1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Analytics.hpp"
  27 #include "gc/g1/g1Arguments.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectionSetCandidates.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1ConcurrentRefine.hpp"
  34 #include "gc/g1/g1CollectionSetChooser.hpp"
  35 #include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
  36 #include "gc/g1/g1HotCardCache.hpp"
  37 #include "gc/g1/g1IHOPControl.hpp"
  38 #include "gc/g1/g1GCPhaseTimes.hpp"
  39 #include "gc/g1/g1Policy.hpp"
  40 #include "gc/g1/g1SurvivorRegions.hpp"
  41 #include "gc/g1/g1YoungGenSizer.hpp"
  42 #include "gc/g1/heapRegion.inline.hpp"
  43 #include "gc/g1/heapRegionRemSet.hpp"
  44 #include "gc/shared/gcPolicyCounters.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "utilities/debug.hpp"
  50 #include "utilities/growableArray.hpp"
  51 #include "utilities/pair.hpp"
  52 
  53 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  54   _predictor(G1ConfidencePercent / 100.0),
  55   _analytics(new G1Analytics(&_predictor)),
  56   _remset_tracker(),
  57   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  58   _ihop_control(create_ihop_control(&_predictor)),
  59   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  60   _full_collection_start_sec(0.0),
  61   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC),
  62   _young_list_target_length(0),
  63   _young_list_fixed_length(0),
  64   _young_list_max_length(0),
  65   _eden_surv_rate_group(new SurvRateGroup()),
  66   _survivor_surv_rate_group(new SurvRateGroup()),
  67   _reserve_factor((double) G1ReservePercent / 100.0),
  68   _reserve_regions(0),
  69   _young_gen_sizer(G1YoungGenSizer::create_gen_sizer()),
  70   _free_regions_at_end_of_collection(0),
  71   _rs_length(0),
  72   _rs_length_prediction(0),
  73   _pending_cards_at_gc_start(0),
  74   _pending_cards_at_prev_gc_end(0),
  75   _total_mutator_refined_cards(0),
  76   _total_concurrent_refined_cards(0),
  77   _total_concurrent_refinement_time(),
  78   _bytes_allocated_in_old_since_last_gc(0),
  79   _initial_mark_to_mixed(),
  80   _collection_set(NULL),
  81   _g1h(NULL),
  82   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
  83   _mark_remark_start_sec(0),
  84   _mark_cleanup_start_sec(0),
  85   _tenuring_threshold(MaxTenuringThreshold),
  86   _max_survivor_regions(0),
  87   _survivors_age_table(true)
  88 {
  89 }
  90 
  91 G1Policy::~G1Policy() {
  92   delete _ihop_control;
  93   delete _young_gen_sizer;
  94 }
  95 
  96 G1Policy* G1Policy::create_policy(STWGCTimer* gc_timer_stw) {
  97   if (G1Arguments::is_heterogeneous_heap()) {
  98     return new G1HeterogeneousHeapPolicy(gc_timer_stw);
  99   } else {
 100     return new G1Policy(gc_timer_stw);
 101   }
 102 }
 103 
 104 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
 105 
 106 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
 107   _g1h = g1h;
 108   _collection_set = collection_set;
 109 
 110   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 111 
 112   if (!use_adaptive_young_list_length()) {
 113     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 114   }
 115   _young_gen_sizer->adjust_max_new_size(_g1h->max_expandable_regions());
 116 
 117   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 118 
 119   update_young_list_max_and_target_length();
 120   // We may immediately start allocating regions and placing them on the
 121   // collection set list. Initialize the per-collection set info
 122   _collection_set->start_incremental_building();
 123 }
 124 
 125 void G1Policy::note_gc_start() {
 126   phase_times()->note_gc_start();
 127 }
 128 
 129 class G1YoungLengthPredictor {
 130   const double _base_time_ms;
 131   const double _base_free_regions;
 132   const double _target_pause_time_ms;
 133   const G1Policy* const _policy;
 134 
 135  public:
 136   G1YoungLengthPredictor(bool during_cm,
 137                          double base_time_ms,
 138                          double base_free_regions,
 139                          double target_pause_time_ms,
 140                          const G1Policy* policy) :
 141     _base_time_ms(base_time_ms),
 142     _base_free_regions(base_free_regions),
 143     _target_pause_time_ms(target_pause_time_ms),
 144     _policy(policy) {}
 145 
 146   bool will_fit(uint young_length) const {
 147     if (young_length >= _base_free_regions) {
 148       // end condition 1: not enough space for the young regions
 149       return false;
 150     }
 151 
 152     size_t bytes_to_copy = 0;
 153     const double copy_time_ms = _policy->predict_eden_copy_time_ms(young_length, &bytes_to_copy);
 154     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 155     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 156     if (pause_time_ms > _target_pause_time_ms) {
 157       // end condition 2: prediction is over the target pause time
 158       return false;
 159     }
 160 
 161     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 162 
 163     // When copying, we will likely need more bytes free than is live in the region.
 164     // Add some safety margin to factor in the confidence of our guess, and the
 165     // natural expected waste.
 166     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 167     // of the calculation: the lower the confidence, the more headroom.
 168     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 169     // copying due to anticipated waste in the PLABs.
 170     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 171     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 172 
 173     if (expected_bytes_to_copy > free_bytes) {
 174       // end condition 3: out-of-space
 175       return false;
 176     }
 177 
 178     // success!
 179     return true;
 180   }
 181 };
 182 
 183 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 184   // re-calculate the necessary reserve
 185   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 186   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 187   // smaller than 1.0) we'll get 1.
 188   _reserve_regions = (uint) ceil(reserve_regions_d);
 189 
 190   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 191 
 192   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 193 }
 194 
 195 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
 196   uint desired_min_length = 0;
 197   if (use_adaptive_young_list_length()) {
 198     if (_analytics->num_alloc_rate_ms() > 3) {
 199       double now_sec = os::elapsedTime();
 200       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 201       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 202       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 203     } else {
 204       // otherwise we don't have enough info to make the prediction
 205     }
 206   }
 207   desired_min_length += base_min_length;
 208   // make sure we don't go below any user-defined minimum bound
 209   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 210 }
 211 
 212 uint G1Policy::calculate_young_list_desired_max_length() const {
 213   // Here, we might want to also take into account any additional
 214   // constraints (i.e., user-defined minimum bound). Currently, we
 215   // effectively don't set this bound.
 216   return _young_gen_sizer->max_desired_young_length();
 217 }
 218 
 219 uint G1Policy::update_young_list_max_and_target_length() {
 220   return update_young_list_max_and_target_length(_analytics->predict_rs_length());
 221 }
 222 
 223 uint G1Policy::update_young_list_max_and_target_length(size_t rs_length) {
 224   uint unbounded_target_length = update_young_list_target_length(rs_length);
 225   update_max_gc_locker_expansion();
 226   return unbounded_target_length;
 227 }
 228 
 229 uint G1Policy::update_young_list_target_length(size_t rs_length) {
 230   YoungTargetLengths young_lengths = young_list_target_lengths(rs_length);
 231   _young_list_target_length = young_lengths.first;
 232 
 233   return young_lengths.second;
 234 }
 235 
 236 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_length) const {
 237   YoungTargetLengths result;
 238 
 239   // Calculate the absolute and desired min bounds first.
 240 
 241   // This is how many young regions we already have (currently: the survivors).
 242   const uint base_min_length = _g1h->survivor_regions_count();
 243   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 244   // This is the absolute minimum young length. Ensure that we
 245   // will at least have one eden region available for allocation.
 246   uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
 247   // If we shrank the young list target it should not shrink below the current size.
 248   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 249   // Calculate the absolute and desired max bounds.
 250 
 251   uint desired_max_length = calculate_young_list_desired_max_length();
 252 
 253   uint young_list_target_length = 0;
 254   if (use_adaptive_young_list_length()) {
 255     if (collector_state()->in_young_only_phase()) {
 256       young_list_target_length =
 257                         calculate_young_list_target_length(rs_length,
 258                                                            base_min_length,
 259                                                            desired_min_length,
 260                                                            desired_max_length);
 261     } else {
 262       // Don't calculate anything and let the code below bound it to
 263       // the desired_min_length, i.e., do the next GC as soon as
 264       // possible to maximize how many old regions we can add to it.
 265     }
 266   } else {
 267     // The user asked for a fixed young gen so we'll fix the young gen
 268     // whether the next GC is young or mixed.
 269     young_list_target_length = _young_list_fixed_length;
 270   }
 271 
 272   result.second = young_list_target_length;
 273 
 274   // We will try our best not to "eat" into the reserve.
 275   uint absolute_max_length = 0;
 276   if (_free_regions_at_end_of_collection > _reserve_regions) {
 277     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 278   }
 279   if (desired_max_length > absolute_max_length) {
 280     desired_max_length = absolute_max_length;
 281   }
 282 
 283   // Make sure we don't go over the desired max length, nor under the
 284   // desired min length. In case they clash, desired_min_length wins
 285   // which is why that test is second.
 286   if (young_list_target_length > desired_max_length) {
 287     young_list_target_length = desired_max_length;
 288   }
 289   if (young_list_target_length < desired_min_length) {
 290     young_list_target_length = desired_min_length;
 291   }
 292 
 293   assert(young_list_target_length > base_min_length,
 294          "we should be able to allocate at least one eden region");
 295   assert(young_list_target_length >= absolute_min_length, "post-condition");
 296 
 297   result.first = young_list_target_length;
 298   return result;
 299 }
 300 
 301 uint G1Policy::calculate_young_list_target_length(size_t rs_length,
 302                                                   uint base_min_length,
 303                                                   uint desired_min_length,
 304                                                   uint desired_max_length) const {
 305   assert(use_adaptive_young_list_length(), "pre-condition");
 306   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
 307 
 308   // In case some edge-condition makes the desired max length too small...
 309   if (desired_max_length <= desired_min_length) {
 310     return desired_min_length;
 311   }
 312 
 313   // We'll adjust min_young_length and max_young_length not to include
 314   // the already allocated young regions (i.e., so they reflect the
 315   // min and max eden regions we'll allocate). The base_min_length
 316   // will be reflected in the predictions by the
 317   // survivor_regions_evac_time prediction.
 318   assert(desired_min_length > base_min_length, "invariant");
 319   uint min_young_length = desired_min_length - base_min_length;
 320   assert(desired_max_length > base_min_length, "invariant");
 321   uint max_young_length = desired_max_length - base_min_length;
 322 
 323   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 324   const size_t pending_cards = _analytics->predict_pending_cards();
 325   const double base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
 326   const uint available_free_regions = _free_regions_at_end_of_collection;
 327   const uint base_free_regions =
 328     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 329 
 330   // Here, we will make sure that the shortest young length that
 331   // makes sense fits within the target pause time.
 332 
 333   G1YoungLengthPredictor p(collector_state()->mark_or_rebuild_in_progress(),
 334                            base_time_ms,
 335                            base_free_regions,
 336                            target_pause_time_ms,
 337                            this);
 338   if (p.will_fit(min_young_length)) {
 339     // The shortest young length will fit into the target pause time;
 340     // we'll now check whether the absolute maximum number of young
 341     // regions will fit in the target pause time. If not, we'll do
 342     // a binary search between min_young_length and max_young_length.
 343     if (p.will_fit(max_young_length)) {
 344       // The maximum young length will fit into the target pause time.
 345       // We are done so set min young length to the maximum length (as
 346       // the result is assumed to be returned in min_young_length).
 347       min_young_length = max_young_length;
 348     } else {
 349       // The maximum possible number of young regions will not fit within
 350       // the target pause time so we'll search for the optimal
 351       // length. The loop invariants are:
 352       //
 353       // min_young_length < max_young_length
 354       // min_young_length is known to fit into the target pause time
 355       // max_young_length is known not to fit into the target pause time
 356       //
 357       // Going into the loop we know the above hold as we've just
 358       // checked them. Every time around the loop we check whether
 359       // the middle value between min_young_length and
 360       // max_young_length fits into the target pause time. If it
 361       // does, it becomes the new min. If it doesn't, it becomes
 362       // the new max. This way we maintain the loop invariants.
 363 
 364       assert(min_young_length < max_young_length, "invariant");
 365       uint diff = (max_young_length - min_young_length) / 2;
 366       while (diff > 0) {
 367         uint young_length = min_young_length + diff;
 368         if (p.will_fit(young_length)) {
 369           min_young_length = young_length;
 370         } else {
 371           max_young_length = young_length;
 372         }
 373         assert(min_young_length <  max_young_length, "invariant");
 374         diff = (max_young_length - min_young_length) / 2;
 375       }
 376       // The results is min_young_length which, according to the
 377       // loop invariants, should fit within the target pause time.
 378 
 379       // These are the post-conditions of the binary search above:
 380       assert(min_young_length < max_young_length,
 381              "otherwise we should have discovered that max_young_length "
 382              "fits into the pause target and not done the binary search");
 383       assert(p.will_fit(min_young_length),
 384              "min_young_length, the result of the binary search, should "
 385              "fit into the pause target");
 386       assert(!p.will_fit(min_young_length + 1),
 387              "min_young_length, the result of the binary search, should be "
 388              "optimal, so no larger length should fit into the pause target");
 389     }
 390   } else {
 391     // Even the minimum length doesn't fit into the pause time
 392     // target, return it as the result nevertheless.
 393   }
 394   return base_min_length + min_young_length;
 395 }
 396 
 397 double G1Policy::predict_survivor_regions_evac_time() const {
 398   double survivor_regions_evac_time = 0.0;
 399   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 400   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 401        it != survivor_regions->end();
 402        ++it) {
 403     survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
 404   }
 405   return survivor_regions_evac_time;
 406 }
 407 
 408 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
 409   guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
 410 
 411   if (rs_length > _rs_length_prediction) {
 412     // add 10% to avoid having to recalculate often
 413     size_t rs_length_prediction = rs_length * 1100 / 1000;
 414     update_rs_length_prediction(rs_length_prediction);
 415 
 416     update_young_list_max_and_target_length(rs_length_prediction);
 417   }
 418 }
 419 
 420 void G1Policy::update_rs_length_prediction() {
 421   update_rs_length_prediction(_analytics->predict_rs_length());
 422 }
 423 
 424 void G1Policy::update_rs_length_prediction(size_t prediction) {
 425   if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
 426     _rs_length_prediction = prediction;
 427   }
 428 }
 429 
 430 void G1Policy::record_full_collection_start() {
 431   _full_collection_start_sec = os::elapsedTime();
 432   // Release the future to-space so that it is available for compaction into.
 433   collector_state()->set_in_young_only_phase(false);
 434   collector_state()->set_in_full_gc(true);
 435   _collection_set->clear_candidates();
 436   record_concurrent_refinement_data(true /* is_full_collection */);
 437 }
 438 
 439 void G1Policy::record_full_collection_end() {
 440   // Consider this like a collection pause for the purposes of allocation
 441   // since last pause.
 442   double end_sec = os::elapsedTime();
 443   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 444   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 445 
 446   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 447 
 448   collector_state()->set_in_full_gc(false);
 449 
 450   // "Nuke" the heuristics that control the young/mixed GC
 451   // transitions and make sure we start with young GCs after the Full GC.
 452   collector_state()->set_in_young_only_phase(true);
 453   collector_state()->set_in_young_gc_before_mixed(false);
 454   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 455   collector_state()->set_in_initial_mark_gc(false);
 456   collector_state()->set_mark_or_rebuild_in_progress(false);
 457   collector_state()->set_clearing_next_bitmap(false);
 458 
 459   _eden_surv_rate_group->start_adding_regions();
 460   // also call this on any additional surv rate groups
 461 
 462   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 463   // Reset survivors SurvRateGroup.
 464   _survivor_surv_rate_group->reset();
 465   update_young_list_max_and_target_length();
 466   update_rs_length_prediction();
 467   _pending_cards_at_prev_gc_end = _g1h->pending_card_num();
 468 
 469   _bytes_allocated_in_old_since_last_gc = 0;
 470 
 471   record_pause(FullGC, _full_collection_start_sec, end_sec);
 472 }
 473 
 474 void G1Policy::record_concurrent_refinement_data(bool is_full_collection) {
 475   _pending_cards_at_gc_start = _g1h->pending_card_num();
 476 
 477   // Record info about concurrent refinement thread processing.
 478   G1ConcurrentRefine* cr = _g1h->concurrent_refine();
 479   G1ConcurrentRefine::RefinementStats cr_stats = cr->total_refinement_stats();
 480 
 481   Tickspan cr_time = cr_stats._time - _total_concurrent_refinement_time;
 482   _total_concurrent_refinement_time = cr_stats._time;
 483 
 484   size_t cr_cards = cr_stats._cards - _total_concurrent_refined_cards;
 485   _total_concurrent_refined_cards = cr_stats._cards;
 486 
 487   // Don't update rate if full collection.  We could be in an implicit full
 488   // collection after a non-full collection failure, in which case there
 489   // wasn't any mutator/cr-thread activity since last recording.  And if
 490   // we're in an explicit full collection, the time since the last GC can
 491   // be arbitrarily short, so not a very good sample.  Similarly, don't
 492   // update the rate if the current sample is empty or time is zero.
 493   if (!is_full_collection && (cr_cards > 0) && (cr_time > Tickspan())) {
 494     double rate = cr_cards / (cr_time.seconds() * MILLIUNITS);
 495     _analytics->report_concurrent_refine_rate_ms(rate);
 496   }
 497 
 498   // Record info about mutator thread processing.
 499   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 500   size_t mut_total_cards = dcqs.total_mutator_refined_cards();
 501   size_t mut_cards = mut_total_cards - _total_mutator_refined_cards;
 502   _total_mutator_refined_cards = mut_total_cards;
 503 
 504   // Record mutator's card logging rate.
 505   // Don't update if full collection; see above.
 506   if (!is_full_collection) {
 507     size_t total_cards = _pending_cards_at_gc_start + cr_cards + mut_cards;
 508     assert(_pending_cards_at_prev_gc_end <= total_cards,
 509            "untracked cards: last pending: " SIZE_FORMAT
 510            ", pending: " SIZE_FORMAT ", conc refine: " SIZE_FORMAT
 511            ", mut refine:" SIZE_FORMAT,
 512            _pending_cards_at_prev_gc_end, _pending_cards_at_gc_start,
 513            cr_cards, mut_cards);
 514     size_t logged_cards = total_cards - _pending_cards_at_prev_gc_end;
 515     double logging_start_time = _analytics->prev_collection_pause_end_ms();
 516     double logging_end_time = Ticks::now().seconds() * MILLIUNITS;
 517     double logging_time = logging_end_time - logging_start_time;
 518     // Unlike above for conc-refine rate, here we should not require a
 519     // non-empty sample, since an application could go some time with only
 520     // young-gen or filtered out writes.  But we'll ignore unusually short
 521     // sample periods, as they may just pollute the predictions.
 522     if (logging_time > 1.0) {   // Require > 1ms sample time.
 523       _analytics->report_logged_cards_rate_ms(logged_cards / logging_time);
 524     }
 525   }
 526 }
 527 
 528 void G1Policy::record_collection_pause_start(double start_time_sec) {
 529   // We only need to do this here as the policy will only be applied
 530   // to the GC we're about to start. so, no point is calculating this
 531   // every time we calculate / recalculate the target young length.
 532   update_survivors_policy();
 533 
 534   assert(max_survivor_regions() + _g1h->num_used_regions() <= _g1h->max_regions(),
 535          "Maximum survivor regions %u plus used regions %u exceeds max regions %u",
 536          max_survivor_regions(), _g1h->num_used_regions(), _g1h->max_regions());
 537   assert_used_and_recalculate_used_equal(_g1h);
 538 
 539   phase_times()->record_cur_collection_start_sec(start_time_sec);
 540 
 541   record_concurrent_refinement_data(false /* is_full_collection */);
 542 
 543   _collection_set->reset_bytes_used_before();
 544 
 545   // do that for any other surv rate groups
 546   _eden_surv_rate_group->stop_adding_regions();
 547   _survivors_age_table.clear();
 548 
 549   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
 550 }
 551 
 552 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 553   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 554   collector_state()->set_in_initial_mark_gc(false);
 555 }
 556 
 557 void G1Policy::record_concurrent_mark_remark_start() {
 558   _mark_remark_start_sec = os::elapsedTime();
 559 }
 560 
 561 void G1Policy::record_concurrent_mark_remark_end() {
 562   double end_time_sec = os::elapsedTime();
 563   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 564   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 565   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 566 
 567   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 568 }
 569 
 570 void G1Policy::record_concurrent_mark_cleanup_start() {
 571   _mark_cleanup_start_sec = os::elapsedTime();
 572 }
 573 
 574 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 575   return phase_times()->average_time_ms(phase);
 576 }
 577 
 578 double G1Policy::young_other_time_ms() const {
 579   return phase_times()->young_cset_choice_time_ms() +
 580          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 581 }
 582 
 583 double G1Policy::non_young_other_time_ms() const {
 584   return phase_times()->non_young_cset_choice_time_ms() +
 585          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 586 }
 587 
 588 double G1Policy::other_time_ms(double pause_time_ms) const {
 589   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 590 }
 591 
 592 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
 593   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms();
 594 }
 595 
 596 bool G1Policy::about_to_start_mixed_phase() const {
 597   return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
 598 }
 599 
 600 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 601   if (about_to_start_mixed_phase()) {
 602     return false;
 603   }
 604 
 605   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 606 
 607   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
 608   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 609   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 610 
 611   bool result = false;
 612   if (marking_request_bytes > marking_initiating_used_threshold) {
 613     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
 614     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 615                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 616                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
 617   }
 618 
 619   return result;
 620 }
 621 
 622 double G1Policy::logged_cards_processing_time() const {
 623   double all_cards_processing_time = average_time_ms(G1GCPhaseTimes::ScanHR) + average_time_ms(G1GCPhaseTimes::OptScanHR);
 624   size_t logged_dirty_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 625   size_t scan_heap_roots_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 626                                  phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 627   // This may happen if there are duplicate cards in different log buffers.
 628   if (logged_dirty_cards > scan_heap_roots_cards) {
 629     return all_cards_processing_time + average_time_ms(G1GCPhaseTimes::MergeLB);
 630   }
 631   return (all_cards_processing_time * logged_dirty_cards / scan_heap_roots_cards) + average_time_ms(G1GCPhaseTimes::MergeLB);
 632 }
 633 
 634 // Anything below that is considered to be zero
 635 #define MIN_TIMER_GRANULARITY 0.0000001
 636 
 637 void G1Policy::record_collection_pause_end(double pause_time_ms) {
 638   G1GCPhaseTimes* p = phase_times();
 639 
 640   double end_time_sec = os::elapsedTime();
 641 
 642   bool this_pause_included_initial_mark = false;
 643   bool this_pause_was_young_only = collector_state()->in_young_only_phase();
 644 
 645   bool update_stats = !_g1h->evacuation_failed();
 646 
 647   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 648 
 649   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 650 
 651   this_pause_included_initial_mark = collector_state()->in_initial_mark_gc();
 652   if (this_pause_included_initial_mark) {
 653     record_concurrent_mark_init_end(0.0);
 654   } else {
 655     maybe_start_marking();
 656   }
 657 
 658   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 659   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 660     // This usually happens due to the timer not having the required
 661     // granularity. Some Linuxes are the usual culprits.
 662     // We'll just set it to something (arbitrarily) small.
 663     app_time_ms = 1.0;
 664   }
 665 
 666   if (update_stats) {
 667     // We maintain the invariant that all objects allocated by mutator
 668     // threads will be allocated out of eden regions. So, we can use
 669     // the eden region number allocated since the previous GC to
 670     // calculate the application's allocate rate. The only exception
 671     // to that is humongous objects that are allocated separately. But
 672     // given that humongous object allocations do not really affect
 673     // either the pause's duration nor when the next pause will take
 674     // place we can safely ignore them here.
 675     uint regions_allocated = _collection_set->eden_region_length();
 676     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 677     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 678 
 679     double interval_ms =
 680       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 681     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 682     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 683   }
 684 
 685   if (collector_state()->in_young_gc_before_mixed()) {
 686     assert(!this_pause_included_initial_mark, "The young GC before mixed is not allowed to be an initial mark GC");
 687     // This has been the young GC before we start doing mixed GCs. We already
 688     // decided to start mixed GCs much earlier, so there is nothing to do except
 689     // advancing the state.
 690     collector_state()->set_in_young_only_phase(false);
 691     collector_state()->set_in_young_gc_before_mixed(false);
 692   } else if (!this_pause_was_young_only) {
 693     // This is a mixed GC. Here we decide whether to continue doing more
 694     // mixed GCs or not.
 695     if (!next_gc_should_be_mixed("continue mixed GCs",
 696                                  "do not continue mixed GCs")) {
 697       collector_state()->set_in_young_only_phase(true);
 698 
 699       clear_collection_set_candidates();
 700       maybe_start_marking();
 701     }
 702   }
 703 
 704   _eden_surv_rate_group->start_adding_regions();
 705 
 706   double merge_hcc_time_ms = average_time_ms(G1GCPhaseTimes::MergeHCC);
 707   if (update_stats) {
 708     size_t const total_log_buffer_cards = p->sum_thread_work_items(G1GCPhaseTimes::MergeHCC, G1GCPhaseTimes::MergeHCCDirtyCards) +
 709                                           p->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 710     // Update prediction for card merge; MergeRSDirtyCards includes the cards from the Eager Reclaim phase.
 711     size_t const total_cards_merged = p->sum_thread_work_items(G1GCPhaseTimes::MergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 712                                       p->sum_thread_work_items(G1GCPhaseTimes::OptMergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 713                                       total_log_buffer_cards;
 714 
 715     if (total_cards_merged > 10) {
 716       double avg_time_merge_cards = average_time_ms(G1GCPhaseTimes::MergeER) +
 717                                     average_time_ms(G1GCPhaseTimes::MergeRS) +
 718                                     average_time_ms(G1GCPhaseTimes::MergeHCC) +
 719                                     average_time_ms(G1GCPhaseTimes::MergeLB) +
 720                                     average_time_ms(G1GCPhaseTimes::OptMergeRS);
 721       _analytics->report_cost_per_card_merge_ms(avg_time_merge_cards / total_cards_merged, this_pause_was_young_only);
 722     }
 723 
 724     // Update prediction for card scan
 725     size_t const total_cards_scanned = p->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 726                                        p->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 727 
 728     if (total_cards_scanned > 10) {
 729       double avg_time_dirty_card_scan = average_time_ms(G1GCPhaseTimes::ScanHR) +
 730                                         average_time_ms(G1GCPhaseTimes::OptScanHR);
 731 
 732       _analytics->report_cost_per_card_scan_ms(avg_time_dirty_card_scan / total_cards_scanned, this_pause_was_young_only);
 733     }
 734 
 735     // Update prediction for the ratio between cards from the remembered
 736     // sets and actually scanned cards from the remembered sets.
 737     // Cards from the remembered sets are all cards not duplicated by cards from
 738     // the logs.
 739     // Due to duplicates in the log buffers, the number of actually scanned cards
 740     // can be smaller than the cards in the log buffers.
 741     const size_t from_rs_length_cards = (total_cards_scanned > total_log_buffer_cards) ? total_cards_scanned - total_log_buffer_cards : 0;
 742     double merge_to_scan_ratio = 0.0;
 743     if (total_cards_scanned > 0) {
 744       merge_to_scan_ratio = (double) from_rs_length_cards / total_cards_scanned;
 745     }
 746    _analytics->report_card_merge_to_scan_ratio(merge_to_scan_ratio, this_pause_was_young_only);       
 747 
 748     const size_t recorded_rs_length = _collection_set->recorded_rs_length();
 749     const size_t rs_length_diff = _rs_length > recorded_rs_length ? _rs_length - recorded_rs_length : 0;
 750     _analytics->report_rs_length_diff(rs_length_diff);
 751 
 752     // Update prediction for copy cost per byte
 753     size_t copied_bytes = p->sum_thread_work_items(G1GCPhaseTimes::MergePSS, G1GCPhaseTimes::MergePSSCopiedBytes);
 754 
 755     if (copied_bytes > 0) {
 756       double cost_per_byte_ms = (average_time_ms(G1GCPhaseTimes::ObjCopy) + average_time_ms(G1GCPhaseTimes::OptObjCopy)) / copied_bytes;
 757       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
 758     }
 759 
 760     if (_collection_set->young_region_length() > 0) {
 761       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 762                                                         _collection_set->young_region_length());
 763     }
 764 
 765     if (_collection_set->old_region_length() > 0) {
 766       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 767                                                             _collection_set->old_region_length());
 768     }
 769 
 770     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 771 
 772     // Do not update RS lengths and the number of pending cards with information from mixed gc:
 773     // these are is wildly different to during young only gc and mess up young gen sizing right
 774     // after the mixed gc phase.
 775     // During mixed gc we do not use them for young gen sizing.
 776     if (this_pause_was_young_only) {
 777       _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
 778       _analytics->report_rs_length((double) _rs_length);
 779     }
 780   }
 781 
 782   assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
 783          "If the last pause has been an initial mark, we should not have been in the marking window");
 784   if (this_pause_included_initial_mark) {
 785     collector_state()->set_mark_or_rebuild_in_progress(true);
 786   }
 787 
 788   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 789 
 790   update_rs_length_prediction();
 791 
 792   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
 793   // that in this case we are not running in a "normal" operating mode.
 794   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
 795     // IHOP control wants to know the expected young gen length if it were not
 796     // restrained by the heap reserve. Using the actual length would make the
 797     // prediction too small and the limit the young gen every time we get to the
 798     // predicted target occupancy.
 799     size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 800 
 801     update_ihop_prediction(app_time_ms / 1000.0,
 802                            _bytes_allocated_in_old_since_last_gc,
 803                            last_unrestrained_young_length * HeapRegion::GrainBytes,
 804                            this_pause_was_young_only);
 805     _bytes_allocated_in_old_since_last_gc = 0;
 806 
 807     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 808   } else {
 809     // Any garbage collection triggered as periodic collection resets the time-to-mixed
 810     // measurement. Periodic collection typically means that the application is "inactive", i.e.
 811     // the marking threads may have received an uncharacterisic amount of cpu time
 812     // for completing the marking, i.e. are faster than expected.
 813     // This skews the predicted marking length towards smaller values which might cause
 814     // the mark start being too late.
 815     _initial_mark_to_mixed.reset();
 816   }
 817 
 818   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 819   double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 820 
 821   if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
 822     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 823                                 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
 824                                 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);
 825 
 826     scan_logged_cards_time_goal_ms = 0;
 827   } else {
 828     scan_logged_cards_time_goal_ms -= merge_hcc_time_ms;
 829   }
 830 
 831   _pending_cards_at_prev_gc_end = _g1h->pending_card_num();
 832   double const logged_cards_time = logged_cards_processing_time();
 833 
 834   log_debug(gc, ergo, refine)("Concurrent refinement times: Logged Cards Scan time goal: %1.2fms Logged Cards Scan time: %1.2fms HCC time: %1.2fms",
 835                               scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
 836 
 837   _g1h->concurrent_refine()->adjust(logged_cards_time,
 838                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
 839                                     scan_logged_cards_time_goal_ms);
 840 }
 841 
 842 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 843   if (G1UseAdaptiveIHOP) {
 844     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 845                                      predictor,
 846                                      G1ReservePercent,
 847                                      G1HeapWastePercent);
 848   } else {
 849     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 850   }
 851 }
 852 
 853 void G1Policy::update_ihop_prediction(double mutator_time_s,
 854                                       size_t mutator_alloc_bytes,
 855                                       size_t young_gen_size,
 856                                       bool this_gc_was_young_only) {
 857   // Always try to update IHOP prediction. Even evacuation failures give information
 858   // about e.g. whether to start IHOP earlier next time.
 859 
 860   // Avoid using really small application times that might create samples with
 861   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 862   double const min_valid_time = 1e-6;
 863 
 864   bool report = false;
 865 
 866   double marking_to_mixed_time = -1.0;
 867   if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
 868     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 869     assert(marking_to_mixed_time > 0.0,
 870            "Initial mark to mixed time must be larger than zero but is %.3f",
 871            marking_to_mixed_time);
 872     if (marking_to_mixed_time > min_valid_time) {
 873       _ihop_control->update_marking_length(marking_to_mixed_time);
 874       report = true;
 875     }
 876   }
 877 
 878   // As an approximation for the young gc promotion rates during marking we use
 879   // all of them. In many applications there are only a few if any young gcs during
 880   // marking, which makes any prediction useless. This increases the accuracy of the
 881   // prediction.
 882   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 883     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 884     report = true;
 885   }
 886 
 887   if (report) {
 888     report_ihop_statistics();
 889   }
 890 }
 891 
 892 void G1Policy::report_ihop_statistics() {
 893   _ihop_control->print();
 894 }
 895 
 896 void G1Policy::print_phases() {
 897   phase_times()->print();
 898 }
 899 
 900 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
 901                                               size_t rs_length) const {
 902   size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());
 903   return
 904     _analytics->predict_card_merge_time_ms(pending_cards + rs_length, collector_state()->in_young_only_phase()) +
 905     _analytics->predict_card_scan_time_ms(effective_scanned_cards, collector_state()->in_young_only_phase()) +
 906     _analytics->predict_constant_other_time_ms() +
 907     predict_survivor_regions_evac_time();
 908 }
 909 
 910 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 911   size_t rs_length = _analytics->predict_rs_length();
 912   return predict_base_elapsed_time_ms(pending_cards, rs_length);
 913 }
 914 
 915 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
 916   size_t bytes_to_copy;
 917   if (!hr->is_young()) {
 918     bytes_to_copy = hr->max_live_bytes();
 919   } else {
 920     bytes_to_copy = (size_t) (hr->used() * hr->surv_rate_prediction(_predictor));
 921   }
 922   return bytes_to_copy;
 923 }
 924 
 925 double G1Policy::predict_eden_copy_time_ms(uint count, size_t* bytes_to_copy) const {
 926   if (count == 0) {
 927     return 0.0;
 928   }
 929   size_t const expected_bytes = _eden_surv_rate_group->accum_surv_rate_pred(count) * HeapRegion::GrainBytes;
 930   if (bytes_to_copy != NULL) {
 931     *bytes_to_copy = expected_bytes;
 932   }
 933   return _analytics->predict_object_copy_time_ms(expected_bytes, collector_state()->mark_or_rebuild_in_progress());
 934 }
 935 
 936 double G1Policy::predict_region_copy_time_ms(HeapRegion* hr) const {
 937   size_t const bytes_to_copy = predict_bytes_to_copy(hr);
 938   return _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
 939 }
 940 
 941 double G1Policy::predict_region_non_copy_time_ms(HeapRegion* hr,
 942                                                  bool for_young_gc) const {
 943   size_t rs_length = hr->rem_set()->occupied();
 944   size_t scan_card_num = _analytics->predict_scan_card_num(rs_length, for_young_gc);
 945 
 946   double region_elapsed_time_ms =
 947     _analytics->predict_card_merge_time_ms(rs_length, collector_state()->in_young_only_phase()) +
 948     _analytics->predict_card_scan_time_ms(scan_card_num, collector_state()->in_young_only_phase());
 949 
 950   // The prediction of the "other" time for this region is based
 951   // upon the region type and NOT the GC type.
 952   if (hr->is_young()) {
 953     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 954   } else {
 955     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 956   }
 957   return region_elapsed_time_ms;
 958 }
 959 
 960 double G1Policy::predict_region_total_time_ms(HeapRegion* hr, bool for_young_gc) const {
 961   return predict_region_non_copy_time_ms(hr, for_young_gc) + predict_region_copy_time_ms(hr);
 962 }
 963 
 964 bool G1Policy::should_allocate_mutator_region() const {
 965   uint young_list_length = _g1h->young_regions_count();
 966   uint young_list_target_length = _young_list_target_length;
 967   return young_list_length < young_list_target_length;
 968 }
 969 
 970 bool G1Policy::can_expand_young_list() const {
 971   uint young_list_length = _g1h->young_regions_count();
 972   uint young_list_max_length = _young_list_max_length;
 973   return young_list_length < young_list_max_length;
 974 }
 975 
 976 bool G1Policy::use_adaptive_young_list_length() const {
 977   return _young_gen_sizer->use_adaptive_young_list_length();
 978 }
 979 
 980 size_t G1Policy::desired_survivor_size(uint max_regions) const {
 981   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
 982   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 983 }
 984 
 985 void G1Policy::print_age_table() {
 986   _survivors_age_table.print_age_table(_tenuring_threshold);
 987 }
 988 
 989 void G1Policy::update_max_gc_locker_expansion() {
 990   uint expansion_region_num = 0;
 991   if (GCLockerEdenExpansionPercent > 0) {
 992     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 993     double expansion_region_num_d = perc * (double) _young_list_target_length;
 994     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 995     // less than 1.0) we'll get 1.
 996     expansion_region_num = (uint) ceil(expansion_region_num_d);
 997   } else {
 998     assert(expansion_region_num == 0, "sanity");
 999   }
1000   _young_list_max_length = _young_list_target_length + expansion_region_num;
1001   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1002 }
1003 
1004 // Calculates survivor space parameters.
1005 void G1Policy::update_survivors_policy() {
1006   double max_survivor_regions_d =
1007                  (double) _young_list_target_length / (double) SurvivorRatio;
1008 
1009   // Calculate desired survivor size based on desired max survivor regions (unconstrained
1010   // by remaining heap). Otherwise we may cause undesired promotions as we are
1011   // already getting close to end of the heap, impacting performance even more.
1012   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1013   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1014 
1015   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1016   if (UsePerfData) {
1017     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1018     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1019   }
1020   // The real maximum survivor size is bounded by the number of regions that can
1021   // be allocated into.
1022   _max_survivor_regions = MIN2(desired_max_survivor_regions,
1023                                _g1h->num_free_or_available_regions());
1024 }
1025 
1026 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1027   // We actually check whether we are marking here and not if we are in a
1028   // reclamation phase. This means that we will schedule a concurrent mark
1029   // even while we are still in the process of reclaiming memory.
1030   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
1031   if (!during_cycle) {
1032     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1033     collector_state()->set_initiate_conc_mark_if_possible(true);
1034     return true;
1035   } else {
1036     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1037     return false;
1038   }
1039 }
1040 
1041 void G1Policy::initiate_conc_mark() {
1042   collector_state()->set_in_initial_mark_gc(true);
1043   collector_state()->set_initiate_conc_mark_if_possible(false);
1044 }
1045 
1046 void G1Policy::decide_on_conc_mark_initiation() {
1047   // We are about to decide on whether this pause will be an
1048   // initial-mark pause.
1049 
1050   // First, collector_state()->in_initial_mark_gc() should not be already set. We
1051   // will set it here if we have to. However, it should be cleared by
1052   // the end of the pause (it's only set for the duration of an
1053   // initial-mark pause).
1054   assert(!collector_state()->in_initial_mark_gc(), "pre-condition");
1055 
1056   if (collector_state()->initiate_conc_mark_if_possible()) {
1057     // We had noticed on a previous pause that the heap occupancy has
1058     // gone over the initiating threshold and we should start a
1059     // concurrent marking cycle. So we might initiate one.
1060 
1061     if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
1062       // Initiate a new initial mark if there is no marking or reclamation going on.
1063       initiate_conc_mark();
1064       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1065     } else if (_g1h->is_user_requested_concurrent_full_gc(_g1h->gc_cause())) {
1066       // Initiate a user requested initial mark. An initial mark must be young only
1067       // GC, so the collector state must be updated to reflect this.
1068       collector_state()->set_in_young_only_phase(true);
1069       collector_state()->set_in_young_gc_before_mixed(false);
1070 
1071       // We might have ended up coming here about to start a mixed phase with a collection set
1072       // active. The following remark might change the change the "evacuation efficiency" of
1073       // the regions in this set, leading to failing asserts later.
1074       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
1075       clear_collection_set_candidates();
1076       abort_time_to_mixed_tracking();
1077       initiate_conc_mark();
1078       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1079     } else {
1080       // The concurrent marking thread is still finishing up the
1081       // previous cycle. If we start one right now the two cycles
1082       // overlap. In particular, the concurrent marking thread might
1083       // be in the process of clearing the next marking bitmap (which
1084       // we will use for the next cycle if we start one). Starting a
1085       // cycle now will be bad given that parts of the marking
1086       // information might get cleared by the marking thread. And we
1087       // cannot wait for the marking thread to finish the cycle as it
1088       // periodically yields while clearing the next marking bitmap
1089       // and, if it's in a yield point, it's waiting for us to
1090       // finish. So, at this point we will not start a cycle and we'll
1091       // let the concurrent marking thread complete the last one.
1092       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1093     }
1094   }
1095 }
1096 
1097 void G1Policy::record_concurrent_mark_cleanup_end() {
1098   G1CollectionSetCandidates* candidates = G1CollectionSetChooser::build(_g1h->workers(), _g1h->num_regions());
1099   _collection_set->set_candidates(candidates);
1100 
1101   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1102   if (!mixed_gc_pending) {
1103     clear_collection_set_candidates();
1104     abort_time_to_mixed_tracking();
1105   }
1106   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1107   collector_state()->set_mark_or_rebuild_in_progress(false);
1108 
1109   double end_sec = os::elapsedTime();
1110   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1111   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1112   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1113 
1114   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1115 }
1116 
1117 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1118   return percent_of(reclaimable_bytes, _g1h->capacity());
1119 }
1120 
1121 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
1122   virtual bool do_heap_region(HeapRegion* r) {
1123     r->rem_set()->clear_locked(true /* only_cardset */);
1124     return false;
1125   }
1126 };
1127 
1128 void G1Policy::clear_collection_set_candidates() {
1129   // Clear remembered sets of remaining candidate regions and the actual candidate
1130   // set.
1131   G1ClearCollectionSetCandidateRemSets cl;
1132   _collection_set->candidates()->iterate(&cl);
1133   _collection_set->clear_candidates();
1134 }
1135 
1136 void G1Policy::maybe_start_marking() {
1137   if (need_to_start_conc_mark("end of GC")) {
1138     // Note: this might have already been set, if during the last
1139     // pause we decided to start a cycle but at the beginning of
1140     // this pause we decided to postpone it. That's OK.
1141     collector_state()->set_initiate_conc_mark_if_possible(true);
1142   }
1143 }
1144 
1145 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1146   assert(!collector_state()->in_full_gc(), "must be");
1147   if (collector_state()->in_initial_mark_gc()) {
1148     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1149     return InitialMarkGC;
1150   } else if (collector_state()->in_young_gc_before_mixed()) {
1151     assert(!collector_state()->in_initial_mark_gc(), "must be");
1152     return LastYoungGC;
1153   } else if (collector_state()->in_mixed_phase()) {
1154     assert(!collector_state()->in_initial_mark_gc(), "must be");
1155     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1156     return MixedGC;
1157   } else {
1158     assert(!collector_state()->in_initial_mark_gc(), "must be");
1159     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1160     return YoungOnlyGC;
1161   }
1162 }
1163 
1164 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1165   // Manage the MMU tracker. For some reason it ignores Full GCs.
1166   if (kind != FullGC) {
1167     _mmu_tracker->add_pause(start, end);
1168   }
1169   // Manage the mutator time tracking from initial mark to first mixed gc.
1170   switch (kind) {
1171     case FullGC:
1172       abort_time_to_mixed_tracking();
1173       break;
1174     case Cleanup:
1175     case Remark:
1176     case YoungOnlyGC:
1177     case LastYoungGC:
1178       _initial_mark_to_mixed.add_pause(end - start);
1179       break;
1180     case InitialMarkGC:
1181       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1182         _initial_mark_to_mixed.record_initial_mark_end(end);
1183       }
1184       break;
1185     case MixedGC:
1186       _initial_mark_to_mixed.record_mixed_gc_start(start);
1187       break;
1188     default:
1189       ShouldNotReachHere();
1190   }
1191 }
1192 
1193 void G1Policy::abort_time_to_mixed_tracking() {
1194   _initial_mark_to_mixed.reset();
1195 }
1196 
1197 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1198                                        const char* false_action_str) const {
1199   G1CollectionSetCandidates* candidates = _collection_set->candidates();
1200 
1201   if (candidates->is_empty()) {
1202     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1203     return false;
1204   }
1205 
1206   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1207   size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1208   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1209   double threshold = (double) G1HeapWastePercent;
1210   if (reclaimable_percent <= threshold) {
1211     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1212                         false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1213     return false;
1214   }
1215   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1216                       true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1217   return true;
1218 }
1219 
1220 uint G1Policy::calc_min_old_cset_length() const {
1221   // The min old CSet region bound is based on the maximum desired
1222   // number of mixed GCs after a cycle. I.e., even if some old regions
1223   // look expensive, we should add them to the CSet anyway to make
1224   // sure we go through the available old regions in no more than the
1225   // maximum desired number of mixed GCs.
1226   //
1227   // The calculation is based on the number of marked regions we added
1228   // to the CSet candidates in the first place, not how many remain, so
1229   // that the result is the same during all mixed GCs that follow a cycle.
1230 
1231   const size_t region_num = _collection_set->candidates()->num_regions();
1232   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1233   size_t result = region_num / gc_num;
1234   // emulate ceiling
1235   if (result * gc_num < region_num) {
1236     result += 1;
1237   }
1238   return (uint) result;
1239 }
1240 
1241 uint G1Policy::calc_max_old_cset_length() const {
1242   // The max old CSet region bound is based on the threshold expressed
1243   // as a percentage of the heap size. I.e., it should bound the
1244   // number of old regions added to the CSet irrespective of how many
1245   // of them are available.
1246 
1247   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1248   const size_t region_num = g1h->num_regions();
1249   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1250   size_t result = region_num * perc / 100;
1251   // emulate ceiling
1252   if (100 * result < region_num * perc) {
1253     result += 1;
1254   }
1255   return (uint) result;
1256 }
1257 
1258 void G1Policy::calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates,
1259                                                     double time_remaining_ms,
1260                                                     uint& num_initial_regions,
1261                                                     uint& num_optional_regions) {
1262   assert(candidates != NULL, "Must be");
1263 
1264   num_initial_regions = 0;
1265   num_optional_regions = 0;
1266   uint num_expensive_regions = 0;
1267 
1268   double predicted_old_time_ms = 0.0;
1269   double predicted_initial_time_ms = 0.0;
1270   double predicted_optional_time_ms = 0.0;
1271 
1272   double optional_threshold_ms = time_remaining_ms * optional_prediction_fraction();
1273 
1274   const uint min_old_cset_length = calc_min_old_cset_length();
1275   const uint max_old_cset_length = MAX2(min_old_cset_length, calc_max_old_cset_length());
1276   const uint max_optional_regions = max_old_cset_length - min_old_cset_length;
1277   bool check_time_remaining = use_adaptive_young_list_length();
1278 
1279   uint candidate_idx = candidates->cur_idx();
1280 
1281   log_debug(gc, ergo, cset)("Start adding old regions to collection set. Min %u regions, max %u regions, "
1282                             "time remaining %1.2fms, optional threshold %1.2fms",
1283                             min_old_cset_length, max_old_cset_length, time_remaining_ms, optional_threshold_ms);
1284 
1285   HeapRegion* hr = candidates->at(candidate_idx);
1286   while (hr != NULL) {
1287     if (num_initial_regions + num_optional_regions >= max_old_cset_length) {
1288       // Added maximum number of old regions to the CSet.
1289       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Maximum number of regions). "
1290                                 "Initial %u regions, optional %u regions",
1291                                 num_initial_regions, num_optional_regions);
1292       break;
1293     }
1294 
1295     // Stop adding regions if the remaining reclaimable space is
1296     // not above G1HeapWastePercent.
1297     size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1298     double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1299     double threshold = (double) G1HeapWastePercent;
1300     if (reclaimable_percent <= threshold) {
1301       // We've added enough old regions that the amount of uncollected
1302       // reclaimable space is at or below the waste threshold. Stop
1303       // adding old regions to the CSet.
1304       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Reclaimable percentage below threshold). "
1305                                 "Reclaimable: " SIZE_FORMAT "%s (%1.2f%%) threshold: " UINTX_FORMAT "%%",
1306                                 byte_size_in_proper_unit(reclaimable_bytes), proper_unit_for_byte_size(reclaimable_bytes),
1307                                 reclaimable_percent, G1HeapWastePercent);
1308       break;
1309     }
1310 
1311     double predicted_time_ms = predict_region_total_time_ms(hr, false);
1312     time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
1313     // Add regions to old set until we reach the minimum amount
1314     if (num_initial_regions < min_old_cset_length) {
1315       predicted_old_time_ms += predicted_time_ms;
1316       num_initial_regions++;
1317       // Record the number of regions added with no time remaining
1318       if (time_remaining_ms == 0.0) {
1319         num_expensive_regions++;
1320       }
1321     } else if (!check_time_remaining) {
1322       // In the non-auto-tuning case, we'll finish adding regions
1323       // to the CSet if we reach the minimum.
1324       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Region amount reached min).");
1325       break;
1326     } else {
1327       // Keep adding regions to old set until we reach the optional threshold
1328       if (time_remaining_ms > optional_threshold_ms) {
1329         predicted_old_time_ms += predicted_time_ms;
1330         num_initial_regions++;
1331       } else if (time_remaining_ms > 0) {
1332         // Keep adding optional regions until time is up.
1333         assert(num_optional_regions < max_optional_regions, "Should not be possible.");
1334         predicted_optional_time_ms += predicted_time_ms;
1335         num_optional_regions++;
1336       } else {
1337         log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Predicted time too high).");
1338         break;
1339       }
1340     }
1341     hr = candidates->at(++candidate_idx);
1342   }
1343   if (hr == NULL) {
1344     log_debug(gc, ergo, cset)("Old candidate collection set empty.");
1345   }
1346 
1347   if (num_expensive_regions > 0) {
1348     log_debug(gc, ergo, cset)("Added %u initial old regions to collection set although the predicted time was too high.",
1349                               num_expensive_regions);
1350   }
1351 
1352   log_debug(gc, ergo, cset)("Finish choosing collection set old regions. Initial: %u, optional: %u, "
1353                             "predicted old time: %1.2fms, predicted optional time: %1.2fms, time remaining: %1.2f",
1354                             num_initial_regions, num_optional_regions,
1355                             predicted_initial_time_ms, predicted_optional_time_ms, time_remaining_ms);
1356 }
1357 
1358 void G1Policy::calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates,
1359                                                          uint const max_optional_regions,
1360                                                          double time_remaining_ms,
1361                                                          uint& num_optional_regions) {
1362   assert(_g1h->collector_state()->in_mixed_phase(), "Should only be called in mixed phase");
1363 
1364   num_optional_regions = 0;
1365   double prediction_ms = 0;
1366   uint candidate_idx = candidates->cur_idx();
1367 
1368   HeapRegion* r = candidates->at(candidate_idx);
1369   while (num_optional_regions < max_optional_regions) {
1370     assert(r != NULL, "Region must exist");
1371     prediction_ms += predict_region_total_time_ms(r, false);
1372 
1373     if (prediction_ms > time_remaining_ms) {
1374       log_debug(gc, ergo, cset)("Prediction %.3fms for region %u does not fit remaining time: %.3fms.",
1375                                 prediction_ms, r->hrm_index(), time_remaining_ms);
1376       break;
1377     }
1378     // This region will be included in the next optional evacuation.
1379 
1380     time_remaining_ms -= prediction_ms;
1381     num_optional_regions++;
1382     r = candidates->at(++candidate_idx);
1383   }
1384 
1385   log_debug(gc, ergo, cset)("Prepared %u regions out of %u for optional evacuation. Predicted time: %.3fms",
1386                             num_optional_regions, max_optional_regions, prediction_ms);
1387 }
1388 
1389 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1390 
1391   // Add survivor regions to SurvRateGroup.
1392   note_start_adding_survivor_regions();
1393 
1394   HeapRegion* last = NULL;
1395   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1396        it != survivors->regions()->end();
1397        ++it) {
1398     HeapRegion* curr = *it;
1399     set_region_survivor(curr);
1400 
1401     // The region is a non-empty survivor so let's add it to
1402     // the incremental collection set for the next evacuation
1403     // pause.
1404     _collection_set->add_survivor_regions(curr);
1405 
1406     last = curr;
1407   }
1408   note_stop_adding_survivor_regions();
1409 
1410   // Don't clear the survivor list handles until the start of
1411   // the next evacuation pause - we need it in order to re-tag
1412   // the survivor regions from this evacuation pause as 'young'
1413   // at the start of the next.
1414 }