1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCPhaseTimes.hpp"
  45 #include "gc/g1/g1HeapSizingPolicy.hpp"
  46 #include "gc/g1/g1HeapTransition.hpp"
  47 #include "gc/g1/g1HeapVerifier.hpp"
  48 #include "gc/g1/g1HotCardCache.hpp"
  49 #include "gc/g1/g1MemoryPool.hpp"
  50 #include "gc/g1/g1OopClosures.inline.hpp"
  51 #include "gc/g1/g1ParallelCleaning.hpp"
  52 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  53 #include "gc/g1/g1Policy.hpp"
  54 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  55 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  56 #include "gc/g1/g1RemSet.hpp"
  57 #include "gc/g1/g1RootClosures.hpp"
  58 #include "gc/g1/g1RootProcessor.hpp"
  59 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  60 #include "gc/g1/g1StringDedup.hpp"
  61 #include "gc/g1/g1ThreadLocalData.hpp"
  62 #include "gc/g1/g1Trace.hpp"
  63 #include "gc/g1/g1YCTypes.hpp"
  64 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  65 #include "gc/g1/g1VMOperations.hpp"
  66 #include "gc/g1/heapRegion.inline.hpp"
  67 #include "gc/g1/heapRegionRemSet.hpp"
  68 #include "gc/g1/heapRegionSet.inline.hpp"
  69 #include "gc/shared/gcBehaviours.hpp"
  70 #include "gc/shared/gcHeapSummary.hpp"
  71 #include "gc/shared/gcId.hpp"
  72 #include "gc/shared/gcLocker.hpp"
  73 #include "gc/shared/gcTimer.hpp"
  74 #include "gc/shared/gcTraceTime.inline.hpp"
  75 #include "gc/shared/generationSpec.hpp"
  76 #include "gc/shared/isGCActiveMark.hpp"
  77 #include "gc/shared/locationPrinter.inline.hpp"
  78 #include "gc/shared/oopStorageParState.hpp"
  79 #include "gc/shared/preservedMarks.inline.hpp"
  80 #include "gc/shared/suspendibleThreadSet.hpp"
  81 #include "gc/shared/referenceProcessor.inline.hpp"
  82 #include "gc/shared/taskTerminator.hpp"
  83 #include "gc/shared/taskqueue.inline.hpp"
  84 #include "gc/shared/weakProcessor.inline.hpp"
  85 #include "gc/shared/workerPolicy.hpp"
  86 #include "logging/log.hpp"
  87 #include "memory/allocation.hpp"
  88 #include "memory/iterator.hpp"
  89 #include "memory/resourceArea.hpp"
  90 #include "memory/universe.hpp"
  91 #include "oops/access.inline.hpp"
  92 #include "oops/compressedOops.inline.hpp"
  93 #include "oops/oop.inline.hpp"
  94 #include "runtime/atomic.hpp"
  95 #include "runtime/flags/flagSetting.hpp"
  96 #include "runtime/handles.inline.hpp"
  97 #include "runtime/init.hpp"
  98 #include "runtime/orderAccess.hpp"
  99 #include "runtime/threadSMR.hpp"
 100 #include "runtime/vmThread.hpp"
 101 #include "utilities/align.hpp"
 102 #include "utilities/bitMap.inline.hpp"
 103 #include "utilities/globalDefinitions.hpp"
 104 #include "utilities/stack.inline.hpp"
 105 
 106 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 107 
 108 // INVARIANTS/NOTES
 109 //
 110 // All allocation activity covered by the G1CollectedHeap interface is
 111 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 112 // and allocate_new_tlab, which are the "entry" points to the
 113 // allocation code from the rest of the JVM.  (Note that this does not
 114 // apply to TLAB allocation, which is not part of this interface: it
 115 // is done by clients of this interface.)
 116 
 117 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 118  private:
 119   size_t _num_dirtied;
 120   G1CollectedHeap* _g1h;
 121   G1CardTable* _g1_ct;
 122 
 123   HeapRegion* region_for_card(CardValue* card_ptr) const {
 124     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 125   }
 126 
 127   bool will_become_free(HeapRegion* hr) const {
 128     // A region will be freed by free_collection_set if the region is in the
 129     // collection set and has not had an evacuation failure.
 130     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 131   }
 132 
 133  public:
 134   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 135     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 136 
 137   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 138     HeapRegion* hr = region_for_card(card_ptr);
 139 
 140     // Should only dirty cards in regions that won't be freed.
 141     if (!will_become_free(hr)) {
 142       *card_ptr = G1CardTable::dirty_card_val();
 143       _num_dirtied++;
 144     }
 145   }
 146 
 147   size_t num_dirtied()   const { return _num_dirtied; }
 148 };
 149 
 150 
 151 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 152   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 153 }
 154 
 155 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 156   // The from card cache is not the memory that is actually committed. So we cannot
 157   // take advantage of the zero_filled parameter.
 158   reset_from_card_cache(start_idx, num_regions);
 159 }
 160 
 161 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 162   Ticks start = Ticks::now();
 163   workers()->run_task(task, workers()->active_workers());
 164   return Ticks::now() - start;
 165 }
 166 
 167 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 168                                              MemRegion mr) {
 169   return new HeapRegion(hrs_index, bot(), mr);
 170 }
 171 
 172 // Private methods.
 173 
 174 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 175                                         HeapRegionType type,
 176                                         bool do_expand,
 177                                         uint node_index) {
 178   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 179          "the only time we use this to allocate a humongous region is "
 180          "when we are allocating a single humongous region");
 181 
 182   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 183 
 184   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 185     // Currently, only attempts to allocate GC alloc regions set
 186     // do_expand to true. So, we should only reach here during a
 187     // safepoint. If this assumption changes we might have to
 188     // reconsider the use of _expand_heap_after_alloc_failure.
 189     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 190 
 191     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 192                               word_size * HeapWordSize);
 193 
 194     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 195            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 196            word_size * HeapWordSize);
 197     if (expand_single_region(node_index)) {
 198       // Given that expand_single_region() succeeded in expanding the heap, and we
 199       // always expand the heap by an amount aligned to the heap
 200       // region size, the free list should in theory not be empty.
 201       // In either case allocate_free_region() will check for NULL.
 202       res = _hrm->allocate_free_region(type, node_index);
 203     } else {
 204       _expand_heap_after_alloc_failure = false;
 205     }
 206   }
 207   return res;
 208 }
 209 
 210 HeapWord*
 211 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 212                                                            uint num_regions,
 213                                                            size_t word_size) {
 214   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 215   assert(is_humongous(word_size), "word_size should be humongous");
 216   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 217 
 218   // Index of last region in the series.
 219   uint last = first + num_regions - 1;
 220 
 221   // We need to initialize the region(s) we just discovered. This is
 222   // a bit tricky given that it can happen concurrently with
 223   // refinement threads refining cards on these regions and
 224   // potentially wanting to refine the BOT as they are scanning
 225   // those cards (this can happen shortly after a cleanup; see CR
 226   // 6991377). So we have to set up the region(s) carefully and in
 227   // a specific order.
 228 
 229   // The word size sum of all the regions we will allocate.
 230   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 231   assert(word_size <= word_size_sum, "sanity");
 232 
 233   // This will be the "starts humongous" region.
 234   HeapRegion* first_hr = region_at(first);
 235   // The header of the new object will be placed at the bottom of
 236   // the first region.
 237   HeapWord* new_obj = first_hr->bottom();
 238   // This will be the new top of the new object.
 239   HeapWord* obj_top = new_obj + word_size;
 240 
 241   // First, we need to zero the header of the space that we will be
 242   // allocating. When we update top further down, some refinement
 243   // threads might try to scan the region. By zeroing the header we
 244   // ensure that any thread that will try to scan the region will
 245   // come across the zero klass word and bail out.
 246   //
 247   // NOTE: It would not have been correct to have used
 248   // CollectedHeap::fill_with_object() and make the space look like
 249   // an int array. The thread that is doing the allocation will
 250   // later update the object header to a potentially different array
 251   // type and, for a very short period of time, the klass and length
 252   // fields will be inconsistent. This could cause a refinement
 253   // thread to calculate the object size incorrectly.
 254   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 255 
 256   // Next, pad out the unused tail of the last region with filler
 257   // objects, for improved usage accounting.
 258   // How many words we use for filler objects.
 259   size_t word_fill_size = word_size_sum - word_size;
 260 
 261   // How many words memory we "waste" which cannot hold a filler object.
 262   size_t words_not_fillable = 0;
 263 
 264   if (word_fill_size >= min_fill_size()) {
 265     fill_with_objects(obj_top, word_fill_size);
 266   } else if (word_fill_size > 0) {
 267     // We have space to fill, but we cannot fit an object there.
 268     words_not_fillable = word_fill_size;
 269     word_fill_size = 0;
 270   }
 271 
 272   // We will set up the first region as "starts humongous". This
 273   // will also update the BOT covering all the regions to reflect
 274   // that there is a single object that starts at the bottom of the
 275   // first region.
 276   first_hr->set_starts_humongous(obj_top, word_fill_size);
 277   _policy->remset_tracker()->update_at_allocate(first_hr);
 278   // Then, if there are any, we will set up the "continues
 279   // humongous" regions.
 280   HeapRegion* hr = NULL;
 281   for (uint i = first + 1; i <= last; ++i) {
 282     hr = region_at(i);
 283     hr->set_continues_humongous(first_hr);
 284     _policy->remset_tracker()->update_at_allocate(hr);
 285   }
 286 
 287   // Up to this point no concurrent thread would have been able to
 288   // do any scanning on any region in this series. All the top
 289   // fields still point to bottom, so the intersection between
 290   // [bottom,top] and [card_start,card_end] will be empty. Before we
 291   // update the top fields, we'll do a storestore to make sure that
 292   // no thread sees the update to top before the zeroing of the
 293   // object header and the BOT initialization.
 294   OrderAccess::storestore();
 295 
 296   // Now, we will update the top fields of the "continues humongous"
 297   // regions except the last one.
 298   for (uint i = first; i < last; ++i) {
 299     hr = region_at(i);
 300     hr->set_top(hr->end());
 301   }
 302 
 303   hr = region_at(last);
 304   // If we cannot fit a filler object, we must set top to the end
 305   // of the humongous object, otherwise we cannot iterate the heap
 306   // and the BOT will not be complete.
 307   hr->set_top(hr->end() - words_not_fillable);
 308 
 309   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 310          "obj_top should be in last region");
 311 
 312   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 313 
 314   assert(words_not_fillable == 0 ||
 315          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 316          "Miscalculation in humongous allocation");
 317 
 318   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 319 
 320   for (uint i = first; i <= last; ++i) {
 321     hr = region_at(i);
 322     _humongous_set.add(hr);
 323     _hr_printer.alloc(hr);
 324   }
 325 
 326   return new_obj;
 327 }
 328 
 329 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 330   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 331   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 332 }
 333 
 334 // If could fit into free regions w/o expansion, try.
 335 // Otherwise, if can expand, do so.
 336 // Otherwise, if using ex regions might help, try with ex given back.
 337 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 338   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 339 
 340   _verifier->verify_region_sets_optional();
 341 
 342   uint first = G1_NO_HRM_INDEX;
 343   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 344 
 345   if (obj_regions == 1) {
 346     // Only one region to allocate, try to use a fast path by directly allocating
 347     // from the free lists. Do not try to expand here, we will potentially do that
 348     // later.
 349     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 350     if (hr != NULL) {
 351       first = hr->hrm_index();
 352     }
 353   } else {
 354     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 355     // are lucky enough to find some.
 356     first = _hrm->find_contiguous_only_empty(obj_regions);
 357     if (first != G1_NO_HRM_INDEX) {
 358       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 359     }
 360   }
 361 
 362   if (first == G1_NO_HRM_INDEX) {
 363     // Policy: We could not find enough regions for the humongous object in the
 364     // free list. Look through the heap to find a mix of free and uncommitted regions.
 365     // If so, try expansion.
 366     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 367     if (first != G1_NO_HRM_INDEX) {
 368       // We found something. Make sure these regions are committed, i.e. expand
 369       // the heap. Alternatively we could do a defragmentation GC.
 370       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 371                                     word_size * HeapWordSize);
 372 
 373       _hrm->expand_at(first, obj_regions, workers());
 374       policy()->record_new_heap_size(num_regions());
 375 
 376 #ifdef ASSERT
 377       for (uint i = first; i < first + obj_regions; ++i) {
 378         HeapRegion* hr = region_at(i);
 379         assert(hr->is_free(), "sanity");
 380         assert(hr->is_empty(), "sanity");
 381         assert(is_on_master_free_list(hr), "sanity");
 382       }
 383 #endif
 384       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 385     } else {
 386       // Policy: Potentially trigger a defragmentation GC.
 387     }
 388   }
 389 
 390   HeapWord* result = NULL;
 391   if (first != G1_NO_HRM_INDEX) {
 392     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 393     assert(result != NULL, "it should always return a valid result");
 394 
 395     // A successful humongous object allocation changes the used space
 396     // information of the old generation so we need to recalculate the
 397     // sizes and update the jstat counters here.
 398     g1mm()->update_sizes();
 399   }
 400 
 401   _verifier->verify_region_sets_optional();
 402 
 403   return result;
 404 }
 405 
 406 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 407                                              size_t requested_size,
 408                                              size_t* actual_size) {
 409   assert_heap_not_locked_and_not_at_safepoint();
 410   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 411 
 412   return attempt_allocation(min_size, requested_size, actual_size);
 413 }
 414 
 415 HeapWord*
 416 G1CollectedHeap::mem_allocate(size_t word_size,
 417                               bool*  gc_overhead_limit_was_exceeded) {
 418   assert_heap_not_locked_and_not_at_safepoint();
 419 
 420   if (is_humongous(word_size)) {
 421     return attempt_allocation_humongous(word_size);
 422   }
 423   size_t dummy = 0;
 424   return attempt_allocation(word_size, word_size, &dummy);
 425 }
 426 
 427 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 428   ResourceMark rm; // For retrieving the thread names in log messages.
 429 
 430   // Make sure you read the note in attempt_allocation_humongous().
 431 
 432   assert_heap_not_locked_and_not_at_safepoint();
 433   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 434          "be called for humongous allocation requests");
 435 
 436   // We should only get here after the first-level allocation attempt
 437   // (attempt_allocation()) failed to allocate.
 438 
 439   // We will loop until a) we manage to successfully perform the
 440   // allocation or b) we successfully schedule a collection which
 441   // fails to perform the allocation. b) is the only case when we'll
 442   // return NULL.
 443   HeapWord* result = NULL;
 444   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 445     bool should_try_gc;
 446     uint gc_count_before;
 447 
 448     {
 449       MutexLocker x(Heap_lock);
 450       result = _allocator->attempt_allocation_locked(word_size);
 451       if (result != NULL) {
 452         return result;
 453       }
 454 
 455       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 456       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 457       // waiting because the GCLocker is active to not wait too long.
 458       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 459         // No need for an ergo message here, can_expand_young_list() does this when
 460         // it returns true.
 461         result = _allocator->attempt_allocation_force(word_size);
 462         if (result != NULL) {
 463           return result;
 464         }
 465       }
 466       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 467       // the GCLocker initiated GC has been performed and then retry. This includes
 468       // the case when the GC Locker is not active but has not been performed.
 469       should_try_gc = !GCLocker::needs_gc();
 470       // Read the GC count while still holding the Heap_lock.
 471       gc_count_before = total_collections();
 472     }
 473 
 474     if (should_try_gc) {
 475       bool succeeded;
 476       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 477                                    GCCause::_g1_inc_collection_pause);
 478       if (result != NULL) {
 479         assert(succeeded, "only way to get back a non-NULL result");
 480         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 481                              Thread::current()->name(), p2i(result));
 482         return result;
 483       }
 484 
 485       if (succeeded) {
 486         // We successfully scheduled a collection which failed to allocate. No
 487         // point in trying to allocate further. We'll just return NULL.
 488         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 489                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 490         return NULL;
 491       }
 492       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 493                            Thread::current()->name(), word_size);
 494     } else {
 495       // Failed to schedule a collection.
 496       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 497         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 498                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 499         return NULL;
 500       }
 501       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 502       // The GCLocker is either active or the GCLocker initiated
 503       // GC has not yet been performed. Stall until it is and
 504       // then retry the allocation.
 505       GCLocker::stall_until_clear();
 506       gclocker_retry_count += 1;
 507     }
 508 
 509     // We can reach here if we were unsuccessful in scheduling a
 510     // collection (because another thread beat us to it) or if we were
 511     // stalled due to the GC locker. In either can we should retry the
 512     // allocation attempt in case another thread successfully
 513     // performed a collection and reclaimed enough space. We do the
 514     // first attempt (without holding the Heap_lock) here and the
 515     // follow-on attempt will be at the start of the next loop
 516     // iteration (after taking the Heap_lock).
 517     size_t dummy = 0;
 518     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 519     if (result != NULL) {
 520       return result;
 521     }
 522 
 523     // Give a warning if we seem to be looping forever.
 524     if ((QueuedAllocationWarningCount > 0) &&
 525         (try_count % QueuedAllocationWarningCount == 0)) {
 526       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 527                              Thread::current()->name(), try_count, word_size);
 528     }
 529   }
 530 
 531   ShouldNotReachHere();
 532   return NULL;
 533 }
 534 
 535 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 536   assert_at_safepoint_on_vm_thread();
 537   if (_archive_allocator == NULL) {
 538     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 539   }
 540 }
 541 
 542 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 543   // Allocations in archive regions cannot be of a size that would be considered
 544   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 545   // may be different at archive-restore time.
 546   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 547 }
 548 
 549 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 550   assert_at_safepoint_on_vm_thread();
 551   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 552   if (is_archive_alloc_too_large(word_size)) {
 553     return NULL;
 554   }
 555   return _archive_allocator->archive_mem_allocate(word_size);
 556 }
 557 
 558 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 559                                               size_t end_alignment_in_bytes) {
 560   assert_at_safepoint_on_vm_thread();
 561   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 562 
 563   // Call complete_archive to do the real work, filling in the MemRegion
 564   // array with the archive regions.
 565   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 566   delete _archive_allocator;
 567   _archive_allocator = NULL;
 568 }
 569 
 570 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 571   assert(ranges != NULL, "MemRegion array NULL");
 572   assert(count != 0, "No MemRegions provided");
 573   MemRegion reserved = _hrm->reserved();
 574   for (size_t i = 0; i < count; i++) {
 575     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 576       return false;
 577     }
 578   }
 579   return true;
 580 }
 581 
 582 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 583                                             size_t count,
 584                                             bool open) {
 585   assert(!is_init_completed(), "Expect to be called at JVM init time");
 586   assert(ranges != NULL, "MemRegion array NULL");
 587   assert(count != 0, "No MemRegions provided");
 588   MutexLocker x(Heap_lock);
 589 
 590   MemRegion reserved = _hrm->reserved();
 591   HeapWord* prev_last_addr = NULL;
 592   HeapRegion* prev_last_region = NULL;
 593 
 594   // Temporarily disable pretouching of heap pages. This interface is used
 595   // when mmap'ing archived heap data in, so pre-touching is wasted.
 596   FlagSetting fs(AlwaysPreTouch, false);
 597 
 598   // Enable archive object checking used by G1MarkSweep. We have to let it know
 599   // about each archive range, so that objects in those ranges aren't marked.
 600   G1ArchiveAllocator::enable_archive_object_check();
 601 
 602   // For each specified MemRegion range, allocate the corresponding G1
 603   // regions and mark them as archive regions. We expect the ranges
 604   // in ascending starting address order, without overlap.
 605   for (size_t i = 0; i < count; i++) {
 606     MemRegion curr_range = ranges[i];
 607     HeapWord* start_address = curr_range.start();
 608     size_t word_size = curr_range.word_size();
 609     HeapWord* last_address = curr_range.last();
 610     size_t commits = 0;
 611 
 612     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 613               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 614               p2i(start_address), p2i(last_address));
 615     guarantee(start_address > prev_last_addr,
 616               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 617               p2i(start_address), p2i(prev_last_addr));
 618     prev_last_addr = last_address;
 619 
 620     // Check for ranges that start in the same G1 region in which the previous
 621     // range ended, and adjust the start address so we don't try to allocate
 622     // the same region again. If the current range is entirely within that
 623     // region, skip it, just adjusting the recorded top.
 624     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 625     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 626       start_address = start_region->end();
 627       if (start_address > last_address) {
 628         increase_used(word_size * HeapWordSize);
 629         start_region->set_top(last_address + 1);
 630         continue;
 631       }
 632       start_region->set_top(start_address);
 633       curr_range = MemRegion(start_address, last_address + 1);
 634       start_region = _hrm->addr_to_region(start_address);
 635     }
 636 
 637     // Perform the actual region allocation, exiting if it fails.
 638     // Then note how much new space we have allocated.
 639     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 640       return false;
 641     }
 642     increase_used(word_size * HeapWordSize);
 643     if (commits != 0) {
 644       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 645                                 HeapRegion::GrainWords * HeapWordSize * commits);
 646 
 647     }
 648 
 649     // Mark each G1 region touched by the range as archive, add it to
 650     // the old set, and set top.
 651     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 652     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 653     prev_last_region = last_region;
 654 
 655     while (curr_region != NULL) {
 656       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 657              "Region already in use (index %u)", curr_region->hrm_index());
 658       if (open) {
 659         curr_region->set_open_archive();
 660       } else {
 661         curr_region->set_closed_archive();
 662       }
 663       _hr_printer.alloc(curr_region);
 664       _archive_set.add(curr_region);
 665       HeapWord* top;
 666       HeapRegion* next_region;
 667       if (curr_region != last_region) {
 668         top = curr_region->end();
 669         next_region = _hrm->next_region_in_heap(curr_region);
 670       } else {
 671         top = last_address + 1;
 672         next_region = NULL;
 673       }
 674       curr_region->set_top(top);
 675       curr_region = next_region;
 676     }
 677 
 678     // Notify mark-sweep of the archive
 679     G1ArchiveAllocator::set_range_archive(curr_range, open);
 680   }
 681   return true;
 682 }
 683 
 684 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 685   assert(!is_init_completed(), "Expect to be called at JVM init time");
 686   assert(ranges != NULL, "MemRegion array NULL");
 687   assert(count != 0, "No MemRegions provided");
 688   MemRegion reserved = _hrm->reserved();
 689   HeapWord *prev_last_addr = NULL;
 690   HeapRegion* prev_last_region = NULL;
 691 
 692   // For each MemRegion, create filler objects, if needed, in the G1 regions
 693   // that contain the address range. The address range actually within the
 694   // MemRegion will not be modified. That is assumed to have been initialized
 695   // elsewhere, probably via an mmap of archived heap data.
 696   MutexLocker x(Heap_lock);
 697   for (size_t i = 0; i < count; i++) {
 698     HeapWord* start_address = ranges[i].start();
 699     HeapWord* last_address = ranges[i].last();
 700 
 701     assert(reserved.contains(start_address) && reserved.contains(last_address),
 702            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 703            p2i(start_address), p2i(last_address));
 704     assert(start_address > prev_last_addr,
 705            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 706            p2i(start_address), p2i(prev_last_addr));
 707 
 708     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 709     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 710     HeapWord* bottom_address = start_region->bottom();
 711 
 712     // Check for a range beginning in the same region in which the
 713     // previous one ended.
 714     if (start_region == prev_last_region) {
 715       bottom_address = prev_last_addr + 1;
 716     }
 717 
 718     // Verify that the regions were all marked as archive regions by
 719     // alloc_archive_regions.
 720     HeapRegion* curr_region = start_region;
 721     while (curr_region != NULL) {
 722       guarantee(curr_region->is_archive(),
 723                 "Expected archive region at index %u", curr_region->hrm_index());
 724       if (curr_region != last_region) {
 725         curr_region = _hrm->next_region_in_heap(curr_region);
 726       } else {
 727         curr_region = NULL;
 728       }
 729     }
 730 
 731     prev_last_addr = last_address;
 732     prev_last_region = last_region;
 733 
 734     // Fill the memory below the allocated range with dummy object(s),
 735     // if the region bottom does not match the range start, or if the previous
 736     // range ended within the same G1 region, and there is a gap.
 737     if (start_address != bottom_address) {
 738       size_t fill_size = pointer_delta(start_address, bottom_address);
 739       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 740       increase_used(fill_size * HeapWordSize);
 741     }
 742   }
 743 }
 744 
 745 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 746                                                      size_t desired_word_size,
 747                                                      size_t* actual_word_size) {
 748   assert_heap_not_locked_and_not_at_safepoint();
 749   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 750          "be called for humongous allocation requests");
 751 
 752   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 753 
 754   if (result == NULL) {
 755     *actual_word_size = desired_word_size;
 756     result = attempt_allocation_slow(desired_word_size);
 757   }
 758 
 759   assert_heap_not_locked();
 760   if (result != NULL) {
 761     assert(*actual_word_size != 0, "Actual size must have been set here");
 762     dirty_young_block(result, *actual_word_size);
 763   } else {
 764     *actual_word_size = 0;
 765   }
 766 
 767   return result;
 768 }
 769 
 770 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 771   assert(!is_init_completed(), "Expect to be called at JVM init time");
 772   assert(ranges != NULL, "MemRegion array NULL");
 773   assert(count != 0, "No MemRegions provided");
 774   MemRegion reserved = _hrm->reserved();
 775   HeapWord* prev_last_addr = NULL;
 776   HeapRegion* prev_last_region = NULL;
 777   size_t size_used = 0;
 778   size_t uncommitted_regions = 0;
 779 
 780   // For each Memregion, free the G1 regions that constitute it, and
 781   // notify mark-sweep that the range is no longer to be considered 'archive.'
 782   MutexLocker x(Heap_lock);
 783   for (size_t i = 0; i < count; i++) {
 784     HeapWord* start_address = ranges[i].start();
 785     HeapWord* last_address = ranges[i].last();
 786 
 787     assert(reserved.contains(start_address) && reserved.contains(last_address),
 788            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 789            p2i(start_address), p2i(last_address));
 790     assert(start_address > prev_last_addr,
 791            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 792            p2i(start_address), p2i(prev_last_addr));
 793     size_used += ranges[i].byte_size();
 794     prev_last_addr = last_address;
 795 
 796     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 797     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 798 
 799     // Check for ranges that start in the same G1 region in which the previous
 800     // range ended, and adjust the start address so we don't try to free
 801     // the same region again. If the current range is entirely within that
 802     // region, skip it.
 803     if (start_region == prev_last_region) {
 804       start_address = start_region->end();
 805       if (start_address > last_address) {
 806         continue;
 807       }
 808       start_region = _hrm->addr_to_region(start_address);
 809     }
 810     prev_last_region = last_region;
 811 
 812     // After verifying that each region was marked as an archive region by
 813     // alloc_archive_regions, set it free and empty and uncommit it.
 814     HeapRegion* curr_region = start_region;
 815     while (curr_region != NULL) {
 816       guarantee(curr_region->is_archive(),
 817                 "Expected archive region at index %u", curr_region->hrm_index());
 818       uint curr_index = curr_region->hrm_index();
 819       _archive_set.remove(curr_region);
 820       curr_region->set_free();
 821       curr_region->set_top(curr_region->bottom());
 822       if (curr_region != last_region) {
 823         curr_region = _hrm->next_region_in_heap(curr_region);
 824       } else {
 825         curr_region = NULL;
 826       }
 827       _hrm->shrink_at(curr_index, 1);
 828       uncommitted_regions++;
 829     }
 830 
 831     // Notify mark-sweep that this is no longer an archive range.
 832     G1ArchiveAllocator::clear_range_archive(ranges[i]);
 833   }
 834 
 835   if (uncommitted_regions != 0) {
 836     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 837                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 838   }
 839   decrease_used(size_used);
 840 }
 841 
 842 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 843   assert(obj != NULL, "archived obj is NULL");
 844   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 845 
 846   // Loading an archived object makes it strongly reachable. If it is
 847   // loaded during concurrent marking, it must be enqueued to the SATB
 848   // queue, shading the previously white object gray.
 849   G1BarrierSet::enqueue(obj);
 850 
 851   return obj;
 852 }
 853 
 854 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 855   ResourceMark rm; // For retrieving the thread names in log messages.
 856 
 857   // The structure of this method has a lot of similarities to
 858   // attempt_allocation_slow(). The reason these two were not merged
 859   // into a single one is that such a method would require several "if
 860   // allocation is not humongous do this, otherwise do that"
 861   // conditional paths which would obscure its flow. In fact, an early
 862   // version of this code did use a unified method which was harder to
 863   // follow and, as a result, it had subtle bugs that were hard to
 864   // track down. So keeping these two methods separate allows each to
 865   // be more readable. It will be good to keep these two in sync as
 866   // much as possible.
 867 
 868   assert_heap_not_locked_and_not_at_safepoint();
 869   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 870          "should only be called for humongous allocations");
 871 
 872   // Humongous objects can exhaust the heap quickly, so we should check if we
 873   // need to start a marking cycle at each humongous object allocation. We do
 874   // the check before we do the actual allocation. The reason for doing it
 875   // before the allocation is that we avoid having to keep track of the newly
 876   // allocated memory while we do a GC.
 877   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 878                                            word_size)) {
 879     collect(GCCause::_g1_humongous_allocation);
 880   }
 881 
 882   // We will loop until a) we manage to successfully perform the
 883   // allocation or b) we successfully schedule a collection which
 884   // fails to perform the allocation. b) is the only case when we'll
 885   // return NULL.
 886   HeapWord* result = NULL;
 887   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 888     bool should_try_gc;
 889     uint gc_count_before;
 890 
 891 
 892     {
 893       MutexLocker x(Heap_lock);
 894 
 895       // Given that humongous objects are not allocated in young
 896       // regions, we'll first try to do the allocation without doing a
 897       // collection hoping that there's enough space in the heap.
 898       result = humongous_obj_allocate(word_size);
 899       if (result != NULL) {
 900         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 901         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 902         return result;
 903       }
 904 
 905       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 906       // the GCLocker initiated GC has been performed and then retry. This includes
 907       // the case when the GC Locker is not active but has not been performed.
 908       should_try_gc = !GCLocker::needs_gc();
 909       // Read the GC count while still holding the Heap_lock.
 910       gc_count_before = total_collections();
 911     }
 912 
 913     if (should_try_gc) {
 914       bool succeeded;
 915       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 916                                    GCCause::_g1_humongous_allocation);
 917       if (result != NULL) {
 918         assert(succeeded, "only way to get back a non-NULL result");
 919         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 920                              Thread::current()->name(), p2i(result));
 921         return result;
 922       }
 923 
 924       if (succeeded) {
 925         // We successfully scheduled a collection which failed to allocate. No
 926         // point in trying to allocate further. We'll just return NULL.
 927         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 928                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 929         return NULL;
 930       }
 931       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 932                            Thread::current()->name(), word_size);
 933     } else {
 934       // Failed to schedule a collection.
 935       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 936         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 937                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 938         return NULL;
 939       }
 940       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 941       // The GCLocker is either active or the GCLocker initiated
 942       // GC has not yet been performed. Stall until it is and
 943       // then retry the allocation.
 944       GCLocker::stall_until_clear();
 945       gclocker_retry_count += 1;
 946     }
 947 
 948 
 949     // We can reach here if we were unsuccessful in scheduling a
 950     // collection (because another thread beat us to it) or if we were
 951     // stalled due to the GC locker. In either can we should retry the
 952     // allocation attempt in case another thread successfully
 953     // performed a collection and reclaimed enough space.
 954     // Humongous object allocation always needs a lock, so we wait for the retry
 955     // in the next iteration of the loop, unlike for the regular iteration case.
 956     // Give a warning if we seem to be looping forever.
 957 
 958     if ((QueuedAllocationWarningCount > 0) &&
 959         (try_count % QueuedAllocationWarningCount == 0)) {
 960       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 961                              Thread::current()->name(), try_count, word_size);
 962     }
 963   }
 964 
 965   ShouldNotReachHere();
 966   return NULL;
 967 }
 968 
 969 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 970                                                            bool expect_null_mutator_alloc_region) {
 971   assert_at_safepoint_on_vm_thread();
 972   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 973          "the current alloc region was unexpectedly found to be non-NULL");
 974 
 975   if (!is_humongous(word_size)) {
 976     return _allocator->attempt_allocation_locked(word_size);
 977   } else {
 978     HeapWord* result = humongous_obj_allocate(word_size);
 979     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 980       collector_state()->set_initiate_conc_mark_if_possible(true);
 981     }
 982     return result;
 983   }
 984 
 985   ShouldNotReachHere();
 986 }
 987 
 988 class PostCompactionPrinterClosure: public HeapRegionClosure {
 989 private:
 990   G1HRPrinter* _hr_printer;
 991 public:
 992   bool do_heap_region(HeapRegion* hr) {
 993     assert(!hr->is_young(), "not expecting to find young regions");
 994     _hr_printer->post_compaction(hr);
 995     return false;
 996   }
 997 
 998   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 999     : _hr_printer(hr_printer) { }
1000 };
1001 
1002 void G1CollectedHeap::print_hrm_post_compaction() {
1003   if (_hr_printer.is_active()) {
1004     PostCompactionPrinterClosure cl(hr_printer());
1005     heap_region_iterate(&cl);
1006   }
1007 }
1008 
1009 void G1CollectedHeap::abort_concurrent_cycle() {
1010   // If we start the compaction before the CM threads finish
1011   // scanning the root regions we might trip them over as we'll
1012   // be moving objects / updating references. So let's wait until
1013   // they are done. By telling them to abort, they should complete
1014   // early.
1015   _cm->root_regions()->abort();
1016   _cm->root_regions()->wait_until_scan_finished();
1017 
1018   // Disable discovery and empty the discovered lists
1019   // for the CM ref processor.
1020   _ref_processor_cm->disable_discovery();
1021   _ref_processor_cm->abandon_partial_discovery();
1022   _ref_processor_cm->verify_no_references_recorded();
1023 
1024   // Abandon current iterations of concurrent marking and concurrent
1025   // refinement, if any are in progress.
1026   concurrent_mark()->concurrent_cycle_abort();
1027 }
1028 
1029 void G1CollectedHeap::prepare_heap_for_full_collection() {
1030   // Make sure we'll choose a new allocation region afterwards.
1031   _allocator->release_mutator_alloc_regions();
1032   _allocator->abandon_gc_alloc_regions();
1033 
1034   // We may have added regions to the current incremental collection
1035   // set between the last GC or pause and now. We need to clear the
1036   // incremental collection set and then start rebuilding it afresh
1037   // after this full GC.
1038   abandon_collection_set(collection_set());
1039 
1040   tear_down_region_sets(false /* free_list_only */);
1041 
1042   hrm()->prepare_for_full_collection_start();
1043 }
1044 
1045 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1046   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1047   assert_used_and_recalculate_used_equal(this);
1048   _verifier->verify_region_sets_optional();
1049   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1050   _verifier->check_bitmaps("Full GC Start");
1051 }
1052 
1053 void G1CollectedHeap::prepare_heap_for_mutators() {
1054   hrm()->prepare_for_full_collection_end();
1055 
1056   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1057   ClassLoaderDataGraph::purge();
1058   MetaspaceUtils::verify_metrics();
1059 
1060   // Prepare heap for normal collections.
1061   assert(num_free_regions() == 0, "we should not have added any free regions");
1062   rebuild_region_sets(false /* free_list_only */);
1063   abort_refinement();
1064 
1065   resize_heap_after_full_gc();
1066 
1067   // Rebuild the strong code root lists for each region
1068   rebuild_strong_code_roots();
1069 
1070   // Purge code root memory
1071   purge_code_root_memory();
1072 
1073   // Start a new incremental collection set for the next pause
1074   start_new_collection_set();
1075 
1076   _allocator->init_mutator_alloc_regions();
1077 
1078   // Post collection state updates.
1079   MetaspaceGC::compute_new_size();
1080 }
1081 
1082 void G1CollectedHeap::abort_refinement() {
1083   if (_hot_card_cache->use_cache()) {
1084     _hot_card_cache->reset_hot_cache();
1085   }
1086 
1087   // Discard all remembered set updates.
1088   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1089   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1090          "DCQS should be empty");
1091 }
1092 
1093 void G1CollectedHeap::verify_after_full_collection() {
1094   _hrm->verify_optional();
1095   _verifier->verify_region_sets_optional();
1096   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1097   // Clear the previous marking bitmap, if needed for bitmap verification.
1098   // Note we cannot do this when we clear the next marking bitmap in
1099   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1100   // objects marked during a full GC against the previous bitmap.
1101   // But we need to clear it before calling check_bitmaps below since
1102   // the full GC has compacted objects and updated TAMS but not updated
1103   // the prev bitmap.
1104   if (G1VerifyBitmaps) {
1105     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1106     _cm->clear_prev_bitmap(workers());
1107   }
1108   // This call implicitly verifies that the next bitmap is clear after Full GC.
1109   _verifier->check_bitmaps("Full GC End");
1110 
1111   // At this point there should be no regions in the
1112   // entire heap tagged as young.
1113   assert(check_young_list_empty(), "young list should be empty at this point");
1114 
1115   // Note: since we've just done a full GC, concurrent
1116   // marking is no longer active. Therefore we need not
1117   // re-enable reference discovery for the CM ref processor.
1118   // That will be done at the start of the next marking cycle.
1119   // We also know that the STW processor should no longer
1120   // discover any new references.
1121   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1122   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1123   _ref_processor_stw->verify_no_references_recorded();
1124   _ref_processor_cm->verify_no_references_recorded();
1125 }
1126 
1127 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1128   // Post collection logging.
1129   // We should do this after we potentially resize the heap so
1130   // that all the COMMIT / UNCOMMIT events are generated before
1131   // the compaction events.
1132   print_hrm_post_compaction();
1133   heap_transition->print();
1134   print_heap_after_gc();
1135   print_heap_regions();
1136 }
1137 
1138 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1139                                          bool clear_all_soft_refs) {
1140   assert_at_safepoint_on_vm_thread();
1141 
1142   if (GCLocker::check_active_before_gc()) {
1143     // Full GC was not completed.
1144     return false;
1145   }
1146 
1147   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1148       soft_ref_policy()->should_clear_all_soft_refs();
1149 
1150   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1151   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1152 
1153   collector.prepare_collection();
1154   collector.collect();
1155   collector.complete_collection();
1156 
1157   // Full collection was successfully completed.
1158   return true;
1159 }
1160 
1161 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1162   // Currently, there is no facility in the do_full_collection(bool) API to notify
1163   // the caller that the collection did not succeed (e.g., because it was locked
1164   // out by the GC locker). So, right now, we'll ignore the return value.
1165   bool dummy = do_full_collection(true,                /* explicit_gc */
1166                                   clear_all_soft_refs);
1167 }
1168 
1169 void G1CollectedHeap::resize_heap_after_full_gc() {
1170   assert_at_safepoint_on_vm_thread();
1171   assert(collector_state()->in_full_gc(), "Must be");
1172 
1173   // Capacity, free and used after the GC counted as full regions to
1174   // include the waste in the following calculations.
1175   const size_t capacity_after_gc = capacity();
1176   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1177 
1178   size_t minimum_desired_capacity = _heap_sizing_policy->target_heap_capacity(used_after_gc, MinHeapFreeRatio);
1179   size_t maximum_desired_capacity = _heap_sizing_policy->target_heap_capacity(used_after_gc, MaxHeapFreeRatio);
1180 
1181   // This assert only makes sense here, before we adjust them
1182   // with respect to the min and max heap size.
1183   assert(minimum_desired_capacity <= maximum_desired_capacity,
1184          "minimum_desired_capacity = " SIZE_FORMAT ", "
1185          "maximum_desired_capacity = " SIZE_FORMAT,
1186          minimum_desired_capacity, maximum_desired_capacity);
1187 
1188   // Should not be greater than the heap max size. No need to adjust
1189   // it with respect to the heap min size as it's a lower bound (i.e.,
1190   // we'll try to make the capacity larger than it, not smaller).
1191   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1192   // Should not be less than the heap min size. No need to adjust it
1193   // with respect to the heap max size as it's an upper bound (i.e.,
1194   // we'll try to make the capacity smaller than it, not greater).
1195   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1196 
1197   if (capacity_after_gc < minimum_desired_capacity) {
1198     // Don't expand unless it's significant
1199     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1200 
1201     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1202                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1203                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1204                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1205 
1206     expand(expand_bytes, _workers);
1207 
1208     // No expansion, now see if we want to shrink
1209   } else if (capacity_after_gc > maximum_desired_capacity) {
1210     // Capacity too large, compute shrinking size
1211     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1212 
1213     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1214                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1215                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1216                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1217 
1218     shrink(shrink_bytes);
1219   }
1220 }
1221 
1222 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1223                                                             bool do_gc,
1224                                                             bool clear_all_soft_refs,
1225                                                             bool expect_null_mutator_alloc_region,
1226                                                             bool* gc_succeeded) {
1227   *gc_succeeded = true;
1228   // Let's attempt the allocation first.
1229   HeapWord* result =
1230     attempt_allocation_at_safepoint(word_size,
1231                                     expect_null_mutator_alloc_region);
1232   if (result != NULL) {
1233     return result;
1234   }
1235 
1236   // In a G1 heap, we're supposed to keep allocation from failing by
1237   // incremental pauses.  Therefore, at least for now, we'll favor
1238   // expansion over collection.  (This might change in the future if we can
1239   // do something smarter than full collection to satisfy a failed alloc.)
1240   result = expand_and_allocate(word_size);
1241   if (result != NULL) {
1242     return result;
1243   }
1244 
1245   if (do_gc) {
1246     // Expansion didn't work, we'll try to do a Full GC.
1247     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1248                                        clear_all_soft_refs);
1249   }
1250 
1251   return NULL;
1252 }
1253 
1254 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1255                                                      bool* succeeded) {
1256   assert_at_safepoint_on_vm_thread();
1257 
1258   // Attempts to allocate followed by Full GC.
1259   HeapWord* result =
1260     satisfy_failed_allocation_helper(word_size,
1261                                      true,  /* do_gc */
1262                                      false, /* clear_all_soft_refs */
1263                                      false, /* expect_null_mutator_alloc_region */
1264                                      succeeded);
1265 
1266   if (result != NULL || !*succeeded) {
1267     return result;
1268   }
1269 
1270   // Attempts to allocate followed by Full GC that will collect all soft references.
1271   result = satisfy_failed_allocation_helper(word_size,
1272                                             true, /* do_gc */
1273                                             true, /* clear_all_soft_refs */
1274                                             true, /* expect_null_mutator_alloc_region */
1275                                             succeeded);
1276 
1277   if (result != NULL || !*succeeded) {
1278     return result;
1279   }
1280 
1281   // Attempts to allocate, no GC
1282   result = satisfy_failed_allocation_helper(word_size,
1283                                             false, /* do_gc */
1284                                             false, /* clear_all_soft_refs */
1285                                             true,  /* expect_null_mutator_alloc_region */
1286                                             succeeded);
1287 
1288   if (result != NULL) {
1289     return result;
1290   }
1291 
1292   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1293          "Flag should have been handled and cleared prior to this point");
1294 
1295   // What else?  We might try synchronous finalization later.  If the total
1296   // space available is large enough for the allocation, then a more
1297   // complete compaction phase than we've tried so far might be
1298   // appropriate.
1299   return NULL;
1300 }
1301 
1302 // Attempting to expand the heap sufficiently
1303 // to support an allocation of the given "word_size".  If
1304 // successful, perform the allocation and return the address of the
1305 // allocated block, or else "NULL".
1306 
1307 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1308   assert_at_safepoint_on_vm_thread();
1309 
1310   _verifier->verify_region_sets_optional();
1311 
1312   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1313   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1314                             word_size * HeapWordSize);
1315 
1316 
1317   if (expand(expand_bytes, _workers)) {
1318     _hrm->verify_optional();
1319     _verifier->verify_region_sets_optional();
1320     return attempt_allocation_at_safepoint(word_size,
1321                                            false /* expect_null_mutator_alloc_region */);
1322   }
1323   return NULL;
1324 }
1325 
1326 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1327   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1328   aligned_expand_bytes = align_up(aligned_expand_bytes,
1329                                        HeapRegion::GrainBytes);
1330 
1331   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1332                             expand_bytes, aligned_expand_bytes);
1333 
1334   if (is_maximal_no_gc()) {
1335     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1336     return false;
1337   }
1338 
1339   double expand_heap_start_time_sec = os::elapsedTime();
1340   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1341   assert(regions_to_expand > 0, "Must expand by at least one region");
1342 
1343   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1344   if (expand_time_ms != NULL) {
1345     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1346   }
1347 
1348   if (expanded_by > 0) {
1349     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1350     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1351     policy()->record_new_heap_size(num_regions());
1352   } else {
1353     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1354 
1355     // The expansion of the virtual storage space was unsuccessful.
1356     // Let's see if it was because we ran out of swap.
1357     if (G1ExitOnExpansionFailure &&
1358         _hrm->available() >= regions_to_expand) {
1359       // We had head room...
1360       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1361     }
1362   }
1363   return regions_to_expand > 0;
1364 }
1365 
1366 bool G1CollectedHeap::expand_single_region(uint node_index) {
1367   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1368 
1369   if (expanded_by == 0) {
1370     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1371     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1372     return false;
1373   }
1374 
1375   policy()->record_new_heap_size(num_regions());
1376   return true;
1377 }
1378 
1379 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1380   size_t aligned_shrink_bytes =
1381     ReservedSpace::page_align_size_down(shrink_bytes);
1382   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1383                                          HeapRegion::GrainBytes);
1384   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1385 
1386   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1387   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1388 
1389   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1390                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1391   if (num_regions_removed > 0) {
1392     policy()->record_new_heap_size(num_regions());
1393   } else {
1394     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1395   }
1396 }
1397 
1398 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1399   _verifier->verify_region_sets_optional();
1400 
1401   // We should only reach here at the end of a Full GC or during Remark which
1402   // means we should not not be holding to any GC alloc regions. The method
1403   // below will make sure of that and do any remaining clean up.
1404   _allocator->abandon_gc_alloc_regions();
1405 
1406   // Instead of tearing down / rebuilding the free lists here, we
1407   // could instead use the remove_all_pending() method on free_list to
1408   // remove only the ones that we need to remove.
1409   tear_down_region_sets(true /* free_list_only */);
1410   shrink_helper(shrink_bytes);
1411   rebuild_region_sets(true /* free_list_only */);
1412 
1413   _hrm->verify_optional();
1414   _verifier->verify_region_sets_optional();
1415 }
1416 
1417 class OldRegionSetChecker : public HeapRegionSetChecker {
1418 public:
1419   void check_mt_safety() {
1420     // Master Old Set MT safety protocol:
1421     // (a) If we're at a safepoint, operations on the master old set
1422     // should be invoked:
1423     // - by the VM thread (which will serialize them), or
1424     // - by the GC workers while holding the FreeList_lock, if we're
1425     //   at a safepoint for an evacuation pause (this lock is taken
1426     //   anyway when an GC alloc region is retired so that a new one
1427     //   is allocated from the free list), or
1428     // - by the GC workers while holding the OldSets_lock, if we're at a
1429     //   safepoint for a cleanup pause.
1430     // (b) If we're not at a safepoint, operations on the master old set
1431     // should be invoked while holding the Heap_lock.
1432 
1433     if (SafepointSynchronize::is_at_safepoint()) {
1434       guarantee(Thread::current()->is_VM_thread() ||
1435                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1436                 "master old set MT safety protocol at a safepoint");
1437     } else {
1438       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1439     }
1440   }
1441   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1442   const char* get_description() { return "Old Regions"; }
1443 };
1444 
1445 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1446 public:
1447   void check_mt_safety() {
1448     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1449               "May only change archive regions during initialization or safepoint.");
1450   }
1451   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1452   const char* get_description() { return "Archive Regions"; }
1453 };
1454 
1455 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1456 public:
1457   void check_mt_safety() {
1458     // Humongous Set MT safety protocol:
1459     // (a) If we're at a safepoint, operations on the master humongous
1460     // set should be invoked by either the VM thread (which will
1461     // serialize them) or by the GC workers while holding the
1462     // OldSets_lock.
1463     // (b) If we're not at a safepoint, operations on the master
1464     // humongous set should be invoked while holding the Heap_lock.
1465 
1466     if (SafepointSynchronize::is_at_safepoint()) {
1467       guarantee(Thread::current()->is_VM_thread() ||
1468                 OldSets_lock->owned_by_self(),
1469                 "master humongous set MT safety protocol at a safepoint");
1470     } else {
1471       guarantee(Heap_lock->owned_by_self(),
1472                 "master humongous set MT safety protocol outside a safepoint");
1473     }
1474   }
1475   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1476   const char* get_description() { return "Humongous Regions"; }
1477 };
1478 
1479 G1CollectedHeap::G1CollectedHeap() :
1480   CollectedHeap(),
1481   _young_gen_sampling_thread(NULL),
1482   _workers(NULL),
1483   _card_table(NULL),
1484   _soft_ref_policy(),
1485   _old_set("Old Region Set", new OldRegionSetChecker()),
1486   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1487   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1488   _bot(NULL),
1489   _listener(),
1490   _numa(G1NUMA::create()),
1491   _hrm(NULL),
1492   _allocator(NULL),
1493   _verifier(NULL),
1494   _summary_bytes_used(0),
1495   _bytes_used_during_gc(0),
1496   _archive_allocator(NULL),
1497   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1498   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1499   _expand_heap_after_alloc_failure(true),
1500   _g1mm(NULL),
1501   _humongous_reclaim_candidates(),
1502   _has_humongous_reclaim_candidates(false),
1503   _hr_printer(),
1504   _collector_state(),
1505   _old_marking_cycles_started(0),
1506   _old_marking_cycles_completed(0),
1507   _eden(),
1508   _survivor(),
1509   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1510   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1511   _policy(G1Policy::create_policy(_gc_timer_stw)),
1512   _heap_sizing_policy(NULL),
1513   _collection_set(this, _policy),
1514   _hot_card_cache(NULL),
1515   _rem_set(NULL),
1516   _cm(NULL),
1517   _cm_thread(NULL),
1518   _cr(NULL),
1519   _task_queues(NULL),
1520   _evacuation_failed(false),
1521   _evacuation_failed_info_array(NULL),
1522   _preserved_marks_set(true /* in_c_heap */),
1523 #ifndef PRODUCT
1524   _evacuation_failure_alot_for_current_gc(false),
1525   _evacuation_failure_alot_gc_number(0),
1526   _evacuation_failure_alot_count(0),
1527 #endif
1528   _ref_processor_stw(NULL),
1529   _is_alive_closure_stw(this),
1530   _is_subject_to_discovery_stw(this),
1531   _ref_processor_cm(NULL),
1532   _is_alive_closure_cm(this),
1533   _is_subject_to_discovery_cm(this),
1534   _region_attr() {
1535 
1536   _verifier = new G1HeapVerifier(this);
1537 
1538   _allocator = new G1Allocator(this);
1539 
1540   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1541 
1542   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1543 
1544   // Override the default _filler_array_max_size so that no humongous filler
1545   // objects are created.
1546   _filler_array_max_size = _humongous_object_threshold_in_words;
1547 
1548   uint n_queues = ParallelGCThreads;
1549   _task_queues = new RefToScanQueueSet(n_queues);
1550 
1551   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1552 
1553   for (uint i = 0; i < n_queues; i++) {
1554     RefToScanQueue* q = new RefToScanQueue();
1555     q->initialize();
1556     _task_queues->register_queue(i, q);
1557     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1558   }
1559 
1560   // Initialize the G1EvacuationFailureALot counters and flags.
1561   NOT_PRODUCT(reset_evacuation_should_fail();)
1562   _gc_tracer_stw->initialize();
1563 
1564   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1565 }
1566 
1567 static size_t actual_reserved_page_size(ReservedSpace rs) {
1568   size_t page_size = os::vm_page_size();
1569   if (UseLargePages) {
1570     // There are two ways to manage large page memory.
1571     // 1. OS supports committing large page memory.
1572     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1573     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1574     //    we reserved memory without large page.
1575     if (os::can_commit_large_page_memory() || rs.special()) {
1576       // An alignment at ReservedSpace comes from preferred page size or
1577       // heap alignment, and if the alignment came from heap alignment, it could be
1578       // larger than large pages size. So need to cap with the large page size.
1579       page_size = MIN2(rs.alignment(), os::large_page_size());
1580     }
1581   }
1582 
1583   return page_size;
1584 }
1585 
1586 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1587                                                                  size_t size,
1588                                                                  size_t translation_factor) {
1589   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1590   // Allocate a new reserved space, preferring to use large pages.
1591   ReservedSpace rs(size, preferred_page_size);
1592   size_t page_size = actual_reserved_page_size(rs);
1593   G1RegionToSpaceMapper* result  =
1594     G1RegionToSpaceMapper::create_mapper(rs,
1595                                          size,
1596                                          page_size,
1597                                          HeapRegion::GrainBytes,
1598                                          translation_factor,
1599                                          mtGC);
1600 
1601   os::trace_page_sizes_for_requested_size(description,
1602                                           size,
1603                                           preferred_page_size,
1604                                           page_size,
1605                                           rs.base(),
1606                                           rs.size());
1607 
1608   return result;
1609 }
1610 
1611 jint G1CollectedHeap::initialize_concurrent_refinement() {
1612   jint ecode = JNI_OK;
1613   _cr = G1ConcurrentRefine::create(&ecode);
1614   return ecode;
1615 }
1616 
1617 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1618   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1619   if (_young_gen_sampling_thread->osthread() == NULL) {
1620     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1621     return JNI_ENOMEM;
1622   }
1623   return JNI_OK;
1624 }
1625 
1626 jint G1CollectedHeap::initialize() {
1627 
1628   // Necessary to satisfy locking discipline assertions.
1629 
1630   MutexLocker x(Heap_lock);
1631 
1632   // While there are no constraints in the GC code that HeapWordSize
1633   // be any particular value, there are multiple other areas in the
1634   // system which believe this to be true (e.g. oop->object_size in some
1635   // cases incorrectly returns the size in wordSize units rather than
1636   // HeapWordSize).
1637   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1638 
1639   size_t init_byte_size = InitialHeapSize;
1640   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1641 
1642   // Ensure that the sizes are properly aligned.
1643   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1644   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1645   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1646 
1647   // Reserve the maximum.
1648 
1649   // When compressed oops are enabled, the preferred heap base
1650   // is calculated by subtracting the requested size from the
1651   // 32Gb boundary and using the result as the base address for
1652   // heap reservation. If the requested size is not aligned to
1653   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1654   // into the ReservedHeapSpace constructor) then the actual
1655   // base of the reserved heap may end up differing from the
1656   // address that was requested (i.e. the preferred heap base).
1657   // If this happens then we could end up using a non-optimal
1658   // compressed oops mode.
1659 
1660   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1661                                                      HeapAlignment);
1662 
1663   initialize_reserved_region(heap_rs);
1664 
1665   // Create the barrier set for the entire reserved region.
1666   G1CardTable* ct = new G1CardTable(heap_rs.region());
1667   ct->initialize();
1668   G1BarrierSet* bs = new G1BarrierSet(ct);
1669   bs->initialize();
1670   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1671   BarrierSet::set_barrier_set(bs);
1672   _card_table = ct;
1673 
1674   {
1675     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1676     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1677     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1678   }
1679 
1680   // Create the hot card cache.
1681   _hot_card_cache = new G1HotCardCache(this);
1682 
1683   // Carve out the G1 part of the heap.
1684   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1685   size_t page_size = actual_reserved_page_size(heap_rs);
1686   G1RegionToSpaceMapper* heap_storage =
1687     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1688                                               g1_rs.size(),
1689                                               page_size,
1690                                               HeapRegion::GrainBytes,
1691                                               1,
1692                                               mtJavaHeap);
1693   if(heap_storage == NULL) {
1694     vm_shutdown_during_initialization("Could not initialize G1 heap");
1695     return JNI_ERR;
1696   }
1697 
1698   os::trace_page_sizes("Heap",
1699                        MinHeapSize,
1700                        reserved_byte_size,
1701                        page_size,
1702                        heap_rs.base(),
1703                        heap_rs.size());
1704   heap_storage->set_mapping_changed_listener(&_listener);
1705 
1706   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1707   G1RegionToSpaceMapper* bot_storage =
1708     create_aux_memory_mapper("Block Offset Table",
1709                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1710                              G1BlockOffsetTable::heap_map_factor());
1711 
1712   G1RegionToSpaceMapper* cardtable_storage =
1713     create_aux_memory_mapper("Card Table",
1714                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1715                              G1CardTable::heap_map_factor());
1716 
1717   G1RegionToSpaceMapper* card_counts_storage =
1718     create_aux_memory_mapper("Card Counts Table",
1719                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1720                              G1CardCounts::heap_map_factor());
1721 
1722   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1723   G1RegionToSpaceMapper* prev_bitmap_storage =
1724     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1725   G1RegionToSpaceMapper* next_bitmap_storage =
1726     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1727 
1728   _hrm = HeapRegionManager::create_manager(this);
1729 
1730   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1731   _card_table->initialize(cardtable_storage);
1732 
1733   // Do later initialization work for concurrent refinement.
1734   _hot_card_cache->initialize(card_counts_storage);
1735 
1736   // 6843694 - ensure that the maximum region index can fit
1737   // in the remembered set structures.
1738   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1739   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1740 
1741   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1742   // start within the first card.
1743   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1744   // Also create a G1 rem set.
1745   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1746   _rem_set->initialize(max_reserved_capacity(), max_regions());
1747 
1748   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1749   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1750   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1751             "too many cards per region");
1752 
1753   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1754 
1755   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1756 
1757   {
1758     HeapWord* start = _hrm->reserved().start();
1759     HeapWord* end = _hrm->reserved().end();
1760     size_t granularity = HeapRegion::GrainBytes;
1761 
1762     _region_attr.initialize(start, end, granularity);
1763     _humongous_reclaim_candidates.initialize(start, end, granularity);
1764   }
1765 
1766   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1767                           true /* are_GC_task_threads */,
1768                           false /* are_ConcurrentGC_threads */);
1769   if (_workers == NULL) {
1770     return JNI_ENOMEM;
1771   }
1772   _workers->initialize_workers();
1773 
1774   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1775 
1776   // Create the G1ConcurrentMark data structure and thread.
1777   // (Must do this late, so that "max_regions" is defined.)
1778   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1779   if (!_cm->completed_initialization()) {
1780     vm_shutdown_during_initialization("Could not initialize G1ConcurrentMark");
1781     return JNI_ENOMEM;
1782   }
1783   _cm_thread = _cm->cm_thread();
1784 
1785   // Now expand into the initial heap size.
1786   if (!expand(init_byte_size, _workers)) {
1787     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1788     return JNI_ENOMEM;
1789   }
1790 
1791   // Perform any initialization actions delegated to the policy.
1792   policy()->init(this, &_collection_set);
1793 
1794   jint ecode = initialize_concurrent_refinement();
1795   if (ecode != JNI_OK) {
1796     return ecode;
1797   }
1798 
1799   ecode = initialize_young_gen_sampling_thread();
1800   if (ecode != JNI_OK) {
1801     return ecode;
1802   }
1803 
1804   {
1805     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1806     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1807     dcqs.set_max_cards(concurrent_refine()->red_zone());
1808   }
1809 
1810   // Here we allocate the dummy HeapRegion that is required by the
1811   // G1AllocRegion class.
1812   HeapRegion* dummy_region = _hrm->get_dummy_region();
1813 
1814   // We'll re-use the same region whether the alloc region will
1815   // require BOT updates or not and, if it doesn't, then a non-young
1816   // region will complain that it cannot support allocations without
1817   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1818   dummy_region->set_eden();
1819   // Make sure it's full.
1820   dummy_region->set_top(dummy_region->end());
1821   G1AllocRegion::setup(this, dummy_region);
1822 
1823   _allocator->init_mutator_alloc_regions();
1824 
1825   // Do create of the monitoring and management support so that
1826   // values in the heap have been properly initialized.
1827   _g1mm = new G1MonitoringSupport(this);
1828 
1829   G1StringDedup::initialize();
1830 
1831   _preserved_marks_set.init(ParallelGCThreads);
1832 
1833   _collection_set.initialize(max_regions());
1834 
1835   return JNI_OK;
1836 }
1837 
1838 void G1CollectedHeap::stop() {
1839   // Stop all concurrent threads. We do this to make sure these threads
1840   // do not continue to execute and access resources (e.g. logging)
1841   // that are destroyed during shutdown.
1842   _cr->stop();
1843   _young_gen_sampling_thread->stop();
1844   _cm_thread->stop();
1845   if (G1StringDedup::is_enabled()) {
1846     G1StringDedup::stop();
1847   }
1848 }
1849 
1850 void G1CollectedHeap::safepoint_synchronize_begin() {
1851   SuspendibleThreadSet::synchronize();
1852 }
1853 
1854 void G1CollectedHeap::safepoint_synchronize_end() {
1855   SuspendibleThreadSet::desynchronize();
1856 }
1857 
1858 void G1CollectedHeap::post_initialize() {
1859   CollectedHeap::post_initialize();
1860   ref_processing_init();
1861 }
1862 
1863 void G1CollectedHeap::ref_processing_init() {
1864   // Reference processing in G1 currently works as follows:
1865   //
1866   // * There are two reference processor instances. One is
1867   //   used to record and process discovered references
1868   //   during concurrent marking; the other is used to
1869   //   record and process references during STW pauses
1870   //   (both full and incremental).
1871   // * Both ref processors need to 'span' the entire heap as
1872   //   the regions in the collection set may be dotted around.
1873   //
1874   // * For the concurrent marking ref processor:
1875   //   * Reference discovery is enabled at initial marking.
1876   //   * Reference discovery is disabled and the discovered
1877   //     references processed etc during remarking.
1878   //   * Reference discovery is MT (see below).
1879   //   * Reference discovery requires a barrier (see below).
1880   //   * Reference processing may or may not be MT
1881   //     (depending on the value of ParallelRefProcEnabled
1882   //     and ParallelGCThreads).
1883   //   * A full GC disables reference discovery by the CM
1884   //     ref processor and abandons any entries on it's
1885   //     discovered lists.
1886   //
1887   // * For the STW processor:
1888   //   * Non MT discovery is enabled at the start of a full GC.
1889   //   * Processing and enqueueing during a full GC is non-MT.
1890   //   * During a full GC, references are processed after marking.
1891   //
1892   //   * Discovery (may or may not be MT) is enabled at the start
1893   //     of an incremental evacuation pause.
1894   //   * References are processed near the end of a STW evacuation pause.
1895   //   * For both types of GC:
1896   //     * Discovery is atomic - i.e. not concurrent.
1897   //     * Reference discovery will not need a barrier.
1898 
1899   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1900 
1901   // Concurrent Mark ref processor
1902   _ref_processor_cm =
1903     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1904                            mt_processing,                                  // mt processing
1905                            ParallelGCThreads,                              // degree of mt processing
1906                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1907                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1908                            false,                                          // Reference discovery is not atomic
1909                            &_is_alive_closure_cm,                          // is alive closure
1910                            true);                                          // allow changes to number of processing threads
1911 
1912   // STW ref processor
1913   _ref_processor_stw =
1914     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1915                            mt_processing,                        // mt processing
1916                            ParallelGCThreads,                    // degree of mt processing
1917                            (ParallelGCThreads > 1),              // mt discovery
1918                            ParallelGCThreads,                    // degree of mt discovery
1919                            true,                                 // Reference discovery is atomic
1920                            &_is_alive_closure_stw,               // is alive closure
1921                            true);                                // allow changes to number of processing threads
1922 }
1923 
1924 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1925   return &_soft_ref_policy;
1926 }
1927 
1928 size_t G1CollectedHeap::capacity() const {
1929   return _hrm->length() * HeapRegion::GrainBytes;
1930 }
1931 
1932 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1933   return _hrm->total_free_bytes();
1934 }
1935 
1936 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1937   _hot_card_cache->drain(cl, worker_id);
1938 }
1939 
1940 // Computes the sum of the storage used by the various regions.
1941 size_t G1CollectedHeap::used() const {
1942   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1943   if (_archive_allocator != NULL) {
1944     result += _archive_allocator->used();
1945   }
1946   return result;
1947 }
1948 
1949 size_t G1CollectedHeap::used_unlocked() const {
1950   return _summary_bytes_used;
1951 }
1952 
1953 class SumUsedClosure: public HeapRegionClosure {
1954   size_t _used;
1955 public:
1956   SumUsedClosure() : _used(0) {}
1957   bool do_heap_region(HeapRegion* r) {
1958     _used += r->used();
1959     return false;
1960   }
1961   size_t result() { return _used; }
1962 };
1963 
1964 size_t G1CollectedHeap::recalculate_used() const {
1965   SumUsedClosure blk;
1966   heap_region_iterate(&blk);
1967   return blk.result();
1968 }
1969 
1970 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1971   switch (cause) {
1972     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1973     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1974     case GCCause::_wb_conc_mark:                        return true;
1975     default :                                           return false;
1976   }
1977 }
1978 
1979 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1980   switch (cause) {
1981     case GCCause::_g1_humongous_allocation: return true;
1982     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1983     default:                                return is_user_requested_concurrent_full_gc(cause);
1984   }
1985 }
1986 
1987 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
1988   if (policy()->force_upgrade_to_full()) {
1989     return true;
1990   } else if (should_do_concurrent_full_gc(_gc_cause)) {
1991     return false;
1992   } else if (has_regions_left_for_allocation()) {
1993     return false;
1994   } else {
1995     return true;
1996   }
1997 }
1998 
1999 #ifndef PRODUCT
2000 void G1CollectedHeap::allocate_dummy_regions() {
2001   // Let's fill up most of the region
2002   size_t word_size = HeapRegion::GrainWords - 1024;
2003   // And as a result the region we'll allocate will be humongous.
2004   guarantee(is_humongous(word_size), "sanity");
2005 
2006   // _filler_array_max_size is set to humongous object threshold
2007   // but temporarily change it to use CollectedHeap::fill_with_object().
2008   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2009 
2010   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2011     // Let's use the existing mechanism for the allocation
2012     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2013     if (dummy_obj != NULL) {
2014       MemRegion mr(dummy_obj, word_size);
2015       CollectedHeap::fill_with_object(mr);
2016     } else {
2017       // If we can't allocate once, we probably cannot allocate
2018       // again. Let's get out of the loop.
2019       break;
2020     }
2021   }
2022 }
2023 #endif // !PRODUCT
2024 
2025 void G1CollectedHeap::increment_old_marking_cycles_started() {
2026   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2027          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2028          "Wrong marking cycle count (started: %d, completed: %d)",
2029          _old_marking_cycles_started, _old_marking_cycles_completed);
2030 
2031   _old_marking_cycles_started++;
2032 }
2033 
2034 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2035   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
2036 
2037   // We assume that if concurrent == true, then the caller is a
2038   // concurrent thread that was joined the Suspendible Thread
2039   // Set. If there's ever a cheap way to check this, we should add an
2040   // assert here.
2041 
2042   // Given that this method is called at the end of a Full GC or of a
2043   // concurrent cycle, and those can be nested (i.e., a Full GC can
2044   // interrupt a concurrent cycle), the number of full collections
2045   // completed should be either one (in the case where there was no
2046   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2047   // behind the number of full collections started.
2048 
2049   // This is the case for the inner caller, i.e. a Full GC.
2050   assert(concurrent ||
2051          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2052          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2053          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2054          "is inconsistent with _old_marking_cycles_completed = %u",
2055          _old_marking_cycles_started, _old_marking_cycles_completed);
2056 
2057   // This is the case for the outer caller, i.e. the concurrent cycle.
2058   assert(!concurrent ||
2059          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2060          "for outer caller (concurrent cycle): "
2061          "_old_marking_cycles_started = %u "
2062          "is inconsistent with _old_marking_cycles_completed = %u",
2063          _old_marking_cycles_started, _old_marking_cycles_completed);
2064 
2065   _old_marking_cycles_completed += 1;
2066 
2067   // We need to clear the "in_progress" flag in the CM thread before
2068   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2069   // is set) so that if a waiter requests another System.gc() it doesn't
2070   // incorrectly see that a marking cycle is still in progress.
2071   if (concurrent) {
2072     _cm_thread->set_idle();
2073   }
2074 
2075   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2076   // for a full GC to finish that their wait is over.
2077   ml.notify_all();
2078 }
2079 
2080 void G1CollectedHeap::collect(GCCause::Cause cause) {
2081   try_collect(cause);
2082 }
2083 
2084 // Return true if (x < y) with allowance for wraparound.
2085 static bool gc_counter_less_than(uint x, uint y) {
2086   return (x - y) > (UINT_MAX/2);
2087 }
2088 
2089 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2090 // Macro so msg printing is format-checked.
2091 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2092   do {                                                                  \
2093     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2094     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2095       ResourceMark rm; /* For thread name. */                           \
2096       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2097       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2098                                        Thread::current()->name(),       \
2099                                        GCCause::to_string(cause));      \
2100       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2101     }                                                                   \
2102   } while (0)
2103 
2104 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2105   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2106 
2107 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2108                                                uint gc_counter,
2109                                                uint old_marking_started_before) {
2110   assert_heap_not_locked();
2111   assert(should_do_concurrent_full_gc(cause),
2112          "Non-concurrent cause %s", GCCause::to_string(cause));
2113 
2114   for (uint i = 1; true; ++i) {
2115     // Try to schedule an initial-mark evacuation pause that will
2116     // start a concurrent cycle.
2117     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2118     VM_G1TryInitiateConcMark op(gc_counter,
2119                                 cause,
2120                                 policy()->max_pause_time_ms());
2121     VMThread::execute(&op);
2122 
2123     // Request is trivially finished.
2124     if (cause == GCCause::_g1_periodic_collection) {
2125       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2126       return op.gc_succeeded();
2127     }
2128 
2129     // If VMOp skipped initiating concurrent marking cycle because
2130     // we're terminating, then we're done.
2131     if (op.terminating()) {
2132       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2133       return false;
2134     }
2135 
2136     // Lock to get consistent set of values.
2137     uint old_marking_started_after;
2138     uint old_marking_completed_after;
2139     {
2140       MutexLocker ml(Heap_lock);
2141       // Update gc_counter for retrying VMOp if needed. Captured here to be
2142       // consistent with the values we use below for termination tests.  If
2143       // a retry is needed after a possible wait, and another collection
2144       // occurs in the meantime, it will cause our retry to be skipped and
2145       // we'll recheck for termination with updated conditions from that
2146       // more recent collection.  That's what we want, rather than having
2147       // our retry possibly perform an unnecessary collection.
2148       gc_counter = total_collections();
2149       old_marking_started_after = _old_marking_cycles_started;
2150       old_marking_completed_after = _old_marking_cycles_completed;
2151     }
2152 
2153     if (!GCCause::is_user_requested_gc(cause)) {
2154       // For an "automatic" (not user-requested) collection, we just need to
2155       // ensure that progress is made.
2156       //
2157       // Request is finished if any of
2158       // (1) the VMOp successfully performed a GC,
2159       // (2) a concurrent cycle was already in progress,
2160       // (3) a new cycle was started (by this thread or some other), or
2161       // (4) a Full GC was performed.
2162       // Cases (3) and (4) are detected together by a change to
2163       // _old_marking_cycles_started.
2164       //
2165       // Note that (1) does not imply (3).  If we're still in the mixed
2166       // phase of an earlier concurrent collection, the request to make the
2167       // collection an initial-mark won't be honored.  If we don't check for
2168       // both conditions we'll spin doing back-to-back collections.
2169       if (op.gc_succeeded() ||
2170           op.cycle_already_in_progress() ||
2171           (old_marking_started_before != old_marking_started_after)) {
2172         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2173         return true;
2174       }
2175     } else {                    // User-requested GC.
2176       // For a user-requested collection, we want to ensure that a complete
2177       // full collection has been performed before returning, but without
2178       // waiting for more than needed.
2179 
2180       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2181       // new cycle was started.  That's good, because it's not clear what we
2182       // should do otherwise.  Trying again just does back to back GCs.
2183       // Can't wait for someone else to start a cycle.  And returning fails
2184       // to meet the goal of ensuring a full collection was performed.
2185       assert(!op.gc_succeeded() ||
2186              (old_marking_started_before != old_marking_started_after),
2187              "invariant: succeeded %s, started before %u, started after %u",
2188              BOOL_TO_STR(op.gc_succeeded()),
2189              old_marking_started_before, old_marking_started_after);
2190 
2191       // Request is finished if a full collection (concurrent or stw)
2192       // was started after this request and has completed, e.g.
2193       // started_before < completed_after.
2194       if (gc_counter_less_than(old_marking_started_before,
2195                                old_marking_completed_after)) {
2196         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2197         return true;
2198       }
2199 
2200       if (old_marking_started_after != old_marking_completed_after) {
2201         // If there is an in-progress cycle (possibly started by us), then
2202         // wait for that cycle to complete, e.g.
2203         // while completed_now < started_after.
2204         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2205         MonitorLocker ml(G1OldGCCount_lock);
2206         while (gc_counter_less_than(_old_marking_cycles_completed,
2207                                     old_marking_started_after)) {
2208           ml.wait();
2209         }
2210         // Request is finished if the collection we just waited for was
2211         // started after this request.
2212         if (old_marking_started_before != old_marking_started_after) {
2213           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2214           return true;
2215         }
2216       }
2217 
2218       // If VMOp was successful then it started a new cycle that the above
2219       // wait &etc should have recognized as finishing this request.  This
2220       // differs from a non-user-request, where gc_succeeded does not imply
2221       // a new cycle was started.
2222       assert(!op.gc_succeeded(), "invariant");
2223 
2224       // If VMOp failed because a cycle was already in progress, it is now
2225       // complete.  But it didn't finish this user-requested GC, so try
2226       // again.
2227       if (op.cycle_already_in_progress()) {
2228         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2229         continue;
2230       }
2231     }
2232 
2233     // Collection failed and should be retried.
2234     assert(op.transient_failure(), "invariant");
2235 
2236     // If GCLocker is active, wait until clear before retrying.
2237     if (GCLocker::is_active_and_needs_gc()) {
2238       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2239       GCLocker::stall_until_clear();
2240     }
2241 
2242     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2243   }
2244 }
2245 
2246 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2247   assert_heap_not_locked();
2248 
2249   // Lock to get consistent set of values.
2250   uint gc_count_before;
2251   uint full_gc_count_before;
2252   uint old_marking_started_before;
2253   {
2254     MutexLocker ml(Heap_lock);
2255     gc_count_before = total_collections();
2256     full_gc_count_before = total_full_collections();
2257     old_marking_started_before = _old_marking_cycles_started;
2258   }
2259 
2260   if (should_do_concurrent_full_gc(cause)) {
2261     return try_collect_concurrently(cause,
2262                                     gc_count_before,
2263                                     old_marking_started_before);
2264   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2265     // Indicate failure to be consistent with VMOp failure due to
2266     // another collection slipping in after our gc_count but before
2267     // our request is processed.
2268     return false;
2269   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2270              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2271 
2272     // Schedule a standard evacuation pause. We're setting word_size
2273     // to 0 which means that we are not requesting a post-GC allocation.
2274     VM_G1CollectForAllocation op(0,     /* word_size */
2275                                  gc_count_before,
2276                                  cause,
2277                                  policy()->max_pause_time_ms());
2278     VMThread::execute(&op);
2279     return op.gc_succeeded();
2280   } else {
2281     // Schedule a Full GC.
2282     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2283     VMThread::execute(&op);
2284     return op.gc_succeeded();
2285   }
2286 }
2287 
2288 bool G1CollectedHeap::is_in(const void* p) const {
2289   if (_hrm->reserved().contains(p)) {
2290     // Given that we know that p is in the reserved space,
2291     // heap_region_containing() should successfully
2292     // return the containing region.
2293     HeapRegion* hr = heap_region_containing(p);
2294     return hr->is_in(p);
2295   } else {
2296     return false;
2297   }
2298 }
2299 
2300 #ifdef ASSERT
2301 bool G1CollectedHeap::is_in_exact(const void* p) const {
2302   bool contains = reserved_region().contains(p);
2303   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2304   if (contains && available) {
2305     return true;
2306   } else {
2307     return false;
2308   }
2309 }
2310 #endif
2311 
2312 // Iteration functions.
2313 
2314 // Iterates an ObjectClosure over all objects within a HeapRegion.
2315 
2316 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2317   ObjectClosure* _cl;
2318 public:
2319   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2320   bool do_heap_region(HeapRegion* r) {
2321     if (!r->is_continues_humongous()) {
2322       r->object_iterate(_cl);
2323     }
2324     return false;
2325   }
2326 };
2327 
2328 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2329   IterateObjectClosureRegionClosure blk(cl);
2330   heap_region_iterate(&blk);
2331 }
2332 
2333 void G1CollectedHeap::keep_alive(oop obj) {
2334   G1BarrierSet::enqueue(obj);
2335 }
2336 
2337 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2338   _hrm->iterate(cl);
2339 }
2340 
2341 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2342                                                                  HeapRegionClaimer *hrclaimer,
2343                                                                  uint worker_id) const {
2344   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2345 }
2346 
2347 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2348                                                          HeapRegionClaimer *hrclaimer) const {
2349   _hrm->par_iterate(cl, hrclaimer, 0);
2350 }
2351 
2352 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2353   _collection_set.iterate(cl);
2354 }
2355 
2356 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2357   _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2358 }
2359 
2360 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2361   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2362 }
2363 
2364 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2365   HeapRegion* hr = heap_region_containing(addr);
2366   return hr->block_start(addr);
2367 }
2368 
2369 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2370   HeapRegion* hr = heap_region_containing(addr);
2371   return hr->block_is_obj(addr);
2372 }
2373 
2374 bool G1CollectedHeap::supports_tlab_allocation() const {
2375   return true;
2376 }
2377 
2378 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2379   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2380 }
2381 
2382 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2383   return _eden.length() * HeapRegion::GrainBytes;
2384 }
2385 
2386 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2387 // must be equal to the humongous object limit.
2388 size_t G1CollectedHeap::max_tlab_size() const {
2389   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2390 }
2391 
2392 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2393   return _allocator->unsafe_max_tlab_alloc();
2394 }
2395 
2396 size_t G1CollectedHeap::max_capacity() const {
2397   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2398 }
2399 
2400 size_t G1CollectedHeap::max_reserved_capacity() const {
2401   return _hrm->max_length() * HeapRegion::GrainBytes;
2402 }
2403 
2404 size_t G1CollectedHeap::soft_max_capacity() const {
2405   return clamp(align_up(SoftMaxHeapSize, HeapAlignment), MinHeapSize, max_capacity());
2406 }
2407 
2408 jlong G1CollectedHeap::millis_since_last_gc() {
2409   // See the notes in GenCollectedHeap::millis_since_last_gc()
2410   // for more information about the implementation.
2411   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2412                   _policy->collection_pause_end_millis();
2413   if (ret_val < 0) {
2414     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2415       ". returning zero instead.", ret_val);
2416     return 0;
2417   }
2418   return ret_val;
2419 }
2420 
2421 void G1CollectedHeap::deduplicate_string(oop str) {
2422   assert(java_lang_String::is_instance(str), "invariant");
2423 
2424   if (G1StringDedup::is_enabled()) {
2425     G1StringDedup::deduplicate(str);
2426   }
2427 }
2428 
2429 void G1CollectedHeap::prepare_for_verify() {
2430   _verifier->prepare_for_verify();
2431 }
2432 
2433 void G1CollectedHeap::verify(VerifyOption vo) {
2434   _verifier->verify(vo);
2435 }
2436 
2437 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2438   return true;
2439 }
2440 
2441 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2442   return _cm_thread->request_concurrent_phase(phase);
2443 }
2444 
2445 bool G1CollectedHeap::is_heterogeneous_heap() const {
2446   return G1Arguments::is_heterogeneous_heap();
2447 }
2448 
2449 class PrintRegionClosure: public HeapRegionClosure {
2450   outputStream* _st;
2451 public:
2452   PrintRegionClosure(outputStream* st) : _st(st) {}
2453   bool do_heap_region(HeapRegion* r) {
2454     r->print_on(_st);
2455     return false;
2456   }
2457 };
2458 
2459 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2460                                        const HeapRegion* hr,
2461                                        const VerifyOption vo) const {
2462   switch (vo) {
2463   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2464   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2465   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2466   default:                            ShouldNotReachHere();
2467   }
2468   return false; // keep some compilers happy
2469 }
2470 
2471 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2472                                        const VerifyOption vo) const {
2473   switch (vo) {
2474   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2475   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2476   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2477   default:                            ShouldNotReachHere();
2478   }
2479   return false; // keep some compilers happy
2480 }
2481 
2482 void G1CollectedHeap::print_heap_regions() const {
2483   LogTarget(Trace, gc, heap, region) lt;
2484   if (lt.is_enabled()) {
2485     LogStream ls(lt);
2486     print_regions_on(&ls);
2487   }
2488 }
2489 
2490 void G1CollectedHeap::print_on(outputStream* st) const {
2491   st->print(" %-20s", "garbage-first heap");
2492   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2493             capacity()/K, used_unlocked()/K);
2494   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2495             p2i(_hrm->reserved().start()),
2496             p2i(_hrm->reserved().end()));
2497   st->cr();
2498   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2499   uint young_regions = young_regions_count();
2500   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2501             (size_t) young_regions * HeapRegion::GrainBytes / K);
2502   uint survivor_regions = survivor_regions_count();
2503   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2504             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2505   st->cr();
2506   if (_numa->is_enabled()) {
2507     uint num_nodes = _numa->num_active_nodes();
2508     st->print("  remaining free region(s) on each NUMA node: ");
2509     const int* node_ids = _numa->node_ids();
2510     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2511       st->print("%d=%u ", node_ids[node_index], _hrm->num_free_regions(node_index));
2512     }
2513     st->cr();
2514   }
2515   MetaspaceUtils::print_on(st);
2516 }
2517 
2518 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2519   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2520                "HS=humongous(starts), HC=humongous(continues), "
2521                "CS=collection set, F=free, "
2522                "OA=open archive, CA=closed archive, "
2523                "TAMS=top-at-mark-start (previous, next)");
2524   PrintRegionClosure blk(st);
2525   heap_region_iterate(&blk);
2526 }
2527 
2528 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2529   print_on(st);
2530 
2531   // Print the per-region information.
2532   print_regions_on(st);
2533 }
2534 
2535 void G1CollectedHeap::print_on_error(outputStream* st) const {
2536   this->CollectedHeap::print_on_error(st);
2537 
2538   if (_cm != NULL) {
2539     st->cr();
2540     _cm->print_on_error(st);
2541   }
2542 }
2543 
2544 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2545   workers()->print_worker_threads_on(st);
2546   _cm_thread->print_on(st);
2547   st->cr();
2548   _cm->print_worker_threads_on(st);
2549   _cr->print_threads_on(st);
2550   _young_gen_sampling_thread->print_on(st);
2551   if (G1StringDedup::is_enabled()) {
2552     G1StringDedup::print_worker_threads_on(st);
2553   }
2554 }
2555 
2556 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2557   workers()->threads_do(tc);
2558   tc->do_thread(_cm_thread);
2559   _cm->threads_do(tc);
2560   _cr->threads_do(tc);
2561   tc->do_thread(_young_gen_sampling_thread);
2562   if (G1StringDedup::is_enabled()) {
2563     G1StringDedup::threads_do(tc);
2564   }
2565 }
2566 
2567 void G1CollectedHeap::print_tracing_info() const {
2568   rem_set()->print_summary_info();
2569   concurrent_mark()->print_summary_info();
2570 }
2571 
2572 #ifndef PRODUCT
2573 // Helpful for debugging RSet issues.
2574 
2575 class PrintRSetsClosure : public HeapRegionClosure {
2576 private:
2577   const char* _msg;
2578   size_t _occupied_sum;
2579 
2580 public:
2581   bool do_heap_region(HeapRegion* r) {
2582     HeapRegionRemSet* hrrs = r->rem_set();
2583     size_t occupied = hrrs->occupied();
2584     _occupied_sum += occupied;
2585 
2586     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2587     if (occupied == 0) {
2588       tty->print_cr("  RSet is empty");
2589     } else {
2590       hrrs->print();
2591     }
2592     tty->print_cr("----------");
2593     return false;
2594   }
2595 
2596   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2597     tty->cr();
2598     tty->print_cr("========================================");
2599     tty->print_cr("%s", msg);
2600     tty->cr();
2601   }
2602 
2603   ~PrintRSetsClosure() {
2604     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2605     tty->print_cr("========================================");
2606     tty->cr();
2607   }
2608 };
2609 
2610 void G1CollectedHeap::print_cset_rsets() {
2611   PrintRSetsClosure cl("Printing CSet RSets");
2612   collection_set_iterate_all(&cl);
2613 }
2614 
2615 void G1CollectedHeap::print_all_rsets() {
2616   PrintRSetsClosure cl("Printing All RSets");;
2617   heap_region_iterate(&cl);
2618 }
2619 #endif // PRODUCT
2620 
2621 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2622   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2623 }
2624 
2625 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2626 
2627   size_t eden_used_bytes = _eden.used_bytes();
2628   size_t survivor_used_bytes = _survivor.used_bytes();
2629   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2630 
2631   size_t eden_capacity_bytes =
2632     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2633 
2634   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2635   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2636                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2637 }
2638 
2639 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2640   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2641                        stats->unused(), stats->used(), stats->region_end_waste(),
2642                        stats->regions_filled(), stats->direct_allocated(),
2643                        stats->failure_used(), stats->failure_waste());
2644 }
2645 
2646 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2647   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2648   gc_tracer->report_gc_heap_summary(when, heap_summary);
2649 
2650   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2651   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2652 }
2653 
2654 G1CollectedHeap* G1CollectedHeap::heap() {
2655   CollectedHeap* heap = Universe::heap();
2656   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2657   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2658   return (G1CollectedHeap*)heap;
2659 }
2660 
2661 void G1CollectedHeap::gc_prologue(bool full) {
2662   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2663 
2664   // This summary needs to be printed before incrementing total collections.
2665   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2666 
2667   // Update common counters.
2668   increment_total_collections(full /* full gc */);
2669   if (full || collector_state()->in_initial_mark_gc()) {
2670     increment_old_marking_cycles_started();
2671   }
2672 
2673   // Fill TLAB's and such
2674   double start = os::elapsedTime();
2675   ensure_parsability(true);
2676   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2677 }
2678 
2679 void G1CollectedHeap::gc_epilogue(bool full) {
2680   // Update common counters.
2681   if (full) {
2682     // Update the number of full collections that have been completed.
2683     increment_old_marking_cycles_completed(false /* concurrent */);
2684   }
2685 
2686   // We are at the end of the GC. Total collections has already been increased.
2687   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2688 
2689   // FIXME: what is this about?
2690   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2691   // is set.
2692 #if COMPILER2_OR_JVMCI
2693   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2694 #endif
2695 
2696   double start = os::elapsedTime();
2697   resize_all_tlabs();
2698   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2699 
2700   MemoryService::track_memory_usage();
2701   // We have just completed a GC. Update the soft reference
2702   // policy with the new heap occupancy
2703   Universe::update_heap_info_at_gc();
2704 
2705   // Print NUMA statistics.
2706   _numa->print_statistics();
2707 }
2708 
2709 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2710   LogTarget(Trace, gc, heap, verify) lt;
2711 
2712   if (lt.is_enabled()) {
2713     LogStream ls(lt);
2714     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2715     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2716     heap_region_iterate(&cl);
2717   }
2718 }
2719 
2720 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2721                                                uint gc_count_before,
2722                                                bool* succeeded,
2723                                                GCCause::Cause gc_cause) {
2724   assert_heap_not_locked_and_not_at_safepoint();
2725   VM_G1CollectForAllocation op(word_size,
2726                                gc_count_before,
2727                                gc_cause,
2728                                policy()->max_pause_time_ms());
2729   VMThread::execute(&op);
2730 
2731   HeapWord* result = op.result();
2732   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2733   assert(result == NULL || ret_succeeded,
2734          "the result should be NULL if the VM did not succeed");
2735   *succeeded = ret_succeeded;
2736 
2737   assert_heap_not_locked();
2738   return result;
2739 }
2740 
2741 void G1CollectedHeap::do_concurrent_mark() {
2742   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2743   if (!_cm_thread->in_progress()) {
2744     _cm_thread->set_started();
2745     CGC_lock->notify();
2746   }
2747 }
2748 
2749 size_t G1CollectedHeap::pending_card_num() {
2750   struct CountCardsClosure : public ThreadClosure {
2751     size_t _cards;
2752     CountCardsClosure() : _cards(0) {}
2753     virtual void do_thread(Thread* t) {
2754       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2755     }
2756   } count_from_threads;
2757   Threads::threads_do(&count_from_threads);
2758 
2759   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2760   return dcqs.num_cards() + count_from_threads._cards;
2761 }
2762 
2763 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2764   // We don't nominate objects with many remembered set entries, on
2765   // the assumption that such objects are likely still live.
2766   HeapRegionRemSet* rem_set = r->rem_set();
2767 
2768   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2769          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2770          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2771 }
2772 
2773 #ifndef PRODUCT
2774 void G1CollectedHeap::verify_region_attr_remset_update() {
2775   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2776   public:
2777     virtual bool do_heap_region(HeapRegion* r) {
2778       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2779       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2780       assert(r->rem_set()->is_tracked() == needs_remset_update,
2781              "Region %u remset tracking status (%s) different to region attribute (%s)",
2782              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2783       return false;
2784     }
2785   } cl;
2786   heap_region_iterate(&cl);
2787 }
2788 #endif
2789 
2790 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2791   public:
2792     bool do_heap_region(HeapRegion* hr) {
2793       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2794         hr->verify_rem_set();
2795       }
2796       return false;
2797     }
2798 };
2799 
2800 uint G1CollectedHeap::num_task_queues() const {
2801   return _task_queues->size();
2802 }
2803 
2804 #if TASKQUEUE_STATS
2805 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2806   st->print_raw_cr("GC Task Stats");
2807   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2808   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2809 }
2810 
2811 void G1CollectedHeap::print_taskqueue_stats() const {
2812   if (!log_is_enabled(Trace, gc, task, stats)) {
2813     return;
2814   }
2815   Log(gc, task, stats) log;
2816   ResourceMark rm;
2817   LogStream ls(log.trace());
2818   outputStream* st = &ls;
2819 
2820   print_taskqueue_stats_hdr(st);
2821 
2822   TaskQueueStats totals;
2823   const uint n = num_task_queues();
2824   for (uint i = 0; i < n; ++i) {
2825     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2826     totals += task_queue(i)->stats;
2827   }
2828   st->print_raw("tot "); totals.print(st); st->cr();
2829 
2830   DEBUG_ONLY(totals.verify());
2831 }
2832 
2833 void G1CollectedHeap::reset_taskqueue_stats() {
2834   const uint n = num_task_queues();
2835   for (uint i = 0; i < n; ++i) {
2836     task_queue(i)->stats.reset();
2837   }
2838 }
2839 #endif // TASKQUEUE_STATS
2840 
2841 void G1CollectedHeap::wait_for_root_region_scanning() {
2842   double scan_wait_start = os::elapsedTime();
2843   // We have to wait until the CM threads finish scanning the
2844   // root regions as it's the only way to ensure that all the
2845   // objects on them have been correctly scanned before we start
2846   // moving them during the GC.
2847   bool waited = _cm->root_regions()->wait_until_scan_finished();
2848   double wait_time_ms = 0.0;
2849   if (waited) {
2850     double scan_wait_end = os::elapsedTime();
2851     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2852   }
2853   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2854 }
2855 
2856 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2857 private:
2858   G1HRPrinter* _hr_printer;
2859 public:
2860   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2861 
2862   virtual bool do_heap_region(HeapRegion* r) {
2863     _hr_printer->cset(r);
2864     return false;
2865   }
2866 };
2867 
2868 void G1CollectedHeap::start_new_collection_set() {
2869   double start = os::elapsedTime();
2870 
2871   collection_set()->start_incremental_building();
2872 
2873   clear_region_attr();
2874 
2875   guarantee(_eden.length() == 0, "eden should have been cleared");
2876   policy()->transfer_survivors_to_cset(survivor());
2877 
2878   // We redo the verification but now wrt to the new CSet which
2879   // has just got initialized after the previous CSet was freed.
2880   _cm->verify_no_collection_set_oops();
2881 
2882   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2883 }
2884 
2885 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2886 
2887   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2888   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2889                                             collection_set()->optional_region_length());
2890 
2891   _cm->verify_no_collection_set_oops();
2892 
2893   if (_hr_printer.is_active()) {
2894     G1PrintCollectionSetClosure cl(&_hr_printer);
2895     _collection_set.iterate(&cl);
2896     _collection_set.iterate_optional(&cl);
2897   }
2898 }
2899 
2900 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2901   if (collector_state()->in_initial_mark_gc()) {
2902     return G1HeapVerifier::G1VerifyConcurrentStart;
2903   } else if (collector_state()->in_young_only_phase()) {
2904     return G1HeapVerifier::G1VerifyYoungNormal;
2905   } else {
2906     return G1HeapVerifier::G1VerifyMixed;
2907   }
2908 }
2909 
2910 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2911   if (VerifyRememberedSets) {
2912     log_info(gc, verify)("[Verifying RemSets before GC]");
2913     VerifyRegionRemSetClosure v_cl;
2914     heap_region_iterate(&v_cl);
2915   }
2916   _verifier->verify_before_gc(type);
2917   _verifier->check_bitmaps("GC Start");
2918   verify_numa_regions("GC Start");
2919 }
2920 
2921 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2922   if (VerifyRememberedSets) {
2923     log_info(gc, verify)("[Verifying RemSets after GC]");
2924     VerifyRegionRemSetClosure v_cl;
2925     heap_region_iterate(&v_cl);
2926   }
2927   _verifier->verify_after_gc(type);
2928   _verifier->check_bitmaps("GC End");
2929   verify_numa_regions("GC End");
2930 }
2931 
2932 void G1CollectedHeap::resize_heap_after_young_collection() {
2933   Ticks start = Ticks::now();
2934   if (!expand_heap_after_young_collection()) {
2935     // If we don't attempt to expand heap, try if we need to shrink the heap
2936     shrink_heap_after_young_collection();
2937   }
2938   phase_times()->record_resize_heap_time((Ticks::now() - start).seconds() * 1000.0);
2939 }
2940 
2941 bool G1CollectedHeap::expand_heap_after_young_collection(){
2942   size_t expand_bytes = _heap_sizing_policy->expansion_amount_after_young_collection();
2943   if (expand_bytes > 0) {
2944     if (expand(expand_bytes, _workers, NULL)) {
2945       // We failed to expand the heap. Cannot do anything about it.
2946     }
2947     return true;
2948   }
2949   return false;
2950 }
2951 
2952 void G1CollectedHeap::shrink_heap_after_young_collection() {
2953   if (collector_state()->in_young_only_phase() || policy()->next_gc_should_be_mixed()) {
2954     // Do the shrink during gc only at the end of mixed gc phase
2955     return;
2956   }
2957   size_t shrink_bytes = _heap_sizing_policy->shrink_amount_at_last_mixed_gc(policy()->desired_bytes_after_concurrent_mark());
2958   if (shrink_bytes > 0) {
2959     shrink(shrink_bytes);
2960   }
2961 }
2962 
2963 const char* G1CollectedHeap::young_gc_name() const {
2964   if (collector_state()->in_initial_mark_gc()) {
2965     return "Pause Young (Concurrent Start)";
2966   } else if (collector_state()->in_young_only_phase()) {
2967     if (collector_state()->in_young_gc_before_mixed()) {
2968       return "Pause Young (Prepare Mixed)";
2969     } else {
2970       return "Pause Young (Normal)";
2971     }
2972   } else {
2973     return "Pause Young (Mixed)";
2974   }
2975 }
2976 
2977 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2978   assert_at_safepoint_on_vm_thread();
2979   guarantee(!is_gc_active(), "collection is not reentrant");
2980 
2981   if (GCLocker::check_active_before_gc()) {
2982     return false;
2983   }
2984 
2985   do_collection_pause_at_safepoint_helper(target_pause_time_ms);
2986   if (should_upgrade_to_full_gc(gc_cause())) {
2987     log_info(gc, ergo)("Attempting maximally compacting collection");
2988     bool result = do_full_collection(false /* explicit gc */,
2989                                      true /* clear_all_soft_refs */);
2990     // do_full_collection only fails if blocked by GC locker, but
2991     // we've already checked for that above.
2992     assert(result, "invariant");
2993   }
2994   return true;
2995 }
2996 
2997 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) {
2998   GCIdMark gc_id_mark;
2999 
3000   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3001   ResourceMark rm;
3002 
3003   policy()->note_gc_start();
3004 
3005   _gc_timer_stw->register_gc_start();
3006   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3007 
3008   wait_for_root_region_scanning();
3009 
3010   print_heap_before_gc();
3011   print_heap_regions();
3012   trace_heap_before_gc(_gc_tracer_stw);
3013 
3014   _verifier->verify_region_sets_optional();
3015   _verifier->verify_dirty_young_regions();
3016 
3017   // We should not be doing initial mark unless the conc mark thread is running
3018   if (!_cm_thread->should_terminate()) {
3019     // This call will decide whether this pause is an initial-mark
3020     // pause. If it is, in_initial_mark_gc() will return true
3021     // for the duration of this pause.
3022     policy()->decide_on_conc_mark_initiation();
3023   }
3024 
3025   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3026   assert(!collector_state()->in_initial_mark_gc() ||
3027          collector_state()->in_young_only_phase(), "sanity");
3028   // We also do not allow mixed GCs during marking.
3029   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3030 
3031   // Record whether this pause is an initial mark. When the current
3032   // thread has completed its logging output and it's safe to signal
3033   // the CM thread, the flag's value in the policy has been reset.
3034   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3035   if (should_start_conc_mark) {
3036     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3037   }
3038 
3039   // Inner scope for scope based logging, timers, and stats collection
3040   {
3041     G1EvacuationInfo evacuation_info;
3042 
3043     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3044 
3045     GCTraceCPUTime tcpu;
3046 
3047     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3048 
3049     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3050                                                             workers()->active_workers(),
3051                                                             Threads::number_of_non_daemon_threads());
3052     active_workers = workers()->update_active_workers(active_workers);
3053     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3054 
3055     G1MonitoringScope ms(g1mm(),
3056                          false /* full_gc */,
3057                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3058 
3059     G1HeapTransition heap_transition(this);
3060 
3061     {
3062       IsGCActiveMark x;
3063 
3064       gc_prologue(false);
3065 
3066       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3067       verify_before_young_collection(verify_type);
3068 
3069       {
3070         // The elapsed time induced by the start time below deliberately elides
3071         // the possible verification above.
3072         double sample_start_time_sec = os::elapsedTime();
3073 
3074         // Please see comment in g1CollectedHeap.hpp and
3075         // G1CollectedHeap::ref_processing_init() to see how
3076         // reference processing currently works in G1.
3077         _ref_processor_stw->enable_discovery();
3078 
3079         // We want to temporarily turn off discovery by the
3080         // CM ref processor, if necessary, and turn it back on
3081         // on again later if we do. Using a scoped
3082         // NoRefDiscovery object will do this.
3083         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3084 
3085         policy()->record_collection_pause_start(sample_start_time_sec);
3086 
3087         // Forget the current allocation region (we might even choose it to be part
3088         // of the collection set!).
3089         _allocator->release_mutator_alloc_regions();
3090 
3091         calculate_collection_set(evacuation_info, target_pause_time_ms);
3092 
3093         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3094         G1ParScanThreadStateSet per_thread_states(this,
3095                                                   &rdcqs,
3096                                                   workers()->active_workers(),
3097                                                   collection_set()->young_region_length(),
3098                                                   collection_set()->optional_region_length());
3099         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3100 
3101         // Actually do the work...
3102         evacuate_initial_collection_set(&per_thread_states);
3103 
3104         if (_collection_set.optional_region_length() != 0) {
3105           evacuate_optional_collection_set(&per_thread_states);
3106         }
3107         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3108 
3109         start_new_collection_set();
3110 
3111         _survivor_evac_stats.adjust_desired_plab_sz();
3112         _old_evac_stats.adjust_desired_plab_sz();
3113 
3114         if (should_start_conc_mark) {
3115           // We have to do this before we notify the CM threads that
3116           // they can start working to make sure that all the
3117           // appropriate initialization is done on the CM object.
3118           concurrent_mark()->post_initial_mark();
3119           // Note that we don't actually trigger the CM thread at
3120           // this point. We do that later when we're sure that
3121           // the current thread has completed its logging output.
3122         }
3123 
3124         allocate_dummy_regions();
3125 
3126         _allocator->init_mutator_alloc_regions();
3127 
3128         resize_heap_after_young_collection();
3129 
3130         double sample_end_time_sec = os::elapsedTime();
3131         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3132         policy()->record_collection_pause_end(pause_time_ms);
3133       }
3134 
3135       verify_after_young_collection(verify_type);
3136 
3137       gc_epilogue(false);
3138     }
3139 
3140     // Print the remainder of the GC log output.
3141     if (evacuation_failed()) {
3142       log_info(gc)("To-space exhausted");
3143     }
3144 
3145     policy()->print_phases();
3146     heap_transition.print();
3147 
3148     _hrm->verify_optional();
3149     _verifier->verify_region_sets_optional();
3150 
3151     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3152     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3153 
3154     print_heap_after_gc();
3155     print_heap_regions();
3156     trace_heap_after_gc(_gc_tracer_stw);
3157 
3158     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3159     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3160     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3161     // before any GC notifications are raised.
3162     g1mm()->update_sizes();
3163 
3164     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3165     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3166     _gc_timer_stw->register_gc_end();
3167     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3168   }
3169   // It should now be safe to tell the concurrent mark thread to start
3170   // without its logging output interfering with the logging output
3171   // that came from the pause.
3172 
3173   if (should_start_conc_mark) {
3174     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3175     // thread(s) could be running concurrently with us. Make sure that anything
3176     // after this point does not assume that we are the only GC thread running.
3177     // Note: of course, the actual marking work will not start until the safepoint
3178     // itself is released in SuspendibleThreadSet::desynchronize().
3179     do_concurrent_mark();
3180   }
3181 }
3182 
3183 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3184   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3185   workers()->run_task(&rsfp_task);
3186 }
3187 
3188 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3189   double remove_self_forwards_start = os::elapsedTime();
3190 
3191   remove_self_forwarding_pointers(rdcqs);
3192   _preserved_marks_set.restore(workers());
3193 
3194   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3195 }
3196 
3197 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3198   if (!_evacuation_failed) {
3199     _evacuation_failed = true;
3200   }
3201 
3202   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3203   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3204 }
3205 
3206 bool G1ParEvacuateFollowersClosure::offer_termination() {
3207   EventGCPhaseParallel event;
3208   G1ParScanThreadState* const pss = par_scan_state();
3209   start_term_time();
3210   const bool res = terminator()->offer_termination();
3211   end_term_time();
3212   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3213   return res;
3214 }
3215 
3216 void G1ParEvacuateFollowersClosure::do_void() {
3217   EventGCPhaseParallel event;
3218   G1ParScanThreadState* const pss = par_scan_state();
3219   pss->trim_queue();
3220   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3221   do {
3222     EventGCPhaseParallel event;
3223     pss->steal_and_trim_queue(queues());
3224     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3225   } while (!offer_termination());
3226 }
3227 
3228 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3229                                         bool class_unloading_occurred) {
3230   uint num_workers = workers()->active_workers();
3231   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3232   workers()->run_task(&unlink_task);
3233 }
3234 
3235 // Clean string dedup data structures.
3236 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3237 // record the durations of the phases. Hence the almost-copy.
3238 class G1StringDedupCleaningTask : public AbstractGangTask {
3239   BoolObjectClosure* _is_alive;
3240   OopClosure* _keep_alive;
3241   G1GCPhaseTimes* _phase_times;
3242 
3243 public:
3244   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3245                             OopClosure* keep_alive,
3246                             G1GCPhaseTimes* phase_times) :
3247     AbstractGangTask("Partial Cleaning Task"),
3248     _is_alive(is_alive),
3249     _keep_alive(keep_alive),
3250     _phase_times(phase_times)
3251   {
3252     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3253     StringDedup::gc_prologue(true);
3254   }
3255 
3256   ~G1StringDedupCleaningTask() {
3257     StringDedup::gc_epilogue();
3258   }
3259 
3260   void work(uint worker_id) {
3261     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3262     {
3263       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3264       StringDedupQueue::unlink_or_oops_do(&cl);
3265     }
3266     {
3267       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3268       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3269     }
3270   }
3271 };
3272 
3273 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3274                                             OopClosure* keep_alive,
3275                                             G1GCPhaseTimes* phase_times) {
3276   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3277   workers()->run_task(&cl);
3278 }
3279 
3280 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3281  private:
3282   G1RedirtyCardsQueueSet* _qset;
3283   G1CollectedHeap* _g1h;
3284   BufferNode* volatile _nodes;
3285 
3286   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3287     size_t buffer_size = _qset->buffer_size();
3288     BufferNode* next = Atomic::load(&_nodes);
3289     while (next != NULL) {
3290       BufferNode* node = next;
3291       next = Atomic::cmpxchg(&_nodes, node, node->next());
3292       if (next == node) {
3293         cl->apply_to_buffer(node, buffer_size, worker_id);
3294         next = node->next();
3295       }
3296     }
3297   }
3298 
3299  public:
3300   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3301     AbstractGangTask("Redirty Cards"),
3302     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3303 
3304   virtual void work(uint worker_id) {
3305     G1GCPhaseTimes* p = _g1h->phase_times();
3306     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3307 
3308     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3309     par_apply(&cl, worker_id);
3310 
3311     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3312   }
3313 };
3314 
3315 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3316   double redirty_logged_cards_start = os::elapsedTime();
3317 
3318   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3319   workers()->run_task(&redirty_task);
3320 
3321   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3322   dcq.merge_bufferlists(rdcqs);
3323 
3324   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3325 }
3326 
3327 // Weak Reference Processing support
3328 
3329 bool G1STWIsAliveClosure::do_object_b(oop p) {
3330   // An object is reachable if it is outside the collection set,
3331   // or is inside and copied.
3332   return !_g1h->is_in_cset(p) || p->is_forwarded();
3333 }
3334 
3335 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3336   assert(obj != NULL, "must not be NULL");
3337   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3338   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3339   // may falsely indicate that this is not the case here: however the collection set only
3340   // contains old regions when concurrent mark is not running.
3341   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3342 }
3343 
3344 // Non Copying Keep Alive closure
3345 class G1KeepAliveClosure: public OopClosure {
3346   G1CollectedHeap*_g1h;
3347 public:
3348   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3349   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3350   void do_oop(oop* p) {
3351     oop obj = *p;
3352     assert(obj != NULL, "the caller should have filtered out NULL values");
3353 
3354     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3355     if (!region_attr.is_in_cset_or_humongous()) {
3356       return;
3357     }
3358     if (region_attr.is_in_cset()) {
3359       assert( obj->is_forwarded(), "invariant" );
3360       *p = obj->forwardee();
3361     } else {
3362       assert(!obj->is_forwarded(), "invariant" );
3363       assert(region_attr.is_humongous(),
3364              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3365      _g1h->set_humongous_is_live(obj);
3366     }
3367   }
3368 };
3369 
3370 // Copying Keep Alive closure - can be called from both
3371 // serial and parallel code as long as different worker
3372 // threads utilize different G1ParScanThreadState instances
3373 // and different queues.
3374 
3375 class G1CopyingKeepAliveClosure: public OopClosure {
3376   G1CollectedHeap*         _g1h;
3377   G1ParScanThreadState*    _par_scan_state;
3378 
3379 public:
3380   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3381                             G1ParScanThreadState* pss):
3382     _g1h(g1h),
3383     _par_scan_state(pss)
3384   {}
3385 
3386   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3387   virtual void do_oop(      oop* p) { do_oop_work(p); }
3388 
3389   template <class T> void do_oop_work(T* p) {
3390     oop obj = RawAccess<>::oop_load(p);
3391 
3392     if (_g1h->is_in_cset_or_humongous(obj)) {
3393       // If the referent object has been forwarded (either copied
3394       // to a new location or to itself in the event of an
3395       // evacuation failure) then we need to update the reference
3396       // field and, if both reference and referent are in the G1
3397       // heap, update the RSet for the referent.
3398       //
3399       // If the referent has not been forwarded then we have to keep
3400       // it alive by policy. Therefore we have copy the referent.
3401       //
3402       // When the queue is drained (after each phase of reference processing)
3403       // the object and it's followers will be copied, the reference field set
3404       // to point to the new location, and the RSet updated.
3405       _par_scan_state->push_on_queue(p);
3406     }
3407   }
3408 };
3409 
3410 // Serial drain queue closure. Called as the 'complete_gc'
3411 // closure for each discovered list in some of the
3412 // reference processing phases.
3413 
3414 class G1STWDrainQueueClosure: public VoidClosure {
3415 protected:
3416   G1CollectedHeap* _g1h;
3417   G1ParScanThreadState* _par_scan_state;
3418 
3419   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3420 
3421 public:
3422   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3423     _g1h(g1h),
3424     _par_scan_state(pss)
3425   { }
3426 
3427   void do_void() {
3428     G1ParScanThreadState* const pss = par_scan_state();
3429     pss->trim_queue();
3430   }
3431 };
3432 
3433 // Parallel Reference Processing closures
3434 
3435 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3436 // processing during G1 evacuation pauses.
3437 
3438 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3439 private:
3440   G1CollectedHeap*          _g1h;
3441   G1ParScanThreadStateSet*  _pss;
3442   RefToScanQueueSet*        _queues;
3443   WorkGang*                 _workers;
3444 
3445 public:
3446   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3447                            G1ParScanThreadStateSet* per_thread_states,
3448                            WorkGang* workers,
3449                            RefToScanQueueSet *task_queues) :
3450     _g1h(g1h),
3451     _pss(per_thread_states),
3452     _queues(task_queues),
3453     _workers(workers)
3454   {
3455     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3456   }
3457 
3458   // Executes the given task using concurrent marking worker threads.
3459   virtual void execute(ProcessTask& task, uint ergo_workers);
3460 };
3461 
3462 // Gang task for possibly parallel reference processing
3463 
3464 class G1STWRefProcTaskProxy: public AbstractGangTask {
3465   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3466   ProcessTask&     _proc_task;
3467   G1CollectedHeap* _g1h;
3468   G1ParScanThreadStateSet* _pss;
3469   RefToScanQueueSet* _task_queues;
3470   TaskTerminator* _terminator;
3471 
3472 public:
3473   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3474                         G1CollectedHeap* g1h,
3475                         G1ParScanThreadStateSet* per_thread_states,
3476                         RefToScanQueueSet *task_queues,
3477                         TaskTerminator* terminator) :
3478     AbstractGangTask("Process reference objects in parallel"),
3479     _proc_task(proc_task),
3480     _g1h(g1h),
3481     _pss(per_thread_states),
3482     _task_queues(task_queues),
3483     _terminator(terminator)
3484   {}
3485 
3486   virtual void work(uint worker_id) {
3487     // The reference processing task executed by a single worker.
3488     ResourceMark rm;
3489     HandleMark   hm;
3490 
3491     G1STWIsAliveClosure is_alive(_g1h);
3492 
3493     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3494     pss->set_ref_discoverer(NULL);
3495 
3496     // Keep alive closure.
3497     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3498 
3499     // Complete GC closure
3500     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3501 
3502     // Call the reference processing task's work routine.
3503     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3504 
3505     // Note we cannot assert that the refs array is empty here as not all
3506     // of the processing tasks (specifically phase2 - pp2_work) execute
3507     // the complete_gc closure (which ordinarily would drain the queue) so
3508     // the queue may not be empty.
3509   }
3510 };
3511 
3512 // Driver routine for parallel reference processing.
3513 // Creates an instance of the ref processing gang
3514 // task and has the worker threads execute it.
3515 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3516   assert(_workers != NULL, "Need parallel worker threads.");
3517 
3518   assert(_workers->active_workers() >= ergo_workers,
3519          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3520          ergo_workers, _workers->active_workers());
3521   TaskTerminator terminator(ergo_workers, _queues);
3522   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3523 
3524   _workers->run_task(&proc_task_proxy, ergo_workers);
3525 }
3526 
3527 // End of weak reference support closures
3528 
3529 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3530   double ref_proc_start = os::elapsedTime();
3531 
3532   ReferenceProcessor* rp = _ref_processor_stw;
3533   assert(rp->discovery_enabled(), "should have been enabled");
3534 
3535   // Closure to test whether a referent is alive.
3536   G1STWIsAliveClosure is_alive(this);
3537 
3538   // Even when parallel reference processing is enabled, the processing
3539   // of JNI refs is serial and performed serially by the current thread
3540   // rather than by a worker. The following PSS will be used for processing
3541   // JNI refs.
3542 
3543   // Use only a single queue for this PSS.
3544   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3545   pss->set_ref_discoverer(NULL);
3546   assert(pss->queue_is_empty(), "pre-condition");
3547 
3548   // Keep alive closure.
3549   G1CopyingKeepAliveClosure keep_alive(this, pss);
3550 
3551   // Serial Complete GC closure
3552   G1STWDrainQueueClosure drain_queue(this, pss);
3553 
3554   // Setup the soft refs policy...
3555   rp->setup_policy(false);
3556 
3557   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3558 
3559   ReferenceProcessorStats stats;
3560   if (!rp->processing_is_mt()) {
3561     // Serial reference processing...
3562     stats = rp->process_discovered_references(&is_alive,
3563                                               &keep_alive,
3564                                               &drain_queue,
3565                                               NULL,
3566                                               pt);
3567   } else {
3568     uint no_of_gc_workers = workers()->active_workers();
3569 
3570     // Parallel reference processing
3571     assert(no_of_gc_workers <= rp->max_num_queues(),
3572            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3573            no_of_gc_workers,  rp->max_num_queues());
3574 
3575     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3576     stats = rp->process_discovered_references(&is_alive,
3577                                               &keep_alive,
3578                                               &drain_queue,
3579                                               &par_task_executor,
3580                                               pt);
3581   }
3582 
3583   _gc_tracer_stw->report_gc_reference_stats(stats);
3584 
3585   // We have completed copying any necessary live referent objects.
3586   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3587 
3588   make_pending_list_reachable();
3589 
3590   assert(!rp->discovery_enabled(), "Postcondition");
3591   rp->verify_no_references_recorded();
3592 
3593   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3594   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3595 }
3596 
3597 void G1CollectedHeap::make_pending_list_reachable() {
3598   if (collector_state()->in_initial_mark_gc()) {
3599     oop pll_head = Universe::reference_pending_list();
3600     if (pll_head != NULL) {
3601       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3602       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3603     }
3604   }
3605 }
3606 
3607 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3608   Ticks start = Ticks::now();
3609   per_thread_states->flush();
3610   phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
3611 }
3612 
3613 class G1PrepareEvacuationTask : public AbstractGangTask {
3614   class G1PrepareRegionsClosure : public HeapRegionClosure {
3615     G1CollectedHeap* _g1h;
3616     G1PrepareEvacuationTask* _parent_task;
3617     size_t _worker_humongous_total;
3618     size_t _worker_humongous_candidates;
3619 
3620     bool humongous_region_is_candidate(HeapRegion* region) const {
3621       assert(region->is_starts_humongous(), "Must start a humongous object");
3622 
3623       oop obj = oop(region->bottom());
3624 
3625       // Dead objects cannot be eager reclaim candidates. Due to class
3626       // unloading it is unsafe to query their classes so we return early.
3627       if (_g1h->is_obj_dead(obj, region)) {
3628         return false;
3629       }
3630 
3631       // If we do not have a complete remembered set for the region, then we can
3632       // not be sure that we have all references to it.
3633       if (!region->rem_set()->is_complete()) {
3634         return false;
3635       }
3636       // Candidate selection must satisfy the following constraints
3637       // while concurrent marking is in progress:
3638       //
3639       // * In order to maintain SATB invariants, an object must not be
3640       // reclaimed if it was allocated before the start of marking and
3641       // has not had its references scanned.  Such an object must have
3642       // its references (including type metadata) scanned to ensure no
3643       // live objects are missed by the marking process.  Objects
3644       // allocated after the start of concurrent marking don't need to
3645       // be scanned.
3646       //
3647       // * An object must not be reclaimed if it is on the concurrent
3648       // mark stack.  Objects allocated after the start of concurrent
3649       // marking are never pushed on the mark stack.
3650       //
3651       // Nominating only objects allocated after the start of concurrent
3652       // marking is sufficient to meet both constraints.  This may miss
3653       // some objects that satisfy the constraints, but the marking data
3654       // structures don't support efficiently performing the needed
3655       // additional tests or scrubbing of the mark stack.
3656       //
3657       // However, we presently only nominate is_typeArray() objects.
3658       // A humongous object containing references induces remembered
3659       // set entries on other regions.  In order to reclaim such an
3660       // object, those remembered sets would need to be cleaned up.
3661       //
3662       // We also treat is_typeArray() objects specially, allowing them
3663       // to be reclaimed even if allocated before the start of
3664       // concurrent mark.  For this we rely on mark stack insertion to
3665       // exclude is_typeArray() objects, preventing reclaiming an object
3666       // that is in the mark stack.  We also rely on the metadata for
3667       // such objects to be built-in and so ensured to be kept live.
3668       // Frequent allocation and drop of large binary blobs is an
3669       // important use case for eager reclaim, and this special handling
3670       // may reduce needed headroom.
3671 
3672       return obj->is_typeArray() &&
3673              _g1h->is_potential_eager_reclaim_candidate(region);
3674     }
3675 
3676   public:
3677     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3678       _g1h(g1h),
3679       _parent_task(parent_task),
3680       _worker_humongous_total(0),
3681       _worker_humongous_candidates(0) { }
3682 
3683     ~G1PrepareRegionsClosure() {
3684       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3685       _parent_task->add_humongous_total(_worker_humongous_total);
3686     }
3687 
3688     virtual bool do_heap_region(HeapRegion* hr) {
3689       // First prepare the region for scanning
3690       _g1h->rem_set()->prepare_region_for_scan(hr);
3691 
3692       // Now check if region is a humongous candidate
3693       if (!hr->is_starts_humongous()) {
3694         _g1h->register_region_with_region_attr(hr);
3695         return false;
3696       }
3697 
3698       uint index = hr->hrm_index();
3699       if (humongous_region_is_candidate(hr)) {
3700         _g1h->set_humongous_reclaim_candidate(index, true);
3701         _g1h->register_humongous_region_with_region_attr(index);
3702         _worker_humongous_candidates++;
3703         // We will later handle the remembered sets of these regions.
3704       } else {
3705         _g1h->set_humongous_reclaim_candidate(index, false);
3706         _g1h->register_region_with_region_attr(hr);
3707       }
3708       _worker_humongous_total++;
3709 
3710       return false;
3711     }
3712   };
3713 
3714   G1CollectedHeap* _g1h;
3715   HeapRegionClaimer _claimer;
3716   volatile size_t _humongous_total;
3717   volatile size_t _humongous_candidates;
3718 public:
3719   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3720     AbstractGangTask("Prepare Evacuation"),
3721     _g1h(g1h),
3722     _claimer(_g1h->workers()->active_workers()),
3723     _humongous_total(0),
3724     _humongous_candidates(0) { }
3725 
3726   ~G1PrepareEvacuationTask() {
3727     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3728   }
3729 
3730   void work(uint worker_id) {
3731     G1PrepareRegionsClosure cl(_g1h, this);
3732     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3733   }
3734 
3735   void add_humongous_candidates(size_t candidates) {
3736     Atomic::add(&_humongous_candidates, candidates);
3737   }
3738 
3739   void add_humongous_total(size_t total) {
3740     Atomic::add(&_humongous_total, total);
3741   }
3742 
3743   size_t humongous_candidates() {
3744     return _humongous_candidates;
3745   }
3746 
3747   size_t humongous_total() {
3748     return _humongous_total;
3749   }
3750 };
3751 
3752 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3753   _bytes_used_during_gc = 0;
3754 
3755   _expand_heap_after_alloc_failure = true;
3756   _evacuation_failed = false;
3757 
3758   // Disable the hot card cache.
3759   _hot_card_cache->reset_hot_cache_claimed_index();
3760   _hot_card_cache->set_use_cache(false);
3761 
3762   // Initialize the GC alloc regions.
3763   _allocator->init_gc_alloc_regions(evacuation_info);
3764 
3765   {
3766     Ticks start = Ticks::now();
3767     rem_set()->prepare_for_scan_heap_roots();
3768     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3769   }
3770 
3771   {
3772     G1PrepareEvacuationTask g1_prep_task(this);
3773     Tickspan task_time = run_task(&g1_prep_task);
3774 
3775     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3776                                            g1_prep_task.humongous_total(),
3777                                            g1_prep_task.humongous_candidates());
3778   }
3779 
3780   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3781   _preserved_marks_set.assert_empty();
3782 
3783 #if COMPILER2_OR_JVMCI
3784   DerivedPointerTable::clear();
3785 #endif
3786 
3787   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3788   if (collector_state()->in_initial_mark_gc()) {
3789     concurrent_mark()->pre_initial_mark();
3790 
3791     double start_clear_claimed_marks = os::elapsedTime();
3792 
3793     ClassLoaderDataGraph::clear_claimed_marks();
3794 
3795     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3796     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3797   }
3798 
3799   // Should G1EvacuationFailureALot be in effect for this GC?
3800   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3801 }
3802 
3803 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3804 protected:
3805   G1CollectedHeap* _g1h;
3806   G1ParScanThreadStateSet* _per_thread_states;
3807   RefToScanQueueSet* _task_queues;
3808   TaskTerminator _terminator;
3809   uint _num_workers;
3810 
3811   void evacuate_live_objects(G1ParScanThreadState* pss,
3812                              uint worker_id,
3813                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3814                              G1GCPhaseTimes::GCParPhases termination_phase) {
3815     G1GCPhaseTimes* p = _g1h->phase_times();
3816 
3817     Ticks start = Ticks::now();
3818     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase);
3819     cl.do_void();
3820 
3821     assert(pss->queue_is_empty(), "should be empty");
3822 
3823     Tickspan evac_time = (Ticks::now() - start);
3824     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3825 
3826     if (termination_phase == G1GCPhaseTimes::Termination) {
3827       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3828       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3829     } else {
3830       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3831       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3832     }
3833     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3834   }
3835 
3836   virtual void start_work(uint worker_id) { }
3837 
3838   virtual void end_work(uint worker_id) { }
3839 
3840   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3841 
3842   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3843 
3844 public:
3845   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3846     AbstractGangTask(name),
3847     _g1h(G1CollectedHeap::heap()),
3848     _per_thread_states(per_thread_states),
3849     _task_queues(task_queues),
3850     _terminator(num_workers, _task_queues),
3851     _num_workers(num_workers)
3852   { }
3853 
3854   void work(uint worker_id) {
3855     start_work(worker_id);
3856 
3857     {
3858       ResourceMark rm;
3859       HandleMark   hm;
3860 
3861       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3862       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3863 
3864       scan_roots(pss, worker_id);
3865       evacuate_live_objects(pss, worker_id);
3866     }
3867 
3868     end_work(worker_id);
3869   }
3870 };
3871 
3872 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3873   G1RootProcessor* _root_processor;
3874 
3875   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3876     _root_processor->evacuate_roots(pss, worker_id);
3877     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3878     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3879   }
3880 
3881   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3882     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3883   }
3884 
3885   void start_work(uint worker_id) {
3886     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3887   }
3888 
3889   void end_work(uint worker_id) {
3890     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3891   }
3892 
3893 public:
3894   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3895                         G1ParScanThreadStateSet* per_thread_states,
3896                         RefToScanQueueSet* task_queues,
3897                         G1RootProcessor* root_processor,
3898                         uint num_workers) :
3899     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3900     _root_processor(root_processor)
3901   { }
3902 };
3903 
3904 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3905   G1GCPhaseTimes* p = phase_times();
3906 
3907   {
3908     Ticks start = Ticks::now();
3909     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3910     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3911   }
3912 
3913   Tickspan task_time;
3914   const uint num_workers = workers()->active_workers();
3915 
3916   Ticks start_processing = Ticks::now();
3917   {
3918     G1RootProcessor root_processor(this, num_workers);
3919     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3920     task_time = run_task(&g1_par_task);
3921     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3922     // To extract its code root fixup time we measure total time of this scope and
3923     // subtract from the time the WorkGang task took.
3924   }
3925   Tickspan total_processing = Ticks::now() - start_processing;
3926 
3927   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3928   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3929 }
3930 
3931 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3932 
3933   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3934     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3935     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3936   }
3937 
3938   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3939     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3940   }
3941 
3942 public:
3943   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3944                                 RefToScanQueueSet* queues,
3945                                 uint num_workers) :
3946     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3947   }
3948 };
3949 
3950 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3951   class G1MarkScope : public MarkScope { };
3952 
3953   Tickspan task_time;
3954 
3955   Ticks start_processing = Ticks::now();
3956   {
3957     G1MarkScope code_mark_scope;
3958     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3959     task_time = run_task(&task);
3960     // See comment in evacuate_collection_set() for the reason of the scope.
3961   }
3962   Tickspan total_processing = Ticks::now() - start_processing;
3963 
3964   G1GCPhaseTimes* p = phase_times();
3965   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3966 }
3967 
3968 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3969   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3970 
3971   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3972 
3973     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3974     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3975 
3976     if (time_left_ms < 0 ||
3977         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3978       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3979                                 _collection_set.optional_region_length(), time_left_ms);
3980       break;
3981     }
3982 
3983     {
3984       Ticks start = Ticks::now();
3985       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3986       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3987     }
3988 
3989     {
3990       Ticks start = Ticks::now();
3991       evacuate_next_optional_regions(per_thread_states);
3992       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3993     }
3994   }
3995 
3996   _collection_set.abandon_optional_collection_set(per_thread_states);
3997 }
3998 
3999 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
4000                                                    G1RedirtyCardsQueueSet* rdcqs,
4001                                                    G1ParScanThreadStateSet* per_thread_states) {
4002   G1GCPhaseTimes* p = phase_times();
4003 
4004   rem_set()->cleanup_after_scan_heap_roots();
4005 
4006   // Process any discovered reference objects - we have
4007   // to do this _before_ we retire the GC alloc regions
4008   // as we may have to copy some 'reachable' referent
4009   // objects (and their reachable sub-graphs) that were
4010   // not copied during the pause.
4011   process_discovered_references(per_thread_states);
4012 
4013   G1STWIsAliveClosure is_alive(this);
4014   G1KeepAliveClosure keep_alive(this);
4015 
4016   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
4017 
4018   if (G1StringDedup::is_enabled()) {
4019     double string_dedup_time_ms = os::elapsedTime();
4020 
4021     string_dedup_cleaning(&is_alive, &keep_alive, p);
4022 
4023     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
4024     p->record_string_deduplication_time(string_cleanup_time_ms);
4025   }
4026 
4027   _allocator->release_gc_alloc_regions(evacuation_info);
4028 
4029   if (evacuation_failed()) {
4030     restore_after_evac_failure(rdcqs);
4031 
4032     // Reset the G1EvacuationFailureALot counters and flags
4033     NOT_PRODUCT(reset_evacuation_should_fail();)
4034 
4035     double recalculate_used_start = os::elapsedTime();
4036     set_used(recalculate_used());
4037     p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
4038 
4039     if (_archive_allocator != NULL) {
4040       _archive_allocator->clear_used();
4041     }
4042     for (uint i = 0; i < ParallelGCThreads; i++) {
4043       if (_evacuation_failed_info_array[i].has_failed()) {
4044         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4045       }
4046     }
4047   } else {
4048     // The "used" of the the collection set have already been subtracted
4049     // when they were freed.  Add in the bytes used.
4050     increase_used(_bytes_used_during_gc);
4051   }
4052 
4053   _preserved_marks_set.assert_empty();
4054 
4055   merge_per_thread_state_info(per_thread_states);
4056 
4057   // Reset and re-enable the hot card cache.
4058   // Note the counts for the cards in the regions in the
4059   // collection set are reset when the collection set is freed.
4060   _hot_card_cache->reset_hot_cache();
4061   _hot_card_cache->set_use_cache(true);
4062 
4063   purge_code_root_memory();
4064 
4065   redirty_logged_cards(rdcqs);
4066 
4067   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
4068 
4069   eagerly_reclaim_humongous_regions();
4070 
4071   record_obj_copy_mem_stats();
4072 
4073   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4074   evacuation_info.set_bytes_used(_bytes_used_during_gc);
4075 
4076 #if COMPILER2_OR_JVMCI
4077   double start = os::elapsedTime();
4078   DerivedPointerTable::update_pointers();
4079   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4080 #endif
4081   policy()->print_age_table();
4082 }
4083 
4084 void G1CollectedHeap::record_obj_copy_mem_stats() {
4085   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4086 
4087   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4088                                                create_g1_evac_summary(&_old_evac_stats));
4089 }
4090 
4091 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
4092   assert(!hr->is_free(), "the region should not be free");
4093   assert(!hr->is_empty(), "the region should not be empty");
4094   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4095 
4096   if (G1VerifyBitmaps) {
4097     MemRegion mr(hr->bottom(), hr->end());
4098     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4099   }
4100 
4101   // Clear the card counts for this region.
4102   // Note: we only need to do this if the region is not young
4103   // (since we don't refine cards in young regions).
4104   if (!hr->is_young()) {
4105     _hot_card_cache->reset_card_counts(hr);
4106   }
4107 
4108   // Reset region metadata to allow reuse.
4109   hr->hr_clear(true /* clear_space */);
4110   _policy->remset_tracker()->update_at_free(hr);
4111 
4112   if (free_list != NULL) {
4113     free_list->add_ordered(hr);
4114   }
4115 }
4116 
4117 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4118                                             FreeRegionList* free_list) {
4119   assert(hr->is_humongous(), "this is only for humongous regions");
4120   assert(free_list != NULL, "pre-condition");
4121   hr->clear_humongous();
4122   free_region(hr, free_list);
4123 }
4124 
4125 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4126                                            const uint humongous_regions_removed) {
4127   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4128     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4129     _old_set.bulk_remove(old_regions_removed);
4130     _humongous_set.bulk_remove(humongous_regions_removed);
4131   }
4132 
4133 }
4134 
4135 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4136   assert(list != NULL, "list can't be null");
4137   if (!list->is_empty()) {
4138     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4139     _hrm->insert_list_into_free_list(list);
4140   }
4141 }
4142 
4143 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4144   decrease_used(bytes);
4145 }
4146 
4147 class G1FreeCollectionSetTask : public AbstractGangTask {
4148   // Helper class to keep statistics for the collection set freeing
4149   class FreeCSetStats {
4150     size_t _before_used_bytes;   // Usage in regions successfully evacutate
4151     size_t _after_used_bytes;    // Usage in regions failing evacuation
4152     size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
4153     size_t _failure_used_words;  // Live size in failed regions
4154     size_t _failure_waste_words; // Wasted size in failed regions
4155     size_t _rs_length;           // Remembered set size
4156     uint _regions_freed;         // Number of regions freed
4157   public:
4158     FreeCSetStats() :
4159         _before_used_bytes(0),
4160         _after_used_bytes(0),
4161         _bytes_allocated_in_old_since_last_gc(0),
4162         _failure_used_words(0),
4163         _failure_waste_words(0),
4164         _rs_length(0),
4165         _regions_freed(0) { }
4166 
4167     void merge_stats(FreeCSetStats* other) {
4168       assert(other != NULL, "invariant");
4169       _before_used_bytes += other->_before_used_bytes;
4170       _after_used_bytes += other->_after_used_bytes;
4171       _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
4172       _failure_used_words += other->_failure_used_words;
4173       _failure_waste_words += other->_failure_waste_words;
4174       _rs_length += other->_rs_length;
4175       _regions_freed += other->_regions_freed;
4176     }
4177 
4178     void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
4179       evacuation_info->set_regions_freed(_regions_freed);
4180       evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4181 
4182       g1h->decrement_summary_bytes(_before_used_bytes);
4183       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4184 
4185       G1Policy *policy = g1h->policy();
4186       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4187       policy->record_rs_length(_rs_length);
4188       policy->cset_regions_freed();
4189     }
4190 
4191     void account_failed_region(HeapRegion* r) {
4192       size_t used_words = r->marked_bytes() / HeapWordSize;
4193       _failure_used_words += used_words;
4194       _failure_waste_words += HeapRegion::GrainWords - used_words;
4195       _after_used_bytes += r->used();
4196 
4197       // When moving a young gen region to old gen, we "allocate" that whole
4198       // region there. This is in addition to any already evacuated objects.
4199       // Notify the policy about that. Old gen regions do not cause an
4200       // additional allocation: both the objects still in the region and the
4201       // ones already moved are accounted for elsewhere.
4202       if (r->is_young()) {
4203         _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4204       }
4205     }
4206 
4207     void account_evacuated_region(HeapRegion* r) {
4208       _before_used_bytes += r->used();
4209       _regions_freed += 1;
4210     }
4211 
4212     void account_rs_length(HeapRegion* r) {
4213       _rs_length += r->rem_set()->occupied();
4214     }
4215   };
4216 
4217   // Closure applied to all regions in the collection set.
4218   class FreeCSetClosure : public HeapRegionClosure {
4219     // Helper to send JFR events for regions.
4220     class JFREventForRegion {
4221       EventGCPhaseParallel _event;
4222     public:
4223       JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
4224         _event.set_gcId(GCId::current());
4225         _event.set_gcWorkerId(worker_id);
4226         if (region->is_young()) {
4227           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4228         } else {
4229           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4230         }
4231       }
4232 
4233       ~JFREventForRegion() {
4234         _event.commit();
4235       }
4236     };
4237 
4238     // Helper to do timing for region work.
4239     class TimerForRegion {
4240       Tickspan& _time;
4241       Ticks     _start_time;
4242     public:
4243       TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
4244       ~TimerForRegion() {
4245         _time += Ticks::now() - _start_time;
4246       }
4247     };
4248 
4249     // FreeCSetClosure members
4250     G1CollectedHeap* _g1h;
4251     const size_t*    _surviving_young_words;
4252     uint             _worker_id;
4253     Tickspan         _young_time;
4254     Tickspan         _non_young_time;
4255     FreeCSetStats*   _stats;
4256 
4257     void assert_in_cset(HeapRegion* r) {
4258       assert(r->young_index_in_cset() != 0 &&
4259              (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
4260              "Young index %u is wrong for region %u of type %s with %u young regions",
4261              r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
4262     }
4263 
4264     void handle_evacuated_region(HeapRegion* r) {
4265       assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4266       stats()->account_evacuated_region(r);
4267 
4268       // Free the region and and its remembered set.
4269       _g1h->free_region(r, NULL);
4270     }
4271 
4272     void handle_failed_region(HeapRegion* r) {
4273       // Do some allocation statistics accounting. Regions that failed evacuation
4274       // are always made old, so there is no need to update anything in the young
4275       // gen statistics, but we need to update old gen statistics.
4276       stats()->account_failed_region(r);
4277 
4278       // Update the region state due to the failed evacuation.
4279       r->handle_evacuation_failure();
4280 
4281       // Add region to old set, need to hold lock.
4282       MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4283       _g1h->old_set_add(r);
4284     }
4285 
4286     Tickspan& timer_for_region(HeapRegion* r) {
4287       return r->is_young() ? _young_time : _non_young_time;
4288     }
4289 
4290     FreeCSetStats* stats() {
4291       return _stats;
4292     }
4293   public:
4294     FreeCSetClosure(const size_t* surviving_young_words,
4295                     uint worker_id,
4296                     FreeCSetStats* stats) :
4297         HeapRegionClosure(),
4298         _g1h(G1CollectedHeap::heap()),
4299         _surviving_young_words(surviving_young_words),
4300         _worker_id(worker_id),
4301         _young_time(),
4302         _non_young_time(),
4303         _stats(stats) { }
4304 
4305     virtual bool do_heap_region(HeapRegion* r) {
4306       assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
4307       JFREventForRegion event(r, _worker_id);
4308       TimerForRegion timer(timer_for_region(r));
4309 
4310       _g1h->clear_region_attr(r);
4311       stats()->account_rs_length(r);
4312 
4313       if (r->is_young()) {
4314         assert_in_cset(r);
4315         r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
4316       }
4317 
4318       if (r->evacuation_failed()) {
4319         handle_failed_region(r);
4320       } else {
4321         handle_evacuated_region(r);
4322       }
4323       assert(!_g1h->is_on_master_free_list(r), "sanity");
4324 
4325       return false;
4326     }
4327 
4328     void report_timing(Tickspan parallel_time) {
4329       G1GCPhaseTimes* pt = _g1h->phase_times();
4330       pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
4331       if (_young_time.value() > 0) {
4332         pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
4333       }
4334       if (_non_young_time.value() > 0) {
4335         pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
4336       }
4337     }
4338   };
4339 
4340   // G1FreeCollectionSetTask members
4341   G1CollectedHeap*  _g1h;
4342   G1EvacuationInfo* _evacuation_info;
4343   FreeCSetStats*    _worker_stats;
4344   HeapRegionClaimer _claimer;
4345   const size_t*     _surviving_young_words;
4346   uint              _active_workers;
4347 
4348   FreeCSetStats* worker_stats(uint worker) {
4349     return &_worker_stats[worker];
4350   }
4351 
4352   void report_statistics() {
4353     // Merge the accounting
4354     FreeCSetStats total_stats;
4355     for (uint worker = 0; worker < _active_workers; worker++) {
4356       total_stats.merge_stats(worker_stats(worker));
4357     }
4358     total_stats.report(_g1h, _evacuation_info);
4359   }
4360 
4361 public:
4362   G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
4363       AbstractGangTask("G1 Free Collection Set"),
4364       _g1h(G1CollectedHeap::heap()),
4365       _evacuation_info(evacuation_info),
4366       _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
4367       _claimer(active_workers),
4368       _surviving_young_words(surviving_young_words),
4369       _active_workers(active_workers) {
4370     for (uint worker = 0; worker < active_workers; worker++) {
4371       ::new (&_worker_stats[worker]) FreeCSetStats();
4372     }
4373   }
4374 
4375   ~G1FreeCollectionSetTask() {
4376     Ticks serial_time = Ticks::now();
4377     report_statistics();
4378     for (uint worker = 0; worker < _active_workers; worker++) {
4379       _worker_stats[worker].~FreeCSetStats();
4380     }
4381     FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
4382     _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
4383   }
4384 
4385   virtual void work(uint worker_id) {
4386     EventGCPhaseParallel event;
4387     Ticks start = Ticks::now();
4388     FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
4389     _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
4390 
4391     // Report the total parallel time along with some more detailed metrics.
4392     cl.report_timing(Ticks::now() - start);
4393     event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
4394   }
4395 };
4396 
4397 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4398   _eden.clear();
4399 
4400   // The free collections set is split up in two tasks, the first
4401   // frees the collection set and records what regions are free,
4402   // and the second one rebuilds the free list. This proved to be
4403   // more efficient than adding a sorted list to another.
4404 
4405   Ticks free_cset_start_time = Ticks::now();
4406   {
4407     uint const num_cs_regions = _collection_set.region_length();
4408     uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
4409     G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
4410 
4411     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
4412                         cl.name(), num_workers, num_cs_regions, num_regions());
4413     workers()->run_task(&cl, num_workers);
4414   }
4415 
4416   Ticks free_cset_end_time = Ticks::now();
4417   phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
4418 
4419   // Now rebuild the free region list.
4420   hrm()->rebuild_free_list(workers());
4421   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
4422 
4423   collection_set->clear();
4424 }
4425 
4426 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4427  private:
4428   FreeRegionList* _free_region_list;
4429   HeapRegionSet* _proxy_set;
4430   uint _humongous_objects_reclaimed;
4431   uint _humongous_regions_reclaimed;
4432   size_t _freed_bytes;
4433  public:
4434 
4435   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4436     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4437   }
4438 
4439   virtual bool do_heap_region(HeapRegion* r) {
4440     if (!r->is_starts_humongous()) {
4441       return false;
4442     }
4443 
4444     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4445 
4446     oop obj = (oop)r->bottom();
4447     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4448 
4449     // The following checks whether the humongous object is live are sufficient.
4450     // The main additional check (in addition to having a reference from the roots
4451     // or the young gen) is whether the humongous object has a remembered set entry.
4452     //
4453     // A humongous object cannot be live if there is no remembered set for it
4454     // because:
4455     // - there can be no references from within humongous starts regions referencing
4456     // the object because we never allocate other objects into them.
4457     // (I.e. there are no intra-region references that may be missed by the
4458     // remembered set)
4459     // - as soon there is a remembered set entry to the humongous starts region
4460     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4461     // until the end of a concurrent mark.
4462     //
4463     // It is not required to check whether the object has been found dead by marking
4464     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4465     // all objects allocated during that time are considered live.
4466     // SATB marking is even more conservative than the remembered set.
4467     // So if at this point in the collection there is no remembered set entry,
4468     // nobody has a reference to it.
4469     // At the start of collection we flush all refinement logs, and remembered sets
4470     // are completely up-to-date wrt to references to the humongous object.
4471     //
4472     // Other implementation considerations:
4473     // - never consider object arrays at this time because they would pose
4474     // considerable effort for cleaning up the the remembered sets. This is
4475     // required because stale remembered sets might reference locations that
4476     // are currently allocated into.
4477     uint region_idx = r->hrm_index();
4478     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4479         !r->rem_set()->is_empty()) {
4480       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4481                                region_idx,
4482                                (size_t)obj->size() * HeapWordSize,
4483                                p2i(r->bottom()),
4484                                r->rem_set()->occupied(),
4485                                r->rem_set()->strong_code_roots_list_length(),
4486                                next_bitmap->is_marked(r->bottom()),
4487                                g1h->is_humongous_reclaim_candidate(region_idx),
4488                                obj->is_typeArray()
4489                               );
4490       return false;
4491     }
4492 
4493     guarantee(obj->is_typeArray(),
4494               "Only eagerly reclaiming type arrays is supported, but the object "
4495               PTR_FORMAT " is not.", p2i(r->bottom()));
4496 
4497     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4498                              region_idx,
4499                              (size_t)obj->size() * HeapWordSize,
4500                              p2i(r->bottom()),
4501                              r->rem_set()->occupied(),
4502                              r->rem_set()->strong_code_roots_list_length(),
4503                              next_bitmap->is_marked(r->bottom()),
4504                              g1h->is_humongous_reclaim_candidate(region_idx),
4505                              obj->is_typeArray()
4506                             );
4507 
4508     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4509     cm->humongous_object_eagerly_reclaimed(r);
4510     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4511            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4512            region_idx,
4513            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4514            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4515     _humongous_objects_reclaimed++;
4516     do {
4517       HeapRegion* next = g1h->next_region_in_humongous(r);
4518       _freed_bytes += r->used();
4519       r->set_containing_set(NULL);
4520       _humongous_regions_reclaimed++;
4521       g1h->free_humongous_region(r, _free_region_list);
4522       r = next;
4523     } while (r != NULL);
4524 
4525     return false;
4526   }
4527 
4528   uint humongous_objects_reclaimed() {
4529     return _humongous_objects_reclaimed;
4530   }
4531 
4532   uint humongous_regions_reclaimed() {
4533     return _humongous_regions_reclaimed;
4534   }
4535 
4536   size_t bytes_freed() const {
4537     return _freed_bytes;
4538   }
4539 };
4540 
4541 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4542   assert_at_safepoint_on_vm_thread();
4543 
4544   if (!G1EagerReclaimHumongousObjects ||
4545       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4546     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4547     return;
4548   }
4549 
4550   double start_time = os::elapsedTime();
4551 
4552   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4553 
4554   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4555   heap_region_iterate(&cl);
4556 
4557   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4558 
4559   G1HRPrinter* hrp = hr_printer();
4560   if (hrp->is_active()) {
4561     FreeRegionListIterator iter(&local_cleanup_list);
4562     while (iter.more_available()) {
4563       HeapRegion* hr = iter.get_next();
4564       hrp->cleanup(hr);
4565     }
4566   }
4567 
4568   prepend_to_freelist(&local_cleanup_list);
4569   decrement_summary_bytes(cl.bytes_freed());
4570 
4571   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4572                                                        cl.humongous_objects_reclaimed());
4573 }
4574 
4575 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4576 public:
4577   virtual bool do_heap_region(HeapRegion* r) {
4578     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4579     G1CollectedHeap::heap()->clear_region_attr(r);
4580     r->clear_young_index_in_cset();
4581     return false;
4582   }
4583 };
4584 
4585 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4586   G1AbandonCollectionSetClosure cl;
4587   collection_set_iterate_all(&cl);
4588 
4589   collection_set->clear();
4590   collection_set->stop_incremental_building();
4591 }
4592 
4593 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4594   return _allocator->is_retained_old_region(hr);
4595 }
4596 
4597 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4598   _eden.add(hr);
4599   _policy->set_region_eden(hr);
4600 }
4601 
4602 #ifdef ASSERT
4603 
4604 class NoYoungRegionsClosure: public HeapRegionClosure {
4605 private:
4606   bool _success;
4607 public:
4608   NoYoungRegionsClosure() : _success(true) { }
4609   bool do_heap_region(HeapRegion* r) {
4610     if (r->is_young()) {
4611       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4612                             p2i(r->bottom()), p2i(r->end()));
4613       _success = false;
4614     }
4615     return false;
4616   }
4617   bool success() { return _success; }
4618 };
4619 
4620 bool G1CollectedHeap::check_young_list_empty() {
4621   bool ret = (young_regions_count() == 0);
4622 
4623   NoYoungRegionsClosure closure;
4624   heap_region_iterate(&closure);
4625   ret = ret && closure.success();
4626 
4627   return ret;
4628 }
4629 
4630 #endif // ASSERT
4631 
4632 class TearDownRegionSetsClosure : public HeapRegionClosure {
4633   HeapRegionSet *_old_set;
4634 
4635 public:
4636   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4637 
4638   bool do_heap_region(HeapRegion* r) {
4639     if (r->is_old()) {
4640       _old_set->remove(r);
4641     } else if(r->is_young()) {
4642       r->uninstall_surv_rate_group();
4643     } else {
4644       // We ignore free regions, we'll empty the free list afterwards.
4645       // We ignore humongous and archive regions, we're not tearing down these
4646       // sets.
4647       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4648              "it cannot be another type");
4649     }
4650     return false;
4651   }
4652 
4653   ~TearDownRegionSetsClosure() {
4654     assert(_old_set->is_empty(), "post-condition");
4655   }
4656 };
4657 
4658 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4659   assert_at_safepoint_on_vm_thread();
4660 
4661   if (!free_list_only) {
4662     TearDownRegionSetsClosure cl(&_old_set);
4663     heap_region_iterate(&cl);
4664 
4665     // Note that emptying the _young_list is postponed and instead done as
4666     // the first step when rebuilding the regions sets again. The reason for
4667     // this is that during a full GC string deduplication needs to know if
4668     // a collected region was young or old when the full GC was initiated.
4669   }
4670   _hrm->remove_all_free_regions();
4671 }
4672 
4673 void G1CollectedHeap::increase_used(size_t bytes) {
4674   _summary_bytes_used += bytes;
4675 }
4676 
4677 void G1CollectedHeap::decrease_used(size_t bytes) {
4678   assert(_summary_bytes_used >= bytes,
4679          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4680          _summary_bytes_used, bytes);
4681   _summary_bytes_used -= bytes;
4682 }
4683 
4684 void G1CollectedHeap::set_used(size_t bytes) {
4685   _summary_bytes_used = bytes;
4686 }
4687 
4688 class RebuildRegionSetsClosure : public HeapRegionClosure {
4689 private:
4690   bool _free_list_only;
4691 
4692   HeapRegionSet* _old_set;
4693   HeapRegionManager* _hrm;
4694 
4695   size_t _total_used;
4696 
4697 public:
4698   RebuildRegionSetsClosure(bool free_list_only,
4699                            HeapRegionSet* old_set,
4700                            HeapRegionManager* hrm) :
4701     _free_list_only(free_list_only),
4702     _old_set(old_set), _hrm(hrm), _total_used(0) {
4703     assert(_hrm->num_free_regions() == 0, "pre-condition");
4704     if (!free_list_only) {
4705       assert(_old_set->is_empty(), "pre-condition");
4706     }
4707   }
4708 
4709   bool do_heap_region(HeapRegion* r) {
4710     if (r->is_empty()) {
4711       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4712       // Add free regions to the free list
4713       r->set_free();
4714       _hrm->insert_into_free_list(r);
4715     } else if (!_free_list_only) {
4716       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4717 
4718       if (r->is_archive() || r->is_humongous()) {
4719         // We ignore archive and humongous regions. We left these sets unchanged.
4720       } else {
4721         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4722         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4723         r->move_to_old();
4724         _old_set->add(r);
4725       }
4726       _total_used += r->used();
4727     }
4728 
4729     return false;
4730   }
4731 
4732   size_t total_used() {
4733     return _total_used;
4734   }
4735 };
4736 
4737 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4738   assert_at_safepoint_on_vm_thread();
4739 
4740   if (!free_list_only) {
4741     _eden.clear();
4742     _survivor.clear();
4743   }
4744 
4745   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4746   heap_region_iterate(&cl);
4747 
4748   if (!free_list_only) {
4749     set_used(cl.total_used());
4750     if (_archive_allocator != NULL) {
4751       _archive_allocator->clear_used();
4752     }
4753   }
4754   assert_used_and_recalculate_used_equal(this);
4755 }
4756 
4757 // Methods for the mutator alloc region
4758 
4759 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4760                                                       bool force,
4761                                                       uint node_index) {
4762   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4763   bool should_allocate = policy()->should_allocate_mutator_region();
4764   if (force || should_allocate) {
4765     HeapRegion* new_alloc_region = new_region(word_size,
4766                                               HeapRegionType::Eden,
4767                                               false /* do_expand */,
4768                                               node_index);
4769     if (new_alloc_region != NULL) {
4770       set_region_short_lived_locked(new_alloc_region);
4771       _hr_printer.alloc(new_alloc_region, !should_allocate);
4772       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4773       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4774       return new_alloc_region;
4775     }
4776   }
4777   return NULL;
4778 }
4779 
4780 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4781                                                   size_t allocated_bytes) {
4782   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4783   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4784 
4785   collection_set()->add_eden_region(alloc_region);
4786   increase_used(allocated_bytes);
4787   _eden.add_used_bytes(allocated_bytes);
4788   _hr_printer.retire(alloc_region);
4789 
4790   // We update the eden sizes here, when the region is retired,
4791   // instead of when it's allocated, since this is the point that its
4792   // used space has been recorded in _summary_bytes_used.
4793   g1mm()->update_eden_size();
4794 }
4795 
4796 // Methods for the GC alloc regions
4797 
4798 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4799   if (dest.is_old()) {
4800     return true;
4801   } else {
4802     return survivor_regions_count() < policy()->max_survivor_regions();
4803   }
4804 }
4805 
4806 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4807   assert(FreeList_lock->owned_by_self(), "pre-condition");
4808 
4809   if (!has_more_regions(dest)) {
4810     return NULL;
4811   }
4812 
4813   HeapRegionType type;
4814   if (dest.is_young()) {
4815     type = HeapRegionType::Survivor;
4816   } else {
4817     type = HeapRegionType::Old;
4818   }
4819 
4820   HeapRegion* new_alloc_region = new_region(word_size,
4821                                             type,
4822                                             true /* do_expand */,
4823                                             node_index);
4824 
4825   if (new_alloc_region != NULL) {
4826     if (type.is_survivor()) {
4827       new_alloc_region->set_survivor();
4828       _survivor.add(new_alloc_region);
4829       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4830     } else {
4831       new_alloc_region->set_old();
4832       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4833     }
4834     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4835     register_region_with_region_attr(new_alloc_region);
4836     _hr_printer.alloc(new_alloc_region);
4837     return new_alloc_region;
4838   }
4839   return NULL;
4840 }
4841 
4842 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4843                                              size_t allocated_bytes,
4844                                              G1HeapRegionAttr dest) {
4845   _bytes_used_during_gc += allocated_bytes;
4846   if (dest.is_old()) {
4847     old_set_add(alloc_region);
4848   } else {
4849     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4850     _survivor.add_used_bytes(allocated_bytes);
4851   }
4852 
4853   bool const during_im = collector_state()->in_initial_mark_gc();
4854   if (during_im && allocated_bytes > 0) {
4855     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4856   }
4857   _hr_printer.retire(alloc_region);
4858 }
4859 
4860 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4861   bool expanded = false;
4862   uint index = _hrm->find_highest_free(&expanded);
4863 
4864   if (index != G1_NO_HRM_INDEX) {
4865     if (expanded) {
4866       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4867                                 HeapRegion::GrainWords * HeapWordSize);
4868     }
4869     _hrm->allocate_free_regions_starting_at(index, 1);
4870     return region_at(index);
4871   }
4872   return NULL;
4873 }
4874 
4875 // Optimized nmethod scanning
4876 
4877 class RegisterNMethodOopClosure: public OopClosure {
4878   G1CollectedHeap* _g1h;
4879   nmethod* _nm;
4880 
4881   template <class T> void do_oop_work(T* p) {
4882     T heap_oop = RawAccess<>::oop_load(p);
4883     if (!CompressedOops::is_null(heap_oop)) {
4884       oop obj = CompressedOops::decode_not_null(heap_oop);
4885       HeapRegion* hr = _g1h->heap_region_containing(obj);
4886       assert(!hr->is_continues_humongous(),
4887              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4888              " starting at " HR_FORMAT,
4889              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4890 
4891       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4892       hr->add_strong_code_root_locked(_nm);
4893     }
4894   }
4895 
4896 public:
4897   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4898     _g1h(g1h), _nm(nm) {}
4899 
4900   void do_oop(oop* p)       { do_oop_work(p); }
4901   void do_oop(narrowOop* p) { do_oop_work(p); }
4902 };
4903 
4904 class UnregisterNMethodOopClosure: public OopClosure {
4905   G1CollectedHeap* _g1h;
4906   nmethod* _nm;
4907 
4908   template <class T> void do_oop_work(T* p) {
4909     T heap_oop = RawAccess<>::oop_load(p);
4910     if (!CompressedOops::is_null(heap_oop)) {
4911       oop obj = CompressedOops::decode_not_null(heap_oop);
4912       HeapRegion* hr = _g1h->heap_region_containing(obj);
4913       assert(!hr->is_continues_humongous(),
4914              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4915              " starting at " HR_FORMAT,
4916              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4917 
4918       hr->remove_strong_code_root(_nm);
4919     }
4920   }
4921 
4922 public:
4923   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4924     _g1h(g1h), _nm(nm) {}
4925 
4926   void do_oop(oop* p)       { do_oop_work(p); }
4927   void do_oop(narrowOop* p) { do_oop_work(p); }
4928 };
4929 
4930 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4931   guarantee(nm != NULL, "sanity");
4932   RegisterNMethodOopClosure reg_cl(this, nm);
4933   nm->oops_do(&reg_cl);
4934 }
4935 
4936 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4937   guarantee(nm != NULL, "sanity");
4938   UnregisterNMethodOopClosure reg_cl(this, nm);
4939   nm->oops_do(&reg_cl, true);
4940 }
4941 
4942 void G1CollectedHeap::purge_code_root_memory() {
4943   double purge_start = os::elapsedTime();
4944   G1CodeRootSet::purge();
4945   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4946   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4947 }
4948 
4949 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4950   G1CollectedHeap* _g1h;
4951 
4952 public:
4953   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4954     _g1h(g1h) {}
4955 
4956   void do_code_blob(CodeBlob* cb) {
4957     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4958     if (nm == NULL) {
4959       return;
4960     }
4961 
4962     _g1h->register_nmethod(nm);
4963   }
4964 };
4965 
4966 void G1CollectedHeap::rebuild_strong_code_roots() {
4967   RebuildStrongCodeRootClosure blob_cl(this);
4968   CodeCache::blobs_do(&blob_cl);
4969 }
4970 
4971 void G1CollectedHeap::initialize_serviceability() {
4972   _g1mm->initialize_serviceability();
4973 }
4974 
4975 MemoryUsage G1CollectedHeap::memory_usage() {
4976   return _g1mm->memory_usage();
4977 }
4978 
4979 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4980   return _g1mm->memory_managers();
4981 }
4982 
4983 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4984   return _g1mm->memory_pools();
4985 }