1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1DirtyCardQueue.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  38 #include "gc/g1/g1StringDedup.hpp"
  39 #include "gc/g1/g1ThreadLocalData.hpp"
  40 #include "gc/g1/heapRegion.inline.hpp"
  41 #include "gc/g1/heapRegionRemSet.hpp"
  42 #include "gc/g1/heapRegionSet.inline.hpp"
  43 #include "gc/shared/gcId.hpp"
  44 #include "gc/shared/gcTimer.hpp"
  45 #include "gc/shared/gcTrace.hpp"
  46 #include "gc/shared/gcTraceTime.inline.hpp"
  47 #include "gc/shared/gcVMOperations.hpp"
  48 #include "gc/shared/genOopClosures.inline.hpp"
  49 #include "gc/shared/referencePolicy.hpp"
  50 #include "gc/shared/strongRootsScope.hpp"
  51 #include "gc/shared/suspendibleThreadSet.hpp"
  52 #include "gc/shared/taskqueue.inline.hpp"
  53 #include "gc/shared/weakProcessor.inline.hpp"
  54 #include "gc/shared/workerPolicy.hpp"
  55 #include "include/jvm.h"
  56 #include "logging/log.hpp"
  57 #include "memory/allocation.hpp"
  58 #include "memory/resourceArea.hpp"
  59 #include "memory/universe.hpp"
  60 #include "oops/access.inline.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/handles.inline.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/prefetch.inline.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "utilities/align.hpp"
  68 #include "utilities/growableArray.hpp"
  69 
  70 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  71   assert(addr < _cm->finger(), "invariant");
  72   assert(addr >= _task->finger(), "invariant");
  73 
  74   // We move that task's local finger along.
  75   _task->move_finger_to(addr);
  76 
  77   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  78   // we only partially drain the local queue and global stack
  79   _task->drain_local_queue(true);
  80   _task->drain_global_stack(true);
  81 
  82   // if the has_aborted flag has been raised, we need to bail out of
  83   // the iteration
  84   return !_task->has_aborted();
  85 }
  86 
  87 G1CMMarkStack::G1CMMarkStack() :
  88   _max_chunk_capacity(0),
  89   _base(NULL),
  90   _chunk_capacity(0) {
  91   set_empty();
  92 }
  93 
  94 bool G1CMMarkStack::resize(size_t new_capacity) {
  95   assert(is_empty(), "Only resize when stack is empty.");
  96   assert(new_capacity <= _max_chunk_capacity,
  97          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  98 
  99   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
 100 
 101   if (new_base == NULL) {
 102     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 103     return false;
 104   }
 105   // Release old mapping.
 106   if (_base != NULL) {
 107     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 108   }
 109 
 110   _base = new_base;
 111   _chunk_capacity = new_capacity;
 112   set_empty();
 113 
 114   return true;
 115 }
 116 
 117 size_t G1CMMarkStack::capacity_alignment() {
 118   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 119 }
 120 
 121 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 122   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 123 
 124   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 125 
 126   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 127   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 128 
 129   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 130             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 131             _max_chunk_capacity,
 132             initial_chunk_capacity);
 133 
 134   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 135                 initial_chunk_capacity, _max_chunk_capacity);
 136 
 137   return resize(initial_chunk_capacity);
 138 }
 139 
 140 void G1CMMarkStack::expand() {
 141   if (_chunk_capacity == _max_chunk_capacity) {
 142     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 143     return;
 144   }
 145   size_t old_capacity = _chunk_capacity;
 146   // Double capacity if possible
 147   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 148 
 149   if (resize(new_capacity)) {
 150     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 151                   old_capacity, new_capacity);
 152   } else {
 153     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 154                     old_capacity, new_capacity);
 155   }
 156 }
 157 
 158 G1CMMarkStack::~G1CMMarkStack() {
 159   if (_base != NULL) {
 160     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 161   }
 162 }
 163 
 164 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 165   elem->next = *list;
 166   *list = elem;
 167 }
 168 
 169 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 170   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 171   add_chunk_to_list(&_chunk_list, elem);
 172   _chunks_in_chunk_list++;
 173 }
 174 
 175 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 176   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 177   add_chunk_to_list(&_free_list, elem);
 178 }
 179 
 180 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 181   TaskQueueEntryChunk* result = *list;
 182   if (result != NULL) {
 183     *list = (*list)->next;
 184   }
 185   return result;
 186 }
 187 
 188 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 189   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 190   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 191   if (result != NULL) {
 192     _chunks_in_chunk_list--;
 193   }
 194   return result;
 195 }
 196 
 197 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 198   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 199   return remove_chunk_from_list(&_free_list);
 200 }
 201 
 202 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 203   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 204   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 205   // wraparound of _hwm.
 206   if (_hwm >= _chunk_capacity) {
 207     return NULL;
 208   }
 209 
 210   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 211   if (cur_idx >= _chunk_capacity) {
 212     return NULL;
 213   }
 214 
 215   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 216   result->next = NULL;
 217   return result;
 218 }
 219 
 220 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 221   // Get a new chunk.
 222   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 223 
 224   if (new_chunk == NULL) {
 225     // Did not get a chunk from the free list. Allocate from backing memory.
 226     new_chunk = allocate_new_chunk();
 227 
 228     if (new_chunk == NULL) {
 229       return false;
 230     }
 231   }
 232 
 233   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 234 
 235   add_chunk_to_chunk_list(new_chunk);
 236 
 237   return true;
 238 }
 239 
 240 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 241   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 242 
 243   if (cur == NULL) {
 244     return false;
 245   }
 246 
 247   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 248 
 249   add_chunk_to_free_list(cur);
 250   return true;
 251 }
 252 
 253 void G1CMMarkStack::set_empty() {
 254   _chunks_in_chunk_list = 0;
 255   _hwm = 0;
 256   _chunk_list = NULL;
 257   _free_list = NULL;
 258 }
 259 
 260 G1CMRootRegions::G1CMRootRegions(uint const max_regions) :
 261   _root_regions(NEW_C_HEAP_ARRAY(HeapRegion*, max_regions, mtGC)),
 262   _max_regions(max_regions),
 263   _num_root_regions(0),
 264   _claimed_root_regions(0),
 265   _scan_in_progress(false),
 266   _should_abort(false) { }
 267 
 268 G1CMRootRegions::~G1CMRootRegions() {
 269   FREE_C_HEAP_ARRAY(HeapRegion*, _max_regions);
 270 }
 271 
 272 void G1CMRootRegions::reset() {
 273   _num_root_regions = 0;
 274 }
 275 
 276 void G1CMRootRegions::add(HeapRegion* hr) {
 277   assert_at_safepoint();
 278   size_t idx = Atomic::add((size_t)1, &_num_root_regions) - 1;
 279   assert(idx < _max_regions, "Trying to add more root regions than there is space " SIZE_FORMAT, _max_regions);
 280   _root_regions[idx] = hr;
 281 }
 282 
 283 void G1CMRootRegions::prepare_for_scan() {
 284   assert(!scan_in_progress(), "pre-condition");
 285 
 286   _scan_in_progress = _num_root_regions > 0;
 287 
 288   _claimed_root_regions = 0;
 289   _should_abort = false;
 290 }
 291 
 292 HeapRegion* G1CMRootRegions::claim_next() {
 293   if (_should_abort) {
 294     // If someone has set the should_abort flag, we return NULL to
 295     // force the caller to bail out of their loop.
 296     return NULL;
 297   }
 298 
 299   if (_claimed_root_regions >= _num_root_regions) {
 300     return NULL;
 301   }
 302 
 303   size_t claimed_index = Atomic::add((size_t)1, &_claimed_root_regions) - 1;
 304   if (claimed_index < _num_root_regions) {
 305     return _root_regions[claimed_index];
 306   }
 307   return NULL;
 308 }
 309 
 310 uint G1CMRootRegions::num_root_regions() const {
 311   return (uint)_num_root_regions;
 312 }
 313 
 314 void G1CMRootRegions::notify_scan_done() {
 315   MutexLocker x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 316   _scan_in_progress = false;
 317   RootRegionScan_lock->notify_all();
 318 }
 319 
 320 void G1CMRootRegions::cancel_scan() {
 321   notify_scan_done();
 322 }
 323 
 324 void G1CMRootRegions::scan_finished() {
 325   assert(scan_in_progress(), "pre-condition");
 326 
 327   if (!_should_abort) {
 328     assert(_claimed_root_regions >= num_root_regions(),
 329            "we should have claimed all root regions, claimed " SIZE_FORMAT ", length = %u",
 330            _claimed_root_regions, num_root_regions());
 331   }
 332 
 333   notify_scan_done();
 334 }
 335 
 336 bool G1CMRootRegions::wait_until_scan_finished() {
 337   if (!scan_in_progress()) {
 338     return false;
 339   }
 340 
 341   {
 342     MonitorLocker ml(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 343     while (scan_in_progress()) {
 344       ml.wait();
 345     }
 346   }
 347   return true;
 348 }
 349 
 350 // Returns the maximum number of workers to be used in a concurrent
 351 // phase based on the number of GC workers being used in a STW
 352 // phase.
 353 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 354   return MAX2((num_gc_workers + 2) / 4, 1U);
 355 }
 356 
 357 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 358                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 359                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 360   // _cm_thread set inside the constructor
 361   _g1h(g1h),
 362   _completed_initialization(false),
 363 
 364   _mark_bitmap_1(),
 365   _mark_bitmap_2(),
 366   _prev_mark_bitmap(&_mark_bitmap_1),
 367   _next_mark_bitmap(&_mark_bitmap_2),
 368 
 369   _heap(_g1h->reserved_region()),
 370 
 371   _root_regions(_g1h->max_regions()),
 372 
 373   _global_mark_stack(),
 374 
 375   // _finger set in set_non_marking_state
 376 
 377   _worker_id_offset(G1DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 378   _max_num_tasks(ParallelGCThreads),
 379   // _num_active_tasks set in set_non_marking_state()
 380   // _tasks set inside the constructor
 381 
 382   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 383   _terminator((int) _max_num_tasks, _task_queues),
 384 
 385   _first_overflow_barrier_sync(),
 386   _second_overflow_barrier_sync(),
 387 
 388   _has_overflown(false),
 389   _concurrent(false),
 390   _has_aborted(false),
 391   _restart_for_overflow(false),
 392   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 393   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 394 
 395   // _verbose_level set below
 396 
 397   _init_times(),
 398   _remark_times(),
 399   _remark_mark_times(),
 400   _remark_weak_ref_times(),
 401   _cleanup_times(),
 402   _total_cleanup_time(0.0),
 403 
 404   _accum_task_vtime(NULL),
 405 
 406   _concurrent_workers(NULL),
 407   _num_concurrent_workers(0),
 408   _max_concurrent_workers(0),
 409 
 410   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 411   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 412 {
 413   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 414   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 415 
 416   // Create & start ConcurrentMark thread.
 417   _cm_thread = new G1ConcurrentMarkThread(this);
 418   if (_cm_thread->osthread() == NULL) {
 419     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 420   }
 421 
 422   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 423 
 424   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 425     // Calculate the number of concurrent worker threads by scaling
 426     // the number of parallel GC threads.
 427     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 428     FLAG_SET_ERGO(ConcGCThreads, marking_thread_num);
 429   }
 430 
 431   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 432   if (ConcGCThreads > ParallelGCThreads) {
 433     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 434                     ConcGCThreads, ParallelGCThreads);
 435     return;
 436   }
 437 
 438   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 439   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 440 
 441   _num_concurrent_workers = ConcGCThreads;
 442   _max_concurrent_workers = _num_concurrent_workers;
 443 
 444   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 445   _concurrent_workers->initialize_workers();
 446 
 447   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 448     size_t mark_stack_size =
 449       MIN2(MarkStackSizeMax,
 450           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 451     // Verify that the calculated value for MarkStackSize is in range.
 452     // It would be nice to use the private utility routine from Arguments.
 453     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 454       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 455                       "must be between 1 and " SIZE_FORMAT,
 456                       mark_stack_size, MarkStackSizeMax);
 457       return;
 458     }
 459     FLAG_SET_ERGO(MarkStackSize, mark_stack_size);
 460   } else {
 461     // Verify MarkStackSize is in range.
 462     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 463       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 464         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 465           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 466                           "must be between 1 and " SIZE_FORMAT,
 467                           MarkStackSize, MarkStackSizeMax);
 468           return;
 469         }
 470       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 471         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 472           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 473                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 474                           MarkStackSize, MarkStackSizeMax);
 475           return;
 476         }
 477       }
 478     }
 479   }
 480 
 481   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 482     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 483   }
 484 
 485   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 486   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 487 
 488   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 489   _num_active_tasks = _max_num_tasks;
 490 
 491   for (uint i = 0; i < _max_num_tasks; ++i) {
 492     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 493     task_queue->initialize();
 494     _task_queues->register_queue(i, task_queue);
 495 
 496     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 497 
 498     _accum_task_vtime[i] = 0.0;
 499   }
 500 
 501   reset_at_marking_complete();
 502   _completed_initialization = true;
 503 }
 504 
 505 void G1ConcurrentMark::reset() {
 506   _has_aborted = false;
 507 
 508   reset_marking_for_restart();
 509 
 510   // Reset all tasks, since different phases will use different number of active
 511   // threads. So, it's easiest to have all of them ready.
 512   for (uint i = 0; i < _max_num_tasks; ++i) {
 513     _tasks[i]->reset(_next_mark_bitmap);
 514   }
 515 
 516   uint max_regions = _g1h->max_regions();
 517   for (uint i = 0; i < max_regions; i++) {
 518     _top_at_rebuild_starts[i] = NULL;
 519     _region_mark_stats[i].clear();
 520   }
 521 }
 522 
 523 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 524   for (uint j = 0; j < _max_num_tasks; ++j) {
 525     _tasks[j]->clear_mark_stats_cache(region_idx);
 526   }
 527   _top_at_rebuild_starts[region_idx] = NULL;
 528   _region_mark_stats[region_idx].clear();
 529 }
 530 
 531 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 532   uint const region_idx = r->hrm_index();
 533   if (r->is_humongous()) {
 534     assert(r->is_starts_humongous(), "Got humongous continues region here");
 535     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 536     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 537       clear_statistics_in_region(j);
 538     }
 539   } else {
 540     clear_statistics_in_region(region_idx);
 541   }
 542 }
 543 
 544 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 545   if (bitmap->is_marked(addr)) {
 546     bitmap->clear(addr);
 547   }
 548 }
 549 
 550 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 551   assert_at_safepoint_on_vm_thread();
 552 
 553   // Need to clear all mark bits of the humongous object.
 554   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 555   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 556 
 557   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 558     return;
 559   }
 560 
 561   // Clear any statistics about the region gathered so far.
 562   clear_statistics(r);
 563 }
 564 
 565 void G1ConcurrentMark::reset_marking_for_restart() {
 566   _global_mark_stack.set_empty();
 567 
 568   // Expand the marking stack, if we have to and if we can.
 569   if (has_overflown()) {
 570     _global_mark_stack.expand();
 571 
 572     uint max_regions = _g1h->max_regions();
 573     for (uint i = 0; i < max_regions; i++) {
 574       _region_mark_stats[i].clear_during_overflow();
 575     }
 576   }
 577 
 578   clear_has_overflown();
 579   _finger = _heap.start();
 580 
 581   for (uint i = 0; i < _max_num_tasks; ++i) {
 582     G1CMTaskQueue* queue = _task_queues->queue(i);
 583     queue->set_empty();
 584   }
 585 }
 586 
 587 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 588   assert(active_tasks <= _max_num_tasks, "we should not have more");
 589 
 590   _num_active_tasks = active_tasks;
 591   // Need to update the three data structures below according to the
 592   // number of active threads for this phase.
 593   _terminator.terminator()->reset_for_reuse((int) active_tasks);
 594   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 595   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 596 }
 597 
 598 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 599   set_concurrency(active_tasks);
 600 
 601   _concurrent = concurrent;
 602 
 603   if (!concurrent) {
 604     // At this point we should be in a STW phase, and completed marking.
 605     assert_at_safepoint_on_vm_thread();
 606     assert(out_of_regions(),
 607            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 608            p2i(_finger), p2i(_heap.end()));
 609   }
 610 }
 611 
 612 void G1ConcurrentMark::reset_at_marking_complete() {
 613   // We set the global marking state to some default values when we're
 614   // not doing marking.
 615   reset_marking_for_restart();
 616   _num_active_tasks = 0;
 617 }
 618 
 619 G1ConcurrentMark::~G1ConcurrentMark() {
 620   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 621   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 622   // The G1ConcurrentMark instance is never freed.
 623   ShouldNotReachHere();
 624 }
 625 
 626 class G1ClearBitMapTask : public AbstractGangTask {
 627 public:
 628   static size_t chunk_size() { return M; }
 629 
 630 private:
 631   // Heap region closure used for clearing the given mark bitmap.
 632   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 633   private:
 634     G1CMBitMap* _bitmap;
 635     G1ConcurrentMark* _cm;
 636   public:
 637     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _bitmap(bitmap), _cm(cm) {
 638     }
 639 
 640     virtual bool do_heap_region(HeapRegion* r) {
 641       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 642 
 643       HeapWord* cur = r->bottom();
 644       HeapWord* const end = r->end();
 645 
 646       while (cur < end) {
 647         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 648         _bitmap->clear_range(mr);
 649 
 650         cur += chunk_size_in_words;
 651 
 652         // Abort iteration if after yielding the marking has been aborted.
 653         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 654           return true;
 655         }
 656         // Repeat the asserts from before the start of the closure. We will do them
 657         // as asserts here to minimize their overhead on the product. However, we
 658         // will have them as guarantees at the beginning / end of the bitmap
 659         // clearing to get some checking in the product.
 660         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 661         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 662       }
 663       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 664 
 665       return false;
 666     }
 667   };
 668 
 669   G1ClearBitmapHRClosure _cl;
 670   HeapRegionClaimer _hr_claimer;
 671   bool _suspendible; // If the task is suspendible, workers must join the STS.
 672 
 673 public:
 674   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 675     AbstractGangTask("G1 Clear Bitmap"),
 676     _cl(bitmap, suspendible ? cm : NULL),
 677     _hr_claimer(n_workers),
 678     _suspendible(suspendible)
 679   { }
 680 
 681   void work(uint worker_id) {
 682     SuspendibleThreadSetJoiner sts_join(_suspendible);
 683     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 684   }
 685 
 686   bool is_complete() {
 687     return _cl.is_complete();
 688   }
 689 };
 690 
 691 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 692   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 693 
 694   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 695   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 696 
 697   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 698 
 699   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 700 
 701   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 702   workers->run_task(&cl, num_workers);
 703   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 704 }
 705 
 706 void G1ConcurrentMark::cleanup_for_next_mark() {
 707   // Make sure that the concurrent mark thread looks to still be in
 708   // the current cycle.
 709   guarantee(cm_thread()->during_cycle(), "invariant");
 710 
 711   // We are finishing up the current cycle by clearing the next
 712   // marking bitmap and getting it ready for the next cycle. During
 713   // this time no other cycle can start. So, let's make sure that this
 714   // is the case.
 715   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 716 
 717   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 718 
 719   // Repeat the asserts from above.
 720   guarantee(cm_thread()->during_cycle(), "invariant");
 721   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 722 }
 723 
 724 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 725   assert_at_safepoint_on_vm_thread();
 726   clear_bitmap(_prev_mark_bitmap, workers, false);
 727 }
 728 
 729 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 730 public:
 731   bool do_heap_region(HeapRegion* r) {
 732     r->note_start_of_marking();
 733     return false;
 734   }
 735 };
 736 
 737 void G1ConcurrentMark::pre_initial_mark() {
 738   assert_at_safepoint_on_vm_thread();
 739 
 740   // Reset marking state.
 741   reset();
 742 
 743   // For each region note start of marking.
 744   NoteStartOfMarkHRClosure startcl;
 745   _g1h->heap_region_iterate(&startcl);
 746 
 747   _root_regions.reset();
 748 }
 749 
 750 
 751 void G1ConcurrentMark::post_initial_mark() {
 752   // Start Concurrent Marking weak-reference discovery.
 753   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 754   // enable ("weak") refs discovery
 755   rp->enable_discovery();
 756   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 757 
 758   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
 759   // This is the start of  the marking cycle, we're expected all
 760   // threads to have SATB queues with active set to false.
 761   satb_mq_set.set_active_all_threads(true, /* new active value */
 762                                      false /* expected_active */);
 763 
 764   _root_regions.prepare_for_scan();
 765 
 766   // update_g1_committed() will be called at the end of an evac pause
 767   // when marking is on. So, it's also called at the end of the
 768   // initial-mark pause to update the heap end, if the heap expands
 769   // during it. No need to call it here.
 770 }
 771 
 772 /*
 773  * Notice that in the next two methods, we actually leave the STS
 774  * during the barrier sync and join it immediately afterwards. If we
 775  * do not do this, the following deadlock can occur: one thread could
 776  * be in the barrier sync code, waiting for the other thread to also
 777  * sync up, whereas another one could be trying to yield, while also
 778  * waiting for the other threads to sync up too.
 779  *
 780  * Note, however, that this code is also used during remark and in
 781  * this case we should not attempt to leave / enter the STS, otherwise
 782  * we'll either hit an assert (debug / fastdebug) or deadlock
 783  * (product). So we should only leave / enter the STS if we are
 784  * operating concurrently.
 785  *
 786  * Because the thread that does the sync barrier has left the STS, it
 787  * is possible to be suspended for a Full GC or an evacuation pause
 788  * could occur. This is actually safe, since the entering the sync
 789  * barrier is one of the last things do_marking_step() does, and it
 790  * doesn't manipulate any data structures afterwards.
 791  */
 792 
 793 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 794   bool barrier_aborted;
 795   {
 796     SuspendibleThreadSetLeaver sts_leave(concurrent());
 797     barrier_aborted = !_first_overflow_barrier_sync.enter();
 798   }
 799 
 800   // at this point everyone should have synced up and not be doing any
 801   // more work
 802 
 803   if (barrier_aborted) {
 804     // If the barrier aborted we ignore the overflow condition and
 805     // just abort the whole marking phase as quickly as possible.
 806     return;
 807   }
 808 }
 809 
 810 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 811   SuspendibleThreadSetLeaver sts_leave(concurrent());
 812   _second_overflow_barrier_sync.enter();
 813 
 814   // at this point everything should be re-initialized and ready to go
 815 }
 816 
 817 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 818   G1ConcurrentMark*     _cm;
 819 
 820 public:
 821   void work(uint worker_id) {
 822     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 823     ResourceMark rm;
 824 
 825     double start_vtime = os::elapsedVTime();
 826 
 827     {
 828       SuspendibleThreadSetJoiner sts_join;
 829 
 830       assert(worker_id < _cm->active_tasks(), "invariant");
 831 
 832       G1CMTask* task = _cm->task(worker_id);
 833       task->record_start_time();
 834       if (!_cm->has_aborted()) {
 835         do {
 836           task->do_marking_step(G1ConcMarkStepDurationMillis,
 837                                 true  /* do_termination */,
 838                                 false /* is_serial*/);
 839 
 840           _cm->do_yield_check();
 841         } while (!_cm->has_aborted() && task->has_aborted());
 842       }
 843       task->record_end_time();
 844       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 845     }
 846 
 847     double end_vtime = os::elapsedVTime();
 848     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 849   }
 850 
 851   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 852       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 853 
 854   ~G1CMConcurrentMarkingTask() { }
 855 };
 856 
 857 uint G1ConcurrentMark::calc_active_marking_workers() {
 858   uint result = 0;
 859   if (!UseDynamicNumberOfGCThreads ||
 860       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 861        !ForceDynamicNumberOfGCThreads)) {
 862     result = _max_concurrent_workers;
 863   } else {
 864     result =
 865       WorkerPolicy::calc_default_active_workers(_max_concurrent_workers,
 866                                                 1, /* Minimum workers */
 867                                                 _num_concurrent_workers,
 868                                                 Threads::number_of_non_daemon_threads());
 869     // Don't scale the result down by scale_concurrent_workers() because
 870     // that scaling has already gone into "_max_concurrent_workers".
 871   }
 872   assert(result > 0 && result <= _max_concurrent_workers,
 873          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 874          _max_concurrent_workers, result);
 875   return result;
 876 }
 877 
 878 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) {
 879   assert(hr->is_old() || (hr->is_survivor() && hr->next_top_at_mark_start() == hr->bottom()),
 880          "Root regions must be old or survivor but region %u is %s", hr->hrm_index(), hr->get_type_str());
 881   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 882 
 883   const uintx interval = PrefetchScanIntervalInBytes;
 884   HeapWord* curr = hr->next_top_at_mark_start();
 885   const HeapWord* end = hr->top();
 886   while (curr < end) {
 887     Prefetch::read(curr, interval);
 888     oop obj = oop(curr);
 889     int size = obj->oop_iterate_size(&cl);
 890     assert(size == obj->size(), "sanity");
 891     curr += size;
 892   }
 893 }
 894 
 895 class G1CMRootRegionScanTask : public AbstractGangTask {
 896   G1ConcurrentMark* _cm;
 897 public:
 898   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 899     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 900 
 901   void work(uint worker_id) {
 902     assert(Thread::current()->is_ConcurrentGC_thread(),
 903            "this should only be done by a conc GC thread");
 904 
 905     G1CMRootRegions* root_regions = _cm->root_regions();
 906     HeapRegion* hr = root_regions->claim_next();
 907     while (hr != NULL) {
 908       _cm->scan_root_region(hr, worker_id);
 909       hr = root_regions->claim_next();
 910     }
 911   }
 912 };
 913 
 914 void G1ConcurrentMark::scan_root_regions() {
 915   // scan_in_progress() will have been set to true only if there was
 916   // at least one root region to scan. So, if it's false, we
 917   // should not attempt to do any further work.
 918   if (root_regions()->scan_in_progress()) {
 919     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 920 
 921     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 922                                    // We distribute work on a per-region basis, so starting
 923                                    // more threads than that is useless.
 924                                    root_regions()->num_root_regions());
 925     assert(_num_concurrent_workers <= _max_concurrent_workers,
 926            "Maximum number of marking threads exceeded");
 927 
 928     G1CMRootRegionScanTask task(this);
 929     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 930                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 931     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 932 
 933     // It's possible that has_aborted() is true here without actually
 934     // aborting the survivor scan earlier. This is OK as it's
 935     // mainly used for sanity checking.
 936     root_regions()->scan_finished();
 937   }
 938 }
 939 
 940 void G1ConcurrentMark::concurrent_cycle_start() {
 941   _gc_timer_cm->register_gc_start();
 942 
 943   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 944 
 945   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 946 }
 947 
 948 void G1ConcurrentMark::concurrent_cycle_end() {
 949   _g1h->collector_state()->set_clearing_next_bitmap(false);
 950 
 951   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 952 
 953   if (has_aborted()) {
 954     log_info(gc, marking)("Concurrent Mark Abort");
 955     _gc_tracer_cm->report_concurrent_mode_failure();
 956   }
 957 
 958   _gc_timer_cm->register_gc_end();
 959 
 960   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 961 }
 962 
 963 void G1ConcurrentMark::mark_from_roots() {
 964   _restart_for_overflow = false;
 965 
 966   _num_concurrent_workers = calc_active_marking_workers();
 967 
 968   uint active_workers = MAX2(1U, _num_concurrent_workers);
 969 
 970   // Setting active workers is not guaranteed since fewer
 971   // worker threads may currently exist and more may not be
 972   // available.
 973   active_workers = _concurrent_workers->update_active_workers(active_workers);
 974   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 975 
 976   // Parallel task terminator is set in "set_concurrency_and_phase()"
 977   set_concurrency_and_phase(active_workers, true /* concurrent */);
 978 
 979   G1CMConcurrentMarkingTask marking_task(this);
 980   _concurrent_workers->run_task(&marking_task);
 981   print_stats();
 982 }
 983 
 984 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 985   G1HeapVerifier* verifier = _g1h->verifier();
 986 
 987   verifier->verify_region_sets_optional();
 988 
 989   if (VerifyDuringGC) {
 990     GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm);
 991 
 992     size_t const BufLen = 512;
 993     char buffer[BufLen];
 994 
 995     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
 996     verifier->verify(type, vo, buffer);
 997   }
 998 
 999   verifier->check_bitmaps(caller);
1000 }
1001 
1002 class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask {
1003   G1CollectedHeap* _g1h;
1004   G1ConcurrentMark* _cm;
1005   HeapRegionClaimer _hrclaimer;
1006   uint volatile _total_selected_for_rebuild;
1007 
1008   G1PrintRegionLivenessInfoClosure _cl;
1009 
1010   class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
1011     G1CollectedHeap* _g1h;
1012     G1ConcurrentMark* _cm;
1013 
1014     G1PrintRegionLivenessInfoClosure* _cl;
1015 
1016     uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1017 
1018     void update_remset_before_rebuild(HeapRegion* hr) {
1019       G1RemSetTrackingPolicy* tracking_policy = _g1h->policy()->remset_tracker();
1020 
1021       bool selected_for_rebuild;
1022       if (hr->is_humongous()) {
1023         bool const is_live = _cm->liveness(hr->humongous_start_region()->hrm_index()) > 0;
1024         selected_for_rebuild = tracking_policy->update_humongous_before_rebuild(hr, is_live);
1025       } else {
1026         size_t const live_bytes = _cm->liveness(hr->hrm_index());
1027         selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1028       }
1029       if (selected_for_rebuild) {
1030         _num_regions_selected_for_rebuild++;
1031       }
1032       _cm->update_top_at_rebuild_start(hr);
1033     }
1034 
1035     // Distribute the given words across the humongous object starting with hr and
1036     // note end of marking.
1037     void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
1038       uint const region_idx = hr->hrm_index();
1039       size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size();
1040       uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words);
1041 
1042       // "Distributing" zero words means that we only note end of marking for these
1043       // regions.
1044       assert(marked_words == 0 || obj_size_in_words == marked_words,
1045              "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT,
1046              obj_size_in_words, marked_words);
1047 
1048       for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1049         HeapRegion* const r = _g1h->region_at(i);
1050         size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1051 
1052         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)",
1053                                words_to_add, i, r->get_type_str());
1054         add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize);
1055         marked_words -= words_to_add;
1056       }
1057       assert(marked_words == 0,
1058              SIZE_FORMAT " words left after distributing space across %u regions",
1059              marked_words, num_regions_in_humongous);
1060     }
1061 
1062     void update_marked_bytes(HeapRegion* hr) {
1063       uint const region_idx = hr->hrm_index();
1064       size_t const marked_words = _cm->liveness(region_idx);
1065       // The marking attributes the object's size completely to the humongous starts
1066       // region. We need to distribute this value across the entire set of regions a
1067       // humongous object spans.
1068       if (hr->is_humongous()) {
1069         assert(hr->is_starts_humongous() || marked_words == 0,
1070                "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1071                marked_words, region_idx, hr->get_type_str());
1072         if (hr->is_starts_humongous()) {
1073           distribute_marked_bytes(hr, marked_words);
1074         }
1075       } else {
1076         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1077         add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize);
1078       }
1079     }
1080 
1081     void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) {
1082       hr->add_to_marked_bytes(marked_bytes);
1083       _cl->do_heap_region(hr);
1084       hr->note_end_of_marking();
1085     }
1086 
1087   public:
1088     G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) :
1089       _g1h(g1h), _cm(cm), _cl(cl), _num_regions_selected_for_rebuild(0) { }
1090 
1091     virtual bool do_heap_region(HeapRegion* r) {
1092       update_remset_before_rebuild(r);
1093       update_marked_bytes(r);
1094 
1095       return false;
1096     }
1097 
1098     uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1099   };
1100 
1101 public:
1102   G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) :
1103     AbstractGangTask("G1 Update RemSet Tracking Before Rebuild"),
1104     _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking") { }
1105 
1106   virtual void work(uint worker_id) {
1107     G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl);
1108     _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id);
1109     Atomic::add(update_cl.num_selected_for_rebuild(), &_total_selected_for_rebuild);
1110   }
1111 
1112   uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
1113 
1114   // Number of regions for which roughly one thread should be spawned for this work.
1115   static const uint RegionsPerThread = 384;
1116 };
1117 
1118 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1119   G1CollectedHeap* _g1h;
1120 public:
1121   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1122 
1123   virtual bool do_heap_region(HeapRegion* r) {
1124     _g1h->policy()->remset_tracker()->update_after_rebuild(r);
1125     return false;
1126   }
1127 };
1128 
1129 void G1ConcurrentMark::remark() {
1130   assert_at_safepoint_on_vm_thread();
1131 
1132   // If a full collection has happened, we should not continue. However we might
1133   // have ended up here as the Remark VM operation has been scheduled already.
1134   if (has_aborted()) {
1135     return;
1136   }
1137 
1138   G1Policy* policy = _g1h->policy();
1139   policy->record_concurrent_mark_remark_start();
1140 
1141   double start = os::elapsedTime();
1142 
1143   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1144 
1145   {
1146     GCTraceTime(Debug, gc, phases) debug("Finalize Marking", _gc_timer_cm);
1147     finalize_marking();
1148   }
1149 
1150   double mark_work_end = os::elapsedTime();
1151 
1152   bool const mark_finished = !has_overflown();
1153   if (mark_finished) {
1154     weak_refs_work(false /* clear_all_soft_refs */);
1155 
1156     SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1157     // We're done with marking.
1158     // This is the end of the marking cycle, we're expected all
1159     // threads to have SATB queues with active set to true.
1160     satb_mq_set.set_active_all_threads(false, /* new active value */
1161                                        true /* expected_active */);
1162 
1163     {
1164       GCTraceTime(Debug, gc, phases) debug("Flush Task Caches", _gc_timer_cm);
1165       flush_all_task_caches();
1166     }
1167 
1168     // Install newly created mark bitmap as "prev".
1169     swap_mark_bitmaps();
1170     {
1171       GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1172 
1173       uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) /
1174                                        G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread;
1175       uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity);
1176 
1177       G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers);
1178       log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap", cl.name(), num_workers, _g1h->num_regions());
1179       _g1h->workers()->run_task(&cl, num_workers);
1180 
1181       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1182                                       _g1h->num_regions(), cl.total_selected_for_rebuild());
1183     }
1184     {
1185       GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions", _gc_timer_cm);
1186       reclaim_empty_regions();
1187     }
1188 
1189     // Clean out dead classes
1190     if (ClassUnloadingWithConcurrentMark) {
1191       GCTraceTime(Debug, gc, phases) debug("Purge Metaspace", _gc_timer_cm);
1192       ClassLoaderDataGraph::purge();
1193     }
1194 
1195     _g1h->resize_heap_if_necessary();
1196 
1197     compute_new_sizes();
1198 
1199     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1200 
1201     assert(!restart_for_overflow(), "sanity");
1202     // Completely reset the marking state since marking completed
1203     reset_at_marking_complete();
1204   } else {
1205     // We overflowed.  Restart concurrent marking.
1206     _restart_for_overflow = true;
1207 
1208     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1209 
1210     // Clear the marking state because we will be restarting
1211     // marking due to overflowing the global mark stack.
1212     reset_marking_for_restart();
1213   }
1214 
1215   {
1216     GCTraceTime(Debug, gc, phases) debug("Report Object Count", _gc_timer_cm);
1217     report_object_count(mark_finished);
1218   }
1219 
1220   // Statistics
1221   double now = os::elapsedTime();
1222   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1223   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1224   _remark_times.add((now - start) * 1000.0);
1225 
1226   policy->record_concurrent_mark_remark_end();
1227 }
1228 
1229 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1230   // Per-region work during the Cleanup pause.
1231   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1232     G1CollectedHeap* _g1h;
1233     size_t _freed_bytes;
1234     FreeRegionList* _local_cleanup_list;
1235     uint _old_regions_removed;
1236     uint _humongous_regions_removed;
1237 
1238   public:
1239     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1240                                  FreeRegionList* local_cleanup_list) :
1241       _g1h(g1h),
1242       _freed_bytes(0),
1243       _local_cleanup_list(local_cleanup_list),
1244       _old_regions_removed(0),
1245       _humongous_regions_removed(0) { }
1246 
1247     size_t freed_bytes() { return _freed_bytes; }
1248     const uint old_regions_removed() { return _old_regions_removed; }
1249     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1250 
1251     bool do_heap_region(HeapRegion *hr) {
1252       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1253         _freed_bytes += hr->used();
1254         hr->set_containing_set(NULL);
1255         if (hr->is_humongous()) {
1256           _humongous_regions_removed++;
1257           _g1h->free_humongous_region(hr, _local_cleanup_list);
1258         } else {
1259           _old_regions_removed++;
1260           _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
1261         }
1262         hr->clear_cardtable();
1263         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1264         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1265       }
1266 
1267       return false;
1268     }
1269   };
1270 
1271   G1CollectedHeap* _g1h;
1272   FreeRegionList* _cleanup_list;
1273   HeapRegionClaimer _hrclaimer;
1274 
1275 public:
1276   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1277     AbstractGangTask("G1 Cleanup"),
1278     _g1h(g1h),
1279     _cleanup_list(cleanup_list),
1280     _hrclaimer(n_workers) {
1281   }
1282 
1283   void work(uint worker_id) {
1284     FreeRegionList local_cleanup_list("Local Cleanup List");
1285     G1ReclaimEmptyRegionsClosure cl(_g1h, &local_cleanup_list);
1286     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1287     assert(cl.is_complete(), "Shouldn't have aborted!");
1288 
1289     // Now update the old/humongous region sets
1290     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1291     {
1292       MutexLocker x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1293       _g1h->decrement_summary_bytes(cl.freed_bytes());
1294 
1295       _cleanup_list->add_ordered(&local_cleanup_list);
1296       assert(local_cleanup_list.is_empty(), "post-condition");
1297     }
1298   }
1299 };
1300 
1301 void G1ConcurrentMark::reclaim_empty_regions() {
1302   WorkGang* workers = _g1h->workers();
1303   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1304 
1305   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1306   workers->run_task(&cl);
1307 
1308   if (!empty_regions_list.is_empty()) {
1309     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1310     // Now print the empty regions list.
1311     G1HRPrinter* hrp = _g1h->hr_printer();
1312     if (hrp->is_active()) {
1313       FreeRegionListIterator iter(&empty_regions_list);
1314       while (iter.more_available()) {
1315         HeapRegion* hr = iter.get_next();
1316         hrp->cleanup(hr);
1317       }
1318     }
1319     // And actually make them available.
1320     _g1h->prepend_to_freelist(&empty_regions_list);
1321   }
1322 }
1323 
1324 void G1ConcurrentMark::compute_new_sizes() {
1325   MetaspaceGC::compute_new_size();
1326 
1327   // Cleanup will have freed any regions completely full of garbage.
1328   // Update the soft reference policy with the new heap occupancy.
1329   Universe::update_heap_info_at_gc();
1330 
1331   // We reclaimed old regions so we should calculate the sizes to make
1332   // sure we update the old gen/space data.
1333   _g1h->g1mm()->update_sizes();
1334 }
1335 
1336 void G1ConcurrentMark::cleanup() {
1337   assert_at_safepoint_on_vm_thread();
1338 
1339   // If a full collection has happened, we shouldn't do this.
1340   if (has_aborted()) {
1341     return;
1342   }
1343 
1344   G1Policy* policy = _g1h->policy();
1345   policy->record_concurrent_mark_cleanup_start();
1346 
1347   double start = os::elapsedTime();
1348 
1349   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1350 
1351   {
1352     GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1353     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1354     _g1h->heap_region_iterate(&cl);
1355   }
1356 
1357   if (log_is_enabled(Trace, gc, liveness)) {
1358     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1359     _g1h->heap_region_iterate(&cl);
1360   }
1361 
1362   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1363 
1364   // We need to make this be a "collection" so any collection pause that
1365   // races with it goes around and waits for Cleanup to finish.
1366   _g1h->increment_total_collections();
1367 
1368   // Local statistics
1369   double recent_cleanup_time = (os::elapsedTime() - start);
1370   _total_cleanup_time += recent_cleanup_time;
1371   _cleanup_times.add(recent_cleanup_time);
1372 
1373   {
1374     GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1375     policy->record_concurrent_mark_cleanup_end();
1376   }
1377 }
1378 
1379 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1380 // Uses the G1CMTask associated with a worker thread (for serial reference
1381 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1382 // trace referent objects.
1383 //
1384 // Using the G1CMTask and embedded local queues avoids having the worker
1385 // threads operating on the global mark stack. This reduces the risk
1386 // of overflowing the stack - which we would rather avoid at this late
1387 // state. Also using the tasks' local queues removes the potential
1388 // of the workers interfering with each other that could occur if
1389 // operating on the global stack.
1390 
1391 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1392   G1ConcurrentMark* _cm;
1393   G1CMTask*         _task;
1394   uint              _ref_counter_limit;
1395   uint              _ref_counter;
1396   bool              _is_serial;
1397 public:
1398   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1399     _cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval),
1400     _ref_counter(_ref_counter_limit), _is_serial(is_serial) {
1401     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1402   }
1403 
1404   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1405   virtual void do_oop(      oop* p) { do_oop_work(p); }
1406 
1407   template <class T> void do_oop_work(T* p) {
1408     if (_cm->has_overflown()) {
1409       return;
1410     }
1411     if (!_task->deal_with_reference(p)) {
1412       // We did not add anything to the mark bitmap (or mark stack), so there is
1413       // no point trying to drain it.
1414       return;
1415     }
1416     _ref_counter--;
1417 
1418     if (_ref_counter == 0) {
1419       // We have dealt with _ref_counter_limit references, pushing them
1420       // and objects reachable from them on to the local stack (and
1421       // possibly the global stack). Call G1CMTask::do_marking_step() to
1422       // process these entries.
1423       //
1424       // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1425       // there's nothing more to do (i.e. we're done with the entries that
1426       // were pushed as a result of the G1CMTask::deal_with_reference() calls
1427       // above) or we overflow.
1428       //
1429       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1430       // flag while there may still be some work to do. (See the comment at
1431       // the beginning of G1CMTask::do_marking_step() for those conditions -
1432       // one of which is reaching the specified time target.) It is only
1433       // when G1CMTask::do_marking_step() returns without setting the
1434       // has_aborted() flag that the marking step has completed.
1435       do {
1436         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1437         _task->do_marking_step(mark_step_duration_ms,
1438                                false      /* do_termination */,
1439                                _is_serial);
1440       } while (_task->has_aborted() && !_cm->has_overflown());
1441       _ref_counter = _ref_counter_limit;
1442     }
1443   }
1444 };
1445 
1446 // 'Drain' oop closure used by both serial and parallel reference processing.
1447 // Uses the G1CMTask associated with a given worker thread (for serial
1448 // reference processing the G1CMtask for worker 0 is used). Calls the
1449 // do_marking_step routine, with an unbelievably large timeout value,
1450 // to drain the marking data structures of the remaining entries
1451 // added by the 'keep alive' oop closure above.
1452 
1453 class G1CMDrainMarkingStackClosure : public VoidClosure {
1454   G1ConcurrentMark* _cm;
1455   G1CMTask*         _task;
1456   bool              _is_serial;
1457  public:
1458   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1459     _cm(cm), _task(task), _is_serial(is_serial) {
1460     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1461   }
1462 
1463   void do_void() {
1464     do {
1465       // We call G1CMTask::do_marking_step() to completely drain the local
1466       // and global marking stacks of entries pushed by the 'keep alive'
1467       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1468       //
1469       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1470       // if there's nothing more to do (i.e. we've completely drained the
1471       // entries that were pushed as a a result of applying the 'keep alive'
1472       // closure to the entries on the discovered ref lists) or we overflow
1473       // the global marking stack.
1474       //
1475       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1476       // flag while there may still be some work to do. (See the comment at
1477       // the beginning of G1CMTask::do_marking_step() for those conditions -
1478       // one of which is reaching the specified time target.) It is only
1479       // when G1CMTask::do_marking_step() returns without setting the
1480       // has_aborted() flag that the marking step has completed.
1481 
1482       _task->do_marking_step(1000000000.0 /* something very large */,
1483                              true         /* do_termination */,
1484                              _is_serial);
1485     } while (_task->has_aborted() && !_cm->has_overflown());
1486   }
1487 };
1488 
1489 // Implementation of AbstractRefProcTaskExecutor for parallel
1490 // reference processing at the end of G1 concurrent marking
1491 
1492 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1493 private:
1494   G1CollectedHeap*  _g1h;
1495   G1ConcurrentMark* _cm;
1496   WorkGang*         _workers;
1497   uint              _active_workers;
1498 
1499 public:
1500   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1501                           G1ConcurrentMark* cm,
1502                           WorkGang* workers,
1503                           uint n_workers) :
1504     _g1h(g1h), _cm(cm),
1505     _workers(workers), _active_workers(n_workers) { }
1506 
1507   virtual void execute(ProcessTask& task, uint ergo_workers);
1508 };
1509 
1510 class G1CMRefProcTaskProxy : public AbstractGangTask {
1511   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1512   ProcessTask&      _proc_task;
1513   G1CollectedHeap*  _g1h;
1514   G1ConcurrentMark* _cm;
1515 
1516 public:
1517   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1518                        G1CollectedHeap* g1h,
1519                        G1ConcurrentMark* cm) :
1520     AbstractGangTask("Process reference objects in parallel"),
1521     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1522     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1523     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1524   }
1525 
1526   virtual void work(uint worker_id) {
1527     ResourceMark rm;
1528     HandleMark hm;
1529     G1CMTask* task = _cm->task(worker_id);
1530     G1CMIsAliveClosure g1_is_alive(_g1h);
1531     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1532     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1533 
1534     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1535   }
1536 };
1537 
1538 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
1539   assert(_workers != NULL, "Need parallel worker threads.");
1540   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1541   assert(_workers->active_workers() >= ergo_workers,
1542          "Ergonomically chosen workers(%u) should be less than or equal to active workers(%u)",
1543          ergo_workers, _workers->active_workers());
1544 
1545   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1546 
1547   // We need to reset the concurrency level before each
1548   // proxy task execution, so that the termination protocol
1549   // and overflow handling in G1CMTask::do_marking_step() knows
1550   // how many workers to wait for.
1551   _cm->set_concurrency(ergo_workers);
1552   _workers->run_task(&proc_task_proxy, ergo_workers);
1553 }
1554 
1555 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1556   ResourceMark rm;
1557   HandleMark   hm;
1558 
1559   // Is alive closure.
1560   G1CMIsAliveClosure g1_is_alive(_g1h);
1561 
1562   // Inner scope to exclude the cleaning of the string table
1563   // from the displayed time.
1564   {
1565     GCTraceTime(Debug, gc, phases) debug("Reference Processing", _gc_timer_cm);
1566 
1567     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1568 
1569     // See the comment in G1CollectedHeap::ref_processing_init()
1570     // about how reference processing currently works in G1.
1571 
1572     // Set the soft reference policy
1573     rp->setup_policy(clear_all_soft_refs);
1574     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1575 
1576     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1577     // in serial reference processing. Note these closures are also
1578     // used for serially processing (by the the current thread) the
1579     // JNI references during parallel reference processing.
1580     //
1581     // These closures do not need to synchronize with the worker
1582     // threads involved in parallel reference processing as these
1583     // instances are executed serially by the current thread (e.g.
1584     // reference processing is not multi-threaded and is thus
1585     // performed by the current thread instead of a gang worker).
1586     //
1587     // The gang tasks involved in parallel reference processing create
1588     // their own instances of these closures, which do their own
1589     // synchronization among themselves.
1590     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1591     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1592 
1593     // We need at least one active thread. If reference processing
1594     // is not multi-threaded we use the current (VMThread) thread,
1595     // otherwise we use the work gang from the G1CollectedHeap and
1596     // we utilize all the worker threads we can.
1597     bool processing_is_mt = rp->processing_is_mt();
1598     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1599     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1600 
1601     // Parallel processing task executor.
1602     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1603                                               _g1h->workers(), active_workers);
1604     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1605 
1606     // Set the concurrency level. The phase was already set prior to
1607     // executing the remark task.
1608     set_concurrency(active_workers);
1609 
1610     // Set the degree of MT processing here.  If the discovery was done MT,
1611     // the number of threads involved during discovery could differ from
1612     // the number of active workers.  This is OK as long as the discovered
1613     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1614     rp->set_active_mt_degree(active_workers);
1615 
1616     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
1617 
1618     // Process the weak references.
1619     const ReferenceProcessorStats& stats =
1620         rp->process_discovered_references(&g1_is_alive,
1621                                           &g1_keep_alive,
1622                                           &g1_drain_mark_stack,
1623                                           executor,
1624                                           &pt);
1625     _gc_tracer_cm->report_gc_reference_stats(stats);
1626     pt.print_all_references();
1627 
1628     // The do_oop work routines of the keep_alive and drain_marking_stack
1629     // oop closures will set the has_overflown flag if we overflow the
1630     // global marking stack.
1631 
1632     assert(has_overflown() || _global_mark_stack.is_empty(),
1633            "Mark stack should be empty (unless it has overflown)");
1634 
1635     assert(rp->num_queues() == active_workers, "why not");
1636 
1637     rp->verify_no_references_recorded();
1638     assert(!rp->discovery_enabled(), "Post condition");
1639   }
1640 
1641   if (has_overflown()) {
1642     // We can not trust g1_is_alive and the contents of the heap if the marking stack
1643     // overflowed while processing references. Exit the VM.
1644     fatal("Overflow during reference processing, can not continue. Please "
1645           "increase MarkStackSizeMax (current value: " SIZE_FORMAT ") and "
1646           "restart.", MarkStackSizeMax);
1647     return;
1648   }
1649 
1650   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1651 
1652   {
1653     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1654     WeakProcessor::weak_oops_do(_g1h->workers(), &g1_is_alive, &do_nothing_cl, 1);
1655   }
1656 
1657   // Unload Klasses, String, Code Cache, etc.
1658   if (ClassUnloadingWithConcurrentMark) {
1659     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1660     bool purged_classes = SystemDictionary::do_unloading(_gc_timer_cm);
1661     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1662   } else if (StringDedup::is_enabled()) {
1663     GCTraceTime(Debug, gc, phases) debug("String Deduplication", _gc_timer_cm);
1664     _g1h->string_dedup_cleaning(&g1_is_alive, NULL);
1665   }
1666 }
1667 
1668 class G1PrecleanYieldClosure : public YieldClosure {
1669   G1ConcurrentMark* _cm;
1670 
1671 public:
1672   G1PrecleanYieldClosure(G1ConcurrentMark* cm) : _cm(cm) { }
1673 
1674   virtual bool should_return() {
1675     return _cm->has_aborted();
1676   }
1677 
1678   virtual bool should_return_fine_grain() {
1679     _cm->do_yield_check();
1680     return _cm->has_aborted();
1681   }
1682 };
1683 
1684 void G1ConcurrentMark::preclean() {
1685   assert(G1UseReferencePrecleaning, "Precleaning must be enabled.");
1686 
1687   SuspendibleThreadSetJoiner joiner;
1688 
1689   G1CMKeepAliveAndDrainClosure keep_alive(this, task(0), true /* is_serial */);
1690   G1CMDrainMarkingStackClosure drain_mark_stack(this, task(0), true /* is_serial */);
1691 
1692   set_concurrency_and_phase(1, true);
1693 
1694   G1PrecleanYieldClosure yield_cl(this);
1695 
1696   ReferenceProcessor* rp = _g1h->ref_processor_cm();
1697   // Precleaning is single threaded. Temporarily disable MT discovery.
1698   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
1699   rp->preclean_discovered_references(rp->is_alive_non_header(),
1700                                      &keep_alive,
1701                                      &drain_mark_stack,
1702                                      &yield_cl,
1703                                      _gc_timer_cm);
1704 }
1705 
1706 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1707 // the prev bitmap determining liveness.
1708 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1709   G1CollectedHeap* _g1h;
1710 public:
1711   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1712 
1713   bool do_object_b(oop obj) {
1714     HeapWord* addr = (HeapWord*)obj;
1715     return addr != NULL &&
1716            (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_dead(obj));
1717   }
1718 };
1719 
1720 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1721   // Depending on the completion of the marking liveness needs to be determined
1722   // using either the next or prev bitmap.
1723   if (mark_completed) {
1724     G1ObjectCountIsAliveClosure is_alive(_g1h);
1725     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1726   } else {
1727     G1CMIsAliveClosure is_alive(_g1h);
1728     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1729   }
1730 }
1731 
1732 
1733 void G1ConcurrentMark::swap_mark_bitmaps() {
1734   G1CMBitMap* temp = _prev_mark_bitmap;
1735   _prev_mark_bitmap = _next_mark_bitmap;
1736   _next_mark_bitmap = temp;
1737   _g1h->collector_state()->set_clearing_next_bitmap(true);
1738 }
1739 
1740 // Closure for marking entries in SATB buffers.
1741 class G1CMSATBBufferClosure : public SATBBufferClosure {
1742 private:
1743   G1CMTask* _task;
1744   G1CollectedHeap* _g1h;
1745 
1746   // This is very similar to G1CMTask::deal_with_reference, but with
1747   // more relaxed requirements for the argument, so this must be more
1748   // circumspect about treating the argument as an object.
1749   void do_entry(void* entry) const {
1750     _task->increment_refs_reached();
1751     oop const obj = static_cast<oop>(entry);
1752     _task->make_reference_grey(obj);
1753   }
1754 
1755 public:
1756   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1757     : _task(task), _g1h(g1h) { }
1758 
1759   virtual void do_buffer(void** buffer, size_t size) {
1760     for (size_t i = 0; i < size; ++i) {
1761       do_entry(buffer[i]);
1762     }
1763   }
1764 };
1765 
1766 class G1RemarkThreadsClosure : public ThreadClosure {
1767   G1CMSATBBufferClosure _cm_satb_cl;
1768   G1CMOopClosure _cm_cl;
1769   MarkingCodeBlobClosure _code_cl;
1770   uintx _claim_token;
1771 
1772  public:
1773   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1774     _cm_satb_cl(task, g1h),
1775     _cm_cl(g1h, task),
1776     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1777     _claim_token(Threads::thread_claim_token()) {}
1778 
1779   void do_thread(Thread* thread) {
1780     if (thread->claim_threads_do(true, _claim_token)) {
1781       SATBMarkQueue& queue = G1ThreadLocalData::satb_mark_queue(thread);
1782       queue.apply_closure_and_empty(&_cm_satb_cl);
1783       if (thread->is_Java_thread()) {
1784         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1785         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1786         // * Alive if on the stack of an executing method
1787         // * Weakly reachable otherwise
1788         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1789         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1790         JavaThread* jt = (JavaThread*)thread;
1791         jt->nmethods_do(&_code_cl);
1792       }
1793     }
1794   }
1795 };
1796 
1797 class G1CMRemarkTask : public AbstractGangTask {
1798   G1ConcurrentMark* _cm;
1799 public:
1800   void work(uint worker_id) {
1801     G1CMTask* task = _cm->task(worker_id);
1802     task->record_start_time();
1803     {
1804       ResourceMark rm;
1805       HandleMark hm;
1806 
1807       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1808       Threads::threads_do(&threads_f);
1809     }
1810 
1811     do {
1812       task->do_marking_step(1000000000.0 /* something very large */,
1813                             true         /* do_termination       */,
1814                             false        /* is_serial            */);
1815     } while (task->has_aborted() && !_cm->has_overflown());
1816     // If we overflow, then we do not want to restart. We instead
1817     // want to abort remark and do concurrent marking again.
1818     task->record_end_time();
1819   }
1820 
1821   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1822     AbstractGangTask("Par Remark"), _cm(cm) {
1823     _cm->terminator()->reset_for_reuse(active_workers);
1824   }
1825 };
1826 
1827 void G1ConcurrentMark::finalize_marking() {
1828   ResourceMark rm;
1829   HandleMark   hm;
1830 
1831   _g1h->ensure_parsability(false);
1832 
1833   // this is remark, so we'll use up all active threads
1834   uint active_workers = _g1h->workers()->active_workers();
1835   set_concurrency_and_phase(active_workers, false /* concurrent */);
1836   // Leave _parallel_marking_threads at it's
1837   // value originally calculated in the G1ConcurrentMark
1838   // constructor and pass values of the active workers
1839   // through the gang in the task.
1840 
1841   {
1842     StrongRootsScope srs(active_workers);
1843 
1844     G1CMRemarkTask remarkTask(this, active_workers);
1845     // We will start all available threads, even if we decide that the
1846     // active_workers will be fewer. The extra ones will just bail out
1847     // immediately.
1848     _g1h->workers()->run_task(&remarkTask);
1849   }
1850 
1851   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1852   guarantee(has_overflown() ||
1853             satb_mq_set.completed_buffers_num() == 0,
1854             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1855             BOOL_TO_STR(has_overflown()),
1856             satb_mq_set.completed_buffers_num());
1857 
1858   print_stats();
1859 }
1860 
1861 void G1ConcurrentMark::flush_all_task_caches() {
1862   size_t hits = 0;
1863   size_t misses = 0;
1864   for (uint i = 0; i < _max_num_tasks; i++) {
1865     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1866     hits += stats.first;
1867     misses += stats.second;
1868   }
1869   size_t sum = hits + misses;
1870   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1871                        hits, misses, percent_of(hits, sum));
1872 }
1873 
1874 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1875   _prev_mark_bitmap->clear_range(mr);
1876 }
1877 
1878 HeapRegion*
1879 G1ConcurrentMark::claim_region(uint worker_id) {
1880   // "checkpoint" the finger
1881   HeapWord* finger = _finger;
1882 
1883   while (finger < _heap.end()) {
1884     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1885 
1886     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1887     // Make sure that the reads below do not float before loading curr_region.
1888     OrderAccess::loadload();
1889     // Above heap_region_containing may return NULL as we always scan claim
1890     // until the end of the heap. In this case, just jump to the next region.
1891     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1892 
1893     // Is the gap between reading the finger and doing the CAS too long?
1894     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1895     if (res == finger && curr_region != NULL) {
1896       // we succeeded
1897       HeapWord*   bottom        = curr_region->bottom();
1898       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1899 
1900       // notice that _finger == end cannot be guaranteed here since,
1901       // someone else might have moved the finger even further
1902       assert(_finger >= end, "the finger should have moved forward");
1903 
1904       if (limit > bottom) {
1905         return curr_region;
1906       } else {
1907         assert(limit == bottom,
1908                "the region limit should be at bottom");
1909         // we return NULL and the caller should try calling
1910         // claim_region() again.
1911         return NULL;
1912       }
1913     } else {
1914       assert(_finger > finger, "the finger should have moved forward");
1915       // read it again
1916       finger = _finger;
1917     }
1918   }
1919 
1920   return NULL;
1921 }
1922 
1923 #ifndef PRODUCT
1924 class VerifyNoCSetOops {
1925   G1CollectedHeap* _g1h;
1926   const char* _phase;
1927   int _info;
1928 
1929 public:
1930   VerifyNoCSetOops(const char* phase, int info = -1) :
1931     _g1h(G1CollectedHeap::heap()),
1932     _phase(phase),
1933     _info(info)
1934   { }
1935 
1936   void operator()(G1TaskQueueEntry task_entry) const {
1937     if (task_entry.is_array_slice()) {
1938       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1939       return;
1940     }
1941     guarantee(oopDesc::is_oop(task_entry.obj()),
1942               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1943               p2i(task_entry.obj()), _phase, _info);
1944     HeapRegion* r = _g1h->heap_region_containing(task_entry.obj());
1945     guarantee(!(r->in_collection_set() || r->has_index_in_opt_cset()),
1946               "obj " PTR_FORMAT " from %s (%d) in region %u in (optional) collection set",
1947               p2i(task_entry.obj()), _phase, _info, r->hrm_index());
1948   }
1949 };
1950 
1951 void G1ConcurrentMark::verify_no_collection_set_oops() {
1952   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1953   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1954     return;
1955   }
1956 
1957   // Verify entries on the global mark stack
1958   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1959 
1960   // Verify entries on the task queues
1961   for (uint i = 0; i < _max_num_tasks; ++i) {
1962     G1CMTaskQueue* queue = _task_queues->queue(i);
1963     queue->iterate(VerifyNoCSetOops("Queue", i));
1964   }
1965 
1966   // Verify the global finger
1967   HeapWord* global_finger = finger();
1968   if (global_finger != NULL && global_finger < _heap.end()) {
1969     // Since we always iterate over all regions, we might get a NULL HeapRegion
1970     // here.
1971     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1972     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1973               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1974               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1975   }
1976 
1977   // Verify the task fingers
1978   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1979   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1980     G1CMTask* task = _tasks[i];
1981     HeapWord* task_finger = task->finger();
1982     if (task_finger != NULL && task_finger < _heap.end()) {
1983       // See above note on the global finger verification.
1984       HeapRegion* r = _g1h->heap_region_containing(task_finger);
1985       guarantee(r == NULL || task_finger == r->bottom() ||
1986                 !r->in_collection_set() || !r->has_index_in_opt_cset(),
1987                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1988                 p2i(task_finger), HR_FORMAT_PARAMS(r));
1989     }
1990   }
1991 }
1992 #endif // PRODUCT
1993 
1994 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1995   _g1h->rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1996 }
1997 
1998 void G1ConcurrentMark::print_stats() {
1999   if (!log_is_enabled(Debug, gc, stats)) {
2000     return;
2001   }
2002   log_debug(gc, stats)("---------------------------------------------------------------------");
2003   for (size_t i = 0; i < _num_active_tasks; ++i) {
2004     _tasks[i]->print_stats();
2005     log_debug(gc, stats)("---------------------------------------------------------------------");
2006   }
2007 }
2008 
2009 void G1ConcurrentMark::concurrent_cycle_abort() {
2010   if (!cm_thread()->during_cycle() || _has_aborted) {
2011     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2012     return;
2013   }
2014 
2015   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2016   // concurrent bitmap clearing.
2017   {
2018     GCTraceTime(Debug, gc) debug("Clear Next Bitmap");
2019     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
2020   }
2021   // Note we cannot clear the previous marking bitmap here
2022   // since VerifyDuringGC verifies the objects marked during
2023   // a full GC against the previous bitmap.
2024 
2025   // Empty mark stack
2026   reset_marking_for_restart();
2027   for (uint i = 0; i < _max_num_tasks; ++i) {
2028     _tasks[i]->clear_region_fields();
2029   }
2030   _first_overflow_barrier_sync.abort();
2031   _second_overflow_barrier_sync.abort();
2032   _has_aborted = true;
2033 
2034   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2035   satb_mq_set.abandon_partial_marking();
2036   // This can be called either during or outside marking, we'll read
2037   // the expected_active value from the SATB queue set.
2038   satb_mq_set.set_active_all_threads(
2039                                  false, /* new active value */
2040                                  satb_mq_set.is_active() /* expected_active */);
2041 }
2042 
2043 static void print_ms_time_info(const char* prefix, const char* name,
2044                                NumberSeq& ns) {
2045   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2046                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2047   if (ns.num() > 0) {
2048     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2049                            prefix, ns.sd(), ns.maximum());
2050   }
2051 }
2052 
2053 void G1ConcurrentMark::print_summary_info() {
2054   Log(gc, marking) log;
2055   if (!log.is_trace()) {
2056     return;
2057   }
2058 
2059   log.trace(" Concurrent marking:");
2060   print_ms_time_info("  ", "init marks", _init_times);
2061   print_ms_time_info("  ", "remarks", _remark_times);
2062   {
2063     print_ms_time_info("     ", "final marks", _remark_mark_times);
2064     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2065 
2066   }
2067   print_ms_time_info("  ", "cleanups", _cleanup_times);
2068   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2069             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2070   log.trace("  Total stop_world time = %8.2f s.",
2071             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2072   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2073             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2074 }
2075 
2076 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2077   _concurrent_workers->print_worker_threads_on(st);
2078 }
2079 
2080 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2081   _concurrent_workers->threads_do(tc);
2082 }
2083 
2084 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2085   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2086                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2087   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2088   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2089 }
2090 
2091 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2092   ReferenceProcessor* result = g1h->ref_processor_cm();
2093   assert(result != NULL, "CM reference processor should not be NULL");
2094   return result;
2095 }
2096 
2097 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2098                                G1CMTask* task)
2099   : MetadataVisitingOopIterateClosure(get_cm_oop_closure_ref_processor(g1h)),
2100     _g1h(g1h), _task(task)
2101 { }
2102 
2103 void G1CMTask::setup_for_region(HeapRegion* hr) {
2104   assert(hr != NULL,
2105         "claim_region() should have filtered out NULL regions");
2106   _curr_region  = hr;
2107   _finger       = hr->bottom();
2108   update_region_limit();
2109 }
2110 
2111 void G1CMTask::update_region_limit() {
2112   HeapRegion* hr            = _curr_region;
2113   HeapWord* bottom          = hr->bottom();
2114   HeapWord* limit           = hr->next_top_at_mark_start();
2115 
2116   if (limit == bottom) {
2117     // The region was collected underneath our feet.
2118     // We set the finger to bottom to ensure that the bitmap
2119     // iteration that will follow this will not do anything.
2120     // (this is not a condition that holds when we set the region up,
2121     // as the region is not supposed to be empty in the first place)
2122     _finger = bottom;
2123   } else if (limit >= _region_limit) {
2124     assert(limit >= _finger, "peace of mind");
2125   } else {
2126     assert(limit < _region_limit, "only way to get here");
2127     // This can happen under some pretty unusual circumstances.  An
2128     // evacuation pause empties the region underneath our feet (NTAMS
2129     // at bottom). We then do some allocation in the region (NTAMS
2130     // stays at bottom), followed by the region being used as a GC
2131     // alloc region (NTAMS will move to top() and the objects
2132     // originally below it will be grayed). All objects now marked in
2133     // the region are explicitly grayed, if below the global finger,
2134     // and we do not need in fact to scan anything else. So, we simply
2135     // set _finger to be limit to ensure that the bitmap iteration
2136     // doesn't do anything.
2137     _finger = limit;
2138   }
2139 
2140   _region_limit = limit;
2141 }
2142 
2143 void G1CMTask::giveup_current_region() {
2144   assert(_curr_region != NULL, "invariant");
2145   clear_region_fields();
2146 }
2147 
2148 void G1CMTask::clear_region_fields() {
2149   // Values for these three fields that indicate that we're not
2150   // holding on to a region.
2151   _curr_region   = NULL;
2152   _finger        = NULL;
2153   _region_limit  = NULL;
2154 }
2155 
2156 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2157   if (cm_oop_closure == NULL) {
2158     assert(_cm_oop_closure != NULL, "invariant");
2159   } else {
2160     assert(_cm_oop_closure == NULL, "invariant");
2161   }
2162   _cm_oop_closure = cm_oop_closure;
2163 }
2164 
2165 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2166   guarantee(next_mark_bitmap != NULL, "invariant");
2167   _next_mark_bitmap              = next_mark_bitmap;
2168   clear_region_fields();
2169 
2170   _calls                         = 0;
2171   _elapsed_time_ms               = 0.0;
2172   _termination_time_ms           = 0.0;
2173   _termination_start_time_ms     = 0.0;
2174 
2175   _mark_stats_cache.reset();
2176 }
2177 
2178 bool G1CMTask::should_exit_termination() {
2179   if (!regular_clock_call()) {
2180     return true;
2181   }
2182 
2183   // This is called when we are in the termination protocol. We should
2184   // quit if, for some reason, this task wants to abort or the global
2185   // stack is not empty (this means that we can get work from it).
2186   return !_cm->mark_stack_empty() || has_aborted();
2187 }
2188 
2189 void G1CMTask::reached_limit() {
2190   assert(_words_scanned >= _words_scanned_limit ||
2191          _refs_reached >= _refs_reached_limit ,
2192          "shouldn't have been called otherwise");
2193   abort_marking_if_regular_check_fail();
2194 }
2195 
2196 bool G1CMTask::regular_clock_call() {
2197   if (has_aborted()) {
2198     return false;
2199   }
2200 
2201   // First, we need to recalculate the words scanned and refs reached
2202   // limits for the next clock call.
2203   recalculate_limits();
2204 
2205   // During the regular clock call we do the following
2206 
2207   // (1) If an overflow has been flagged, then we abort.
2208   if (_cm->has_overflown()) {
2209     return false;
2210   }
2211 
2212   // If we are not concurrent (i.e. we're doing remark) we don't need
2213   // to check anything else. The other steps are only needed during
2214   // the concurrent marking phase.
2215   if (!_cm->concurrent()) {
2216     return true;
2217   }
2218 
2219   // (2) If marking has been aborted for Full GC, then we also abort.
2220   if (_cm->has_aborted()) {
2221     return false;
2222   }
2223 
2224   double curr_time_ms = os::elapsedVTime() * 1000.0;
2225 
2226   // (4) We check whether we should yield. If we have to, then we abort.
2227   if (SuspendibleThreadSet::should_yield()) {
2228     // We should yield. To do this we abort the task. The caller is
2229     // responsible for yielding.
2230     return false;
2231   }
2232 
2233   // (5) We check whether we've reached our time quota. If we have,
2234   // then we abort.
2235   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2236   if (elapsed_time_ms > _time_target_ms) {
2237     _has_timed_out = true;
2238     return false;
2239   }
2240 
2241   // (6) Finally, we check whether there are enough completed STAB
2242   // buffers available for processing. If there are, we abort.
2243   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2244   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2245     // we do need to process SATB buffers, we'll abort and restart
2246     // the marking task to do so
2247     return false;
2248   }
2249   return true;
2250 }
2251 
2252 void G1CMTask::recalculate_limits() {
2253   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2254   _words_scanned_limit      = _real_words_scanned_limit;
2255 
2256   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2257   _refs_reached_limit       = _real_refs_reached_limit;
2258 }
2259 
2260 void G1CMTask::decrease_limits() {
2261   // This is called when we believe that we're going to do an infrequent
2262   // operation which will increase the per byte scanned cost (i.e. move
2263   // entries to/from the global stack). It basically tries to decrease the
2264   // scanning limit so that the clock is called earlier.
2265 
2266   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2267   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2268 }
2269 
2270 void G1CMTask::move_entries_to_global_stack() {
2271   // Local array where we'll store the entries that will be popped
2272   // from the local queue.
2273   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2274 
2275   size_t n = 0;
2276   G1TaskQueueEntry task_entry;
2277   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2278     buffer[n] = task_entry;
2279     ++n;
2280   }
2281   if (n < G1CMMarkStack::EntriesPerChunk) {
2282     buffer[n] = G1TaskQueueEntry();
2283   }
2284 
2285   if (n > 0) {
2286     if (!_cm->mark_stack_push(buffer)) {
2287       set_has_aborted();
2288     }
2289   }
2290 
2291   // This operation was quite expensive, so decrease the limits.
2292   decrease_limits();
2293 }
2294 
2295 bool G1CMTask::get_entries_from_global_stack() {
2296   // Local array where we'll store the entries that will be popped
2297   // from the global stack.
2298   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2299 
2300   if (!_cm->mark_stack_pop(buffer)) {
2301     return false;
2302   }
2303 
2304   // We did actually pop at least one entry.
2305   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2306     G1TaskQueueEntry task_entry = buffer[i];
2307     if (task_entry.is_null()) {
2308       break;
2309     }
2310     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2311     bool success = _task_queue->push(task_entry);
2312     // We only call this when the local queue is empty or under a
2313     // given target limit. So, we do not expect this push to fail.
2314     assert(success, "invariant");
2315   }
2316 
2317   // This operation was quite expensive, so decrease the limits
2318   decrease_limits();
2319   return true;
2320 }
2321 
2322 void G1CMTask::drain_local_queue(bool partially) {
2323   if (has_aborted()) {
2324     return;
2325   }
2326 
2327   // Decide what the target size is, depending whether we're going to
2328   // drain it partially (so that other tasks can steal if they run out
2329   // of things to do) or totally (at the very end).
2330   size_t target_size;
2331   if (partially) {
2332     target_size = MIN2((size_t)_task_queue->max_elems()/3, (size_t)GCDrainStackTargetSize);
2333   } else {
2334     target_size = 0;
2335   }
2336 
2337   if (_task_queue->size() > target_size) {
2338     G1TaskQueueEntry entry;
2339     bool ret = _task_queue->pop_local(entry);
2340     while (ret) {
2341       scan_task_entry(entry);
2342       if (_task_queue->size() <= target_size || has_aborted()) {
2343         ret = false;
2344       } else {
2345         ret = _task_queue->pop_local(entry);
2346       }
2347     }
2348   }
2349 }
2350 
2351 void G1CMTask::drain_global_stack(bool partially) {
2352   if (has_aborted()) {
2353     return;
2354   }
2355 
2356   // We have a policy to drain the local queue before we attempt to
2357   // drain the global stack.
2358   assert(partially || _task_queue->size() == 0, "invariant");
2359 
2360   // Decide what the target size is, depending whether we're going to
2361   // drain it partially (so that other tasks can steal if they run out
2362   // of things to do) or totally (at the very end).
2363   // Notice that when draining the global mark stack partially, due to the racyness
2364   // of the mark stack size update we might in fact drop below the target. But,
2365   // this is not a problem.
2366   // In case of total draining, we simply process until the global mark stack is
2367   // totally empty, disregarding the size counter.
2368   if (partially) {
2369     size_t const target_size = _cm->partial_mark_stack_size_target();
2370     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2371       if (get_entries_from_global_stack()) {
2372         drain_local_queue(partially);
2373       }
2374     }
2375   } else {
2376     while (!has_aborted() && get_entries_from_global_stack()) {
2377       drain_local_queue(partially);
2378     }
2379   }
2380 }
2381 
2382 // SATB Queue has several assumptions on whether to call the par or
2383 // non-par versions of the methods. this is why some of the code is
2384 // replicated. We should really get rid of the single-threaded version
2385 // of the code to simplify things.
2386 void G1CMTask::drain_satb_buffers() {
2387   if (has_aborted()) {
2388     return;
2389   }
2390 
2391   // We set this so that the regular clock knows that we're in the
2392   // middle of draining buffers and doesn't set the abort flag when it
2393   // notices that SATB buffers are available for draining. It'd be
2394   // very counter productive if it did that. :-)
2395   _draining_satb_buffers = true;
2396 
2397   G1CMSATBBufferClosure satb_cl(this, _g1h);
2398   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2399 
2400   // This keeps claiming and applying the closure to completed buffers
2401   // until we run out of buffers or we need to abort.
2402   while (!has_aborted() &&
2403          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2404     abort_marking_if_regular_check_fail();
2405   }
2406 
2407   _draining_satb_buffers = false;
2408 
2409   assert(has_aborted() ||
2410          _cm->concurrent() ||
2411          satb_mq_set.completed_buffers_num() == 0, "invariant");
2412 
2413   // again, this was a potentially expensive operation, decrease the
2414   // limits to get the regular clock call early
2415   decrease_limits();
2416 }
2417 
2418 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2419   _mark_stats_cache.reset(region_idx);
2420 }
2421 
2422 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2423   return _mark_stats_cache.evict_all();
2424 }
2425 
2426 void G1CMTask::print_stats() {
2427   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2428   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2429                        _elapsed_time_ms, _termination_time_ms);
2430   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2431                        _step_times_ms.num(),
2432                        _step_times_ms.avg(),
2433                        _step_times_ms.sd(),
2434                        _step_times_ms.maximum(),
2435                        _step_times_ms.sum());
2436   size_t const hits = _mark_stats_cache.hits();
2437   size_t const misses = _mark_stats_cache.misses();
2438   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2439                        hits, misses, percent_of(hits, hits + misses));
2440 }
2441 
2442 bool G1ConcurrentMark::try_stealing(uint worker_id, G1TaskQueueEntry& task_entry) {
2443   return _task_queues->steal(worker_id, task_entry);
2444 }
2445 
2446 /*****************************************************************************
2447 
2448     The do_marking_step(time_target_ms, ...) method is the building
2449     block of the parallel marking framework. It can be called in parallel
2450     with other invocations of do_marking_step() on different tasks
2451     (but only one per task, obviously) and concurrently with the
2452     mutator threads, or during remark, hence it eliminates the need
2453     for two versions of the code. When called during remark, it will
2454     pick up from where the task left off during the concurrent marking
2455     phase. Interestingly, tasks are also claimable during evacuation
2456     pauses too, since do_marking_step() ensures that it aborts before
2457     it needs to yield.
2458 
2459     The data structures that it uses to do marking work are the
2460     following:
2461 
2462       (1) Marking Bitmap. If there are gray objects that appear only
2463       on the bitmap (this happens either when dealing with an overflow
2464       or when the initial marking phase has simply marked the roots
2465       and didn't push them on the stack), then tasks claim heap
2466       regions whose bitmap they then scan to find gray objects. A
2467       global finger indicates where the end of the last claimed region
2468       is. A local finger indicates how far into the region a task has
2469       scanned. The two fingers are used to determine how to gray an
2470       object (i.e. whether simply marking it is OK, as it will be
2471       visited by a task in the future, or whether it needs to be also
2472       pushed on a stack).
2473 
2474       (2) Local Queue. The local queue of the task which is accessed
2475       reasonably efficiently by the task. Other tasks can steal from
2476       it when they run out of work. Throughout the marking phase, a
2477       task attempts to keep its local queue short but not totally
2478       empty, so that entries are available for stealing by other
2479       tasks. Only when there is no more work, a task will totally
2480       drain its local queue.
2481 
2482       (3) Global Mark Stack. This handles local queue overflow. During
2483       marking only sets of entries are moved between it and the local
2484       queues, as access to it requires a mutex and more fine-grain
2485       interaction with it which might cause contention. If it
2486       overflows, then the marking phase should restart and iterate
2487       over the bitmap to identify gray objects. Throughout the marking
2488       phase, tasks attempt to keep the global mark stack at a small
2489       length but not totally empty, so that entries are available for
2490       popping by other tasks. Only when there is no more work, tasks
2491       will totally drain the global mark stack.
2492 
2493       (4) SATB Buffer Queue. This is where completed SATB buffers are
2494       made available. Buffers are regularly removed from this queue
2495       and scanned for roots, so that the queue doesn't get too
2496       long. During remark, all completed buffers are processed, as
2497       well as the filled in parts of any uncompleted buffers.
2498 
2499     The do_marking_step() method tries to abort when the time target
2500     has been reached. There are a few other cases when the
2501     do_marking_step() method also aborts:
2502 
2503       (1) When the marking phase has been aborted (after a Full GC).
2504 
2505       (2) When a global overflow (on the global stack) has been
2506       triggered. Before the task aborts, it will actually sync up with
2507       the other tasks to ensure that all the marking data structures
2508       (local queues, stacks, fingers etc.)  are re-initialized so that
2509       when do_marking_step() completes, the marking phase can
2510       immediately restart.
2511 
2512       (3) When enough completed SATB buffers are available. The
2513       do_marking_step() method only tries to drain SATB buffers right
2514       at the beginning. So, if enough buffers are available, the
2515       marking step aborts and the SATB buffers are processed at
2516       the beginning of the next invocation.
2517 
2518       (4) To yield. when we have to yield then we abort and yield
2519       right at the end of do_marking_step(). This saves us from a lot
2520       of hassle as, by yielding we might allow a Full GC. If this
2521       happens then objects will be compacted underneath our feet, the
2522       heap might shrink, etc. We save checking for this by just
2523       aborting and doing the yield right at the end.
2524 
2525     From the above it follows that the do_marking_step() method should
2526     be called in a loop (or, otherwise, regularly) until it completes.
2527 
2528     If a marking step completes without its has_aborted() flag being
2529     true, it means it has completed the current marking phase (and
2530     also all other marking tasks have done so and have all synced up).
2531 
2532     A method called regular_clock_call() is invoked "regularly" (in
2533     sub ms intervals) throughout marking. It is this clock method that
2534     checks all the abort conditions which were mentioned above and
2535     decides when the task should abort. A work-based scheme is used to
2536     trigger this clock method: when the number of object words the
2537     marking phase has scanned or the number of references the marking
2538     phase has visited reach a given limit. Additional invocations to
2539     the method clock have been planted in a few other strategic places
2540     too. The initial reason for the clock method was to avoid calling
2541     vtime too regularly, as it is quite expensive. So, once it was in
2542     place, it was natural to piggy-back all the other conditions on it
2543     too and not constantly check them throughout the code.
2544 
2545     If do_termination is true then do_marking_step will enter its
2546     termination protocol.
2547 
2548     The value of is_serial must be true when do_marking_step is being
2549     called serially (i.e. by the VMThread) and do_marking_step should
2550     skip any synchronization in the termination and overflow code.
2551     Examples include the serial remark code and the serial reference
2552     processing closures.
2553 
2554     The value of is_serial must be false when do_marking_step is
2555     being called by any of the worker threads in a work gang.
2556     Examples include the concurrent marking code (CMMarkingTask),
2557     the MT remark code, and the MT reference processing closures.
2558 
2559  *****************************************************************************/
2560 
2561 void G1CMTask::do_marking_step(double time_target_ms,
2562                                bool do_termination,
2563                                bool is_serial) {
2564   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2565 
2566   _start_time_ms = os::elapsedVTime() * 1000.0;
2567 
2568   // If do_stealing is true then do_marking_step will attempt to
2569   // steal work from the other G1CMTasks. It only makes sense to
2570   // enable stealing when the termination protocol is enabled
2571   // and do_marking_step() is not being called serially.
2572   bool do_stealing = do_termination && !is_serial;
2573 
2574   double diff_prediction_ms = _g1h->policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2575   _time_target_ms = time_target_ms - diff_prediction_ms;
2576 
2577   // set up the variables that are used in the work-based scheme to
2578   // call the regular clock method
2579   _words_scanned = 0;
2580   _refs_reached  = 0;
2581   recalculate_limits();
2582 
2583   // clear all flags
2584   clear_has_aborted();
2585   _has_timed_out = false;
2586   _draining_satb_buffers = false;
2587 
2588   ++_calls;
2589 
2590   // Set up the bitmap and oop closures. Anything that uses them is
2591   // eventually called from this method, so it is OK to allocate these
2592   // statically.
2593   G1CMBitMapClosure bitmap_closure(this, _cm);
2594   G1CMOopClosure cm_oop_closure(_g1h, this);
2595   set_cm_oop_closure(&cm_oop_closure);
2596 
2597   if (_cm->has_overflown()) {
2598     // This can happen if the mark stack overflows during a GC pause
2599     // and this task, after a yield point, restarts. We have to abort
2600     // as we need to get into the overflow protocol which happens
2601     // right at the end of this task.
2602     set_has_aborted();
2603   }
2604 
2605   // First drain any available SATB buffers. After this, we will not
2606   // look at SATB buffers before the next invocation of this method.
2607   // If enough completed SATB buffers are queued up, the regular clock
2608   // will abort this task so that it restarts.
2609   drain_satb_buffers();
2610   // ...then partially drain the local queue and the global stack
2611   drain_local_queue(true);
2612   drain_global_stack(true);
2613 
2614   do {
2615     if (!has_aborted() && _curr_region != NULL) {
2616       // This means that we're already holding on to a region.
2617       assert(_finger != NULL, "if region is not NULL, then the finger "
2618              "should not be NULL either");
2619 
2620       // We might have restarted this task after an evacuation pause
2621       // which might have evacuated the region we're holding on to
2622       // underneath our feet. Let's read its limit again to make sure
2623       // that we do not iterate over a region of the heap that
2624       // contains garbage (update_region_limit() will also move
2625       // _finger to the start of the region if it is found empty).
2626       update_region_limit();
2627       // We will start from _finger not from the start of the region,
2628       // as we might be restarting this task after aborting half-way
2629       // through scanning this region. In this case, _finger points to
2630       // the address where we last found a marked object. If this is a
2631       // fresh region, _finger points to start().
2632       MemRegion mr = MemRegion(_finger, _region_limit);
2633 
2634       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2635              "humongous regions should go around loop once only");
2636 
2637       // Some special cases:
2638       // If the memory region is empty, we can just give up the region.
2639       // If the current region is humongous then we only need to check
2640       // the bitmap for the bit associated with the start of the object,
2641       // scan the object if it's live, and give up the region.
2642       // Otherwise, let's iterate over the bitmap of the part of the region
2643       // that is left.
2644       // If the iteration is successful, give up the region.
2645       if (mr.is_empty()) {
2646         giveup_current_region();
2647         abort_marking_if_regular_check_fail();
2648       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2649         if (_next_mark_bitmap->is_marked(mr.start())) {
2650           // The object is marked - apply the closure
2651           bitmap_closure.do_addr(mr.start());
2652         }
2653         // Even if this task aborted while scanning the humongous object
2654         // we can (and should) give up the current region.
2655         giveup_current_region();
2656         abort_marking_if_regular_check_fail();
2657       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2658         giveup_current_region();
2659         abort_marking_if_regular_check_fail();
2660       } else {
2661         assert(has_aborted(), "currently the only way to do so");
2662         // The only way to abort the bitmap iteration is to return
2663         // false from the do_bit() method. However, inside the
2664         // do_bit() method we move the _finger to point to the
2665         // object currently being looked at. So, if we bail out, we
2666         // have definitely set _finger to something non-null.
2667         assert(_finger != NULL, "invariant");
2668 
2669         // Region iteration was actually aborted. So now _finger
2670         // points to the address of the object we last scanned. If we
2671         // leave it there, when we restart this task, we will rescan
2672         // the object. It is easy to avoid this. We move the finger by
2673         // enough to point to the next possible object header.
2674         assert(_finger < _region_limit, "invariant");
2675         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2676         // Check if bitmap iteration was aborted while scanning the last object
2677         if (new_finger >= _region_limit) {
2678           giveup_current_region();
2679         } else {
2680           move_finger_to(new_finger);
2681         }
2682       }
2683     }
2684     // At this point we have either completed iterating over the
2685     // region we were holding on to, or we have aborted.
2686 
2687     // We then partially drain the local queue and the global stack.
2688     // (Do we really need this?)
2689     drain_local_queue(true);
2690     drain_global_stack(true);
2691 
2692     // Read the note on the claim_region() method on why it might
2693     // return NULL with potentially more regions available for
2694     // claiming and why we have to check out_of_regions() to determine
2695     // whether we're done or not.
2696     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2697       // We are going to try to claim a new region. We should have
2698       // given up on the previous one.
2699       // Separated the asserts so that we know which one fires.
2700       assert(_curr_region  == NULL, "invariant");
2701       assert(_finger       == NULL, "invariant");
2702       assert(_region_limit == NULL, "invariant");
2703       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2704       if (claimed_region != NULL) {
2705         // Yes, we managed to claim one
2706         setup_for_region(claimed_region);
2707         assert(_curr_region == claimed_region, "invariant");
2708       }
2709       // It is important to call the regular clock here. It might take
2710       // a while to claim a region if, for example, we hit a large
2711       // block of empty regions. So we need to call the regular clock
2712       // method once round the loop to make sure it's called
2713       // frequently enough.
2714       abort_marking_if_regular_check_fail();
2715     }
2716 
2717     if (!has_aborted() && _curr_region == NULL) {
2718       assert(_cm->out_of_regions(),
2719              "at this point we should be out of regions");
2720     }
2721   } while ( _curr_region != NULL && !has_aborted());
2722 
2723   if (!has_aborted()) {
2724     // We cannot check whether the global stack is empty, since other
2725     // tasks might be pushing objects to it concurrently.
2726     assert(_cm->out_of_regions(),
2727            "at this point we should be out of regions");
2728     // Try to reduce the number of available SATB buffers so that
2729     // remark has less work to do.
2730     drain_satb_buffers();
2731   }
2732 
2733   // Since we've done everything else, we can now totally drain the
2734   // local queue and global stack.
2735   drain_local_queue(false);
2736   drain_global_stack(false);
2737 
2738   // Attempt at work stealing from other task's queues.
2739   if (do_stealing && !has_aborted()) {
2740     // We have not aborted. This means that we have finished all that
2741     // we could. Let's try to do some stealing...
2742 
2743     // We cannot check whether the global stack is empty, since other
2744     // tasks might be pushing objects to it concurrently.
2745     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2746            "only way to reach here");
2747     while (!has_aborted()) {
2748       G1TaskQueueEntry entry;
2749       if (_cm->try_stealing(_worker_id, entry)) {
2750         scan_task_entry(entry);
2751 
2752         // And since we're towards the end, let's totally drain the
2753         // local queue and global stack.
2754         drain_local_queue(false);
2755         drain_global_stack(false);
2756       } else {
2757         break;
2758       }
2759     }
2760   }
2761 
2762   // We still haven't aborted. Now, let's try to get into the
2763   // termination protocol.
2764   if (do_termination && !has_aborted()) {
2765     // We cannot check whether the global stack is empty, since other
2766     // tasks might be concurrently pushing objects on it.
2767     // Separated the asserts so that we know which one fires.
2768     assert(_cm->out_of_regions(), "only way to reach here");
2769     assert(_task_queue->size() == 0, "only way to reach here");
2770     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2771 
2772     // The G1CMTask class also extends the TerminatorTerminator class,
2773     // hence its should_exit_termination() method will also decide
2774     // whether to exit the termination protocol or not.
2775     bool finished = (is_serial ||
2776                      _cm->terminator()->offer_termination(this));
2777     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2778     _termination_time_ms +=
2779       termination_end_time_ms - _termination_start_time_ms;
2780 
2781     if (finished) {
2782       // We're all done.
2783 
2784       // We can now guarantee that the global stack is empty, since
2785       // all other tasks have finished. We separated the guarantees so
2786       // that, if a condition is false, we can immediately find out
2787       // which one.
2788       guarantee(_cm->out_of_regions(), "only way to reach here");
2789       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2790       guarantee(_task_queue->size() == 0, "only way to reach here");
2791       guarantee(!_cm->has_overflown(), "only way to reach here");
2792       guarantee(!has_aborted(), "should never happen if termination has completed");
2793     } else {
2794       // Apparently there's more work to do. Let's abort this task. It
2795       // will restart it and we can hopefully find more things to do.
2796       set_has_aborted();
2797     }
2798   }
2799 
2800   // Mainly for debugging purposes to make sure that a pointer to the
2801   // closure which was statically allocated in this frame doesn't
2802   // escape it by accident.
2803   set_cm_oop_closure(NULL);
2804   double end_time_ms = os::elapsedVTime() * 1000.0;
2805   double elapsed_time_ms = end_time_ms - _start_time_ms;
2806   // Update the step history.
2807   _step_times_ms.add(elapsed_time_ms);
2808 
2809   if (has_aborted()) {
2810     // The task was aborted for some reason.
2811     if (_has_timed_out) {
2812       double diff_ms = elapsed_time_ms - _time_target_ms;
2813       // Keep statistics of how well we did with respect to hitting
2814       // our target only if we actually timed out (if we aborted for
2815       // other reasons, then the results might get skewed).
2816       _marking_step_diffs_ms.add(diff_ms);
2817     }
2818 
2819     if (_cm->has_overflown()) {
2820       // This is the interesting one. We aborted because a global
2821       // overflow was raised. This means we have to restart the
2822       // marking phase and start iterating over regions. However, in
2823       // order to do this we have to make sure that all tasks stop
2824       // what they are doing and re-initialize in a safe manner. We
2825       // will achieve this with the use of two barrier sync points.
2826 
2827       if (!is_serial) {
2828         // We only need to enter the sync barrier if being called
2829         // from a parallel context
2830         _cm->enter_first_sync_barrier(_worker_id);
2831 
2832         // When we exit this sync barrier we know that all tasks have
2833         // stopped doing marking work. So, it's now safe to
2834         // re-initialize our data structures.
2835       }
2836 
2837       clear_region_fields();
2838       flush_mark_stats_cache();
2839 
2840       if (!is_serial) {
2841         // If we're executing the concurrent phase of marking, reset the marking
2842         // state; otherwise the marking state is reset after reference processing,
2843         // during the remark pause.
2844         // If we reset here as a result of an overflow during the remark we will
2845         // see assertion failures from any subsequent set_concurrency_and_phase()
2846         // calls.
2847         if (_cm->concurrent() && _worker_id == 0) {
2848           // Worker 0 is responsible for clearing the global data structures because
2849           // of an overflow. During STW we should not clear the overflow flag (in
2850           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2851           // method to abort the pause and restart concurrent marking.
2852           _cm->reset_marking_for_restart();
2853 
2854           log_info(gc, marking)("Concurrent Mark reset for overflow");
2855         }
2856 
2857         // ...and enter the second barrier.
2858         _cm->enter_second_sync_barrier(_worker_id);
2859       }
2860       // At this point, if we're during the concurrent phase of
2861       // marking, everything has been re-initialized and we're
2862       // ready to restart.
2863     }
2864   }
2865 }
2866 
2867 G1CMTask::G1CMTask(uint worker_id,
2868                    G1ConcurrentMark* cm,
2869                    G1CMTaskQueue* task_queue,
2870                    G1RegionMarkStats* mark_stats,
2871                    uint max_regions) :
2872   _objArray_processor(this),
2873   _worker_id(worker_id),
2874   _g1h(G1CollectedHeap::heap()),
2875   _cm(cm),
2876   _next_mark_bitmap(NULL),
2877   _task_queue(task_queue),
2878   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2879   _calls(0),
2880   _time_target_ms(0.0),
2881   _start_time_ms(0.0),
2882   _cm_oop_closure(NULL),
2883   _curr_region(NULL),
2884   _finger(NULL),
2885   _region_limit(NULL),
2886   _words_scanned(0),
2887   _words_scanned_limit(0),
2888   _real_words_scanned_limit(0),
2889   _refs_reached(0),
2890   _refs_reached_limit(0),
2891   _real_refs_reached_limit(0),
2892   _has_aborted(false),
2893   _has_timed_out(false),
2894   _draining_satb_buffers(false),
2895   _step_times_ms(),
2896   _elapsed_time_ms(0.0),
2897   _termination_time_ms(0.0),
2898   _termination_start_time_ms(0.0),
2899   _marking_step_diffs_ms()
2900 {
2901   guarantee(task_queue != NULL, "invariant");
2902 
2903   _marking_step_diffs_ms.add(0.5);
2904 }
2905 
2906 // These are formatting macros that are used below to ensure
2907 // consistent formatting. The *_H_* versions are used to format the
2908 // header for a particular value and they should be kept consistent
2909 // with the corresponding macro. Also note that most of the macros add
2910 // the necessary white space (as a prefix) which makes them a bit
2911 // easier to compose.
2912 
2913 // All the output lines are prefixed with this string to be able to
2914 // identify them easily in a large log file.
2915 #define G1PPRL_LINE_PREFIX            "###"
2916 
2917 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2918 #ifdef _LP64
2919 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2920 #else // _LP64
2921 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2922 #endif // _LP64
2923 
2924 // For per-region info
2925 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2926 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2927 #define G1PPRL_STATE_FORMAT           "   %-5s"
2928 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2929 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2930 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2931 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2932 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2933 
2934 // For summary info
2935 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2936 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2937 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2938 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2939 
2940 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2941   _total_used_bytes(0), _total_capacity_bytes(0),
2942   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2943   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2944 {
2945   if (!log_is_enabled(Trace, gc, liveness)) {
2946     return;
2947   }
2948 
2949   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2950   MemRegion g1_reserved = g1h->g1_reserved();
2951   double now = os::elapsedTime();
2952 
2953   // Print the header of the output.
2954   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2955   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2956                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2957                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2958                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2959                           HeapRegion::GrainBytes);
2960   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2961   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2962                           G1PPRL_TYPE_H_FORMAT
2963                           G1PPRL_ADDR_BASE_H_FORMAT
2964                           G1PPRL_BYTE_H_FORMAT
2965                           G1PPRL_BYTE_H_FORMAT
2966                           G1PPRL_BYTE_H_FORMAT
2967                           G1PPRL_DOUBLE_H_FORMAT
2968                           G1PPRL_BYTE_H_FORMAT
2969                           G1PPRL_STATE_H_FORMAT
2970                           G1PPRL_BYTE_H_FORMAT,
2971                           "type", "address-range",
2972                           "used", "prev-live", "next-live", "gc-eff",
2973                           "remset", "state", "code-roots");
2974   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2975                           G1PPRL_TYPE_H_FORMAT
2976                           G1PPRL_ADDR_BASE_H_FORMAT
2977                           G1PPRL_BYTE_H_FORMAT
2978                           G1PPRL_BYTE_H_FORMAT
2979                           G1PPRL_BYTE_H_FORMAT
2980                           G1PPRL_DOUBLE_H_FORMAT
2981                           G1PPRL_BYTE_H_FORMAT
2982                           G1PPRL_STATE_H_FORMAT
2983                           G1PPRL_BYTE_H_FORMAT,
2984                           "", "",
2985                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2986                           "(bytes)", "", "(bytes)");
2987 }
2988 
2989 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2990   if (!log_is_enabled(Trace, gc, liveness)) {
2991     return false;
2992   }
2993 
2994   const char* type       = r->get_type_str();
2995   HeapWord* bottom       = r->bottom();
2996   HeapWord* end          = r->end();
2997   size_t capacity_bytes  = r->capacity();
2998   size_t used_bytes      = r->used();
2999   size_t prev_live_bytes = r->live_bytes();
3000   size_t next_live_bytes = r->next_live_bytes();
3001   double gc_eff          = r->gc_efficiency();
3002   size_t remset_bytes    = r->rem_set()->mem_size();
3003   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3004   const char* remset_type = r->rem_set()->get_short_state_str();
3005 
3006   _total_used_bytes      += used_bytes;
3007   _total_capacity_bytes  += capacity_bytes;
3008   _total_prev_live_bytes += prev_live_bytes;
3009   _total_next_live_bytes += next_live_bytes;
3010   _total_remset_bytes    += remset_bytes;
3011   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3012 
3013   // Print a line for this particular region.
3014   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3015                           G1PPRL_TYPE_FORMAT
3016                           G1PPRL_ADDR_BASE_FORMAT
3017                           G1PPRL_BYTE_FORMAT
3018                           G1PPRL_BYTE_FORMAT
3019                           G1PPRL_BYTE_FORMAT
3020                           G1PPRL_DOUBLE_FORMAT
3021                           G1PPRL_BYTE_FORMAT
3022                           G1PPRL_STATE_FORMAT
3023                           G1PPRL_BYTE_FORMAT,
3024                           type, p2i(bottom), p2i(end),
3025                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3026                           remset_bytes, remset_type, strong_code_roots_bytes);
3027 
3028   return false;
3029 }
3030 
3031 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3032   if (!log_is_enabled(Trace, gc, liveness)) {
3033     return;
3034   }
3035 
3036   // add static memory usages to remembered set sizes
3037   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3038   // Print the footer of the output.
3039   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3040   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3041                          " SUMMARY"
3042                          G1PPRL_SUM_MB_FORMAT("capacity")
3043                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3044                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3045                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3046                          G1PPRL_SUM_MB_FORMAT("remset")
3047                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3048                          bytes_to_mb(_total_capacity_bytes),
3049                          bytes_to_mb(_total_used_bytes),
3050                          percent_of(_total_used_bytes, _total_capacity_bytes),
3051                          bytes_to_mb(_total_prev_live_bytes),
3052                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3053                          bytes_to_mb(_total_next_live_bytes),
3054                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3055                          bytes_to_mb(_total_remset_bytes),
3056                          bytes_to_mb(_total_strong_code_roots_bytes));
3057 }