1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Analytics.hpp"
  27 #include "gc/g1/g1Arguments.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectionSetCandidates.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1ConcurrentRefine.hpp"
  34 #include "gc/g1/g1CollectionSetChooser.hpp"
  35 #include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
  36 #include "gc/g1/g1HotCardCache.hpp"
  37 #include "gc/g1/g1IHOPControl.hpp"
  38 #include "gc/g1/g1GCPhaseTimes.hpp"
  39 #include "gc/g1/g1Policy.hpp"
  40 #include "gc/g1/g1SurvivorRegions.hpp"
  41 #include "gc/g1/g1YoungGenSizer.hpp"
  42 #include "gc/g1/heapRegion.inline.hpp"
  43 #include "gc/g1/heapRegionRemSet.hpp"
  44 #include "gc/shared/gcPolicyCounters.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "utilities/debug.hpp"
  50 #include "utilities/growableArray.hpp"
  51 #include "utilities/pair.hpp"
  52 
  53 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  54   _predictor(G1ConfidencePercent / 100.0),
  55   _analytics(new G1Analytics(&_predictor)),
  56   _remset_tracker(),
  57   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  58   _ihop_control(create_ihop_control(&_predictor)),
  59   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  60   _full_collection_start_sec(0.0),
  61   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC),
  62   _young_list_target_length(0),
  63   _young_list_fixed_length(0),
  64   _young_list_max_length(0),
  65   _eden_surv_rate_group(new G1SurvRateGroup()),
  66   _survivor_used_bytes_at_start(0),
  67   _survivor_used_bytes_at_end(0),
  68   _reserve_factor((double) G1ReservePercent / 100.0),
  69   _reserve_regions(0),
  70   _young_gen_sizer(G1YoungGenSizer::create_gen_sizer()),
  71   _free_regions_at_end_of_collection(0),
  72   _rs_length(0),
  73   _rs_length_prediction(0),
  74   _pending_cards_at_gc_start(0),
  75   _pending_cards_at_prev_gc_end(0),
  76   _total_mutator_refined_cards(0),
  77   _total_concurrent_refined_cards(0),
  78   _total_concurrent_refinement_time(),
  79   _bytes_allocated_in_old_since_last_gc(0),
  80   _initial_mark_to_mixed(),
  81   _collection_set(NULL),
  82   _g1h(NULL),
  83   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
  84   _mark_remark_start_sec(0),
  85   _mark_cleanup_start_sec(0),
  86   _tenuring_threshold(MaxTenuringThreshold),
  87   _max_survivor_regions(0),
  88   _surviving_survivor_words(0)
  89 {
  90 }
  91 
  92 G1Policy::~G1Policy() {
  93   delete _ihop_control;
  94   delete _young_gen_sizer;
  95 }
  96 
  97 G1Policy* G1Policy::create_policy(STWGCTimer* gc_timer_stw) {
  98   if (G1Arguments::is_heterogeneous_heap()) {
  99     return new G1HeterogeneousHeapPolicy(gc_timer_stw);
 100   } else {
 101     return new G1Policy(gc_timer_stw);
 102   }
 103 }
 104 
 105 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
 106 
 107 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
 108   _g1h = g1h;
 109   _collection_set = collection_set;
 110 
 111   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 112 
 113   if (!use_adaptive_young_list_length()) {
 114     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 115   }
 116   _young_gen_sizer->adjust_max_new_size(_g1h->max_expandable_regions());
 117 
 118   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 119 
 120   update_young_list_max_and_target_length();
 121   // We may immediately start allocating regions and placing them on the
 122   // collection set list. Initialize the per-collection set info
 123   _collection_set->start_incremental_building();
 124 }
 125 
 126 void G1Policy::note_gc_start() {
 127   phase_times()->note_gc_start();
 128 }
 129 
 130 class G1YoungLengthPredictor {
 131   const double _base_time_ms;
 132   const double _base_free_regions;
 133   const double _target_pause_time_ms;
 134   const G1Policy* const _policy;
 135 
 136  public:
 137   G1YoungLengthPredictor(double base_time_ms,
 138                          double base_free_regions,
 139                          double target_pause_time_ms,
 140                          const G1Policy* policy) :
 141     _base_time_ms(base_time_ms),
 142     _base_free_regions(base_free_regions),
 143     _target_pause_time_ms(target_pause_time_ms),
 144     _policy(policy) {}
 145 
 146   bool will_fit(uint young_length) const {
 147     if (young_length >= _base_free_regions) {
 148       // end condition 1: not enough space for the young regions
 149       return false;
 150     }
 151 
 152     size_t bytes_to_copy = 0;
 153     const double copy_time_ms = _policy->predict_eden_copy_time_ms(young_length, &bytes_to_copy);
 154     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 155     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 156     if (pause_time_ms > _target_pause_time_ms) {
 157       // end condition 2: prediction is over the target pause time
 158       return false;
 159     }
 160 
 161     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 162 
 163     // When copying, we will likely need more bytes free than is live in the region.
 164     // Add some safety margin to factor in the confidence of our guess, and the
 165     // natural expected waste.
 166     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 167     // of the calculation: the lower the confidence, the more headroom.
 168     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 169     // copying due to anticipated waste in the PLABs.
 170     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 171     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 172 
 173     if (expected_bytes_to_copy > free_bytes) {
 174       // end condition 3: out-of-space
 175       return false;
 176     }
 177 
 178     // success!
 179     return true;
 180   }
 181 };
 182 
 183 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 184   // re-calculate the necessary reserve
 185   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 186   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 187   // smaller than 1.0) we'll get 1.
 188   _reserve_regions = (uint) ceil(reserve_regions_d);
 189 
 190   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 191 
 192   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 193 }
 194 
 195 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
 196   uint desired_min_length = 0;
 197   if (use_adaptive_young_list_length()) {
 198     if (_analytics->num_alloc_rate_ms() > 3) {
 199       double now_sec = os::elapsedTime();
 200       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 201       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 202       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 203     } else {
 204       // otherwise we don't have enough info to make the prediction
 205     }
 206   }
 207   desired_min_length += base_min_length;
 208   // make sure we don't go below any user-defined minimum bound
 209   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 210 }
 211 
 212 uint G1Policy::calculate_young_list_desired_max_length() const {
 213   // Here, we might want to also take into account any additional
 214   // constraints (i.e., user-defined minimum bound). Currently, we
 215   // effectively don't set this bound.
 216   return _young_gen_sizer->max_desired_young_length();
 217 }
 218 
 219 uint G1Policy::update_young_list_max_and_target_length() {
 220   return update_young_list_max_and_target_length(_analytics->predict_rs_length());
 221 }
 222 
 223 uint G1Policy::update_young_list_max_and_target_length(size_t rs_length) {
 224   uint unbounded_target_length = update_young_list_target_length(rs_length);
 225   update_max_gc_locker_expansion();
 226   return unbounded_target_length;
 227 }
 228 
 229 uint G1Policy::update_young_list_target_length(size_t rs_length) {
 230   YoungTargetLengths young_lengths = young_list_target_lengths(rs_length);
 231   _young_list_target_length = young_lengths.first;
 232 
 233   return young_lengths.second;
 234 }
 235 
 236 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_length) const {
 237   YoungTargetLengths result;
 238 
 239   // Calculate the absolute and desired min bounds first.
 240 
 241   // This is how many young regions we already have (currently: the survivors).
 242   const uint base_min_length = _g1h->survivor_regions_count();
 243   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 244   // This is the absolute minimum young length. Ensure that we
 245   // will at least have one eden region available for allocation.
 246   uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
 247   // If we shrank the young list target it should not shrink below the current size.
 248   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 249   // Calculate the absolute and desired max bounds.
 250 
 251   uint desired_max_length = calculate_young_list_desired_max_length();
 252 
 253   uint young_list_target_length = 0;
 254   if (use_adaptive_young_list_length()) {
 255     if (collector_state()->in_young_only_phase()) {
 256       young_list_target_length =
 257                         calculate_young_list_target_length(rs_length,
 258                                                            base_min_length,
 259                                                            desired_min_length,
 260                                                            desired_max_length);
 261     } else {
 262       // Don't calculate anything and let the code below bound it to
 263       // the desired_min_length, i.e., do the next GC as soon as
 264       // possible to maximize how many old regions we can add to it.
 265     }
 266   } else {
 267     // The user asked for a fixed young gen so we'll fix the young gen
 268     // whether the next GC is young or mixed.
 269     young_list_target_length = _young_list_fixed_length;
 270   }
 271 
 272   result.second = young_list_target_length;
 273 
 274   // We will try our best not to "eat" into the reserve.
 275   uint absolute_max_length = 0;
 276   if (_free_regions_at_end_of_collection > _reserve_regions) {
 277     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 278   }
 279   if (desired_max_length > absolute_max_length) {
 280     desired_max_length = absolute_max_length;
 281   }
 282 
 283   // Make sure we don't go over the desired max length, nor under the
 284   // desired min length. In case they clash, desired_min_length wins
 285   // which is why that test is second.
 286   if (young_list_target_length > desired_max_length) {
 287     young_list_target_length = desired_max_length;
 288   }
 289   if (young_list_target_length < desired_min_length) {
 290     young_list_target_length = desired_min_length;
 291   }
 292 
 293   assert(young_list_target_length > base_min_length,
 294          "we should be able to allocate at least one eden region");
 295   assert(young_list_target_length >= absolute_min_length, "post-condition");
 296 
 297   result.first = young_list_target_length;
 298   return result;
 299 }
 300 
 301 uint G1Policy::calculate_young_list_target_length(size_t rs_length,
 302                                                   uint base_min_length,
 303                                                   uint desired_min_length,
 304                                                   uint desired_max_length) const {
 305   assert(use_adaptive_young_list_length(), "pre-condition");
 306   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
 307 
 308   // In case some edge-condition makes the desired max length too small...
 309   if (desired_max_length <= desired_min_length) {
 310     return desired_min_length;
 311   }
 312 
 313   // We'll adjust min_young_length and max_young_length not to include
 314   // the already allocated young regions (i.e., so they reflect the
 315   // min and max eden regions we'll allocate). The base_min_length
 316   // will be reflected in the predictions by the
 317   // survivor_regions_evac_time prediction.
 318   assert(desired_min_length > base_min_length, "invariant");
 319   uint min_young_length = desired_min_length - base_min_length;
 320   assert(desired_max_length > base_min_length, "invariant");
 321   uint max_young_length = desired_max_length - base_min_length;
 322 
 323   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 324   const size_t pending_cards = _analytics->predict_pending_cards();
 325   const double base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
 326   const uint available_free_regions = _free_regions_at_end_of_collection;
 327   const uint base_free_regions =
 328     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 329 
 330   // Here, we will make sure that the shortest young length that
 331   // makes sense fits within the target pause time.
 332 
 333   G1YoungLengthPredictor p(base_time_ms,
 334                            base_free_regions,
 335                            target_pause_time_ms,
 336                            this);
 337   if (p.will_fit(min_young_length)) {
 338     // The shortest young length will fit into the target pause time;
 339     // we'll now check whether the absolute maximum number of young
 340     // regions will fit in the target pause time. If not, we'll do
 341     // a binary search between min_young_length and max_young_length.
 342     if (p.will_fit(max_young_length)) {
 343       // The maximum young length will fit into the target pause time.
 344       // We are done so set min young length to the maximum length (as
 345       // the result is assumed to be returned in min_young_length).
 346       min_young_length = max_young_length;
 347     } else {
 348       // The maximum possible number of young regions will not fit within
 349       // the target pause time so we'll search for the optimal
 350       // length. The loop invariants are:
 351       //
 352       // min_young_length < max_young_length
 353       // min_young_length is known to fit into the target pause time
 354       // max_young_length is known not to fit into the target pause time
 355       //
 356       // Going into the loop we know the above hold as we've just
 357       // checked them. Every time around the loop we check whether
 358       // the middle value between min_young_length and
 359       // max_young_length fits into the target pause time. If it
 360       // does, it becomes the new min. If it doesn't, it becomes
 361       // the new max. This way we maintain the loop invariants.
 362 
 363       assert(min_young_length < max_young_length, "invariant");
 364       uint diff = (max_young_length - min_young_length) / 2;
 365       while (diff > 0) {
 366         uint young_length = min_young_length + diff;
 367         if (p.will_fit(young_length)) {
 368           min_young_length = young_length;
 369         } else {
 370           max_young_length = young_length;
 371         }
 372         assert(min_young_length <  max_young_length, "invariant");
 373         diff = (max_young_length - min_young_length) / 2;
 374       }
 375       // The results is min_young_length which, according to the
 376       // loop invariants, should fit within the target pause time.
 377 
 378       // These are the post-conditions of the binary search above:
 379       assert(min_young_length < max_young_length,
 380              "otherwise we should have discovered that max_young_length "
 381              "fits into the pause target and not done the binary search");
 382       assert(p.will_fit(min_young_length),
 383              "min_young_length, the result of the binary search, should "
 384              "fit into the pause target");
 385       assert(!p.will_fit(min_young_length + 1),
 386              "min_young_length, the result of the binary search, should be "
 387              "optimal, so no larger length should fit into the pause target");
 388     }
 389   } else {
 390     // Even the minimum length doesn't fit into the pause time
 391     // target, return it as the result nevertheless.
 392   }
 393   return base_min_length + min_young_length;
 394 }
 395 
 396 double G1Policy::predict_survivor_regions_evac_time() const {
 397   double survivor_regions_evac_time = 0.0;
 398   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 399   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 400        it != survivor_regions->end();
 401        ++it) {
 402     // We could split out copy_time from total time here and calculate it based on
 403     // the number of survivor regions. Since we need to iterate over the regions
 404     // for the non_copy time anyway, keep it.
 405     survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
 406   }
 407   return survivor_regions_evac_time;
 408 }
 409 
 410 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
 411   guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
 412 
 413   if (rs_length > _rs_length_prediction) {
 414     // add 10% to avoid having to recalculate often
 415     size_t rs_length_prediction = rs_length * 1100 / 1000;
 416     update_rs_length_prediction(rs_length_prediction);
 417 
 418     update_young_list_max_and_target_length(rs_length_prediction);
 419   }
 420 }
 421 
 422 void G1Policy::update_rs_length_prediction() {
 423   update_rs_length_prediction(_analytics->predict_rs_length());
 424 }
 425 
 426 void G1Policy::update_rs_length_prediction(size_t prediction) {
 427   if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
 428     _rs_length_prediction = prediction;
 429   }
 430 }
 431 
 432 void G1Policy::record_full_collection_start() {
 433   _full_collection_start_sec = os::elapsedTime();
 434   // Release the future to-space so that it is available for compaction into.
 435   collector_state()->set_in_young_only_phase(false);
 436   collector_state()->set_in_full_gc(true);
 437   _collection_set->clear_candidates();
 438   record_concurrent_refinement_data(true /* is_full_collection */);
 439 }
 440 
 441 void G1Policy::record_full_collection_end() {
 442   // Consider this like a collection pause for the purposes of allocation
 443   // since last pause.
 444   double end_sec = os::elapsedTime();
 445   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 446   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 447 
 448   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 449 
 450   collector_state()->set_in_full_gc(false);
 451 
 452   // "Nuke" the heuristics that control the young/mixed GC
 453   // transitions and make sure we start with young GCs after the Full GC.
 454   collector_state()->set_in_young_only_phase(true);
 455   collector_state()->set_in_young_gc_before_mixed(false);
 456   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 457   collector_state()->set_in_initial_mark_gc(false);
 458   collector_state()->set_mark_or_rebuild_in_progress(false);
 459   collector_state()->set_clearing_next_bitmap(false);
 460 
 461   _eden_surv_rate_group->start_adding_regions();
 462 
 463   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 464   update_young_list_max_and_target_length();
 465   update_rs_length_prediction();
 466   _pending_cards_at_prev_gc_end = _g1h->pending_card_num();
 467 
 468   _bytes_allocated_in_old_since_last_gc = 0;
 469 
 470   record_pause(FullGC, _full_collection_start_sec, end_sec);
 471 }
 472 
 473 void G1Policy::record_concurrent_refinement_data(bool is_full_collection) {
 474   _pending_cards_at_gc_start = _g1h->pending_card_num();
 475 
 476   // Record info about concurrent refinement thread processing.
 477   G1ConcurrentRefine* cr = _g1h->concurrent_refine();
 478   G1ConcurrentRefine::RefinementStats cr_stats = cr->total_refinement_stats();
 479 
 480   Tickspan cr_time = cr_stats._time - _total_concurrent_refinement_time;
 481   _total_concurrent_refinement_time = cr_stats._time;
 482 
 483   size_t cr_cards = cr_stats._cards - _total_concurrent_refined_cards;
 484   _total_concurrent_refined_cards = cr_stats._cards;
 485 
 486   // Don't update rate if full collection.  We could be in an implicit full
 487   // collection after a non-full collection failure, in which case there
 488   // wasn't any mutator/cr-thread activity since last recording.  And if
 489   // we're in an explicit full collection, the time since the last GC can
 490   // be arbitrarily short, so not a very good sample.  Similarly, don't
 491   // update the rate if the current sample is empty or time is zero.
 492   if (!is_full_collection && (cr_cards > 0) && (cr_time > Tickspan())) {
 493     double rate = cr_cards / (cr_time.seconds() * MILLIUNITS);
 494     _analytics->report_concurrent_refine_rate_ms(rate);
 495   }
 496 
 497   // Record info about mutator thread processing.
 498   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 499   size_t mut_total_cards = dcqs.total_mutator_refined_cards();
 500   size_t mut_cards = mut_total_cards - _total_mutator_refined_cards;
 501   _total_mutator_refined_cards = mut_total_cards;
 502 
 503   // Record mutator's card logging rate.
 504   // Don't update if full collection; see above.
 505   if (!is_full_collection) {
 506     size_t total_cards = _pending_cards_at_gc_start + cr_cards + mut_cards;
 507     assert(_pending_cards_at_prev_gc_end <= total_cards,
 508            "untracked cards: last pending: " SIZE_FORMAT
 509            ", pending: " SIZE_FORMAT ", conc refine: " SIZE_FORMAT
 510            ", mut refine:" SIZE_FORMAT,
 511            _pending_cards_at_prev_gc_end, _pending_cards_at_gc_start,
 512            cr_cards, mut_cards);
 513     size_t logged_cards = total_cards - _pending_cards_at_prev_gc_end;
 514     double logging_start_time = _analytics->prev_collection_pause_end_ms();
 515     double logging_end_time = Ticks::now().seconds() * MILLIUNITS;
 516     double logging_time = logging_end_time - logging_start_time;
 517     // Unlike above for conc-refine rate, here we should not require a
 518     // non-empty sample, since an application could go some time with only
 519     // young-gen or filtered out writes.  But we'll ignore unusually short
 520     // sample periods, as they may just pollute the predictions.
 521     if (logging_time > 1.0) {   // Require > 1ms sample time.
 522       _analytics->report_logged_cards_rate_ms(logged_cards / logging_time);
 523     }
 524   }
 525 }
 526 
 527 void G1Policy::record_collection_pause_start(double start_time_sec) {
 528   // We only need to do this here as the policy will only be applied
 529   // to the GC we're about to start. so, no point is calculating this
 530   // every time we calculate / recalculate the target young length.
 531   update_survivors_policy();
 532   _survivor_used_bytes_at_start = _g1h->survivor()->used_bytes();
 533   _survivor_used_bytes_at_end = 0;
 534   
 535   assert(max_survivor_regions() + _g1h->num_used_regions() <= _g1h->max_regions(),
 536          "Maximum survivor regions %u plus used regions %u exceeds max regions %u",
 537          max_survivor_regions(), _g1h->num_used_regions(), _g1h->max_regions());
 538   assert_used_and_recalculate_used_equal(_g1h);
 539 
 540   phase_times()->record_cur_collection_start_sec(start_time_sec);
 541 
 542   record_concurrent_refinement_data(false /* is_full_collection */);
 543 
 544   _collection_set->reset_bytes_used_before();
 545 
 546   // do that for any other surv rate groups
 547   _eden_surv_rate_group->stop_adding_regions();
 548   _survivors_age_table.clear();
 549   _surviving_survivor_words = 0;
 550 
 551   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
 552 }
 553 
 554 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 555   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 556   collector_state()->set_in_initial_mark_gc(false);
 557 }
 558 
 559 void G1Policy::record_concurrent_mark_remark_start() {
 560   _mark_remark_start_sec = os::elapsedTime();
 561 }
 562 
 563 void G1Policy::record_concurrent_mark_remark_end() {
 564   double end_time_sec = os::elapsedTime();
 565   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 566   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 567   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 568 
 569   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 570 }
 571 
 572 void G1Policy::record_concurrent_mark_cleanup_start() {
 573   _mark_cleanup_start_sec = os::elapsedTime();
 574 }
 575 
 576 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 577   return phase_times()->average_time_ms(phase);
 578 }
 579 
 580 double G1Policy::young_other_time_ms() const {
 581   return phase_times()->young_cset_choice_time_ms() +
 582          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 583 }
 584 
 585 double G1Policy::non_young_other_time_ms() const {
 586   return phase_times()->non_young_cset_choice_time_ms() +
 587          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 588 }
 589 
 590 double G1Policy::other_time_ms(double pause_time_ms) const {
 591   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 592 }
 593 
 594 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
 595   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms();
 596 }
 597 
 598 bool G1Policy::about_to_start_mixed_phase() const {
 599   return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
 600 }
 601 
 602 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 603   if (about_to_start_mixed_phase()) {
 604     return false;
 605   }
 606 
 607   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 608 
 609   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
 610   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 611   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 612 
 613   bool result = false;
 614   if (marking_request_bytes > marking_initiating_used_threshold) {
 615     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
 616     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 617                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 618                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
 619   }
 620 
 621   return result;
 622 }
 623 
 624 double G1Policy::logged_cards_processing_time() const {
 625   double all_cards_processing_time = average_time_ms(G1GCPhaseTimes::ScanHR) + average_time_ms(G1GCPhaseTimes::OptScanHR);
 626   size_t logged_dirty_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 627   size_t scan_heap_roots_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 628                                  phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 629   // This may happen if there are duplicate cards in different log buffers.
 630   if (logged_dirty_cards > scan_heap_roots_cards) {
 631     return all_cards_processing_time + average_time_ms(G1GCPhaseTimes::MergeLB);
 632   }
 633   return (all_cards_processing_time * logged_dirty_cards / scan_heap_roots_cards) + average_time_ms(G1GCPhaseTimes::MergeLB);
 634 }
 635 
 636 // Anything below that is considered to be zero
 637 #define MIN_TIMER_GRANULARITY 0.0000001
 638 
 639 void G1Policy::record_collection_pause_end(double pause_time_ms) {
 640   G1GCPhaseTimes* p = phase_times();
 641 
 642   double end_time_sec = os::elapsedTime();
 643 
 644   bool this_pause_included_initial_mark = false;
 645   bool this_pause_was_young_only = collector_state()->in_young_only_phase();
 646 
 647   bool update_stats = !_g1h->evacuation_failed();
 648 
 649   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 650 
 651   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 652 
 653   this_pause_included_initial_mark = collector_state()->in_initial_mark_gc();
 654   if (this_pause_included_initial_mark) {
 655     record_concurrent_mark_init_end(0.0);
 656   } else {
 657     maybe_start_marking();
 658   }
 659 
 660   size_t survived = _surviving_survivor_words * HeapWordSize;
 661 
 662   if (_survivor_used_bytes_at_start != 0) {
 663     double ratio = (double)survived / _survivor_used_bytes_at_start;
 664     guarantee(ratio >= 0.0 && ratio <= 1.0, "ratio %.3lf", ratio);
 665     _analytics->report_survivor_ratio(ratio);
 666   } else {
 667     _analytics->report_survivor_ratio(0.0f);
 668   }
 669   _survivor_used_bytes_at_end = survived;
 670   
 671   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 672   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 673     // This usually happens due to the timer not having the required
 674     // granularity. Some Linuxes are the usual culprits.
 675     // We'll just set it to something (arbitrarily) small.
 676     app_time_ms = 1.0;
 677   }
 678 
 679   if (update_stats) {
 680     // We maintain the invariant that all objects allocated by mutator
 681     // threads will be allocated out of eden regions. So, we can use
 682     // the eden region number allocated since the previous GC to
 683     // calculate the application's allocate rate. The only exception
 684     // to that is humongous objects that are allocated separately. But
 685     // given that humongous object allocations do not really affect
 686     // either the pause's duration nor when the next pause will take
 687     // place we can safely ignore them here.
 688     uint regions_allocated = _collection_set->eden_region_length();
 689     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 690     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 691 
 692     double interval_ms =
 693       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 694     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 695     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 696   }
 697 
 698   if (collector_state()->in_young_gc_before_mixed()) {
 699     assert(!this_pause_included_initial_mark, "The young GC before mixed is not allowed to be an initial mark GC");
 700     // This has been the young GC before we start doing mixed GCs. We already
 701     // decided to start mixed GCs much earlier, so there is nothing to do except
 702     // advancing the state.
 703     collector_state()->set_in_young_only_phase(false);
 704     collector_state()->set_in_young_gc_before_mixed(false);
 705   } else if (!this_pause_was_young_only) {
 706     // This is a mixed GC. Here we decide whether to continue doing more
 707     // mixed GCs or not.
 708     if (!next_gc_should_be_mixed("continue mixed GCs",
 709                                  "do not continue mixed GCs")) {
 710       collector_state()->set_in_young_only_phase(true);
 711 
 712       clear_collection_set_candidates();
 713       maybe_start_marking();
 714     }
 715   }
 716 
 717   _eden_surv_rate_group->start_adding_regions();
 718 
 719   double merge_hcc_time_ms = average_time_ms(G1GCPhaseTimes::MergeHCC);
 720   if (update_stats) {
 721     size_t const total_log_buffer_cards = p->sum_thread_work_items(G1GCPhaseTimes::MergeHCC, G1GCPhaseTimes::MergeHCCDirtyCards) +
 722                                           p->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 723     // Update prediction for card merge; MergeRSDirtyCards includes the cards from the Eager Reclaim phase.
 724     size_t const total_cards_merged = p->sum_thread_work_items(G1GCPhaseTimes::MergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 725                                       p->sum_thread_work_items(G1GCPhaseTimes::OptMergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 726                                       total_log_buffer_cards;
 727 
 728     // The threshold for the number of cards in a given sampling which we consider
 729     // large enough so that the impact from setup and other costs is negligible.
 730     size_t const CardsNumSamplingThreshold = 10;
 731 
 732     if (total_cards_merged > CardsNumSamplingThreshold) {
 733       double avg_time_merge_cards = average_time_ms(G1GCPhaseTimes::MergeER) +
 734                                     average_time_ms(G1GCPhaseTimes::MergeRS) +
 735                                     average_time_ms(G1GCPhaseTimes::MergeHCC) +
 736                                     average_time_ms(G1GCPhaseTimes::MergeLB) +
 737                                     average_time_ms(G1GCPhaseTimes::OptMergeRS);
 738       _analytics->report_cost_per_card_merge_ms(avg_time_merge_cards / total_cards_merged, this_pause_was_young_only);
 739     }
 740 
 741     // Update prediction for card scan
 742     size_t const total_cards_scanned = p->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 743                                        p->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 744 
 745     if (total_cards_scanned > CardsNumSamplingThreshold) {
 746       double avg_time_dirty_card_scan = average_time_ms(G1GCPhaseTimes::ScanHR) +
 747                                         average_time_ms(G1GCPhaseTimes::OptScanHR);
 748 
 749       _analytics->report_cost_per_card_scan_ms(avg_time_dirty_card_scan / total_cards_scanned, this_pause_was_young_only);
 750     }
 751 
 752     // Update prediction for the ratio between cards from the remembered
 753     // sets and actually scanned cards from the remembered sets.
 754     // Cards from the remembered sets are all cards not duplicated by cards from
 755     // the logs.
 756     // Due to duplicates in the log buffers, the number of actually scanned cards
 757     // can be smaller than the cards in the log buffers.
 758     const size_t from_rs_length_cards = (total_cards_scanned > total_log_buffer_cards) ? total_cards_scanned - total_log_buffer_cards : 0;
 759     double merge_to_scan_ratio = 0.0;
 760     if (total_cards_scanned > 0) {
 761       merge_to_scan_ratio = (double) from_rs_length_cards / total_cards_scanned;
 762     }
 763     _analytics->report_card_merge_to_scan_ratio(merge_to_scan_ratio, this_pause_was_young_only);
 764 
 765     const size_t recorded_rs_length = _collection_set->recorded_rs_length();
 766     const size_t rs_length_diff = _rs_length > recorded_rs_length ? _rs_length - recorded_rs_length : 0;
 767     _analytics->report_rs_length_diff(rs_length_diff);
 768 
 769     // Update prediction for copy cost per byte
 770     size_t copied_bytes = p->sum_thread_work_items(G1GCPhaseTimes::MergePSS, G1GCPhaseTimes::MergePSSCopiedBytes);
 771 
 772     if (copied_bytes > 0) {
 773       double cost_per_byte_ms = (average_time_ms(G1GCPhaseTimes::ObjCopy) + average_time_ms(G1GCPhaseTimes::OptObjCopy)) / copied_bytes;
 774       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
 775     }
 776 
 777     if (_collection_set->young_region_length() > 0) {
 778       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 779                                                         _collection_set->young_region_length());
 780     }
 781 
 782     if (_collection_set->old_region_length() > 0) {
 783       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 784                                                             _collection_set->old_region_length());
 785     }
 786 
 787     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 788 
 789     // Do not update RS lengths and the number of pending cards with information from mixed gc:
 790     // these are is wildly different to during young only gc and mess up young gen sizing right
 791     // after the mixed gc phase.
 792     // During mixed gc we do not use them for young gen sizing.
 793     if (this_pause_was_young_only) {
 794       _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
 795       _analytics->report_rs_length((double) _rs_length);
 796     }
 797   }
 798 
 799   assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
 800          "If the last pause has been an initial mark, we should not have been in the marking window");
 801   if (this_pause_included_initial_mark) {
 802     collector_state()->set_mark_or_rebuild_in_progress(true);
 803   }
 804 
 805   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 806 
 807   update_rs_length_prediction();
 808 
 809   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
 810   // that in this case we are not running in a "normal" operating mode.
 811   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
 812     // IHOP control wants to know the expected young gen length if it were not
 813     // restrained by the heap reserve. Using the actual length would make the
 814     // prediction too small and the limit the young gen every time we get to the
 815     // predicted target occupancy.
 816     size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 817 
 818     update_ihop_prediction(app_time_ms / 1000.0,
 819                            _bytes_allocated_in_old_since_last_gc,
 820                            last_unrestrained_young_length * HeapRegion::GrainBytes,
 821                            this_pause_was_young_only);
 822     _bytes_allocated_in_old_since_last_gc = 0;
 823 
 824     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 825   } else {
 826     // Any garbage collection triggered as periodic collection resets the time-to-mixed
 827     // measurement. Periodic collection typically means that the application is "inactive", i.e.
 828     // the marking threads may have received an uncharacterisic amount of cpu time
 829     // for completing the marking, i.e. are faster than expected.
 830     // This skews the predicted marking length towards smaller values which might cause
 831     // the mark start being too late.
 832     _initial_mark_to_mixed.reset();
 833   }
 834 
 835   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 836   double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 837 
 838   if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
 839     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 840                                 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
 841                                 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);
 842 
 843     scan_logged_cards_time_goal_ms = 0;
 844   } else {
 845     scan_logged_cards_time_goal_ms -= merge_hcc_time_ms;
 846   }
 847 
 848   _pending_cards_at_prev_gc_end = _g1h->pending_card_num();
 849   double const logged_cards_time = logged_cards_processing_time();
 850 
 851   log_debug(gc, ergo, refine)("Concurrent refinement times: Logged Cards Scan time goal: %1.2fms Logged Cards Scan time: %1.2fms HCC time: %1.2fms",
 852                               scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
 853 
 854   _g1h->concurrent_refine()->adjust(logged_cards_time,
 855                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
 856                                     scan_logged_cards_time_goal_ms);
 857 }
 858 
 859 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 860   if (G1UseAdaptiveIHOP) {
 861     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 862                                      predictor,
 863                                      G1ReservePercent,
 864                                      G1HeapWastePercent);
 865   } else {
 866     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 867   }
 868 }
 869 
 870 void G1Policy::update_ihop_prediction(double mutator_time_s,
 871                                       size_t mutator_alloc_bytes,
 872                                       size_t young_gen_size,
 873                                       bool this_gc_was_young_only) {
 874   // Always try to update IHOP prediction. Even evacuation failures give information
 875   // about e.g. whether to start IHOP earlier next time.
 876 
 877   // Avoid using really small application times that might create samples with
 878   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 879   double const min_valid_time = 1e-6;
 880 
 881   bool report = false;
 882 
 883   double marking_to_mixed_time = -1.0;
 884   if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
 885     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 886     assert(marking_to_mixed_time > 0.0,
 887            "Initial mark to mixed time must be larger than zero but is %.3f",
 888            marking_to_mixed_time);
 889     if (marking_to_mixed_time > min_valid_time) {
 890       _ihop_control->update_marking_length(marking_to_mixed_time);
 891       report = true;
 892     }
 893   }
 894 
 895   // As an approximation for the young gc promotion rates during marking we use
 896   // all of them. In many applications there are only a few if any young gcs during
 897   // marking, which makes any prediction useless. This increases the accuracy of the
 898   // prediction.
 899   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 900     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 901     report = true;
 902   }
 903 
 904   if (report) {
 905     report_ihop_statistics();
 906   }
 907 }
 908 
 909 void G1Policy::report_ihop_statistics() {
 910   _ihop_control->print();
 911 }
 912 
 913 void G1Policy::print_phases() {
 914   phase_times()->print();
 915 }
 916 
 917 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
 918                                               size_t rs_length) const {
 919   size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());
 920   return
 921     _analytics->predict_card_merge_time_ms(pending_cards + rs_length, collector_state()->in_young_only_phase()) +
 922     _analytics->predict_card_scan_time_ms(effective_scanned_cards, collector_state()->in_young_only_phase()) +
 923     _analytics->predict_constant_other_time_ms() +
 924     predict_survivor_regions_evac_time();
 925 }
 926 
 927 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 928   size_t rs_length = _analytics->predict_rs_length();
 929   return predict_base_elapsed_time_ms(pending_cards, rs_length);
 930 }
 931 
 932 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
 933   size_t bytes_to_copy = 0;
 934   if (!hr->is_young()) {
 935     bytes_to_copy = hr->max_live_bytes();
 936   } else {
 937     size_t survived = hr->survivor_bytes();
 938 
 939     guarantee(hr->used() >= survived, "Used " SIZE_FORMAT " >= survived " SIZE_FORMAT, hr->used(), survived);
 940 
 941     if (survived > 0) {
 942       bytes_to_copy += survived * _analytics->predict_survivor_ratio();
 943     }
 944 
 945     if (hr->used() > survived) {
 946       bytes_to_copy += (size_t) ((hr->used() - survived) * hr->surv_rate_prediction(_predictor));
 947     }
 948     /*
 949     log_debug(gc)("straggler region %u type %s old survived " SIZE_FORMAT " exp survived " SIZE_FORMAT " eden used " SIZE_FORMAT " exp eden survived " SIZE_FORMAT " total " SIZE_FORMAT,
 950                   hr->hrm_index(), hr->get_short_type_str(), survived, (size_t)(survived * _analytics->predict_survivor_ratio()), hr->used() - survived,
 951                   ((hr->used() - survived) > 0) ? (size_t)((hr->used() - survived) * hr->surv_rate_prediction(_predictor)) : 0, bytes_to_copy);
 952      */
 953   }
 954   return bytes_to_copy;
 955 }
 956 
 957 double G1Policy::predict_eden_copy_time_ms(uint count, size_t* bytes_to_copy) const {
 958   if (count == 0) {
 959     return 0.0;
 960   }
 961   size_t const expected_bytes = _eden_surv_rate_group->accum_surv_rate_pred(count) * HeapRegion::GrainBytes;
 962   if (bytes_to_copy != NULL) {
 963     *bytes_to_copy = expected_bytes;
 964   }
 965   return _analytics->predict_object_copy_time_ms(expected_bytes, collector_state()->mark_or_rebuild_in_progress());
 966 }
 967 
 968 double G1Policy::predict_region_copy_time_ms(HeapRegion* hr) const {
 969   size_t const bytes_to_copy = predict_bytes_to_copy(hr);
 970   return _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
 971 }
 972 
 973 double G1Policy::predict_region_non_copy_time_ms(HeapRegion* hr,
 974                                                  bool for_young_gc) const {
 975   size_t rs_length = hr->rem_set()->occupied();
 976   size_t scan_card_num = _analytics->predict_scan_card_num(rs_length, for_young_gc);
 977 
 978   double region_elapsed_time_ms =
 979     _analytics->predict_card_merge_time_ms(rs_length, collector_state()->in_young_only_phase()) +
 980     _analytics->predict_card_scan_time_ms(scan_card_num, collector_state()->in_young_only_phase());
 981 
 982   // The prediction of the "other" time for this region is based
 983   // upon the region type and NOT the GC type.
 984   if (hr->is_young()) {
 985     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 986   } else {
 987     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 988   }
 989   return region_elapsed_time_ms;
 990 }
 991 
 992 double G1Policy::predict_region_total_time_ms(HeapRegion* hr, bool for_young_gc) const {
 993   return predict_region_non_copy_time_ms(hr, for_young_gc) + predict_region_copy_time_ms(hr);
 994 }
 995 
 996 bool G1Policy::should_allocate_mutator_region() const {
 997   uint young_list_length = _g1h->young_regions_count();
 998   uint young_list_target_length = _young_list_target_length;
 999   return young_list_length < young_list_target_length;
1000 }
1001 
1002 bool G1Policy::can_expand_young_list() const {
1003   uint young_list_length = _g1h->young_regions_count();
1004   uint young_list_max_length = _young_list_max_length;
1005   return young_list_length < young_list_max_length;
1006 }
1007 
1008 bool G1Policy::use_adaptive_young_list_length() const {
1009   return _young_gen_sizer->use_adaptive_young_list_length();
1010 }
1011 
1012 size_t G1Policy::desired_survivor_size(uint max_regions) const {
1013   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
1014   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
1015 }
1016 
1017 void G1Policy::print_age_table() {
1018   _survivors_age_table.print_age_table(_tenuring_threshold);
1019 }
1020 
1021 void G1Policy::update_max_gc_locker_expansion() {
1022   uint expansion_region_num = 0;
1023   if (GCLockerEdenExpansionPercent > 0) {
1024     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1025     double expansion_region_num_d = perc * (double) _young_list_target_length;
1026     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1027     // less than 1.0) we'll get 1.
1028     expansion_region_num = (uint) ceil(expansion_region_num_d);
1029   } else {
1030     assert(expansion_region_num == 0, "sanity");
1031   }
1032   _young_list_max_length = _young_list_target_length + expansion_region_num;
1033   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1034 }
1035 
1036 // Calculates survivor space parameters.
1037 void G1Policy::update_survivors_policy() {
1038   double max_survivor_regions_d =
1039                  (double) _young_list_target_length / (double) SurvivorRatio;
1040 
1041   // Calculate desired survivor size based on desired max survivor regions (unconstrained
1042   // by remaining heap). Otherwise we may cause undesired promotions as we are
1043   // already getting close to end of the heap, impacting performance even more.
1044   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1045   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1046 
1047   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1048   if (UsePerfData) {
1049     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1050     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1051   }
1052   // The real maximum survivor size is bounded by the number of regions that can
1053   // be allocated into.
1054   _max_survivor_regions = MIN2(desired_max_survivor_regions,
1055                                _g1h->num_free_or_available_regions());
1056 }
1057 
1058 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1059   // We actually check whether we are marking here and not if we are in a
1060   // reclamation phase. This means that we will schedule a concurrent mark
1061   // even while we are still in the process of reclaiming memory.
1062   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
1063   if (!during_cycle) {
1064     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1065     collector_state()->set_initiate_conc_mark_if_possible(true);
1066     return true;
1067   } else {
1068     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1069     return false;
1070   }
1071 }
1072 
1073 void G1Policy::initiate_conc_mark() {
1074   collector_state()->set_in_initial_mark_gc(true);
1075   collector_state()->set_initiate_conc_mark_if_possible(false);
1076 }
1077 
1078 void G1Policy::decide_on_conc_mark_initiation() {
1079   // We are about to decide on whether this pause will be an
1080   // initial-mark pause.
1081 
1082   // First, collector_state()->in_initial_mark_gc() should not be already set. We
1083   // will set it here if we have to. However, it should be cleared by
1084   // the end of the pause (it's only set for the duration of an
1085   // initial-mark pause).
1086   assert(!collector_state()->in_initial_mark_gc(), "pre-condition");
1087 
1088   if (collector_state()->initiate_conc_mark_if_possible()) {
1089     // We had noticed on a previous pause that the heap occupancy has
1090     // gone over the initiating threshold and we should start a
1091     // concurrent marking cycle. So we might initiate one.
1092 
1093     if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
1094       // Initiate a new initial mark if there is no marking or reclamation going on.
1095       initiate_conc_mark();
1096       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1097     } else if (_g1h->is_user_requested_concurrent_full_gc(_g1h->gc_cause())) {
1098       // Initiate a user requested initial mark. An initial mark must be young only
1099       // GC, so the collector state must be updated to reflect this.
1100       collector_state()->set_in_young_only_phase(true);
1101       collector_state()->set_in_young_gc_before_mixed(false);
1102 
1103       // We might have ended up coming here about to start a mixed phase with a collection set
1104       // active. The following remark might change the change the "evacuation efficiency" of
1105       // the regions in this set, leading to failing asserts later.
1106       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
1107       clear_collection_set_candidates();
1108       abort_time_to_mixed_tracking();
1109       initiate_conc_mark();
1110       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1111     } else {
1112       // The concurrent marking thread is still finishing up the
1113       // previous cycle. If we start one right now the two cycles
1114       // overlap. In particular, the concurrent marking thread might
1115       // be in the process of clearing the next marking bitmap (which
1116       // we will use for the next cycle if we start one). Starting a
1117       // cycle now will be bad given that parts of the marking
1118       // information might get cleared by the marking thread. And we
1119       // cannot wait for the marking thread to finish the cycle as it
1120       // periodically yields while clearing the next marking bitmap
1121       // and, if it's in a yield point, it's waiting for us to
1122       // finish. So, at this point we will not start a cycle and we'll
1123       // let the concurrent marking thread complete the last one.
1124       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1125     }
1126   }
1127 }
1128 
1129 void G1Policy::record_concurrent_mark_cleanup_end() {
1130   G1CollectionSetCandidates* candidates = G1CollectionSetChooser::build(_g1h->workers(), _g1h->num_regions());
1131   _collection_set->set_candidates(candidates);
1132 
1133   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1134   if (!mixed_gc_pending) {
1135     clear_collection_set_candidates();
1136     abort_time_to_mixed_tracking();
1137   }
1138   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1139   collector_state()->set_mark_or_rebuild_in_progress(false);
1140 
1141   double end_sec = os::elapsedTime();
1142   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1143   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1144   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1145 
1146   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1147 }
1148 
1149 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1150   return percent_of(reclaimable_bytes, _g1h->capacity());
1151 }
1152 
1153 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
1154   virtual bool do_heap_region(HeapRegion* r) {
1155     r->rem_set()->clear_locked(true /* only_cardset */);
1156     return false;
1157   }
1158 };
1159 
1160 void G1Policy::clear_collection_set_candidates() {
1161   // Clear remembered sets of remaining candidate regions and the actual candidate
1162   // set.
1163   G1ClearCollectionSetCandidateRemSets cl;
1164   _collection_set->candidates()->iterate(&cl);
1165   _collection_set->clear_candidates();
1166 }
1167 
1168 void G1Policy::maybe_start_marking() {
1169   if (need_to_start_conc_mark("end of GC")) {
1170     // Note: this might have already been set, if during the last
1171     // pause we decided to start a cycle but at the beginning of
1172     // this pause we decided to postpone it. That's OK.
1173     collector_state()->set_initiate_conc_mark_if_possible(true);
1174   }
1175 }
1176 
1177 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1178   assert(!collector_state()->in_full_gc(), "must be");
1179   if (collector_state()->in_initial_mark_gc()) {
1180     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1181     return InitialMarkGC;
1182   } else if (collector_state()->in_young_gc_before_mixed()) {
1183     assert(!collector_state()->in_initial_mark_gc(), "must be");
1184     return LastYoungGC;
1185   } else if (collector_state()->in_mixed_phase()) {
1186     assert(!collector_state()->in_initial_mark_gc(), "must be");
1187     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1188     return MixedGC;
1189   } else {
1190     assert(!collector_state()->in_initial_mark_gc(), "must be");
1191     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1192     return YoungOnlyGC;
1193   }
1194 }
1195 
1196 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1197   // Manage the MMU tracker. For some reason it ignores Full GCs.
1198   if (kind != FullGC) {
1199     _mmu_tracker->add_pause(start, end);
1200   }
1201   // Manage the mutator time tracking from initial mark to first mixed gc.
1202   switch (kind) {
1203     case FullGC:
1204       abort_time_to_mixed_tracking();
1205       break;
1206     case Cleanup:
1207     case Remark:
1208     case YoungOnlyGC:
1209     case LastYoungGC:
1210       _initial_mark_to_mixed.add_pause(end - start);
1211       break;
1212     case InitialMarkGC:
1213       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1214         _initial_mark_to_mixed.record_initial_mark_end(end);
1215       }
1216       break;
1217     case MixedGC:
1218       _initial_mark_to_mixed.record_mixed_gc_start(start);
1219       break;
1220     default:
1221       ShouldNotReachHere();
1222   }
1223 }
1224 
1225 void G1Policy::abort_time_to_mixed_tracking() {
1226   _initial_mark_to_mixed.reset();
1227 }
1228 
1229 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1230                                        const char* false_action_str) const {
1231   G1CollectionSetCandidates* candidates = _collection_set->candidates();
1232 
1233   if (candidates->is_empty()) {
1234     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1235     return false;
1236   }
1237 
1238   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1239   size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1240   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1241   double threshold = (double) G1HeapWastePercent;
1242   if (reclaimable_percent <= threshold) {
1243     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1244                         false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1245     return false;
1246   }
1247   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1248                       true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1249   return true;
1250 }
1251 
1252 uint G1Policy::calc_min_old_cset_length() const {
1253   // The min old CSet region bound is based on the maximum desired
1254   // number of mixed GCs after a cycle. I.e., even if some old regions
1255   // look expensive, we should add them to the CSet anyway to make
1256   // sure we go through the available old regions in no more than the
1257   // maximum desired number of mixed GCs.
1258   //
1259   // The calculation is based on the number of marked regions we added
1260   // to the CSet candidates in the first place, not how many remain, so
1261   // that the result is the same during all mixed GCs that follow a cycle.
1262 
1263   const size_t region_num = _collection_set->candidates()->num_regions();
1264   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1265   size_t result = region_num / gc_num;
1266   // emulate ceiling
1267   if (result * gc_num < region_num) {
1268     result += 1;
1269   }
1270   return (uint) result;
1271 }
1272 
1273 uint G1Policy::calc_max_old_cset_length() const {
1274   // The max old CSet region bound is based on the threshold expressed
1275   // as a percentage of the heap size. I.e., it should bound the
1276   // number of old regions added to the CSet irrespective of how many
1277   // of them are available.
1278 
1279   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1280   const size_t region_num = g1h->num_regions();
1281   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1282   size_t result = region_num * perc / 100;
1283   // emulate ceiling
1284   if (100 * result < region_num * perc) {
1285     result += 1;
1286   }
1287   return (uint) result;
1288 }
1289 
1290 void G1Policy::calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates,
1291                                                     double time_remaining_ms,
1292                                                     uint& num_initial_regions,
1293                                                     uint& num_optional_regions) {
1294   assert(candidates != NULL, "Must be");
1295 
1296   num_initial_regions = 0;
1297   num_optional_regions = 0;
1298   uint num_expensive_regions = 0;
1299 
1300   double predicted_old_time_ms = 0.0;
1301   double predicted_initial_time_ms = 0.0;
1302   double predicted_optional_time_ms = 0.0;
1303 
1304   double optional_threshold_ms = time_remaining_ms * optional_prediction_fraction();
1305 
1306   const uint min_old_cset_length = calc_min_old_cset_length();
1307   const uint max_old_cset_length = MAX2(min_old_cset_length, calc_max_old_cset_length());
1308   const uint max_optional_regions = max_old_cset_length - min_old_cset_length;
1309   bool check_time_remaining = use_adaptive_young_list_length();
1310 
1311   uint candidate_idx = candidates->cur_idx();
1312 
1313   log_debug(gc, ergo, cset)("Start adding old regions to collection set. Min %u regions, max %u regions, "
1314                             "time remaining %1.2fms, optional threshold %1.2fms",
1315                             min_old_cset_length, max_old_cset_length, time_remaining_ms, optional_threshold_ms);
1316 
1317   HeapRegion* hr = candidates->at(candidate_idx);
1318   while (hr != NULL) {
1319     if (num_initial_regions + num_optional_regions >= max_old_cset_length) {
1320       // Added maximum number of old regions to the CSet.
1321       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Maximum number of regions). "
1322                                 "Initial %u regions, optional %u regions",
1323                                 num_initial_regions, num_optional_regions);
1324       break;
1325     }
1326 
1327     // Stop adding regions if the remaining reclaimable space is
1328     // not above G1HeapWastePercent.
1329     size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1330     double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1331     double threshold = (double) G1HeapWastePercent;
1332     if (reclaimable_percent <= threshold) {
1333       // We've added enough old regions that the amount of uncollected
1334       // reclaimable space is at or below the waste threshold. Stop
1335       // adding old regions to the CSet.
1336       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Reclaimable percentage below threshold). "
1337                                 "Reclaimable: " SIZE_FORMAT "%s (%1.2f%%) threshold: " UINTX_FORMAT "%%",
1338                                 byte_size_in_proper_unit(reclaimable_bytes), proper_unit_for_byte_size(reclaimable_bytes),
1339                                 reclaimable_percent, G1HeapWastePercent);
1340       break;
1341     }
1342 
1343     double predicted_time_ms = predict_region_total_time_ms(hr, false);
1344     time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
1345     // Add regions to old set until we reach the minimum amount
1346     if (num_initial_regions < min_old_cset_length) {
1347       predicted_old_time_ms += predicted_time_ms;
1348       num_initial_regions++;
1349       // Record the number of regions added with no time remaining
1350       if (time_remaining_ms == 0.0) {
1351         num_expensive_regions++;
1352       }
1353     } else if (!check_time_remaining) {
1354       // In the non-auto-tuning case, we'll finish adding regions
1355       // to the CSet if we reach the minimum.
1356       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Region amount reached min).");
1357       break;
1358     } else {
1359       // Keep adding regions to old set until we reach the optional threshold
1360       if (time_remaining_ms > optional_threshold_ms) {
1361         predicted_old_time_ms += predicted_time_ms;
1362         num_initial_regions++;
1363       } else if (time_remaining_ms > 0) {
1364         // Keep adding optional regions until time is up.
1365         assert(num_optional_regions < max_optional_regions, "Should not be possible.");
1366         predicted_optional_time_ms += predicted_time_ms;
1367         num_optional_regions++;
1368       } else {
1369         log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Predicted time too high).");
1370         break;
1371       }
1372     }
1373     hr = candidates->at(++candidate_idx);
1374   }
1375   if (hr == NULL) {
1376     log_debug(gc, ergo, cset)("Old candidate collection set empty.");
1377   }
1378 
1379   if (num_expensive_regions > 0) {
1380     log_debug(gc, ergo, cset)("Added %u initial old regions to collection set although the predicted time was too high.",
1381                               num_expensive_regions);
1382   }
1383 
1384   log_debug(gc, ergo, cset)("Finish choosing collection set old regions. Initial: %u, optional: %u, "
1385                             "predicted old time: %1.2fms, predicted optional time: %1.2fms, time remaining: %1.2f",
1386                             num_initial_regions, num_optional_regions,
1387                             predicted_initial_time_ms, predicted_optional_time_ms, time_remaining_ms);
1388 }
1389 
1390 void G1Policy::calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates,
1391                                                          uint const max_optional_regions,
1392                                                          double time_remaining_ms,
1393                                                          uint& num_optional_regions) {
1394   assert(_g1h->collector_state()->in_mixed_phase(), "Should only be called in mixed phase");
1395 
1396   num_optional_regions = 0;
1397   double prediction_ms = 0;
1398   uint candidate_idx = candidates->cur_idx();
1399 
1400   HeapRegion* r = candidates->at(candidate_idx);
1401   while (num_optional_regions < max_optional_regions) {
1402     assert(r != NULL, "Region must exist");
1403     prediction_ms += predict_region_total_time_ms(r, false);
1404 
1405     if (prediction_ms > time_remaining_ms) {
1406       log_debug(gc, ergo, cset)("Prediction %.3fms for region %u does not fit remaining time: %.3fms.",
1407                                 prediction_ms, r->hrm_index(), time_remaining_ms);
1408       break;
1409     }
1410     // This region will be included in the next optional evacuation.
1411 
1412     time_remaining_ms -= prediction_ms;
1413     num_optional_regions++;
1414     r = candidates->at(++candidate_idx);
1415   }
1416 
1417   log_debug(gc, ergo, cset)("Prepared %u regions out of %u for optional evacuation. Predicted time: %.3fms",
1418                             num_optional_regions, max_optional_regions, prediction_ms);
1419 }
1420 
1421 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1422   HeapRegion* last = NULL;
1423   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1424        it != survivors->regions()->end();
1425        ++it) {
1426     HeapRegion* curr = *it;
1427 
1428     // The region is a non-empty survivor so let's add it to
1429     // the incremental collection set for the next evacuation
1430     // pause.
1431     _collection_set->add_survivor_regions(curr);
1432 
1433     last = curr;
1434   }
1435 
1436   // Don't clear the survivor list handles until the start of
1437   // the next evacuation pause - we need it in order to re-tag
1438   // the survivor regions from this evacuation pause as 'young'
1439   // at the start of the next.
1440 }