hrm;
 197 
 198   // Manages all allocations with regions except humongous object allocations.
 199   G1Allocator* _allocator;
 200 
 201   // Manages all heap verification.
 202   G1HeapVerifier* _verifier;
 203 
 204   // Outside of GC pauses, the number of bytes used in all regions other
 205   // than the current allocation region(s).
 206   volatile size_t _summary_bytes_used;
 207 
 208   void increase_used(size_t bytes);
 209   void decrease_used(size_t bytes);
 210 
 211   void set_used(size_t bytes);
 212 
 213   // Class that handles archive allocation ranges.
 214   G1ArchiveAllocator* _archive_allocator;
 215 
 216   // GC allocation statistics policy for survivors.
 217   G1EvacStats _survivor_evac_stats;
 218 
 219   // GC allocation statistics policy for tenured objects.
 220   G1EvacStats _old_evac_stats;
 221 
 222   // It specifies whether we should attempt to expand the heap after a
 223   // region allocation failure. If heap expansion fails we set this to
 224   // false so that we don't re-attempt the heap expansion (it's likely
 225   // that subsequent expansion attempts will also fail if one fails).
 226   // Currently, it is only consulted during GC and it's reset at the
 227   // start of each GC.
 228   bool _expand_heap_after_alloc_failure;
 229 
 230   // Helper for monitoring and management support.
 231   G1MonitoringSupport* _g1mm;
 232 
 233   // Records whether the region at the given index is (still) a
 234   // candidate for eager reclaim.  Only valid for humongous start
 235   // regions; other regions have unspecified values.  Humongous start
 236   // regions are initialized at start of collection pause, with
 237   // candidates removed from the set as they are found reachable from
 238   // roots or the young generation.
 239   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 240    protected:
 241     bool default_value() const { return false; }
 242    public:
 243     void clear() { G1BiasedMappedArray<bool>::clear(); }
 244     void set_candidate(uint region, bool value) {
 245       set_by_index(region, value);
 246     }
 247     bool is_candidate(uint region) {
 248       return get_by_index(region);
 249     }
 250   };
 251 
 252   HumongousReclaimCandidates _humongous_reclaim_candidates;
 253   // Stores whether during humongous object registration we found candidate regions.
 254   // If not, we can skip a few steps.
 255   bool _has_humongous_reclaim_candidates;
 256 
 257   G1HRPrinter _hr_printer;
 258 
 259   // It decides whether an explicit GC should start a concurrent cycle
 260   // instead of doing a STW GC. Currently, a concurrent cycle is
 261   // explicitly started if:
 262   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 263   // (b) cause == _g1_humongous_allocation
 264   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 265   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 266   // (e) cause == _wb_conc_mark
 267   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 268 
 269   // Return true if should upgrade to full gc after an incremental one.
 270   bool should_upgrade_to_full_gc(GCCause::Cause cause);
 271 
 272   // indicates whether we are in young or mixed GC mode
 273   G1CollectorState _collector_state;
 274 
 275   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 276   // concurrent cycles) we have started.
 277   volatile uint _old_marking_cycles_started;
 278 
 279   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 280   // concurrent cycles) we have completed.
 281   volatile uint _old_marking_cycles_completed;
 282 
 283   // This is a non-product method that is helpful for testing. It is
 284   // called at the end of a GC and artificially expands the heap by
 285   // allocating a number of dead regions. This way we can induce very
 286   // frequent marking cycles and stress the cleanup / concurrent
 287   // cleanup code more (as all the regions that will be allocated by
 288   // this method will be found dead by the marking cycle).
 289   void allocate_dummy_regions() PRODUCT_RETURN;
 290 
 291   // If the HR printer is active, dump the state of the regions in the
 292   // heap after a compaction.
 293   void print_hrm_post_compaction();
 294 
 295   // Create a memory mapper for auxiliary data structures of the given size and
 296   // translation factor.
 297   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 298                                                          size_t size,
 299                                                          size_t translation_factor);
 300 
 301   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 302 
 303   // These are macros so that, if the assert fires, we get the correct
 304   // line number, file, etc.
 305 
 306 #define heap_locking_asserts_params(_extra_message_)                          \
 307   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 308   (_extra_message_),                                                          \
 309   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 310   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 311   BOOL_TO_STR(Thread::current()->is_VM_thread())
 312 
 313 #define assert_heap_locked()                                                  \
 314   do {                                                                        \
 315     assert(Heap_lock->owned_by_self(),                                        \
 316            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 317   } while (0)
 318 
 319 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 320   do {                                                                        \
 321     assert(Heap_lock->owned_by_self() ||                                      \
 322            (SafepointSynchronize::is_at_safepoint() &&                        \
 323              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 324            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 325                                         "should be at a safepoint"));         \
 326   } while (0)
 327 
 328 #define assert_heap_locked_and_not_at_safepoint()                             \
 329   do {                                                                        \
 330     assert(Heap_lock->owned_by_self() &&                                      \
 331                                     !SafepointSynchronize::is_at_safepoint(), \
 332           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 333                                        "should not be at a safepoint"));      \
 334   } while (0)
 335 
 336 #define assert_heap_not_locked()                                              \
 337   do {                                                                        \
 338     assert(!Heap_lock->owned_by_self(),                                       \
 339         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 340   } while (0)
 341 
 342 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 343   do {                                                                        \
 344     assert(!Heap_lock->owned_by_self() &&                                     \
 345                                     !SafepointSynchronize::is_at_safepoint(), \
 346       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 347                                    "should not be at a safepoint"));          \
 348   } while (0)
 349 
 350 #define assert_at_safepoint_on_vm_thread()                                    \
 351   do {                                                                        \
 352     assert_at_safepoint();                                                    \
 353     assert(Thread::current_or_null() != NULL, "no current thread");           \
 354     assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
 355   } while (0)
 356 
 357 #define assert_used_and_recalculate_used_equal(g1h)                           \
 358   do {                                                                        \
 359     size_t cur_used_bytes = g1h->used();                                      \
 360     size_t recal_used_bytes = g1h->recalculate_used();                        \
 361     assert(cur_used_bytes == recal_used_bytes, "Used(" SIZE_FORMAT ") is not" \
 362            " same as recalculated used(" SIZE_FORMAT ").",                    \
 363            cur_used_bytes, recal_used_bytes);                                 \
 364   } while (0)
 365 
 366   const char* young_gc_name() const;
 367 
 368   // The young region list.
 369   G1EdenRegions _eden;
 370   G1SurvivorRegions _survivor;
 371 
 372   STWGCTimer* _gc_timer_stw;
 373 
 374   G1NewTracer* _gc_tracer_stw;
 375 
 376   // The current policy object for the collector.
 377   G1Policy* _policy;
 378   G1HeapSizingPolicy* _heap_sizing_policy;
 379 
 380   G1CollectionSet _collection_set;
 381 
 382   // Try to allocate a single non-humongous HeapRegion sufficient for
 383   // an allocation of the given word_size. If do_expand is true,
 384   // attempt to expand the heap if necessary to satisfy the allocation
 385   // request. 'type' takes the type of region to be allocated. (Use constants
 386   // Old, Eden, Humongous, Survivor defined in HeapRegionType.)
 387   HeapRegion* new_region(size_t word_size, HeapRegionType type, bool do_expand);
 388 
 389   // Initialize a contiguous set of free regions of length num_regions
 390   // and starting at index first so that they appear as a single
 391   // humongous region.
 392   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 393                                                       uint num_regions,
 394                                                       size_t word_size);
 395 
 396   // Attempt to allocate a humongous object of the given size. Return
 397   // NULL if unsuccessful.
 398   HeapWord* humongous_obj_allocate(size_t word_size);
 399 
 400   // The following two methods, allocate_new_tlab() and
 401   // mem_allocate(), are the two main entry points from the runtime
 402   // into the G1's allocation routines. They have the following
 403   // assumptions:
 404   //
 405   // * They should both be called outside safepoints.
 406   //
 407   // * They should both be called without holding the Heap_lock.
 408   //
 409   // * All allocation requests for new TLABs should go to
 410   //   allocate_new_tlab().
 411   //
 412   // * All non-TLAB allocation requests should go to mem_allocate().
 413   //
 414   // * If either call cannot satisfy the allocation request using the
 415   //   current allocating region, they will try to get a new one. If
 416   //   this fails, they will attempt to do an evacuation pause and
 417   //   retry the allocation.
 418   //
 419   // * If all allocation attempts fail, even after trying to schedule
 420   //   an evacuation pause, allocate_new_tlab() will return NULL,
 421   //   whereas mem_allocate() will attempt a heap expansion and/or
 422   //   schedule a Full GC.
 423   //
 424   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 425   //   should never be called with word_size being humongous. All
 426   //   humongous allocation requests should go to mem_allocate() which
 427   //   will satisfy them with a special path.
 428 
 429   virtual HeapWord* allocate_new_tlab(size_t min_size,
 430                                       size_t requested_size,
 431                                       size_t* actual_size);
 432 
 433   virtual HeapWord* mem_allocate(size_t word_size,
 434                                  bool*  gc_overhead_limit_was_exceeded);
 435 
 436   // First-level mutator allocation attempt: try to allocate out of
 437   // the mutator alloc region without taking the Heap_lock. This
 438   // should only be used for non-humongous allocations.
 439   inline HeapWord* attempt_allocation(size_t min_word_size,
 440                                       size_t desired_word_size,
 441                                       size_t* actual_word_size);
 442 
 443   // Second-level mutator allocation attempt: take the Heap_lock and
 444   // retry the allocation attempt, potentially scheduling a GC
 445   // pause. This should only be used for non-humongous allocations.
 446   HeapWord* attempt_allocation_slow(size_t word_size);
 447 
 448   // Takes the Heap_lock and attempts a humongous allocation. It can
 449   // potentially schedule a GC pause.
 450   HeapWord* attempt_allocation_humongous(size_t word_size);
 451 
 452   // Allocation attempt that should be called during safepoints (e.g.,
 453   // at the end of a successful GC). expect_null_mutator_alloc_region
 454   // specifies whether the mutator alloc region is expected to be NULL
 455   // or not.
 456   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 457                                             bool expect_null_mutator_alloc_region);
 458 
 459   // These methods are the "callbacks" from the G1AllocRegion class.
 460 
 461   // For mutator alloc regions.
 462   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 463   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 464                                    size_t allocated_bytes);
 465 
 466   // For GC alloc regions.
 467   bool has_more_regions(G1HeapRegionAttr dest);
 468   HeapRegion* new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest);
 469   void retire_gc_alloc_region(HeapRegion* alloc_region,
 470                               size_t allocated_bytes, G1HeapRegionAttr dest);
 471 
 472   // - if explicit_gc is true, the GC is for a System.gc() etc,
 473   //   otherwise it's for a failed allocation.
 474   // - if clear_all_soft_refs is true, all soft references should be
 475   //   cleared during the GC.
 476   // - it returns false if it is unable to do the collection due to the
 477   //   GC locker being active, true otherwise.
 478   bool do_full_collection(bool explicit_gc,
 479                           bool clear_all_soft_refs);
 480 
 481   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 482   virtual void do_full_collection(bool clear_all_soft_refs);
 483 
 484   // Callback from VM_G1CollectForAllocation operation.
 485   // This function does everything necessary/possible to satisfy a
 486   // failed allocation request (including collection, expansion, etc.)
 487   HeapWord* satisfy_failed_allocation(size_t word_size,
 488                                       bool* succeeded);
 489   // Internal helpers used during full GC to split it up to
 490   // increase readability.
 491   void abort_concurrent_cycle();
 492   void verify_before_full_collection(bool explicit_gc);
 493   void prepare_heap_for_full_collection();
 494   void prepare_heap_for_mutators();
 495   void abort_refinement();
 496   void verify_after_full_collection();
 497   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 498 
 499   // Helper method for satisfy_failed_allocation()
 500   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 501                                              bool do_gc,
 502                                              bool clear_all_soft_refs,
 503                                              bool expect_null_mutator_alloc_region,
 504                                              bool* gc_succeeded);
 505 
 506   // Attempting to expand the heap sufficiently
 507   // to support an allocation of the given "word_size".  If
 508   // successful, perform the allocation and return the address of the
 509   // allocated block, or else "NULL".
 510   HeapWord* expand_and_allocate(size_t word_size);
 511 
 512   // Process any reference objects discovered.
 513   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 514 
 515   // If during an initial mark pause we may install a pending list head which is not
 516   // otherwise reachable ensure that it is marked in the bitmap for concurrent marking
 517   // to discover.
 518   void make_pending_list_reachable();
 519 
 520   // Merges the information gathered on a per-thread basis for all worker threads
 521   // during GC into global variables.
 522   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 523 public:
 524   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 525 
 526   WorkGang* workers() const { return _workers; }
 527 
 528   // Runs the given AbstractGangTask with the current active workers, returning the
 529   // total time taken.
 530   Tickspan run_task(AbstractGangTask* task);
 531 
 532   G1Allocator* allocator() {
 533     return _allocator;
 534   }
 535 
 536   G1HeapVerifier* verifier() {
 537     return _verifier;
 538   }
 539 
 540   G1MonitoringSupport* g1mm() {
 541     assert(_g1mm != NULL, "should have been initialized");
 542     return _g1mm;
 543   }
 544 
 545   void resize_heap_if_necessary();
 546 
 547   // Expand the garbage-first heap by at least the given size (in bytes!).
 548   // Returns true if the heap was expanded by the requested amount;
 549   // false otherwise.
 550   // (Rounds up to a HeapRegion boundary.)
 551   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 552 
 553   // Returns the PLAB statistics for a given destination.
 554   inline G1EvacStats* alloc_buffer_stats(G1HeapRegionAttr dest);
 555 
 556   // Determines PLAB size for a given destination.
 557   inline size_t desired_plab_sz(G1HeapRegionAttr dest);
 558 
 559   // Do anything common to GC's.
 560   void gc_prologue(bool full);
 561   void gc_epilogue(bool full);
 562 
 563   // Does the given region fulfill remembered set based eager reclaim candidate requirements?
 564   bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
 565 
 566   // Modify the reclaim candidate set and test for presence.
 567   // These are only valid for starts_humongous regions.
 568   inline void set_humongous_reclaim_candidate(uint region, bool value);
 569   inline bool is_humongous_reclaim_candidate(uint region);
 570 
 571   // Remove from the reclaim candidate set.  Also remove from the
 572   // collection set so that later encounters avoid the slow path.
 573   inline void set_humongous_is_live(oop obj);
 574 
 575   // Register the given region to be part of the collection set.
 576   inline void register_humongous_region_with_region_attr(uint index);
 577   // Update region attributes table with information about all regions.
 578   void register_regions_with_region_attr();
 579   // We register a region with the fast "in collection set" test. We
 580   // simply set to true the array slot corresponding to this region.
 581   void register_young_region_with_region_attr(HeapRegion* r) {
 582     _region_attr.set_in_young(r->hrm_index());
 583   }
 584   inline void register_region_with_region_attr(HeapRegion* r);
 585   inline void register_old_region_with_region_attr(HeapRegion* r);
 586   inline void register_optional_region_with_region_attr(HeapRegion* r);
 587 
 588   void clear_region_attr(const HeapRegion* hr) {
 589     _region_attr.clear(hr);
 590   }
 591 
 592   void clear_region_attr() {
 593     _region_attr.clear();
 594   }
 595 
 596   // Verify that the G1RegionAttr remset tracking corresponds to actual remset tracking
 597   // for all regions.
 598   void verify_region_attr_remset_update() PRODUCT_RETURN;
 599 
 600   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 601 
 602   // This is called at the start of either a concurrent cycle or a Full
 603   // GC to update the number of old marking cycles started.
 604   void increment_old_marking_cycles_started();
 605 
 606   // This is called at the end of either a concurrent cycle or a Full
 607   // GC to update the number of old marking cycles completed. Those two
 608   // can happen in a nested fashion, i.e., we start a concurrent
 609   // cycle, a Full GC happens half-way through it which ends first,
 610   // and then the cycle notices that a Full GC happened and ends
 611   // too. The concurrent parameter is a boolean to help us do a bit
 612   // tighter consistency checking in the method. If concurrent is
 613   // false, the caller is the inner caller in the nesting (i.e., the
 614   // Full GC). If concurrent is true, the caller is the outer caller
 615   // in this nesting (i.e., the concurrent cycle). Further nesting is
 616   // not currently supported. The end of this call also notifies
 617   // the FullGCCount_lock in case a Java thread is waiting for a full
 618   // GC to happen (e.g., it called System.gc() with
 619   // +ExplicitGCInvokesConcurrent).
 620   void increment_old_marking_cycles_completed(bool concurrent);
 621 
 622   uint old_marking_cycles_completed() {
 623     return _old_marking_cycles_completed;
 624   }
 625 
 626   G1HRPrinter* hr_printer() { return &_hr_printer; }
 627 
 628   // Allocates a new heap region instance.
 629   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 630 
 631   // Allocate the highest free region in the reserved heap. This will commit
 632   // regions as necessary.
 633   HeapRegion* alloc_highest_free_region();
 634 
 635   // Frees a non-humongous region by initializing its contents and
 636   // adding it to the free list that's passed as a parameter (this is
 637   // usually a local list which will be appended to the master free
 638   // list later). The used bytes of freed regions are accumulated in
 639   // pre_used. If skip_remset is true, the region's RSet will not be freed
 640   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 641   // be freed up. The assumption is that this will be done later.
 642   // The locked parameter indicates if the caller has already taken
 643   // care of proper synchronization. This may allow some optimizations.
 644   void free_region(HeapRegion* hr,
 645                    FreeRegionList* free_list,
 646                    bool skip_remset,
 647                    bool skip_hot_card_cache = false,
 648                    bool locked = false);
 649 
 650   // It dirties the cards that cover the block so that the post
 651   // write barrier never queues anything when updating objects on this
 652   // block. It is assumed (and in fact we assert) that the block
 653   // belongs to a young region.
 654   inline void dirty_young_block(HeapWord* start, size_t word_size);
 655 
 656   // Frees a humongous region by collapsing it into individual regions
 657   // and calling free_region() for each of them. The freed regions
 658   // will be added to the free list that's passed as a parameter (this
 659   // is usually a local list which will be appended to the master free
 660   // list later).
 661   // The method assumes that only a single thread is ever calling
 662   // this for a particular region at once.
 663   void free_humongous_region(HeapRegion* hr,
 664                              FreeRegionList* free_list);
 665 
 666   // Facility for allocating in 'archive' regions in high heap memory and
 667   // recording the allocated ranges. These should all be called from the
 668   // VM thread at safepoints, without the heap lock held. They can be used
 669   // to create and archive a set of heap regions which can be mapped at the
 670   // same fixed addresses in a subsequent JVM invocation.
 671   void begin_archive_alloc_range(bool open = false);
 672 
 673   // Check if the requested size would be too large for an archive allocation.
 674   bool is_archive_alloc_too_large(size_t word_size);
 675 
 676   // Allocate memory of the requested size from the archive region. This will
 677   // return NULL if the size is too large or if no memory is available. It
 678   // does not trigger a garbage collection.
 679   HeapWord* archive_mem_allocate(size_t word_size);
 680 
 681   // Optionally aligns the end address and returns the allocated ranges in
 682   // an array of MemRegions in order of ascending addresses.
 683   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 684                                size_t end_alignment_in_bytes = 0);
 685 
 686   // Facility for allocating a fixed range within the heap and marking
 687   // the containing regions as 'archive'. For use at JVM init time, when the
 688   // caller may mmap archived heap data at the specified range(s).
 689   // Verify that the MemRegions specified in the argument array are within the
 690   // reserved heap.
 691   bool check_archive_addresses(MemRegion* range, size_t count);
 692 
 693   // Commit the appropriate G1 regions containing the specified MemRegions
 694   // and mark them as 'archive' regions. The regions in the array must be
 695   // non-overlapping and in order of ascending address.
 696   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 697 
 698   // Insert any required filler objects in the G1 regions around the specified
 699   // ranges to make the regions parseable. This must be called after
 700   // alloc_archive_regions, and after class loading has occurred.
 701   void fill_archive_regions(MemRegion* range, size_t count);
 702 
 703   // For each of the specified MemRegions, uncommit the containing G1 regions
 704   // which had been allocated by alloc_archive_regions. This should be called
 705   // rather than fill_archive_regions at JVM init time if the archive file
 706   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 707   void dealloc_archive_regions(MemRegion* range, size_t count, bool is_open);
 708 
 709   oop materialize_archived_object(oop obj);
 710 
 711 private:
 712 
 713   // Shrink the garbage-first heap by at most the given size (in bytes!).
 714   // (Rounds down to a HeapRegion boundary.)
 715   void shrink(size_t expand_bytes);
 716   void shrink_helper(size_t expand_bytes);
 717 
 718   #if TASKQUEUE_STATS
 719   static void print_taskqueue_stats_hdr(outputStream* const st);
 720   void print_taskqueue_stats() const;
 721   void reset_taskqueue_stats();
 722   #endif // TASKQUEUE_STATS
 723 
 724   // Schedule the VM operation that will do an evacuation pause to
 725   // satisfy an allocation request of word_size. *succeeded will
 726   // return whether the VM operation was successful (it did do an
 727   // evacuation pause) or not (another thread beat us to it or the GC
 728   // locker was active). Given that we should not be holding the
 729   // Heap_lock when we enter this method, we will pass the
 730   // gc_count_before (i.e., total_collections()) as a parameter since
 731   // it has to be read while holding the Heap_lock. Currently, both
 732   // methods that call do_collection_pause() release the Heap_lock
 733   // before the call, so it's easy to read gc_count_before just before.
 734   HeapWord* do_collection_pause(size_t         word_size,
 735                                 uint           gc_count_before,
 736                                 bool*          succeeded,
 737                                 GCCause::Cause gc_cause);
 738 
 739   void wait_for_root_region_scanning();
 740 
 741   // The guts of the incremental collection pause, executed by the vm
 742   // thread. It returns false if it is unable to do the collection due
 743   // to the GC locker being active, true otherwise
 744   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 745 
 746   G1HeapVerifier::G1VerifyType young_collection_verify_type() const;
 747   void verify_before_young_collection(G1HeapVerifier::G1VerifyType type);
 748   void verify_after_young_collection(G1HeapVerifier::G1VerifyType type);
 749 
 750   void calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms);
 751 
 752   // Actually do the work of evacuating the parts of the collection set.
 753   void evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states);
 754   void evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states);
 755 private:
 756   // Evacuate the next set of optional regions.
 757   void evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states);
 758 
 759 public:
 760   void pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info);
 761   void post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 762 
 763   void expand_heap_after_young_collection();
 764   // Update object copying statistics.
 765   void record_obj_copy_mem_stats();
 766 
 767   // The hot card cache for remembered set insertion optimization.
 768   G1HotCardCache* _hot_card_cache;
 769 
 770   // The g1 remembered set of the heap.
 771   G1RemSet* _rem_set;
 772 
 773   // A set of cards that cover the objects for which the Rsets should be updated
 774   // concurrently after the collection.
 775   G1DirtyCardQueueSet _dirty_card_queue_set;
 776 
 777   // After a collection pause, convert the regions in the collection set into free
 778   // regions.
 779   void free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 780 
 781   // Abandon the current collection set without recording policy
 782   // statistics or updating free lists.
 783   void abandon_collection_set(G1CollectionSet* collection_set);
 784 
 785   // The concurrent marker (and the thread it runs in.)
 786   G1ConcurrentMark* _cm;
 787   G1ConcurrentMarkThread* _cm_thread;
 788 
 789   // The concurrent refiner.
 790   G1ConcurrentRefine* _cr;
 791 
 792   // The parallel task queues
 793   RefToScanQueueSet *_task_queues;
 794 
 795   // True iff a evacuation has failed in the current collection.
 796   bool _evacuation_failed;
 797 
 798   EvacuationFailedInfo* _evacuation_failed_info_array;
 799 
 800   // Failed evacuations cause some logical from-space objects to have
 801   // forwarding pointers to themselves.  Reset them.
 802   void remove_self_forwarding_pointers();
 803 
 804   // Restore the objects in the regions in the collection set after an
 805   // evacuation failure.
 806   void restore_after_evac_failure();
 807 
 808   PreservedMarksSet _preserved_marks_set;
 809 
 810   // Preserve the mark of "obj", if necessary, in preparation for its mark
 811   // word being overwritten with a self-forwarding-pointer.
 812   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 813 
 814 #ifndef PRODUCT
 815   // Support for forcing evacuation failures. Analogous to
 816   // PromotionFailureALot for the other collectors.
 817 
 818   // Records whether G1EvacuationFailureALot should be in effect
 819   // for the current GC
 820   bool _evacuation_failure_alot_for_current_gc;
 821 
 822   // Used to record the GC number for interval checking when
 823   // determining whether G1EvaucationFailureALot is in effect
 824   // for the current GC.
 825   size_t _evacuation_failure_alot_gc_number;
 826 
 827   // Count of the number of evacuations between failures.
 828   volatile size_t _evacuation_failure_alot_count;
 829 
 830   // Set whether G1EvacuationFailureALot should be in effect
 831   // for the current GC (based upon the type of GC and which
 832   // command line flags are set);
 833   inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc,
 834                                                   bool during_initial_mark,
 835                                                   bool mark_or_rebuild_in_progress);
 836 
 837   inline void set_evacuation_failure_alot_for_current_gc();
 838 
 839   // Return true if it's time to cause an evacuation failure.
 840   inline bool evacuation_should_fail();
 841 
 842   // Reset the G1EvacuationFailureALot counters.  Should be called at
 843   // the end of an evacuation pause in which an evacuation failure occurred.
 844   inline void reset_evacuation_should_fail();
 845 #endif // !PRODUCT
 846 
 847   // ("Weak") Reference processing support.
 848   //
 849   // G1 has 2 instances of the reference processor class. One
 850   // (_ref_processor_cm) handles reference object discovery
 851   // and subsequent processing during concurrent marking cycles.
 852   //
 853   // The other (_ref_processor_stw) handles reference object
 854   // discovery and processing during full GCs and incremental
 855   // evacuation pauses.
 856   //
 857   // During an incremental pause, reference discovery will be
 858   // temporarily disabled for _ref_processor_cm and will be
 859   // enabled for _ref_processor_stw. At the end of the evacuation
 860   // pause references discovered by _ref_processor_stw will be
 861   // processed and discovery will be disabled. The previous
 862   // setting for reference object discovery for _ref_processor_cm
 863   // will be re-instated.
 864   //
 865   // At the start of marking:
 866   //  * Discovery by the CM ref processor is verified to be inactive
 867   //    and it's discovered lists are empty.
 868   //  * Discovery by the CM ref processor is then enabled.
 869   //
 870   // At the end of marking:
 871   //  * Any references on the CM ref processor's discovered
 872   //    lists are processed (possibly MT).
 873   //
 874   // At the start of full GC we:
 875   //  * Disable discovery by the CM ref processor and
 876   //    empty CM ref processor's discovered lists
 877   //    (without processing any entries).
 878   //  * Verify that the STW ref processor is inactive and it's
 879   //    discovered lists are empty.
 880   //  * Temporarily set STW ref processor discovery as single threaded.
 881   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 882   //    field.
 883   //  * Finally enable discovery by the STW ref processor.
 884   //
 885   // The STW ref processor is used to record any discovered
 886   // references during the full GC.
 887   //
 888   // At the end of a full GC we:
 889   //  * Enqueue any reference objects discovered by the STW ref processor
 890   //    that have non-live referents. This has the side-effect of
 891   //    making the STW ref processor inactive by disabling discovery.
 892   //  * Verify that the CM ref processor is still inactive
 893   //    and no references have been placed on it's discovered
 894   //    lists (also checked as a precondition during initial marking).
 895 
 896   // The (stw) reference processor...
 897   ReferenceProcessor* _ref_processor_stw;
 898 
 899   // During reference object discovery, the _is_alive_non_header
 900   // closure (if non-null) is applied to the referent object to
 901   // determine whether the referent is live. If so then the
 902   // reference object does not need to be 'discovered' and can
 903   // be treated as a regular oop. This has the benefit of reducing
 904   // the number of 'discovered' reference objects that need to
 905   // be processed.
 906   //
 907   // Instance of the is_alive closure for embedding into the
 908   // STW reference processor as the _is_alive_non_header field.
 909   // Supplying a value for the _is_alive_non_header field is
 910   // optional but doing so prevents unnecessary additions to
 911   // the discovered lists during reference discovery.
 912   G1STWIsAliveClosure _is_alive_closure_stw;
 913 
 914   G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw;
 915 
 916   // The (concurrent marking) reference processor...
 917   ReferenceProcessor* _ref_processor_cm;
 918 
 919   // Instance of the concurrent mark is_alive closure for embedding
 920   // into the Concurrent Marking reference processor as the
 921   // _is_alive_non_header field. Supplying a value for the
 922   // _is_alive_non_header field is optional but doing so prevents
 923   // unnecessary additions to the discovered lists during reference
 924   // discovery.
 925   G1CMIsAliveClosure _is_alive_closure_cm;
 926 
 927   G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm;
 928 public:
 929 
 930   RefToScanQueue *task_queue(uint i) const;
 931 
 932   uint num_task_queues() const;
 933 
 934   // A set of cards where updates happened during the GC
 935   G1DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 936 
 937   // Create a G1CollectedHeap.
 938   // Must call the initialize method afterwards.
 939   // May not return if something goes wrong.
 940   G1CollectedHeap();
 941 
 942 private:
 943   jint initialize_concurrent_refinement();
 944   jint initialize_young_gen_sampling_thread();
 945 public:
 946   // Initialize the G1CollectedHeap to have the initial and
 947   // maximum sizes and remembered and barrier sets
 948   // specified by the policy object.
 949   jint initialize();
 950 
 951   virtual void stop();
 952   virtual void safepoint_synchronize_begin();
 953   virtual void safepoint_synchronize_end();
 954 
 955   // Does operations required after initialization has been done.
 956   void post_initialize();
 957 
 958   // Initialize weak reference processing.
 959   void ref_processing_init();
 960 
 961   virtual Name kind() const {
 962     return CollectedHeap::G1;
 963   }
 964 
 965   virtual const char* name() const {
 966     return "G1";
 967   }
 968 
 969   const G1CollectorState* collector_state() const { return &_collector_state; }
 970   G1CollectorState* collector_state() { return &_collector_state; }
 971 
 972   // The current policy object for the collector.
 973   G1Policy* policy() const { return _policy; }
 974   // The remembered set.
 975   G1RemSet* rem_set() const { return _rem_set; }
 976 
 977   inline G1GCPhaseTimes* phase_times() const;
 978 
 979   HeapRegionManager* hrm() const { return _hrm; }
 980 
 981   const G1CollectionSet* collection_set() const { return &_collection_set; }
 982   G1CollectionSet* collection_set() { return &_collection_set; }
 983 
 984   virtual SoftRefPolicy* soft_ref_policy();
 985 
 986   virtual void initialize_serviceability();
 987   virtual MemoryUsage memory_usage();
 988   virtual GrowableArray<GCMemoryManager*> memory_managers();
 989   virtual GrowableArray<MemoryPool*> memory_pools();
 990 
 991   // Try to minimize the remembered set.
 992   void scrub_rem_set();
 993 
 994   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
 995   void iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_i);
 996 
 997   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
 998   void iterate_dirty_card_closure(G1CardTableEntryClosure* cl, uint worker_i);
 999 
1000   // The shared block offset table array.
1001   G1BlockOffsetTable* bot() const { return _bot; }
1002 
1003   // Reference Processing accessors
1004 
1005   // The STW reference processor....
1006   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1007 
1008   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1009 
1010   // The Concurrent Marking reference processor...
1011   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1012 
1013   size_t unused_committed_regions_in_bytes() const;
1014 
1015   virtual size_t capacity() const;
1016   virtual size_t used() const;
1017   // This should be called when we're not holding the heap lock. The
1018   // result might be a bit inaccurate.
1019   size_t used_unlocked() const;
1020   size_t recalculate_used() const;
1021 
1022   // These virtual functions do the actual allocation.
1023   // Some heaps may offer a contiguous region for shared non-blocking
1024   // allocation, via inlined code (by exporting the address of the top and
1025   // end fields defining the extent of the contiguous allocation region.)
1026   // But G1CollectedHeap doesn't yet support this.
1027 
1028   virtual bool is_maximal_no_gc() const {
1029     return _hrm->available() == 0;
1030   }
1031 
1032   // Returns whether there are any regions left in the heap for allocation.
1033   bool has_regions_left_for_allocation() const {
1034     return !is_maximal_no_gc() || num_free_regions() != 0;
1035   }
1036 
1037   // The current number of regions in the heap.
1038   uint num_regions() const { return _hrm->length(); }
1039 
1040   // The max number of regions in the heap.
1041   uint max_regions() const { return _hrm->max_length(); }
1042 
1043   // Max number of regions that can be comitted.
1044   uint max_expandable_regions() const { return _hrm->max_expandable_length(); }
1045 
1046   // The number of regions that are completely free.
1047   uint num_free_regions() const { return _hrm->num_free_regions(); }
1048 
1049   // The number of regions that can be allocated into.
1050   uint num_free_or_available_regions() const { return num_free_regions() + _hrm->available(); }
1051 
1052   MemoryUsage get_auxiliary_data_memory_usage() const {
1053     return _hrm->get_auxiliary_data_memory_usage();
1054   }
1055 
1056   // The number of regions that are not completely free.
1057   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1058 
1059 #ifdef ASSERT
1060   bool is_on_master_free_list(HeapRegion* hr) {
1061     return _hrm->is_free(hr);
1062   }
1063 #endif // ASSERT
1064 
1065   inline void old_set_add(HeapRegion* hr);
1066   inline void old_set_remove(HeapRegion* hr);
1067 
1068   inline void archive_set_add(HeapRegion* hr);
1069 
1070   size_t non_young_capacity_bytes() {
1071     return (old_regions_count() + _archive_set.length() + humongous_regions_count()) * HeapRegion::GrainBytes;
1072   }
1073 
1074   // Determine whether the given region is one that we are using as an
1075   // old GC alloc region.
1076   bool is_old_gc_alloc_region(HeapRegion* hr);
1077 
1078   // Perform a collection of the heap; intended for use in implementing
1079   // "System.gc".  This probably implies as full a collection as the
1080   // "CollectedHeap" supports.
1081   virtual void collect(GCCause::Cause cause);
1082 
1083   // Perform a collection of the heap with the given cause; if the VM operation
1084   // fails to execute for any reason, retry only if retry_on_gc_failure is set.
1085   // Returns whether this collection actually executed.
1086   bool try_collect(GCCause::Cause cause, bool retry_on_gc_failure);
1087 
1088   // True iff an evacuation has failed in the most-recent collection.
1089   bool evacuation_failed() { return _evacuation_failed; }
1090 
1091   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1092   void prepend_to_freelist(FreeRegionList* list);
1093   void decrement_summary_bytes(size_t bytes);
1094 
1095   virtual bool is_in(const void* p) const;
1096 #ifdef ASSERT
1097   // Returns whether p is in one of the available areas of the heap. Slow but
1098   // extensive version.
1099   bool is_in_exact(const void* p) const;
1100 #endif
1101 
1102   // Return "TRUE" iff the given object address is within the collection
1103   // set. Assumes that the reference points into the heap.
1104   inline bool is_in_cset(const HeapRegion *hr);
1105   inline bool is_in_cset(oop obj);
1106   inline bool is_in_cset(HeapWord* addr);
1107 
1108   inline bool is_in_cset_or_humongous(const oop obj);
1109 
1110  private:
1111   // This array is used for a quick test on whether a reference points into
1112   // the collection set or not. Each of the array's elements denotes whether the
1113   // corresponding region is in the collection set or not.
1114   G1HeapRegionAttrBiasedMappedArray _region_attr;
1115 
1116  public:
1117 
1118   inline G1HeapRegionAttr region_attr(const void* obj);
1119 
1120   // Return "TRUE" iff the given object address is in the reserved
1121   // region of g1.
1122   bool is_in_g1_reserved(const void* p) const {
1123     return _hrm->reserved().contains(p);
1124   }
1125 
1126   // Returns a MemRegion that corresponds to the space that has been
1127   // reserved for the heap
1128   MemRegion g1_reserved() const {
1129     return _hrm->reserved();
1130   }
1131 
1132   G1HotCardCache* g1_hot_card_cache() const { return _hot_card_cache; }
1133 
1134   G1CardTable* card_table() const {
1135     return _card_table;
1136   }
1137 
1138   // Iteration functions.
1139 
1140   // Iterate over all objects, calling "cl.do_object" on each.
1141   virtual void object_iterate(ObjectClosure* cl);
1142 
1143   virtual void safe_object_iterate(ObjectClosure* cl) {
1144     object_iterate(cl);
1145   }
1146 
1147   // Iterate over heap regions, in address order, terminating the
1148   // iteration early if the "do_heap_region" method returns "true".
1149   void heap_region_iterate(HeapRegionClosure* blk) const;
1150 
1151   // Return the region with the given index. It assumes the index is valid.
1152   inline HeapRegion* region_at(uint index) const;
1153   inline HeapRegion* region_at_or_null(uint index) const;
1154 
1155   // Return the next region (by index) that is part of the same
1156   // humongous object that hr is part of.
1157   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1158 
1159   // Calculate the region index of the given address. Given address must be
1160   // within the heap.
1161   inline uint addr_to_region(HeapWord* addr) const;
1162 
1163   inline HeapWord* bottom_addr_for_region(uint index) const;
1164 
1165   // Two functions to iterate over the heap regions in parallel. Threads
1166   // compete using the HeapRegionClaimer to claim the regions before
1167   // applying the closure on them.
1168   // The _from_worker_offset version uses the HeapRegionClaimer and
1169   // the worker id to calculate a start offset to prevent all workers to
1170   // start from the point.
1171   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1172                                                   HeapRegionClaimer* hrclaimer,
1173                                                   uint worker_id) const;
1174 
1175   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1176                                           HeapRegionClaimer* hrclaimer) const;
1177 
1178   // Iterate over all regions currently in the current collection set.
1179   void collection_set_iterate_all(HeapRegionClosure* blk);
1180 
1181   // Iterate over the regions in the current increment of the collection set.
1182   // Starts the iteration so that the start regions of a given worker id over the
1183   // set active_workers are evenly spread across the set of collection set regions
1184   // to be iterated.
1185   void collection_set_iterate_increment_from(HeapRegionClosure *blk, uint worker_id);
1186 
1187   // Returns the HeapRegion that contains addr. addr must not be NULL.
1188   template <class T>
1189   inline HeapRegion* heap_region_containing(const T addr) const;
1190 
1191   // Returns the HeapRegion that contains addr, or NULL if that is an uncommitted
1192   // region. addr must not be NULL.
1193   template <class T>
1194   inline HeapRegion* heap_region_containing_or_null(const T addr) const;
1195 
1196   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1197   // each address in the (reserved) heap is a member of exactly
1198   // one block.  The defining characteristic of a block is that it is
1199   // possible to find its size, and thus to progress forward to the next
1200   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1201   // represent Java objects, or they might be free blocks in a
1202   // free-list-based heap (or subheap), as long as the two kinds are
1203   // distinguishable and the size of each is determinable.
1204 
1205   // Returns the address of the start of the "block" that contains the
1206   // address "addr".  We say "blocks" instead of "object" since some heaps
1207   // may not pack objects densely; a chunk may either be an object or a
1208   // non-object.
1209   virtual HeapWord* block_start(const void* addr) const;
1210 
1211   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1212   // the block is an object.
1213   virtual bool block_is_obj(const HeapWord* addr) const;
1214 
1215   // Section on thread-local allocation buffers (TLABs)
1216   // See CollectedHeap for semantics.
1217 
1218   bool supports_tlab_allocation() const;
1219   size_t tlab_capacity(Thread* ignored) const;
1220   size_t tlab_used(Thread* ignored) const;
1221   size_t max_tlab_size() const;
1222   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1223 
1224   inline bool is_in_young(const oop obj);
1225 
1226   // Returns "true" iff the given word_size is "very large".
1227   static bool is_humongous(size_t word_size) {
1228     // Note this has to be strictly greater-than as the TLABs
1229     // are capped at the humongous threshold and we want to
1230     // ensure that we don't try to allocate a TLAB as
1231     // humongous and that we don't allocate a humongous
1232     // object in a TLAB.
1233     return word_size > _humongous_object_threshold_in_words;
1234   }
1235 
1236   // Returns the humongous threshold for a specific region size
1237   static size_t humongous_threshold_for(size_t region_size) {
1238     return (region_size / 2);
1239   }
1240 
1241   // Returns the number of regions the humongous object of the given word size
1242   // requires.
1243   static size_t humongous_obj_size_in_regions(size_t word_size);
1244 
1245   // Print the maximum heap capacity.
1246   virtual size_t max_capacity() const;
1247 
1248   // Return the size of reserved memory. Returns different value than max_capacity() when AllocateOldGenAt is used.
1249   virtual size_t max_reserved_capacity() const;
1250 
1251   virtual jlong millis_since_last_gc();
1252 
1253 
1254   // Convenience function to be used in situations where the heap type can be
1255   // asserted to be this type.
1256   static G1CollectedHeap* heap();
1257 
1258   void set_region_short_lived_locked(HeapRegion* hr);
1259   // add appropriate methods for any other surv rate groups
1260 
1261   const G1SurvivorRegions* survivor() const { return &_survivor; }
1262 
1263   uint eden_regions_count() const { return _eden.length(); }
1264   uint survivor_regions_count() const { return _survivor.length(); }
1265   size_t eden_regions_used_bytes() const { return _eden.used_bytes(); }
1266   size_t survivor_regions_used_bytes() const { return _survivor.used_bytes(); }
1267   uint young_regions_count() const { return _eden.length() + _survivor.length(); }
1268   uint old_regions_count() const { return _old_set.length(); }
1269   uint archive_regions_count() const { return _archive_set.length(); }
1270   uint humongous_regions_count() const { return _humongous_set.length(); }
1271 
1272 #ifdef ASSERT
1273   bool check_young_list_empty();
1274 #endif
1275 
1276   // *** Stuff related to concurrent marking.  It's not clear to me that so
1277   // many of these need to be public.
1278 
1279   // The functions below are helper functions that a subclass of
1280   // "CollectedHeap" can use in the implementation of its virtual
1281   // functions.
1282   // This performs a concurrent marking of the live objects in a
1283   // bitmap off to the side.
1284   void do_concurrent_mark();
1285 
1286   bool is_marked_next(oop obj) const;
1287 
1288   // Determine if an object is dead, given the object and also
1289   // the region to which the object belongs. An object is dead
1290   // iff a) it was not allocated since the last mark, b) it
1291   // is not marked, and c) it is not in an archive region.
1292   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1293     return
1294       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1295       !hr->is_archive();
1296   }
1297 
1298   // This function returns true when an object has been
1299   // around since the previous marking and hasn't yet
1300   // been marked during this marking, and is not in an archive region.
1301   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1302     return
1303       !hr->obj_allocated_since_next_marking(obj) &&
1304       !is_marked_next(obj) &&
1305       !hr->is_archive();
1306   }
1307 
1308   // Determine if an object is dead, given only the object itself.
1309   // This will find the region to which the object belongs and
1310   // then call the region version of the same function.
1311 
1312   // Added if it is NULL it isn't dead.
1313 
1314   inline bool is_obj_dead(const oop obj) const;
1315 
1316   inline bool is_obj_ill(const oop obj) const;
1317 
1318   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1319   inline bool is_obj_dead_full(const oop obj) const;
1320 
1321   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1322 
1323   // Refinement
1324 
1325   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1326 
1327   // Optimized nmethod scanning support routines
1328 
1329   // Register the given nmethod with the G1 heap.
1330   virtual void register_nmethod(nmethod* nm);
1331 
1332   // Unregister the given nmethod from the G1 heap.
1333   virtual void unregister_nmethod(nmethod* nm);
1334 
1335   // No nmethod flushing needed.
1336   virtual void flush_nmethod(nmethod* nm) {}
1337 
1338   // No nmethod verification implemented.
1339   virtual void verify_nmethod(nmethod* nm) {}
1340 
1341   // Free up superfluous code root memory.
1342   void purge_code_root_memory();
1343 
1344   // Rebuild the strong code root lists for each region
1345   // after a full GC.
1346   void rebuild_strong_code_roots();
1347 
1348   // Partial cleaning of VM internal data structures.
1349   void string_dedup_cleaning(BoolObjectClosure* is_alive,
1350                              OopClosure* keep_alive,
1351                              G1GCPhaseTimes* phase_times = NULL);
1352 
1353   // Performs cleaning of data structures after class unloading.
1354   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1355 
1356   // Redirty logged cards in the refinement queue.
1357   void redirty_logged_cards();
1358   // Verification
1359 
1360   // Deduplicate the string
1361   virtual void deduplicate_string(oop str);
1362 
1363   // Perform any cleanup actions necessary before allowing a verification.
1364   virtual void prepare_for_verify();
1365 
1366   // Perform verification.
1367 
1368   // vo == UsePrevMarking -> use "prev" marking information,
1369   // vo == UseNextMarking -> use "next" marking information
1370   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1371   //
1372   // NOTE: Only the "prev" marking information is guaranteed to be
1373   // consistent most of the time, so most calls to this should use
1374   // vo == UsePrevMarking.
1375   // Currently, there is only one case where this is called with
1376   // vo == UseNextMarking, which is to verify the "next" marking
1377   // information at the end of remark.
1378   // Currently there is only one place where this is called with
1379   // vo == UseFullMarking, which is to verify the marking during a
1380   // full GC.
1381   void verify(VerifyOption vo);
1382 
1383   // WhiteBox testing support.
1384   virtual bool supports_concurrent_phase_control() const;
1385   virtual bool request_concurrent_phase(const char* phase);
1386   bool is_heterogeneous_heap() const;
1387 
1388   virtual WorkGang* get_safepoint_workers() { return _workers; }
1389 
1390   // The methods below are here for convenience and dispatch the
1391   // appropriate method depending on value of the given VerifyOption
1392   // parameter. The values for that parameter, and their meanings,
1393   // are the same as those above.
1394 
1395   bool is_obj_dead_cond(const oop obj,
1396                         const HeapRegion* hr,
1397                         const VerifyOption vo) const;
1398 
1399   bool is_obj_dead_cond(const oop obj,
1400                         const VerifyOption vo) const;
1401 
1402   G1HeapSummary create_g1_heap_summary();
1403   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1404 
1405   // Printing
1406 private:
1407   void print_heap_regions() const;
1408   void print_regions_on(outputStream* st) const;
1409 
1410 public:
1411   virtual void print_on(outputStream* st) const;
1412   virtual void print_extended_on(outputStream* st) const;
1413   virtual void print_on_error(outputStream* st) const;
1414 
1415   virtual void print_gc_threads_on(outputStream* st) const;
1416   virtual void gc_threads_do(ThreadClosure* tc) const;
1417 
1418   // Override
1419   void print_tracing_info() const;
1420 
1421   // The following two methods are helpful for debugging RSet issues.
1422   void print_cset_rsets() PRODUCT_RETURN;
1423   void print_all_rsets() PRODUCT_RETURN;
1424 
1425   size_t pending_card_num();
1426 };
1427 
1428 class G1ParEvacuateFollowersClosure : public VoidClosure {
1429 private:
1430   double _start_term;
1431   double _term_time;
1432   size_t _term_attempts;
1433 
1434   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1435   void end_term_time() { _term_time += (os::elapsedTime() - _start_term); }
1436 protected:
1437   G1CollectedHeap*              _g1h;
1438   G1ParScanThreadState*         _par_scan_state;
1439   RefToScanQueueSet*            _queues;
1440   ParallelTaskTerminator*       _terminator;
1441   G1GCPhaseTimes::GCParPhases   _phase;
1442 
1443   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1444   RefToScanQueueSet*      queues()         { return _queues; }
1445   ParallelTaskTerminator* terminator()     { return _terminator; }
1446 
1447 public:
1448   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1449                                 G1ParScanThreadState* par_scan_state,
1450                                 RefToScanQueueSet* queues,
1451                                 ParallelTaskTerminator* terminator,
1452                                 G1GCPhaseTimes::GCParPhases phase)
1453     : _start_term(0.0), _term_time(0.0), _term_attempts(0),
1454       _g1h(g1h), _par_scan_state(par_scan_state),
1455       _queues(queues), _terminator(terminator), _phase(phase) {}
1456 
1457   void do_void();
1458 
1459   double term_time() const { return _term_time; }
1460   size_t term_attempts() const { return _term_attempts; }
1461 
1462 private:
1463   inline bool offer_termination();
1464 };
1465 
1466 #endif // SHARE_GC_G1_G1COLLECTEDHEAP_HPP