1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "gc/g1/g1ConcurrentMarkBitMap.hpp"
  29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
  30 #include "gc/g1/g1HeapVerifier.hpp"
  31 #include "gc/g1/g1RegionMarkStatsCache.hpp"
  32 #include "gc/g1/heapRegionSet.hpp"
  33 #include "gc/shared/taskTerminator.hpp"
  34 #include "gc/shared/taskqueue.hpp"
  35 #include "gc/shared/verifyOption.hpp"
  36 #include "gc/shared/workgroup.hpp"
  37 #include "memory/allocation.hpp"
  38 #include "utilities/compilerWarnings.hpp"
  39 #include "utilities/numberSeq.hpp"
  40 
  41 class ConcurrentGCTimer;
  42 class G1ConcurrentMarkThread;
  43 class G1CollectedHeap;
  44 class G1CMOopClosure;
  45 class G1CMTask;
  46 class G1ConcurrentMark;
  47 class G1OldTracer;
  48 class G1RegionToSpaceMapper;
  49 class G1SurvivorRegions;
  50 class ThreadClosure;
  51 
  52 PRAGMA_DIAG_PUSH
  53 // warning C4522: multiple assignment operators specified
  54 PRAGMA_DISABLE_MSVC_WARNING(4522)
  55 
  56 // This is a container class for either an oop or a continuation address for
  57 // mark stack entries. Both are pushed onto the mark stack.
  58 class G1TaskQueueEntry {
  59 private:
  60   void* _holder;
  61 
  62   static const uintptr_t ArraySliceBit = 1;
  63 
  64   G1TaskQueueEntry(oop obj) : _holder(obj) {
  65     assert(_holder != NULL, "Not allowed to set NULL task queue element");
  66   }
  67   G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
  68 public:
  69 
  70   G1TaskQueueEntry() : _holder(NULL) { }
  71   // Trivially copyable, for use in GenericTaskQueue.
  72 
  73   static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
  74   static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
  75 
  76   oop obj() const {
  77     assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
  78     return (oop)_holder;
  79   }
  80 
  81   HeapWord* slice() const {
  82     assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
  83     return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
  84   }
  85 
  86   bool is_oop() const { return !is_array_slice(); }
  87   bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
  88   bool is_null() const { return _holder == NULL; }
  89 };
  90 
  91 PRAGMA_DIAG_POP
  92 
  93 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
  94 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
  95 
  96 // Closure used by CM during concurrent reference discovery
  97 // and reference processing (during remarking) to determine
  98 // if a particular object is alive. It is primarily used
  99 // to determine if referents of discovered reference objects
 100 // are alive. An instance is also embedded into the
 101 // reference processor as the _is_alive_non_header field
 102 class G1CMIsAliveClosure : public BoolObjectClosure {
 103   G1CollectedHeap* _g1h;
 104 public:
 105   G1CMIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
 106   bool do_object_b(oop obj);
 107 };
 108 
 109 class G1CMSubjectToDiscoveryClosure : public BoolObjectClosure {
 110   G1CollectedHeap* _g1h;
 111 public:
 112   G1CMSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
 113   bool do_object_b(oop obj);
 114 };
 115 
 116 // Represents the overflow mark stack used by concurrent marking.
 117 //
 118 // Stores oops in a huge buffer in virtual memory that is always fully committed.
 119 // Resizing may only happen during a STW pause when the stack is empty.
 120 //
 121 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
 122 // stack memory is split into evenly sized chunks of oops. Users can only
 123 // add or remove entries on that basis.
 124 // Chunks are filled in increasing address order. Not completely filled chunks
 125 // have a NULL element as a terminating element.
 126 //
 127 // Every chunk has a header containing a single pointer element used for memory
 128 // management. This wastes some space, but is negligible (< .1% with current sizing).
 129 //
 130 // Memory management is done using a mix of tracking a high water-mark indicating
 131 // that all chunks at a lower address are valid chunks, and a singly linked free
 132 // list connecting all empty chunks.
 133 class G1CMMarkStack {
 134 public:
 135   // Number of TaskQueueEntries that can fit in a single chunk.
 136   static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
 137 private:
 138   struct TaskQueueEntryChunk {
 139     TaskQueueEntryChunk* next;
 140     G1TaskQueueEntry data[EntriesPerChunk];
 141   };
 142 
 143   size_t _max_chunk_capacity;    // Maximum number of TaskQueueEntryChunk elements on the stack.
 144 
 145   TaskQueueEntryChunk* _base;    // Bottom address of allocated memory area.
 146   size_t _chunk_capacity;        // Current maximum number of TaskQueueEntryChunk elements.
 147 
 148   char _pad0[DEFAULT_CACHE_LINE_SIZE];
 149   TaskQueueEntryChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
 150   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)];
 151   TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data.
 152   volatile size_t _chunks_in_chunk_list;
 153   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)];
 154 
 155   volatile size_t _hwm;          // High water mark within the reserved space.
 156   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
 157 
 158   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
 159   // NULL if out of memory.
 160   TaskQueueEntryChunk* allocate_new_chunk();
 161 
 162   // Atomically add the given chunk to the list.
 163   void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem);
 164   // Atomically remove and return a chunk from the given list. Returns NULL if the
 165   // list is empty.
 166   TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list);
 167 
 168   void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem);
 169   void add_chunk_to_free_list(TaskQueueEntryChunk* elem);
 170 
 171   TaskQueueEntryChunk* remove_chunk_from_chunk_list();
 172   TaskQueueEntryChunk* remove_chunk_from_free_list();
 173 
 174   // Resizes the mark stack to the given new capacity. Releases any previous
 175   // memory if successful.
 176   bool resize(size_t new_capacity);
 177 
 178  public:
 179   G1CMMarkStack();
 180   ~G1CMMarkStack();
 181 
 182   // Alignment and minimum capacity of this mark stack in number of oops.
 183   static size_t capacity_alignment();
 184 
 185   // Allocate and initialize the mark stack with the given number of oops.
 186   bool initialize(size_t initial_capacity, size_t max_capacity);
 187 
 188   // Pushes the given buffer containing at most EntriesPerChunk elements on the mark
 189   // stack. If less than EntriesPerChunk elements are to be pushed, the array must
 190   // be terminated with a NULL.
 191   // Returns whether the buffer contents were successfully pushed to the global mark
 192   // stack.
 193   bool par_push_chunk(G1TaskQueueEntry* buffer);
 194 
 195   // Pops a chunk from this mark stack, copying them into the given buffer. This
 196   // chunk may contain up to EntriesPerChunk elements. If there are less, the last
 197   // element in the array is a NULL pointer.
 198   bool par_pop_chunk(G1TaskQueueEntry* buffer);
 199 
 200   // Return whether the chunk list is empty. Racy due to unsynchronized access to
 201   // _chunk_list.
 202   bool is_empty() const { return _chunk_list == NULL; }
 203 
 204   size_t capacity() const  { return _chunk_capacity; }
 205 
 206   // Expand the stack, typically in response to an overflow condition
 207   void expand();
 208 
 209   // Return the approximate number of oops on this mark stack. Racy due to
 210   // unsynchronized access to _chunks_in_chunk_list.
 211   size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
 212 
 213   void set_empty();
 214 
 215   // Apply Fn to every oop on the mark stack. The mark stack must not
 216   // be modified while iterating.
 217   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
 218 };
 219 
 220 // Root MemRegions are memory areas that contain objects which references are
 221 // roots wrt to the marking. They must be scanned before marking to maintain the
 222 // SATB invariant.
 223 // Typically they contain the areas from nTAMS to top of the regions.
 224 // We could scan and mark through these objects during the initial-mark pause, but for
 225 // pause time reasons we move this work to the concurrent phase.
 226 // We need to complete this procedure before the next GC because it might determine
 227 // that some of these "root objects" are dead, potentially dropping some required
 228 // references.
 229 // Root MemRegions comprise of the contents of survivor regions at the end
 230 // of the GC, and any objects copied into the old gen during GC.
 231 class G1CMRootMemRegions {
 232   // The set of root MemRegions.
 233   MemRegion*   _root_regions;
 234   size_t const _max_regions;
 235 
 236   volatile size_t _num_root_regions; // Actual number of root regions.
 237 
 238   volatile size_t _claimed_root_regions; // Number of root regions currently claimed.
 239 
 240   volatile bool _scan_in_progress;
 241   volatile bool _should_abort;
 242 
 243   void notify_scan_done();
 244 
 245 public:
 246   G1CMRootMemRegions(uint const max_regions);
 247   ~G1CMRootMemRegions();
 248 
 249   // Reset the data structure to allow addition of new root regions.
 250   void reset();
 251 
 252   void add(HeapWord* start, HeapWord* end);
 253 
 254   // Reset the claiming / scanning of the root regions.
 255   void prepare_for_scan();
 256 
 257   // Forces get_next() to return NULL so that the iteration aborts early.
 258   void abort() { _should_abort = true; }
 259 
 260   // Return true if the CM thread are actively scanning root regions,
 261   // false otherwise.
 262   bool scan_in_progress() { return _scan_in_progress; }
 263 
 264   // Claim the next root MemRegion to scan atomically, or return NULL if
 265   // all have been claimed.
 266   const MemRegion* claim_next();
 267 
 268   // The number of root regions to scan.
 269   uint num_root_regions() const;
 270 
 271   void cancel_scan();
 272 
 273   // Flag that we're done with root region scanning and notify anyone
 274   // who's waiting on it. If aborted is false, assume that all regions
 275   // have been claimed.
 276   void scan_finished();
 277 
 278   // If CM threads are still scanning root regions, wait until they
 279   // are done. Return true if we had to wait, false otherwise.
 280   bool wait_until_scan_finished();
 281 };
 282 
 283 // This class manages data structures and methods for doing liveness analysis in
 284 // G1's concurrent cycle.
 285 class G1ConcurrentMark : public CHeapObj<mtGC> {
 286   friend class G1ConcurrentMarkThread;
 287   friend class G1CMRefProcTaskProxy;
 288   friend class G1CMRefProcTaskExecutor;
 289   friend class G1CMKeepAliveAndDrainClosure;
 290   friend class G1CMDrainMarkingStackClosure;
 291   friend class G1CMBitMapClosure;
 292   friend class G1CMConcurrentMarkingTask;
 293   friend class G1CMRemarkTask;
 294   friend class G1CMTask;
 295 
 296   G1ConcurrentMarkThread* _cm_thread;     // The thread doing the work
 297   G1CollectedHeap*        _g1h;           // The heap
 298 
 299   // Concurrent marking support structures
 300   G1CMBitMap              _mark_bitmap_1;
 301   G1CMBitMap              _mark_bitmap_2;
 302   G1CMBitMap*             _prev_mark_bitmap; // Completed mark bitmap
 303   G1CMBitMap*             _next_mark_bitmap; // Under-construction mark bitmap
 304 
 305   // Heap bounds
 306   MemRegion const         _heap;
 307 
 308   // Root region tracking and claiming
 309   G1CMRootMemRegions         _root_regions;
 310 
 311   // For grey objects
 312   G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
 313   HeapWord* volatile      _finger;            // The global finger, region aligned,
 314                                               // always pointing to the end of the
 315                                               // last claimed region
 316 
 317   uint                    _worker_id_offset;
 318   uint                    _max_num_tasks;    // Maximum number of marking tasks
 319   uint                    _num_active_tasks; // Number of tasks currently active
 320   G1CMTask**              _tasks;            // Task queue array (max_worker_id length)
 321 
 322   G1CMTaskQueueSet*       _task_queues; // Task queue set
 323   TaskTerminator          _terminator;  // For termination
 324 
 325   // Two sync barriers that are used to synchronize tasks when an
 326   // overflow occurs. The algorithm is the following. All tasks enter
 327   // the first one to ensure that they have all stopped manipulating
 328   // the global data structures. After they exit it, they re-initialize
 329   // their data structures and task 0 re-initializes the global data
 330   // structures. Then, they enter the second sync barrier. This
 331   // ensure, that no task starts doing work before all data
 332   // structures (local and global) have been re-initialized. When they
 333   // exit it, they are free to start working again.
 334   WorkGangBarrierSync     _first_overflow_barrier_sync;
 335   WorkGangBarrierSync     _second_overflow_barrier_sync;
 336 
 337   // This is set by any task, when an overflow on the global data
 338   // structures is detected
 339   volatile bool           _has_overflown;
 340   // True: marking is concurrent, false: we're in remark
 341   volatile bool           _concurrent;
 342   // Set at the end of a Full GC so that marking aborts
 343   volatile bool           _has_aborted;
 344 
 345   // Used when remark aborts due to an overflow to indicate that
 346   // another concurrent marking phase should start
 347   volatile bool           _restart_for_overflow;
 348 
 349   ConcurrentGCTimer*      _gc_timer_cm;
 350 
 351   G1OldTracer*            _gc_tracer_cm;
 352 
 353   // Timing statistics. All of them are in ms
 354   NumberSeq _init_times;
 355   NumberSeq _remark_times;
 356   NumberSeq _remark_mark_times;
 357   NumberSeq _remark_weak_ref_times;
 358   NumberSeq _cleanup_times;
 359   double    _total_cleanup_time;
 360 
 361   double*   _accum_task_vtime;   // Accumulated task vtime
 362 
 363   WorkGang* _concurrent_workers;
 364   uint      _num_concurrent_workers; // The number of marking worker threads we're using
 365   uint      _max_concurrent_workers; // Maximum number of marking worker threads
 366 
 367   void verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller);
 368 
 369   void finalize_marking();
 370 
 371   void weak_refs_work_parallel_part(BoolObjectClosure* is_alive, bool purged_classes);
 372   void weak_refs_work(bool clear_all_soft_refs);
 373 
 374   void report_object_count(bool mark_completed);
 375 
 376   void swap_mark_bitmaps();
 377 
 378   void reclaim_empty_regions();
 379 
 380   // After reclaiming empty regions, update heap sizes.
 381   void compute_new_sizes();
 382 
 383   // Clear statistics gathered during the concurrent cycle for the given region after
 384   // it has been reclaimed.
 385   void clear_statistics(HeapRegion* r);
 386 
 387   // Resets the global marking data structures, as well as the
 388   // task local ones; should be called during initial mark.
 389   void reset();
 390 
 391   // Resets all the marking data structures. Called when we have to restart
 392   // marking or when marking completes (via set_non_marking_state below).
 393   void reset_marking_for_restart();
 394 
 395   // We do this after we're done with marking so that the marking data
 396   // structures are initialized to a sensible and predictable state.
 397   void reset_at_marking_complete();
 398 
 399   // Called to indicate how many threads are currently active.
 400   void set_concurrency(uint active_tasks);
 401 
 402   // Should be called to indicate which phase we're in (concurrent
 403   // mark or remark) and how many threads are currently active.
 404   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 405 
 406   // Prints all gathered CM-related statistics
 407   void print_stats();
 408 
 409   HeapWord*           finger()       { return _finger;   }
 410   bool                concurrent()   { return _concurrent; }
 411   uint                active_tasks() { return _num_active_tasks; }
 412   TaskTerminator*     terminator()   { return &_terminator; }
 413 
 414   // Claims the next available region to be scanned by a marking
 415   // task/thread. It might return NULL if the next region is empty or
 416   // we have run out of regions. In the latter case, out_of_regions()
 417   // determines whether we've really run out of regions or the task
 418   // should call claim_region() again. This might seem a bit
 419   // awkward. Originally, the code was written so that claim_region()
 420   // either successfully returned with a non-empty region or there
 421   // were no more regions to be claimed. The problem with this was
 422   // that, in certain circumstances, it iterated over large chunks of
 423   // the heap finding only empty regions and, while it was working, it
 424   // was preventing the calling task to call its regular clock
 425   // method. So, this way, each task will spend very little time in
 426   // claim_region() and is allowed to call the regular clock method
 427   // frequently.
 428   HeapRegion* claim_region(uint worker_id);
 429 
 430   // Determines whether we've run out of regions to scan. Note that
 431   // the finger can point past the heap end in case the heap was expanded
 432   // to satisfy an allocation without doing a GC. This is fine, because all
 433   // objects in those regions will be considered live anyway because of
 434   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 435   bool out_of_regions() { return _finger >= _heap.end(); }
 436 
 437   // Returns the task with the given id
 438   G1CMTask* task(uint id) {
 439     // During initial mark we use the parallel gc threads to do some work, so
 440     // we can only compare against _max_num_tasks.
 441     assert(id < _max_num_tasks, "Task id %u not within bounds up to %u", id, _max_num_tasks);
 442     return _tasks[id];
 443   }
 444 
 445   // Access / manipulation of the overflow flag which is set to
 446   // indicate that the global stack has overflown
 447   bool has_overflown()           { return _has_overflown; }
 448   void set_has_overflown()       { _has_overflown = true; }
 449   void clear_has_overflown()     { _has_overflown = false; }
 450   bool restart_for_overflow()    { return _restart_for_overflow; }
 451 
 452   // Methods to enter the two overflow sync barriers
 453   void enter_first_sync_barrier(uint worker_id);
 454   void enter_second_sync_barrier(uint worker_id);
 455 
 456   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 457   // true, periodically insert checks to see if this method should exit prematurely.
 458   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 459 
 460   // Region statistics gathered during marking.
 461   G1RegionMarkStats* _region_mark_stats;
 462   // Top pointer for each region at the start of the rebuild remembered set process
 463   // for regions which remembered sets need to be rebuilt. A NULL for a given region
 464   // means that this region does not be scanned during the rebuilding remembered
 465   // set phase at all.
 466   HeapWord* volatile* _top_at_rebuild_starts;
 467 public:
 468   void add_to_liveness(uint worker_id, oop const obj, size_t size);
 469   // Liveness of the given region as determined by concurrent marking, i.e. the amount of
 470   // live words between bottom and nTAMS.
 471   size_t liveness(uint region) const { return _region_mark_stats[region]._live_words; }
 472 
 473   // Sets the internal top_at_region_start for the given region to current top of the region.
 474   inline void update_top_at_rebuild_start(HeapRegion* r);
 475   // TARS for the given region during remembered set rebuilding.
 476   inline HeapWord* top_at_rebuild_start(uint region) const;
 477 
 478   // Clear statistics gathered during the concurrent cycle for the given region after
 479   // it has been reclaimed.
 480   void clear_statistics_in_region(uint region_idx);
 481   // Notification for eagerly reclaimed regions to clean up.
 482   void humongous_object_eagerly_reclaimed(HeapRegion* r);
 483   // Manipulation of the global mark stack.
 484   // The push and pop operations are used by tasks for transfers
 485   // between task-local queues and the global mark stack.
 486   bool mark_stack_push(G1TaskQueueEntry* arr) {
 487     if (!_global_mark_stack.par_push_chunk(arr)) {
 488       set_has_overflown();
 489       return false;
 490     }
 491     return true;
 492   }
 493   bool mark_stack_pop(G1TaskQueueEntry* arr) {
 494     return _global_mark_stack.par_pop_chunk(arr);
 495   }
 496   size_t mark_stack_size() const                { return _global_mark_stack.size(); }
 497   size_t partial_mark_stack_size_target() const { return _global_mark_stack.capacity() / 3; }
 498   bool mark_stack_empty() const                 { return _global_mark_stack.is_empty(); }
 499 
 500   G1CMRootMemRegions* root_regions() { return &_root_regions; }
 501 
 502   void concurrent_cycle_start();
 503   // Abandon current marking iteration due to a Full GC.
 504   void concurrent_cycle_abort();
 505   void concurrent_cycle_end();
 506 
 507   void update_accum_task_vtime(int i, double vtime) {
 508     _accum_task_vtime[i] += vtime;
 509   }
 510 
 511   double all_task_accum_vtime() {
 512     double ret = 0.0;
 513     for (uint i = 0; i < _max_num_tasks; ++i)
 514       ret += _accum_task_vtime[i];
 515     return ret;
 516   }
 517 
 518   // Attempts to steal an object from the task queues of other tasks
 519   bool try_stealing(uint worker_id, G1TaskQueueEntry& task_entry);
 520 
 521   G1ConcurrentMark(G1CollectedHeap* g1h,
 522                    G1RegionToSpaceMapper* prev_bitmap_storage,
 523                    G1RegionToSpaceMapper* next_bitmap_storage);
 524   ~G1ConcurrentMark();
 525 
 526   G1ConcurrentMarkThread* cm_thread() { return _cm_thread; }
 527 
 528   const G1CMBitMap* const prev_mark_bitmap() const { return _prev_mark_bitmap; }
 529   G1CMBitMap* next_mark_bitmap() const { return _next_mark_bitmap; }
 530 
 531   // Calculates the number of concurrent GC threads to be used in the marking phase.
 532   uint calc_active_marking_workers();
 533 
 534   // Moves all per-task cached data into global state.
 535   void flush_all_task_caches();
 536   // Prepare internal data structures for the next mark cycle. This includes clearing
 537   // the next mark bitmap and some internal data structures. This method is intended
 538   // to be called concurrently to the mutator. It will yield to safepoint requests.
 539   void cleanup_for_next_mark();
 540 
 541   // Clear the previous marking bitmap during safepoint.
 542   void clear_prev_bitmap(WorkGang* workers);
 543 
 544   // These two methods do the work that needs to be done at the start and end of the
 545   // initial mark pause.
 546   void pre_initial_mark();
 547   void post_initial_mark();
 548 
 549   // Scan all the root regions and mark everything reachable from
 550   // them.
 551   void scan_root_regions();
 552 
 553   // Scan a single root MemRegion to mark everything reachable from it.
 554   void scan_root_region(const MemRegion* region, uint worker_id);
 555 
 556   // Do concurrent phase of marking, to a tentative transitive closure.
 557   void mark_from_roots();
 558 
 559   // Do concurrent preclean work.
 560   void preclean();
 561 
 562   void remark();
 563 
 564   void cleanup();
 565   // Mark in the previous bitmap. Caution: the prev bitmap is usually read-only, so use
 566   // this carefully.
 567   inline void mark_in_prev_bitmap(oop p);
 568 
 569   // Clears marks for all objects in the given range, for the prev or
 570   // next bitmaps.  Caution: the previous bitmap is usually
 571   // read-only, so use this carefully!
 572   void clear_range_in_prev_bitmap(MemRegion mr);
 573 
 574   inline bool is_marked_in_prev_bitmap(oop p) const;
 575 
 576   // Verify that there are no collection set oops on the stacks (taskqueues /
 577   // global mark stack) and fingers (global / per-task).
 578   // If marking is not in progress, it's a no-op.
 579   void verify_no_collection_set_oops() PRODUCT_RETURN;
 580 
 581   inline bool do_yield_check();
 582 
 583   bool has_aborted()      { return _has_aborted; }
 584 
 585   void print_summary_info();
 586 
 587   void threads_do(ThreadClosure* tc) const;
 588 
 589   void print_on_error(outputStream* st) const;
 590 
 591   // Mark the given object on the next bitmap if it is below nTAMS.
 592   inline bool mark_in_next_bitmap(uint worker_id, HeapRegion* const hr, oop const obj);
 593   inline bool mark_in_next_bitmap(uint worker_id, oop const obj);
 594 
 595   inline bool is_marked_in_next_bitmap(oop p) const;
 596 
 597   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 598   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 599 
 600 private:
 601   // Rebuilds the remembered sets for chosen regions in parallel and concurrently to the application.
 602   void rebuild_rem_set_concurrently();
 603 };
 604 
 605 // A class representing a marking task.
 606 class G1CMTask : public TerminatorTerminator {
 607 private:
 608   enum PrivateConstants {
 609     // The regular clock call is called once the scanned words reaches
 610     // this limit
 611     words_scanned_period          = 12*1024,
 612     // The regular clock call is called once the number of visited
 613     // references reaches this limit
 614     refs_reached_period           = 1024,
 615     // Initial value for the hash seed, used in the work stealing code
 616     init_hash_seed                = 17
 617   };
 618 
 619   // Number of entries in the per-task stats entry. This seems enough to have a very
 620   // low cache miss rate.
 621   static const uint RegionMarkStatsCacheSize = 1024;
 622 
 623   G1CMObjArrayProcessor       _objArray_processor;
 624 
 625   uint                        _worker_id;
 626   G1CollectedHeap*            _g1h;
 627   G1ConcurrentMark*           _cm;
 628   G1CMBitMap*                 _next_mark_bitmap;
 629   // the task queue of this task
 630   G1CMTaskQueue*              _task_queue;
 631 
 632   G1RegionMarkStatsCache      _mark_stats_cache;
 633   // Number of calls to this task
 634   uint                        _calls;
 635 
 636   // When the virtual timer reaches this time, the marking step should exit
 637   double                      _time_target_ms;
 638   // Start time of the current marking step
 639   double                      _start_time_ms;
 640 
 641   // Oop closure used for iterations over oops
 642   G1CMOopClosure*             _cm_oop_closure;
 643 
 644   // Region this task is scanning, NULL if we're not scanning any
 645   HeapRegion*                 _curr_region;
 646   // Local finger of this task, NULL if we're not scanning a region
 647   HeapWord*                   _finger;
 648   // Limit of the region this task is scanning, NULL if we're not scanning one
 649   HeapWord*                   _region_limit;
 650 
 651   // Number of words this task has scanned
 652   size_t                      _words_scanned;
 653   // When _words_scanned reaches this limit, the regular clock is
 654   // called. Notice that this might be decreased under certain
 655   // circumstances (i.e. when we believe that we did an expensive
 656   // operation).
 657   size_t                      _words_scanned_limit;
 658   // Initial value of _words_scanned_limit (i.e. what it was
 659   // before it was decreased).
 660   size_t                      _real_words_scanned_limit;
 661 
 662   // Number of references this task has visited
 663   size_t                      _refs_reached;
 664   // When _refs_reached reaches this limit, the regular clock is
 665   // called. Notice this this might be decreased under certain
 666   // circumstances (i.e. when we believe that we did an expensive
 667   // operation).
 668   size_t                      _refs_reached_limit;
 669   // Initial value of _refs_reached_limit (i.e. what it was before
 670   // it was decreased).
 671   size_t                      _real_refs_reached_limit;
 672 
 673   // If true, then the task has aborted for some reason
 674   bool                        _has_aborted;
 675   // Set when the task aborts because it has met its time quota
 676   bool                        _has_timed_out;
 677   // True when we're draining SATB buffers; this avoids the task
 678   // aborting due to SATB buffers being available (as we're already
 679   // dealing with them)
 680   bool                        _draining_satb_buffers;
 681 
 682   // Number sequence of past step times
 683   NumberSeq                   _step_times_ms;
 684   // Elapsed time of this task
 685   double                      _elapsed_time_ms;
 686   // Termination time of this task
 687   double                      _termination_time_ms;
 688   // When this task got into the termination protocol
 689   double                      _termination_start_time_ms;
 690 
 691   TruncatedSeq                _marking_step_diff_ms;
 692 
 693   // Updates the local fields after this task has claimed
 694   // a new region to scan
 695   void setup_for_region(HeapRegion* hr);
 696   // Makes the limit of the region up-to-date
 697   void update_region_limit();
 698 
 699   // Called when either the words scanned or the refs visited limit
 700   // has been reached
 701   void reached_limit();
 702   // Recalculates the words scanned and refs visited limits
 703   void recalculate_limits();
 704   // Decreases the words scanned and refs visited limits when we reach
 705   // an expensive operation
 706   void decrease_limits();
 707   // Checks whether the words scanned or refs visited reached their
 708   // respective limit and calls reached_limit() if they have
 709   void check_limits() {
 710     if (_words_scanned >= _words_scanned_limit ||
 711         _refs_reached >= _refs_reached_limit) {
 712       reached_limit();
 713     }
 714   }
 715   // Supposed to be called regularly during a marking step as
 716   // it checks a bunch of conditions that might cause the marking step
 717   // to abort
 718   // Return true if the marking step should continue. Otherwise, return false to abort
 719   bool regular_clock_call();
 720 
 721   // Set abort flag if regular_clock_call() check fails
 722   inline void abort_marking_if_regular_check_fail();
 723 
 724   // Test whether obj might have already been passed over by the
 725   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 726   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 727 
 728   template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
 729 public:
 730   // Apply the closure on the given area of the objArray. Return the number of words
 731   // scanned.
 732   inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
 733   // Resets the task; should be called right at the beginning of a marking phase.
 734   void reset(G1CMBitMap* next_mark_bitmap);
 735   // Clears all the fields that correspond to a claimed region.
 736   void clear_region_fields();
 737 
 738   // The main method of this class which performs a marking step
 739   // trying not to exceed the given duration. However, it might exit
 740   // prematurely, according to some conditions (i.e. SATB buffers are
 741   // available for processing).
 742   void do_marking_step(double target_ms,
 743                        bool do_termination,
 744                        bool is_serial);
 745 
 746   // These two calls start and stop the timer
 747   void record_start_time() {
 748     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 749   }
 750   void record_end_time() {
 751     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 752   }
 753 
 754   // Returns the worker ID associated with this task.
 755   uint worker_id() { return _worker_id; }
 756 
 757   // From TerminatorTerminator. It determines whether this task should
 758   // exit the termination protocol after it's entered it.
 759   virtual bool should_exit_termination();
 760 
 761   // Resets the local region fields after a task has finished scanning a
 762   // region; or when they have become stale as a result of the region
 763   // being evacuated.
 764   void giveup_current_region();
 765 
 766   HeapWord* finger()            { return _finger; }
 767 
 768   bool has_aborted()            { return _has_aborted; }
 769   void set_has_aborted()        { _has_aborted = true; }
 770   void clear_has_aborted()      { _has_aborted = false; }
 771 
 772   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 773 
 774   // Increment the number of references this task has visited.
 775   void increment_refs_reached() { ++_refs_reached; }
 776 
 777   // Grey the object by marking it.  If not already marked, push it on
 778   // the local queue if below the finger. obj is required to be below its region's NTAMS.
 779   // Returns whether there has been a mark to the bitmap.
 780   inline bool make_reference_grey(oop obj);
 781 
 782   // Grey the object (by calling make_grey_reference) if required,
 783   // e.g. obj is below its containing region's NTAMS.
 784   // Precondition: obj is a valid heap object.
 785   // Returns true if the reference caused a mark to be set in the next bitmap.
 786   template <class T>
 787   inline bool deal_with_reference(T* p);
 788 
 789   // Scans an object and visits its children.
 790   inline void scan_task_entry(G1TaskQueueEntry task_entry);
 791 
 792   // Pushes an object on the local queue.
 793   inline void push(G1TaskQueueEntry task_entry);
 794 
 795   // Move entries to the global stack.
 796   void move_entries_to_global_stack();
 797   // Move entries from the global stack, return true if we were successful to do so.
 798   bool get_entries_from_global_stack();
 799 
 800   // Pops and scans objects from the local queue. If partially is
 801   // true, then it stops when the queue size is of a given limit. If
 802   // partially is false, then it stops when the queue is empty.
 803   void drain_local_queue(bool partially);
 804   // Moves entries from the global stack to the local queue and
 805   // drains the local queue. If partially is true, then it stops when
 806   // both the global stack and the local queue reach a given size. If
 807   // partially if false, it tries to empty them totally.
 808   void drain_global_stack(bool partially);
 809   // Keeps picking SATB buffers and processing them until no SATB
 810   // buffers are available.
 811   void drain_satb_buffers();
 812 
 813   // Moves the local finger to a new location
 814   inline void move_finger_to(HeapWord* new_finger) {
 815     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 816     _finger = new_finger;
 817   }
 818 
 819   G1CMTask(uint worker_id,
 820            G1ConcurrentMark *cm,
 821            G1CMTaskQueue* task_queue,
 822            G1RegionMarkStats* mark_stats,
 823            uint max_regions);
 824 
 825   inline void update_liveness(oop const obj, size_t const obj_size);
 826 
 827   // Clear (without flushing) the mark cache entry for the given region.
 828   void clear_mark_stats_cache(uint region_idx);
 829   // Evict the whole statistics cache into the global statistics. Returns the
 830   // number of cache hits and misses so far.
 831   Pair<size_t, size_t> flush_mark_stats_cache();
 832   // Prints statistics associated with this task
 833   void print_stats();
 834 };
 835 
 836 // Class that's used to to print out per-region liveness
 837 // information. It's currently used at the end of marking and also
 838 // after we sort the old regions at the end of the cleanup operation.
 839 class G1PrintRegionLivenessInfoClosure : public HeapRegionClosure {
 840   // Accumulators for these values.
 841   size_t _total_used_bytes;
 842   size_t _total_capacity_bytes;
 843   size_t _total_prev_live_bytes;
 844   size_t _total_next_live_bytes;
 845 
 846   // Accumulator for the remembered set size
 847   size_t _total_remset_bytes;
 848 
 849   // Accumulator for strong code roots memory size
 850   size_t _total_strong_code_roots_bytes;
 851 
 852   static double bytes_to_mb(size_t val) {
 853     return (double) val / (double) M;
 854   }
 855 
 856 public:
 857   // The header and footer are printed in the constructor and
 858   // destructor respectively.
 859   G1PrintRegionLivenessInfoClosure(const char* phase_name);
 860   virtual bool do_heap_region(HeapRegion* r);
 861   ~G1PrintRegionLivenessInfoClosure();
 862 };
 863 
 864 #endif // SHARE_GC_G1_G1CONCURRENTMARK_HPP