1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1HeapRegionTraceType.hpp"
  31 #include "gc/g1/g1NUMA.hpp"
  32 #include "gc/g1/g1OopClosures.inline.hpp"
  33 #include "gc/g1/heapRegion.inline.hpp"
  34 #include "gc/g1/heapRegionBounds.inline.hpp"
  35 #include "gc/g1/heapRegionManager.inline.hpp"
  36 #include "gc/g1/heapRegionRemSet.hpp"
  37 #include "gc/g1/heapRegionTracer.hpp"
  38 #include "gc/shared/genOopClosures.inline.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "memory/iterator.inline.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "oops/access.inline.hpp"
  44 #include "oops/compressedOops.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/orderAccess.hpp"
  48 
  49 int    HeapRegion::LogOfHRGrainBytes = 0;
  50 int    HeapRegion::LogOfHRGrainWords = 0;
  51 int    HeapRegion::LogCardsPerRegion = 0;
  52 size_t HeapRegion::GrainBytes        = 0;
  53 size_t HeapRegion::GrainWords        = 0;
  54 size_t HeapRegion::CardsPerRegion    = 0;
  55 
  56 size_t HeapRegion::max_region_size() {
  57   return HeapRegionBounds::max_size();
  58 }
  59 
  60 size_t HeapRegion::min_region_size_in_words() {
  61   return HeapRegionBounds::min_size() >> LogHeapWordSize;
  62 }
  63 
  64 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
  65   size_t region_size = G1HeapRegionSize;
  66   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
  67     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
  68     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
  69                        HeapRegionBounds::min_size());
  70   }
  71 
  72   int region_size_log = log2_long((jlong) region_size);
  73   // Recalculate the region size to make sure it's a power of
  74   // 2. This means that region_size is the largest power of 2 that's
  75   // <= what we've calculated so far.
  76   region_size = ((size_t)1 << region_size_log);
  77 
  78   // Now make sure that we don't go over or under our limits.
  79   if (region_size < HeapRegionBounds::min_size()) {
  80     region_size = HeapRegionBounds::min_size();
  81   } else if (region_size > HeapRegionBounds::max_size()) {
  82     region_size = HeapRegionBounds::max_size();
  83   }
  84 
  85   // And recalculate the log.
  86   region_size_log = log2_long((jlong) region_size);
  87 
  88   // Now, set up the globals.
  89   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
  90   LogOfHRGrainBytes = region_size_log;
  91 
  92   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
  93   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
  94 
  95   guarantee(GrainBytes == 0, "we should only set it once");
  96   // The cast to int is safe, given that we've bounded region_size by
  97   // MIN_REGION_SIZE and MAX_REGION_SIZE.
  98   GrainBytes = region_size;
  99   log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M);
 100 
 101   guarantee(GrainWords == 0, "we should only set it once");
 102   GrainWords = GrainBytes >> LogHeapWordSize;
 103   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 104 
 105   guarantee(CardsPerRegion == 0, "we should only set it once");
 106   CardsPerRegion = GrainBytes >> G1CardTable::card_shift;
 107 
 108   LogCardsPerRegion = log2_long((jlong) CardsPerRegion);
 109 
 110   if (G1HeapRegionSize != GrainBytes) {
 111     FLAG_SET_ERGO(G1HeapRegionSize, GrainBytes);
 112   }
 113 }
 114 
 115 void HeapRegion::hr_clear(bool keep_remset, bool clear_space, bool locked) {
 116   assert(_humongous_start_region == NULL,
 117          "we should have already filtered out humongous regions");
 118   assert(!in_collection_set(),
 119          "Should not clear heap region %u in the collection set", hrm_index());
 120 
 121   clear_young_index_in_cset();
 122   clear_index_in_opt_cset();
 123   uninstall_surv_rate_group();
 124   set_free();
 125   reset_pre_dummy_top();
 126 
 127   if (!keep_remset) {
 128     if (locked) {
 129       rem_set()->clear_locked();
 130     } else {
 131       rem_set()->clear();
 132     }
 133   }
 134 
 135   zero_marked_bytes();
 136 
 137   init_top_at_mark_start();
 138   if (clear_space) clear(SpaceDecorator::Mangle);
 139 
 140   _evacuation_failed = false;
 141   _gc_efficiency = 0.0;
 142 }
 143 
 144 void HeapRegion::clear_cardtable() {
 145   G1CardTable* ct = G1CollectedHeap::heap()->card_table();
 146   ct->clear(MemRegion(bottom(), end()));
 147 }
 148 
 149 void HeapRegion::calc_gc_efficiency() {
 150   // GC efficiency is the ratio of how much space would be
 151   // reclaimed over how long we predict it would take to reclaim it.
 152   G1Policy* policy = G1CollectedHeap::heap()->policy();
 153 
 154   // Retrieve a prediction of the elapsed time for this region for
 155   // a mixed gc because the region will only be evacuated during a
 156   // mixed gc.
 157   double region_elapsed_time_ms = policy->predict_region_total_time_ms(this, false /* for_young_gc */);
 158   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 159 }
 160 
 161 void HeapRegion::set_free() {
 162   report_region_type_change(G1HeapRegionTraceType::Free);
 163   _type.set_free();
 164 }
 165 
 166 void HeapRegion::set_eden() {
 167   report_region_type_change(G1HeapRegionTraceType::Eden);
 168   _type.set_eden();
 169 }
 170 
 171 void HeapRegion::set_eden_pre_gc() {
 172   report_region_type_change(G1HeapRegionTraceType::Eden);
 173   _type.set_eden_pre_gc();
 174 }
 175 
 176 void HeapRegion::set_survivor() {
 177   report_region_type_change(G1HeapRegionTraceType::Survivor);
 178   _type.set_survivor();
 179 }
 180 
 181 void HeapRegion::move_to_old() {
 182   if (_type.relabel_as_old()) {
 183     report_region_type_change(G1HeapRegionTraceType::Old);
 184   }
 185 }
 186 
 187 void HeapRegion::set_old() {
 188   report_region_type_change(G1HeapRegionTraceType::Old);
 189   _type.set_old();
 190 }
 191 
 192 void HeapRegion::set_open_archive() {
 193   report_region_type_change(G1HeapRegionTraceType::OpenArchive);
 194   _type.set_open_archive();
 195 }
 196 
 197 void HeapRegion::set_closed_archive() {
 198   report_region_type_change(G1HeapRegionTraceType::ClosedArchive);
 199   _type.set_closed_archive();
 200 }
 201 
 202 void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) {
 203   assert(!is_humongous(), "sanity / pre-condition");
 204   assert(top() == bottom(), "should be empty");
 205 
 206   report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
 207   _type.set_starts_humongous();
 208   _humongous_start_region = this;
 209 
 210   _bot_part.set_for_starts_humongous(obj_top, fill_size);
 211 }
 212 
 213 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
 214   assert(!is_humongous(), "sanity / pre-condition");
 215   assert(top() == bottom(), "should be empty");
 216   assert(first_hr->is_starts_humongous(), "pre-condition");
 217 
 218   report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
 219   _type.set_continues_humongous();
 220   _humongous_start_region = first_hr;
 221 
 222   _bot_part.set_object_can_span(true);
 223 }
 224 
 225 void HeapRegion::clear_humongous() {
 226   assert(is_humongous(), "pre-condition");
 227 
 228   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 229   _humongous_start_region = NULL;
 230 
 231   _bot_part.set_object_can_span(false);
 232 }
 233 
 234 HeapRegion::HeapRegion(uint hrm_index,
 235                        G1BlockOffsetTable* bot,
 236                        MemRegion mr) :
 237   _bottom(mr.start()),
 238   _end(mr.end()),
 239   _top(NULL),
 240   _compaction_top(NULL),
 241   _bot_part(bot, this),
 242   _par_alloc_lock(Mutex::leaf, "HeapRegion par alloc lock", true),
 243   _pre_dummy_top(NULL),
 244   _rem_set(NULL),
 245   _hrm_index(hrm_index),
 246   _type(),
 247   _humongous_start_region(NULL),
 248   _evacuation_failed(false),
 249   _index_in_opt_cset(InvalidCSetIndex),
 250   _next(NULL), _prev(NULL),
 251 #ifdef ASSERT
 252   _containing_set(NULL),
 253 #endif
 254   _prev_top_at_mark_start(NULL), _next_top_at_mark_start(NULL),
 255   _prev_marked_bytes(0), _next_marked_bytes(0),
 256   _young_index_in_cset(-1),
 257   _surv_rate_group(NULL), _age_index(SurvRateGroup::InvalidAgeIndex), _gc_efficiency(0.0),
 258   _node_index(G1NUMA::UnknownNodeIndex)
 259 {
 260   assert(Universe::on_page_boundary(mr.start()) && Universe::on_page_boundary(mr.end()),
 261          "invalid space boundaries");
 262 
 263   _rem_set = new HeapRegionRemSet(bot, this);
 264   initialize();
 265 }
 266 
 267 void HeapRegion::initialize(bool clear_space, bool mangle_space) {
 268   assert(_rem_set->is_empty(), "Remembered set must be empty");
 269 
 270   if (clear_space) {
 271     clear(mangle_space);
 272   }
 273 
 274   set_top(bottom());
 275   set_compaction_top(bottom());
 276   reset_bot();
 277 
 278   hr_clear(false /*par*/, false /*clear_space*/);
 279 }
 280 
 281 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
 282   HeapRegionTracer::send_region_type_change(_hrm_index,
 283                                             get_trace_type(),
 284                                             to,
 285                                             (uintptr_t)bottom(),
 286                                             used());
 287 }
 288 
 289 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 290                                                     bool during_conc_mark) {
 291   // We always recreate the prev marking info and we'll explicitly
 292   // mark all objects we find to be self-forwarded on the prev
 293   // bitmap. So all objects need to be below PTAMS.
 294   _prev_marked_bytes = 0;
 295 
 296   if (during_initial_mark) {
 297     // During initial-mark, we'll also explicitly mark all objects
 298     // we find to be self-forwarded on the next bitmap. So all
 299     // objects need to be below NTAMS.
 300     _next_top_at_mark_start = top();
 301     _next_marked_bytes = 0;
 302   } else if (during_conc_mark) {
 303     // During concurrent mark, all objects in the CSet (including
 304     // the ones we find to be self-forwarded) are implicitly live.
 305     // So all objects need to be above NTAMS.
 306     _next_top_at_mark_start = bottom();
 307     _next_marked_bytes = 0;
 308   }
 309 }
 310 
 311 void HeapRegion::note_self_forwarding_removal_end(size_t marked_bytes) {
 312   assert(marked_bytes <= used(),
 313          "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
 314   _prev_top_at_mark_start = top();
 315   _prev_marked_bytes = marked_bytes;
 316 }
 317 
 318 // Code roots support
 319 
 320 void HeapRegion::add_strong_code_root(nmethod* nm) {
 321   HeapRegionRemSet* hrrs = rem_set();
 322   hrrs->add_strong_code_root(nm);
 323 }
 324 
 325 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 326   assert_locked_or_safepoint(CodeCache_lock);
 327   HeapRegionRemSet* hrrs = rem_set();
 328   hrrs->add_strong_code_root_locked(nm);
 329 }
 330 
 331 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 332   HeapRegionRemSet* hrrs = rem_set();
 333   hrrs->remove_strong_code_root(nm);
 334 }
 335 
 336 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 337   HeapRegionRemSet* hrrs = rem_set();
 338   hrrs->strong_code_roots_do(blk);
 339 }
 340 
 341 class VerifyStrongCodeRootOopClosure: public OopClosure {
 342   const HeapRegion* _hr;
 343   bool _failures;
 344   bool _has_oops_in_region;
 345 
 346   template <class T> void do_oop_work(T* p) {
 347     T heap_oop = RawAccess<>::oop_load(p);
 348     if (!CompressedOops::is_null(heap_oop)) {
 349       oop obj = CompressedOops::decode_not_null(heap_oop);
 350 
 351       // Note: not all the oops embedded in the nmethod are in the
 352       // current region. We only look at those which are.
 353       if (_hr->is_in(obj)) {
 354         // Object is in the region. Check that its less than top
 355         if (_hr->top() <= (HeapWord*)obj) {
 356           // Object is above top
 357           log_error(gc, verify)("Object " PTR_FORMAT " in region " HR_FORMAT " is above top ",
 358                                 p2i(obj), HR_FORMAT_PARAMS(_hr));
 359           _failures = true;
 360           return;
 361         }
 362         // Nmethod has at least one oop in the current region
 363         _has_oops_in_region = true;
 364       }
 365     }
 366   }
 367 
 368 public:
 369   VerifyStrongCodeRootOopClosure(const HeapRegion* hr):
 370     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 371 
 372   void do_oop(narrowOop* p) { do_oop_work(p); }
 373   void do_oop(oop* p)       { do_oop_work(p); }
 374 
 375   bool failures()           { return _failures; }
 376   bool has_oops_in_region() { return _has_oops_in_region; }
 377 };
 378 
 379 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 380   const HeapRegion* _hr;
 381   bool _failures;
 382 public:
 383   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 384     _hr(hr), _failures(false) {}
 385 
 386   void do_code_blob(CodeBlob* cb) {
 387     nmethod* nm = (cb == NULL) ? NULL : cb->as_compiled_method()->as_nmethod_or_null();
 388     if (nm != NULL) {
 389       // Verify that the nemthod is live
 390       if (!nm->is_alive()) {
 391         log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots",
 392                               p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 393         _failures = true;
 394       } else {
 395         VerifyStrongCodeRootOopClosure oop_cl(_hr);
 396         nm->oops_do(&oop_cl);
 397         if (!oop_cl.has_oops_in_region()) {
 398           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region",
 399                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 400           _failures = true;
 401         } else if (oop_cl.failures()) {
 402           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT,
 403                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 404           _failures = true;
 405         }
 406       }
 407     }
 408   }
 409 
 410   bool failures()       { return _failures; }
 411 };
 412 
 413 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 414   if (!G1VerifyHeapRegionCodeRoots) {
 415     // We're not verifying code roots.
 416     return;
 417   }
 418   if (vo == VerifyOption_G1UseFullMarking) {
 419     // Marking verification during a full GC is performed after class
 420     // unloading, code cache unloading, etc so the strong code roots
 421     // attached to each heap region are in an inconsistent state. They won't
 422     // be consistent until the strong code roots are rebuilt after the
 423     // actual GC. Skip verifying the strong code roots in this particular
 424     // time.
 425     assert(VerifyDuringGC, "only way to get here");
 426     return;
 427   }
 428 
 429   HeapRegionRemSet* hrrs = rem_set();
 430   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 431 
 432   // if this region is empty then there should be no entries
 433   // on its strong code root list
 434   if (is_empty()) {
 435     if (strong_code_roots_length > 0) {
 436       log_error(gc, verify)("region " HR_FORMAT " is empty but has " SIZE_FORMAT " code root entries",
 437                             HR_FORMAT_PARAMS(this), strong_code_roots_length);
 438       *failures = true;
 439     }
 440     return;
 441   }
 442 
 443   if (is_continues_humongous()) {
 444     if (strong_code_roots_length > 0) {
 445       log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries",
 446                             HR_FORMAT_PARAMS(this), strong_code_roots_length);
 447       *failures = true;
 448     }
 449     return;
 450   }
 451 
 452   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 453   strong_code_roots_do(&cb_cl);
 454 
 455   if (cb_cl.failures()) {
 456     *failures = true;
 457   }
 458 }
 459 
 460 void HeapRegion::print() const { print_on(tty); }
 461 
 462 void HeapRegion::print_on(outputStream* st) const {
 463   st->print("|%4u", this->_hrm_index);
 464   st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT,
 465             p2i(bottom()), p2i(top()), p2i(end()));
 466   st->print("|%3d%%", (int) ((double) used() * 100 / capacity()));
 467   st->print("|%2s", get_short_type_str());
 468   if (in_collection_set()) {
 469     st->print("|CS");
 470   } else {
 471     st->print("|  ");
 472   }
 473   st->print("|TAMS " PTR_FORMAT ", " PTR_FORMAT "| %s ",
 474                p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()), rem_set()->get_state_str());
 475   if (UseNUMA) {
 476     G1NUMA* numa = G1NUMA::numa();
 477     if (node_index() < numa->num_active_nodes()) {
 478       st->print("|%d", numa->numa_id(node_index()));
 479     } else {
 480       st->print("|-");
 481     }
 482   }
 483   st->print_cr("");
 484 }
 485 
 486 class G1VerificationClosure : public BasicOopIterateClosure {
 487 protected:
 488   G1CollectedHeap* _g1h;
 489   G1CardTable *_ct;
 490   oop _containing_obj;
 491   bool _failures;
 492   int _n_failures;
 493   VerifyOption _vo;
 494 public:
 495   // _vo == UsePrevMarking -> use "prev" marking information,
 496   // _vo == UseNextMarking -> use "next" marking information,
 497   // _vo == UseFullMarking -> use "next" marking bitmap but no TAMS.
 498   G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 499     _g1h(g1h), _ct(g1h->card_table()),
 500     _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) {
 501   }
 502 
 503   void set_containing_obj(oop obj) {
 504     _containing_obj = obj;
 505   }
 506 
 507   bool failures() { return _failures; }
 508   int n_failures() { return _n_failures; }
 509 
 510   void print_object(outputStream* out, oop obj) {
 511 #ifdef PRODUCT
 512     Klass* k = obj->klass();
 513     const char* class_name = k->external_name();
 514     out->print_cr("class name %s", class_name);
 515 #else // PRODUCT
 516     obj->print_on(out);
 517 #endif // PRODUCT
 518   }
 519 
 520   // This closure provides its own oop verification code.
 521   debug_only(virtual bool should_verify_oops() { return false; })
 522 };
 523 
 524 class VerifyLiveClosure : public G1VerificationClosure {
 525 public:
 526   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 527   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 528   virtual void do_oop(oop* p) { do_oop_work(p); }
 529 
 530   template <class T>
 531   void do_oop_work(T* p) {
 532     assert(_containing_obj != NULL, "Precondition");
 533     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 534       "Precondition");
 535     verify_liveness(p);
 536   }
 537 
 538   template <class T>
 539   void verify_liveness(T* p) {
 540     T heap_oop = RawAccess<>::oop_load(p);
 541     Log(gc, verify) log;
 542     if (!CompressedOops::is_null(heap_oop)) {
 543       oop obj = CompressedOops::decode_not_null(heap_oop);
 544       bool failed = false;
 545       if (!_g1h->is_in(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 546         MutexLocker x(ParGCRareEvent_lock,
 547           Mutex::_no_safepoint_check_flag);
 548 
 549         if (!_failures) {
 550           log.error("----------");
 551         }
 552         ResourceMark rm;
 553         if (!_g1h->is_in(obj)) {
 554           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 555           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region " HR_FORMAT,
 556                     p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
 557           LogStream ls(log.error());
 558           print_object(&ls, _containing_obj);
 559           HeapRegion* const to = _g1h->heap_region_containing(obj);
 560           log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s",
 561                     p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str());
 562         } else {
 563           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 564           HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
 565           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region " HR_FORMAT,
 566                     p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
 567           LogStream ls(log.error());
 568           print_object(&ls, _containing_obj);
 569           log.error("points to dead obj " PTR_FORMAT " in region " HR_FORMAT,
 570                     p2i(obj), HR_FORMAT_PARAMS(to));
 571           print_object(&ls, obj);
 572         }
 573         log.error("----------");
 574         _failures = true;
 575         failed = true;
 576         _n_failures++;
 577       }
 578     }
 579   }
 580 };
 581 
 582 class VerifyRemSetClosure : public G1VerificationClosure {
 583 public:
 584   VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 585   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 586   virtual void do_oop(oop* p) { do_oop_work(p); }
 587 
 588   template <class T>
 589   void do_oop_work(T* p) {
 590     assert(_containing_obj != NULL, "Precondition");
 591     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 592       "Precondition");
 593     verify_remembered_set(p);
 594   }
 595 
 596   template <class T>
 597   void verify_remembered_set(T* p) {
 598     T heap_oop = RawAccess<>::oop_load(p);
 599     Log(gc, verify) log;
 600     if (!CompressedOops::is_null(heap_oop)) {
 601       oop obj = CompressedOops::decode_not_null(heap_oop);
 602       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 603       HeapRegion* to = _g1h->heap_region_containing(obj);
 604       if (from != NULL && to != NULL &&
 605         from != to &&
 606         !to->is_pinned() &&
 607         to->rem_set()->is_complete()) {
 608         jbyte cv_obj = *_ct->byte_for_const(_containing_obj);
 609         jbyte cv_field = *_ct->byte_for_const(p);
 610         const jbyte dirty = G1CardTable::dirty_card_val();
 611 
 612         bool is_bad = !(from->is_young()
 613           || to->rem_set()->contains_reference(p)
 614           || (_containing_obj->is_objArray() ?
 615                 cv_field == dirty :
 616                 cv_obj == dirty || cv_field == dirty));
 617         if (is_bad) {
 618           MutexLocker x(ParGCRareEvent_lock,
 619             Mutex::_no_safepoint_check_flag);
 620 
 621           if (!_failures) {
 622             log.error("----------");
 623           }
 624           log.error("Missing rem set entry:");
 625           log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT " in region " HR_FORMAT,
 626                     p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
 627           ResourceMark rm;
 628           LogStream ls(log.error());
 629           _containing_obj->print_on(&ls);
 630           log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s",
 631                     p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str());
 632           if (oopDesc::is_oop(obj)) {
 633             obj->print_on(&ls);
 634           }
 635           log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field);
 636           log.error("----------");
 637           _failures = true;
 638           _n_failures++;
 639         }
 640       }
 641     }
 642   }
 643 };
 644 
 645 // Closure that applies the given two closures in sequence.
 646 class G1Mux2Closure : public BasicOopIterateClosure {
 647   OopClosure* _c1;
 648   OopClosure* _c2;
 649 public:
 650   G1Mux2Closure(OopClosure *c1, OopClosure *c2) { _c1 = c1; _c2 = c2; }
 651   template <class T> inline void do_oop_work(T* p) {
 652     // Apply first closure; then apply the second.
 653     _c1->do_oop(p);
 654     _c2->do_oop(p);
 655   }
 656   virtual inline void do_oop(oop* p) { do_oop_work(p); }
 657   virtual inline void do_oop(narrowOop* p) { do_oop_work(p); }
 658 
 659   // This closure provides its own oop verification code.
 660   debug_only(virtual bool should_verify_oops() { return false; })
 661 };
 662 
 663 void HeapRegion::verify(VerifyOption vo,
 664                         bool* failures) const {
 665   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 666   *failures = false;
 667   HeapWord* p = bottom();
 668   HeapWord* prev_p = NULL;
 669   VerifyLiveClosure vl_cl(g1h, vo);
 670   VerifyRemSetClosure vr_cl(g1h, vo);
 671   bool is_region_humongous = is_humongous();
 672   size_t object_num = 0;
 673   while (p < top()) {
 674     oop obj = oop(p);
 675     size_t obj_size = block_size(p);
 676     object_num += 1;
 677 
 678     if (!g1h->is_obj_dead_cond(obj, this, vo)) {
 679       if (oopDesc::is_oop(obj)) {
 680         Klass* klass = obj->klass();
 681         bool is_metaspace_object = Metaspace::contains(klass);
 682         if (!is_metaspace_object) {
 683           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 684                                 "not metadata", p2i(klass), p2i(obj));
 685           *failures = true;
 686           return;
 687         } else if (!klass->is_klass()) {
 688           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 689                                 "not a klass", p2i(klass), p2i(obj));
 690           *failures = true;
 691           return;
 692         } else {
 693           vl_cl.set_containing_obj(obj);
 694           if (!g1h->collector_state()->in_full_gc() || G1VerifyRSetsDuringFullGC) {
 695             // verify liveness and rem_set
 696             vr_cl.set_containing_obj(obj);
 697             G1Mux2Closure mux(&vl_cl, &vr_cl);
 698             obj->oop_iterate(&mux);
 699 
 700             if (vr_cl.failures()) {
 701               *failures = true;
 702             }
 703             if (G1MaxVerifyFailures >= 0 &&
 704               vr_cl.n_failures() >= G1MaxVerifyFailures) {
 705               return;
 706             }
 707           } else {
 708             // verify only liveness
 709             obj->oop_iterate(&vl_cl);
 710           }
 711           if (vl_cl.failures()) {
 712             *failures = true;
 713           }
 714           if (G1MaxVerifyFailures >= 0 &&
 715               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 716             return;
 717           }
 718         }
 719       } else {
 720         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 721         *failures = true;
 722         return;
 723       }
 724     }
 725     prev_p = p;
 726     p += obj_size;
 727   }
 728 
 729   if (!is_young() && !is_empty()) {
 730     _bot_part.verify();
 731   }
 732 
 733   if (is_region_humongous) {
 734     oop obj = oop(this->humongous_start_region()->bottom());
 735     if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
 736       log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
 737       *failures = true;
 738       return;
 739     }
 740   }
 741 
 742   if (!is_region_humongous && p != top()) {
 743     log_error(gc, verify)("end of last object " PTR_FORMAT " "
 744                           "does not match top " PTR_FORMAT, p2i(p), p2i(top()));
 745     *failures = true;
 746     return;
 747   }
 748 
 749   HeapWord* the_end = end();
 750   // Do some extra BOT consistency checking for addresses in the
 751   // range [top, end). BOT look-ups in this range should yield
 752   // top. No point in doing that if top == end (there's nothing there).
 753   if (p < the_end) {
 754     // Look up top
 755     HeapWord* addr_1 = p;
 756     HeapWord* b_start_1 = block_start_const(addr_1);
 757     if (b_start_1 != p) {
 758       log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " "
 759                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 760                             p2i(addr_1), p2i(b_start_1), p2i(p));
 761       *failures = true;
 762       return;
 763     }
 764 
 765     // Look up top + 1
 766     HeapWord* addr_2 = p + 1;
 767     if (addr_2 < the_end) {
 768       HeapWord* b_start_2 = block_start_const(addr_2);
 769       if (b_start_2 != p) {
 770         log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " "
 771                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 772                               p2i(addr_2), p2i(b_start_2), p2i(p));
 773         *failures = true;
 774         return;
 775       }
 776     }
 777 
 778     // Look up an address between top and end
 779     size_t diff = pointer_delta(the_end, p) / 2;
 780     HeapWord* addr_3 = p + diff;
 781     if (addr_3 < the_end) {
 782       HeapWord* b_start_3 = block_start_const(addr_3);
 783       if (b_start_3 != p) {
 784         log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " "
 785                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 786                               p2i(addr_3), p2i(b_start_3), p2i(p));
 787         *failures = true;
 788         return;
 789       }
 790     }
 791 
 792     // Look up end - 1
 793     HeapWord* addr_4 = the_end - 1;
 794     HeapWord* b_start_4 = block_start_const(addr_4);
 795     if (b_start_4 != p) {
 796       log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " "
 797                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 798                             p2i(addr_4), p2i(b_start_4), p2i(p));
 799       *failures = true;
 800       return;
 801     }
 802   }
 803 
 804   verify_strong_code_roots(vo, failures);
 805 }
 806 
 807 void HeapRegion::verify() const {
 808   bool dummy = false;
 809   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 810 }
 811 
 812 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
 813   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 814   *failures = false;
 815   HeapWord* p = bottom();
 816   HeapWord* prev_p = NULL;
 817   VerifyRemSetClosure vr_cl(g1h, vo);
 818   while (p < top()) {
 819     oop obj = oop(p);
 820     size_t obj_size = block_size(p);
 821 
 822     if (!g1h->is_obj_dead_cond(obj, this, vo)) {
 823       if (oopDesc::is_oop(obj)) {
 824         vr_cl.set_containing_obj(obj);
 825         obj->oop_iterate(&vr_cl);
 826 
 827         if (vr_cl.failures()) {
 828           *failures = true;
 829         }
 830         if (G1MaxVerifyFailures >= 0 &&
 831           vr_cl.n_failures() >= G1MaxVerifyFailures) {
 832           return;
 833         }
 834       } else {
 835         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 836         *failures = true;
 837         return;
 838       }
 839     }
 840 
 841     prev_p = p;
 842     p += obj_size;
 843   }
 844 }
 845 
 846 void HeapRegion::verify_rem_set() const {
 847   bool failures = false;
 848   verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
 849   guarantee(!failures, "HeapRegion RemSet verification failed");
 850 }
 851 
 852 void HeapRegion::clear(bool mangle_space) {
 853   set_top(bottom());
 854   set_compaction_top(bottom());
 855 
 856   if (ZapUnusedHeapArea && mangle_space) {
 857     mangle_unused_area();
 858   }
 859   reset_bot();
 860 }
 861 
 862 #ifndef PRODUCT
 863 void HeapRegion::mangle_unused_area() {
 864   SpaceMangler::mangle_region(MemRegion(top(), end()));
 865 }
 866 #endif
 867 
 868 HeapWord* HeapRegion::initialize_threshold() {
 869   return _bot_part.initialize_threshold();
 870 }
 871 
 872 HeapWord* HeapRegion::cross_threshold(HeapWord* start, HeapWord* end) {
 873   _bot_part.alloc_block(start, end);
 874   return _bot_part.threshold();
 875 }
 876 
 877 void HeapRegion::object_iterate(ObjectClosure* blk) {
 878   HeapWord* p = bottom();
 879   while (p < top()) {
 880     if (block_is_obj(p)) {
 881       blk->do_object(oop(p));
 882     }
 883     p += block_size(p);
 884   }
 885 }