1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1DirtyCardQueue.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  38 #include "gc/g1/g1StringDedup.hpp"
  39 #include "gc/g1/g1ThreadLocalData.hpp"
  40 #include "gc/g1/g1Trace.hpp"
  41 #include "gc/g1/heapRegion.inline.hpp"
  42 #include "gc/g1/heapRegionRemSet.hpp"
  43 #include "gc/g1/heapRegionSet.inline.hpp"
  44 #include "gc/shared/gcId.hpp"
  45 #include "gc/shared/gcTimer.hpp"
  46 #include "gc/shared/gcTraceTime.inline.hpp"
  47 #include "gc/shared/gcVMOperations.hpp"
  48 #include "gc/shared/genOopClosures.inline.hpp"
  49 #include "gc/shared/referencePolicy.hpp"
  50 #include "gc/shared/strongRootsScope.hpp"
  51 #include "gc/shared/suspendibleThreadSet.hpp"
  52 #include "gc/shared/taskTerminator.hpp"
  53 #include "gc/shared/taskqueue.inline.hpp"
  54 #include "gc/shared/weakProcessor.inline.hpp"
  55 #include "gc/shared/workerPolicy.hpp"
  56 #include "include/jvm.h"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.hpp"
  60 #include "memory/resourceArea.hpp"
  61 #include "memory/universe.hpp"
  62 #include "oops/access.inline.hpp"
  63 #include "oops/oop.inline.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/orderAccess.hpp"
  68 #include "runtime/prefetch.inline.hpp"
  69 #include "services/memTracker.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/growableArray.hpp"
  72 
  73 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  74   assert(addr < _cm->finger(), "invariant");
  75   assert(addr >= _task->finger(), "invariant");
  76 
  77   // We move that task's local finger along.
  78   _task->move_finger_to(addr);
  79 
  80   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  81   // we only partially drain the local queue and global stack
  82   _task->drain_local_queue(true);
  83   _task->drain_global_stack(true);
  84 
  85   // if the has_aborted flag has been raised, we need to bail out of
  86   // the iteration
  87   return !_task->has_aborted();
  88 }
  89 
  90 G1CMMarkStack::G1CMMarkStack() :
  91   _max_chunk_capacity(0),
  92   _base(NULL),
  93   _chunk_capacity(0) {
  94   set_empty();
  95 }
  96 
  97 bool G1CMMarkStack::resize(size_t new_capacity) {
  98   assert(is_empty(), "Only resize when stack is empty.");
  99   assert(new_capacity <= _max_chunk_capacity,
 100          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
 101 
 102   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
 103 
 104   if (new_base == NULL) {
 105     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 106     return false;
 107   }
 108   // Release old mapping.
 109   if (_base != NULL) {
 110     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 111   }
 112 
 113   _base = new_base;
 114   _chunk_capacity = new_capacity;
 115   set_empty();
 116 
 117   return true;
 118 }
 119 
 120 size_t G1CMMarkStack::capacity_alignment() {
 121   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 122 }
 123 
 124 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 125   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 126 
 127   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 128 
 129   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 130   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 131 
 132   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 133             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 134             _max_chunk_capacity,
 135             initial_chunk_capacity);
 136 
 137   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 138                 initial_chunk_capacity, _max_chunk_capacity);
 139 
 140   return resize(initial_chunk_capacity);
 141 }
 142 
 143 void G1CMMarkStack::expand() {
 144   if (_chunk_capacity == _max_chunk_capacity) {
 145     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 146     return;
 147   }
 148   size_t old_capacity = _chunk_capacity;
 149   // Double capacity if possible
 150   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 151 
 152   if (resize(new_capacity)) {
 153     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 154                   old_capacity, new_capacity);
 155   } else {
 156     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 157                     old_capacity, new_capacity);
 158   }
 159 }
 160 
 161 G1CMMarkStack::~G1CMMarkStack() {
 162   if (_base != NULL) {
 163     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 164   }
 165 }
 166 
 167 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 168   elem->next = *list;
 169   *list = elem;
 170 }
 171 
 172 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 173   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 174   add_chunk_to_list(&_chunk_list, elem);
 175   _chunks_in_chunk_list++;
 176 }
 177 
 178 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 179   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 180   add_chunk_to_list(&_free_list, elem);
 181 }
 182 
 183 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 184   TaskQueueEntryChunk* result = *list;
 185   if (result != NULL) {
 186     *list = (*list)->next;
 187   }
 188   return result;
 189 }
 190 
 191 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 192   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 193   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 194   if (result != NULL) {
 195     _chunks_in_chunk_list--;
 196   }
 197   return result;
 198 }
 199 
 200 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 201   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 202   return remove_chunk_from_list(&_free_list);
 203 }
 204 
 205 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 206   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 207   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 208   // wraparound of _hwm.
 209   if (_hwm >= _chunk_capacity) {
 210     return NULL;
 211   }
 212 
 213   size_t cur_idx = Atomic::fetch_and_add(&_hwm, 1u);
 214   if (cur_idx >= _chunk_capacity) {
 215     return NULL;
 216   }
 217 
 218   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 219   result->next = NULL;
 220   return result;
 221 }
 222 
 223 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 224   // Get a new chunk.
 225   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 226 
 227   if (new_chunk == NULL) {
 228     // Did not get a chunk from the free list. Allocate from backing memory.
 229     new_chunk = allocate_new_chunk();
 230 
 231     if (new_chunk == NULL) {
 232       return false;
 233     }
 234   }
 235 
 236   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 237 
 238   add_chunk_to_chunk_list(new_chunk);
 239 
 240   return true;
 241 }
 242 
 243 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 244   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 245 
 246   if (cur == NULL) {
 247     return false;
 248   }
 249 
 250   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 251 
 252   add_chunk_to_free_list(cur);
 253   return true;
 254 }
 255 
 256 void G1CMMarkStack::set_empty() {
 257   _chunks_in_chunk_list = 0;
 258   _hwm = 0;
 259   _chunk_list = NULL;
 260   _free_list = NULL;
 261 }
 262 
 263 G1CMRootMemRegions::G1CMRootMemRegions(uint const max_regions) :
 264     _root_regions(MemRegion::create_array(max_regions, mtGC)),
 265     _max_regions(max_regions),
 266     _num_root_regions(0),
 267     _claimed_root_regions(0),
 268     _scan_in_progress(false),
 269     _should_abort(false) { }
 270 
 271 G1CMRootMemRegions::~G1CMRootMemRegions() {
 272   FREE_C_HEAP_ARRAY(MemRegion, _root_regions);
 273 }
 274 
 275 void G1CMRootMemRegions::reset() {
 276   _num_root_regions = 0;
 277 }
 278 
 279 void G1CMRootMemRegions::add(HeapWord* start, HeapWord* end) {
 280   assert_at_safepoint();
 281   size_t idx = Atomic::fetch_and_add(&_num_root_regions, 1u);
 282   assert(idx < _max_regions, "Trying to add more root MemRegions than there is space " SIZE_FORMAT, _max_regions);
 283   assert(start != NULL && end != NULL && start <= end, "Start (" PTR_FORMAT ") should be less or equal to "
 284          "end (" PTR_FORMAT ")", p2i(start), p2i(end));
 285   _root_regions[idx].set_start(start);
 286   _root_regions[idx].set_end(end);
 287 }
 288 
 289 void G1CMRootMemRegions::prepare_for_scan() {
 290   assert(!scan_in_progress(), "pre-condition");
 291 
 292   _scan_in_progress = _num_root_regions > 0;
 293 
 294   _claimed_root_regions = 0;
 295   _should_abort = false;
 296 }
 297 
 298 const MemRegion* G1CMRootMemRegions::claim_next() {
 299   if (_should_abort) {
 300     // If someone has set the should_abort flag, we return NULL to
 301     // force the caller to bail out of their loop.
 302     return NULL;
 303   }
 304 
 305   if (_claimed_root_regions >= _num_root_regions) {
 306     return NULL;
 307   }
 308 
 309   size_t claimed_index = Atomic::fetch_and_add(&_claimed_root_regions, 1u);
 310   if (claimed_index < _num_root_regions) {
 311     return &_root_regions[claimed_index];
 312   }
 313   return NULL;
 314 }
 315 
 316 uint G1CMRootMemRegions::num_root_regions() const {
 317   return (uint)_num_root_regions;
 318 }
 319 
 320 void G1CMRootMemRegions::notify_scan_done() {
 321   MutexLocker x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 322   _scan_in_progress = false;
 323   RootRegionScan_lock->notify_all();
 324 }
 325 
 326 void G1CMRootMemRegions::cancel_scan() {
 327   notify_scan_done();
 328 }
 329 
 330 void G1CMRootMemRegions::scan_finished() {
 331   assert(scan_in_progress(), "pre-condition");
 332 
 333   if (!_should_abort) {
 334     assert(_claimed_root_regions >= num_root_regions(),
 335            "we should have claimed all root regions, claimed " SIZE_FORMAT ", length = %u",
 336            _claimed_root_regions, num_root_regions());
 337   }
 338 
 339   notify_scan_done();
 340 }
 341 
 342 bool G1CMRootMemRegions::wait_until_scan_finished() {
 343   if (!scan_in_progress()) {
 344     return false;
 345   }
 346 
 347   {
 348     MonitorLocker ml(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 349     while (scan_in_progress()) {
 350       ml.wait();
 351     }
 352   }
 353   return true;
 354 }
 355 
 356 // Returns the maximum number of workers to be used in a concurrent
 357 // phase based on the number of GC workers being used in a STW
 358 // phase.
 359 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 360   return MAX2((num_gc_workers + 2) / 4, 1U);
 361 }
 362 
 363 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 364                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 365                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 366   // _cm_thread set inside the constructor
 367   _g1h(g1h),
 368   _completed_initialization(false),
 369 
 370   _mark_bitmap_1(),
 371   _mark_bitmap_2(),
 372   _prev_mark_bitmap(&_mark_bitmap_1),
 373   _next_mark_bitmap(&_mark_bitmap_2),
 374 
 375   _heap(_g1h->reserved_region()),
 376 
 377   _root_regions(_g1h->max_regions()),
 378 
 379   _global_mark_stack(),
 380 
 381   // _finger set in set_non_marking_state
 382 
 383   _worker_id_offset(G1DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 384   _max_num_tasks(ParallelGCThreads),
 385   // _num_active_tasks set in set_non_marking_state()
 386   // _tasks set inside the constructor
 387 
 388   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 389   _terminator((int) _max_num_tasks, _task_queues),
 390 
 391   _first_overflow_barrier_sync(),
 392   _second_overflow_barrier_sync(),
 393 
 394   _has_overflown(false),
 395   _concurrent(false),
 396   _has_aborted(false),
 397   _restart_for_overflow(false),
 398   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 399   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 400 
 401   // _verbose_level set below
 402 
 403   _init_times(),
 404   _remark_times(),
 405   _remark_mark_times(),
 406   _remark_weak_ref_times(),
 407   _cleanup_times(),
 408   _total_cleanup_time(0.0),
 409 
 410   _accum_task_vtime(NULL),
 411 
 412   _concurrent_workers(NULL),
 413   _num_concurrent_workers(0),
 414   _max_concurrent_workers(0),
 415 
 416   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 417   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 418 {
 419   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 420   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 421 
 422   // Create & start ConcurrentMark thread.
 423   _cm_thread = new G1ConcurrentMarkThread(this);
 424   if (_cm_thread->osthread() == NULL) {
 425     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 426   }
 427 
 428   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 429 
 430   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 431     // Calculate the number of concurrent worker threads by scaling
 432     // the number of parallel GC threads.
 433     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 434     FLAG_SET_ERGO(ConcGCThreads, marking_thread_num);
 435   }
 436 
 437   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 438   if (ConcGCThreads > ParallelGCThreads) {
 439     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 440                     ConcGCThreads, ParallelGCThreads);
 441     return;
 442   }
 443 
 444   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 445   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 446 
 447   _num_concurrent_workers = ConcGCThreads;
 448   _max_concurrent_workers = _num_concurrent_workers;
 449 
 450   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 451   _concurrent_workers->initialize_workers();
 452 
 453   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 454     size_t mark_stack_size =
 455       MIN2(MarkStackSizeMax,
 456           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 457     // Verify that the calculated value for MarkStackSize is in range.
 458     // It would be nice to use the private utility routine from Arguments.
 459     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 460       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 461                       "must be between 1 and " SIZE_FORMAT,
 462                       mark_stack_size, MarkStackSizeMax);
 463       return;
 464     }
 465     FLAG_SET_ERGO(MarkStackSize, mark_stack_size);
 466   } else {
 467     // Verify MarkStackSize is in range.
 468     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 469       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 470         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 471           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 472                           "must be between 1 and " SIZE_FORMAT,
 473                           MarkStackSize, MarkStackSizeMax);
 474           return;
 475         }
 476       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 477         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 478           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 479                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 480                           MarkStackSize, MarkStackSizeMax);
 481           return;
 482         }
 483       }
 484     }
 485   }
 486 
 487   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 488     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 489   }
 490 
 491   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 492   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 493 
 494   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 495   _num_active_tasks = _max_num_tasks;
 496 
 497   for (uint i = 0; i < _max_num_tasks; ++i) {
 498     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 499     task_queue->initialize();
 500     _task_queues->register_queue(i, task_queue);
 501 
 502     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 503 
 504     _accum_task_vtime[i] = 0.0;
 505   }
 506 
 507   reset_at_marking_complete();
 508   _completed_initialization = true;
 509 }
 510 
 511 void G1ConcurrentMark::reset() {
 512   _has_aborted = false;
 513 
 514   reset_marking_for_restart();
 515 
 516   // Reset all tasks, since different phases will use different number of active
 517   // threads. So, it's easiest to have all of them ready.
 518   for (uint i = 0; i < _max_num_tasks; ++i) {
 519     _tasks[i]->reset(_next_mark_bitmap);
 520   }
 521 
 522   uint max_regions = _g1h->max_regions();
 523   for (uint i = 0; i < max_regions; i++) {
 524     _top_at_rebuild_starts[i] = NULL;
 525     _region_mark_stats[i].clear();
 526   }
 527 }
 528 
 529 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 530   for (uint j = 0; j < _max_num_tasks; ++j) {
 531     _tasks[j]->clear_mark_stats_cache(region_idx);
 532   }
 533   _top_at_rebuild_starts[region_idx] = NULL;
 534   _region_mark_stats[region_idx].clear();
 535 }
 536 
 537 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 538   uint const region_idx = r->hrm_index();
 539   if (r->is_humongous()) {
 540     assert(r->is_starts_humongous(), "Got humongous continues region here");
 541     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 542     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 543       clear_statistics_in_region(j);
 544     }
 545   } else {
 546     clear_statistics_in_region(region_idx);
 547   }
 548 }
 549 
 550 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 551   if (bitmap->is_marked(addr)) {
 552     bitmap->clear(addr);
 553   }
 554 }
 555 
 556 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 557   assert_at_safepoint_on_vm_thread();
 558 
 559   // Need to clear all mark bits of the humongous object.
 560   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 561   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 562 
 563   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 564     return;
 565   }
 566 
 567   // Clear any statistics about the region gathered so far.
 568   clear_statistics(r);
 569 }
 570 
 571 void G1ConcurrentMark::reset_marking_for_restart() {
 572   _global_mark_stack.set_empty();
 573 
 574   // Expand the marking stack, if we have to and if we can.
 575   if (has_overflown()) {
 576     _global_mark_stack.expand();
 577 
 578     uint max_regions = _g1h->max_regions();
 579     for (uint i = 0; i < max_regions; i++) {
 580       _region_mark_stats[i].clear_during_overflow();
 581     }
 582   }
 583 
 584   clear_has_overflown();
 585   _finger = _heap.start();
 586 
 587   for (uint i = 0; i < _max_num_tasks; ++i) {
 588     G1CMTaskQueue* queue = _task_queues->queue(i);
 589     queue->set_empty();
 590   }
 591 }
 592 
 593 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 594   assert(active_tasks <= _max_num_tasks, "we should not have more");
 595 
 596   _num_active_tasks = active_tasks;
 597   // Need to update the three data structures below according to the
 598   // number of active threads for this phase.
 599   _terminator.reset_for_reuse(active_tasks);
 600   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 601   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 602 }
 603 
 604 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 605   set_concurrency(active_tasks);
 606 
 607   _concurrent = concurrent;
 608 
 609   if (!concurrent) {
 610     // At this point we should be in a STW phase, and completed marking.
 611     assert_at_safepoint_on_vm_thread();
 612     assert(out_of_regions(),
 613            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 614            p2i(_finger), p2i(_heap.end()));
 615   }
 616 }
 617 
 618 void G1ConcurrentMark::reset_at_marking_complete() {
 619   // We set the global marking state to some default values when we're
 620   // not doing marking.
 621   reset_marking_for_restart();
 622   _num_active_tasks = 0;
 623 }
 624 
 625 G1ConcurrentMark::~G1ConcurrentMark() {
 626   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 627   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 628   // The G1ConcurrentMark instance is never freed.
 629   ShouldNotReachHere();
 630 }
 631 
 632 class G1ClearBitMapTask : public AbstractGangTask {
 633 public:
 634   static size_t chunk_size() { return M; }
 635 
 636 private:
 637   // Heap region closure used for clearing the given mark bitmap.
 638   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 639   private:
 640     G1CMBitMap* _bitmap;
 641     G1ConcurrentMark* _cm;
 642   public:
 643     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _bitmap(bitmap), _cm(cm) {
 644     }
 645 
 646     virtual bool do_heap_region(HeapRegion* r) {
 647       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 648 
 649       HeapWord* cur = r->bottom();
 650       HeapWord* const end = r->end();
 651 
 652       while (cur < end) {
 653         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 654         _bitmap->clear_range(mr);
 655 
 656         cur += chunk_size_in_words;
 657 
 658         // Abort iteration if after yielding the marking has been aborted.
 659         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 660           return true;
 661         }
 662         // Repeat the asserts from before the start of the closure. We will do them
 663         // as asserts here to minimize their overhead on the product. However, we
 664         // will have them as guarantees at the beginning / end of the bitmap
 665         // clearing to get some checking in the product.
 666         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 667         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 668       }
 669       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 670 
 671       return false;
 672     }
 673   };
 674 
 675   G1ClearBitmapHRClosure _cl;
 676   HeapRegionClaimer _hr_claimer;
 677   bool _suspendible; // If the task is suspendible, workers must join the STS.
 678 
 679 public:
 680   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 681     AbstractGangTask("G1 Clear Bitmap"),
 682     _cl(bitmap, suspendible ? cm : NULL),
 683     _hr_claimer(n_workers),
 684     _suspendible(suspendible)
 685   { }
 686 
 687   void work(uint worker_id) {
 688     SuspendibleThreadSetJoiner sts_join(_suspendible);
 689     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 690   }
 691 
 692   bool is_complete() {
 693     return _cl.is_complete();
 694   }
 695 };
 696 
 697 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 698   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 699 
 700   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 701   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 702 
 703   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 704 
 705   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 706 
 707   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 708   workers->run_task(&cl, num_workers);
 709   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 710 }
 711 
 712 void G1ConcurrentMark::cleanup_for_next_mark() {
 713   // Make sure that the concurrent mark thread looks to still be in
 714   // the current cycle.
 715   guarantee(cm_thread()->during_cycle(), "invariant");
 716 
 717   // We are finishing up the current cycle by clearing the next
 718   // marking bitmap and getting it ready for the next cycle. During
 719   // this time no other cycle can start. So, let's make sure that this
 720   // is the case.
 721   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 722 
 723   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 724 
 725   // Repeat the asserts from above.
 726   guarantee(cm_thread()->during_cycle(), "invariant");
 727   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 728 }
 729 
 730 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 731   assert_at_safepoint_on_vm_thread();
 732   clear_bitmap(_prev_mark_bitmap, workers, false);
 733 }
 734 
 735 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 736 public:
 737   bool do_heap_region(HeapRegion* r) {
 738     r->note_start_of_marking();
 739     return false;
 740   }
 741 };
 742 
 743 void G1ConcurrentMark::pre_initial_mark() {
 744   assert_at_safepoint_on_vm_thread();
 745 
 746   // Reset marking state.
 747   reset();
 748 
 749   // For each region note start of marking.
 750   NoteStartOfMarkHRClosure startcl;
 751   _g1h->heap_region_iterate(&startcl);
 752 
 753   _root_regions.reset();
 754 }
 755 
 756 
 757 void G1ConcurrentMark::post_initial_mark() {
 758   // Start Concurrent Marking weak-reference discovery.
 759   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 760   // enable ("weak") refs discovery
 761   rp->enable_discovery();
 762   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 763 
 764   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
 765   // This is the start of  the marking cycle, we're expected all
 766   // threads to have SATB queues with active set to false.
 767   satb_mq_set.set_active_all_threads(true, /* new active value */
 768                                      false /* expected_active */);
 769 
 770   _root_regions.prepare_for_scan();
 771 
 772   // update_g1_committed() will be called at the end of an evac pause
 773   // when marking is on. So, it's also called at the end of the
 774   // initial-mark pause to update the heap end, if the heap expands
 775   // during it. No need to call it here.
 776 }
 777 
 778 /*
 779  * Notice that in the next two methods, we actually leave the STS
 780  * during the barrier sync and join it immediately afterwards. If we
 781  * do not do this, the following deadlock can occur: one thread could
 782  * be in the barrier sync code, waiting for the other thread to also
 783  * sync up, whereas another one could be trying to yield, while also
 784  * waiting for the other threads to sync up too.
 785  *
 786  * Note, however, that this code is also used during remark and in
 787  * this case we should not attempt to leave / enter the STS, otherwise
 788  * we'll either hit an assert (debug / fastdebug) or deadlock
 789  * (product). So we should only leave / enter the STS if we are
 790  * operating concurrently.
 791  *
 792  * Because the thread that does the sync barrier has left the STS, it
 793  * is possible to be suspended for a Full GC or an evacuation pause
 794  * could occur. This is actually safe, since the entering the sync
 795  * barrier is one of the last things do_marking_step() does, and it
 796  * doesn't manipulate any data structures afterwards.
 797  */
 798 
 799 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 800   bool barrier_aborted;
 801   {
 802     SuspendibleThreadSetLeaver sts_leave(concurrent());
 803     barrier_aborted = !_first_overflow_barrier_sync.enter();
 804   }
 805 
 806   // at this point everyone should have synced up and not be doing any
 807   // more work
 808 
 809   if (barrier_aborted) {
 810     // If the barrier aborted we ignore the overflow condition and
 811     // just abort the whole marking phase as quickly as possible.
 812     return;
 813   }
 814 }
 815 
 816 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 817   SuspendibleThreadSetLeaver sts_leave(concurrent());
 818   _second_overflow_barrier_sync.enter();
 819 
 820   // at this point everything should be re-initialized and ready to go
 821 }
 822 
 823 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 824   G1ConcurrentMark*     _cm;
 825 
 826 public:
 827   void work(uint worker_id) {
 828     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 829     ResourceMark rm;
 830 
 831     double start_vtime = os::elapsedVTime();
 832 
 833     {
 834       SuspendibleThreadSetJoiner sts_join;
 835 
 836       assert(worker_id < _cm->active_tasks(), "invariant");
 837 
 838       G1CMTask* task = _cm->task(worker_id);
 839       task->record_start_time();
 840       if (!_cm->has_aborted()) {
 841         do {
 842           task->do_marking_step(G1ConcMarkStepDurationMillis,
 843                                 true  /* do_termination */,
 844                                 false /* is_serial*/);
 845 
 846           _cm->do_yield_check();
 847         } while (!_cm->has_aborted() && task->has_aborted());
 848       }
 849       task->record_end_time();
 850       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 851     }
 852 
 853     double end_vtime = os::elapsedVTime();
 854     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 855   }
 856 
 857   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 858       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 859 
 860   ~G1CMConcurrentMarkingTask() { }
 861 };
 862 
 863 uint G1ConcurrentMark::calc_active_marking_workers() {
 864   uint result = 0;
 865   if (!UseDynamicNumberOfGCThreads ||
 866       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 867        !ForceDynamicNumberOfGCThreads)) {
 868     result = _max_concurrent_workers;
 869   } else {
 870     result =
 871       WorkerPolicy::calc_default_active_workers(_max_concurrent_workers,
 872                                                 1, /* Minimum workers */
 873                                                 _num_concurrent_workers,
 874                                                 Threads::number_of_non_daemon_threads());
 875     // Don't scale the result down by scale_concurrent_workers() because
 876     // that scaling has already gone into "_max_concurrent_workers".
 877   }
 878   assert(result > 0 && result <= _max_concurrent_workers,
 879          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 880          _max_concurrent_workers, result);
 881   return result;
 882 }
 883 
 884 void G1ConcurrentMark::scan_root_region(const MemRegion* region, uint worker_id) {
 885 #ifdef ASSERT
 886   HeapWord* last = region->last();
 887   HeapRegion* hr = _g1h->heap_region_containing(last);
 888   assert(hr->is_old() || hr->next_top_at_mark_start() == hr->bottom(),
 889          "Root regions must be old or survivor/eden but region %u is %s", hr->hrm_index(), hr->get_type_str());
 890   assert(hr->next_top_at_mark_start() == region->start(),
 891          "MemRegion start should be equal to nTAMS");
 892 #endif
 893 
 894   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 895 
 896   const uintx interval = PrefetchScanIntervalInBytes;
 897   HeapWord* curr = region->start();
 898   const HeapWord* end = region->end();
 899   while (curr < end) {
 900     Prefetch::read(curr, interval);
 901     oop obj = oop(curr);
 902     int size = obj->oop_iterate_size(&cl);
 903     assert(size == obj->size(), "sanity");
 904     curr += size;
 905   }
 906 }
 907 
 908 class G1CMRootRegionScanTask : public AbstractGangTask {
 909   G1ConcurrentMark* _cm;
 910 public:
 911   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 912     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 913 
 914   void work(uint worker_id) {
 915     assert(Thread::current()->is_ConcurrentGC_thread(),
 916            "this should only be done by a conc GC thread");
 917 
 918     G1CMRootMemRegions* root_regions = _cm->root_regions();
 919     const MemRegion* region = root_regions->claim_next();
 920     while (region != NULL) {
 921       _cm->scan_root_region(region, worker_id);
 922       region = root_regions->claim_next();
 923     }
 924   }
 925 };
 926 
 927 void G1ConcurrentMark::scan_root_regions() {
 928   // scan_in_progress() will have been set to true only if there was
 929   // at least one root region to scan. So, if it's false, we
 930   // should not attempt to do any further work.
 931   if (root_regions()->scan_in_progress()) {
 932     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 933 
 934     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 935                                    // We distribute work on a per-region basis, so starting
 936                                    // more threads than that is useless.
 937                                    root_regions()->num_root_regions());
 938     assert(_num_concurrent_workers <= _max_concurrent_workers,
 939            "Maximum number of marking threads exceeded");
 940 
 941     G1CMRootRegionScanTask task(this);
 942     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 943                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 944     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 945 
 946     // It's possible that has_aborted() is true here without actually
 947     // aborting the survivor scan earlier. This is OK as it's
 948     // mainly used for sanity checking.
 949     root_regions()->scan_finished();
 950   }
 951 }
 952 
 953 void G1ConcurrentMark::concurrent_cycle_start() {
 954   _gc_timer_cm->register_gc_start();
 955 
 956   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 957 
 958   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 959 }
 960 
 961 void G1ConcurrentMark::concurrent_cycle_end() {
 962   _g1h->collector_state()->set_clearing_next_bitmap(false);
 963 
 964   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 965 
 966   if (has_aborted()) {
 967     log_info(gc, marking)("Concurrent Mark Abort");
 968     _gc_tracer_cm->report_concurrent_mode_failure();
 969   }
 970 
 971   _gc_timer_cm->register_gc_end();
 972 
 973   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 974 }
 975 
 976 void G1ConcurrentMark::mark_from_roots() {
 977   _restart_for_overflow = false;
 978 
 979   _num_concurrent_workers = calc_active_marking_workers();
 980 
 981   uint active_workers = MAX2(1U, _num_concurrent_workers);
 982 
 983   // Setting active workers is not guaranteed since fewer
 984   // worker threads may currently exist and more may not be
 985   // available.
 986   active_workers = _concurrent_workers->update_active_workers(active_workers);
 987   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 988 
 989   // Parallel task terminator is set in "set_concurrency_and_phase()"
 990   set_concurrency_and_phase(active_workers, true /* concurrent */);
 991 
 992   G1CMConcurrentMarkingTask marking_task(this);
 993   _concurrent_workers->run_task(&marking_task);
 994   print_stats();
 995 }
 996 
 997 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 998   G1HeapVerifier* verifier = _g1h->verifier();
 999 
1000   verifier->verify_region_sets_optional();
1001 
1002   if (VerifyDuringGC) {
1003     GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm);
1004 
1005     size_t const BufLen = 512;
1006     char buffer[BufLen];
1007 
1008     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
1009     verifier->verify(type, vo, buffer);
1010   }
1011 
1012   verifier->check_bitmaps(caller);
1013 }
1014 
1015 class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask {
1016   G1CollectedHeap* _g1h;
1017   G1ConcurrentMark* _cm;
1018   HeapRegionClaimer _hrclaimer;
1019   uint volatile _total_selected_for_rebuild;
1020 
1021   G1PrintRegionLivenessInfoClosure _cl;
1022 
1023   class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
1024     G1CollectedHeap* _g1h;
1025     G1ConcurrentMark* _cm;
1026 
1027     G1PrintRegionLivenessInfoClosure* _cl;
1028 
1029     uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1030 
1031     void update_remset_before_rebuild(HeapRegion* hr) {
1032       G1RemSetTrackingPolicy* tracking_policy = _g1h->policy()->remset_tracker();
1033 
1034       bool selected_for_rebuild;
1035       if (hr->is_humongous()) {
1036         bool const is_live = _cm->liveness(hr->humongous_start_region()->hrm_index()) > 0;
1037         selected_for_rebuild = tracking_policy->update_humongous_before_rebuild(hr, is_live);
1038       } else {
1039         size_t const live_bytes = _cm->liveness(hr->hrm_index());
1040         selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1041       }
1042       if (selected_for_rebuild) {
1043         _num_regions_selected_for_rebuild++;
1044       }
1045       _cm->update_top_at_rebuild_start(hr);
1046     }
1047 
1048     // Distribute the given words across the humongous object starting with hr and
1049     // note end of marking.
1050     void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
1051       uint const region_idx = hr->hrm_index();
1052       size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size();
1053       uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words);
1054 
1055       // "Distributing" zero words means that we only note end of marking for these
1056       // regions.
1057       assert(marked_words == 0 || obj_size_in_words == marked_words,
1058              "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT,
1059              obj_size_in_words, marked_words);
1060 
1061       for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1062         HeapRegion* const r = _g1h->region_at(i);
1063         size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1064 
1065         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)",
1066                                words_to_add, i, r->get_type_str());
1067         add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize);
1068         marked_words -= words_to_add;
1069       }
1070       assert(marked_words == 0,
1071              SIZE_FORMAT " words left after distributing space across %u regions",
1072              marked_words, num_regions_in_humongous);
1073     }
1074 
1075     void update_marked_bytes(HeapRegion* hr) {
1076       uint const region_idx = hr->hrm_index();
1077       size_t const marked_words = _cm->liveness(region_idx);
1078       // The marking attributes the object's size completely to the humongous starts
1079       // region. We need to distribute this value across the entire set of regions a
1080       // humongous object spans.
1081       if (hr->is_humongous()) {
1082         assert(hr->is_starts_humongous() || marked_words == 0,
1083                "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1084                marked_words, region_idx, hr->get_type_str());
1085         if (hr->is_starts_humongous()) {
1086           distribute_marked_bytes(hr, marked_words);
1087         }
1088       } else {
1089         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1090         add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize);
1091       }
1092     }
1093 
1094     void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) {
1095       hr->add_to_marked_bytes(marked_bytes);
1096       _cl->do_heap_region(hr);
1097       hr->note_end_of_marking();
1098     }
1099 
1100   public:
1101     G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) :
1102       _g1h(g1h), _cm(cm), _cl(cl), _num_regions_selected_for_rebuild(0) { }
1103 
1104     virtual bool do_heap_region(HeapRegion* r) {
1105       update_remset_before_rebuild(r);
1106       update_marked_bytes(r);
1107 
1108       return false;
1109     }
1110 
1111     uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1112   };
1113 
1114 public:
1115   G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) :
1116     AbstractGangTask("G1 Update RemSet Tracking Before Rebuild"),
1117     _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking") { }
1118 
1119   virtual void work(uint worker_id) {
1120     G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl);
1121     _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id);
1122     Atomic::add(&_total_selected_for_rebuild, update_cl.num_selected_for_rebuild());
1123   }
1124 
1125   uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
1126 
1127   // Number of regions for which roughly one thread should be spawned for this work.
1128   static const uint RegionsPerThread = 384;
1129 };
1130 
1131 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1132   G1CollectedHeap* _g1h;
1133 public:
1134   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1135 
1136   virtual bool do_heap_region(HeapRegion* r) {
1137     _g1h->policy()->remset_tracker()->update_after_rebuild(r);
1138     return false;
1139   }
1140 };
1141 
1142 void G1ConcurrentMark::remark() {
1143   assert_at_safepoint_on_vm_thread();
1144 
1145   // If a full collection has happened, we should not continue. However we might
1146   // have ended up here as the Remark VM operation has been scheduled already.
1147   if (has_aborted()) {
1148     return;
1149   }
1150 
1151   G1Policy* policy = _g1h->policy();
1152   policy->record_concurrent_mark_remark_start();
1153 
1154   double start = os::elapsedTime();
1155 
1156   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1157 
1158   {
1159     GCTraceTime(Debug, gc, phases) debug("Finalize Marking", _gc_timer_cm);
1160     finalize_marking();
1161   }
1162 
1163   double mark_work_end = os::elapsedTime();
1164 
1165   bool const mark_finished = !has_overflown();
1166   if (mark_finished) {
1167     weak_refs_work(false /* clear_all_soft_refs */);
1168 
1169     SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1170     // We're done with marking.
1171     // This is the end of the marking cycle, we're expected all
1172     // threads to have SATB queues with active set to true.
1173     satb_mq_set.set_active_all_threads(false, /* new active value */
1174                                        true /* expected_active */);
1175 
1176     {
1177       GCTraceTime(Debug, gc, phases) debug("Flush Task Caches", _gc_timer_cm);
1178       flush_all_task_caches();
1179     }
1180 
1181     // Install newly created mark bitmap as "prev".
1182     swap_mark_bitmaps();
1183     {
1184       GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1185 
1186       uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) /
1187                                        G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread;
1188       uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity);
1189 
1190       G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers);
1191       log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap", cl.name(), num_workers, _g1h->num_regions());
1192       _g1h->workers()->run_task(&cl, num_workers);
1193 
1194       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1195                                       _g1h->num_regions(), cl.total_selected_for_rebuild());
1196     }
1197     {
1198       GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions", _gc_timer_cm);
1199       reclaim_empty_regions();
1200     }
1201 
1202     // Clean out dead classes
1203     if (ClassUnloadingWithConcurrentMark) {
1204       GCTraceTime(Debug, gc, phases) debug("Purge Metaspace", _gc_timer_cm);
1205       ClassLoaderDataGraph::purge();
1206     }
1207 
1208     compute_new_sizes();
1209 
1210     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1211 
1212     assert(!restart_for_overflow(), "sanity");
1213     // Completely reset the marking state since marking completed
1214     reset_at_marking_complete();
1215   } else {
1216     // We overflowed.  Restart concurrent marking.
1217     _restart_for_overflow = true;
1218 
1219     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1220 
1221     // Clear the marking state because we will be restarting
1222     // marking due to overflowing the global mark stack.
1223     reset_marking_for_restart();
1224   }
1225 
1226   {
1227     GCTraceTime(Debug, gc, phases) debug("Report Object Count", _gc_timer_cm);
1228     report_object_count(mark_finished);
1229   }
1230 
1231   // Statistics
1232   double now = os::elapsedTime();
1233   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1234   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1235   _remark_times.add((now - start) * 1000.0);
1236 
1237   policy->record_concurrent_mark_remark_end();
1238 }
1239 
1240 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1241   // Per-region work during the Cleanup pause.
1242   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1243     G1CollectedHeap* _g1h;
1244     size_t _freed_bytes;
1245     FreeRegionList* _local_cleanup_list;
1246     uint _old_regions_removed;
1247     uint _humongous_regions_removed;
1248 
1249   public:
1250     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1251                                  FreeRegionList* local_cleanup_list) :
1252       _g1h(g1h),
1253       _freed_bytes(0),
1254       _local_cleanup_list(local_cleanup_list),
1255       _old_regions_removed(0),
1256       _humongous_regions_removed(0) { }
1257 
1258     size_t freed_bytes() { return _freed_bytes; }
1259     const uint old_regions_removed() { return _old_regions_removed; }
1260     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1261 
1262     bool do_heap_region(HeapRegion *hr) {
1263       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1264         _freed_bytes += hr->used();
1265         hr->set_containing_set(NULL);
1266         if (hr->is_humongous()) {
1267           _humongous_regions_removed++;
1268           _g1h->free_humongous_region(hr, _local_cleanup_list);
1269         } else {
1270           _old_regions_removed++;
1271           _g1h->free_region(hr, _local_cleanup_list);
1272         }
1273         hr->clear_cardtable();
1274         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1275         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1276       }
1277 
1278       return false;
1279     }
1280   };
1281 
1282   G1CollectedHeap* _g1h;
1283   FreeRegionList* _cleanup_list;
1284   HeapRegionClaimer _hrclaimer;
1285 
1286 public:
1287   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1288     AbstractGangTask("G1 Cleanup"),
1289     _g1h(g1h),
1290     _cleanup_list(cleanup_list),
1291     _hrclaimer(n_workers) {
1292   }
1293 
1294   void work(uint worker_id) {
1295     FreeRegionList local_cleanup_list("Local Cleanup List");
1296     G1ReclaimEmptyRegionsClosure cl(_g1h, &local_cleanup_list);
1297     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1298     assert(cl.is_complete(), "Shouldn't have aborted!");
1299 
1300     // Now update the old/humongous region sets
1301     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1302     {
1303       MutexLocker x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1304       _g1h->decrement_summary_bytes(cl.freed_bytes());
1305 
1306       _cleanup_list->add_ordered(&local_cleanup_list);
1307       assert(local_cleanup_list.is_empty(), "post-condition");
1308     }
1309   }
1310 };
1311 
1312 void G1ConcurrentMark::reclaim_empty_regions() {
1313   WorkGang* workers = _g1h->workers();
1314   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1315 
1316   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1317   workers->run_task(&cl);
1318 
1319   if (!empty_regions_list.is_empty()) {
1320     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1321     // Now print the empty regions list.
1322     G1HRPrinter* hrp = _g1h->hr_printer();
1323     if (hrp->is_active()) {
1324       FreeRegionListIterator iter(&empty_regions_list);
1325       while (iter.more_available()) {
1326         HeapRegion* hr = iter.get_next();
1327         hrp->cleanup(hr);
1328       }
1329     }
1330     // And actually make them available.
1331     _g1h->prepend_to_freelist(&empty_regions_list);
1332   }
1333 }
1334 
1335 void G1ConcurrentMark::compute_new_sizes() {
1336   MetaspaceGC::compute_new_size();
1337 
1338   // Cleanup will have freed any regions completely full of garbage.
1339   // Update the soft reference policy with the new heap occupancy.
1340   Universe::update_heap_info_at_gc();
1341 
1342   // We reclaimed old regions so we should calculate the sizes to make
1343   // sure we update the old gen/space data.
1344   _g1h->g1mm()->update_sizes();
1345 }
1346 
1347 void G1ConcurrentMark::cleanup() {
1348   assert_at_safepoint_on_vm_thread();
1349 
1350   // If a full collection has happened, we shouldn't do this.
1351   if (has_aborted()) {
1352     return;
1353   }
1354 
1355   G1Policy* policy = _g1h->policy();
1356   policy->record_concurrent_mark_cleanup_start();
1357 
1358   double start = os::elapsedTime();
1359 
1360   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1361 
1362   {
1363     GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1364     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1365     _g1h->heap_region_iterate(&cl);
1366   }
1367 
1368   if (log_is_enabled(Trace, gc, liveness)) {
1369     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1370     _g1h->heap_region_iterate(&cl);
1371   }
1372 
1373   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1374 
1375   // We need to make this be a "collection" so any collection pause that
1376   // races with it goes around and waits for Cleanup to finish.
1377   _g1h->increment_total_collections();
1378 
1379   // Local statistics
1380   double recent_cleanup_time = (os::elapsedTime() - start);
1381   _total_cleanup_time += recent_cleanup_time;
1382   _cleanup_times.add(recent_cleanup_time);
1383 
1384   {
1385     GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1386     policy->record_concurrent_mark_cleanup_end();
1387   }
1388 }
1389 
1390 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1391 // Uses the G1CMTask associated with a worker thread (for serial reference
1392 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1393 // trace referent objects.
1394 //
1395 // Using the G1CMTask and embedded local queues avoids having the worker
1396 // threads operating on the global mark stack. This reduces the risk
1397 // of overflowing the stack - which we would rather avoid at this late
1398 // state. Also using the tasks' local queues removes the potential
1399 // of the workers interfering with each other that could occur if
1400 // operating on the global stack.
1401 
1402 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1403   G1ConcurrentMark* _cm;
1404   G1CMTask*         _task;
1405   uint              _ref_counter_limit;
1406   uint              _ref_counter;
1407   bool              _is_serial;
1408 public:
1409   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1410     _cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval),
1411     _ref_counter(_ref_counter_limit), _is_serial(is_serial) {
1412     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1413   }
1414 
1415   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1416   virtual void do_oop(      oop* p) { do_oop_work(p); }
1417 
1418   template <class T> void do_oop_work(T* p) {
1419     if (_cm->has_overflown()) {
1420       return;
1421     }
1422     if (!_task->deal_with_reference(p)) {
1423       // We did not add anything to the mark bitmap (or mark stack), so there is
1424       // no point trying to drain it.
1425       return;
1426     }
1427     _ref_counter--;
1428 
1429     if (_ref_counter == 0) {
1430       // We have dealt with _ref_counter_limit references, pushing them
1431       // and objects reachable from them on to the local stack (and
1432       // possibly the global stack). Call G1CMTask::do_marking_step() to
1433       // process these entries.
1434       //
1435       // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1436       // there's nothing more to do (i.e. we're done with the entries that
1437       // were pushed as a result of the G1CMTask::deal_with_reference() calls
1438       // above) or we overflow.
1439       //
1440       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1441       // flag while there may still be some work to do. (See the comment at
1442       // the beginning of G1CMTask::do_marking_step() for those conditions -
1443       // one of which is reaching the specified time target.) It is only
1444       // when G1CMTask::do_marking_step() returns without setting the
1445       // has_aborted() flag that the marking step has completed.
1446       do {
1447         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1448         _task->do_marking_step(mark_step_duration_ms,
1449                                false      /* do_termination */,
1450                                _is_serial);
1451       } while (_task->has_aborted() && !_cm->has_overflown());
1452       _ref_counter = _ref_counter_limit;
1453     }
1454   }
1455 };
1456 
1457 // 'Drain' oop closure used by both serial and parallel reference processing.
1458 // Uses the G1CMTask associated with a given worker thread (for serial
1459 // reference processing the G1CMtask for worker 0 is used). Calls the
1460 // do_marking_step routine, with an unbelievably large timeout value,
1461 // to drain the marking data structures of the remaining entries
1462 // added by the 'keep alive' oop closure above.
1463 
1464 class G1CMDrainMarkingStackClosure : public VoidClosure {
1465   G1ConcurrentMark* _cm;
1466   G1CMTask*         _task;
1467   bool              _is_serial;
1468  public:
1469   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1470     _cm(cm), _task(task), _is_serial(is_serial) {
1471     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1472   }
1473 
1474   void do_void() {
1475     do {
1476       // We call G1CMTask::do_marking_step() to completely drain the local
1477       // and global marking stacks of entries pushed by the 'keep alive'
1478       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1479       //
1480       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1481       // if there's nothing more to do (i.e. we've completely drained the
1482       // entries that were pushed as a a result of applying the 'keep alive'
1483       // closure to the entries on the discovered ref lists) or we overflow
1484       // the global marking stack.
1485       //
1486       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1487       // flag while there may still be some work to do. (See the comment at
1488       // the beginning of G1CMTask::do_marking_step() for those conditions -
1489       // one of which is reaching the specified time target.) It is only
1490       // when G1CMTask::do_marking_step() returns without setting the
1491       // has_aborted() flag that the marking step has completed.
1492 
1493       _task->do_marking_step(1000000000.0 /* something very large */,
1494                              true         /* do_termination */,
1495                              _is_serial);
1496     } while (_task->has_aborted() && !_cm->has_overflown());
1497   }
1498 };
1499 
1500 // Implementation of AbstractRefProcTaskExecutor for parallel
1501 // reference processing at the end of G1 concurrent marking
1502 
1503 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1504 private:
1505   G1CollectedHeap*  _g1h;
1506   G1ConcurrentMark* _cm;
1507   WorkGang*         _workers;
1508   uint              _active_workers;
1509 
1510 public:
1511   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1512                           G1ConcurrentMark* cm,
1513                           WorkGang* workers,
1514                           uint n_workers) :
1515     _g1h(g1h), _cm(cm),
1516     _workers(workers), _active_workers(n_workers) { }
1517 
1518   virtual void execute(ProcessTask& task, uint ergo_workers);
1519 };
1520 
1521 class G1CMRefProcTaskProxy : public AbstractGangTask {
1522   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1523   ProcessTask&      _proc_task;
1524   G1CollectedHeap*  _g1h;
1525   G1ConcurrentMark* _cm;
1526 
1527 public:
1528   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1529                        G1CollectedHeap* g1h,
1530                        G1ConcurrentMark* cm) :
1531     AbstractGangTask("Process reference objects in parallel"),
1532     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1533     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1534     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1535   }
1536 
1537   virtual void work(uint worker_id) {
1538     ResourceMark rm;
1539     HandleMark hm;
1540     G1CMTask* task = _cm->task(worker_id);
1541     G1CMIsAliveClosure g1_is_alive(_g1h);
1542     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1543     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1544 
1545     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1546   }
1547 };
1548 
1549 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
1550   assert(_workers != NULL, "Need parallel worker threads.");
1551   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1552   assert(_workers->active_workers() >= ergo_workers,
1553          "Ergonomically chosen workers(%u) should be less than or equal to active workers(%u)",
1554          ergo_workers, _workers->active_workers());
1555 
1556   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1557 
1558   // We need to reset the concurrency level before each
1559   // proxy task execution, so that the termination protocol
1560   // and overflow handling in G1CMTask::do_marking_step() knows
1561   // how many workers to wait for.
1562   _cm->set_concurrency(ergo_workers);
1563   _workers->run_task(&proc_task_proxy, ergo_workers);
1564 }
1565 
1566 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1567   ResourceMark rm;
1568   HandleMark   hm;
1569 
1570   // Is alive closure.
1571   G1CMIsAliveClosure g1_is_alive(_g1h);
1572 
1573   // Inner scope to exclude the cleaning of the string table
1574   // from the displayed time.
1575   {
1576     GCTraceTime(Debug, gc, phases) debug("Reference Processing", _gc_timer_cm);
1577 
1578     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1579 
1580     // See the comment in G1CollectedHeap::ref_processing_init()
1581     // about how reference processing currently works in G1.
1582 
1583     // Set the soft reference policy
1584     rp->setup_policy(clear_all_soft_refs);
1585     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1586 
1587     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1588     // in serial reference processing. Note these closures are also
1589     // used for serially processing (by the the current thread) the
1590     // JNI references during parallel reference processing.
1591     //
1592     // These closures do not need to synchronize with the worker
1593     // threads involved in parallel reference processing as these
1594     // instances are executed serially by the current thread (e.g.
1595     // reference processing is not multi-threaded and is thus
1596     // performed by the current thread instead of a gang worker).
1597     //
1598     // The gang tasks involved in parallel reference processing create
1599     // their own instances of these closures, which do their own
1600     // synchronization among themselves.
1601     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1602     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1603 
1604     // We need at least one active thread. If reference processing
1605     // is not multi-threaded we use the current (VMThread) thread,
1606     // otherwise we use the work gang from the G1CollectedHeap and
1607     // we utilize all the worker threads we can.
1608     bool processing_is_mt = rp->processing_is_mt();
1609     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1610     active_workers = clamp(active_workers, 1u, _max_num_tasks);
1611 
1612     // Parallel processing task executor.
1613     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1614                                               _g1h->workers(), active_workers);
1615     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1616 
1617     // Set the concurrency level. The phase was already set prior to
1618     // executing the remark task.
1619     set_concurrency(active_workers);
1620 
1621     // Set the degree of MT processing here.  If the discovery was done MT,
1622     // the number of threads involved during discovery could differ from
1623     // the number of active workers.  This is OK as long as the discovered
1624     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1625     rp->set_active_mt_degree(active_workers);
1626 
1627     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
1628 
1629     // Process the weak references.
1630     const ReferenceProcessorStats& stats =
1631         rp->process_discovered_references(&g1_is_alive,
1632                                           &g1_keep_alive,
1633                                           &g1_drain_mark_stack,
1634                                           executor,
1635                                           &pt);
1636     _gc_tracer_cm->report_gc_reference_stats(stats);
1637     pt.print_all_references();
1638 
1639     // The do_oop work routines of the keep_alive and drain_marking_stack
1640     // oop closures will set the has_overflown flag if we overflow the
1641     // global marking stack.
1642 
1643     assert(has_overflown() || _global_mark_stack.is_empty(),
1644            "Mark stack should be empty (unless it has overflown)");
1645 
1646     assert(rp->num_queues() == active_workers, "why not");
1647 
1648     rp->verify_no_references_recorded();
1649     assert(!rp->discovery_enabled(), "Post condition");
1650   }
1651 
1652   if (has_overflown()) {
1653     // We can not trust g1_is_alive and the contents of the heap if the marking stack
1654     // overflowed while processing references. Exit the VM.
1655     fatal("Overflow during reference processing, can not continue. Please "
1656           "increase MarkStackSizeMax (current value: " SIZE_FORMAT ") and "
1657           "restart.", MarkStackSizeMax);
1658     return;
1659   }
1660 
1661   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1662 
1663   {
1664     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1665     WeakProcessor::weak_oops_do(_g1h->workers(), &g1_is_alive, &do_nothing_cl, 1);
1666   }
1667 
1668   // Unload Klasses, String, Code Cache, etc.
1669   if (ClassUnloadingWithConcurrentMark) {
1670     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1671     bool purged_classes = SystemDictionary::do_unloading(_gc_timer_cm);
1672     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1673   } else if (StringDedup::is_enabled()) {
1674     GCTraceTime(Debug, gc, phases) debug("String Deduplication", _gc_timer_cm);
1675     _g1h->string_dedup_cleaning(&g1_is_alive, NULL);
1676   }
1677 }
1678 
1679 class G1PrecleanYieldClosure : public YieldClosure {
1680   G1ConcurrentMark* _cm;
1681 
1682 public:
1683   G1PrecleanYieldClosure(G1ConcurrentMark* cm) : _cm(cm) { }
1684 
1685   virtual bool should_return() {
1686     return _cm->has_aborted();
1687   }
1688 
1689   virtual bool should_return_fine_grain() {
1690     _cm->do_yield_check();
1691     return _cm->has_aborted();
1692   }
1693 };
1694 
1695 void G1ConcurrentMark::preclean() {
1696   assert(G1UseReferencePrecleaning, "Precleaning must be enabled.");
1697 
1698   SuspendibleThreadSetJoiner joiner;
1699 
1700   G1CMKeepAliveAndDrainClosure keep_alive(this, task(0), true /* is_serial */);
1701   G1CMDrainMarkingStackClosure drain_mark_stack(this, task(0), true /* is_serial */);
1702 
1703   set_concurrency_and_phase(1, true);
1704 
1705   G1PrecleanYieldClosure yield_cl(this);
1706 
1707   ReferenceProcessor* rp = _g1h->ref_processor_cm();
1708   // Precleaning is single threaded. Temporarily disable MT discovery.
1709   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
1710   rp->preclean_discovered_references(rp->is_alive_non_header(),
1711                                      &keep_alive,
1712                                      &drain_mark_stack,
1713                                      &yield_cl,
1714                                      _gc_timer_cm);
1715 }
1716 
1717 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1718 // the prev bitmap determining liveness.
1719 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1720   G1CollectedHeap* _g1h;
1721 public:
1722   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1723 
1724   bool do_object_b(oop obj) {
1725     return obj != NULL &&
1726            (!_g1h->is_in_g1_reserved(obj) || !_g1h->is_obj_dead(obj));
1727   }
1728 };
1729 
1730 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1731   // Depending on the completion of the marking liveness needs to be determined
1732   // using either the next or prev bitmap.
1733   if (mark_completed) {
1734     G1ObjectCountIsAliveClosure is_alive(_g1h);
1735     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1736   } else {
1737     G1CMIsAliveClosure is_alive(_g1h);
1738     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1739   }
1740 }
1741 
1742 
1743 void G1ConcurrentMark::swap_mark_bitmaps() {
1744   G1CMBitMap* temp = _prev_mark_bitmap;
1745   _prev_mark_bitmap = _next_mark_bitmap;
1746   _next_mark_bitmap = temp;
1747   _g1h->collector_state()->set_clearing_next_bitmap(true);
1748 }
1749 
1750 // Closure for marking entries in SATB buffers.
1751 class G1CMSATBBufferClosure : public SATBBufferClosure {
1752 private:
1753   G1CMTask* _task;
1754   G1CollectedHeap* _g1h;
1755 
1756   // This is very similar to G1CMTask::deal_with_reference, but with
1757   // more relaxed requirements for the argument, so this must be more
1758   // circumspect about treating the argument as an object.
1759   void do_entry(void* entry) const {
1760     _task->increment_refs_reached();
1761     oop const obj = static_cast<oop>(entry);
1762     _task->make_reference_grey(obj);
1763   }
1764 
1765 public:
1766   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1767     : _task(task), _g1h(g1h) { }
1768 
1769   virtual void do_buffer(void** buffer, size_t size) {
1770     for (size_t i = 0; i < size; ++i) {
1771       do_entry(buffer[i]);
1772     }
1773   }
1774 };
1775 
1776 class G1RemarkThreadsClosure : public ThreadClosure {
1777   G1CMSATBBufferClosure _cm_satb_cl;
1778   G1CMOopClosure _cm_cl;
1779   MarkingCodeBlobClosure _code_cl;
1780   uintx _claim_token;
1781 
1782  public:
1783   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1784     _cm_satb_cl(task, g1h),
1785     _cm_cl(g1h, task),
1786     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1787     _claim_token(Threads::thread_claim_token()) {}
1788 
1789   void do_thread(Thread* thread) {
1790     if (thread->claim_threads_do(true, _claim_token)) {
1791       SATBMarkQueue& queue = G1ThreadLocalData::satb_mark_queue(thread);
1792       queue.apply_closure_and_empty(&_cm_satb_cl);
1793       if (thread->is_Java_thread()) {
1794         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1795         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1796         // * Alive if on the stack of an executing method
1797         // * Weakly reachable otherwise
1798         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1799         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1800         JavaThread* jt = (JavaThread*)thread;
1801         jt->nmethods_do(&_code_cl);
1802       }
1803     }
1804   }
1805 };
1806 
1807 class G1CMRemarkTask : public AbstractGangTask {
1808   G1ConcurrentMark* _cm;
1809 public:
1810   void work(uint worker_id) {
1811     G1CMTask* task = _cm->task(worker_id);
1812     task->record_start_time();
1813     {
1814       ResourceMark rm;
1815       HandleMark hm;
1816 
1817       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1818       Threads::threads_do(&threads_f);
1819     }
1820 
1821     do {
1822       task->do_marking_step(1000000000.0 /* something very large */,
1823                             true         /* do_termination       */,
1824                             false        /* is_serial            */);
1825     } while (task->has_aborted() && !_cm->has_overflown());
1826     // If we overflow, then we do not want to restart. We instead
1827     // want to abort remark and do concurrent marking again.
1828     task->record_end_time();
1829   }
1830 
1831   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1832     AbstractGangTask("Par Remark"), _cm(cm) {
1833     _cm->terminator()->reset_for_reuse(active_workers);
1834   }
1835 };
1836 
1837 void G1ConcurrentMark::finalize_marking() {
1838   ResourceMark rm;
1839   HandleMark   hm;
1840 
1841   _g1h->ensure_parsability(false);
1842 
1843   // this is remark, so we'll use up all active threads
1844   uint active_workers = _g1h->workers()->active_workers();
1845   set_concurrency_and_phase(active_workers, false /* concurrent */);
1846   // Leave _parallel_marking_threads at it's
1847   // value originally calculated in the G1ConcurrentMark
1848   // constructor and pass values of the active workers
1849   // through the gang in the task.
1850 
1851   {
1852     StrongRootsScope srs(active_workers);
1853 
1854     G1CMRemarkTask remarkTask(this, active_workers);
1855     // We will start all available threads, even if we decide that the
1856     // active_workers will be fewer. The extra ones will just bail out
1857     // immediately.
1858     _g1h->workers()->run_task(&remarkTask);
1859   }
1860 
1861   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1862   guarantee(has_overflown() ||
1863             satb_mq_set.completed_buffers_num() == 0,
1864             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1865             BOOL_TO_STR(has_overflown()),
1866             satb_mq_set.completed_buffers_num());
1867 
1868   print_stats();
1869 }
1870 
1871 void G1ConcurrentMark::flush_all_task_caches() {
1872   size_t hits = 0;
1873   size_t misses = 0;
1874   for (uint i = 0; i < _max_num_tasks; i++) {
1875     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1876     hits += stats.first;
1877     misses += stats.second;
1878   }
1879   size_t sum = hits + misses;
1880   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1881                        hits, misses, percent_of(hits, sum));
1882 }
1883 
1884 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1885   _prev_mark_bitmap->clear_range(mr);
1886 }
1887 
1888 HeapRegion*
1889 G1ConcurrentMark::claim_region(uint worker_id) {
1890   // "checkpoint" the finger
1891   HeapWord* finger = _finger;
1892 
1893   while (finger < _heap.end()) {
1894     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1895 
1896     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1897     // Make sure that the reads below do not float before loading curr_region.
1898     OrderAccess::loadload();
1899     // Above heap_region_containing may return NULL as we always scan claim
1900     // until the end of the heap. In this case, just jump to the next region.
1901     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1902 
1903     // Is the gap between reading the finger and doing the CAS too long?
1904     HeapWord* res = Atomic::cmpxchg(&_finger, finger, end);
1905     if (res == finger && curr_region != NULL) {
1906       // we succeeded
1907       HeapWord*   bottom        = curr_region->bottom();
1908       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1909 
1910       // notice that _finger == end cannot be guaranteed here since,
1911       // someone else might have moved the finger even further
1912       assert(_finger >= end, "the finger should have moved forward");
1913 
1914       if (limit > bottom) {
1915         return curr_region;
1916       } else {
1917         assert(limit == bottom,
1918                "the region limit should be at bottom");
1919         // we return NULL and the caller should try calling
1920         // claim_region() again.
1921         return NULL;
1922       }
1923     } else {
1924       assert(_finger > finger, "the finger should have moved forward");
1925       // read it again
1926       finger = _finger;
1927     }
1928   }
1929 
1930   return NULL;
1931 }
1932 
1933 #ifndef PRODUCT
1934 class VerifyNoCSetOops {
1935   G1CollectedHeap* _g1h;
1936   const char* _phase;
1937   int _info;
1938 
1939 public:
1940   VerifyNoCSetOops(const char* phase, int info = -1) :
1941     _g1h(G1CollectedHeap::heap()),
1942     _phase(phase),
1943     _info(info)
1944   { }
1945 
1946   void operator()(G1TaskQueueEntry task_entry) const {
1947     if (task_entry.is_array_slice()) {
1948       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1949       return;
1950     }
1951     guarantee(oopDesc::is_oop(task_entry.obj()),
1952               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1953               p2i(task_entry.obj()), _phase, _info);
1954     HeapRegion* r = _g1h->heap_region_containing(task_entry.obj());
1955     guarantee(!(r->in_collection_set() || r->has_index_in_opt_cset()),
1956               "obj " PTR_FORMAT " from %s (%d) in region %u in (optional) collection set",
1957               p2i(task_entry.obj()), _phase, _info, r->hrm_index());
1958   }
1959 };
1960 
1961 void G1ConcurrentMark::verify_no_collection_set_oops() {
1962   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1963   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1964     return;
1965   }
1966 
1967   // Verify entries on the global mark stack
1968   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1969 
1970   // Verify entries on the task queues
1971   for (uint i = 0; i < _max_num_tasks; ++i) {
1972     G1CMTaskQueue* queue = _task_queues->queue(i);
1973     queue->iterate(VerifyNoCSetOops("Queue", i));
1974   }
1975 
1976   // Verify the global finger
1977   HeapWord* global_finger = finger();
1978   if (global_finger != NULL && global_finger < _heap.end()) {
1979     // Since we always iterate over all regions, we might get a NULL HeapRegion
1980     // here.
1981     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1982     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1983               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1984               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1985   }
1986 
1987   // Verify the task fingers
1988   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1989   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1990     G1CMTask* task = _tasks[i];
1991     HeapWord* task_finger = task->finger();
1992     if (task_finger != NULL && task_finger < _heap.end()) {
1993       // See above note on the global finger verification.
1994       HeapRegion* r = _g1h->heap_region_containing(task_finger);
1995       guarantee(r == NULL || task_finger == r->bottom() ||
1996                 !r->in_collection_set() || !r->has_index_in_opt_cset(),
1997                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1998                 p2i(task_finger), HR_FORMAT_PARAMS(r));
1999     }
2000   }
2001 }
2002 #endif // PRODUCT
2003 
2004 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
2005   _g1h->rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
2006 }
2007 
2008 void G1ConcurrentMark::print_stats() {
2009   if (!log_is_enabled(Debug, gc, stats)) {
2010     return;
2011   }
2012   log_debug(gc, stats)("---------------------------------------------------------------------");
2013   for (size_t i = 0; i < _num_active_tasks; ++i) {
2014     _tasks[i]->print_stats();
2015     log_debug(gc, stats)("---------------------------------------------------------------------");
2016   }
2017 }
2018 
2019 void G1ConcurrentMark::concurrent_cycle_abort() {
2020   if (!cm_thread()->during_cycle() || _has_aborted) {
2021     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2022     return;
2023   }
2024 
2025   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2026   // concurrent bitmap clearing.
2027   {
2028     GCTraceTime(Debug, gc) debug("Clear Next Bitmap");
2029     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
2030   }
2031   // Note we cannot clear the previous marking bitmap here
2032   // since VerifyDuringGC verifies the objects marked during
2033   // a full GC against the previous bitmap.
2034 
2035   // Empty mark stack
2036   reset_marking_for_restart();
2037   for (uint i = 0; i < _max_num_tasks; ++i) {
2038     _tasks[i]->clear_region_fields();
2039   }
2040   _first_overflow_barrier_sync.abort();
2041   _second_overflow_barrier_sync.abort();
2042   _has_aborted = true;
2043 
2044   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2045   satb_mq_set.abandon_partial_marking();
2046   // This can be called either during or outside marking, we'll read
2047   // the expected_active value from the SATB queue set.
2048   satb_mq_set.set_active_all_threads(
2049                                  false, /* new active value */
2050                                  satb_mq_set.is_active() /* expected_active */);
2051 }
2052 
2053 static void print_ms_time_info(const char* prefix, const char* name,
2054                                NumberSeq& ns) {
2055   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2056                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2057   if (ns.num() > 0) {
2058     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2059                            prefix, ns.sd(), ns.maximum());
2060   }
2061 }
2062 
2063 void G1ConcurrentMark::print_summary_info() {
2064   Log(gc, marking) log;
2065   if (!log.is_trace()) {
2066     return;
2067   }
2068 
2069   log.trace(" Concurrent marking:");
2070   print_ms_time_info("  ", "init marks", _init_times);
2071   print_ms_time_info("  ", "remarks", _remark_times);
2072   {
2073     print_ms_time_info("     ", "final marks", _remark_mark_times);
2074     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2075 
2076   }
2077   print_ms_time_info("  ", "cleanups", _cleanup_times);
2078   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2079             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2080   log.trace("  Total stop_world time = %8.2f s.",
2081             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2082   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2083             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2084 }
2085 
2086 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2087   _concurrent_workers->print_worker_threads_on(st);
2088 }
2089 
2090 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2091   _concurrent_workers->threads_do(tc);
2092 }
2093 
2094 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2095   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2096                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2097   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2098   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2099 }
2100 
2101 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2102   ReferenceProcessor* result = g1h->ref_processor_cm();
2103   assert(result != NULL, "CM reference processor should not be NULL");
2104   return result;
2105 }
2106 
2107 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2108                                G1CMTask* task)
2109   : MetadataVisitingOopIterateClosure(get_cm_oop_closure_ref_processor(g1h)),
2110     _g1h(g1h), _task(task)
2111 { }
2112 
2113 void G1CMTask::setup_for_region(HeapRegion* hr) {
2114   assert(hr != NULL,
2115         "claim_region() should have filtered out NULL regions");
2116   _curr_region  = hr;
2117   _finger       = hr->bottom();
2118   update_region_limit();
2119 }
2120 
2121 void G1CMTask::update_region_limit() {
2122   HeapRegion* hr            = _curr_region;
2123   HeapWord* bottom          = hr->bottom();
2124   HeapWord* limit           = hr->next_top_at_mark_start();
2125 
2126   if (limit == bottom) {
2127     // The region was collected underneath our feet.
2128     // We set the finger to bottom to ensure that the bitmap
2129     // iteration that will follow this will not do anything.
2130     // (this is not a condition that holds when we set the region up,
2131     // as the region is not supposed to be empty in the first place)
2132     _finger = bottom;
2133   } else if (limit >= _region_limit) {
2134     assert(limit >= _finger, "peace of mind");
2135   } else {
2136     assert(limit < _region_limit, "only way to get here");
2137     // This can happen under some pretty unusual circumstances.  An
2138     // evacuation pause empties the region underneath our feet (NTAMS
2139     // at bottom). We then do some allocation in the region (NTAMS
2140     // stays at bottom), followed by the region being used as a GC
2141     // alloc region (NTAMS will move to top() and the objects
2142     // originally below it will be grayed). All objects now marked in
2143     // the region are explicitly grayed, if below the global finger,
2144     // and we do not need in fact to scan anything else. So, we simply
2145     // set _finger to be limit to ensure that the bitmap iteration
2146     // doesn't do anything.
2147     _finger = limit;
2148   }
2149 
2150   _region_limit = limit;
2151 }
2152 
2153 void G1CMTask::giveup_current_region() {
2154   assert(_curr_region != NULL, "invariant");
2155   clear_region_fields();
2156 }
2157 
2158 void G1CMTask::clear_region_fields() {
2159   // Values for these three fields that indicate that we're not
2160   // holding on to a region.
2161   _curr_region   = NULL;
2162   _finger        = NULL;
2163   _region_limit  = NULL;
2164 }
2165 
2166 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2167   if (cm_oop_closure == NULL) {
2168     assert(_cm_oop_closure != NULL, "invariant");
2169   } else {
2170     assert(_cm_oop_closure == NULL, "invariant");
2171   }
2172   _cm_oop_closure = cm_oop_closure;
2173 }
2174 
2175 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2176   guarantee(next_mark_bitmap != NULL, "invariant");
2177   _next_mark_bitmap              = next_mark_bitmap;
2178   clear_region_fields();
2179 
2180   _calls                         = 0;
2181   _elapsed_time_ms               = 0.0;
2182   _termination_time_ms           = 0.0;
2183   _termination_start_time_ms     = 0.0;
2184 
2185   _mark_stats_cache.reset();
2186 }
2187 
2188 bool G1CMTask::should_exit_termination() {
2189   if (!regular_clock_call()) {
2190     return true;
2191   }
2192 
2193   // This is called when we are in the termination protocol. We should
2194   // quit if, for some reason, this task wants to abort or the global
2195   // stack is not empty (this means that we can get work from it).
2196   return !_cm->mark_stack_empty() || has_aborted();
2197 }
2198 
2199 void G1CMTask::reached_limit() {
2200   assert(_words_scanned >= _words_scanned_limit ||
2201          _refs_reached >= _refs_reached_limit ,
2202          "shouldn't have been called otherwise");
2203   abort_marking_if_regular_check_fail();
2204 }
2205 
2206 bool G1CMTask::regular_clock_call() {
2207   if (has_aborted()) {
2208     return false;
2209   }
2210 
2211   // First, we need to recalculate the words scanned and refs reached
2212   // limits for the next clock call.
2213   recalculate_limits();
2214 
2215   // During the regular clock call we do the following
2216 
2217   // (1) If an overflow has been flagged, then we abort.
2218   if (_cm->has_overflown()) {
2219     return false;
2220   }
2221 
2222   // If we are not concurrent (i.e. we're doing remark) we don't need
2223   // to check anything else. The other steps are only needed during
2224   // the concurrent marking phase.
2225   if (!_cm->concurrent()) {
2226     return true;
2227   }
2228 
2229   // (2) If marking has been aborted for Full GC, then we also abort.
2230   if (_cm->has_aborted()) {
2231     return false;
2232   }
2233 
2234   double curr_time_ms = os::elapsedVTime() * 1000.0;
2235 
2236   // (4) We check whether we should yield. If we have to, then we abort.
2237   if (SuspendibleThreadSet::should_yield()) {
2238     // We should yield. To do this we abort the task. The caller is
2239     // responsible for yielding.
2240     return false;
2241   }
2242 
2243   // (5) We check whether we've reached our time quota. If we have,
2244   // then we abort.
2245   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2246   if (elapsed_time_ms > _time_target_ms) {
2247     _has_timed_out = true;
2248     return false;
2249   }
2250 
2251   // (6) Finally, we check whether there are enough completed STAB
2252   // buffers available for processing. If there are, we abort.
2253   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2254   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2255     // we do need to process SATB buffers, we'll abort and restart
2256     // the marking task to do so
2257     return false;
2258   }
2259   return true;
2260 }
2261 
2262 void G1CMTask::recalculate_limits() {
2263   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2264   _words_scanned_limit      = _real_words_scanned_limit;
2265 
2266   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2267   _refs_reached_limit       = _real_refs_reached_limit;
2268 }
2269 
2270 void G1CMTask::decrease_limits() {
2271   // This is called when we believe that we're going to do an infrequent
2272   // operation which will increase the per byte scanned cost (i.e. move
2273   // entries to/from the global stack). It basically tries to decrease the
2274   // scanning limit so that the clock is called earlier.
2275 
2276   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2277   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2278 }
2279 
2280 void G1CMTask::move_entries_to_global_stack() {
2281   // Local array where we'll store the entries that will be popped
2282   // from the local queue.
2283   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2284 
2285   size_t n = 0;
2286   G1TaskQueueEntry task_entry;
2287   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2288     buffer[n] = task_entry;
2289     ++n;
2290   }
2291   if (n < G1CMMarkStack::EntriesPerChunk) {
2292     buffer[n] = G1TaskQueueEntry();
2293   }
2294 
2295   if (n > 0) {
2296     if (!_cm->mark_stack_push(buffer)) {
2297       set_has_aborted();
2298     }
2299   }
2300 
2301   // This operation was quite expensive, so decrease the limits.
2302   decrease_limits();
2303 }
2304 
2305 bool G1CMTask::get_entries_from_global_stack() {
2306   // Local array where we'll store the entries that will be popped
2307   // from the global stack.
2308   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2309 
2310   if (!_cm->mark_stack_pop(buffer)) {
2311     return false;
2312   }
2313 
2314   // We did actually pop at least one entry.
2315   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2316     G1TaskQueueEntry task_entry = buffer[i];
2317     if (task_entry.is_null()) {
2318       break;
2319     }
2320     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2321     bool success = _task_queue->push(task_entry);
2322     // We only call this when the local queue is empty or under a
2323     // given target limit. So, we do not expect this push to fail.
2324     assert(success, "invariant");
2325   }
2326 
2327   // This operation was quite expensive, so decrease the limits
2328   decrease_limits();
2329   return true;
2330 }
2331 
2332 void G1CMTask::drain_local_queue(bool partially) {
2333   if (has_aborted()) {
2334     return;
2335   }
2336 
2337   // Decide what the target size is, depending whether we're going to
2338   // drain it partially (so that other tasks can steal if they run out
2339   // of things to do) or totally (at the very end).
2340   size_t target_size;
2341   if (partially) {
2342     target_size = MIN2((size_t)_task_queue->max_elems()/3, (size_t)GCDrainStackTargetSize);
2343   } else {
2344     target_size = 0;
2345   }
2346 
2347   if (_task_queue->size() > target_size) {
2348     G1TaskQueueEntry entry;
2349     bool ret = _task_queue->pop_local(entry);
2350     while (ret) {
2351       scan_task_entry(entry);
2352       if (_task_queue->size() <= target_size || has_aborted()) {
2353         ret = false;
2354       } else {
2355         ret = _task_queue->pop_local(entry);
2356       }
2357     }
2358   }
2359 }
2360 
2361 void G1CMTask::drain_global_stack(bool partially) {
2362   if (has_aborted()) {
2363     return;
2364   }
2365 
2366   // We have a policy to drain the local queue before we attempt to
2367   // drain the global stack.
2368   assert(partially || _task_queue->size() == 0, "invariant");
2369 
2370   // Decide what the target size is, depending whether we're going to
2371   // drain it partially (so that other tasks can steal if they run out
2372   // of things to do) or totally (at the very end).
2373   // Notice that when draining the global mark stack partially, due to the racyness
2374   // of the mark stack size update we might in fact drop below the target. But,
2375   // this is not a problem.
2376   // In case of total draining, we simply process until the global mark stack is
2377   // totally empty, disregarding the size counter.
2378   if (partially) {
2379     size_t const target_size = _cm->partial_mark_stack_size_target();
2380     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2381       if (get_entries_from_global_stack()) {
2382         drain_local_queue(partially);
2383       }
2384     }
2385   } else {
2386     while (!has_aborted() && get_entries_from_global_stack()) {
2387       drain_local_queue(partially);
2388     }
2389   }
2390 }
2391 
2392 // SATB Queue has several assumptions on whether to call the par or
2393 // non-par versions of the methods. this is why some of the code is
2394 // replicated. We should really get rid of the single-threaded version
2395 // of the code to simplify things.
2396 void G1CMTask::drain_satb_buffers() {
2397   if (has_aborted()) {
2398     return;
2399   }
2400 
2401   // We set this so that the regular clock knows that we're in the
2402   // middle of draining buffers and doesn't set the abort flag when it
2403   // notices that SATB buffers are available for draining. It'd be
2404   // very counter productive if it did that. :-)
2405   _draining_satb_buffers = true;
2406 
2407   G1CMSATBBufferClosure satb_cl(this, _g1h);
2408   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2409 
2410   // This keeps claiming and applying the closure to completed buffers
2411   // until we run out of buffers or we need to abort.
2412   while (!has_aborted() &&
2413          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2414     abort_marking_if_regular_check_fail();
2415   }
2416 
2417   // Can't assert qset is empty here, even if not aborted.  If concurrent,
2418   // some other thread might be adding to the queue.  If not concurrent,
2419   // some other thread might have won the race for the last buffer, but
2420   // has not yet decremented the count.
2421 
2422   _draining_satb_buffers = false;
2423 
2424   // again, this was a potentially expensive operation, decrease the
2425   // limits to get the regular clock call early
2426   decrease_limits();
2427 }
2428 
2429 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2430   _mark_stats_cache.reset(region_idx);
2431 }
2432 
2433 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2434   return _mark_stats_cache.evict_all();
2435 }
2436 
2437 void G1CMTask::print_stats() {
2438   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2439   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2440                        _elapsed_time_ms, _termination_time_ms);
2441   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2442                        _step_times_ms.num(),
2443                        _step_times_ms.avg(),
2444                        _step_times_ms.sd(),
2445                        _step_times_ms.maximum(),
2446                        _step_times_ms.sum());
2447   size_t const hits = _mark_stats_cache.hits();
2448   size_t const misses = _mark_stats_cache.misses();
2449   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2450                        hits, misses, percent_of(hits, hits + misses));
2451 }
2452 
2453 bool G1ConcurrentMark::try_stealing(uint worker_id, G1TaskQueueEntry& task_entry) {
2454   return _task_queues->steal(worker_id, task_entry);
2455 }
2456 
2457 /*****************************************************************************
2458 
2459     The do_marking_step(time_target_ms, ...) method is the building
2460     block of the parallel marking framework. It can be called in parallel
2461     with other invocations of do_marking_step() on different tasks
2462     (but only one per task, obviously) and concurrently with the
2463     mutator threads, or during remark, hence it eliminates the need
2464     for two versions of the code. When called during remark, it will
2465     pick up from where the task left off during the concurrent marking
2466     phase. Interestingly, tasks are also claimable during evacuation
2467     pauses too, since do_marking_step() ensures that it aborts before
2468     it needs to yield.
2469 
2470     The data structures that it uses to do marking work are the
2471     following:
2472 
2473       (1) Marking Bitmap. If there are gray objects that appear only
2474       on the bitmap (this happens either when dealing with an overflow
2475       or when the initial marking phase has simply marked the roots
2476       and didn't push them on the stack), then tasks claim heap
2477       regions whose bitmap they then scan to find gray objects. A
2478       global finger indicates where the end of the last claimed region
2479       is. A local finger indicates how far into the region a task has
2480       scanned. The two fingers are used to determine how to gray an
2481       object (i.e. whether simply marking it is OK, as it will be
2482       visited by a task in the future, or whether it needs to be also
2483       pushed on a stack).
2484 
2485       (2) Local Queue. The local queue of the task which is accessed
2486       reasonably efficiently by the task. Other tasks can steal from
2487       it when they run out of work. Throughout the marking phase, a
2488       task attempts to keep its local queue short but not totally
2489       empty, so that entries are available for stealing by other
2490       tasks. Only when there is no more work, a task will totally
2491       drain its local queue.
2492 
2493       (3) Global Mark Stack. This handles local queue overflow. During
2494       marking only sets of entries are moved between it and the local
2495       queues, as access to it requires a mutex and more fine-grain
2496       interaction with it which might cause contention. If it
2497       overflows, then the marking phase should restart and iterate
2498       over the bitmap to identify gray objects. Throughout the marking
2499       phase, tasks attempt to keep the global mark stack at a small
2500       length but not totally empty, so that entries are available for
2501       popping by other tasks. Only when there is no more work, tasks
2502       will totally drain the global mark stack.
2503 
2504       (4) SATB Buffer Queue. This is where completed SATB buffers are
2505       made available. Buffers are regularly removed from this queue
2506       and scanned for roots, so that the queue doesn't get too
2507       long. During remark, all completed buffers are processed, as
2508       well as the filled in parts of any uncompleted buffers.
2509 
2510     The do_marking_step() method tries to abort when the time target
2511     has been reached. There are a few other cases when the
2512     do_marking_step() method also aborts:
2513 
2514       (1) When the marking phase has been aborted (after a Full GC).
2515 
2516       (2) When a global overflow (on the global stack) has been
2517       triggered. Before the task aborts, it will actually sync up with
2518       the other tasks to ensure that all the marking data structures
2519       (local queues, stacks, fingers etc.)  are re-initialized so that
2520       when do_marking_step() completes, the marking phase can
2521       immediately restart.
2522 
2523       (3) When enough completed SATB buffers are available. The
2524       do_marking_step() method only tries to drain SATB buffers right
2525       at the beginning. So, if enough buffers are available, the
2526       marking step aborts and the SATB buffers are processed at
2527       the beginning of the next invocation.
2528 
2529       (4) To yield. when we have to yield then we abort and yield
2530       right at the end of do_marking_step(). This saves us from a lot
2531       of hassle as, by yielding we might allow a Full GC. If this
2532       happens then objects will be compacted underneath our feet, the
2533       heap might shrink, etc. We save checking for this by just
2534       aborting and doing the yield right at the end.
2535 
2536     From the above it follows that the do_marking_step() method should
2537     be called in a loop (or, otherwise, regularly) until it completes.
2538 
2539     If a marking step completes without its has_aborted() flag being
2540     true, it means it has completed the current marking phase (and
2541     also all other marking tasks have done so and have all synced up).
2542 
2543     A method called regular_clock_call() is invoked "regularly" (in
2544     sub ms intervals) throughout marking. It is this clock method that
2545     checks all the abort conditions which were mentioned above and
2546     decides when the task should abort. A work-based scheme is used to
2547     trigger this clock method: when the number of object words the
2548     marking phase has scanned or the number of references the marking
2549     phase has visited reach a given limit. Additional invocations to
2550     the method clock have been planted in a few other strategic places
2551     too. The initial reason for the clock method was to avoid calling
2552     vtime too regularly, as it is quite expensive. So, once it was in
2553     place, it was natural to piggy-back all the other conditions on it
2554     too and not constantly check them throughout the code.
2555 
2556     If do_termination is true then do_marking_step will enter its
2557     termination protocol.
2558 
2559     The value of is_serial must be true when do_marking_step is being
2560     called serially (i.e. by the VMThread) and do_marking_step should
2561     skip any synchronization in the termination and overflow code.
2562     Examples include the serial remark code and the serial reference
2563     processing closures.
2564 
2565     The value of is_serial must be false when do_marking_step is
2566     being called by any of the worker threads in a work gang.
2567     Examples include the concurrent marking code (CMMarkingTask),
2568     the MT remark code, and the MT reference processing closures.
2569 
2570  *****************************************************************************/
2571 
2572 void G1CMTask::do_marking_step(double time_target_ms,
2573                                bool do_termination,
2574                                bool is_serial) {
2575   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2576 
2577   _start_time_ms = os::elapsedVTime() * 1000.0;
2578 
2579   // If do_stealing is true then do_marking_step will attempt to
2580   // steal work from the other G1CMTasks. It only makes sense to
2581   // enable stealing when the termination protocol is enabled
2582   // and do_marking_step() is not being called serially.
2583   bool do_stealing = do_termination && !is_serial;
2584 
2585   G1Predictions const& predictor = _g1h->policy()->predictor();
2586   double diff_prediction_ms = predictor.predict_zero_bounded(&_marking_step_diff_ms);
2587   _time_target_ms = time_target_ms - diff_prediction_ms;
2588 
2589   // set up the variables that are used in the work-based scheme to
2590   // call the regular clock method
2591   _words_scanned = 0;
2592   _refs_reached  = 0;
2593   recalculate_limits();
2594 
2595   // clear all flags
2596   clear_has_aborted();
2597   _has_timed_out = false;
2598   _draining_satb_buffers = false;
2599 
2600   ++_calls;
2601 
2602   // Set up the bitmap and oop closures. Anything that uses them is
2603   // eventually called from this method, so it is OK to allocate these
2604   // statically.
2605   G1CMBitMapClosure bitmap_closure(this, _cm);
2606   G1CMOopClosure cm_oop_closure(_g1h, this);
2607   set_cm_oop_closure(&cm_oop_closure);
2608 
2609   if (_cm->has_overflown()) {
2610     // This can happen if the mark stack overflows during a GC pause
2611     // and this task, after a yield point, restarts. We have to abort
2612     // as we need to get into the overflow protocol which happens
2613     // right at the end of this task.
2614     set_has_aborted();
2615   }
2616 
2617   // First drain any available SATB buffers. After this, we will not
2618   // look at SATB buffers before the next invocation of this method.
2619   // If enough completed SATB buffers are queued up, the regular clock
2620   // will abort this task so that it restarts.
2621   drain_satb_buffers();
2622   // ...then partially drain the local queue and the global stack
2623   drain_local_queue(true);
2624   drain_global_stack(true);
2625 
2626   do {
2627     if (!has_aborted() && _curr_region != NULL) {
2628       // This means that we're already holding on to a region.
2629       assert(_finger != NULL, "if region is not NULL, then the finger "
2630              "should not be NULL either");
2631 
2632       // We might have restarted this task after an evacuation pause
2633       // which might have evacuated the region we're holding on to
2634       // underneath our feet. Let's read its limit again to make sure
2635       // that we do not iterate over a region of the heap that
2636       // contains garbage (update_region_limit() will also move
2637       // _finger to the start of the region if it is found empty).
2638       update_region_limit();
2639       // We will start from _finger not from the start of the region,
2640       // as we might be restarting this task after aborting half-way
2641       // through scanning this region. In this case, _finger points to
2642       // the address where we last found a marked object. If this is a
2643       // fresh region, _finger points to start().
2644       MemRegion mr = MemRegion(_finger, _region_limit);
2645 
2646       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2647              "humongous regions should go around loop once only");
2648 
2649       // Some special cases:
2650       // If the memory region is empty, we can just give up the region.
2651       // If the current region is humongous then we only need to check
2652       // the bitmap for the bit associated with the start of the object,
2653       // scan the object if it's live, and give up the region.
2654       // Otherwise, let's iterate over the bitmap of the part of the region
2655       // that is left.
2656       // If the iteration is successful, give up the region.
2657       if (mr.is_empty()) {
2658         giveup_current_region();
2659         abort_marking_if_regular_check_fail();
2660       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2661         if (_next_mark_bitmap->is_marked(mr.start())) {
2662           // The object is marked - apply the closure
2663           bitmap_closure.do_addr(mr.start());
2664         }
2665         // Even if this task aborted while scanning the humongous object
2666         // we can (and should) give up the current region.
2667         giveup_current_region();
2668         abort_marking_if_regular_check_fail();
2669       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2670         giveup_current_region();
2671         abort_marking_if_regular_check_fail();
2672       } else {
2673         assert(has_aborted(), "currently the only way to do so");
2674         // The only way to abort the bitmap iteration is to return
2675         // false from the do_bit() method. However, inside the
2676         // do_bit() method we move the _finger to point to the
2677         // object currently being looked at. So, if we bail out, we
2678         // have definitely set _finger to something non-null.
2679         assert(_finger != NULL, "invariant");
2680 
2681         // Region iteration was actually aborted. So now _finger
2682         // points to the address of the object we last scanned. If we
2683         // leave it there, when we restart this task, we will rescan
2684         // the object. It is easy to avoid this. We move the finger by
2685         // enough to point to the next possible object header.
2686         assert(_finger < _region_limit, "invariant");
2687         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2688         // Check if bitmap iteration was aborted while scanning the last object
2689         if (new_finger >= _region_limit) {
2690           giveup_current_region();
2691         } else {
2692           move_finger_to(new_finger);
2693         }
2694       }
2695     }
2696     // At this point we have either completed iterating over the
2697     // region we were holding on to, or we have aborted.
2698 
2699     // We then partially drain the local queue and the global stack.
2700     // (Do we really need this?)
2701     drain_local_queue(true);
2702     drain_global_stack(true);
2703 
2704     // Read the note on the claim_region() method on why it might
2705     // return NULL with potentially more regions available for
2706     // claiming and why we have to check out_of_regions() to determine
2707     // whether we're done or not.
2708     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2709       // We are going to try to claim a new region. We should have
2710       // given up on the previous one.
2711       // Separated the asserts so that we know which one fires.
2712       assert(_curr_region  == NULL, "invariant");
2713       assert(_finger       == NULL, "invariant");
2714       assert(_region_limit == NULL, "invariant");
2715       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2716       if (claimed_region != NULL) {
2717         // Yes, we managed to claim one
2718         setup_for_region(claimed_region);
2719         assert(_curr_region == claimed_region, "invariant");
2720       }
2721       // It is important to call the regular clock here. It might take
2722       // a while to claim a region if, for example, we hit a large
2723       // block of empty regions. So we need to call the regular clock
2724       // method once round the loop to make sure it's called
2725       // frequently enough.
2726       abort_marking_if_regular_check_fail();
2727     }
2728 
2729     if (!has_aborted() && _curr_region == NULL) {
2730       assert(_cm->out_of_regions(),
2731              "at this point we should be out of regions");
2732     }
2733   } while ( _curr_region != NULL && !has_aborted());
2734 
2735   if (!has_aborted()) {
2736     // We cannot check whether the global stack is empty, since other
2737     // tasks might be pushing objects to it concurrently.
2738     assert(_cm->out_of_regions(),
2739            "at this point we should be out of regions");
2740     // Try to reduce the number of available SATB buffers so that
2741     // remark has less work to do.
2742     drain_satb_buffers();
2743   }
2744 
2745   // Since we've done everything else, we can now totally drain the
2746   // local queue and global stack.
2747   drain_local_queue(false);
2748   drain_global_stack(false);
2749 
2750   // Attempt at work stealing from other task's queues.
2751   if (do_stealing && !has_aborted()) {
2752     // We have not aborted. This means that we have finished all that
2753     // we could. Let's try to do some stealing...
2754 
2755     // We cannot check whether the global stack is empty, since other
2756     // tasks might be pushing objects to it concurrently.
2757     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2758            "only way to reach here");
2759     while (!has_aborted()) {
2760       G1TaskQueueEntry entry;
2761       if (_cm->try_stealing(_worker_id, entry)) {
2762         scan_task_entry(entry);
2763 
2764         // And since we're towards the end, let's totally drain the
2765         // local queue and global stack.
2766         drain_local_queue(false);
2767         drain_global_stack(false);
2768       } else {
2769         break;
2770       }
2771     }
2772   }
2773 
2774   // We still haven't aborted. Now, let's try to get into the
2775   // termination protocol.
2776   if (do_termination && !has_aborted()) {
2777     // We cannot check whether the global stack is empty, since other
2778     // tasks might be concurrently pushing objects on it.
2779     // Separated the asserts so that we know which one fires.
2780     assert(_cm->out_of_regions(), "only way to reach here");
2781     assert(_task_queue->size() == 0, "only way to reach here");
2782     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2783 
2784     // The G1CMTask class also extends the TerminatorTerminator class,
2785     // hence its should_exit_termination() method will also decide
2786     // whether to exit the termination protocol or not.
2787     bool finished = (is_serial ||
2788                      _cm->terminator()->offer_termination(this));
2789     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2790     _termination_time_ms +=
2791       termination_end_time_ms - _termination_start_time_ms;
2792 
2793     if (finished) {
2794       // We're all done.
2795 
2796       // We can now guarantee that the global stack is empty, since
2797       // all other tasks have finished. We separated the guarantees so
2798       // that, if a condition is false, we can immediately find out
2799       // which one.
2800       guarantee(_cm->out_of_regions(), "only way to reach here");
2801       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2802       guarantee(_task_queue->size() == 0, "only way to reach here");
2803       guarantee(!_cm->has_overflown(), "only way to reach here");
2804       guarantee(!has_aborted(), "should never happen if termination has completed");
2805     } else {
2806       // Apparently there's more work to do. Let's abort this task. It
2807       // will restart it and we can hopefully find more things to do.
2808       set_has_aborted();
2809     }
2810   }
2811 
2812   // Mainly for debugging purposes to make sure that a pointer to the
2813   // closure which was statically allocated in this frame doesn't
2814   // escape it by accident.
2815   set_cm_oop_closure(NULL);
2816   double end_time_ms = os::elapsedVTime() * 1000.0;
2817   double elapsed_time_ms = end_time_ms - _start_time_ms;
2818   // Update the step history.
2819   _step_times_ms.add(elapsed_time_ms);
2820 
2821   if (has_aborted()) {
2822     // The task was aborted for some reason.
2823     if (_has_timed_out) {
2824       double diff_ms = elapsed_time_ms - _time_target_ms;
2825       // Keep statistics of how well we did with respect to hitting
2826       // our target only if we actually timed out (if we aborted for
2827       // other reasons, then the results might get skewed).
2828       _marking_step_diff_ms.add(diff_ms);
2829     }
2830 
2831     if (_cm->has_overflown()) {
2832       // This is the interesting one. We aborted because a global
2833       // overflow was raised. This means we have to restart the
2834       // marking phase and start iterating over regions. However, in
2835       // order to do this we have to make sure that all tasks stop
2836       // what they are doing and re-initialize in a safe manner. We
2837       // will achieve this with the use of two barrier sync points.
2838 
2839       if (!is_serial) {
2840         // We only need to enter the sync barrier if being called
2841         // from a parallel context
2842         _cm->enter_first_sync_barrier(_worker_id);
2843 
2844         // When we exit this sync barrier we know that all tasks have
2845         // stopped doing marking work. So, it's now safe to
2846         // re-initialize our data structures.
2847       }
2848 
2849       clear_region_fields();
2850       flush_mark_stats_cache();
2851 
2852       if (!is_serial) {
2853         // If we're executing the concurrent phase of marking, reset the marking
2854         // state; otherwise the marking state is reset after reference processing,
2855         // during the remark pause.
2856         // If we reset here as a result of an overflow during the remark we will
2857         // see assertion failures from any subsequent set_concurrency_and_phase()
2858         // calls.
2859         if (_cm->concurrent() && _worker_id == 0) {
2860           // Worker 0 is responsible for clearing the global data structures because
2861           // of an overflow. During STW we should not clear the overflow flag (in
2862           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2863           // method to abort the pause and restart concurrent marking.
2864           _cm->reset_marking_for_restart();
2865 
2866           log_info(gc, marking)("Concurrent Mark reset for overflow");
2867         }
2868 
2869         // ...and enter the second barrier.
2870         _cm->enter_second_sync_barrier(_worker_id);
2871       }
2872       // At this point, if we're during the concurrent phase of
2873       // marking, everything has been re-initialized and we're
2874       // ready to restart.
2875     }
2876   }
2877 }
2878 
2879 G1CMTask::G1CMTask(uint worker_id,
2880                    G1ConcurrentMark* cm,
2881                    G1CMTaskQueue* task_queue,
2882                    G1RegionMarkStats* mark_stats,
2883                    uint max_regions) :
2884   _objArray_processor(this),
2885   _worker_id(worker_id),
2886   _g1h(G1CollectedHeap::heap()),
2887   _cm(cm),
2888   _next_mark_bitmap(NULL),
2889   _task_queue(task_queue),
2890   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2891   _calls(0),
2892   _time_target_ms(0.0),
2893   _start_time_ms(0.0),
2894   _cm_oop_closure(NULL),
2895   _curr_region(NULL),
2896   _finger(NULL),
2897   _region_limit(NULL),
2898   _words_scanned(0),
2899   _words_scanned_limit(0),
2900   _real_words_scanned_limit(0),
2901   _refs_reached(0),
2902   _refs_reached_limit(0),
2903   _real_refs_reached_limit(0),
2904   _has_aborted(false),
2905   _has_timed_out(false),
2906   _draining_satb_buffers(false),
2907   _step_times_ms(),
2908   _elapsed_time_ms(0.0),
2909   _termination_time_ms(0.0),
2910   _termination_start_time_ms(0.0),
2911   _marking_step_diff_ms()
2912 {
2913   guarantee(task_queue != NULL, "invariant");
2914 
2915   _marking_step_diff_ms.add(0.5);
2916 }
2917 
2918 // These are formatting macros that are used below to ensure
2919 // consistent formatting. The *_H_* versions are used to format the
2920 // header for a particular value and they should be kept consistent
2921 // with the corresponding macro. Also note that most of the macros add
2922 // the necessary white space (as a prefix) which makes them a bit
2923 // easier to compose.
2924 
2925 // All the output lines are prefixed with this string to be able to
2926 // identify them easily in a large log file.
2927 #define G1PPRL_LINE_PREFIX            "###"
2928 
2929 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2930 #ifdef _LP64
2931 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2932 #else // _LP64
2933 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2934 #endif // _LP64
2935 
2936 // For per-region info
2937 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2938 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2939 #define G1PPRL_STATE_FORMAT           "   %-5s"
2940 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2941 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2942 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2943 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2944 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2945 
2946 // For summary info
2947 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2948 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2949 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2950 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2951 
2952 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2953   _total_used_bytes(0), _total_capacity_bytes(0),
2954   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2955   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2956 {
2957   if (!log_is_enabled(Trace, gc, liveness)) {
2958     return;
2959   }
2960 
2961   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2962   MemRegion g1_reserved = g1h->g1_reserved();
2963   double now = os::elapsedTime();
2964 
2965   // Print the header of the output.
2966   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2967   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2968                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2969                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2970                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2971                           HeapRegion::GrainBytes);
2972   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2973   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2974                           G1PPRL_TYPE_H_FORMAT
2975                           G1PPRL_ADDR_BASE_H_FORMAT
2976                           G1PPRL_BYTE_H_FORMAT
2977                           G1PPRL_BYTE_H_FORMAT
2978                           G1PPRL_BYTE_H_FORMAT
2979                           G1PPRL_DOUBLE_H_FORMAT
2980                           G1PPRL_BYTE_H_FORMAT
2981                           G1PPRL_STATE_H_FORMAT
2982                           G1PPRL_BYTE_H_FORMAT,
2983                           "type", "address-range",
2984                           "used", "prev-live", "next-live", "gc-eff",
2985                           "remset", "state", "code-roots");
2986   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2987                           G1PPRL_TYPE_H_FORMAT
2988                           G1PPRL_ADDR_BASE_H_FORMAT
2989                           G1PPRL_BYTE_H_FORMAT
2990                           G1PPRL_BYTE_H_FORMAT
2991                           G1PPRL_BYTE_H_FORMAT
2992                           G1PPRL_DOUBLE_H_FORMAT
2993                           G1PPRL_BYTE_H_FORMAT
2994                           G1PPRL_STATE_H_FORMAT
2995                           G1PPRL_BYTE_H_FORMAT,
2996                           "", "",
2997                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2998                           "(bytes)", "", "(bytes)");
2999 }
3000 
3001 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
3002   if (!log_is_enabled(Trace, gc, liveness)) {
3003     return false;
3004   }
3005 
3006   const char* type       = r->get_type_str();
3007   HeapWord* bottom       = r->bottom();
3008   HeapWord* end          = r->end();
3009   size_t capacity_bytes  = r->capacity();
3010   size_t used_bytes      = r->used();
3011   size_t prev_live_bytes = r->live_bytes();
3012   size_t next_live_bytes = r->next_live_bytes();
3013   double gc_eff          = r->gc_efficiency();
3014   size_t remset_bytes    = r->rem_set()->mem_size();
3015   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3016   const char* remset_type = r->rem_set()->get_short_state_str();
3017 
3018   _total_used_bytes      += used_bytes;
3019   _total_capacity_bytes  += capacity_bytes;
3020   _total_prev_live_bytes += prev_live_bytes;
3021   _total_next_live_bytes += next_live_bytes;
3022   _total_remset_bytes    += remset_bytes;
3023   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3024 
3025   // Print a line for this particular region.
3026   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3027                           G1PPRL_TYPE_FORMAT
3028                           G1PPRL_ADDR_BASE_FORMAT
3029                           G1PPRL_BYTE_FORMAT
3030                           G1PPRL_BYTE_FORMAT
3031                           G1PPRL_BYTE_FORMAT
3032                           G1PPRL_DOUBLE_FORMAT
3033                           G1PPRL_BYTE_FORMAT
3034                           G1PPRL_STATE_FORMAT
3035                           G1PPRL_BYTE_FORMAT,
3036                           type, p2i(bottom), p2i(end),
3037                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3038                           remset_bytes, remset_type, strong_code_roots_bytes);
3039 
3040   return false;
3041 }
3042 
3043 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3044   if (!log_is_enabled(Trace, gc, liveness)) {
3045     return;
3046   }
3047 
3048   // add static memory usages to remembered set sizes
3049   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3050   // Print the footer of the output.
3051   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3052   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3053                          " SUMMARY"
3054                          G1PPRL_SUM_MB_FORMAT("capacity")
3055                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3056                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3057                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3058                          G1PPRL_SUM_MB_FORMAT("remset")
3059                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3060                          bytes_to_mb(_total_capacity_bytes),
3061                          bytes_to_mb(_total_used_bytes),
3062                          percent_of(_total_used_bytes, _total_capacity_bytes),
3063                          bytes_to_mb(_total_prev_live_bytes),
3064                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3065                          bytes_to_mb(_total_next_live_bytes),
3066                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3067                          bytes_to_mb(_total_remset_bytes),
3068                          bytes_to_mb(_total_strong_code_roots_bytes));
3069 }