/* * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_GC_G1_HEAPREGION_INLINE_HPP #define SHARE_GC_G1_HEAPREGION_INLINE_HPP #include "gc/g1/g1BlockOffsetTable.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1ConcurrentMarkBitMap.inline.hpp" #include "gc/g1/g1Predictions.hpp" #include "gc/g1/heapRegion.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.hpp" #include "runtime/prefetch.inline.hpp" #include "utilities/align.hpp" #include "utilities/globalDefinitions.hpp" inline HeapWord* HeapRegion::allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { HeapWord* obj = top(); size_t available = pointer_delta(end(), obj); size_t want_to_allocate = MIN2(available, desired_word_size); if (want_to_allocate >= min_word_size) { HeapWord* new_top = obj + want_to_allocate; set_top(new_top); assert(is_object_aligned(obj) && is_object_aligned(new_top), "checking alignment"); *actual_size = want_to_allocate; return obj; } else { return NULL; } } inline HeapWord* HeapRegion::par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { do { HeapWord* obj = top(); size_t available = pointer_delta(end(), obj); size_t want_to_allocate = MIN2(available, desired_word_size); if (want_to_allocate >= min_word_size) { HeapWord* new_top = obj + want_to_allocate; HeapWord* result = Atomic::cmpxchg(new_top, &_top, obj); // result can be one of two: // the old top value: the exchange succeeded // otherwise: the new value of the top is returned. if (result == obj) { assert(is_object_aligned(obj) && is_object_aligned(new_top), "checking alignment"); *actual_size = want_to_allocate; return obj; } } else { return NULL; } } while (true); } inline HeapWord* HeapRegion::allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { HeapWord* res = allocate_impl(min_word_size, desired_word_size, actual_size); if (res != NULL) { _bot_part.alloc_block(res, *actual_size); } return res; } inline HeapWord* HeapRegion::allocate(size_t word_size) { size_t temp; return allocate(word_size, word_size, &temp); } inline HeapWord* HeapRegion::par_allocate(size_t word_size) { size_t temp; return par_allocate(word_size, word_size, &temp); } // Because of the requirement of keeping "_offsets" up to date with the // allocations, we sequentialize these with a lock. Therefore, best if // this is used for larger LAB allocations only. inline HeapWord* HeapRegion::par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { MutexLocker x(&_par_alloc_lock); return allocate(min_word_size, desired_word_size, actual_size); } inline HeapWord* HeapRegion::block_start(const void* p) { return _bot_part.block_start(p); } inline HeapWord* HeapRegion::block_start_const(const void* p) const { return _bot_part.block_start_const(p); } inline bool HeapRegion::is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const { HeapWord* addr = (HeapWord*) obj; assert(addr < top(), "must be"); assert(!is_closed_archive(), "Closed archive regions should not have references into other regions"); assert(!is_humongous(), "Humongous objects not handled here"); bool obj_is_dead = is_obj_dead(obj, prev_bitmap); if (ClassUnloadingWithConcurrentMark && obj_is_dead) { assert(!block_is_obj(addr), "must be"); *size = block_size_using_bitmap(addr, prev_bitmap); } else { assert(block_is_obj(addr), "must be"); *size = obj->size(); } return obj_is_dead; } inline bool HeapRegion::block_is_obj(const HeapWord* p) const { G1CollectedHeap* g1h = G1CollectedHeap::heap(); if (!this->is_in(p)) { assert(is_continues_humongous(), "This case can only happen for humongous regions"); return (p == humongous_start_region()->bottom()); } if (ClassUnloadingWithConcurrentMark) { return !g1h->is_obj_dead(oop(p), this); } return p < top(); } inline size_t HeapRegion::block_size_using_bitmap(const HeapWord* addr, const G1CMBitMap* const prev_bitmap) const { assert(ClassUnloadingWithConcurrentMark, "All blocks should be objects if class unloading isn't used, so this method should not be called. " "HR: [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ") " "addr: " PTR_FORMAT, p2i(bottom()), p2i(top()), p2i(end()), p2i(addr)); // Old regions' dead objects may have dead classes // We need to find the next live object using the bitmap HeapWord* next = prev_bitmap->get_next_marked_addr(addr, prev_top_at_mark_start()); assert(next > addr, "must get the next live object"); return pointer_delta(next, addr); } inline bool HeapRegion::is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const { assert(is_in_reserved(obj), "Object " PTR_FORMAT " must be in region", p2i(obj)); return !obj_allocated_since_prev_marking(obj) && !prev_bitmap->is_marked((HeapWord*)obj) && !is_open_archive(); } inline size_t HeapRegion::block_size(const HeapWord *addr) const { if (addr == top()) { return pointer_delta(end(), addr); } if (block_is_obj(addr)) { return oop(addr)->size(); } return block_size_using_bitmap(addr, G1CollectedHeap::heap()->concurrent_mark()->prev_mark_bitmap()); } inline void HeapRegion::complete_compaction() { // Reset space and bot after compaction is complete if needed. reset_after_compaction(); if (is_empty()) { reset_bot(); } // After a compaction the mark bitmap is invalid, so we must // treat all objects as being inside the unmarked area. zero_marked_bytes(); init_top_at_mark_start(); // Clear unused heap memory in debug builds. if (ZapUnusedHeapArea) { mangle_unused_area(); } } template inline void HeapRegion::apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure) { HeapWord* limit = top(); HeapWord* next_addr = bottom(); while (next_addr < limit) { Prefetch::write(next_addr, PrefetchScanIntervalInBytes); // This explicit is_marked check is a way to avoid // some extra work done by get_next_marked_addr for // the case where next_addr is marked. if (bitmap->is_marked(next_addr)) { oop current = oop(next_addr); next_addr += closure->apply(current); } else { next_addr = bitmap->get_next_marked_addr(next_addr, limit); } } assert(next_addr == limit, "Should stop the scan at the limit."); } inline HeapWord* HeapRegion::par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size) { assert(is_young(), "we can only skip BOT updates on young regions"); return par_allocate_impl(min_word_size, desired_word_size, actual_word_size); } inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t word_size) { size_t temp; return allocate_no_bot_updates(word_size, word_size, &temp); } inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size) { assert(is_young(), "we can only skip BOT updates on young regions"); return allocate_impl(min_word_size, desired_word_size, actual_word_size); } inline void HeapRegion::note_start_of_marking() { _next_marked_bytes = 0; _next_top_at_mark_start = top(); } inline void HeapRegion::note_end_of_marking() { _prev_top_at_mark_start = _next_top_at_mark_start; _next_top_at_mark_start = bottom(); _prev_marked_bytes = _next_marked_bytes; _next_marked_bytes = 0; } inline bool HeapRegion::in_collection_set() const { return G1CollectedHeap::heap()->is_in_cset(this); } template HeapWord* HeapRegion::do_oops_on_memregion_in_humongous(MemRegion mr, Closure* cl, G1CollectedHeap* g1h) { assert(is_humongous(), "precondition"); HeapRegion* sr = humongous_start_region(); oop obj = oop(sr->bottom()); // If concurrent and klass_or_null is NULL, then space has been // allocated but the object has not yet been published by setting // the klass. That can only happen if the card is stale. However, // we've already set the card clean, so we must return failure, // since the allocating thread could have performed a write to the // card that might be missed otherwise. if (!is_gc_active && (obj->klass_or_null_acquire() == NULL)) { return NULL; } // We have a well-formed humongous object at the start of sr. // Only filler objects follow a humongous object in the containing // regions, and we can ignore those. So only process the one // humongous object. if (g1h->is_obj_dead(obj, sr)) { // The object is dead. There can be no other object in this region, so return // the end of that region. return end(); } if (obj->is_objArray() || (sr->bottom() < mr.start())) { // objArrays are always marked precisely, so limit processing // with mr. Non-objArrays might be precisely marked, and since // it's humongous it's worthwhile avoiding full processing. // However, the card could be stale and only cover filler // objects. That should be rare, so not worth checking for; // instead let it fall out from the bounded iteration. obj->oop_iterate(cl, mr); return mr.end(); } else { // If obj is not an objArray and mr contains the start of the // obj, then this could be an imprecise mark, and we need to // process the entire object. int size = obj->oop_iterate_size(cl); // We have scanned to the end of the object, but since there can be no objects // after this humongous object in the region, we can return the end of the // region if it is greater. return MAX2((HeapWord*)obj + size, mr.end()); } } template HeapWord* HeapRegion::oops_on_memregion_seq_iterate_careful(MemRegion mr, Closure* cl) { assert(MemRegion(bottom(), end()).contains(mr), "Card region not in heap region"); G1CollectedHeap* g1h = G1CollectedHeap::heap(); // Special handling for humongous regions. if (is_humongous()) { return do_oops_on_memregion_in_humongous(mr, cl, g1h); } assert(is_old() || is_archive(), "Wrongly trying to iterate over region %u type %s", _hrm_index, get_type_str()); // Because mr has been trimmed to what's been allocated in this // region, the parts of the heap that are examined here are always // parsable; there's no need to use klass_or_null to detect // in-progress allocation. // Cache the boundaries of the memory region in some const locals HeapWord* const start = mr.start(); HeapWord* const end = mr.end(); // Find the obj that extends onto mr.start(). // Update BOT as needed while finding start of (possibly dead) // object containing the start of the region. HeapWord* cur = block_start(start); #ifdef ASSERT { assert(cur <= start, "cur: " PTR_FORMAT ", start: " PTR_FORMAT, p2i(cur), p2i(start)); HeapWord* next = cur + block_size(cur); assert(start < next, "start: " PTR_FORMAT ", next: " PTR_FORMAT, p2i(start), p2i(next)); } #endif const G1CMBitMap* const bitmap = g1h->concurrent_mark()->prev_mark_bitmap(); while (true) { oop obj = oop(cur); assert(oopDesc::is_oop(obj, true), "Not an oop at " PTR_FORMAT, p2i(cur)); assert(obj->klass_or_null() != NULL, "Unparsable heap at " PTR_FORMAT, p2i(cur)); size_t size; bool is_dead = is_obj_dead_with_size(obj, bitmap, &size); bool is_precise = false; cur += size; if (!is_dead) { // Process live object's references. // Non-objArrays are usually marked imprecise at the object // start, in which case we need to iterate over them in full. // objArrays are precisely marked, but can still be iterated // over in full if completely covered. if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) { obj->oop_iterate(cl); } else { obj->oop_iterate(cl, mr); is_precise = true; } } if (cur >= end) { return is_precise ? end : cur; } } } inline int HeapRegion::age_in_surv_rate_group() const { assert(has_surv_rate_group(), "pre-condition"); assert(has_valid_age_in_surv_rate(), "pre-condition"); return _surv_rate_group->age_in_group(_age_index); } inline bool HeapRegion::has_valid_age_in_surv_rate() const { return SurvRateGroup::is_valid_age_index(_age_index); } inline bool HeapRegion::has_surv_rate_group() const { return _surv_rate_group != NULL; } inline double HeapRegion::surv_rate_prediction(G1Predictions const& predictor) const { assert(has_surv_rate_group(), "pre-condition"); return _surv_rate_group->surv_rate_pred(predictor, age_in_surv_rate_group()); } inline void HeapRegion::install_surv_rate_group(SurvRateGroup* surv_rate_group) { assert(surv_rate_group != NULL, "pre-condition"); assert(!has_surv_rate_group(), "pre-condition"); assert(is_young(), "pre-condition"); _surv_rate_group = surv_rate_group; _age_index = surv_rate_group->next_age_index(); } inline void HeapRegion::uninstall_surv_rate_group() { if (has_surv_rate_group()) { assert(has_valid_age_in_surv_rate(), "pre-condition"); assert(is_young(), "pre-condition"); _surv_rate_group = NULL; _age_index = SurvRateGroup::InvalidAgeIndex; } else { assert(!has_valid_age_in_surv_rate(), "pre-condition"); } } inline void HeapRegion::record_surv_words_in_group(size_t words_survived) { assert(has_surv_rate_group(), "pre-condition"); assert(has_valid_age_in_surv_rate(), "pre-condition"); int age_in_group = age_in_surv_rate_group(); _surv_rate_group->record_surviving_words(age_in_group, words_survived); } #endif // SHARE_GC_G1_HEAPREGION_INLINE_HPP