1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1DirtyCardQueue.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  38 #include "gc/g1/g1StringDedup.hpp"
  39 #include "gc/g1/g1ThreadLocalData.hpp"
  40 #include "gc/g1/g1Trace.hpp"
  41 #include "gc/g1/heapRegion.inline.hpp"
  42 #include "gc/g1/heapRegionRemSet.hpp"
  43 #include "gc/g1/heapRegionSet.inline.hpp"
  44 #include "gc/shared/gcId.hpp"
  45 #include "gc/shared/gcTimer.hpp"
  46 #include "gc/shared/gcTraceTime.inline.hpp"
  47 #include "gc/shared/gcVMOperations.hpp"
  48 #include "gc/shared/genOopClosures.inline.hpp"
  49 #include "gc/shared/referencePolicy.hpp"
  50 #include "gc/shared/strongRootsScope.hpp"
  51 #include "gc/shared/suspendibleThreadSet.hpp"
  52 #include "gc/shared/taskTerminator.hpp"
  53 #include "gc/shared/taskqueue.inline.hpp"
  54 #include "gc/shared/weakProcessor.inline.hpp"
  55 #include "gc/shared/workerPolicy.hpp"
  56 #include "include/jvm.h"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.hpp"
  60 #include "memory/resourceArea.hpp"
  61 #include "memory/universe.hpp"
  62 #include "oops/access.inline.hpp"
  63 #include "oops/oop.inline.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/orderAccess.hpp"
  68 #include "runtime/prefetch.inline.hpp"
  69 #include "services/memTracker.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/growableArray.hpp"
  72 
  73 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  74   assert(addr < _cm->finger(), "invariant");
  75   assert(addr >= _task->finger(), "invariant");
  76 
  77   // We move that task's local finger along.
  78   _task->move_finger_to(addr);
  79 
  80   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  81   // we only partially drain the local queue and global stack
  82   _task->drain_local_queue(true);
  83   _task->drain_global_stack(true);
  84 
  85   // if the has_aborted flag has been raised, we need to bail out of
  86   // the iteration
  87   return !_task->has_aborted();
  88 }
  89 
  90 G1CMMarkStack::G1CMMarkStack() :
  91   _max_chunk_capacity(0),
  92   _base(NULL),
  93   _chunk_capacity(0) {
  94   set_empty();
  95 }
  96 
  97 bool G1CMMarkStack::resize(size_t new_capacity) {
  98   assert(is_empty(), "Only resize when stack is empty.");
  99   assert(new_capacity <= _max_chunk_capacity,
 100          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
 101 
 102   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
 103 
 104   if (new_base == NULL) {
 105     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 106     return false;
 107   }
 108   // Release old mapping.
 109   if (_base != NULL) {
 110     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 111   }
 112 
 113   _base = new_base;
 114   _chunk_capacity = new_capacity;
 115   set_empty();
 116 
 117   return true;
 118 }
 119 
 120 size_t G1CMMarkStack::capacity_alignment() {
 121   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 122 }
 123 
 124 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 125   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 126 
 127   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 128 
 129   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 130   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 131 
 132   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 133             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 134             _max_chunk_capacity,
 135             initial_chunk_capacity);
 136 
 137   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 138                 initial_chunk_capacity, _max_chunk_capacity);
 139 
 140   return resize(initial_chunk_capacity);
 141 }
 142 
 143 void G1CMMarkStack::expand() {
 144   if (_chunk_capacity == _max_chunk_capacity) {
 145     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 146     return;
 147   }
 148   size_t old_capacity = _chunk_capacity;
 149   // Double capacity if possible
 150   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 151 
 152   if (resize(new_capacity)) {
 153     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 154                   old_capacity, new_capacity);
 155   } else {
 156     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 157                     old_capacity, new_capacity);
 158   }
 159 }
 160 
 161 G1CMMarkStack::~G1CMMarkStack() {
 162   if (_base != NULL) {
 163     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 164   }
 165 }
 166 
 167 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 168   elem->next = *list;
 169   *list = elem;
 170 }
 171 
 172 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 173   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 174   add_chunk_to_list(&_chunk_list, elem);
 175   _chunks_in_chunk_list++;
 176 }
 177 
 178 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 179   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 180   add_chunk_to_list(&_free_list, elem);
 181 }
 182 
 183 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 184   TaskQueueEntryChunk* result = *list;
 185   if (result != NULL) {
 186     *list = (*list)->next;
 187   }
 188   return result;
 189 }
 190 
 191 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 192   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 193   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 194   if (result != NULL) {
 195     _chunks_in_chunk_list--;
 196   }
 197   return result;
 198 }
 199 
 200 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 201   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 202   return remove_chunk_from_list(&_free_list);
 203 }
 204 
 205 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 206   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 207   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 208   // wraparound of _hwm.
 209   if (_hwm >= _chunk_capacity) {
 210     return NULL;
 211   }
 212 
 213   size_t cur_idx = Atomic::fetch_and_add(&_hwm, 1u);
 214   if (cur_idx >= _chunk_capacity) {
 215     return NULL;
 216   }
 217 
 218   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 219   result->next = NULL;
 220   return result;
 221 }
 222 
 223 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 224   // Get a new chunk.
 225   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 226 
 227   if (new_chunk == NULL) {
 228     // Did not get a chunk from the free list. Allocate from backing memory.
 229     new_chunk = allocate_new_chunk();
 230 
 231     if (new_chunk == NULL) {
 232       return false;
 233     }
 234   }
 235 
 236   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 237 
 238   add_chunk_to_chunk_list(new_chunk);
 239 
 240   return true;
 241 }
 242 
 243 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 244   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 245 
 246   if (cur == NULL) {
 247     return false;
 248   }
 249 
 250   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 251 
 252   add_chunk_to_free_list(cur);
 253   return true;
 254 }
 255 
 256 void G1CMMarkStack::set_empty() {
 257   _chunks_in_chunk_list = 0;
 258   _hwm = 0;
 259   _chunk_list = NULL;
 260   _free_list = NULL;
 261 }
 262 
 263 G1CMRootMemRegions::G1CMRootMemRegions(uint const max_regions) :
 264     _root_regions(MemRegion::create_array(max_regions, mtGC)),
 265     _max_regions(max_regions),
 266     _num_root_regions(0),
 267     _claimed_root_regions(0),
 268     _scan_in_progress(false),
 269     _should_abort(false) { }
 270 
 271 G1CMRootMemRegions::~G1CMRootMemRegions() {
 272   MemRegion::destroy_array(_root_regions, _max_regions);
 273 }
 274 
 275 void G1CMRootMemRegions::reset() {
 276   _num_root_regions = 0;
 277 }
 278 
 279 void G1CMRootMemRegions::add(HeapWord* start, HeapWord* end) {
 280   assert_at_safepoint();
 281   size_t idx = Atomic::fetch_and_add(&_num_root_regions, 1u);
 282   assert(idx < _max_regions, "Trying to add more root MemRegions than there is space " SIZE_FORMAT, _max_regions);
 283   assert(start != NULL && end != NULL && start <= end, "Start (" PTR_FORMAT ") should be less or equal to "
 284          "end (" PTR_FORMAT ")", p2i(start), p2i(end));
 285   _root_regions[idx].set_start(start);
 286   _root_regions[idx].set_end(end);
 287 }
 288 
 289 void G1CMRootMemRegions::prepare_for_scan() {
 290   assert(!scan_in_progress(), "pre-condition");
 291 
 292   _scan_in_progress = _num_root_regions > 0;
 293 
 294   _claimed_root_regions = 0;
 295   _should_abort = false;
 296 }
 297 
 298 const MemRegion* G1CMRootMemRegions::claim_next() {
 299   if (_should_abort) {
 300     // If someone has set the should_abort flag, we return NULL to
 301     // force the caller to bail out of their loop.
 302     return NULL;
 303   }
 304 
 305   if (_claimed_root_regions >= _num_root_regions) {
 306     return NULL;
 307   }
 308 
 309   size_t claimed_index = Atomic::fetch_and_add(&_claimed_root_regions, 1u);
 310   if (claimed_index < _num_root_regions) {
 311     return &_root_regions[claimed_index];
 312   }
 313   return NULL;
 314 }
 315 
 316 uint G1CMRootMemRegions::num_root_regions() const {
 317   return (uint)_num_root_regions;
 318 }
 319 
 320 void G1CMRootMemRegions::notify_scan_done() {
 321   MutexLocker x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 322   _scan_in_progress = false;
 323   RootRegionScan_lock->notify_all();
 324 }
 325 
 326 void G1CMRootMemRegions::cancel_scan() {
 327   notify_scan_done();
 328 }
 329 
 330 void G1CMRootMemRegions::scan_finished() {
 331   assert(scan_in_progress(), "pre-condition");
 332 
 333   if (!_should_abort) {
 334     assert(_claimed_root_regions >= num_root_regions(),
 335            "we should have claimed all root regions, claimed " SIZE_FORMAT ", length = %u",
 336            _claimed_root_regions, num_root_regions());
 337   }
 338 
 339   notify_scan_done();
 340 }
 341 
 342 bool G1CMRootMemRegions::wait_until_scan_finished() {
 343   if (!scan_in_progress()) {
 344     return false;
 345   }
 346 
 347   {
 348     MonitorLocker ml(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 349     while (scan_in_progress()) {
 350       ml.wait();
 351     }
 352   }
 353   return true;
 354 }
 355 
 356 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 357                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 358                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 359   // _cm_thread set inside the constructor
 360   _g1h(g1h),
 361 
 362   _mark_bitmap_1(),
 363   _mark_bitmap_2(),
 364   _prev_mark_bitmap(&_mark_bitmap_1),
 365   _next_mark_bitmap(&_mark_bitmap_2),
 366 
 367   _heap(_g1h->reserved_region()),
 368 
 369   _root_regions(_g1h->max_regions()),
 370 
 371   _global_mark_stack(),
 372 
 373   // _finger set in set_non_marking_state
 374 
 375   _worker_id_offset(G1DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 376   _max_num_tasks(ParallelGCThreads),
 377   // _num_active_tasks set in set_non_marking_state()
 378   // _tasks set inside the constructor
 379 
 380   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 381   _terminator((int) _max_num_tasks, _task_queues),
 382 
 383   _first_overflow_barrier_sync(),
 384   _second_overflow_barrier_sync(),
 385 
 386   _has_overflown(false),
 387   _concurrent(false),
 388   _has_aborted(false),
 389   _restart_for_overflow(false),
 390   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 391   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 392 
 393   // _verbose_level set below
 394 
 395   _init_times(),
 396   _remark_times(),
 397   _remark_mark_times(),
 398   _remark_weak_ref_times(),
 399   _cleanup_times(),
 400   _total_cleanup_time(0.0),
 401 
 402   _accum_task_vtime(NULL),
 403 
 404   _concurrent_workers(NULL),
 405   _num_concurrent_workers(0),
 406   _max_concurrent_workers(0),
 407 
 408   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 409   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 410 {
 411   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 412 
 413   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 414   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 415 
 416   // Create & start ConcurrentMark thread.
 417   _cm_thread = new G1ConcurrentMarkThread(this);
 418   if (_cm_thread->osthread() == NULL) {
 419     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 420   }
 421 
 422   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 423   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 424 
 425   _num_concurrent_workers = ConcGCThreads;
 426   _max_concurrent_workers = _num_concurrent_workers;
 427 
 428   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 429   _concurrent_workers->initialize_workers();
 430 
 431   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 432     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 433   }
 434 
 435   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 436   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 437 
 438   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 439   _num_active_tasks = _max_num_tasks;
 440 
 441   for (uint i = 0; i < _max_num_tasks; ++i) {
 442     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 443     task_queue->initialize();
 444     _task_queues->register_queue(i, task_queue);
 445 
 446     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 447 
 448     _accum_task_vtime[i] = 0.0;
 449   }
 450 
 451   reset_at_marking_complete();
 452 }
 453 
 454 void G1ConcurrentMark::reset() {
 455   _has_aborted = false;
 456 
 457   reset_marking_for_restart();
 458 
 459   // Reset all tasks, since different phases will use different number of active
 460   // threads. So, it's easiest to have all of them ready.
 461   for (uint i = 0; i < _max_num_tasks; ++i) {
 462     _tasks[i]->reset(_next_mark_bitmap);
 463   }
 464 
 465   uint max_regions = _g1h->max_regions();
 466   for (uint i = 0; i < max_regions; i++) {
 467     _top_at_rebuild_starts[i] = NULL;
 468     _region_mark_stats[i].clear();
 469   }
 470 }
 471 
 472 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 473   for (uint j = 0; j < _max_num_tasks; ++j) {
 474     _tasks[j]->clear_mark_stats_cache(region_idx);
 475   }
 476   _top_at_rebuild_starts[region_idx] = NULL;
 477   _region_mark_stats[region_idx].clear();
 478 }
 479 
 480 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 481   uint const region_idx = r->hrm_index();
 482   if (r->is_humongous()) {
 483     assert(r->is_starts_humongous(), "Got humongous continues region here");
 484     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 485     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 486       clear_statistics_in_region(j);
 487     }
 488   } else {
 489     clear_statistics_in_region(region_idx);
 490   }
 491 }
 492 
 493 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 494   if (bitmap->is_marked(addr)) {
 495     bitmap->clear(addr);
 496   }
 497 }
 498 
 499 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 500   assert_at_safepoint_on_vm_thread();
 501 
 502   // Need to clear all mark bits of the humongous object.
 503   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 504   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 505 
 506   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 507     return;
 508   }
 509 
 510   // Clear any statistics about the region gathered so far.
 511   clear_statistics(r);
 512 }
 513 
 514 void G1ConcurrentMark::reset_marking_for_restart() {
 515   _global_mark_stack.set_empty();
 516 
 517   // Expand the marking stack, if we have to and if we can.
 518   if (has_overflown()) {
 519     _global_mark_stack.expand();
 520 
 521     uint max_regions = _g1h->max_regions();
 522     for (uint i = 0; i < max_regions; i++) {
 523       _region_mark_stats[i].clear_during_overflow();
 524     }
 525   }
 526 
 527   clear_has_overflown();
 528   _finger = _heap.start();
 529 
 530   for (uint i = 0; i < _max_num_tasks; ++i) {
 531     G1CMTaskQueue* queue = _task_queues->queue(i);
 532     queue->set_empty();
 533   }
 534 }
 535 
 536 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 537   assert(active_tasks <= _max_num_tasks, "we should not have more");
 538 
 539   _num_active_tasks = active_tasks;
 540   // Need to update the three data structures below according to the
 541   // number of active threads for this phase.
 542   _terminator.reset_for_reuse(active_tasks);
 543   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 544   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 545 }
 546 
 547 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 548   set_concurrency(active_tasks);
 549 
 550   _concurrent = concurrent;
 551 
 552   if (!concurrent) {
 553     // At this point we should be in a STW phase, and completed marking.
 554     assert_at_safepoint_on_vm_thread();
 555     assert(out_of_regions(),
 556            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 557            p2i(_finger), p2i(_heap.end()));
 558   }
 559 }
 560 
 561 void G1ConcurrentMark::reset_at_marking_complete() {
 562   // We set the global marking state to some default values when we're
 563   // not doing marking.
 564   reset_marking_for_restart();
 565   _num_active_tasks = 0;
 566 }
 567 
 568 G1ConcurrentMark::~G1ConcurrentMark() {
 569   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 570   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 571   // The G1ConcurrentMark instance is never freed.
 572   ShouldNotReachHere();
 573 }
 574 
 575 class G1ClearBitMapTask : public AbstractGangTask {
 576 public:
 577   static size_t chunk_size() { return M; }
 578 
 579 private:
 580   // Heap region closure used for clearing the given mark bitmap.
 581   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 582   private:
 583     G1CMBitMap* _bitmap;
 584     G1ConcurrentMark* _cm;
 585   public:
 586     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _bitmap(bitmap), _cm(cm) {
 587     }
 588 
 589     virtual bool do_heap_region(HeapRegion* r) {
 590       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 591 
 592       HeapWord* cur = r->bottom();
 593       HeapWord* const end = r->end();
 594 
 595       while (cur < end) {
 596         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 597         _bitmap->clear_range(mr);
 598 
 599         cur += chunk_size_in_words;
 600 
 601         // Abort iteration if after yielding the marking has been aborted.
 602         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 603           return true;
 604         }
 605         // Repeat the asserts from before the start of the closure. We will do them
 606         // as asserts here to minimize their overhead on the product. However, we
 607         // will have them as guarantees at the beginning / end of the bitmap
 608         // clearing to get some checking in the product.
 609         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 610         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 611       }
 612       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 613 
 614       return false;
 615     }
 616   };
 617 
 618   G1ClearBitmapHRClosure _cl;
 619   HeapRegionClaimer _hr_claimer;
 620   bool _suspendible; // If the task is suspendible, workers must join the STS.
 621 
 622 public:
 623   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 624     AbstractGangTask("G1 Clear Bitmap"),
 625     _cl(bitmap, suspendible ? cm : NULL),
 626     _hr_claimer(n_workers),
 627     _suspendible(suspendible)
 628   { }
 629 
 630   void work(uint worker_id) {
 631     SuspendibleThreadSetJoiner sts_join(_suspendible);
 632     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 633   }
 634 
 635   bool is_complete() {
 636     return _cl.is_complete();
 637   }
 638 };
 639 
 640 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 641   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 642 
 643   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 644   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 645 
 646   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 647 
 648   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 649 
 650   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 651   workers->run_task(&cl, num_workers);
 652   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 653 }
 654 
 655 void G1ConcurrentMark::cleanup_for_next_mark() {
 656   // Make sure that the concurrent mark thread looks to still be in
 657   // the current cycle.
 658   guarantee(cm_thread()->during_cycle(), "invariant");
 659 
 660   // We are finishing up the current cycle by clearing the next
 661   // marking bitmap and getting it ready for the next cycle. During
 662   // this time no other cycle can start. So, let's make sure that this
 663   // is the case.
 664   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 665 
 666   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 667 
 668   // Repeat the asserts from above.
 669   guarantee(cm_thread()->during_cycle(), "invariant");
 670   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 671 }
 672 
 673 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 674   assert_at_safepoint_on_vm_thread();
 675   clear_bitmap(_prev_mark_bitmap, workers, false);
 676 }
 677 
 678 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 679 public:
 680   bool do_heap_region(HeapRegion* r) {
 681     r->note_start_of_marking();
 682     return false;
 683   }
 684 };
 685 
 686 void G1ConcurrentMark::pre_initial_mark() {
 687   assert_at_safepoint_on_vm_thread();
 688 
 689   // Reset marking state.
 690   reset();
 691 
 692   // For each region note start of marking.
 693   NoteStartOfMarkHRClosure startcl;
 694   _g1h->heap_region_iterate(&startcl);
 695 
 696   _root_regions.reset();
 697 }
 698 
 699 
 700 void G1ConcurrentMark::post_initial_mark() {
 701   // Start Concurrent Marking weak-reference discovery.
 702   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 703   // enable ("weak") refs discovery
 704   rp->enable_discovery();
 705   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 706 
 707   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
 708   // This is the start of  the marking cycle, we're expected all
 709   // threads to have SATB queues with active set to false.
 710   satb_mq_set.set_active_all_threads(true, /* new active value */
 711                                      false /* expected_active */);
 712 
 713   _root_regions.prepare_for_scan();
 714 
 715   // update_g1_committed() will be called at the end of an evac pause
 716   // when marking is on. So, it's also called at the end of the
 717   // initial-mark pause to update the heap end, if the heap expands
 718   // during it. No need to call it here.
 719 }
 720 
 721 /*
 722  * Notice that in the next two methods, we actually leave the STS
 723  * during the barrier sync and join it immediately afterwards. If we
 724  * do not do this, the following deadlock can occur: one thread could
 725  * be in the barrier sync code, waiting for the other thread to also
 726  * sync up, whereas another one could be trying to yield, while also
 727  * waiting for the other threads to sync up too.
 728  *
 729  * Note, however, that this code is also used during remark and in
 730  * this case we should not attempt to leave / enter the STS, otherwise
 731  * we'll either hit an assert (debug / fastdebug) or deadlock
 732  * (product). So we should only leave / enter the STS if we are
 733  * operating concurrently.
 734  *
 735  * Because the thread that does the sync barrier has left the STS, it
 736  * is possible to be suspended for a Full GC or an evacuation pause
 737  * could occur. This is actually safe, since the entering the sync
 738  * barrier is one of the last things do_marking_step() does, and it
 739  * doesn't manipulate any data structures afterwards.
 740  */
 741 
 742 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 743   bool barrier_aborted;
 744   {
 745     SuspendibleThreadSetLeaver sts_leave(concurrent());
 746     barrier_aborted = !_first_overflow_barrier_sync.enter();
 747   }
 748 
 749   // at this point everyone should have synced up and not be doing any
 750   // more work
 751 
 752   if (barrier_aborted) {
 753     // If the barrier aborted we ignore the overflow condition and
 754     // just abort the whole marking phase as quickly as possible.
 755     return;
 756   }
 757 }
 758 
 759 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 760   SuspendibleThreadSetLeaver sts_leave(concurrent());
 761   _second_overflow_barrier_sync.enter();
 762 
 763   // at this point everything should be re-initialized and ready to go
 764 }
 765 
 766 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 767   G1ConcurrentMark*     _cm;
 768 
 769 public:
 770   void work(uint worker_id) {
 771     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 772     ResourceMark rm;
 773 
 774     double start_vtime = os::elapsedVTime();
 775 
 776     {
 777       SuspendibleThreadSetJoiner sts_join;
 778 
 779       assert(worker_id < _cm->active_tasks(), "invariant");
 780 
 781       G1CMTask* task = _cm->task(worker_id);
 782       task->record_start_time();
 783       if (!_cm->has_aborted()) {
 784         do {
 785           task->do_marking_step(G1ConcMarkStepDurationMillis,
 786                                 true  /* do_termination */,
 787                                 false /* is_serial*/);
 788 
 789           _cm->do_yield_check();
 790         } while (!_cm->has_aborted() && task->has_aborted());
 791       }
 792       task->record_end_time();
 793       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 794     }
 795 
 796     double end_vtime = os::elapsedVTime();
 797     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 798   }
 799 
 800   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 801       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 802 
 803   ~G1CMConcurrentMarkingTask() { }
 804 };
 805 
 806 uint G1ConcurrentMark::calc_active_marking_workers() {
 807   uint result = 0;
 808   if (!UseDynamicNumberOfGCThreads || !FLAG_IS_DEFAULT(ConcGCThreads)) {
 809     result = _max_concurrent_workers;
 810   } else {
 811     result =
 812       WorkerPolicy::calc_default_active_workers(_max_concurrent_workers,
 813                                                 1, /* Minimum workers */
 814                                                 _num_concurrent_workers,
 815                                                 Threads::number_of_non_daemon_threads());
 816     // Don't scale the result down by scale_concurrent_workers() because
 817     // that scaling has already gone into "_max_concurrent_workers".
 818   }
 819   assert(result > 0 && result <= _max_concurrent_workers,
 820          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 821          _max_concurrent_workers, result);
 822   return result;
 823 }
 824 
 825 void G1ConcurrentMark::scan_root_region(const MemRegion* region, uint worker_id) {
 826 #ifdef ASSERT
 827   HeapWord* last = region->last();
 828   HeapRegion* hr = _g1h->heap_region_containing(last);
 829   assert(hr->is_old() || hr->next_top_at_mark_start() == hr->bottom(),
 830          "Root regions must be old or survivor/eden but region %u is %s", hr->hrm_index(), hr->get_type_str());
 831   assert(hr->next_top_at_mark_start() == region->start(),
 832          "MemRegion start should be equal to nTAMS");
 833 #endif
 834 
 835   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 836 
 837   const uintx interval = PrefetchScanIntervalInBytes;
 838   HeapWord* curr = region->start();
 839   const HeapWord* end = region->end();
 840   while (curr < end) {
 841     Prefetch::read(curr, interval);
 842     oop obj = oop(curr);
 843     int size = obj->oop_iterate_size(&cl);
 844     assert(size == obj->size(), "sanity");
 845     curr += size;
 846   }
 847 }
 848 
 849 class G1CMRootRegionScanTask : public AbstractGangTask {
 850   G1ConcurrentMark* _cm;
 851 public:
 852   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 853     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 854 
 855   void work(uint worker_id) {
 856     assert(Thread::current()->is_ConcurrentGC_thread(),
 857            "this should only be done by a conc GC thread");
 858 
 859     G1CMRootMemRegions* root_regions = _cm->root_regions();
 860     const MemRegion* region = root_regions->claim_next();
 861     while (region != NULL) {
 862       _cm->scan_root_region(region, worker_id);
 863       region = root_regions->claim_next();
 864     }
 865   }
 866 };
 867 
 868 void G1ConcurrentMark::scan_root_regions() {
 869   // scan_in_progress() will have been set to true only if there was
 870   // at least one root region to scan. So, if it's false, we
 871   // should not attempt to do any further work.
 872   if (root_regions()->scan_in_progress()) {
 873     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 874 
 875     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 876                                    // We distribute work on a per-region basis, so starting
 877                                    // more threads than that is useless.
 878                                    root_regions()->num_root_regions());
 879     assert(_num_concurrent_workers <= _max_concurrent_workers,
 880            "Maximum number of marking threads exceeded");
 881 
 882     G1CMRootRegionScanTask task(this);
 883     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 884                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 885     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 886 
 887     // It's possible that has_aborted() is true here without actually
 888     // aborting the survivor scan earlier. This is OK as it's
 889     // mainly used for sanity checking.
 890     root_regions()->scan_finished();
 891   }
 892 }
 893 
 894 void G1ConcurrentMark::concurrent_cycle_start() {
 895   _gc_timer_cm->register_gc_start();
 896 
 897   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 898 
 899   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 900 }
 901 
 902 void G1ConcurrentMark::concurrent_cycle_end() {
 903   _g1h->collector_state()->set_clearing_next_bitmap(false);
 904 
 905   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 906 
 907   if (has_aborted()) {
 908     log_info(gc, marking)("Concurrent Mark Abort");
 909     _gc_tracer_cm->report_concurrent_mode_failure();
 910   }
 911 
 912   _gc_timer_cm->register_gc_end();
 913 
 914   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 915 }
 916 
 917 void G1ConcurrentMark::mark_from_roots() {
 918   _restart_for_overflow = false;
 919 
 920   _num_concurrent_workers = calc_active_marking_workers();
 921 
 922   uint active_workers = MAX2(1U, _num_concurrent_workers);
 923 
 924   // Setting active workers is not guaranteed since fewer
 925   // worker threads may currently exist and more may not be
 926   // available.
 927   active_workers = _concurrent_workers->update_active_workers(active_workers);
 928   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 929 
 930   // Parallel task terminator is set in "set_concurrency_and_phase()"
 931   set_concurrency_and_phase(active_workers, true /* concurrent */);
 932 
 933   G1CMConcurrentMarkingTask marking_task(this);
 934   _concurrent_workers->run_task(&marking_task);
 935   print_stats();
 936 }
 937 
 938 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 939   G1HeapVerifier* verifier = _g1h->verifier();
 940 
 941   verifier->verify_region_sets_optional();
 942 
 943   if (VerifyDuringGC) {
 944     GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm);
 945 
 946     size_t const BufLen = 512;
 947     char buffer[BufLen];
 948 
 949     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
 950     verifier->verify(type, vo, buffer);
 951   }
 952 
 953   verifier->check_bitmaps(caller);
 954 }
 955 
 956 class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask {
 957   G1CollectedHeap* _g1h;
 958   G1ConcurrentMark* _cm;
 959   HeapRegionClaimer _hrclaimer;
 960   uint volatile _total_selected_for_rebuild;
 961 
 962   G1PrintRegionLivenessInfoClosure _cl;
 963 
 964   class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
 965     G1CollectedHeap* _g1h;
 966     G1ConcurrentMark* _cm;
 967 
 968     G1PrintRegionLivenessInfoClosure* _cl;
 969 
 970     uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
 971 
 972     void update_remset_before_rebuild(HeapRegion* hr) {
 973       G1RemSetTrackingPolicy* tracking_policy = _g1h->policy()->remset_tracker();
 974 
 975       bool selected_for_rebuild;
 976       if (hr->is_humongous()) {
 977         bool const is_live = _cm->liveness(hr->humongous_start_region()->hrm_index()) > 0;
 978         selected_for_rebuild = tracking_policy->update_humongous_before_rebuild(hr, is_live);
 979       } else {
 980         size_t const live_bytes = _cm->liveness(hr->hrm_index());
 981         selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
 982       }
 983       if (selected_for_rebuild) {
 984         _num_regions_selected_for_rebuild++;
 985       }
 986       _cm->update_top_at_rebuild_start(hr);
 987     }
 988 
 989     // Distribute the given words across the humongous object starting with hr and
 990     // note end of marking.
 991     void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
 992       uint const region_idx = hr->hrm_index();
 993       size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size();
 994       uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words);
 995 
 996       // "Distributing" zero words means that we only note end of marking for these
 997       // regions.
 998       assert(marked_words == 0 || obj_size_in_words == marked_words,
 999              "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT,
1000              obj_size_in_words, marked_words);
1001 
1002       for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1003         HeapRegion* const r = _g1h->region_at(i);
1004         size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1005 
1006         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)",
1007                                words_to_add, i, r->get_type_str());
1008         add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize);
1009         marked_words -= words_to_add;
1010       }
1011       assert(marked_words == 0,
1012              SIZE_FORMAT " words left after distributing space across %u regions",
1013              marked_words, num_regions_in_humongous);
1014     }
1015 
1016     void update_marked_bytes(HeapRegion* hr) {
1017       uint const region_idx = hr->hrm_index();
1018       size_t const marked_words = _cm->liveness(region_idx);
1019       // The marking attributes the object's size completely to the humongous starts
1020       // region. We need to distribute this value across the entire set of regions a
1021       // humongous object spans.
1022       if (hr->is_humongous()) {
1023         assert(hr->is_starts_humongous() || marked_words == 0,
1024                "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1025                marked_words, region_idx, hr->get_type_str());
1026         if (hr->is_starts_humongous()) {
1027           distribute_marked_bytes(hr, marked_words);
1028         }
1029       } else {
1030         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1031         add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize);
1032       }
1033     }
1034 
1035     void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) {
1036       hr->add_to_marked_bytes(marked_bytes);
1037       _cl->do_heap_region(hr);
1038       hr->note_end_of_marking();
1039     }
1040 
1041   public:
1042     G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) :
1043       _g1h(g1h), _cm(cm), _cl(cl), _num_regions_selected_for_rebuild(0) { }
1044 
1045     virtual bool do_heap_region(HeapRegion* r) {
1046       update_remset_before_rebuild(r);
1047       update_marked_bytes(r);
1048 
1049       return false;
1050     }
1051 
1052     uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1053   };
1054 
1055 public:
1056   G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) :
1057     AbstractGangTask("G1 Update RemSet Tracking Before Rebuild"),
1058     _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking") { }
1059 
1060   virtual void work(uint worker_id) {
1061     G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl);
1062     _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id);
1063     Atomic::add(&_total_selected_for_rebuild, update_cl.num_selected_for_rebuild());
1064   }
1065 
1066   uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
1067 
1068   // Number of regions for which roughly one thread should be spawned for this work.
1069   static const uint RegionsPerThread = 384;
1070 };
1071 
1072 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1073   G1CollectedHeap* _g1h;
1074 public:
1075   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1076 
1077   virtual bool do_heap_region(HeapRegion* r) {
1078     _g1h->policy()->remset_tracker()->update_after_rebuild(r);
1079     return false;
1080   }
1081 };
1082 
1083 void G1ConcurrentMark::remark() {
1084   assert_at_safepoint_on_vm_thread();
1085 
1086   // If a full collection has happened, we should not continue. However we might
1087   // have ended up here as the Remark VM operation has been scheduled already.
1088   if (has_aborted()) {
1089     return;
1090   }
1091 
1092   G1Policy* policy = _g1h->policy();
1093   policy->record_concurrent_mark_remark_start();
1094 
1095   double start = os::elapsedTime();
1096 
1097   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1098 
1099   {
1100     GCTraceTime(Debug, gc, phases) debug("Finalize Marking", _gc_timer_cm);
1101     finalize_marking();
1102   }
1103 
1104   double mark_work_end = os::elapsedTime();
1105 
1106   bool const mark_finished = !has_overflown();
1107   if (mark_finished) {
1108     weak_refs_work(false /* clear_all_soft_refs */);
1109 
1110     SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1111     // We're done with marking.
1112     // This is the end of the marking cycle, we're expected all
1113     // threads to have SATB queues with active set to true.
1114     satb_mq_set.set_active_all_threads(false, /* new active value */
1115                                        true /* expected_active */);
1116 
1117     {
1118       GCTraceTime(Debug, gc, phases) debug("Flush Task Caches", _gc_timer_cm);
1119       flush_all_task_caches();
1120     }
1121 
1122     // Install newly created mark bitmap as "prev".
1123     swap_mark_bitmaps();
1124     {
1125       GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1126 
1127       uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) /
1128                                        G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread;
1129       uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity);
1130 
1131       G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers);
1132       log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap", cl.name(), num_workers, _g1h->num_regions());
1133       _g1h->workers()->run_task(&cl, num_workers);
1134 
1135       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1136                                       _g1h->num_regions(), cl.total_selected_for_rebuild());
1137     }
1138     {
1139       GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions", _gc_timer_cm);
1140       reclaim_empty_regions();
1141     }
1142 
1143     // Clean out dead classes
1144     if (ClassUnloadingWithConcurrentMark) {
1145       GCTraceTime(Debug, gc, phases) debug("Purge Metaspace", _gc_timer_cm);
1146       ClassLoaderDataGraph::purge();
1147     }
1148 
1149     compute_new_sizes();
1150 
1151     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1152 
1153     assert(!restart_for_overflow(), "sanity");
1154     // Completely reset the marking state since marking completed
1155     reset_at_marking_complete();
1156   } else {
1157     // We overflowed.  Restart concurrent marking.
1158     _restart_for_overflow = true;
1159 
1160     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1161 
1162     // Clear the marking state because we will be restarting
1163     // marking due to overflowing the global mark stack.
1164     reset_marking_for_restart();
1165   }
1166 
1167   {
1168     GCTraceTime(Debug, gc, phases) debug("Report Object Count", _gc_timer_cm);
1169     report_object_count(mark_finished);
1170   }
1171 
1172   // Statistics
1173   double now = os::elapsedTime();
1174   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1175   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1176   _remark_times.add((now - start) * 1000.0);
1177 
1178   policy->record_concurrent_mark_remark_end();
1179 }
1180 
1181 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1182   // Per-region work during the Cleanup pause.
1183   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1184     G1CollectedHeap* _g1h;
1185     size_t _freed_bytes;
1186     FreeRegionList* _local_cleanup_list;
1187     uint _old_regions_removed;
1188     uint _humongous_regions_removed;
1189 
1190   public:
1191     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1192                                  FreeRegionList* local_cleanup_list) :
1193       _g1h(g1h),
1194       _freed_bytes(0),
1195       _local_cleanup_list(local_cleanup_list),
1196       _old_regions_removed(0),
1197       _humongous_regions_removed(0) { }
1198 
1199     size_t freed_bytes() { return _freed_bytes; }
1200     const uint old_regions_removed() { return _old_regions_removed; }
1201     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1202 
1203     bool do_heap_region(HeapRegion *hr) {
1204       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1205         _freed_bytes += hr->used();
1206         hr->set_containing_set(NULL);
1207         if (hr->is_humongous()) {
1208           _humongous_regions_removed++;
1209           _g1h->free_humongous_region(hr, _local_cleanup_list);
1210         } else {
1211           _old_regions_removed++;
1212           _g1h->free_region(hr, _local_cleanup_list);
1213         }
1214         hr->clear_cardtable();
1215         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1216         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1217       }
1218 
1219       return false;
1220     }
1221   };
1222 
1223   G1CollectedHeap* _g1h;
1224   FreeRegionList* _cleanup_list;
1225   HeapRegionClaimer _hrclaimer;
1226 
1227 public:
1228   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1229     AbstractGangTask("G1 Cleanup"),
1230     _g1h(g1h),
1231     _cleanup_list(cleanup_list),
1232     _hrclaimer(n_workers) {
1233   }
1234 
1235   void work(uint worker_id) {
1236     FreeRegionList local_cleanup_list("Local Cleanup List");
1237     G1ReclaimEmptyRegionsClosure cl(_g1h, &local_cleanup_list);
1238     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1239     assert(cl.is_complete(), "Shouldn't have aborted!");
1240 
1241     // Now update the old/humongous region sets
1242     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1243     {
1244       MutexLocker x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1245       _g1h->decrement_summary_bytes(cl.freed_bytes());
1246 
1247       _cleanup_list->add_ordered(&local_cleanup_list);
1248       assert(local_cleanup_list.is_empty(), "post-condition");
1249     }
1250   }
1251 };
1252 
1253 void G1ConcurrentMark::reclaim_empty_regions() {
1254   WorkGang* workers = _g1h->workers();
1255   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1256 
1257   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1258   workers->run_task(&cl);
1259 
1260   if (!empty_regions_list.is_empty()) {
1261     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1262     // Now print the empty regions list.
1263     G1HRPrinter* hrp = _g1h->hr_printer();
1264     if (hrp->is_active()) {
1265       FreeRegionListIterator iter(&empty_regions_list);
1266       while (iter.more_available()) {
1267         HeapRegion* hr = iter.get_next();
1268         hrp->cleanup(hr);
1269       }
1270     }
1271     // And actually make them available.
1272     _g1h->prepend_to_freelist(&empty_regions_list);
1273   }
1274 }
1275 
1276 void G1ConcurrentMark::compute_new_sizes() {
1277   MetaspaceGC::compute_new_size();
1278 
1279   // Cleanup will have freed any regions completely full of garbage.
1280   // Update the soft reference policy with the new heap occupancy.
1281   Universe::update_heap_info_at_gc();
1282 
1283   // We reclaimed old regions so we should calculate the sizes to make
1284   // sure we update the old gen/space data.
1285   _g1h->g1mm()->update_sizes();
1286 }
1287 
1288 void G1ConcurrentMark::cleanup() {
1289   assert_at_safepoint_on_vm_thread();
1290 
1291   // If a full collection has happened, we shouldn't do this.
1292   if (has_aborted()) {
1293     return;
1294   }
1295 
1296   G1Policy* policy = _g1h->policy();
1297   policy->record_concurrent_mark_cleanup_start();
1298 
1299   double start = os::elapsedTime();
1300 
1301   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1302 
1303   {
1304     GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1305     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1306     _g1h->heap_region_iterate(&cl);
1307   }
1308 
1309   if (log_is_enabled(Trace, gc, liveness)) {
1310     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1311     _g1h->heap_region_iterate(&cl);
1312   }
1313 
1314   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1315 
1316   // We need to make this be a "collection" so any collection pause that
1317   // races with it goes around and waits for Cleanup to finish.
1318   _g1h->increment_total_collections();
1319 
1320   // Local statistics
1321   double recent_cleanup_time = (os::elapsedTime() - start);
1322   _total_cleanup_time += recent_cleanup_time;
1323   _cleanup_times.add(recent_cleanup_time);
1324 
1325   {
1326     GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1327     policy->record_concurrent_mark_cleanup_end();
1328   }
1329 }
1330 
1331 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1332 // Uses the G1CMTask associated with a worker thread (for serial reference
1333 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1334 // trace referent objects.
1335 //
1336 // Using the G1CMTask and embedded local queues avoids having the worker
1337 // threads operating on the global mark stack. This reduces the risk
1338 // of overflowing the stack - which we would rather avoid at this late
1339 // state. Also using the tasks' local queues removes the potential
1340 // of the workers interfering with each other that could occur if
1341 // operating on the global stack.
1342 
1343 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1344   G1ConcurrentMark* _cm;
1345   G1CMTask*         _task;
1346   uint              _ref_counter_limit;
1347   uint              _ref_counter;
1348   bool              _is_serial;
1349 public:
1350   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1351     _cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval),
1352     _ref_counter(_ref_counter_limit), _is_serial(is_serial) {
1353     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1354   }
1355 
1356   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1357   virtual void do_oop(      oop* p) { do_oop_work(p); }
1358 
1359   template <class T> void do_oop_work(T* p) {
1360     if (_cm->has_overflown()) {
1361       return;
1362     }
1363     if (!_task->deal_with_reference(p)) {
1364       // We did not add anything to the mark bitmap (or mark stack), so there is
1365       // no point trying to drain it.
1366       return;
1367     }
1368     _ref_counter--;
1369 
1370     if (_ref_counter == 0) {
1371       // We have dealt with _ref_counter_limit references, pushing them
1372       // and objects reachable from them on to the local stack (and
1373       // possibly the global stack). Call G1CMTask::do_marking_step() to
1374       // process these entries.
1375       //
1376       // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1377       // there's nothing more to do (i.e. we're done with the entries that
1378       // were pushed as a result of the G1CMTask::deal_with_reference() calls
1379       // above) or we overflow.
1380       //
1381       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1382       // flag while there may still be some work to do. (See the comment at
1383       // the beginning of G1CMTask::do_marking_step() for those conditions -
1384       // one of which is reaching the specified time target.) It is only
1385       // when G1CMTask::do_marking_step() returns without setting the
1386       // has_aborted() flag that the marking step has completed.
1387       do {
1388         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1389         _task->do_marking_step(mark_step_duration_ms,
1390                                false      /* do_termination */,
1391                                _is_serial);
1392       } while (_task->has_aborted() && !_cm->has_overflown());
1393       _ref_counter = _ref_counter_limit;
1394     }
1395   }
1396 };
1397 
1398 // 'Drain' oop closure used by both serial and parallel reference processing.
1399 // Uses the G1CMTask associated with a given worker thread (for serial
1400 // reference processing the G1CMtask for worker 0 is used). Calls the
1401 // do_marking_step routine, with an unbelievably large timeout value,
1402 // to drain the marking data structures of the remaining entries
1403 // added by the 'keep alive' oop closure above.
1404 
1405 class G1CMDrainMarkingStackClosure : public VoidClosure {
1406   G1ConcurrentMark* _cm;
1407   G1CMTask*         _task;
1408   bool              _is_serial;
1409  public:
1410   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1411     _cm(cm), _task(task), _is_serial(is_serial) {
1412     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1413   }
1414 
1415   void do_void() {
1416     do {
1417       // We call G1CMTask::do_marking_step() to completely drain the local
1418       // and global marking stacks of entries pushed by the 'keep alive'
1419       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1420       //
1421       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1422       // if there's nothing more to do (i.e. we've completely drained the
1423       // entries that were pushed as a a result of applying the 'keep alive'
1424       // closure to the entries on the discovered ref lists) or we overflow
1425       // the global marking stack.
1426       //
1427       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1428       // flag while there may still be some work to do. (See the comment at
1429       // the beginning of G1CMTask::do_marking_step() for those conditions -
1430       // one of which is reaching the specified time target.) It is only
1431       // when G1CMTask::do_marking_step() returns without setting the
1432       // has_aborted() flag that the marking step has completed.
1433 
1434       _task->do_marking_step(1000000000.0 /* something very large */,
1435                              true         /* do_termination */,
1436                              _is_serial);
1437     } while (_task->has_aborted() && !_cm->has_overflown());
1438   }
1439 };
1440 
1441 // Implementation of AbstractRefProcTaskExecutor for parallel
1442 // reference processing at the end of G1 concurrent marking
1443 
1444 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1445 private:
1446   G1CollectedHeap*  _g1h;
1447   G1ConcurrentMark* _cm;
1448   WorkGang*         _workers;
1449   uint              _active_workers;
1450 
1451 public:
1452   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1453                           G1ConcurrentMark* cm,
1454                           WorkGang* workers,
1455                           uint n_workers) :
1456     _g1h(g1h), _cm(cm),
1457     _workers(workers), _active_workers(n_workers) { }
1458 
1459   virtual void execute(ProcessTask& task, uint ergo_workers);
1460 };
1461 
1462 class G1CMRefProcTaskProxy : public AbstractGangTask {
1463   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1464   ProcessTask&      _proc_task;
1465   G1CollectedHeap*  _g1h;
1466   G1ConcurrentMark* _cm;
1467 
1468 public:
1469   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1470                        G1CollectedHeap* g1h,
1471                        G1ConcurrentMark* cm) :
1472     AbstractGangTask("Process reference objects in parallel"),
1473     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1474     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1475     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1476   }
1477 
1478   virtual void work(uint worker_id) {
1479     ResourceMark rm;
1480     HandleMark hm;
1481     G1CMTask* task = _cm->task(worker_id);
1482     G1CMIsAliveClosure g1_is_alive(_g1h);
1483     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1484     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1485 
1486     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1487   }
1488 };
1489 
1490 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
1491   assert(_workers != NULL, "Need parallel worker threads.");
1492   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1493   assert(_workers->active_workers() >= ergo_workers,
1494          "Ergonomically chosen workers(%u) should be less than or equal to active workers(%u)",
1495          ergo_workers, _workers->active_workers());
1496 
1497   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1498 
1499   // We need to reset the concurrency level before each
1500   // proxy task execution, so that the termination protocol
1501   // and overflow handling in G1CMTask::do_marking_step() knows
1502   // how many workers to wait for.
1503   _cm->set_concurrency(ergo_workers);
1504   _workers->run_task(&proc_task_proxy, ergo_workers);
1505 }
1506 
1507 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1508   ResourceMark rm;
1509   HandleMark   hm;
1510 
1511   // Is alive closure.
1512   G1CMIsAliveClosure g1_is_alive(_g1h);
1513 
1514   // Inner scope to exclude the cleaning of the string table
1515   // from the displayed time.
1516   {
1517     GCTraceTime(Debug, gc, phases) debug("Reference Processing", _gc_timer_cm);
1518 
1519     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1520 
1521     // See the comment in G1CollectedHeap::ref_processing_init()
1522     // about how reference processing currently works in G1.
1523 
1524     // Set the soft reference policy
1525     rp->setup_policy(clear_all_soft_refs);
1526     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1527 
1528     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1529     // in serial reference processing. Note these closures are also
1530     // used for serially processing (by the the current thread) the
1531     // JNI references during parallel reference processing.
1532     //
1533     // These closures do not need to synchronize with the worker
1534     // threads involved in parallel reference processing as these
1535     // instances are executed serially by the current thread (e.g.
1536     // reference processing is not multi-threaded and is thus
1537     // performed by the current thread instead of a gang worker).
1538     //
1539     // The gang tasks involved in parallel reference processing create
1540     // their own instances of these closures, which do their own
1541     // synchronization among themselves.
1542     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1543     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1544 
1545     // We need at least one active thread. If reference processing
1546     // is not multi-threaded we use the current (VMThread) thread,
1547     // otherwise we use the work gang from the G1CollectedHeap and
1548     // we utilize all the worker threads we can.
1549     bool processing_is_mt = rp->processing_is_mt();
1550     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1551     active_workers = clamp(active_workers, 1u, _max_num_tasks);
1552 
1553     // Parallel processing task executor.
1554     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1555                                               _g1h->workers(), active_workers);
1556     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1557 
1558     // Set the concurrency level. The phase was already set prior to
1559     // executing the remark task.
1560     set_concurrency(active_workers);
1561 
1562     // Set the degree of MT processing here.  If the discovery was done MT,
1563     // the number of threads involved during discovery could differ from
1564     // the number of active workers.  This is OK as long as the discovered
1565     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1566     rp->set_active_mt_degree(active_workers);
1567 
1568     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
1569 
1570     // Process the weak references.
1571     const ReferenceProcessorStats& stats =
1572         rp->process_discovered_references(&g1_is_alive,
1573                                           &g1_keep_alive,
1574                                           &g1_drain_mark_stack,
1575                                           executor,
1576                                           &pt);
1577     _gc_tracer_cm->report_gc_reference_stats(stats);
1578     pt.print_all_references();
1579 
1580     // The do_oop work routines of the keep_alive and drain_marking_stack
1581     // oop closures will set the has_overflown flag if we overflow the
1582     // global marking stack.
1583 
1584     assert(has_overflown() || _global_mark_stack.is_empty(),
1585            "Mark stack should be empty (unless it has overflown)");
1586 
1587     assert(rp->num_queues() == active_workers, "why not");
1588 
1589     rp->verify_no_references_recorded();
1590     assert(!rp->discovery_enabled(), "Post condition");
1591   }
1592 
1593   if (has_overflown()) {
1594     // We can not trust g1_is_alive and the contents of the heap if the marking stack
1595     // overflowed while processing references. Exit the VM.
1596     fatal("Overflow during reference processing, can not continue. Please "
1597           "increase MarkStackSizeMax (current value: " SIZE_FORMAT ") and "
1598           "restart.", MarkStackSizeMax);
1599     return;
1600   }
1601 
1602   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1603 
1604   {
1605     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1606     WeakProcessor::weak_oops_do(_g1h->workers(), &g1_is_alive, &do_nothing_cl, 1);
1607   }
1608 
1609   // Unload Klasses, String, Code Cache, etc.
1610   if (ClassUnloadingWithConcurrentMark) {
1611     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1612     bool purged_classes = SystemDictionary::do_unloading(_gc_timer_cm);
1613     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1614   } else if (StringDedup::is_enabled()) {
1615     GCTraceTime(Debug, gc, phases) debug("String Deduplication", _gc_timer_cm);
1616     _g1h->string_dedup_cleaning(&g1_is_alive, NULL);
1617   }
1618 }
1619 
1620 class G1PrecleanYieldClosure : public YieldClosure {
1621   G1ConcurrentMark* _cm;
1622 
1623 public:
1624   G1PrecleanYieldClosure(G1ConcurrentMark* cm) : _cm(cm) { }
1625 
1626   virtual bool should_return() {
1627     return _cm->has_aborted();
1628   }
1629 
1630   virtual bool should_return_fine_grain() {
1631     _cm->do_yield_check();
1632     return _cm->has_aborted();
1633   }
1634 };
1635 
1636 void G1ConcurrentMark::preclean() {
1637   assert(G1UseReferencePrecleaning, "Precleaning must be enabled.");
1638 
1639   SuspendibleThreadSetJoiner joiner;
1640 
1641   G1CMKeepAliveAndDrainClosure keep_alive(this, task(0), true /* is_serial */);
1642   G1CMDrainMarkingStackClosure drain_mark_stack(this, task(0), true /* is_serial */);
1643 
1644   set_concurrency_and_phase(1, true);
1645 
1646   G1PrecleanYieldClosure yield_cl(this);
1647 
1648   ReferenceProcessor* rp = _g1h->ref_processor_cm();
1649   // Precleaning is single threaded. Temporarily disable MT discovery.
1650   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
1651   rp->preclean_discovered_references(rp->is_alive_non_header(),
1652                                      &keep_alive,
1653                                      &drain_mark_stack,
1654                                      &yield_cl,
1655                                      _gc_timer_cm);
1656 }
1657 
1658 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1659 // the prev bitmap determining liveness.
1660 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1661   G1CollectedHeap* _g1h;
1662 public:
1663   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1664 
1665   bool do_object_b(oop obj) {
1666     return obj != NULL &&
1667            (!_g1h->is_in_g1_reserved(obj) || !_g1h->is_obj_dead(obj));
1668   }
1669 };
1670 
1671 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1672   // Depending on the completion of the marking liveness needs to be determined
1673   // using either the next or prev bitmap.
1674   if (mark_completed) {
1675     G1ObjectCountIsAliveClosure is_alive(_g1h);
1676     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1677   } else {
1678     G1CMIsAliveClosure is_alive(_g1h);
1679     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1680   }
1681 }
1682 
1683 
1684 void G1ConcurrentMark::swap_mark_bitmaps() {
1685   G1CMBitMap* temp = _prev_mark_bitmap;
1686   _prev_mark_bitmap = _next_mark_bitmap;
1687   _next_mark_bitmap = temp;
1688   _g1h->collector_state()->set_clearing_next_bitmap(true);
1689 }
1690 
1691 // Closure for marking entries in SATB buffers.
1692 class G1CMSATBBufferClosure : public SATBBufferClosure {
1693 private:
1694   G1CMTask* _task;
1695   G1CollectedHeap* _g1h;
1696 
1697   // This is very similar to G1CMTask::deal_with_reference, but with
1698   // more relaxed requirements for the argument, so this must be more
1699   // circumspect about treating the argument as an object.
1700   void do_entry(void* entry) const {
1701     _task->increment_refs_reached();
1702     oop const obj = static_cast<oop>(entry);
1703     _task->make_reference_grey(obj);
1704   }
1705 
1706 public:
1707   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1708     : _task(task), _g1h(g1h) { }
1709 
1710   virtual void do_buffer(void** buffer, size_t size) {
1711     for (size_t i = 0; i < size; ++i) {
1712       do_entry(buffer[i]);
1713     }
1714   }
1715 };
1716 
1717 class G1RemarkThreadsClosure : public ThreadClosure {
1718   G1CMSATBBufferClosure _cm_satb_cl;
1719   G1CMOopClosure _cm_cl;
1720   MarkingCodeBlobClosure _code_cl;
1721   uintx _claim_token;
1722 
1723  public:
1724   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1725     _cm_satb_cl(task, g1h),
1726     _cm_cl(g1h, task),
1727     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1728     _claim_token(Threads::thread_claim_token()) {}
1729 
1730   void do_thread(Thread* thread) {
1731     if (thread->claim_threads_do(true, _claim_token)) {
1732       SATBMarkQueue& queue = G1ThreadLocalData::satb_mark_queue(thread);
1733       queue.apply_closure_and_empty(&_cm_satb_cl);
1734       if (thread->is_Java_thread()) {
1735         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1736         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1737         // * Alive if on the stack of an executing method
1738         // * Weakly reachable otherwise
1739         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1740         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1741         JavaThread* jt = (JavaThread*)thread;
1742         jt->nmethods_do(&_code_cl);
1743       }
1744     }
1745   }
1746 };
1747 
1748 class G1CMRemarkTask : public AbstractGangTask {
1749   G1ConcurrentMark* _cm;
1750 public:
1751   void work(uint worker_id) {
1752     G1CMTask* task = _cm->task(worker_id);
1753     task->record_start_time();
1754     {
1755       ResourceMark rm;
1756       HandleMark hm;
1757 
1758       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1759       Threads::threads_do(&threads_f);
1760     }
1761 
1762     do {
1763       task->do_marking_step(1000000000.0 /* something very large */,
1764                             true         /* do_termination       */,
1765                             false        /* is_serial            */);
1766     } while (task->has_aborted() && !_cm->has_overflown());
1767     // If we overflow, then we do not want to restart. We instead
1768     // want to abort remark and do concurrent marking again.
1769     task->record_end_time();
1770   }
1771 
1772   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1773     AbstractGangTask("Par Remark"), _cm(cm) {
1774     _cm->terminator()->reset_for_reuse(active_workers);
1775   }
1776 };
1777 
1778 void G1ConcurrentMark::finalize_marking() {
1779   ResourceMark rm;
1780   HandleMark   hm;
1781 
1782   _g1h->ensure_parsability(false);
1783 
1784   // this is remark, so we'll use up all active threads
1785   uint active_workers = _g1h->workers()->active_workers();
1786   set_concurrency_and_phase(active_workers, false /* concurrent */);
1787   // Leave _parallel_marking_threads at it's
1788   // value originally calculated in the G1ConcurrentMark
1789   // constructor and pass values of the active workers
1790   // through the gang in the task.
1791 
1792   {
1793     StrongRootsScope srs(active_workers);
1794 
1795     G1CMRemarkTask remarkTask(this, active_workers);
1796     // We will start all available threads, even if we decide that the
1797     // active_workers will be fewer. The extra ones will just bail out
1798     // immediately.
1799     _g1h->workers()->run_task(&remarkTask);
1800   }
1801 
1802   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1803   guarantee(has_overflown() ||
1804             satb_mq_set.completed_buffers_num() == 0,
1805             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1806             BOOL_TO_STR(has_overflown()),
1807             satb_mq_set.completed_buffers_num());
1808 
1809   print_stats();
1810 }
1811 
1812 void G1ConcurrentMark::flush_all_task_caches() {
1813   size_t hits = 0;
1814   size_t misses = 0;
1815   for (uint i = 0; i < _max_num_tasks; i++) {
1816     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1817     hits += stats.first;
1818     misses += stats.second;
1819   }
1820   size_t sum = hits + misses;
1821   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1822                        hits, misses, percent_of(hits, sum));
1823 }
1824 
1825 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1826   _prev_mark_bitmap->clear_range(mr);
1827 }
1828 
1829 HeapRegion*
1830 G1ConcurrentMark::claim_region(uint worker_id) {
1831   // "checkpoint" the finger
1832   HeapWord* finger = _finger;
1833 
1834   while (finger < _heap.end()) {
1835     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1836 
1837     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1838     // Make sure that the reads below do not float before loading curr_region.
1839     OrderAccess::loadload();
1840     // Above heap_region_containing may return NULL as we always scan claim
1841     // until the end of the heap. In this case, just jump to the next region.
1842     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1843 
1844     // Is the gap between reading the finger and doing the CAS too long?
1845     HeapWord* res = Atomic::cmpxchg(&_finger, finger, end);
1846     if (res == finger && curr_region != NULL) {
1847       // we succeeded
1848       HeapWord*   bottom        = curr_region->bottom();
1849       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1850 
1851       // notice that _finger == end cannot be guaranteed here since,
1852       // someone else might have moved the finger even further
1853       assert(_finger >= end, "the finger should have moved forward");
1854 
1855       if (limit > bottom) {
1856         return curr_region;
1857       } else {
1858         assert(limit == bottom,
1859                "the region limit should be at bottom");
1860         // we return NULL and the caller should try calling
1861         // claim_region() again.
1862         return NULL;
1863       }
1864     } else {
1865       assert(_finger > finger, "the finger should have moved forward");
1866       // read it again
1867       finger = _finger;
1868     }
1869   }
1870 
1871   return NULL;
1872 }
1873 
1874 #ifndef PRODUCT
1875 class VerifyNoCSetOops {
1876   G1CollectedHeap* _g1h;
1877   const char* _phase;
1878   int _info;
1879 
1880 public:
1881   VerifyNoCSetOops(const char* phase, int info = -1) :
1882     _g1h(G1CollectedHeap::heap()),
1883     _phase(phase),
1884     _info(info)
1885   { }
1886 
1887   void operator()(G1TaskQueueEntry task_entry) const {
1888     if (task_entry.is_array_slice()) {
1889       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1890       return;
1891     }
1892     guarantee(oopDesc::is_oop(task_entry.obj()),
1893               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1894               p2i(task_entry.obj()), _phase, _info);
1895     HeapRegion* r = _g1h->heap_region_containing(task_entry.obj());
1896     guarantee(!(r->in_collection_set() || r->has_index_in_opt_cset()),
1897               "obj " PTR_FORMAT " from %s (%d) in region %u in (optional) collection set",
1898               p2i(task_entry.obj()), _phase, _info, r->hrm_index());
1899   }
1900 };
1901 
1902 void G1ConcurrentMark::verify_no_collection_set_oops() {
1903   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1904   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1905     return;
1906   }
1907 
1908   // Verify entries on the global mark stack
1909   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1910 
1911   // Verify entries on the task queues
1912   for (uint i = 0; i < _max_num_tasks; ++i) {
1913     G1CMTaskQueue* queue = _task_queues->queue(i);
1914     queue->iterate(VerifyNoCSetOops("Queue", i));
1915   }
1916 
1917   // Verify the global finger
1918   HeapWord* global_finger = finger();
1919   if (global_finger != NULL && global_finger < _heap.end()) {
1920     // Since we always iterate over all regions, we might get a NULL HeapRegion
1921     // here.
1922     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1923     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1924               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1925               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1926   }
1927 
1928   // Verify the task fingers
1929   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1930   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1931     G1CMTask* task = _tasks[i];
1932     HeapWord* task_finger = task->finger();
1933     if (task_finger != NULL && task_finger < _heap.end()) {
1934       // See above note on the global finger verification.
1935       HeapRegion* r = _g1h->heap_region_containing(task_finger);
1936       guarantee(r == NULL || task_finger == r->bottom() ||
1937                 !r->in_collection_set() || !r->has_index_in_opt_cset(),
1938                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1939                 p2i(task_finger), HR_FORMAT_PARAMS(r));
1940     }
1941   }
1942 }
1943 #endif // PRODUCT
1944 
1945 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1946   _g1h->rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1947 }
1948 
1949 void G1ConcurrentMark::print_stats() {
1950   if (!log_is_enabled(Debug, gc, stats)) {
1951     return;
1952   }
1953   log_debug(gc, stats)("---------------------------------------------------------------------");
1954   for (size_t i = 0; i < _num_active_tasks; ++i) {
1955     _tasks[i]->print_stats();
1956     log_debug(gc, stats)("---------------------------------------------------------------------");
1957   }
1958 }
1959 
1960 void G1ConcurrentMark::concurrent_cycle_abort() {
1961   if (!cm_thread()->during_cycle() || _has_aborted) {
1962     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1963     return;
1964   }
1965 
1966   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1967   // concurrent bitmap clearing.
1968   {
1969     GCTraceTime(Debug, gc) debug("Clear Next Bitmap");
1970     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1971   }
1972   // Note we cannot clear the previous marking bitmap here
1973   // since VerifyDuringGC verifies the objects marked during
1974   // a full GC against the previous bitmap.
1975 
1976   // Empty mark stack
1977   reset_marking_for_restart();
1978   for (uint i = 0; i < _max_num_tasks; ++i) {
1979     _tasks[i]->clear_region_fields();
1980   }
1981   _first_overflow_barrier_sync.abort();
1982   _second_overflow_barrier_sync.abort();
1983   _has_aborted = true;
1984 
1985   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1986   satb_mq_set.abandon_partial_marking();
1987   // This can be called either during or outside marking, we'll read
1988   // the expected_active value from the SATB queue set.
1989   satb_mq_set.set_active_all_threads(
1990                                  false, /* new active value */
1991                                  satb_mq_set.is_active() /* expected_active */);
1992 }
1993 
1994 static void print_ms_time_info(const char* prefix, const char* name,
1995                                NumberSeq& ns) {
1996   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
1997                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
1998   if (ns.num() > 0) {
1999     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2000                            prefix, ns.sd(), ns.maximum());
2001   }
2002 }
2003 
2004 void G1ConcurrentMark::print_summary_info() {
2005   Log(gc, marking) log;
2006   if (!log.is_trace()) {
2007     return;
2008   }
2009 
2010   log.trace(" Concurrent marking:");
2011   print_ms_time_info("  ", "init marks", _init_times);
2012   print_ms_time_info("  ", "remarks", _remark_times);
2013   {
2014     print_ms_time_info("     ", "final marks", _remark_mark_times);
2015     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2016 
2017   }
2018   print_ms_time_info("  ", "cleanups", _cleanup_times);
2019   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2020             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2021   log.trace("  Total stop_world time = %8.2f s.",
2022             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2023   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2024             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2025 }
2026 
2027 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2028   _concurrent_workers->threads_do(tc);
2029 }
2030 
2031 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2032   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2033                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2034   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2035   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2036 }
2037 
2038 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2039   ReferenceProcessor* result = g1h->ref_processor_cm();
2040   assert(result != NULL, "CM reference processor should not be NULL");
2041   return result;
2042 }
2043 
2044 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2045                                G1CMTask* task)
2046   : MetadataVisitingOopIterateClosure(get_cm_oop_closure_ref_processor(g1h)),
2047     _g1h(g1h), _task(task)
2048 { }
2049 
2050 void G1CMTask::setup_for_region(HeapRegion* hr) {
2051   assert(hr != NULL,
2052         "claim_region() should have filtered out NULL regions");
2053   _curr_region  = hr;
2054   _finger       = hr->bottom();
2055   update_region_limit();
2056 }
2057 
2058 void G1CMTask::update_region_limit() {
2059   HeapRegion* hr            = _curr_region;
2060   HeapWord* bottom          = hr->bottom();
2061   HeapWord* limit           = hr->next_top_at_mark_start();
2062 
2063   if (limit == bottom) {
2064     // The region was collected underneath our feet.
2065     // We set the finger to bottom to ensure that the bitmap
2066     // iteration that will follow this will not do anything.
2067     // (this is not a condition that holds when we set the region up,
2068     // as the region is not supposed to be empty in the first place)
2069     _finger = bottom;
2070   } else if (limit >= _region_limit) {
2071     assert(limit >= _finger, "peace of mind");
2072   } else {
2073     assert(limit < _region_limit, "only way to get here");
2074     // This can happen under some pretty unusual circumstances.  An
2075     // evacuation pause empties the region underneath our feet (NTAMS
2076     // at bottom). We then do some allocation in the region (NTAMS
2077     // stays at bottom), followed by the region being used as a GC
2078     // alloc region (NTAMS will move to top() and the objects
2079     // originally below it will be grayed). All objects now marked in
2080     // the region are explicitly grayed, if below the global finger,
2081     // and we do not need in fact to scan anything else. So, we simply
2082     // set _finger to be limit to ensure that the bitmap iteration
2083     // doesn't do anything.
2084     _finger = limit;
2085   }
2086 
2087   _region_limit = limit;
2088 }
2089 
2090 void G1CMTask::giveup_current_region() {
2091   assert(_curr_region != NULL, "invariant");
2092   clear_region_fields();
2093 }
2094 
2095 void G1CMTask::clear_region_fields() {
2096   // Values for these three fields that indicate that we're not
2097   // holding on to a region.
2098   _curr_region   = NULL;
2099   _finger        = NULL;
2100   _region_limit  = NULL;
2101 }
2102 
2103 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2104   if (cm_oop_closure == NULL) {
2105     assert(_cm_oop_closure != NULL, "invariant");
2106   } else {
2107     assert(_cm_oop_closure == NULL, "invariant");
2108   }
2109   _cm_oop_closure = cm_oop_closure;
2110 }
2111 
2112 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2113   guarantee(next_mark_bitmap != NULL, "invariant");
2114   _next_mark_bitmap              = next_mark_bitmap;
2115   clear_region_fields();
2116 
2117   _calls                         = 0;
2118   _elapsed_time_ms               = 0.0;
2119   _termination_time_ms           = 0.0;
2120   _termination_start_time_ms     = 0.0;
2121 
2122   _mark_stats_cache.reset();
2123 }
2124 
2125 bool G1CMTask::should_exit_termination() {
2126   if (!regular_clock_call()) {
2127     return true;
2128   }
2129 
2130   // This is called when we are in the termination protocol. We should
2131   // quit if, for some reason, this task wants to abort or the global
2132   // stack is not empty (this means that we can get work from it).
2133   return !_cm->mark_stack_empty() || has_aborted();
2134 }
2135 
2136 void G1CMTask::reached_limit() {
2137   assert(_words_scanned >= _words_scanned_limit ||
2138          _refs_reached >= _refs_reached_limit ,
2139          "shouldn't have been called otherwise");
2140   abort_marking_if_regular_check_fail();
2141 }
2142 
2143 bool G1CMTask::regular_clock_call() {
2144   if (has_aborted()) {
2145     return false;
2146   }
2147 
2148   // First, we need to recalculate the words scanned and refs reached
2149   // limits for the next clock call.
2150   recalculate_limits();
2151 
2152   // During the regular clock call we do the following
2153 
2154   // (1) If an overflow has been flagged, then we abort.
2155   if (_cm->has_overflown()) {
2156     return false;
2157   }
2158 
2159   // If we are not concurrent (i.e. we're doing remark) we don't need
2160   // to check anything else. The other steps are only needed during
2161   // the concurrent marking phase.
2162   if (!_cm->concurrent()) {
2163     return true;
2164   }
2165 
2166   // (2) If marking has been aborted for Full GC, then we also abort.
2167   if (_cm->has_aborted()) {
2168     return false;
2169   }
2170 
2171   double curr_time_ms = os::elapsedVTime() * 1000.0;
2172 
2173   // (4) We check whether we should yield. If we have to, then we abort.
2174   if (SuspendibleThreadSet::should_yield()) {
2175     // We should yield. To do this we abort the task. The caller is
2176     // responsible for yielding.
2177     return false;
2178   }
2179 
2180   // (5) We check whether we've reached our time quota. If we have,
2181   // then we abort.
2182   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2183   if (elapsed_time_ms > _time_target_ms) {
2184     _has_timed_out = true;
2185     return false;
2186   }
2187 
2188   // (6) Finally, we check whether there are enough completed STAB
2189   // buffers available for processing. If there are, we abort.
2190   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2191   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2192     // we do need to process SATB buffers, we'll abort and restart
2193     // the marking task to do so
2194     return false;
2195   }
2196   return true;
2197 }
2198 
2199 void G1CMTask::recalculate_limits() {
2200   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2201   _words_scanned_limit      = _real_words_scanned_limit;
2202 
2203   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2204   _refs_reached_limit       = _real_refs_reached_limit;
2205 }
2206 
2207 void G1CMTask::decrease_limits() {
2208   // This is called when we believe that we're going to do an infrequent
2209   // operation which will increase the per byte scanned cost (i.e. move
2210   // entries to/from the global stack). It basically tries to decrease the
2211   // scanning limit so that the clock is called earlier.
2212 
2213   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2214   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2215 }
2216 
2217 void G1CMTask::move_entries_to_global_stack() {
2218   // Local array where we'll store the entries that will be popped
2219   // from the local queue.
2220   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2221 
2222   size_t n = 0;
2223   G1TaskQueueEntry task_entry;
2224   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2225     buffer[n] = task_entry;
2226     ++n;
2227   }
2228   if (n < G1CMMarkStack::EntriesPerChunk) {
2229     buffer[n] = G1TaskQueueEntry();
2230   }
2231 
2232   if (n > 0) {
2233     if (!_cm->mark_stack_push(buffer)) {
2234       set_has_aborted();
2235     }
2236   }
2237 
2238   // This operation was quite expensive, so decrease the limits.
2239   decrease_limits();
2240 }
2241 
2242 bool G1CMTask::get_entries_from_global_stack() {
2243   // Local array where we'll store the entries that will be popped
2244   // from the global stack.
2245   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2246 
2247   if (!_cm->mark_stack_pop(buffer)) {
2248     return false;
2249   }
2250 
2251   // We did actually pop at least one entry.
2252   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2253     G1TaskQueueEntry task_entry = buffer[i];
2254     if (task_entry.is_null()) {
2255       break;
2256     }
2257     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2258     bool success = _task_queue->push(task_entry);
2259     // We only call this when the local queue is empty or under a
2260     // given target limit. So, we do not expect this push to fail.
2261     assert(success, "invariant");
2262   }
2263 
2264   // This operation was quite expensive, so decrease the limits
2265   decrease_limits();
2266   return true;
2267 }
2268 
2269 void G1CMTask::drain_local_queue(bool partially) {
2270   if (has_aborted()) {
2271     return;
2272   }
2273 
2274   // Decide what the target size is, depending whether we're going to
2275   // drain it partially (so that other tasks can steal if they run out
2276   // of things to do) or totally (at the very end).
2277   size_t target_size;
2278   if (partially) {
2279     target_size = MIN2((size_t)_task_queue->max_elems()/3, (size_t)GCDrainStackTargetSize);
2280   } else {
2281     target_size = 0;
2282   }
2283 
2284   if (_task_queue->size() > target_size) {
2285     G1TaskQueueEntry entry;
2286     bool ret = _task_queue->pop_local(entry);
2287     while (ret) {
2288       scan_task_entry(entry);
2289       if (_task_queue->size() <= target_size || has_aborted()) {
2290         ret = false;
2291       } else {
2292         ret = _task_queue->pop_local(entry);
2293       }
2294     }
2295   }
2296 }
2297 
2298 void G1CMTask::drain_global_stack(bool partially) {
2299   if (has_aborted()) {
2300     return;
2301   }
2302 
2303   // We have a policy to drain the local queue before we attempt to
2304   // drain the global stack.
2305   assert(partially || _task_queue->size() == 0, "invariant");
2306 
2307   // Decide what the target size is, depending whether we're going to
2308   // drain it partially (so that other tasks can steal if they run out
2309   // of things to do) or totally (at the very end).
2310   // Notice that when draining the global mark stack partially, due to the racyness
2311   // of the mark stack size update we might in fact drop below the target. But,
2312   // this is not a problem.
2313   // In case of total draining, we simply process until the global mark stack is
2314   // totally empty, disregarding the size counter.
2315   if (partially) {
2316     size_t const target_size = _cm->partial_mark_stack_size_target();
2317     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2318       if (get_entries_from_global_stack()) {
2319         drain_local_queue(partially);
2320       }
2321     }
2322   } else {
2323     while (!has_aborted() && get_entries_from_global_stack()) {
2324       drain_local_queue(partially);
2325     }
2326   }
2327 }
2328 
2329 // SATB Queue has several assumptions on whether to call the par or
2330 // non-par versions of the methods. this is why some of the code is
2331 // replicated. We should really get rid of the single-threaded version
2332 // of the code to simplify things.
2333 void G1CMTask::drain_satb_buffers() {
2334   if (has_aborted()) {
2335     return;
2336   }
2337 
2338   // We set this so that the regular clock knows that we're in the
2339   // middle of draining buffers and doesn't set the abort flag when it
2340   // notices that SATB buffers are available for draining. It'd be
2341   // very counter productive if it did that. :-)
2342   _draining_satb_buffers = true;
2343 
2344   G1CMSATBBufferClosure satb_cl(this, _g1h);
2345   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2346 
2347   // This keeps claiming and applying the closure to completed buffers
2348   // until we run out of buffers or we need to abort.
2349   while (!has_aborted() &&
2350          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2351     abort_marking_if_regular_check_fail();
2352   }
2353 
2354   // Can't assert qset is empty here, even if not aborted.  If concurrent,
2355   // some other thread might be adding to the queue.  If not concurrent,
2356   // some other thread might have won the race for the last buffer, but
2357   // has not yet decremented the count.
2358 
2359   _draining_satb_buffers = false;
2360 
2361   // again, this was a potentially expensive operation, decrease the
2362   // limits to get the regular clock call early
2363   decrease_limits();
2364 }
2365 
2366 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2367   _mark_stats_cache.reset(region_idx);
2368 }
2369 
2370 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2371   return _mark_stats_cache.evict_all();
2372 }
2373 
2374 void G1CMTask::print_stats() {
2375   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2376   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2377                        _elapsed_time_ms, _termination_time_ms);
2378   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2379                        _step_times_ms.num(),
2380                        _step_times_ms.avg(),
2381                        _step_times_ms.sd(),
2382                        _step_times_ms.maximum(),
2383                        _step_times_ms.sum());
2384   size_t const hits = _mark_stats_cache.hits();
2385   size_t const misses = _mark_stats_cache.misses();
2386   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2387                        hits, misses, percent_of(hits, hits + misses));
2388 }
2389 
2390 bool G1ConcurrentMark::try_stealing(uint worker_id, G1TaskQueueEntry& task_entry) {
2391   return _task_queues->steal(worker_id, task_entry);
2392 }
2393 
2394 /*****************************************************************************
2395 
2396     The do_marking_step(time_target_ms, ...) method is the building
2397     block of the parallel marking framework. It can be called in parallel
2398     with other invocations of do_marking_step() on different tasks
2399     (but only one per task, obviously) and concurrently with the
2400     mutator threads, or during remark, hence it eliminates the need
2401     for two versions of the code. When called during remark, it will
2402     pick up from where the task left off during the concurrent marking
2403     phase. Interestingly, tasks are also claimable during evacuation
2404     pauses too, since do_marking_step() ensures that it aborts before
2405     it needs to yield.
2406 
2407     The data structures that it uses to do marking work are the
2408     following:
2409 
2410       (1) Marking Bitmap. If there are gray objects that appear only
2411       on the bitmap (this happens either when dealing with an overflow
2412       or when the initial marking phase has simply marked the roots
2413       and didn't push them on the stack), then tasks claim heap
2414       regions whose bitmap they then scan to find gray objects. A
2415       global finger indicates where the end of the last claimed region
2416       is. A local finger indicates how far into the region a task has
2417       scanned. The two fingers are used to determine how to gray an
2418       object (i.e. whether simply marking it is OK, as it will be
2419       visited by a task in the future, or whether it needs to be also
2420       pushed on a stack).
2421 
2422       (2) Local Queue. The local queue of the task which is accessed
2423       reasonably efficiently by the task. Other tasks can steal from
2424       it when they run out of work. Throughout the marking phase, a
2425       task attempts to keep its local queue short but not totally
2426       empty, so that entries are available for stealing by other
2427       tasks. Only when there is no more work, a task will totally
2428       drain its local queue.
2429 
2430       (3) Global Mark Stack. This handles local queue overflow. During
2431       marking only sets of entries are moved between it and the local
2432       queues, as access to it requires a mutex and more fine-grain
2433       interaction with it which might cause contention. If it
2434       overflows, then the marking phase should restart and iterate
2435       over the bitmap to identify gray objects. Throughout the marking
2436       phase, tasks attempt to keep the global mark stack at a small
2437       length but not totally empty, so that entries are available for
2438       popping by other tasks. Only when there is no more work, tasks
2439       will totally drain the global mark stack.
2440 
2441       (4) SATB Buffer Queue. This is where completed SATB buffers are
2442       made available. Buffers are regularly removed from this queue
2443       and scanned for roots, so that the queue doesn't get too
2444       long. During remark, all completed buffers are processed, as
2445       well as the filled in parts of any uncompleted buffers.
2446 
2447     The do_marking_step() method tries to abort when the time target
2448     has been reached. There are a few other cases when the
2449     do_marking_step() method also aborts:
2450 
2451       (1) When the marking phase has been aborted (after a Full GC).
2452 
2453       (2) When a global overflow (on the global stack) has been
2454       triggered. Before the task aborts, it will actually sync up with
2455       the other tasks to ensure that all the marking data structures
2456       (local queues, stacks, fingers etc.)  are re-initialized so that
2457       when do_marking_step() completes, the marking phase can
2458       immediately restart.
2459 
2460       (3) When enough completed SATB buffers are available. The
2461       do_marking_step() method only tries to drain SATB buffers right
2462       at the beginning. So, if enough buffers are available, the
2463       marking step aborts and the SATB buffers are processed at
2464       the beginning of the next invocation.
2465 
2466       (4) To yield. when we have to yield then we abort and yield
2467       right at the end of do_marking_step(). This saves us from a lot
2468       of hassle as, by yielding we might allow a Full GC. If this
2469       happens then objects will be compacted underneath our feet, the
2470       heap might shrink, etc. We save checking for this by just
2471       aborting and doing the yield right at the end.
2472 
2473     From the above it follows that the do_marking_step() method should
2474     be called in a loop (or, otherwise, regularly) until it completes.
2475 
2476     If a marking step completes without its has_aborted() flag being
2477     true, it means it has completed the current marking phase (and
2478     also all other marking tasks have done so and have all synced up).
2479 
2480     A method called regular_clock_call() is invoked "regularly" (in
2481     sub ms intervals) throughout marking. It is this clock method that
2482     checks all the abort conditions which were mentioned above and
2483     decides when the task should abort. A work-based scheme is used to
2484     trigger this clock method: when the number of object words the
2485     marking phase has scanned or the number of references the marking
2486     phase has visited reach a given limit. Additional invocations to
2487     the method clock have been planted in a few other strategic places
2488     too. The initial reason for the clock method was to avoid calling
2489     vtime too regularly, as it is quite expensive. So, once it was in
2490     place, it was natural to piggy-back all the other conditions on it
2491     too and not constantly check them throughout the code.
2492 
2493     If do_termination is true then do_marking_step will enter its
2494     termination protocol.
2495 
2496     The value of is_serial must be true when do_marking_step is being
2497     called serially (i.e. by the VMThread) and do_marking_step should
2498     skip any synchronization in the termination and overflow code.
2499     Examples include the serial remark code and the serial reference
2500     processing closures.
2501 
2502     The value of is_serial must be false when do_marking_step is
2503     being called by any of the worker threads in a work gang.
2504     Examples include the concurrent marking code (CMMarkingTask),
2505     the MT remark code, and the MT reference processing closures.
2506 
2507  *****************************************************************************/
2508 
2509 void G1CMTask::do_marking_step(double time_target_ms,
2510                                bool do_termination,
2511                                bool is_serial) {
2512   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2513 
2514   _start_time_ms = os::elapsedVTime() * 1000.0;
2515 
2516   // If do_stealing is true then do_marking_step will attempt to
2517   // steal work from the other G1CMTasks. It only makes sense to
2518   // enable stealing when the termination protocol is enabled
2519   // and do_marking_step() is not being called serially.
2520   bool do_stealing = do_termination && !is_serial;
2521 
2522   G1Predictions const& predictor = _g1h->policy()->predictor();
2523   double diff_prediction_ms = predictor.predict_zero_bounded(&_marking_step_diff_ms);
2524   _time_target_ms = time_target_ms - diff_prediction_ms;
2525 
2526   // set up the variables that are used in the work-based scheme to
2527   // call the regular clock method
2528   _words_scanned = 0;
2529   _refs_reached  = 0;
2530   recalculate_limits();
2531 
2532   // clear all flags
2533   clear_has_aborted();
2534   _has_timed_out = false;
2535   _draining_satb_buffers = false;
2536 
2537   ++_calls;
2538 
2539   // Set up the bitmap and oop closures. Anything that uses them is
2540   // eventually called from this method, so it is OK to allocate these
2541   // statically.
2542   G1CMBitMapClosure bitmap_closure(this, _cm);
2543   G1CMOopClosure cm_oop_closure(_g1h, this);
2544   set_cm_oop_closure(&cm_oop_closure);
2545 
2546   if (_cm->has_overflown()) {
2547     // This can happen if the mark stack overflows during a GC pause
2548     // and this task, after a yield point, restarts. We have to abort
2549     // as we need to get into the overflow protocol which happens
2550     // right at the end of this task.
2551     set_has_aborted();
2552   }
2553 
2554   // First drain any available SATB buffers. After this, we will not
2555   // look at SATB buffers before the next invocation of this method.
2556   // If enough completed SATB buffers are queued up, the regular clock
2557   // will abort this task so that it restarts.
2558   drain_satb_buffers();
2559   // ...then partially drain the local queue and the global stack
2560   drain_local_queue(true);
2561   drain_global_stack(true);
2562 
2563   do {
2564     if (!has_aborted() && _curr_region != NULL) {
2565       // This means that we're already holding on to a region.
2566       assert(_finger != NULL, "if region is not NULL, then the finger "
2567              "should not be NULL either");
2568 
2569       // We might have restarted this task after an evacuation pause
2570       // which might have evacuated the region we're holding on to
2571       // underneath our feet. Let's read its limit again to make sure
2572       // that we do not iterate over a region of the heap that
2573       // contains garbage (update_region_limit() will also move
2574       // _finger to the start of the region if it is found empty).
2575       update_region_limit();
2576       // We will start from _finger not from the start of the region,
2577       // as we might be restarting this task after aborting half-way
2578       // through scanning this region. In this case, _finger points to
2579       // the address where we last found a marked object. If this is a
2580       // fresh region, _finger points to start().
2581       MemRegion mr = MemRegion(_finger, _region_limit);
2582 
2583       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2584              "humongous regions should go around loop once only");
2585 
2586       // Some special cases:
2587       // If the memory region is empty, we can just give up the region.
2588       // If the current region is humongous then we only need to check
2589       // the bitmap for the bit associated with the start of the object,
2590       // scan the object if it's live, and give up the region.
2591       // Otherwise, let's iterate over the bitmap of the part of the region
2592       // that is left.
2593       // If the iteration is successful, give up the region.
2594       if (mr.is_empty()) {
2595         giveup_current_region();
2596         abort_marking_if_regular_check_fail();
2597       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2598         if (_next_mark_bitmap->is_marked(mr.start())) {
2599           // The object is marked - apply the closure
2600           bitmap_closure.do_addr(mr.start());
2601         }
2602         // Even if this task aborted while scanning the humongous object
2603         // we can (and should) give up the current region.
2604         giveup_current_region();
2605         abort_marking_if_regular_check_fail();
2606       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2607         giveup_current_region();
2608         abort_marking_if_regular_check_fail();
2609       } else {
2610         assert(has_aborted(), "currently the only way to do so");
2611         // The only way to abort the bitmap iteration is to return
2612         // false from the do_bit() method. However, inside the
2613         // do_bit() method we move the _finger to point to the
2614         // object currently being looked at. So, if we bail out, we
2615         // have definitely set _finger to something non-null.
2616         assert(_finger != NULL, "invariant");
2617 
2618         // Region iteration was actually aborted. So now _finger
2619         // points to the address of the object we last scanned. If we
2620         // leave it there, when we restart this task, we will rescan
2621         // the object. It is easy to avoid this. We move the finger by
2622         // enough to point to the next possible object header.
2623         assert(_finger < _region_limit, "invariant");
2624         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2625         // Check if bitmap iteration was aborted while scanning the last object
2626         if (new_finger >= _region_limit) {
2627           giveup_current_region();
2628         } else {
2629           move_finger_to(new_finger);
2630         }
2631       }
2632     }
2633     // At this point we have either completed iterating over the
2634     // region we were holding on to, or we have aborted.
2635 
2636     // We then partially drain the local queue and the global stack.
2637     // (Do we really need this?)
2638     drain_local_queue(true);
2639     drain_global_stack(true);
2640 
2641     // Read the note on the claim_region() method on why it might
2642     // return NULL with potentially more regions available for
2643     // claiming and why we have to check out_of_regions() to determine
2644     // whether we're done or not.
2645     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2646       // We are going to try to claim a new region. We should have
2647       // given up on the previous one.
2648       // Separated the asserts so that we know which one fires.
2649       assert(_curr_region  == NULL, "invariant");
2650       assert(_finger       == NULL, "invariant");
2651       assert(_region_limit == NULL, "invariant");
2652       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2653       if (claimed_region != NULL) {
2654         // Yes, we managed to claim one
2655         setup_for_region(claimed_region);
2656         assert(_curr_region == claimed_region, "invariant");
2657       }
2658       // It is important to call the regular clock here. It might take
2659       // a while to claim a region if, for example, we hit a large
2660       // block of empty regions. So we need to call the regular clock
2661       // method once round the loop to make sure it's called
2662       // frequently enough.
2663       abort_marking_if_regular_check_fail();
2664     }
2665 
2666     if (!has_aborted() && _curr_region == NULL) {
2667       assert(_cm->out_of_regions(),
2668              "at this point we should be out of regions");
2669     }
2670   } while ( _curr_region != NULL && !has_aborted());
2671 
2672   if (!has_aborted()) {
2673     // We cannot check whether the global stack is empty, since other
2674     // tasks might be pushing objects to it concurrently.
2675     assert(_cm->out_of_regions(),
2676            "at this point we should be out of regions");
2677     // Try to reduce the number of available SATB buffers so that
2678     // remark has less work to do.
2679     drain_satb_buffers();
2680   }
2681 
2682   // Since we've done everything else, we can now totally drain the
2683   // local queue and global stack.
2684   drain_local_queue(false);
2685   drain_global_stack(false);
2686 
2687   // Attempt at work stealing from other task's queues.
2688   if (do_stealing && !has_aborted()) {
2689     // We have not aborted. This means that we have finished all that
2690     // we could. Let's try to do some stealing...
2691 
2692     // We cannot check whether the global stack is empty, since other
2693     // tasks might be pushing objects to it concurrently.
2694     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2695            "only way to reach here");
2696     while (!has_aborted()) {
2697       G1TaskQueueEntry entry;
2698       if (_cm->try_stealing(_worker_id, entry)) {
2699         scan_task_entry(entry);
2700 
2701         // And since we're towards the end, let's totally drain the
2702         // local queue and global stack.
2703         drain_local_queue(false);
2704         drain_global_stack(false);
2705       } else {
2706         break;
2707       }
2708     }
2709   }
2710 
2711   // We still haven't aborted. Now, let's try to get into the
2712   // termination protocol.
2713   if (do_termination && !has_aborted()) {
2714     // We cannot check whether the global stack is empty, since other
2715     // tasks might be concurrently pushing objects on it.
2716     // Separated the asserts so that we know which one fires.
2717     assert(_cm->out_of_regions(), "only way to reach here");
2718     assert(_task_queue->size() == 0, "only way to reach here");
2719     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2720 
2721     // The G1CMTask class also extends the TerminatorTerminator class,
2722     // hence its should_exit_termination() method will also decide
2723     // whether to exit the termination protocol or not.
2724     bool finished = (is_serial ||
2725                      _cm->terminator()->offer_termination(this));
2726     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2727     _termination_time_ms +=
2728       termination_end_time_ms - _termination_start_time_ms;
2729 
2730     if (finished) {
2731       // We're all done.
2732 
2733       // We can now guarantee that the global stack is empty, since
2734       // all other tasks have finished. We separated the guarantees so
2735       // that, if a condition is false, we can immediately find out
2736       // which one.
2737       guarantee(_cm->out_of_regions(), "only way to reach here");
2738       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2739       guarantee(_task_queue->size() == 0, "only way to reach here");
2740       guarantee(!_cm->has_overflown(), "only way to reach here");
2741       guarantee(!has_aborted(), "should never happen if termination has completed");
2742     } else {
2743       // Apparently there's more work to do. Let's abort this task. It
2744       // will restart it and we can hopefully find more things to do.
2745       set_has_aborted();
2746     }
2747   }
2748 
2749   // Mainly for debugging purposes to make sure that a pointer to the
2750   // closure which was statically allocated in this frame doesn't
2751   // escape it by accident.
2752   set_cm_oop_closure(NULL);
2753   double end_time_ms = os::elapsedVTime() * 1000.0;
2754   double elapsed_time_ms = end_time_ms - _start_time_ms;
2755   // Update the step history.
2756   _step_times_ms.add(elapsed_time_ms);
2757 
2758   if (has_aborted()) {
2759     // The task was aborted for some reason.
2760     if (_has_timed_out) {
2761       double diff_ms = elapsed_time_ms - _time_target_ms;
2762       // Keep statistics of how well we did with respect to hitting
2763       // our target only if we actually timed out (if we aborted for
2764       // other reasons, then the results might get skewed).
2765       _marking_step_diff_ms.add(diff_ms);
2766     }
2767 
2768     if (_cm->has_overflown()) {
2769       // This is the interesting one. We aborted because a global
2770       // overflow was raised. This means we have to restart the
2771       // marking phase and start iterating over regions. However, in
2772       // order to do this we have to make sure that all tasks stop
2773       // what they are doing and re-initialize in a safe manner. We
2774       // will achieve this with the use of two barrier sync points.
2775 
2776       if (!is_serial) {
2777         // We only need to enter the sync barrier if being called
2778         // from a parallel context
2779         _cm->enter_first_sync_barrier(_worker_id);
2780 
2781         // When we exit this sync barrier we know that all tasks have
2782         // stopped doing marking work. So, it's now safe to
2783         // re-initialize our data structures.
2784       }
2785 
2786       clear_region_fields();
2787       flush_mark_stats_cache();
2788 
2789       if (!is_serial) {
2790         // If we're executing the concurrent phase of marking, reset the marking
2791         // state; otherwise the marking state is reset after reference processing,
2792         // during the remark pause.
2793         // If we reset here as a result of an overflow during the remark we will
2794         // see assertion failures from any subsequent set_concurrency_and_phase()
2795         // calls.
2796         if (_cm->concurrent() && _worker_id == 0) {
2797           // Worker 0 is responsible for clearing the global data structures because
2798           // of an overflow. During STW we should not clear the overflow flag (in
2799           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2800           // method to abort the pause and restart concurrent marking.
2801           _cm->reset_marking_for_restart();
2802 
2803           log_info(gc, marking)("Concurrent Mark reset for overflow");
2804         }
2805 
2806         // ...and enter the second barrier.
2807         _cm->enter_second_sync_barrier(_worker_id);
2808       }
2809       // At this point, if we're during the concurrent phase of
2810       // marking, everything has been re-initialized and we're
2811       // ready to restart.
2812     }
2813   }
2814 }
2815 
2816 G1CMTask::G1CMTask(uint worker_id,
2817                    G1ConcurrentMark* cm,
2818                    G1CMTaskQueue* task_queue,
2819                    G1RegionMarkStats* mark_stats,
2820                    uint max_regions) :
2821   _objArray_processor(this),
2822   _worker_id(worker_id),
2823   _g1h(G1CollectedHeap::heap()),
2824   _cm(cm),
2825   _next_mark_bitmap(NULL),
2826   _task_queue(task_queue),
2827   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2828   _calls(0),
2829   _time_target_ms(0.0),
2830   _start_time_ms(0.0),
2831   _cm_oop_closure(NULL),
2832   _curr_region(NULL),
2833   _finger(NULL),
2834   _region_limit(NULL),
2835   _words_scanned(0),
2836   _words_scanned_limit(0),
2837   _real_words_scanned_limit(0),
2838   _refs_reached(0),
2839   _refs_reached_limit(0),
2840   _real_refs_reached_limit(0),
2841   _has_aborted(false),
2842   _has_timed_out(false),
2843   _draining_satb_buffers(false),
2844   _step_times_ms(),
2845   _elapsed_time_ms(0.0),
2846   _termination_time_ms(0.0),
2847   _termination_start_time_ms(0.0),
2848   _marking_step_diff_ms()
2849 {
2850   guarantee(task_queue != NULL, "invariant");
2851 
2852   _marking_step_diff_ms.add(0.5);
2853 }
2854 
2855 // These are formatting macros that are used below to ensure
2856 // consistent formatting. The *_H_* versions are used to format the
2857 // header for a particular value and they should be kept consistent
2858 // with the corresponding macro. Also note that most of the macros add
2859 // the necessary white space (as a prefix) which makes them a bit
2860 // easier to compose.
2861 
2862 // All the output lines are prefixed with this string to be able to
2863 // identify them easily in a large log file.
2864 #define G1PPRL_LINE_PREFIX            "###"
2865 
2866 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2867 #ifdef _LP64
2868 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2869 #else // _LP64
2870 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2871 #endif // _LP64
2872 
2873 // For per-region info
2874 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2875 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2876 #define G1PPRL_STATE_FORMAT           "   %-5s"
2877 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2878 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2879 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2880 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2881 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2882 
2883 // For summary info
2884 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2885 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2886 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2887 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2888 
2889 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2890   _total_used_bytes(0), _total_capacity_bytes(0),
2891   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2892   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2893 {
2894   if (!log_is_enabled(Trace, gc, liveness)) {
2895     return;
2896   }
2897 
2898   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2899   MemRegion g1_reserved = g1h->g1_reserved();
2900   double now = os::elapsedTime();
2901 
2902   // Print the header of the output.
2903   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2904   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2905                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2906                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2907                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2908                           HeapRegion::GrainBytes);
2909   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2910   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2911                           G1PPRL_TYPE_H_FORMAT
2912                           G1PPRL_ADDR_BASE_H_FORMAT
2913                           G1PPRL_BYTE_H_FORMAT
2914                           G1PPRL_BYTE_H_FORMAT
2915                           G1PPRL_BYTE_H_FORMAT
2916                           G1PPRL_DOUBLE_H_FORMAT
2917                           G1PPRL_BYTE_H_FORMAT
2918                           G1PPRL_STATE_H_FORMAT
2919                           G1PPRL_BYTE_H_FORMAT,
2920                           "type", "address-range",
2921                           "used", "prev-live", "next-live", "gc-eff",
2922                           "remset", "state", "code-roots");
2923   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2924                           G1PPRL_TYPE_H_FORMAT
2925                           G1PPRL_ADDR_BASE_H_FORMAT
2926                           G1PPRL_BYTE_H_FORMAT
2927                           G1PPRL_BYTE_H_FORMAT
2928                           G1PPRL_BYTE_H_FORMAT
2929                           G1PPRL_DOUBLE_H_FORMAT
2930                           G1PPRL_BYTE_H_FORMAT
2931                           G1PPRL_STATE_H_FORMAT
2932                           G1PPRL_BYTE_H_FORMAT,
2933                           "", "",
2934                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2935                           "(bytes)", "", "(bytes)");
2936 }
2937 
2938 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2939   if (!log_is_enabled(Trace, gc, liveness)) {
2940     return false;
2941   }
2942 
2943   const char* type       = r->get_type_str();
2944   HeapWord* bottom       = r->bottom();
2945   HeapWord* end          = r->end();
2946   size_t capacity_bytes  = r->capacity();
2947   size_t used_bytes      = r->used();
2948   size_t prev_live_bytes = r->live_bytes();
2949   size_t next_live_bytes = r->next_live_bytes();
2950   double gc_eff          = r->gc_efficiency();
2951   size_t remset_bytes    = r->rem_set()->mem_size();
2952   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2953   const char* remset_type = r->rem_set()->get_short_state_str();
2954 
2955   _total_used_bytes      += used_bytes;
2956   _total_capacity_bytes  += capacity_bytes;
2957   _total_prev_live_bytes += prev_live_bytes;
2958   _total_next_live_bytes += next_live_bytes;
2959   _total_remset_bytes    += remset_bytes;
2960   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2961 
2962   // Print a line for this particular region.
2963   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2964                           G1PPRL_TYPE_FORMAT
2965                           G1PPRL_ADDR_BASE_FORMAT
2966                           G1PPRL_BYTE_FORMAT
2967                           G1PPRL_BYTE_FORMAT
2968                           G1PPRL_BYTE_FORMAT
2969                           G1PPRL_DOUBLE_FORMAT
2970                           G1PPRL_BYTE_FORMAT
2971                           G1PPRL_STATE_FORMAT
2972                           G1PPRL_BYTE_FORMAT,
2973                           type, p2i(bottom), p2i(end),
2974                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2975                           remset_bytes, remset_type, strong_code_roots_bytes);
2976 
2977   return false;
2978 }
2979 
2980 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2981   if (!log_is_enabled(Trace, gc, liveness)) {
2982     return;
2983   }
2984 
2985   // add static memory usages to remembered set sizes
2986   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
2987   // Print the footer of the output.
2988   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2989   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2990                          " SUMMARY"
2991                          G1PPRL_SUM_MB_FORMAT("capacity")
2992                          G1PPRL_SUM_MB_PERC_FORMAT("used")
2993                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
2994                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
2995                          G1PPRL_SUM_MB_FORMAT("remset")
2996                          G1PPRL_SUM_MB_FORMAT("code-roots"),
2997                          bytes_to_mb(_total_capacity_bytes),
2998                          bytes_to_mb(_total_used_bytes),
2999                          percent_of(_total_used_bytes, _total_capacity_bytes),
3000                          bytes_to_mb(_total_prev_live_bytes),
3001                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3002                          bytes_to_mb(_total_next_live_bytes),
3003                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3004                          bytes_to_mb(_total_remset_bytes),
3005                          bytes_to_mb(_total_strong_code_roots_bytes));
3006 }