< prev index next >

src/hotspot/share/gc/g1/g1HeapSizingPolicy.cpp

Print this page
rev 59703 : imported patch 8238687-investigate-memory-uncommit-during-young-gc
   1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"

  26 #include "gc/g1/g1CollectedHeap.hpp"
  27 #include "gc/g1/g1HeapSizingPolicy.hpp"
  28 #include "gc/g1/g1Analytics.hpp"
  29 #include "logging/log.hpp"
  30 #include "runtime/globals.hpp"
  31 #include "utilities/debug.hpp"
  32 #include "utilities/globalDefinitions.hpp"
  33 
  34 G1HeapSizingPolicy* G1HeapSizingPolicy::create(const G1CollectedHeap* g1h, const G1Analytics* analytics) {
  35   return new G1HeapSizingPolicy(g1h, analytics);
  36 }
  37 
  38 G1HeapSizingPolicy::G1HeapSizingPolicy(const G1CollectedHeap* g1h, const G1Analytics* analytics) :
  39   _g1h(g1h),
  40   _analytics(analytics),
  41   _num_prev_pauses_for_heuristics(analytics->number_of_recorded_pause_times()) {















  42 
  43   assert(MinOverThresholdForGrowth < _num_prev_pauses_for_heuristics, "Threshold must be less than %u", _num_prev_pauses_for_heuristics);
  44   clear_ratio_check_data();


  45 }
  46 
  47 void G1HeapSizingPolicy::clear_ratio_check_data() {
  48   _ratio_over_threshold_count = 0;
  49   _ratio_over_threshold_sum = 0.0;
  50   _pauses_since_start = 0;
  51 }
  52 
  53 double G1HeapSizingPolicy::scale_with_heap(double pause_time_threshold) {
  54   double threshold = pause_time_threshold;
  55   // If the heap is at less than half its maximum size, scale the threshold down,
  56   // to a limit of 1%. Thus the smaller the heap is, the more likely it is to expand,
  57   // though the scaling code will likely keep the increase small.
  58   if (_g1h->capacity() <= _g1h->max_capacity() / 2) {
  59     threshold *= (double)_g1h->capacity() / (double)(_g1h->max_capacity() / 2);
  60     threshold = MAX2(threshold, 0.01);
  61   }
  62 
  63   return threshold;
  64 }
  65 
  66 static void log_expansion(double short_term_pause_time_ratio,


























  67                           double long_term_pause_time_ratio,
  68                           double threshold,

  69                           double pause_time_ratio,
  70                           bool fully_expanded,
  71                           size_t resize_bytes) {
  72 
  73   log_debug(gc, ergo, heap)("Heap expansion: "
  74                             "short term pause time ratio %1.2f%% long term pause time ratio %1.2f%% "
  75                             "threshold %1.2f%% pause time ratio %1.2f%% fully expanded %s "
  76                             "resize by " SIZE_FORMAT "B",
  77                             short_term_pause_time_ratio * 100.0,
  78                             long_term_pause_time_ratio * 100.0,
  79                             threshold * 100.0,

  80                             pause_time_ratio * 100.0,
  81                             BOOL_TO_STR(fully_expanded),
  82                             resize_bytes);
  83 }
  84 
  85 size_t G1HeapSizingPolicy::expansion_amount() {
  86   assert(GCTimeRatio > 0, "must be");
  87 
  88   double long_term_pause_time_ratio = _analytics->long_term_pause_time_ratio();
  89   double short_term_pause_time_ratio = _analytics->short_term_pause_time_ratio();







  90   const double pause_time_threshold = 1.0 / (1.0 + GCTimeRatio);
  91   double threshold = scale_with_heap(pause_time_threshold);













































  92 
  93   size_t expand_bytes = 0;
  94 






  95   if (_g1h->capacity() == _g1h->max_capacity()) {
  96     log_expansion(short_term_pause_time_ratio, long_term_pause_time_ratio,
  97                   threshold, pause_time_threshold, true, 0);
  98     clear_ratio_check_data();
  99     return expand_bytes;
 100   }
 101 
 102   // If the last GC time ratio is over the threshold, increment the count of
 103   // times it has been exceeded, and add this ratio to the sum of exceeded
 104   // ratios.
 105   if (short_term_pause_time_ratio > threshold) {
 106     _ratio_over_threshold_count++;
 107     _ratio_over_threshold_sum += short_term_pause_time_ratio;
 108   }
 109 
 110   log_trace(gc, ergo, heap)("Heap expansion triggers: pauses since start: %u "
 111                             "num prev pauses for heuristics: %u "
 112                             "ratio over threshold count: %u",
 113                             _pauses_since_start,
 114                             _num_prev_pauses_for_heuristics,
 115                             _ratio_over_threshold_count);
 116 
 117   // Check if we've had enough GC time ratio checks that were over the
 118   // threshold to trigger an expansion. We'll also expand if we've
 119   // reached the end of the history buffer and the average of all entries
 120   // is still over the threshold. This indicates a smaller number of GCs were
 121   // long enough to make the average exceed the threshold.
 122   bool filled_history_buffer = _pauses_since_start == _num_prev_pauses_for_heuristics;
 123   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
 124       (filled_history_buffer && (long_term_pause_time_ratio > threshold))) {
 125     size_t min_expand_bytes = HeapRegion::GrainBytes;
 126     size_t reserved_bytes = _g1h->max_capacity();
 127     size_t committed_bytes = _g1h->capacity();
 128     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
 129     size_t expand_bytes_via_pct =
 130       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;

 131     double scale_factor = 1.0;
 132 
 133     // If the current size is less than 1/4 of the Initial heap size, expand
 134     // by half of the delta between the current and Initial sizes. IE, grow
 135     // back quickly.
 136     //
 137     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
 138     // the available expansion space, whichever is smaller, as the base
 139     // expansion size. Then possibly scale this size according to how much the
 140     // threshold has (on average) been exceeded by. If the delta is small
 141     // (less than the StartScaleDownAt value), scale the size down linearly, but
 142     // not by less than MinScaleDownFactor. If the delta is large (greater than
 143     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
 144     // times the base size. The scaling will be linear in the range from
 145     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
 146     // ScaleUpRange sets the rate of scaling up.
 147     if (committed_bytes < InitialHeapSize / 4) {
 148       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
 149     } else {
 150       double const MinScaleDownFactor = 0.2;
 151       double const MaxScaleUpFactor = 2;
 152       double const StartScaleDownAt = pause_time_threshold;
 153       double const StartScaleUpAt = pause_time_threshold * 1.5;
 154       double const ScaleUpRange = pause_time_threshold * 2.0;
 155 
 156       double ratio_delta;
 157       if (filled_history_buffer) {
 158         ratio_delta = long_term_pause_time_ratio - threshold;
 159       } else {
 160         ratio_delta = (_ratio_over_threshold_sum / _ratio_over_threshold_count) - threshold;


 161       }


 162 
 163       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
 164       if (ratio_delta < StartScaleDownAt) {
 165         scale_factor = ratio_delta / StartScaleDownAt;
 166         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
 167       } else if (ratio_delta > StartScaleUpAt) {
 168         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
 169         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
 170       }
 171     }
 172 
 173     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
 174 
 175     // Ensure the expansion size is at least the minimum growth amount
 176     // and at most the remaining uncommitted byte size.
 177     expand_bytes = clamp(expand_bytes, min_expand_bytes, uncommitted_bytes);
 178 
 179     clear_ratio_check_data();
 180   } else {
 181     // An expansion was not triggered. If we've started counting, increment
 182     // the number of checks we've made in the current window.  If we've
 183     // reached the end of the window without resizing, clear the counters to
 184     // start again the next time we see a ratio above the threshold.
 185     if (_ratio_over_threshold_count > 0) {
 186       _pauses_since_start++;
 187       if (_pauses_since_start > _num_prev_pauses_for_heuristics) {
 188         clear_ratio_check_data();
 189       }






 190     }

















 191   }
 192 
 193   log_expansion(short_term_pause_time_ratio, long_term_pause_time_ratio,
 194                 threshold, pause_time_threshold, false, expand_bytes);




 195 
 196   return expand_bytes;













 197 }
   1 /*
   2  * Copyright (c) 2016, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1_globals.hpp"
  27 #include "gc/g1/g1CollectedHeap.hpp"
  28 #include "gc/g1/g1HeapSizingPolicy.hpp"
  29 #include "gc/g1/g1Analytics.hpp"
  30 #include "logging/log.hpp"
  31 #include "runtime/globals.hpp"
  32 #include "utilities/debug.hpp"
  33 #include "utilities/globalDefinitions.hpp"
  34 
  35 G1HeapSizingPolicy* G1HeapSizingPolicy::create(const G1CollectedHeap* g1h, const G1Analytics* analytics) {
  36   return new G1HeapSizingPolicy(g1h, analytics);
  37 }
  38 
  39 G1HeapSizingPolicy::G1HeapSizingPolicy(const G1CollectedHeap* g1h, const G1Analytics* analytics) :
  40   _g1h(g1h),
  41   _analytics(analytics),
  42   _long_term_interval(analytics->number_of_recorded_pause_times()),
  43   // Bias for expansion at startup; the +1 is to counter the first sample always
  44   // being 0.0, i.e. lower than any threshold.
  45   _ratio_exceeds_threshold(MinOverThresholdForExpansion / 2 + 1),
  46   _recent_pause_ratios(analytics->number_of_recorded_pause_times()),
  47   _long_term_count(0) {
  48 
  49   assert(_ratio_exceeds_threshold < MinOverThresholdForExpansion,
  50          "Initial ratio counter value too high.");
  51   assert(_ratio_exceeds_threshold > -MinOverThresholdForExpansion,
  52          "Initial ratio counter value too low.");
  53   assert(MinOverThresholdForExpansion < _long_term_interval,
  54          "Expansion threshold count must be less than %u", _long_term_interval);
  55   assert(MinOverThresholdForShrink < _long_term_interval,
  56          "Shrink threshold count must be less than %u", _long_term_interval);
  57 }
  58 
  59 void G1HeapSizingPolicy::reset_ratio_tracking_data() {
  60   _long_term_count = 0;
  61   _ratio_exceeds_threshold = 0;
  62   // Keep the recent gc time ratio data.
  63 }
  64 
  65 void G1HeapSizingPolicy::decay_ratio_tracking_data() {
  66   _long_term_count = 0;
  67   _ratio_exceeds_threshold /= 2;
  68   // Keep the recent gc time ratio data.
  69 }
  70 
  71 double G1HeapSizingPolicy::scale_with_heap(double pause_time_threshold) {
  72   double threshold = pause_time_threshold;
  73   // If the heap is at less than half its maximum size, scale the threshold down,
  74   // to a limit of 1%. Thus the smaller the heap is, the more likely it is to expand,
  75   // though the scaling code will likely keep the increase small.
  76   if (_g1h->capacity() <= _g1h->max_capacity() / 2) {
  77     threshold *= (double)_g1h->capacity() / (double)(_g1h->max_capacity() / 2);
  78     threshold = MAX2(threshold, 0.01);
  79   }
  80 
  81   return threshold;
  82 }
  83 
  84 double G1HeapSizingPolicy::scale_resize_ratio_delta(double ratio_delta) {
  85   // If the delta is small (less than the StartScaleDownAt value), scale the size
  86   // down linearly, but not by less than MinScaleDownFactor. If the delta is large
  87   // (greater than the StartScaleUpAt value), scale up, but adding no more than
  88   // MaxScaleUpFactor times the base size. The scaling will be linear in the range
  89   // from StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
  90   // ScaleUpRange sets the rate of scaling up.
  91   double const MinScaleDownFactor = 0.2;
  92   double const MaxScaleUpFactor = 2.0;
  93 
  94   double const StartScaleDownAt = 1.0;
  95   double const StartScaleUpAt = 1.5;
  96   double const ScaleUpRange = 4.0;
  97 
  98   double scale_factor;
  99   if (ratio_delta < StartScaleDownAt) {
 100     scale_factor = ratio_delta / StartScaleDownAt;
 101     scale_factor = MAX2(scale_factor, MinScaleDownFactor);
 102   } else if (ratio_delta > StartScaleUpAt) {
 103     scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
 104     scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
 105   }
 106   log_error(gc)("scaling ratio %1.2f scale %1.2f", ratio_delta, scale_factor);
 107   return scale_factor;
 108 }
 109 
 110 static void log_resize(double short_term_pause_time_ratio,
 111                        double long_term_pause_time_ratio,
 112                        double lower_threshold,
 113                        double upper_threshold,
 114                        double pause_time_ratio,
 115                        bool at_limit,
 116                        ssize_t resize_bytes) {
 117 
 118   log_debug(gc, ergo, heap)("Heap resize: "
 119                             "short term pause time ratio %1.2f%% long term pause time ratio %1.2f%% "
 120                             "lower threshold %1.2f%% upper threshold %1.2f%% pause time ratio %1.2f%% "
 121                             "at limit %s resize by " SSIZE_FORMAT "B",
 122                             short_term_pause_time_ratio * 100.0,
 123                             long_term_pause_time_ratio * 100.0,
 124                             lower_threshold * 100.0,
 125                             upper_threshold * 100.0,
 126                             pause_time_ratio * 100.0,
 127                             BOOL_TO_STR(at_limit),
 128                             resize_bytes);
 129 }
 130 
 131 ssize_t G1HeapSizingPolicy::resize_amount_after_young_gc() {
 132   assert(GCTimeRatio > 0, "must be");
 133 
 134   double long_term_pause_time_ratio = _analytics->long_term_pause_time_ratio();
 135   double short_term_pause_time_ratio = _analytics->short_term_pause_time_ratio();
 136 
 137   // Calculate gc time ratio thresholds:
 138   // - upper threshold, directly based on GCTimeRatio. We do not want to exceed
 139   // this.
 140   // - lower threshold, we do not want to go under.
 141   // - mid threshold, halfway between upper and lower threshold, represents the
 142   // actual target when resizing the heap.
 143   const double pause_time_threshold = 1.0 / (1.0 + GCTimeRatio);
 144   const double min_gc_time_ratio_ratio = G1MinimumPercentOfGCTimeRatio / 100.0;
 145   double upper_threshold = scale_with_heap(pause_time_threshold);
 146   double lower_threshold = upper_threshold * min_gc_time_ratio_ratio;
 147 
 148   // Explicitly use GCTimeRatio based threshold to more quickly expand and shrink
 149   // at smaller heap sizes.
 150   double mid_threshold = (upper_threshold + lower_threshold) / 2;
 151 
 152   // If the short term GC time ratio exceeds a threshold, increment the occurrence
 153   // counter.
 154   if (short_term_pause_time_ratio > upper_threshold) {
 155     _ratio_exceeds_threshold++;
 156   } else if (short_term_pause_time_ratio < lower_threshold) {
 157     _ratio_exceeds_threshold--;
 158   }
 159   double ratio_delta = (short_term_pause_time_ratio - mid_threshold) / mid_threshold;
 160   // Ignore very first sample as it is garbage.
 161   if (_long_term_count != 0 || _recent_pause_ratios.num() != 0) {
 162     _recent_pause_ratios.add(ratio_delta);
 163   }
 164   _long_term_count++;
 165 
 166   log_trace(gc, ergo, heap)("Heap resize triggers: long term count: %u "
 167                             "long term interval: %u "
 168                             "delta: %1.2f "
 169                             "ratio exceeds threshold count: %d",
 170                             _long_term_count,
 171                             _long_term_interval,
 172                             ratio_delta,
 173                             _ratio_exceeds_threshold);
 174 
 175   log_debug(gc, ergo, heap)("Heap triggers: pauses-since-start: %u num-prev-pauses-for-heuristics: %u ratio-exceeds-threshold-count: %d",
 176                             _recent_pause_ratios.num(), _long_term_interval, _ratio_exceeds_threshold);
 177 
 178   // Check if there is a short- or long-term need for resizing, expansion first.
 179   //
 180   // Short-term resizing need is detected by exceeding the upper or lower thresholds
 181   // multiple times, tracked in _ratio_exceeds_threshold. If it contains a large
 182   // positive or negative (larger than the respective thresholds), we trigger
 183   // resizing calculation.
 184   //
 185   // Slowly occurring long-term changes to the actual gc time ratios are checked
 186   // only every once a while.
 187   //
 188   // The _ratio_exceeds_threshold value is reset after each resize, or slowly
 189   // decayed if nothing happens.
 190 
 191   ssize_t resize_bytes = 0;
 192 
 193   bool check_long_term_resize = _long_term_count == _long_term_interval;
 194 
 195   if ((_ratio_exceeds_threshold == MinOverThresholdForExpansion) ||
 196       (check_long_term_resize && (long_term_pause_time_ratio > upper_threshold))) {
 197 
 198     // Short-cut the case when we are already fully expanded.
 199     if (_g1h->capacity() == _g1h->max_capacity()) {
 200       log_resize(short_term_pause_time_ratio, long_term_pause_time_ratio,
 201                  lower_threshold, upper_threshold, pause_time_threshold, true, 0);
 202       reset_ratio_tracking_data();
 203       return resize_bytes;
 204     }
 205 
























 206     size_t reserved_bytes = _g1h->max_capacity();
 207     size_t committed_bytes = _g1h->capacity();
 208     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
 209     size_t expand_bytes_via_pct =
 210       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
 211     size_t min_expand_bytes = MIN2(HeapRegion::GrainBytes, uncommitted_bytes);
 212     double scale_factor = 1.0;
 213 
 214     // If the current size is less than 1/4 of the Initial heap size, expand
 215     // by half of the delta between the current and Initial sizes. IE, grow
 216     // back quickly.
 217     //
 218     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
 219     // the available expansion space, whichever is smaller, as the base
 220     // expansion size. Then possibly scale this size according to how much the
 221     // threshold has (on average) been exceeded by.






 222     if (committed_bytes < InitialHeapSize / 4) {
 223       resize_bytes = (InitialHeapSize - committed_bytes) / 2;










 224     } else {
 225       double ratio_delta = _recent_pause_ratios.avg();
 226       if (check_long_term_resize) {
 227         ratio_delta = MAX2(ratio_delta, (long_term_pause_time_ratio - mid_threshold) / mid_threshold);
 228       }
 229       log_error(gc)("expand deltas long %1.2f short %1.2f check long term %u", (long_term_pause_time_ratio - mid_threshold) / mid_threshold, _recent_pause_ratios.avg(), check_long_term_resize);
 230       scale_factor = scale_resize_ratio_delta(fabsd(ratio_delta));
 231 
 232       resize_bytes = MIN2(expand_bytes_via_pct, committed_bytes);







 233     }
 234 
 235     resize_bytes = static_cast<size_t>(resize_bytes * scale_factor);
 236  
 237     // Ensure the expansion size is at least the minimum growth amount
 238     // and at most the remaining uncommitted byte size.
 239     resize_bytes = clamp((size_t)resize_bytes, min_expand_bytes, uncommitted_bytes);
 240 
 241     reset_ratio_tracking_data();
 242   } else if ((_ratio_exceeds_threshold == -MinOverThresholdForShrink) ||
 243              (check_long_term_resize && (long_term_pause_time_ratio < lower_threshold))) {
 244 
 245     if (_g1h->capacity() == _g1h->min_capacity()) {
 246       log_resize(short_term_pause_time_ratio, long_term_pause_time_ratio,
 247                  lower_threshold, upper_threshold, pause_time_threshold, true, 0);
 248       reset_ratio_tracking_data();
 249       return resize_bytes;

 250     }
 251 
 252     // Shrink.
 253     double ratio_delta = _recent_pause_ratios.avg();
 254     if (check_long_term_resize) {
 255       // Intentionally use the max to limit the shrinking a bit.
 256       ratio_delta = MAX2(ratio_delta, (long_term_pause_time_ratio - mid_threshold) / mid_threshold);
 257     }
 258     log_error(gc)("shrink deltas long %1.2f short %1.2f long term %u", (long_term_pause_time_ratio - mid_threshold) / mid_threshold, _recent_pause_ratios.avg(), check_long_term_resize);
 259 
 260     double scale_factor = scale_resize_ratio_delta(fabsd(ratio_delta));
 261     scale_factor = clamp(scale_factor, 0.0, G1ShrinkByPercentOfAvailable / 100.0);
 262 
 263     // We are at the end of GC, so free regions are at maximum.
 264     size_t free_regions = _g1h->num_free_regions() * (1 - G1ReservePercent / 100.0);
 265 
 266     resize_bytes = -((double)HeapRegion::GrainBytes * scale_factor * free_regions);
 267 
 268     log_debug(gc)("shrink log: filled_hist %d target ratio: %1.2f%% ratio delta: %1.2f%% scale factor %1.2f%% free_regions " SIZE_FORMAT " resize_bytes " SSIZE_FORMAT,
 269                   check_long_term_resize, mid_threshold * 100.0, _recent_pause_ratios.avg() * 100.0, scale_factor * 100.0, free_regions, resize_bytes);
 270 
 271     reset_ratio_tracking_data();
 272   } else if (check_long_term_resize) {
 273     // A resize has not been triggered, but the long term counter overflowed.
 274     decay_ratio_tracking_data();
 275   }
 276 
 277   log_resize(short_term_pause_time_ratio, long_term_pause_time_ratio,
 278              lower_threshold, upper_threshold, pause_time_threshold,
 279              false, resize_bytes);
 280 
 281   return resize_bytes;
 282 }
 283 
 284 size_t G1HeapSizingPolicy::target_heap_capacity(size_t used_bytes, uintx free_ratio) const {
 285   const double free_percentage = (double) free_ratio / 100.0;
 286   const double used_percentage = 1.0 - free_percentage;
 287 
 288   // We have to be careful here as these two calculations can overflow
 289   // 32-bit size_t's.
 290   double used_bytes_d = (double) used_bytes;
 291   double desired_capacity_d = used_bytes_d / used_percentage;
 292   // Let's make sure that they are both under the max heap size, which
 293   // by default will make it fit into a size_t.
 294   double desired_capacity_upper_bound = (double) MaxHeapSize;
 295   desired_capacity_d = MIN2(desired_capacity_d, desired_capacity_upper_bound);
 296   // We can now safely turn it into size_t's.
 297   return (size_t) desired_capacity_d;
 298 }
< prev index next >