1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Analytics.hpp"
  27 #include "gc/g1/g1Arguments.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectionSetCandidates.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1ConcurrentRefine.hpp"
  34 #include "gc/g1/g1CollectionSetChooser.hpp"
  35 #include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
  36 #include "gc/g1/g1HotCardCache.hpp"
  37 #include "gc/g1/g1IHOPControl.hpp"
  38 #include "gc/g1/g1GCPhaseTimes.hpp"
  39 #include "gc/g1/g1Policy.hpp"
  40 #include "gc/g1/g1SurvivorRegions.hpp"
  41 #include "gc/g1/g1YoungGenSizer.hpp"
  42 #include "gc/g1/heapRegion.inline.hpp"
  43 #include "gc/g1/heapRegionRemSet.hpp"
  44 #include "gc/shared/gcPolicyCounters.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "utilities/debug.hpp"
  50 #include "utilities/growableArray.hpp"
  51 #include "utilities/pair.hpp"
  52 
  53 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  54   _predictor(G1ConfidencePercent / 100.0),
  55   _analytics(new G1Analytics(&_predictor)),
  56   _remset_tracker(),
  57   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  58   _ihop_control(create_ihop_control(&_predictor)),
  59   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  60   _full_collection_start_sec(0.0),
  61   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC),
  62   _young_list_target_length(0),
  63   _young_list_fixed_length(0),
  64   _young_list_max_length(0),
  65   _eden_surv_rate_group(new G1SurvRateGroup()),
  66   _survivor_surv_rate_group(new G1SurvRateGroup()),
  67   _reserve_factor((double) G1ReservePercent / 100.0),
  68   _reserve_regions(0),
  69   _young_gen_sizer(G1YoungGenSizer::create_gen_sizer()),
  70   _free_regions_at_end_of_collection(0),
  71   _rs_length(0),
  72   _rs_length_prediction(0),
  73   _pending_cards_at_gc_start(0),
  74   _pending_cards_at_prev_gc_end(0),
  75   _total_mutator_refined_cards(0),
  76   _total_concurrent_refined_cards(0),
  77   _total_concurrent_refinement_time(),
  78   _bytes_allocated_in_old_since_last_gc(0),
  79   _initial_mark_to_mixed(),
  80   _collection_set(NULL),
  81   _g1h(NULL),
  82   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
  83   _mark_remark_start_sec(0),
  84   _mark_cleanup_start_sec(0),
  85   _tenuring_threshold(MaxTenuringThreshold),
  86   _max_survivor_regions(0),
  87   _survivors_age_table(true)
  88 {
  89 }
  90 
  91 G1Policy::~G1Policy() {
  92   delete _ihop_control;
  93   delete _young_gen_sizer;
  94 }
  95 
  96 G1Policy* G1Policy::create_policy(STWGCTimer* gc_timer_stw) {
  97   if (G1Arguments::is_heterogeneous_heap()) {
  98     return new G1HeterogeneousHeapPolicy(gc_timer_stw);
  99   } else {
 100     return new G1Policy(gc_timer_stw);
 101   }
 102 }
 103 
 104 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
 105 
 106 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
 107   _g1h = g1h;
 108   _collection_set = collection_set;
 109 
 110   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 111 
 112   if (!use_adaptive_young_list_length()) {
 113     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 114   }
 115   _young_gen_sizer->adjust_max_new_size(_g1h->max_expandable_regions());
 116 
 117   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 118 
 119   update_young_list_max_and_target_length();
 120   // We may immediately start allocating regions and placing them on the
 121   // collection set list. Initialize the per-collection set info
 122   _collection_set->start_incremental_building();
 123 }
 124 
 125 void G1Policy::note_gc_start() {
 126   phase_times()->note_gc_start();
 127 }
 128 
 129 class G1YoungLengthPredictor {
 130   const double _base_time_ms;
 131   const double _base_free_regions;
 132   const double _target_pause_time_ms;
 133   const G1Policy* const _policy;
 134 
 135  public:
 136   G1YoungLengthPredictor(double base_time_ms,
 137                          double base_free_regions,
 138                          double target_pause_time_ms,
 139                          const G1Policy* policy) :
 140     _base_time_ms(base_time_ms),
 141     _base_free_regions(base_free_regions),
 142     _target_pause_time_ms(target_pause_time_ms),
 143     _policy(policy) {}
 144 
 145   bool will_fit(uint young_length) const {
 146     if (young_length >= _base_free_regions) {
 147       // end condition 1: not enough space for the young regions
 148       return false;
 149     }
 150 
 151     size_t bytes_to_copy = 0;
 152     const double copy_time_ms = _policy->predict_eden_copy_time_ms(young_length, &bytes_to_copy);
 153     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 154     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 155     if (pause_time_ms > _target_pause_time_ms) {
 156       // end condition 2: prediction is over the target pause time
 157       return false;
 158     }
 159 
 160     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 161 
 162     // When copying, we will likely need more bytes free than is live in the region.
 163     // Add some safety margin to factor in the confidence of our guess, and the
 164     // natural expected waste.
 165     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 166     // of the calculation: the lower the confidence, the more headroom.
 167     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 168     // copying due to anticipated waste in the PLABs.
 169     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 170     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 171 
 172     if (expected_bytes_to_copy > free_bytes) {
 173       // end condition 3: out-of-space
 174       return false;
 175     }
 176 
 177     // success!
 178     return true;
 179   }
 180 };
 181 
 182 void G1Policy::record_new_target_heap_size(uint new_number_of_regions, uint reserve_regions) {
 183   _reserve_regions = reserve_regions;
 184   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 185   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 186 }
 187 
 188 void G1Policy::update_heap_target_size(uint num_regions, uint soft_goal_num_regions) {
 189   uint desired_number_of_regions = MIN2(num_regions, soft_goal_num_regions);
 190   
 191   uint regular_reserve_regions = (uint)ceil((double)num_regions * G1ReservePercent / 100);
 192   uint reserve_regions = regular_reserve_regions;
 193   uint soft_reserve_regions = 0;
 194 
 195   if (soft_goal_num_regions < num_regions) {
 196     soft_reserve_regions = num_regions - soft_goal_num_regions + 
 197             (uint)ceil((double)soft_goal_num_regions * G1ReservePercent / 100);
 198     reserve_regions = soft_reserve_regions;
 199   }
 200 
 201   // FIXME: this method is called very early during startup during initial heap expansion, so
 202   // the _g1h member has not been set yet.
 203   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 204   uint MBPerRegion = HeapRegion::GrainBytes / (1024 * 1024);
 205   log_error(gc)("heap target update: soft-goal %u committed %u goal %u hard-reserve %u soft-reserve %u reserve %u free %u used %u",
 206                 soft_goal_num_regions * MBPerRegion, num_regions * MBPerRegion,
 207                 desired_number_of_regions * MBPerRegion,
 208                 regular_reserve_regions * MBPerRegion, soft_reserve_regions * MBPerRegion, reserve_regions * MBPerRegion,
 209                 g1h->num_free_regions() * MBPerRegion, g1h->num_used_regions() * MBPerRegion);
 210 
 211   record_new_target_heap_size(desired_number_of_regions, reserve_regions);
 212 }
 213 
 214 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
 215   uint desired_min_length = 0;
 216   if (use_adaptive_young_list_length()) {
 217     if (_analytics->num_alloc_rate_ms() > 3) {
 218       double now_sec = os::elapsedTime();
 219       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 220       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 221       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 222     } else {
 223       // otherwise we don't have enough info to make the prediction
 224     }
 225   }
 226   desired_min_length += base_min_length;
 227   // make sure we don't go below any user-defined minimum bound
 228   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 229 }
 230 
 231 uint G1Policy::calculate_young_list_desired_max_length() const {
 232   // Here, we might want to also take into account any additional
 233   // constraints (i.e., user-defined minimum bound). Currently, we
 234   // effectively don't set this bound.
 235   return _young_gen_sizer->max_desired_young_length();
 236 }
 237 
 238 uint G1Policy::update_young_list_max_and_target_length() {
 239   return update_young_list_max_and_target_length(_analytics->predict_rs_length());
 240 }
 241 
 242 uint G1Policy::update_young_list_max_and_target_length(size_t rs_length) {
 243   uint unbounded_target_length = update_young_list_target_length(rs_length);
 244   update_max_gc_locker_expansion();
 245   return unbounded_target_length;
 246 }
 247 
 248 uint G1Policy::update_young_list_target_length(size_t rs_length) {
 249   YoungTargetLengths young_lengths = young_list_target_lengths(rs_length);
 250   _young_list_target_length = young_lengths.first;
 251 
 252   return young_lengths.second;
 253 }
 254 
 255 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_length) const {
 256   YoungTargetLengths result;
 257 
 258   // Calculate the absolute and desired min bounds first.
 259 
 260   // This is how many young regions we already have (currently: the survivors).
 261   const uint base_min_length = _g1h->survivor_regions_count();
 262   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 263   // This is the absolute minimum young length. Ensure that we
 264   // will at least have one eden region available for allocation.
 265   uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
 266   // If we shrank the young list target it should not shrink below the current size.
 267   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 268   // Calculate the absolute and desired max bounds.
 269 
 270   uint desired_max_length = calculate_young_list_desired_max_length();
 271 
 272   uint young_list_target_length = 0;
 273   if (use_adaptive_young_list_length()) {
 274     if (collector_state()->in_young_only_phase()) {
 275       young_list_target_length =
 276                         calculate_young_list_target_length(rs_length,
 277                                                            base_min_length,
 278                                                            desired_min_length,
 279                                                            desired_max_length);
 280     } else {
 281       // Don't calculate anything and let the code below bound it to
 282       // the desired_min_length, i.e., do the next GC as soon as
 283       // possible to maximize how many old regions we can add to it.
 284     }
 285   } else {
 286     // The user asked for a fixed young gen so we'll fix the young gen
 287     // whether the next GC is young or mixed.
 288     young_list_target_length = _young_list_fixed_length;
 289   }
 290 
 291   result.second = young_list_target_length;
 292 
 293   // We will try our best not to "eat" into the reserve.
 294   uint absolute_max_length = 0;
 295   if (_free_regions_at_end_of_collection > _reserve_regions) {
 296     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 297   }
 298   if (desired_max_length > absolute_max_length) {
 299     desired_max_length = absolute_max_length;
 300   }
 301 
 302   // Make sure we don't go over the desired max length, nor under the
 303   // desired min length. In case they clash, desired_min_length wins
 304   // which is why that test is second.
 305   if (young_list_target_length > desired_max_length) {
 306     young_list_target_length = desired_max_length;
 307   }
 308   if (young_list_target_length < desired_min_length) {
 309     young_list_target_length = desired_min_length;
 310   }
 311 
 312   assert(young_list_target_length > base_min_length,
 313          "we should be able to allocate at least one eden region");
 314   assert(young_list_target_length >= absolute_min_length, "post-condition");
 315 
 316   result.first = young_list_target_length;
 317   return result;
 318 }
 319 
 320 uint G1Policy::calculate_young_list_target_length(size_t rs_length,
 321                                                   uint base_min_length,
 322                                                   uint desired_min_length,
 323                                                   uint desired_max_length) const {
 324   assert(use_adaptive_young_list_length(), "pre-condition");
 325   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
 326 
 327   // In case some edge-condition makes the desired max length too small...
 328   if (desired_max_length <= desired_min_length) {
 329     return desired_min_length;
 330   }
 331 
 332   // We'll adjust min_young_length and max_young_length not to include
 333   // the already allocated young regions (i.e., so they reflect the
 334   // min and max eden regions we'll allocate). The base_min_length
 335   // will be reflected in the predictions by the
 336   // survivor_regions_evac_time prediction.
 337   assert(desired_min_length > base_min_length, "invariant");
 338   uint min_young_length = desired_min_length - base_min_length;
 339   assert(desired_max_length > base_min_length, "invariant");
 340   uint max_young_length = desired_max_length - base_min_length;
 341 
 342   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 343   const size_t pending_cards = _analytics->predict_pending_cards();
 344   const double base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
 345   const uint available_free_regions = _free_regions_at_end_of_collection;
 346   const uint base_free_regions =
 347     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 348 
 349   // Here, we will make sure that the shortest young length that
 350   // makes sense fits within the target pause time.
 351 
 352   G1YoungLengthPredictor p(base_time_ms,
 353                            base_free_regions,
 354                            target_pause_time_ms,
 355                            this);
 356   if (p.will_fit(min_young_length)) {
 357     // The shortest young length will fit into the target pause time;
 358     // we'll now check whether the absolute maximum number of young
 359     // regions will fit in the target pause time. If not, we'll do
 360     // a binary search between min_young_length and max_young_length.
 361     if (p.will_fit(max_young_length)) {
 362       // The maximum young length will fit into the target pause time.
 363       // We are done so set min young length to the maximum length (as
 364       // the result is assumed to be returned in min_young_length).
 365       min_young_length = max_young_length;
 366     } else {
 367       // The maximum possible number of young regions will not fit within
 368       // the target pause time so we'll search for the optimal
 369       // length. The loop invariants are:
 370       //
 371       // min_young_length < max_young_length
 372       // min_young_length is known to fit into the target pause time
 373       // max_young_length is known not to fit into the target pause time
 374       //
 375       // Going into the loop we know the above hold as we've just
 376       // checked them. Every time around the loop we check whether
 377       // the middle value between min_young_length and
 378       // max_young_length fits into the target pause time. If it
 379       // does, it becomes the new min. If it doesn't, it becomes
 380       // the new max. This way we maintain the loop invariants.
 381 
 382       assert(min_young_length < max_young_length, "invariant");
 383       uint diff = (max_young_length - min_young_length) / 2;
 384       while (diff > 0) {
 385         uint young_length = min_young_length + diff;
 386         if (p.will_fit(young_length)) {
 387           min_young_length = young_length;
 388         } else {
 389           max_young_length = young_length;
 390         }
 391         assert(min_young_length <  max_young_length, "invariant");
 392         diff = (max_young_length - min_young_length) / 2;
 393       }
 394       // The results is min_young_length which, according to the
 395       // loop invariants, should fit within the target pause time.
 396 
 397       // These are the post-conditions of the binary search above:
 398       assert(min_young_length < max_young_length,
 399              "otherwise we should have discovered that max_young_length "
 400              "fits into the pause target and not done the binary search");
 401       assert(p.will_fit(min_young_length),
 402              "min_young_length, the result of the binary search, should "
 403              "fit into the pause target");
 404       assert(!p.will_fit(min_young_length + 1),
 405              "min_young_length, the result of the binary search, should be "
 406              "optimal, so no larger length should fit into the pause target");
 407     }
 408   } else {
 409     // Even the minimum length doesn't fit into the pause time
 410     // target, return it as the result nevertheless.
 411   }
 412   return base_min_length + min_young_length;
 413 }
 414 
 415 double G1Policy::predict_survivor_regions_evac_time() const {
 416   double survivor_regions_evac_time = 0.0;
 417   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 418   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 419        it != survivor_regions->end();
 420        ++it) {
 421     survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
 422   }
 423   return survivor_regions_evac_time;
 424 }
 425 
 426 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
 427   guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
 428 
 429   if (rs_length > _rs_length_prediction) {
 430     // add 10% to avoid having to recalculate often
 431     size_t rs_length_prediction = rs_length * 1100 / 1000;
 432     update_rs_length_prediction(rs_length_prediction);
 433 
 434     update_young_list_max_and_target_length(rs_length_prediction);
 435   }
 436 }
 437 
 438 void G1Policy::update_rs_length_prediction() {
 439   update_rs_length_prediction(_analytics->predict_rs_length());
 440 }
 441 
 442 void G1Policy::update_rs_length_prediction(size_t prediction) {
 443   if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
 444     _rs_length_prediction = prediction;
 445   }
 446 }
 447 
 448 void G1Policy::record_full_collection_start() {
 449   _full_collection_start_sec = os::elapsedTime();
 450   // Release the future to-space so that it is available for compaction into.
 451   collector_state()->set_in_young_only_phase(false);
 452   collector_state()->set_in_full_gc(true);
 453   _collection_set->clear_candidates();
 454   record_concurrent_refinement_data(true /* is_full_collection */);
 455 }
 456 
 457 void G1Policy::record_full_collection_end() {
 458   // Consider this like a collection pause for the purposes of allocation
 459   // since last pause.
 460   double end_sec = os::elapsedTime();
 461   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 462   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 463 
 464   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 465 
 466   collector_state()->set_in_full_gc(false);
 467 
 468   // "Nuke" the heuristics that control the young/mixed GC
 469   // transitions and make sure we start with young GCs after the Full GC.
 470   collector_state()->set_in_young_only_phase(true);
 471   collector_state()->set_in_young_gc_before_mixed(false);
 472   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 473   collector_state()->set_in_initial_mark_gc(false);
 474   collector_state()->set_mark_or_rebuild_in_progress(false);
 475   collector_state()->set_clearing_next_bitmap(false);
 476 
 477   _eden_surv_rate_group->start_adding_regions();
 478   // also call this on any additional surv rate groups
 479 
 480   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 481   _survivor_surv_rate_group->reset();
 482   update_young_list_max_and_target_length();
 483   update_rs_length_prediction();
 484   _pending_cards_at_prev_gc_end = _g1h->pending_card_num();
 485 
 486   _bytes_allocated_in_old_since_last_gc = 0;
 487 
 488   record_pause(FullGC, _full_collection_start_sec, end_sec);
 489 }
 490 
 491 void G1Policy::record_concurrent_refinement_data(bool is_full_collection) {
 492   _pending_cards_at_gc_start = _g1h->pending_card_num();
 493 
 494   // Record info about concurrent refinement thread processing.
 495   G1ConcurrentRefine* cr = _g1h->concurrent_refine();
 496   G1ConcurrentRefine::RefinementStats cr_stats = cr->total_refinement_stats();
 497 
 498   Tickspan cr_time = cr_stats._time - _total_concurrent_refinement_time;
 499   _total_concurrent_refinement_time = cr_stats._time;
 500 
 501   size_t cr_cards = cr_stats._cards - _total_concurrent_refined_cards;
 502   _total_concurrent_refined_cards = cr_stats._cards;
 503 
 504   // Don't update rate if full collection.  We could be in an implicit full
 505   // collection after a non-full collection failure, in which case there
 506   // wasn't any mutator/cr-thread activity since last recording.  And if
 507   // we're in an explicit full collection, the time since the last GC can
 508   // be arbitrarily short, so not a very good sample.  Similarly, don't
 509   // update the rate if the current sample is empty or time is zero.
 510   if (!is_full_collection && (cr_cards > 0) && (cr_time > Tickspan())) {
 511     double rate = cr_cards / (cr_time.seconds() * MILLIUNITS);
 512     _analytics->report_concurrent_refine_rate_ms(rate);
 513   }
 514 
 515   // Record info about mutator thread processing.
 516   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 517   size_t mut_total_cards = dcqs.total_mutator_refined_cards();
 518   size_t mut_cards = mut_total_cards - _total_mutator_refined_cards;
 519   _total_mutator_refined_cards = mut_total_cards;
 520 
 521   // Record mutator's card logging rate.
 522   // Don't update if full collection; see above.
 523   if (!is_full_collection) {
 524     size_t total_cards = _pending_cards_at_gc_start + cr_cards + mut_cards;
 525     assert(_pending_cards_at_prev_gc_end <= total_cards,
 526            "untracked cards: last pending: " SIZE_FORMAT
 527            ", pending: " SIZE_FORMAT ", conc refine: " SIZE_FORMAT
 528            ", mut refine:" SIZE_FORMAT,
 529            _pending_cards_at_prev_gc_end, _pending_cards_at_gc_start,
 530            cr_cards, mut_cards);
 531     size_t logged_cards = total_cards - _pending_cards_at_prev_gc_end;
 532     double logging_start_time = _analytics->prev_collection_pause_end_ms();
 533     double logging_end_time = Ticks::now().seconds() * MILLIUNITS;
 534     double logging_time = logging_end_time - logging_start_time;
 535     // Unlike above for conc-refine rate, here we should not require a
 536     // non-empty sample, since an application could go some time with only
 537     // young-gen or filtered out writes.  But we'll ignore unusually short
 538     // sample periods, as they may just pollute the predictions.
 539     if (logging_time > 1.0) {   // Require > 1ms sample time.
 540       _analytics->report_logged_cards_rate_ms(logged_cards / logging_time);
 541     }
 542   }
 543 }
 544 
 545 void G1Policy::record_collection_pause_start(double start_time_sec) {
 546   // We only need to do this here as the policy will only be applied
 547   // to the GC we're about to start. so, no point is calculating this
 548   // every time we calculate / recalculate the target young length.
 549   update_survivors_policy();
 550 
 551   assert(max_survivor_regions() + _g1h->num_used_regions() <= _g1h->max_regions(),
 552          "Maximum survivor regions %u plus used regions %u exceeds max regions %u",
 553          max_survivor_regions(), _g1h->num_used_regions(), _g1h->max_regions());
 554   assert_used_and_recalculate_used_equal(_g1h);
 555 
 556   phase_times()->record_cur_collection_start_sec(start_time_sec);
 557 
 558   record_concurrent_refinement_data(false /* is_full_collection */);
 559 
 560   _collection_set->reset_bytes_used_before();
 561 
 562   // do that for any other surv rate groups
 563   _eden_surv_rate_group->stop_adding_regions();
 564   _survivors_age_table.clear();
 565 
 566   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
 567 }
 568 
 569 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 570   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 571   collector_state()->set_in_initial_mark_gc(false);
 572 }
 573 
 574 void G1Policy::record_concurrent_mark_remark_start() {
 575   _mark_remark_start_sec = os::elapsedTime();
 576 }
 577 
 578 void G1Policy::record_concurrent_mark_remark_end() {
 579   double end_time_sec = os::elapsedTime();
 580   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 581   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 582   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 583 
 584   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 585 }
 586 
 587 void G1Policy::record_concurrent_mark_cleanup_start() {
 588   _mark_cleanup_start_sec = os::elapsedTime();
 589 }
 590 
 591 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 592   return phase_times()->average_time_ms(phase);
 593 }
 594 
 595 double G1Policy::young_other_time_ms() const {
 596   return phase_times()->young_cset_choice_time_ms() +
 597          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 598 }
 599 
 600 double G1Policy::non_young_other_time_ms() const {
 601   return phase_times()->non_young_cset_choice_time_ms() +
 602          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 603 }
 604 
 605 double G1Policy::other_time_ms(double pause_time_ms) const {
 606   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 607 }
 608 
 609 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
 610   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms() - phase_times()->total_rebuild_freelist_time_ms();
 611 }
 612 
 613 bool G1Policy::about_to_start_mixed_phase() const {
 614   return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
 615 }
 616 
 617 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 618   if (about_to_start_mixed_phase()) {
 619     return false;
 620   }
 621 
 622   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 623 
 624   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
 625   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 626   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 627 
 628   bool result = false;
 629   if (marking_request_bytes > marking_initiating_used_threshold) {
 630     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
 631     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 632                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 633                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
 634   }
 635 
 636   return result;
 637 }
 638 
 639 double G1Policy::logged_cards_processing_time() const {
 640   double all_cards_processing_time = average_time_ms(G1GCPhaseTimes::ScanHR) + average_time_ms(G1GCPhaseTimes::OptScanHR);
 641   size_t logged_dirty_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 642   size_t scan_heap_roots_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 643                                  phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 644   // This may happen if there are duplicate cards in different log buffers.
 645   if (logged_dirty_cards > scan_heap_roots_cards) {
 646     return all_cards_processing_time + average_time_ms(G1GCPhaseTimes::MergeLB);
 647   }
 648   return (all_cards_processing_time * logged_dirty_cards / scan_heap_roots_cards) + average_time_ms(G1GCPhaseTimes::MergeLB);
 649 }
 650 
 651 // Anything below that is considered to be zero
 652 #define MIN_TIMER_GRANULARITY 0.0000001
 653 
 654 void G1Policy::record_collection_pause_end(double pause_time_ms) {
 655   G1GCPhaseTimes* p = phase_times();
 656 
 657   double end_time_sec = os::elapsedTime();
 658 
 659   bool this_pause_included_initial_mark = false;
 660   bool this_pause_was_young_only = collector_state()->in_young_only_phase();
 661 
 662   bool update_stats = !_g1h->evacuation_failed();
 663 
 664   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 665 
 666   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 667 
 668   this_pause_included_initial_mark = collector_state()->in_initial_mark_gc();
 669   if (this_pause_included_initial_mark) {
 670     record_concurrent_mark_init_end(0.0);
 671   } else {
 672     maybe_start_marking();
 673   }
 674 
 675   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 676   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 677     // This usually happens due to the timer not having the required
 678     // granularity. Some Linuxes are the usual culprits.
 679     // We'll just set it to something (arbitrarily) small.
 680     app_time_ms = 1.0;
 681   }
 682 
 683   if (update_stats) {
 684     // We maintain the invariant that all objects allocated by mutator
 685     // threads will be allocated out of eden regions. So, we can use
 686     // the eden region number allocated since the previous GC to
 687     // calculate the application's allocate rate. The only exception
 688     // to that is humongous objects that are allocated separately. But
 689     // given that humongous object allocations do not really affect
 690     // either the pause's duration nor when the next pause will take
 691     // place we can safely ignore them here.
 692     uint regions_allocated = _collection_set->eden_region_length();
 693     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 694     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 695 
 696     double interval_ms =
 697       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 698     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 699     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 700   }
 701 
 702   if (collector_state()->in_young_gc_before_mixed()) {
 703     assert(!this_pause_included_initial_mark, "The young GC before mixed is not allowed to be an initial mark GC");
 704     // This has been the young GC before we start doing mixed GCs. We already
 705     // decided to start mixed GCs much earlier, so there is nothing to do except
 706     // advancing the state.
 707     collector_state()->set_in_young_only_phase(false);
 708     collector_state()->set_in_young_gc_before_mixed(false);
 709   } else if (!this_pause_was_young_only) {
 710     // This is a mixed GC. Here we decide whether to continue doing more
 711     // mixed GCs or not.
 712     if (!next_gc_should_be_mixed("continue mixed GCs",
 713                                  "do not continue mixed GCs")) {
 714       collector_state()->set_in_young_only_phase(true);
 715 
 716       clear_collection_set_candidates();
 717       maybe_start_marking();
 718     }
 719   }
 720 
 721   _eden_surv_rate_group->start_adding_regions();
 722 
 723   double merge_hcc_time_ms = average_time_ms(G1GCPhaseTimes::MergeHCC);
 724   if (update_stats) {
 725     size_t const total_log_buffer_cards = p->sum_thread_work_items(G1GCPhaseTimes::MergeHCC, G1GCPhaseTimes::MergeHCCDirtyCards) +
 726                                           p->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 727     // Update prediction for card merge; MergeRSDirtyCards includes the cards from the Eager Reclaim phase.
 728     size_t const total_cards_merged = p->sum_thread_work_items(G1GCPhaseTimes::MergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 729                                       p->sum_thread_work_items(G1GCPhaseTimes::OptMergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 730                                       total_log_buffer_cards;
 731 
 732     // The threshold for the number of cards in a given sampling which we consider
 733     // large enough so that the impact from setup and other costs is negligible.
 734     size_t const CardsNumSamplingThreshold = 10;
 735 
 736     if (total_cards_merged > CardsNumSamplingThreshold) {
 737       double avg_time_merge_cards = average_time_ms(G1GCPhaseTimes::MergeER) +
 738                                     average_time_ms(G1GCPhaseTimes::MergeRS) +
 739                                     average_time_ms(G1GCPhaseTimes::MergeHCC) +
 740                                     average_time_ms(G1GCPhaseTimes::MergeLB) +
 741                                     average_time_ms(G1GCPhaseTimes::OptMergeRS);
 742       _analytics->report_cost_per_card_merge_ms(avg_time_merge_cards / total_cards_merged, this_pause_was_young_only);
 743     }
 744 
 745     // Update prediction for card scan
 746     size_t const total_cards_scanned = p->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 747                                        p->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 748 
 749     if (total_cards_scanned > CardsNumSamplingThreshold) {
 750       double avg_time_dirty_card_scan = average_time_ms(G1GCPhaseTimes::ScanHR) +
 751                                         average_time_ms(G1GCPhaseTimes::OptScanHR);
 752 
 753       _analytics->report_cost_per_card_scan_ms(avg_time_dirty_card_scan / total_cards_scanned, this_pause_was_young_only);
 754     }
 755 
 756     // Update prediction for the ratio between cards from the remembered
 757     // sets and actually scanned cards from the remembered sets.
 758     // Cards from the remembered sets are all cards not duplicated by cards from
 759     // the logs.
 760     // Due to duplicates in the log buffers, the number of actually scanned cards
 761     // can be smaller than the cards in the log buffers.
 762     const size_t from_rs_length_cards = (total_cards_scanned > total_log_buffer_cards) ? total_cards_scanned - total_log_buffer_cards : 0;
 763     double merge_to_scan_ratio = 0.0;
 764     if (total_cards_scanned > 0) {
 765       merge_to_scan_ratio = (double) from_rs_length_cards / total_cards_scanned;
 766     }
 767     _analytics->report_card_merge_to_scan_ratio(merge_to_scan_ratio, this_pause_was_young_only);
 768 
 769     const size_t recorded_rs_length = _collection_set->recorded_rs_length();
 770     const size_t rs_length_diff = _rs_length > recorded_rs_length ? _rs_length - recorded_rs_length : 0;
 771     _analytics->report_rs_length_diff(rs_length_diff);
 772 
 773     // Update prediction for copy cost per byte
 774     size_t copied_bytes = p->sum_thread_work_items(G1GCPhaseTimes::MergePSS, G1GCPhaseTimes::MergePSSCopiedBytes);
 775 
 776     if (copied_bytes > 0) {
 777       double cost_per_byte_ms = (average_time_ms(G1GCPhaseTimes::ObjCopy) + average_time_ms(G1GCPhaseTimes::OptObjCopy)) / copied_bytes;
 778       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
 779     }
 780 
 781     if (_collection_set->young_region_length() > 0) {
 782       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 783                                                         _collection_set->young_region_length());
 784     }
 785 
 786     if (_collection_set->old_region_length() > 0) {
 787       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 788                                                             _collection_set->old_region_length());
 789     }
 790 
 791     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 792 
 793     // Do not update RS lengths and the number of pending cards with information from mixed gc:
 794     // these are is wildly different to during young only gc and mess up young gen sizing right
 795     // after the mixed gc phase.
 796     // During mixed gc we do not use them for young gen sizing.
 797     if (this_pause_was_young_only) {
 798       _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
 799       _analytics->report_rs_length((double) _rs_length);
 800     }
 801   }
 802 
 803   assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
 804          "If the last pause has been an initial mark, we should not have been in the marking window");
 805   if (this_pause_included_initial_mark) {
 806     collector_state()->set_mark_or_rebuild_in_progress(true);
 807   }
 808 
 809   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 810 
 811   update_rs_length_prediction();
 812 
 813   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
 814   // that in this case we are not running in a "normal" operating mode.
 815   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
 816     // IHOP control wants to know the expected young gen length if it were not
 817     // restrained by the heap reserve. Using the actual length would make the
 818     // prediction too small and the limit the young gen every time we get to the
 819     // predicted target occupancy.
 820     size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 821 
 822     update_ihop_prediction(app_time_ms / 1000.0,
 823                            _bytes_allocated_in_old_since_last_gc,
 824                            last_unrestrained_young_length * HeapRegion::GrainBytes,
 825                            this_pause_was_young_only);
 826     _bytes_allocated_in_old_since_last_gc = 0;
 827 
 828     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 829   } else {
 830     // Any garbage collection triggered as periodic collection resets the time-to-mixed
 831     // measurement. Periodic collection typically means that the application is "inactive", i.e.
 832     // the marking threads may have received an uncharacterisic amount of cpu time
 833     // for completing the marking, i.e. are faster than expected.
 834     // This skews the predicted marking length towards smaller values which might cause
 835     // the mark start being too late.
 836     _initial_mark_to_mixed.reset();
 837   }
 838 
 839   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 840   double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 841 
 842   if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
 843     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 844                                 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
 845                                 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);
 846 
 847     scan_logged_cards_time_goal_ms = 0;
 848   } else {
 849     scan_logged_cards_time_goal_ms -= merge_hcc_time_ms;
 850   }
 851 
 852   _pending_cards_at_prev_gc_end = _g1h->pending_card_num();
 853   double const logged_cards_time = logged_cards_processing_time();
 854 
 855   log_debug(gc, ergo, refine)("Concurrent refinement times: Logged Cards Scan time goal: %1.2fms Logged Cards Scan time: %1.2fms HCC time: %1.2fms",
 856                               scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
 857 
 858   _g1h->concurrent_refine()->adjust(logged_cards_time,
 859                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
 860                                     scan_logged_cards_time_goal_ms);
 861 }
 862 
 863 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 864   if (G1UseAdaptiveIHOP) {
 865     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 866                                      predictor,
 867                                      G1ReservePercent,
 868                                      G1HeapWastePercent);
 869   } else {
 870     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 871   }
 872 }
 873 
 874 void G1Policy::update_ihop_prediction(double mutator_time_s,
 875                                       size_t mutator_alloc_bytes,
 876                                       size_t young_gen_size,
 877                                       bool this_gc_was_young_only) {
 878   // Always try to update IHOP prediction. Even evacuation failures give information
 879   // about e.g. whether to start IHOP earlier next time.
 880 
 881   // Avoid using really small application times that might create samples with
 882   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 883   double const min_valid_time = 1e-6;
 884 
 885   bool report = false;
 886 
 887   double marking_to_mixed_time = -1.0;
 888   if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
 889     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 890     assert(marking_to_mixed_time > 0.0,
 891            "Initial mark to mixed time must be larger than zero but is %.3f",
 892            marking_to_mixed_time);
 893     if (marking_to_mixed_time > min_valid_time) {
 894       _ihop_control->update_marking_length(marking_to_mixed_time);
 895       report = true;
 896     }
 897   }
 898 
 899   // As an approximation for the young gc promotion rates during marking we use
 900   // all of them. In many applications there are only a few if any young gcs during
 901   // marking, which makes any prediction useless. This increases the accuracy of the
 902   // prediction.
 903   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 904     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 905     report = true;
 906   }
 907 
 908   if (report) {
 909     report_ihop_statistics();
 910   }
 911 }
 912 
 913 void G1Policy::report_ihop_statistics() {
 914   _ihop_control->print();
 915 }
 916 
 917 void G1Policy::print_phases() {
 918   phase_times()->print();
 919 }
 920 
 921 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
 922                                               size_t rs_length) const {
 923   size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());
 924   return
 925     _analytics->predict_card_merge_time_ms(pending_cards + rs_length, collector_state()->in_young_only_phase()) +
 926     _analytics->predict_card_scan_time_ms(effective_scanned_cards, collector_state()->in_young_only_phase()) +
 927     _analytics->predict_constant_other_time_ms() +
 928     predict_survivor_regions_evac_time();
 929 }
 930 
 931 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 932   size_t rs_length = _analytics->predict_rs_length();
 933   return predict_base_elapsed_time_ms(pending_cards, rs_length);
 934 }
 935 
 936 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
 937   size_t bytes_to_copy;
 938   if (!hr->is_young()) {
 939     bytes_to_copy = hr->max_live_bytes();
 940   } else {
 941     bytes_to_copy = (size_t) (hr->used() * hr->surv_rate_prediction(_predictor));
 942   }
 943   return bytes_to_copy;
 944 }
 945 
 946 double G1Policy::predict_eden_copy_time_ms(uint count, size_t* bytes_to_copy) const {
 947   if (count == 0) {
 948     return 0.0;
 949   }
 950   size_t const expected_bytes = _eden_surv_rate_group->accum_surv_rate_pred(count) * HeapRegion::GrainBytes;
 951   if (bytes_to_copy != NULL) {
 952     *bytes_to_copy = expected_bytes;
 953   }
 954   return _analytics->predict_object_copy_time_ms(expected_bytes, collector_state()->mark_or_rebuild_in_progress());
 955 }
 956 
 957 double G1Policy::predict_region_copy_time_ms(HeapRegion* hr) const {
 958   size_t const bytes_to_copy = predict_bytes_to_copy(hr);
 959   return _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
 960 }
 961 
 962 double G1Policy::predict_region_non_copy_time_ms(HeapRegion* hr,
 963                                                  bool for_young_gc) const {
 964   size_t rs_length = hr->rem_set()->occupied();
 965   size_t scan_card_num = _analytics->predict_scan_card_num(rs_length, for_young_gc);
 966 
 967   double region_elapsed_time_ms =
 968     _analytics->predict_card_merge_time_ms(rs_length, collector_state()->in_young_only_phase()) +
 969     _analytics->predict_card_scan_time_ms(scan_card_num, collector_state()->in_young_only_phase());
 970 
 971   // The prediction of the "other" time for this region is based
 972   // upon the region type and NOT the GC type.
 973   if (hr->is_young()) {
 974     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 975   } else {
 976     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 977   }
 978   return region_elapsed_time_ms;
 979 }
 980 
 981 double G1Policy::predict_region_total_time_ms(HeapRegion* hr, bool for_young_gc) const {
 982   return predict_region_non_copy_time_ms(hr, for_young_gc) + predict_region_copy_time_ms(hr);
 983 }
 984 
 985 bool G1Policy::should_allocate_mutator_region() const {
 986   uint young_list_length = _g1h->young_regions_count();
 987   uint young_list_target_length = _young_list_target_length;
 988   return young_list_length < young_list_target_length;
 989 }
 990 
 991 bool G1Policy::can_expand_young_list() const {
 992   uint young_list_length = _g1h->young_regions_count();
 993   uint young_list_max_length = _young_list_max_length;
 994   return young_list_length < young_list_max_length;
 995 }
 996 
 997 bool G1Policy::use_adaptive_young_list_length() const {
 998   return _young_gen_sizer->use_adaptive_young_list_length();
 999 }
1000 
1001 size_t G1Policy::desired_survivor_size(uint max_regions) const {
1002   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
1003   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
1004 }
1005 
1006 void G1Policy::print_age_table() {
1007   _survivors_age_table.print_age_table(_tenuring_threshold);
1008 }
1009 
1010 void G1Policy::update_max_gc_locker_expansion() {
1011   uint expansion_region_num = 0;
1012   if (GCLockerEdenExpansionPercent > 0) {
1013     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1014     double expansion_region_num_d = perc * (double) _young_list_target_length;
1015     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1016     // less than 1.0) we'll get 1.
1017     expansion_region_num = (uint) ceil(expansion_region_num_d);
1018   } else {
1019     assert(expansion_region_num == 0, "sanity");
1020   }
1021   _young_list_max_length = _young_list_target_length + expansion_region_num;
1022   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1023 }
1024 
1025 // Calculates survivor space parameters.
1026 void G1Policy::update_survivors_policy() {
1027   double max_survivor_regions_d =
1028                  (double) _young_list_target_length / (double) SurvivorRatio;
1029 
1030   // Calculate desired survivor size based on desired max survivor regions (unconstrained
1031   // by remaining heap). Otherwise we may cause undesired promotions as we are
1032   // already getting close to end of the heap, impacting performance even more.
1033   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1034   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1035 
1036   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1037   if (UsePerfData) {
1038     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1039     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1040   }
1041   // The real maximum survivor size is bounded by the number of regions that can
1042   // be allocated into.
1043   _max_survivor_regions = MIN2(desired_max_survivor_regions,
1044                                _g1h->num_free_or_available_regions());
1045 }
1046 
1047 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1048   // We actually check whether we are marking here and not if we are in a
1049   // reclamation phase. This means that we will schedule a concurrent mark
1050   // even while we are still in the process of reclaiming memory.
1051   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
1052   if (!during_cycle) {
1053     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1054     collector_state()->set_initiate_conc_mark_if_possible(true);
1055     return true;
1056   } else {
1057     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1058     return false;
1059   }
1060 }
1061 
1062 void G1Policy::initiate_conc_mark() {
1063   collector_state()->set_in_initial_mark_gc(true);
1064   collector_state()->set_initiate_conc_mark_if_possible(false);
1065 }
1066 
1067 void G1Policy::decide_on_conc_mark_initiation() {
1068   // We are about to decide on whether this pause will be an
1069   // initial-mark pause.
1070 
1071   // First, collector_state()->in_initial_mark_gc() should not be already set. We
1072   // will set it here if we have to. However, it should be cleared by
1073   // the end of the pause (it's only set for the duration of an
1074   // initial-mark pause).
1075   assert(!collector_state()->in_initial_mark_gc(), "pre-condition");
1076 
1077   if (collector_state()->initiate_conc_mark_if_possible()) {
1078     // We had noticed on a previous pause that the heap occupancy has
1079     // gone over the initiating threshold and we should start a
1080     // concurrent marking cycle. So we might initiate one.
1081 
1082     if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
1083       // Initiate a new initial mark if there is no marking or reclamation going on.
1084       initiate_conc_mark();
1085       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1086     } else if (_g1h->is_user_requested_concurrent_full_gc(_g1h->gc_cause())) {
1087       // Initiate a user requested initial mark. An initial mark must be young only
1088       // GC, so the collector state must be updated to reflect this.
1089       collector_state()->set_in_young_only_phase(true);
1090       collector_state()->set_in_young_gc_before_mixed(false);
1091 
1092       // We might have ended up coming here about to start a mixed phase with a collection set
1093       // active. The following remark might change the change the "evacuation efficiency" of
1094       // the regions in this set, leading to failing asserts later.
1095       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
1096       clear_collection_set_candidates();
1097       abort_time_to_mixed_tracking();
1098       initiate_conc_mark();
1099       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1100     } else {
1101       // The concurrent marking thread is still finishing up the
1102       // previous cycle. If we start one right now the two cycles
1103       // overlap. In particular, the concurrent marking thread might
1104       // be in the process of clearing the next marking bitmap (which
1105       // we will use for the next cycle if we start one). Starting a
1106       // cycle now will be bad given that parts of the marking
1107       // information might get cleared by the marking thread. And we
1108       // cannot wait for the marking thread to finish the cycle as it
1109       // periodically yields while clearing the next marking bitmap
1110       // and, if it's in a yield point, it's waiting for us to
1111       // finish. So, at this point we will not start a cycle and we'll
1112       // let the concurrent marking thread complete the last one.
1113       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1114     }
1115   }
1116 }
1117 
1118 void G1Policy::record_concurrent_mark_cleanup_end() {
1119   G1CollectionSetCandidates* candidates = G1CollectionSetChooser::build(_g1h->workers(), _g1h->num_regions());
1120   _collection_set->set_candidates(candidates);
1121 
1122   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1123   if (!mixed_gc_pending) {
1124     clear_collection_set_candidates();
1125     abort_time_to_mixed_tracking();
1126   }
1127   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1128   collector_state()->set_mark_or_rebuild_in_progress(false);
1129 
1130   double end_sec = os::elapsedTime();
1131   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1132   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1133   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1134 
1135   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1136 }
1137 
1138 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1139   return percent_of(reclaimable_bytes, _g1h->capacity());
1140 }
1141 
1142 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
1143   virtual bool do_heap_region(HeapRegion* r) {
1144     r->rem_set()->clear_locked(true /* only_cardset */);
1145     return false;
1146   }
1147 };
1148 
1149 void G1Policy::clear_collection_set_candidates() {
1150   // Clear remembered sets of remaining candidate regions and the actual candidate
1151   // set.
1152   G1ClearCollectionSetCandidateRemSets cl;
1153   _collection_set->candidates()->iterate(&cl);
1154   _collection_set->clear_candidates();
1155 }
1156 
1157 void G1Policy::maybe_start_marking() {
1158   if (need_to_start_conc_mark("end of GC")) {
1159     // Note: this might have already been set, if during the last
1160     // pause we decided to start a cycle but at the beginning of
1161     // this pause we decided to postpone it. That's OK.
1162     collector_state()->set_initiate_conc_mark_if_possible(true);
1163   }
1164 }
1165 
1166 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1167   assert(!collector_state()->in_full_gc(), "must be");
1168   if (collector_state()->in_initial_mark_gc()) {
1169     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1170     return InitialMarkGC;
1171   } else if (collector_state()->in_young_gc_before_mixed()) {
1172     assert(!collector_state()->in_initial_mark_gc(), "must be");
1173     return LastYoungGC;
1174   } else if (collector_state()->in_mixed_phase()) {
1175     assert(!collector_state()->in_initial_mark_gc(), "must be");
1176     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1177     return MixedGC;
1178   } else {
1179     assert(!collector_state()->in_initial_mark_gc(), "must be");
1180     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1181     return YoungOnlyGC;
1182   }
1183 }
1184 
1185 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1186   // Manage the MMU tracker. For some reason it ignores Full GCs.
1187   if (kind != FullGC) {
1188     _mmu_tracker->add_pause(start, end);
1189   }
1190   // Manage the mutator time tracking from initial mark to first mixed gc.
1191   switch (kind) {
1192     case FullGC:
1193       abort_time_to_mixed_tracking();
1194       break;
1195     case Cleanup:
1196     case Remark:
1197     case YoungOnlyGC:
1198     case LastYoungGC:
1199       _initial_mark_to_mixed.add_pause(end - start);
1200       break;
1201     case InitialMarkGC:
1202       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1203         _initial_mark_to_mixed.record_initial_mark_end(end);
1204       }
1205       break;
1206     case MixedGC:
1207       _initial_mark_to_mixed.record_mixed_gc_start(start);
1208       break;
1209     default:
1210       ShouldNotReachHere();
1211   }
1212 }
1213 
1214 void G1Policy::abort_time_to_mixed_tracking() {
1215   _initial_mark_to_mixed.reset();
1216 }
1217 
1218 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1219                                        const char* false_action_str) const {
1220   G1CollectionSetCandidates* candidates = _collection_set->candidates();
1221 
1222   if (candidates->is_empty()) {
1223     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1224     return false;
1225   }
1226 
1227   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1228   size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1229   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1230   double threshold = (double) G1HeapWastePercent;
1231   if (reclaimable_percent <= threshold) {
1232     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1233                         false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1234     return false;
1235   }
1236   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1237                       true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1238   return true;
1239 }
1240 
1241 uint G1Policy::calc_min_old_cset_length() const {
1242   // The min old CSet region bound is based on the maximum desired
1243   // number of mixed GCs after a cycle. I.e., even if some old regions
1244   // look expensive, we should add them to the CSet anyway to make
1245   // sure we go through the available old regions in no more than the
1246   // maximum desired number of mixed GCs.
1247   //
1248   // The calculation is based on the number of marked regions we added
1249   // to the CSet candidates in the first place, not how many remain, so
1250   // that the result is the same during all mixed GCs that follow a cycle.
1251 
1252   const size_t region_num = _collection_set->candidates()->num_regions();
1253   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1254   size_t result = region_num / gc_num;
1255   // emulate ceiling
1256   if (result * gc_num < region_num) {
1257     result += 1;
1258   }
1259   return (uint) result;
1260 }
1261 
1262 uint G1Policy::calc_max_old_cset_length() const {
1263   // The max old CSet region bound is based on the threshold expressed
1264   // as a percentage of the heap size. I.e., it should bound the
1265   // number of old regions added to the CSet irrespective of how many
1266   // of them are available.
1267 
1268   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1269   const size_t region_num = g1h->num_regions();
1270   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1271   size_t result = region_num * perc / 100;
1272   // emulate ceiling
1273   if (100 * result < region_num * perc) {
1274     result += 1;
1275   }
1276   return (uint) result;
1277 }
1278 
1279 void G1Policy::calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates,
1280                                                     double time_remaining_ms,
1281                                                     uint& num_initial_regions,
1282                                                     uint& num_optional_regions) {
1283   assert(candidates != NULL, "Must be");
1284 
1285   num_initial_regions = 0;
1286   num_optional_regions = 0;
1287   uint num_expensive_regions = 0;
1288 
1289   double predicted_old_time_ms = 0.0;
1290   double predicted_initial_time_ms = 0.0;
1291   double predicted_optional_time_ms = 0.0;
1292 
1293   double optional_threshold_ms = time_remaining_ms * optional_prediction_fraction();
1294 
1295   const uint min_old_cset_length = calc_min_old_cset_length();
1296   const uint max_old_cset_length = MAX2(min_old_cset_length, calc_max_old_cset_length());
1297   const uint max_optional_regions = max_old_cset_length - min_old_cset_length;
1298   bool check_time_remaining = use_adaptive_young_list_length();
1299 
1300   uint candidate_idx = candidates->cur_idx();
1301 
1302   log_debug(gc, ergo, cset)("Start adding old regions to collection set. Min %u regions, max %u regions, "
1303                             "time remaining %1.2fms, optional threshold %1.2fms",
1304                             min_old_cset_length, max_old_cset_length, time_remaining_ms, optional_threshold_ms);
1305 
1306   HeapRegion* hr = candidates->at(candidate_idx);
1307   while (hr != NULL) {
1308     if (num_initial_regions + num_optional_regions >= max_old_cset_length) {
1309       // Added maximum number of old regions to the CSet.
1310       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Maximum number of regions). "
1311                                 "Initial %u regions, optional %u regions",
1312                                 num_initial_regions, num_optional_regions);
1313       break;
1314     }
1315 
1316     // Stop adding regions if the remaining reclaimable space is
1317     // not above G1HeapWastePercent.
1318     size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1319     double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1320     double threshold = (double) G1HeapWastePercent;
1321     if (reclaimable_percent <= threshold) {
1322       // We've added enough old regions that the amount of uncollected
1323       // reclaimable space is at or below the waste threshold. Stop
1324       // adding old regions to the CSet.
1325       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Reclaimable percentage below threshold). "
1326                                 "Reclaimable: " SIZE_FORMAT "%s (%1.2f%%) threshold: " UINTX_FORMAT "%%",
1327                                 byte_size_in_proper_unit(reclaimable_bytes), proper_unit_for_byte_size(reclaimable_bytes),
1328                                 reclaimable_percent, G1HeapWastePercent);
1329       break;
1330     }
1331 
1332     double predicted_time_ms = predict_region_total_time_ms(hr, false);
1333     time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
1334     // Add regions to old set until we reach the minimum amount
1335     if (num_initial_regions < min_old_cset_length) {
1336       predicted_old_time_ms += predicted_time_ms;
1337       num_initial_regions++;
1338       // Record the number of regions added with no time remaining
1339       if (time_remaining_ms == 0.0) {
1340         num_expensive_regions++;
1341       }
1342     } else if (!check_time_remaining) {
1343       // In the non-auto-tuning case, we'll finish adding regions
1344       // to the CSet if we reach the minimum.
1345       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Region amount reached min).");
1346       break;
1347     } else {
1348       // Keep adding regions to old set until we reach the optional threshold
1349       if (time_remaining_ms > optional_threshold_ms) {
1350         predicted_old_time_ms += predicted_time_ms;
1351         num_initial_regions++;
1352       } else if (time_remaining_ms > 0) {
1353         // Keep adding optional regions until time is up.
1354         assert(num_optional_regions < max_optional_regions, "Should not be possible.");
1355         predicted_optional_time_ms += predicted_time_ms;
1356         num_optional_regions++;
1357       } else {
1358         log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Predicted time too high).");
1359         break;
1360       }
1361     }
1362     hr = candidates->at(++candidate_idx);
1363   }
1364   if (hr == NULL) {
1365     log_debug(gc, ergo, cset)("Old candidate collection set empty.");
1366   }
1367 
1368   if (num_expensive_regions > 0) {
1369     log_debug(gc, ergo, cset)("Added %u initial old regions to collection set although the predicted time was too high.",
1370                               num_expensive_regions);
1371   }
1372 
1373   log_debug(gc, ergo, cset)("Finish choosing collection set old regions. Initial: %u, optional: %u, "
1374                             "predicted old time: %1.2fms, predicted optional time: %1.2fms, time remaining: %1.2f",
1375                             num_initial_regions, num_optional_regions,
1376                             predicted_initial_time_ms, predicted_optional_time_ms, time_remaining_ms);
1377 }
1378 
1379 void G1Policy::calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates,
1380                                                          uint const max_optional_regions,
1381                                                          double time_remaining_ms,
1382                                                          uint& num_optional_regions) {
1383   assert(_g1h->collector_state()->in_mixed_phase(), "Should only be called in mixed phase");
1384 
1385   num_optional_regions = 0;
1386   double prediction_ms = 0;
1387   uint candidate_idx = candidates->cur_idx();
1388 
1389   HeapRegion* r = candidates->at(candidate_idx);
1390   while (num_optional_regions < max_optional_regions) {
1391     assert(r != NULL, "Region must exist");
1392     prediction_ms += predict_region_total_time_ms(r, false);
1393 
1394     if (prediction_ms > time_remaining_ms) {
1395       log_debug(gc, ergo, cset)("Prediction %.3fms for region %u does not fit remaining time: %.3fms.",
1396                                 prediction_ms, r->hrm_index(), time_remaining_ms);
1397       break;
1398     }
1399     // This region will be included in the next optional evacuation.
1400 
1401     time_remaining_ms -= prediction_ms;
1402     num_optional_regions++;
1403     r = candidates->at(++candidate_idx);
1404   }
1405 
1406   log_debug(gc, ergo, cset)("Prepared %u regions out of %u for optional evacuation. Predicted time: %.3fms",
1407                             num_optional_regions, max_optional_regions, prediction_ms);
1408 }
1409 
1410 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1411   note_start_adding_survivor_regions();
1412 
1413   HeapRegion* last = NULL;
1414   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1415        it != survivors->regions()->end();
1416        ++it) {
1417     HeapRegion* curr = *it;
1418     set_region_survivor(curr);
1419 
1420     // The region is a non-empty survivor so let's add it to
1421     // the incremental collection set for the next evacuation
1422     // pause.
1423     _collection_set->add_survivor_regions(curr);
1424 
1425     last = curr;
1426   }
1427   note_stop_adding_survivor_regions();
1428 
1429   // Don't clear the survivor list handles until the start of
1430   // the next evacuation pause - we need it in order to re-tag
1431   // the survivor regions from this evacuation pause as 'young'
1432   // at the start of the next.
1433 }