rev 57223 : imported patch 8225484-changes-to-survivor-calculation
1 /* 2 * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/nmethod.hpp" 27 #include "gc/g1/g1BlockOffsetTable.inline.hpp" 28 #include "gc/g1/g1CollectedHeap.inline.hpp" 29 #include "gc/g1/g1CollectionSet.hpp" 30 #include "gc/g1/g1HeapRegionTraceType.hpp" 31 #include "gc/g1/g1NUMA.hpp" 32 #include "gc/g1/g1OopClosures.inline.hpp" 33 #include "gc/g1/heapRegion.inline.hpp" 34 #include "gc/g1/heapRegionBounds.inline.hpp" 35 #include "gc/g1/heapRegionManager.inline.hpp" 36 #include "gc/g1/heapRegionRemSet.hpp" 37 #include "gc/g1/heapRegionTracer.hpp" 38 #include "gc/shared/genOopClosures.inline.hpp" 39 #include "logging/log.hpp" 40 #include "logging/logStream.hpp" 41 #include "memory/iterator.inline.hpp" 42 #include "memory/resourceArea.hpp" 43 #include "oops/access.inline.hpp" 44 #include "oops/compressedOops.inline.hpp" 45 #include "oops/oop.inline.hpp" 46 47 int HeapRegion::LogOfHRGrainBytes = 0; 48 int HeapRegion::LogOfHRGrainWords = 0; 49 int HeapRegion::LogCardsPerRegion = 0; 50 size_t HeapRegion::GrainBytes = 0; 51 size_t HeapRegion::GrainWords = 0; 52 size_t HeapRegion::CardsPerRegion = 0; 53 54 size_t HeapRegion::max_region_size() { 55 return HeapRegionBounds::max_size(); 56 } 57 58 size_t HeapRegion::min_region_size_in_words() { 59 return HeapRegionBounds::min_size() >> LogHeapWordSize; 60 } 61 62 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) { 63 size_t region_size = G1HeapRegionSize; 64 if (FLAG_IS_DEFAULT(G1HeapRegionSize)) { 65 size_t average_heap_size = (initial_heap_size + max_heap_size) / 2; 66 region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(), 67 HeapRegionBounds::min_size()); 68 } 69 70 int region_size_log = log2_long((jlong) region_size); 71 // Recalculate the region size to make sure it's a power of 72 // 2. This means that region_size is the largest power of 2 that's 73 // <= what we've calculated so far. 74 region_size = ((size_t)1 << region_size_log); 75 76 // Now make sure that we don't go over or under our limits. 77 if (region_size < HeapRegionBounds::min_size()) { 78 region_size = HeapRegionBounds::min_size(); 79 } else if (region_size > HeapRegionBounds::max_size()) { 80 region_size = HeapRegionBounds::max_size(); 81 } 82 83 // And recalculate the log. 84 region_size_log = log2_long((jlong) region_size); 85 86 // Now, set up the globals. 87 guarantee(LogOfHRGrainBytes == 0, "we should only set it once"); 88 LogOfHRGrainBytes = region_size_log; 89 90 guarantee(LogOfHRGrainWords == 0, "we should only set it once"); 91 LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize; 92 93 guarantee(GrainBytes == 0, "we should only set it once"); 94 // The cast to int is safe, given that we've bounded region_size by 95 // MIN_REGION_SIZE and MAX_REGION_SIZE. 96 GrainBytes = region_size; 97 log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M); 98 99 guarantee(GrainWords == 0, "we should only set it once"); 100 GrainWords = GrainBytes >> LogHeapWordSize; 101 guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity"); 102 103 guarantee(CardsPerRegion == 0, "we should only set it once"); 104 CardsPerRegion = GrainBytes >> G1CardTable::card_shift; 105 106 LogCardsPerRegion = log2_long((jlong) CardsPerRegion); 107 108 if (G1HeapRegionSize != GrainBytes) { 109 FLAG_SET_ERGO(G1HeapRegionSize, GrainBytes); 110 } 111 } 112 113 void HeapRegion::hr_clear(bool keep_remset, bool clear_space, bool locked) { 114 assert(_humongous_start_region == NULL, 115 "we should have already filtered out humongous regions"); 116 assert(!in_collection_set(), 117 "Should not clear heap region %u in the collection set", hrm_index()); 118 119 clear_young_index_in_cset(); 120 clear_index_in_opt_cset(); 121 uninstall_surv_rate_group(); 122 set_free(); 123 reset_pre_dummy_top(); 124 125 if (!keep_remset) { 126 if (locked) { 127 rem_set()->clear_locked(); 128 } else { 129 rem_set()->clear(); 130 } 131 } 132 133 zero_marked_bytes(); 134 135 init_top_at_mark_start(); 136 if (clear_space) clear(SpaceDecorator::Mangle); 137 138 _evacuation_failed = false; 139 _gc_efficiency = 0.0; 140 } 141 142 void HeapRegion::clear_cardtable() { 143 G1CardTable* ct = G1CollectedHeap::heap()->card_table(); 144 ct->clear(MemRegion(bottom(), end())); 145 } 146 147 void HeapRegion::calc_gc_efficiency() { 148 // GC efficiency is the ratio of how much space would be 149 // reclaimed over how long we predict it would take to reclaim it. 150 G1Policy* policy = G1CollectedHeap::heap()->policy(); 151 152 // Retrieve a prediction of the elapsed time for this region for 153 // a mixed gc because the region will only be evacuated during a 154 // mixed gc. 155 double region_elapsed_time_ms = policy->predict_region_total_time_ms(this, false /* for_young_gc */); 156 _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms; 157 } 158 159 void HeapRegion::set_free() { 160 report_region_type_change(G1HeapRegionTraceType::Free); 161 _type.set_free(); 162 } 163 164 void HeapRegion::set_eden() { 165 report_region_type_change(G1HeapRegionTraceType::Eden); 166 _type.set_eden(); 167 } 168 169 void HeapRegion::set_eden_pre_gc() { 170 report_region_type_change(G1HeapRegionTraceType::Eden); 171 _type.set_eden_pre_gc(); 172 } 173 174 void HeapRegion::set_survivor() { 175 report_region_type_change(G1HeapRegionTraceType::Survivor); 176 _type.set_survivor(); 177 } 178 179 void HeapRegion::move_to_old() { 180 if (_type.relabel_as_old()) { 181 report_region_type_change(G1HeapRegionTraceType::Old); 182 } 183 } 184 185 void HeapRegion::set_old() { 186 report_region_type_change(G1HeapRegionTraceType::Old); 187 _type.set_old(); 188 } 189 190 void HeapRegion::set_open_archive() { 191 report_region_type_change(G1HeapRegionTraceType::OpenArchive); 192 _type.set_open_archive(); 193 } 194 195 void HeapRegion::set_closed_archive() { 196 report_region_type_change(G1HeapRegionTraceType::ClosedArchive); 197 _type.set_closed_archive(); 198 } 199 200 void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) { 201 assert(!is_humongous(), "sanity / pre-condition"); 202 assert(top() == bottom(), "should be empty"); 203 204 report_region_type_change(G1HeapRegionTraceType::StartsHumongous); 205 _type.set_starts_humongous(); 206 _humongous_start_region = this; 207 208 _bot_part.set_for_starts_humongous(obj_top, fill_size); 209 } 210 211 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) { 212 assert(!is_humongous(), "sanity / pre-condition"); 213 assert(top() == bottom(), "should be empty"); 214 assert(first_hr->is_starts_humongous(), "pre-condition"); 215 216 report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous); 217 _type.set_continues_humongous(); 218 _humongous_start_region = first_hr; 219 220 _bot_part.set_object_can_span(true); 221 } 222 223 void HeapRegion::clear_humongous() { 224 assert(is_humongous(), "pre-condition"); 225 226 assert(capacity() == HeapRegion::GrainBytes, "pre-condition"); 227 _humongous_start_region = NULL; 228 229 _bot_part.set_object_can_span(false); 230 } 231 232 HeapRegion::HeapRegion(uint hrm_index, 233 G1BlockOffsetTable* bot, 234 MemRegion mr) : 235 _bottom(mr.start()), 236 _end(mr.end()), 237 _top(NULL), 238 _compaction_top(NULL), 239 _bot_part(bot, this), 240 _par_alloc_lock(Mutex::leaf, "HeapRegion par alloc lock", true), 241 _pre_dummy_top(NULL), 242 _rem_set(NULL), 243 _hrm_index(hrm_index), 244 _type(), 245 _humongous_start_region(NULL), 246 _evacuation_failed(false), 247 _index_in_opt_cset(InvalidCSetIndex), 248 _next(NULL), _prev(NULL), 249 #ifdef ASSERT 250 _containing_set(NULL), 251 #endif 252 _prev_top_at_mark_start(NULL), _next_top_at_mark_start(NULL), 253 _prev_marked_bytes(0), _next_marked_bytes(0), 254 _young_index_in_cset(-1), 255 _surv_rate_group(NULL), _age_index(G1SurvRateGroup::InvalidAgeIndex), _gc_efficiency(0.0), 256 _node_index(G1NUMA::UnknownNodeIndex) 257 { 258 assert(Universe::on_page_boundary(mr.start()) && Universe::on_page_boundary(mr.end()), 259 "invalid space boundaries"); 260 261 _rem_set = new HeapRegionRemSet(bot, this); 262 initialize(); 263 } 264 265 void HeapRegion::initialize(bool clear_space, bool mangle_space) { 266 assert(_rem_set->is_empty(), "Remembered set must be empty"); 267 268 if (clear_space) { 269 clear(mangle_space); 270 } 271 272 set_top(bottom()); 273 set_compaction_top(bottom()); 274 reset_bot(); 275 276 hr_clear(false /*par*/, false /*clear_space*/); 277 } 278 279 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) { 280 HeapRegionTracer::send_region_type_change(_hrm_index, 281 get_trace_type(), 282 to, 283 (uintptr_t)bottom(), 284 used()); 285 } 286 287 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark, 288 bool during_conc_mark) { 289 // We always recreate the prev marking info and we'll explicitly 290 // mark all objects we find to be self-forwarded on the prev 291 // bitmap. So all objects need to be below PTAMS. 292 _prev_marked_bytes = 0; 293 294 if (during_initial_mark) { 295 // During initial-mark, we'll also explicitly mark all objects 296 // we find to be self-forwarded on the next bitmap. So all 297 // objects need to be below NTAMS. 298 _next_top_at_mark_start = top(); 299 _next_marked_bytes = 0; 300 } else if (during_conc_mark) { 301 // During concurrent mark, all objects in the CSet (including 302 // the ones we find to be self-forwarded) are implicitly live. 303 // So all objects need to be above NTAMS. 304 _next_top_at_mark_start = bottom(); 305 _next_marked_bytes = 0; 306 } 307 } 308 309 void HeapRegion::note_self_forwarding_removal_end(size_t marked_bytes) { 310 assert(marked_bytes <= used(), 311 "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used()); 312 _prev_top_at_mark_start = top(); 313 _prev_marked_bytes = marked_bytes; 314 } 315 316 // Code roots support 317 318 void HeapRegion::add_strong_code_root(nmethod* nm) { 319 HeapRegionRemSet* hrrs = rem_set(); 320 hrrs->add_strong_code_root(nm); 321 } 322 323 void HeapRegion::add_strong_code_root_locked(nmethod* nm) { 324 assert_locked_or_safepoint(CodeCache_lock); 325 HeapRegionRemSet* hrrs = rem_set(); 326 hrrs->add_strong_code_root_locked(nm); 327 } 328 329 void HeapRegion::remove_strong_code_root(nmethod* nm) { 330 HeapRegionRemSet* hrrs = rem_set(); 331 hrrs->remove_strong_code_root(nm); 332 } 333 334 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const { 335 HeapRegionRemSet* hrrs = rem_set(); 336 hrrs->strong_code_roots_do(blk); 337 } 338 339 class VerifyStrongCodeRootOopClosure: public OopClosure { 340 const HeapRegion* _hr; 341 bool _failures; 342 bool _has_oops_in_region; 343 344 template <class T> void do_oop_work(T* p) { 345 T heap_oop = RawAccess<>::oop_load(p); 346 if (!CompressedOops::is_null(heap_oop)) { 347 oop obj = CompressedOops::decode_not_null(heap_oop); 348 349 // Note: not all the oops embedded in the nmethod are in the 350 // current region. We only look at those which are. 351 if (_hr->is_in(obj)) { 352 // Object is in the region. Check that its less than top 353 if (_hr->top() <= (HeapWord*)obj) { 354 // Object is above top 355 log_error(gc, verify)("Object " PTR_FORMAT " in region " HR_FORMAT " is above top ", 356 p2i(obj), HR_FORMAT_PARAMS(_hr)); 357 _failures = true; 358 return; 359 } 360 // Nmethod has at least one oop in the current region 361 _has_oops_in_region = true; 362 } 363 } 364 } 365 366 public: 367 VerifyStrongCodeRootOopClosure(const HeapRegion* hr): 368 _hr(hr), _failures(false), _has_oops_in_region(false) {} 369 370 void do_oop(narrowOop* p) { do_oop_work(p); } 371 void do_oop(oop* p) { do_oop_work(p); } 372 373 bool failures() { return _failures; } 374 bool has_oops_in_region() { return _has_oops_in_region; } 375 }; 376 377 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure { 378 const HeapRegion* _hr; 379 bool _failures; 380 public: 381 VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) : 382 _hr(hr), _failures(false) {} 383 384 void do_code_blob(CodeBlob* cb) { 385 nmethod* nm = (cb == NULL) ? NULL : cb->as_compiled_method()->as_nmethod_or_null(); 386 if (nm != NULL) { 387 // Verify that the nemthod is live 388 if (!nm->is_alive()) { 389 log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots", 390 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); 391 _failures = true; 392 } else { 393 VerifyStrongCodeRootOopClosure oop_cl(_hr); 394 nm->oops_do(&oop_cl); 395 if (!oop_cl.has_oops_in_region()) { 396 log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region", 397 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); 398 _failures = true; 399 } else if (oop_cl.failures()) { 400 log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT, 401 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); 402 _failures = true; 403 } 404 } 405 } 406 } 407 408 bool failures() { return _failures; } 409 }; 410 411 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const { 412 if (!G1VerifyHeapRegionCodeRoots) { 413 // We're not verifying code roots. 414 return; 415 } 416 if (vo == VerifyOption_G1UseFullMarking) { 417 // Marking verification during a full GC is performed after class 418 // unloading, code cache unloading, etc so the strong code roots 419 // attached to each heap region are in an inconsistent state. They won't 420 // be consistent until the strong code roots are rebuilt after the 421 // actual GC. Skip verifying the strong code roots in this particular 422 // time. 423 assert(VerifyDuringGC, "only way to get here"); 424 return; 425 } 426 427 HeapRegionRemSet* hrrs = rem_set(); 428 size_t strong_code_roots_length = hrrs->strong_code_roots_list_length(); 429 430 // if this region is empty then there should be no entries 431 // on its strong code root list 432 if (is_empty()) { 433 if (strong_code_roots_length > 0) { 434 log_error(gc, verify)("region " HR_FORMAT " is empty but has " SIZE_FORMAT " code root entries", 435 HR_FORMAT_PARAMS(this), strong_code_roots_length); 436 *failures = true; 437 } 438 return; 439 } 440 441 if (is_continues_humongous()) { 442 if (strong_code_roots_length > 0) { 443 log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries", 444 HR_FORMAT_PARAMS(this), strong_code_roots_length); 445 *failures = true; 446 } 447 return; 448 } 449 450 VerifyStrongCodeRootCodeBlobClosure cb_cl(this); 451 strong_code_roots_do(&cb_cl); 452 453 if (cb_cl.failures()) { 454 *failures = true; 455 } 456 } 457 458 void HeapRegion::print() const { print_on(tty); } 459 460 void HeapRegion::print_on(outputStream* st) const { 461 st->print("|%4u", this->_hrm_index); 462 st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT, 463 p2i(bottom()), p2i(top()), p2i(end())); 464 st->print("|%3d%%", (int) ((double) used() * 100 / capacity())); 465 st->print("|%2s", get_short_type_str()); 466 if (in_collection_set()) { 467 st->print("|CS"); 468 } else { 469 st->print("| "); 470 } 471 st->print("|TAMS " PTR_FORMAT ", " PTR_FORMAT "| %s ", 472 p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()), rem_set()->get_state_str()); 473 if (UseNUMA) { 474 G1NUMA* numa = G1NUMA::numa(); 475 if (node_index() < numa->num_active_nodes()) { 476 st->print("|%d", numa->numa_id(node_index())); 477 } else { 478 st->print("|-"); 479 } 480 } 481 st->print_cr(""); 482 } 483 484 class G1VerificationClosure : public BasicOopIterateClosure { 485 protected: 486 G1CollectedHeap* _g1h; 487 G1CardTable *_ct; 488 oop _containing_obj; 489 bool _failures; 490 int _n_failures; 491 VerifyOption _vo; 492 public: 493 // _vo == UsePrevMarking -> use "prev" marking information, 494 // _vo == UseNextMarking -> use "next" marking information, 495 // _vo == UseFullMarking -> use "next" marking bitmap but no TAMS. 496 G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) : 497 _g1h(g1h), _ct(g1h->card_table()), 498 _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) { 499 } 500 501 void set_containing_obj(oop obj) { 502 _containing_obj = obj; 503 } 504 505 bool failures() { return _failures; } 506 int n_failures() { return _n_failures; } 507 508 void print_object(outputStream* out, oop obj) { 509 #ifdef PRODUCT 510 Klass* k = obj->klass(); 511 const char* class_name = k->external_name(); 512 out->print_cr("class name %s", class_name); 513 #else // PRODUCT 514 obj->print_on(out); 515 #endif // PRODUCT 516 } 517 518 // This closure provides its own oop verification code. 519 debug_only(virtual bool should_verify_oops() { return false; }) 520 }; 521 522 class VerifyLiveClosure : public G1VerificationClosure { 523 public: 524 VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {} 525 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 526 virtual void do_oop(oop* p) { do_oop_work(p); } 527 528 template <class T> 529 void do_oop_work(T* p) { 530 assert(_containing_obj != NULL, "Precondition"); 531 assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo), 532 "Precondition"); 533 verify_liveness(p); 534 } 535 536 template <class T> 537 void verify_liveness(T* p) { 538 T heap_oop = RawAccess<>::oop_load(p); 539 Log(gc, verify) log; 540 if (!CompressedOops::is_null(heap_oop)) { 541 oop obj = CompressedOops::decode_not_null(heap_oop); 542 bool failed = false; 543 if (!_g1h->is_in(obj) || _g1h->is_obj_dead_cond(obj, _vo)) { 544 MutexLocker x(ParGCRareEvent_lock, 545 Mutex::_no_safepoint_check_flag); 546 547 if (!_failures) { 548 log.error("----------"); 549 } 550 ResourceMark rm; 551 if (!_g1h->is_in(obj)) { 552 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 553 log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region " HR_FORMAT, 554 p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from)); 555 LogStream ls(log.error()); 556 print_object(&ls, _containing_obj); 557 HeapRegion* const to = _g1h->heap_region_containing(obj); 558 log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s", 559 p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str()); 560 } else { 561 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 562 HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj); 563 log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region " HR_FORMAT, 564 p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from)); 565 LogStream ls(log.error()); 566 print_object(&ls, _containing_obj); 567 log.error("points to dead obj " PTR_FORMAT " in region " HR_FORMAT, 568 p2i(obj), HR_FORMAT_PARAMS(to)); 569 print_object(&ls, obj); 570 } 571 log.error("----------"); 572 _failures = true; 573 failed = true; 574 _n_failures++; 575 } 576 } 577 } 578 }; 579 580 class VerifyRemSetClosure : public G1VerificationClosure { 581 public: 582 VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {} 583 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 584 virtual void do_oop(oop* p) { do_oop_work(p); } 585 586 template <class T> 587 void do_oop_work(T* p) { 588 assert(_containing_obj != NULL, "Precondition"); 589 assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo), 590 "Precondition"); 591 verify_remembered_set(p); 592 } 593 594 template <class T> 595 void verify_remembered_set(T* p) { 596 T heap_oop = RawAccess<>::oop_load(p); 597 Log(gc, verify) log; 598 if (!CompressedOops::is_null(heap_oop)) { 599 oop obj = CompressedOops::decode_not_null(heap_oop); 600 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 601 HeapRegion* to = _g1h->heap_region_containing(obj); 602 if (from != NULL && to != NULL && 603 from != to && 604 !to->is_pinned() && 605 to->rem_set()->is_complete()) { 606 jbyte cv_obj = *_ct->byte_for_const(_containing_obj); 607 jbyte cv_field = *_ct->byte_for_const(p); 608 const jbyte dirty = G1CardTable::dirty_card_val(); 609 610 bool is_bad = !(from->is_young() 611 || to->rem_set()->contains_reference(p) 612 || (_containing_obj->is_objArray() ? 613 cv_field == dirty : 614 cv_obj == dirty || cv_field == dirty)); 615 if (is_bad) { 616 MutexLocker x(ParGCRareEvent_lock, 617 Mutex::_no_safepoint_check_flag); 618 619 if (!_failures) { 620 log.error("----------"); 621 } 622 log.error("Missing rem set entry:"); 623 log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT " in region " HR_FORMAT, 624 p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from)); 625 ResourceMark rm; 626 LogStream ls(log.error()); 627 _containing_obj->print_on(&ls); 628 log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s", 629 p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str()); 630 if (oopDesc::is_oop(obj)) { 631 obj->print_on(&ls); 632 } 633 log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field); 634 log.error("----------"); 635 _failures = true; 636 _n_failures++; 637 } 638 } 639 } 640 } 641 }; 642 643 // Closure that applies the given two closures in sequence. 644 class G1Mux2Closure : public BasicOopIterateClosure { 645 OopClosure* _c1; 646 OopClosure* _c2; 647 public: 648 G1Mux2Closure(OopClosure *c1, OopClosure *c2) { _c1 = c1; _c2 = c2; } 649 template <class T> inline void do_oop_work(T* p) { 650 // Apply first closure; then apply the second. 651 _c1->do_oop(p); 652 _c2->do_oop(p); 653 } 654 virtual inline void do_oop(oop* p) { do_oop_work(p); } 655 virtual inline void do_oop(narrowOop* p) { do_oop_work(p); } 656 657 // This closure provides its own oop verification code. 658 debug_only(virtual bool should_verify_oops() { return false; }) 659 }; 660 661 void HeapRegion::verify(VerifyOption vo, 662 bool* failures) const { 663 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 664 *failures = false; 665 HeapWord* p = bottom(); 666 HeapWord* prev_p = NULL; 667 VerifyLiveClosure vl_cl(g1h, vo); 668 VerifyRemSetClosure vr_cl(g1h, vo); 669 bool is_region_humongous = is_humongous(); 670 size_t object_num = 0; 671 while (p < top()) { 672 oop obj = oop(p); 673 size_t obj_size = block_size(p); 674 object_num += 1; 675 676 if (!g1h->is_obj_dead_cond(obj, this, vo)) { 677 if (oopDesc::is_oop(obj)) { 678 Klass* klass = obj->klass(); 679 bool is_metaspace_object = Metaspace::contains(klass); 680 if (!is_metaspace_object) { 681 log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " " 682 "not metadata", p2i(klass), p2i(obj)); 683 *failures = true; 684 return; 685 } else if (!klass->is_klass()) { 686 log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " " 687 "not a klass", p2i(klass), p2i(obj)); 688 *failures = true; 689 return; 690 } else { 691 vl_cl.set_containing_obj(obj); 692 if (!g1h->collector_state()->in_full_gc() || G1VerifyRSetsDuringFullGC) { 693 // verify liveness and rem_set 694 vr_cl.set_containing_obj(obj); 695 G1Mux2Closure mux(&vl_cl, &vr_cl); 696 obj->oop_iterate(&mux); 697 698 if (vr_cl.failures()) { 699 *failures = true; 700 } 701 if (G1MaxVerifyFailures >= 0 && 702 vr_cl.n_failures() >= G1MaxVerifyFailures) { 703 return; 704 } 705 } else { 706 // verify only liveness 707 obj->oop_iterate(&vl_cl); 708 } 709 if (vl_cl.failures()) { 710 *failures = true; 711 } 712 if (G1MaxVerifyFailures >= 0 && 713 vl_cl.n_failures() >= G1MaxVerifyFailures) { 714 return; 715 } 716 } 717 } else { 718 log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj)); 719 *failures = true; 720 return; 721 } 722 } 723 prev_p = p; 724 p += obj_size; 725 } 726 727 if (!is_young() && !is_empty()) { 728 _bot_part.verify(); 729 } 730 731 if (is_region_humongous) { 732 oop obj = oop(this->humongous_start_region()->bottom()); 733 if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) { 734 log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj)); 735 *failures = true; 736 return; 737 } 738 } 739 740 if (!is_region_humongous && p != top()) { 741 log_error(gc, verify)("end of last object " PTR_FORMAT " " 742 "does not match top " PTR_FORMAT, p2i(p), p2i(top())); 743 *failures = true; 744 return; 745 } 746 747 HeapWord* the_end = end(); 748 // Do some extra BOT consistency checking for addresses in the 749 // range [top, end). BOT look-ups in this range should yield 750 // top. No point in doing that if top == end (there's nothing there). 751 if (p < the_end) { 752 // Look up top 753 HeapWord* addr_1 = p; 754 HeapWord* b_start_1 = block_start_const(addr_1); 755 if (b_start_1 != p) { 756 log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " " 757 " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, 758 p2i(addr_1), p2i(b_start_1), p2i(p)); 759 *failures = true; 760 return; 761 } 762 763 // Look up top + 1 764 HeapWord* addr_2 = p + 1; 765 if (addr_2 < the_end) { 766 HeapWord* b_start_2 = block_start_const(addr_2); 767 if (b_start_2 != p) { 768 log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " " 769 " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, 770 p2i(addr_2), p2i(b_start_2), p2i(p)); 771 *failures = true; 772 return; 773 } 774 } 775 776 // Look up an address between top and end 777 size_t diff = pointer_delta(the_end, p) / 2; 778 HeapWord* addr_3 = p + diff; 779 if (addr_3 < the_end) { 780 HeapWord* b_start_3 = block_start_const(addr_3); 781 if (b_start_3 != p) { 782 log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " " 783 " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, 784 p2i(addr_3), p2i(b_start_3), p2i(p)); 785 *failures = true; 786 return; 787 } 788 } 789 790 // Look up end - 1 791 HeapWord* addr_4 = the_end - 1; 792 HeapWord* b_start_4 = block_start_const(addr_4); 793 if (b_start_4 != p) { 794 log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " " 795 " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, 796 p2i(addr_4), p2i(b_start_4), p2i(p)); 797 *failures = true; 798 return; 799 } 800 } 801 802 verify_strong_code_roots(vo, failures); 803 } 804 805 void HeapRegion::verify() const { 806 bool dummy = false; 807 verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy); 808 } 809 810 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const { 811 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 812 *failures = false; 813 HeapWord* p = bottom(); 814 HeapWord* prev_p = NULL; 815 VerifyRemSetClosure vr_cl(g1h, vo); 816 while (p < top()) { 817 oop obj = oop(p); 818 size_t obj_size = block_size(p); 819 820 if (!g1h->is_obj_dead_cond(obj, this, vo)) { 821 if (oopDesc::is_oop(obj)) { 822 vr_cl.set_containing_obj(obj); 823 obj->oop_iterate(&vr_cl); 824 825 if (vr_cl.failures()) { 826 *failures = true; 827 } 828 if (G1MaxVerifyFailures >= 0 && 829 vr_cl.n_failures() >= G1MaxVerifyFailures) { 830 return; 831 } 832 } else { 833 log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj)); 834 *failures = true; 835 return; 836 } 837 } 838 839 prev_p = p; 840 p += obj_size; 841 } 842 } 843 844 void HeapRegion::verify_rem_set() const { 845 bool failures = false; 846 verify_rem_set(VerifyOption_G1UsePrevMarking, &failures); 847 guarantee(!failures, "HeapRegion RemSet verification failed"); 848 } 849 850 void HeapRegion::clear(bool mangle_space) { 851 set_top(bottom()); 852 set_compaction_top(bottom()); 853 854 if (ZapUnusedHeapArea && mangle_space) { 855 mangle_unused_area(); 856 } 857 reset_bot(); 858 } 859 860 #ifndef PRODUCT 861 void HeapRegion::mangle_unused_area() { 862 SpaceMangler::mangle_region(MemRegion(top(), end())); 863 } 864 #endif 865 866 HeapWord* HeapRegion::initialize_threshold() { 867 return _bot_part.initialize_threshold(); 868 } 869 870 HeapWord* HeapRegion::cross_threshold(HeapWord* start, HeapWord* end) { 871 _bot_part.alloc_block(start, end); 872 return _bot_part.threshold(); 873 } 874 875 void HeapRegion::object_iterate(ObjectClosure* blk) { 876 HeapWord* p = bottom(); 877 while (p < top()) { 878 if (block_is_obj(p)) { 879 blk->do_object(oop(p)); 880 } 881 p += block_size(p); 882 } 883 } --- EOF ---