1 /*
   2  * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "gc/serial/defNewGeneration.hpp"
  35 #include "gc/shared/adaptiveSizePolicy.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/cardTableRS.hpp"
  38 #include "gc/shared/collectedHeap.inline.hpp"
  39 #include "gc/shared/collectorCounters.hpp"
  40 #include "gc/shared/gcId.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "gc/shared/gcPolicyCounters.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genArguments.hpp"
  46 #include "gc/shared/gcVMOperations.hpp"
  47 #include "gc/shared/genCollectedHeap.hpp"
  48 #include "gc/shared/genOopClosures.inline.hpp"
  49 #include "gc/shared/generationSpec.hpp"
  50 #include "gc/shared/locationPrinter.inline.hpp"
  51 #include "gc/shared/oopStorageParState.inline.hpp"
  52 #include "gc/shared/scavengableNMethods.hpp"
  53 #include "gc/shared/space.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/weakProcessor.hpp"
  56 #include "gc/shared/workgroup.hpp"
  57 #include "memory/filemap.hpp"
  58 #include "memory/iterator.hpp"
  59 #include "memory/metaspaceCounters.hpp"
  60 #include "memory/resourceArea.hpp"
  61 #include "memory/universe.hpp"
  62 #include "oops/oop.inline.hpp"
  63 #include "runtime/biasedLocking.hpp"
  64 #include "runtime/flags/flagSetting.hpp"
  65 #include "runtime/handles.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "services/management.hpp"
  70 #include "services/memoryService.hpp"
  71 #include "utilities/debug.hpp"
  72 #include "utilities/formatBuffer.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 #include "utilities/vmError.hpp"
  76 #if INCLUDE_JVMCI
  77 #include "jvmci/jvmci.hpp"
  78 #endif
  79 
  80 GenCollectedHeap::GenCollectedHeap(Generation::Name young,
  81                                    Generation::Name old,
  82                                    const char* policy_counters_name) :
  83   CollectedHeap(),
  84   _young_gen_spec(new GenerationSpec(young,
  85                                      NewSize,
  86                                      MaxNewSize,
  87                                      GenAlignment)),
  88   _old_gen_spec(new GenerationSpec(old,
  89                                    OldSize,
  90                                    MaxOldSize,
  91                                    GenAlignment)),
  92   _rem_set(NULL),
  93   _soft_ref_gen_policy(),
  94   _gc_policy_counters(new GCPolicyCounters(policy_counters_name, 2, 2)),
  95   _full_collections_completed(0),
  96   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)) {
  97 }
  98 
  99 jint GenCollectedHeap::initialize() {
 100   // While there are no constraints in the GC code that HeapWordSize
 101   // be any particular value, there are multiple other areas in the
 102   // system which believe this to be true (e.g. oop->object_size in some
 103   // cases incorrectly returns the size in wordSize units rather than
 104   // HeapWordSize).
 105   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 106 
 107   // Allocate space for the heap.
 108 
 109   ReservedHeapSpace heap_rs = allocate(HeapAlignment);
 110 
 111   if (!heap_rs.is_reserved()) {
 112     vm_shutdown_during_initialization(
 113       "Could not reserve enough space for object heap");
 114     return JNI_ENOMEM;
 115   }
 116 
 117   initialize_reserved_region(heap_rs);
 118 
 119   _rem_set = create_rem_set(heap_rs.region());
 120   _rem_set->initialize();
 121   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
 122   bs->initialize();
 123   BarrierSet::set_barrier_set(bs);
 124 
 125   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size(), false, false);
 126   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 127   ReservedSpace old_rs = heap_rs.last_part(_young_gen_spec->max_size());
 128 
 129   old_rs = old_rs.first_part(_old_gen_spec->max_size(), false, false);
 130   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 131   clear_incremental_collection_failed();
 132 
 133   return JNI_OK;
 134 }
 135 
 136 CardTableRS* GenCollectedHeap::create_rem_set(const MemRegion& reserved_region) {
 137   return new CardTableRS(reserved_region, false /* scan_concurrently */);
 138 }
 139 
 140 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 141                                               size_t init_promo_size,
 142                                               size_t init_survivor_size) {
 143   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 144   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 145                                         init_promo_size,
 146                                         init_survivor_size,
 147                                         max_gc_pause_sec,
 148                                         GCTimeRatio);
 149 }
 150 
 151 ReservedHeapSpace GenCollectedHeap::allocate(size_t alignment) {
 152   // Now figure out the total size.
 153   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 154   assert(alignment % pageSize == 0, "Must be");
 155 
 156   // Check for overflow.
 157   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 158   if (total_reserved < _young_gen_spec->max_size()) {
 159     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 160                                   "the maximum representable size");
 161   }
 162   assert(total_reserved % alignment == 0,
 163          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 164          SIZE_FORMAT, total_reserved, alignment);
 165 
 166   ReservedHeapSpace heap_rs = Universe::reserve_heap(total_reserved, alignment);
 167 
 168   os::trace_page_sizes("Heap",
 169                        MinHeapSize,
 170                        total_reserved,
 171                        alignment,
 172                        heap_rs.base(),
 173                        heap_rs.size());
 174 
 175   return heap_rs;
 176 }
 177 
 178 class GenIsScavengable : public BoolObjectClosure {
 179 public:
 180   bool do_object_b(oop obj) {
 181     return GenCollectedHeap::heap()->is_in_young(obj);
 182   }
 183 };
 184 
 185 static GenIsScavengable _is_scavengable;
 186 
 187 void GenCollectedHeap::post_initialize() {
 188   CollectedHeap::post_initialize();
 189   ref_processing_init();
 190 
 191   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 192 
 193   initialize_size_policy(def_new_gen->eden()->capacity(),
 194                          _old_gen->capacity(),
 195                          def_new_gen->from()->capacity());
 196 
 197   MarkSweep::initialize();
 198 
 199   ScavengableNMethods::initialize(&_is_scavengable);
 200 }
 201 
 202 void GenCollectedHeap::ref_processing_init() {
 203   _young_gen->ref_processor_init();
 204   _old_gen->ref_processor_init();
 205 }
 206 
 207 PreGenGCValues GenCollectedHeap::get_pre_gc_values() const {
 208   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
 209 
 210   return PreGenGCValues(def_new_gen->used(),
 211                         def_new_gen->capacity(),
 212                         def_new_gen->eden()->used(),
 213                         def_new_gen->eden()->capacity(),
 214                         def_new_gen->from()->used(),
 215                         def_new_gen->from()->capacity(),
 216                         old_gen()->used(),
 217                         old_gen()->capacity());
 218 }
 219 
 220 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 221   return _young_gen_spec;
 222 }
 223 
 224 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 225   return _old_gen_spec;
 226 }
 227 
 228 size_t GenCollectedHeap::capacity() const {
 229   return _young_gen->capacity() + _old_gen->capacity();
 230 }
 231 
 232 size_t GenCollectedHeap::used() const {
 233   return _young_gen->used() + _old_gen->used();
 234 }
 235 
 236 void GenCollectedHeap::save_used_regions() {
 237   _old_gen->save_used_region();
 238   _young_gen->save_used_region();
 239 }
 240 
 241 size_t GenCollectedHeap::max_capacity() const {
 242   return _young_gen->max_capacity() + _old_gen->max_capacity();
 243 }
 244 
 245 // Update the _full_collections_completed counter
 246 // at the end of a stop-world full GC.
 247 unsigned int GenCollectedHeap::update_full_collections_completed() {
 248   MonitorLocker ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 249   assert(_full_collections_completed <= _total_full_collections,
 250          "Can't complete more collections than were started");
 251   _full_collections_completed = _total_full_collections;
 252   ml.notify_all();
 253   return _full_collections_completed;
 254 }
 255 
 256 // Update the _full_collections_completed counter, as appropriate,
 257 // at the end of a concurrent GC cycle. Note the conditional update
 258 // below to allow this method to be called by a concurrent collector
 259 // without synchronizing in any manner with the VM thread (which
 260 // may already have initiated a STW full collection "concurrently").
 261 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 262   MonitorLocker ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 263   assert((_full_collections_completed <= _total_full_collections) &&
 264          (count <= _total_full_collections),
 265          "Can't complete more collections than were started");
 266   if (count > _full_collections_completed) {
 267     _full_collections_completed = count;
 268     ml.notify_all();
 269   }
 270   return _full_collections_completed;
 271 }
 272 
 273 // Return true if any of the following is true:
 274 // . the allocation won't fit into the current young gen heap
 275 // . gc locker is occupied (jni critical section)
 276 // . heap memory is tight -- the most recent previous collection
 277 //   was a full collection because a partial collection (would
 278 //   have) failed and is likely to fail again
 279 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 280   size_t young_capacity = _young_gen->capacity_before_gc();
 281   return    (word_size > heap_word_size(young_capacity))
 282          || GCLocker::is_active_and_needs_gc()
 283          || incremental_collection_failed();
 284 }
 285 
 286 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 287   HeapWord* result = NULL;
 288   if (_old_gen->should_allocate(size, is_tlab)) {
 289     result = _old_gen->expand_and_allocate(size, is_tlab);
 290   }
 291   if (result == NULL) {
 292     if (_young_gen->should_allocate(size, is_tlab)) {
 293       result = _young_gen->expand_and_allocate(size, is_tlab);
 294     }
 295   }
 296   assert(result == NULL || is_in_reserved(result), "result not in heap");
 297   return result;
 298 }
 299 
 300 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 301                                               bool is_tlab,
 302                                               bool* gc_overhead_limit_was_exceeded) {
 303   // In general gc_overhead_limit_was_exceeded should be false so
 304   // set it so here and reset it to true only if the gc time
 305   // limit is being exceeded as checked below.
 306   *gc_overhead_limit_was_exceeded = false;
 307 
 308   HeapWord* result = NULL;
 309 
 310   // Loop until the allocation is satisfied, or unsatisfied after GC.
 311   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 312     HandleMark hm; // Discard any handles allocated in each iteration.
 313 
 314     // First allocation attempt is lock-free.
 315     Generation *young = _young_gen;
 316     assert(young->supports_inline_contig_alloc(),
 317       "Otherwise, must do alloc within heap lock");
 318     if (young->should_allocate(size, is_tlab)) {
 319       result = young->par_allocate(size, is_tlab);
 320       if (result != NULL) {
 321         assert(is_in_reserved(result), "result not in heap");
 322         return result;
 323       }
 324     }
 325     uint gc_count_before;  // Read inside the Heap_lock locked region.
 326     {
 327       MutexLocker ml(Heap_lock);
 328       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 329       // Note that only large objects get a shot at being
 330       // allocated in later generations.
 331       bool first_only = !should_try_older_generation_allocation(size);
 332 
 333       result = attempt_allocation(size, is_tlab, first_only);
 334       if (result != NULL) {
 335         assert(is_in_reserved(result), "result not in heap");
 336         return result;
 337       }
 338 
 339       if (GCLocker::is_active_and_needs_gc()) {
 340         if (is_tlab) {
 341           return NULL;  // Caller will retry allocating individual object.
 342         }
 343         if (!is_maximal_no_gc()) {
 344           // Try and expand heap to satisfy request.
 345           result = expand_heap_and_allocate(size, is_tlab);
 346           // Result could be null if we are out of space.
 347           if (result != NULL) {
 348             return result;
 349           }
 350         }
 351 
 352         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 353           return NULL; // We didn't get to do a GC and we didn't get any memory.
 354         }
 355 
 356         // If this thread is not in a jni critical section, we stall
 357         // the requestor until the critical section has cleared and
 358         // GC allowed. When the critical section clears, a GC is
 359         // initiated by the last thread exiting the critical section; so
 360         // we retry the allocation sequence from the beginning of the loop,
 361         // rather than causing more, now probably unnecessary, GC attempts.
 362         JavaThread* jthr = JavaThread::current();
 363         if (!jthr->in_critical()) {
 364           MutexUnlocker mul(Heap_lock);
 365           // Wait for JNI critical section to be exited
 366           GCLocker::stall_until_clear();
 367           gclocker_stalled_count += 1;
 368           continue;
 369         } else {
 370           if (CheckJNICalls) {
 371             fatal("Possible deadlock due to allocating while"
 372                   " in jni critical section");
 373           }
 374           return NULL;
 375         }
 376       }
 377 
 378       // Read the gc count while the heap lock is held.
 379       gc_count_before = total_collections();
 380     }
 381 
 382     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 383     VMThread::execute(&op);
 384     if (op.prologue_succeeded()) {
 385       result = op.result();
 386       if (op.gc_locked()) {
 387          assert(result == NULL, "must be NULL if gc_locked() is true");
 388          continue;  // Retry and/or stall as necessary.
 389       }
 390 
 391       // Allocation has failed and a collection
 392       // has been done.  If the gc time limit was exceeded the
 393       // this time, return NULL so that an out-of-memory
 394       // will be thrown.  Clear gc_overhead_limit_exceeded
 395       // so that the overhead exceeded does not persist.
 396 
 397       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 398       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 399 
 400       if (limit_exceeded && softrefs_clear) {
 401         *gc_overhead_limit_was_exceeded = true;
 402         size_policy()->set_gc_overhead_limit_exceeded(false);
 403         if (op.result() != NULL) {
 404           CollectedHeap::fill_with_object(op.result(), size);
 405         }
 406         return NULL;
 407       }
 408       assert(result == NULL || is_in_reserved(result),
 409              "result not in heap");
 410       return result;
 411     }
 412 
 413     // Give a warning if we seem to be looping forever.
 414     if ((QueuedAllocationWarningCount > 0) &&
 415         (try_count % QueuedAllocationWarningCount == 0)) {
 416           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 417                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 418     }
 419   }
 420 }
 421 
 422 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 423                                                bool is_tlab,
 424                                                bool first_only) {
 425   HeapWord* res = NULL;
 426 
 427   if (_young_gen->should_allocate(size, is_tlab)) {
 428     res = _young_gen->allocate(size, is_tlab);
 429     if (res != NULL || first_only) {
 430       return res;
 431     }
 432   }
 433 
 434   if (_old_gen->should_allocate(size, is_tlab)) {
 435     res = _old_gen->allocate(size, is_tlab);
 436   }
 437 
 438   return res;
 439 }
 440 
 441 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 442                                          bool* gc_overhead_limit_was_exceeded) {
 443   return mem_allocate_work(size,
 444                            false /* is_tlab */,
 445                            gc_overhead_limit_was_exceeded);
 446 }
 447 
 448 bool GenCollectedHeap::must_clear_all_soft_refs() {
 449   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 450          _gc_cause == GCCause::_wb_full_gc;
 451 }
 452 
 453 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 454                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 455                                           bool restore_marks_for_biased_locking) {
 456   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 457   GCTraceTime(Trace, gc, phases) t1(title);
 458   TraceCollectorStats tcs(gen->counters());
 459   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 460 
 461   gen->stat_record()->invocations++;
 462   gen->stat_record()->accumulated_time.start();
 463 
 464   // Must be done anew before each collection because
 465   // a previous collection will do mangling and will
 466   // change top of some spaces.
 467   record_gen_tops_before_GC();
 468 
 469   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 470 
 471   if (run_verification && VerifyBeforeGC) {
 472     HandleMark hm;  // Discard invalid handles created during verification
 473     Universe::verify("Before GC");
 474   }
 475   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::clear());
 476 
 477   if (restore_marks_for_biased_locking) {
 478     // We perform this mark word preservation work lazily
 479     // because it's only at this point that we know whether we
 480     // absolutely have to do it; we want to avoid doing it for
 481     // scavenge-only collections where it's unnecessary
 482     BiasedLocking::preserve_marks();
 483   }
 484 
 485   // Do collection work
 486   {
 487     // Note on ref discovery: For what appear to be historical reasons,
 488     // GCH enables and disabled (by enqueing) refs discovery.
 489     // In the future this should be moved into the generation's
 490     // collect method so that ref discovery and enqueueing concerns
 491     // are local to a generation. The collect method could return
 492     // an appropriate indication in the case that notification on
 493     // the ref lock was needed. This will make the treatment of
 494     // weak refs more uniform (and indeed remove such concerns
 495     // from GCH). XXX
 496 
 497     HandleMark hm;  // Discard invalid handles created during gc
 498     save_marks();   // save marks for all gens
 499     // We want to discover references, but not process them yet.
 500     // This mode is disabled in process_discovered_references if the
 501     // generation does some collection work, or in
 502     // enqueue_discovered_references if the generation returns
 503     // without doing any work.
 504     ReferenceProcessor* rp = gen->ref_processor();
 505     // If the discovery of ("weak") refs in this generation is
 506     // atomic wrt other collectors in this configuration, we
 507     // are guaranteed to have empty discovered ref lists.
 508     if (rp->discovery_is_atomic()) {
 509       rp->enable_discovery();
 510       rp->setup_policy(clear_soft_refs);
 511     } else {
 512       // collect() below will enable discovery as appropriate
 513     }
 514     gen->collect(full, clear_soft_refs, size, is_tlab);
 515     if (!rp->enqueuing_is_done()) {
 516       rp->disable_discovery();
 517     } else {
 518       rp->set_enqueuing_is_done(false);
 519     }
 520     rp->verify_no_references_recorded();
 521   }
 522 
 523   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::update_pointers());
 524 
 525   gen->stat_record()->accumulated_time.stop();
 526 
 527   update_gc_stats(gen, full);
 528 
 529   if (run_verification && VerifyAfterGC) {
 530     HandleMark hm;  // Discard invalid handles created during verification
 531     Universe::verify("After GC");
 532   }
 533 }
 534 
 535 void GenCollectedHeap::do_collection(bool           full,
 536                                      bool           clear_all_soft_refs,
 537                                      size_t         size,
 538                                      bool           is_tlab,
 539                                      GenerationType max_generation) {
 540   ResourceMark rm;
 541   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 542 
 543   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 544   assert(my_thread->is_VM_thread() ||
 545          my_thread->is_ConcurrentGC_thread(),
 546          "incorrect thread type capability");
 547   assert(Heap_lock->is_locked(),
 548          "the requesting thread should have the Heap_lock");
 549   guarantee(!is_gc_active(), "collection is not reentrant");
 550 
 551   if (GCLocker::check_active_before_gc()) {
 552     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 553   }
 554 
 555   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 556                           soft_ref_policy()->should_clear_all_soft_refs();
 557 
 558   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 559 
 560   FlagSetting fl(_is_gc_active, true);
 561 
 562   bool complete = full && (max_generation == OldGen);
 563   bool old_collects_young = complete && !ScavengeBeforeFullGC;
 564   bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 565 
 566   const PreGenGCValues pre_gc_values = get_pre_gc_values();
 567 
 568   bool run_verification = total_collections() >= VerifyGCStartAt;
 569   bool prepared_for_verification = false;
 570   bool do_full_collection = false;
 571 
 572   if (do_young_collection) {
 573     GCIdMark gc_id_mark;
 574     GCTraceCPUTime tcpu;
 575     GCTraceTime(Info, gc) t("Pause Young", NULL, gc_cause(), true);
 576 
 577     print_heap_before_gc();
 578 
 579     if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 580       prepare_for_verify();
 581       prepared_for_verification = true;
 582     }
 583 
 584     gc_prologue(complete);
 585     increment_total_collections(complete);
 586 
 587     collect_generation(_young_gen,
 588                        full,
 589                        size,
 590                        is_tlab,
 591                        run_verification && VerifyGCLevel <= 0,
 592                        do_clear_all_soft_refs,
 593                        false);
 594 
 595     if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 596         size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 597       // Allocation request was met by young GC.
 598       size = 0;
 599     }
 600 
 601     // Ask if young collection is enough. If so, do the final steps for young collection,
 602     // and fallthrough to the end.
 603     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 604     if (!do_full_collection) {
 605       // Adjust generation sizes.
 606       _young_gen->compute_new_size();
 607 
 608       print_heap_change(pre_gc_values);
 609 
 610       // Track memory usage and detect low memory after GC finishes
 611       MemoryService::track_memory_usage();
 612 
 613       gc_epilogue(complete);
 614     }
 615 
 616     print_heap_after_gc();
 617 
 618   } else {
 619     // No young collection, ask if we need to perform Full collection.
 620     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 621   }
 622 
 623   if (do_full_collection) {
 624     GCIdMark gc_id_mark;
 625     GCTraceCPUTime tcpu;
 626     GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 627 
 628     print_heap_before_gc();
 629 
 630     if (!prepared_for_verification && run_verification &&
 631         VerifyGCLevel <= 1 && VerifyBeforeGC) {
 632       prepare_for_verify();
 633     }
 634 
 635     if (!do_young_collection) {
 636       gc_prologue(complete);
 637       increment_total_collections(complete);
 638     }
 639 
 640     // Accounting quirk: total full collections would be incremented when "complete"
 641     // is set, by calling increment_total_collections above. However, we also need to
 642     // account Full collections that had "complete" unset.
 643     if (!complete) {
 644       increment_total_full_collections();
 645     }
 646 
 647     collect_generation(_old_gen,
 648                        full,
 649                        size,
 650                        is_tlab,
 651                        run_verification && VerifyGCLevel <= 1,
 652                        do_clear_all_soft_refs,
 653                        true);
 654 
 655     // Adjust generation sizes.
 656     _old_gen->compute_new_size();
 657     _young_gen->compute_new_size();
 658 
 659     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 660     ClassLoaderDataGraph::purge();
 661     MetaspaceUtils::verify_metrics();
 662     // Resize the metaspace capacity after full collections
 663     MetaspaceGC::compute_new_size();
 664     update_full_collections_completed();
 665 
 666     print_heap_change(pre_gc_values);
 667 
 668     // Track memory usage and detect low memory after GC finishes
 669     MemoryService::track_memory_usage();
 670 
 671     // Need to tell the epilogue code we are done with Full GC, regardless what was
 672     // the initial value for "complete" flag.
 673     gc_epilogue(true);
 674 
 675     BiasedLocking::restore_marks();
 676 
 677     print_heap_after_gc();
 678   }
 679 
 680 #ifdef TRACESPINNING
 681   TaskTerminator::print_termination_counts();
 682 #endif
 683 }
 684 
 685 bool GenCollectedHeap::should_do_full_collection(size_t size, bool full, bool is_tlab,
 686                                                  GenCollectedHeap::GenerationType max_gen) const {
 687   return max_gen == OldGen && _old_gen->should_collect(full, size, is_tlab);
 688 }
 689 
 690 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 691   ScavengableNMethods::register_nmethod(nm);
 692 }
 693 
 694 void GenCollectedHeap::unregister_nmethod(nmethod* nm) {
 695   ScavengableNMethods::unregister_nmethod(nm);
 696 }
 697 
 698 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 699   ScavengableNMethods::verify_nmethod(nm);
 700 }
 701 
 702 void GenCollectedHeap::flush_nmethod(nmethod* nm) {
 703   // Do nothing.
 704 }
 705 
 706 void GenCollectedHeap::prune_scavengable_nmethods() {
 707   ScavengableNMethods::prune_nmethods();
 708 }
 709 
 710 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 711   GCCauseSetter x(this, GCCause::_allocation_failure);
 712   HeapWord* result = NULL;
 713 
 714   assert(size != 0, "Precondition violated");
 715   if (GCLocker::is_active_and_needs_gc()) {
 716     // GC locker is active; instead of a collection we will attempt
 717     // to expand the heap, if there's room for expansion.
 718     if (!is_maximal_no_gc()) {
 719       result = expand_heap_and_allocate(size, is_tlab);
 720     }
 721     return result;   // Could be null if we are out of space.
 722   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 723     // Do an incremental collection.
 724     do_collection(false,                     // full
 725                   false,                     // clear_all_soft_refs
 726                   size,                      // size
 727                   is_tlab,                   // is_tlab
 728                   GenCollectedHeap::OldGen); // max_generation
 729   } else {
 730     log_trace(gc)(" :: Trying full because partial may fail :: ");
 731     // Try a full collection; see delta for bug id 6266275
 732     // for the original code and why this has been simplified
 733     // with from-space allocation criteria modified and
 734     // such allocation moved out of the safepoint path.
 735     do_collection(true,                      // full
 736                   false,                     // clear_all_soft_refs
 737                   size,                      // size
 738                   is_tlab,                   // is_tlab
 739                   GenCollectedHeap::OldGen); // max_generation
 740   }
 741 
 742   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 743 
 744   if (result != NULL) {
 745     assert(is_in_reserved(result), "result not in heap");
 746     return result;
 747   }
 748 
 749   // OK, collection failed, try expansion.
 750   result = expand_heap_and_allocate(size, is_tlab);
 751   if (result != NULL) {
 752     return result;
 753   }
 754 
 755   // If we reach this point, we're really out of memory. Try every trick
 756   // we can to reclaim memory. Force collection of soft references. Force
 757   // a complete compaction of the heap. Any additional methods for finding
 758   // free memory should be here, especially if they are expensive. If this
 759   // attempt fails, an OOM exception will be thrown.
 760   {
 761     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 762 
 763     do_collection(true,                      // full
 764                   true,                      // clear_all_soft_refs
 765                   size,                      // size
 766                   is_tlab,                   // is_tlab
 767                   GenCollectedHeap::OldGen); // max_generation
 768   }
 769 
 770   result = attempt_allocation(size, is_tlab, false /* first_only */);
 771   if (result != NULL) {
 772     assert(is_in_reserved(result), "result not in heap");
 773     return result;
 774   }
 775 
 776   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 777     "Flag should have been handled and cleared prior to this point");
 778 
 779   // What else?  We might try synchronous finalization later.  If the total
 780   // space available is large enough for the allocation, then a more
 781   // complete compaction phase than we've tried so far might be
 782   // appropriate.
 783   return NULL;
 784 }
 785 
 786 #ifdef ASSERT
 787 class AssertNonScavengableClosure: public OopClosure {
 788 public:
 789   virtual void do_oop(oop* p) {
 790     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 791       "Referent should not be scavengable.");  }
 792   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 793 };
 794 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 795 #endif
 796 
 797 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 798                                      ScanningOption so,
 799                                      OopClosure* strong_roots,
 800                                      CLDClosure* strong_cld_closure,
 801                                      CLDClosure* weak_cld_closure,
 802                                      CodeBlobToOopClosure* code_roots) {
 803   // General roots.
 804   assert(code_roots != NULL, "code root closure should always be set");
 805   // _n_termination for _process_strong_tasks should be set up stream
 806   // in a method not running in a GC worker.  Otherwise the GC worker
 807   // could be trying to change the termination condition while the task
 808   // is executing in another GC worker.
 809 
 810   if (_process_strong_tasks->try_claim_task(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 811     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 812   }
 813 
 814   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 815   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 816 
 817   bool is_par = scope->n_threads() > 1;
 818   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 819 
 820   if (_process_strong_tasks->try_claim_task(GCH_PS_Universe_oops_do)) {
 821     Universe::oops_do(strong_roots);
 822   }
 823   // Global (strong) JNI handles
 824   if (_process_strong_tasks->try_claim_task(GCH_PS_JNIHandles_oops_do)) {
 825     JNIHandles::oops_do(strong_roots);
 826   }
 827 
 828   if (_process_strong_tasks->try_claim_task(GCH_PS_ObjectSynchronizer_oops_do)) {
 829     ObjectSynchronizer::oops_do(strong_roots);
 830   }
 831   if (_process_strong_tasks->try_claim_task(GCH_PS_Management_oops_do)) {
 832     Management::oops_do(strong_roots);
 833   }
 834   if (_process_strong_tasks->try_claim_task(GCH_PS_jvmti_oops_do)) {
 835     JvmtiExport::oops_do(strong_roots);
 836   }
 837 #if INCLUDE_AOT
 838   if (UseAOT && _process_strong_tasks->try_claim_task(GCH_PS_aot_oops_do)) {
 839     AOTLoader::oops_do(strong_roots);
 840   }
 841 #endif
 842   if (_process_strong_tasks->try_claim_task(GCH_PS_SystemDictionary_oops_do)) {
 843     SystemDictionary::oops_do(strong_roots);
 844   }
 845 
 846   if (_process_strong_tasks->try_claim_task(GCH_PS_CodeCache_oops_do)) {
 847     if (so & SO_ScavengeCodeCache) {
 848       assert(code_roots != NULL, "must supply closure for code cache");
 849 
 850       // We only visit parts of the CodeCache when scavenging.
 851       ScavengableNMethods::nmethods_do(code_roots);
 852     }
 853     if (so & SO_AllCodeCache) {
 854       assert(code_roots != NULL, "must supply closure for code cache");
 855 
 856       // CMSCollector uses this to do intermediate-strength collections.
 857       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 858       CodeCache::blobs_do(code_roots);
 859     }
 860     // Verify that the code cache contents are not subject to
 861     // movement by a scavenging collection.
 862     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 863     DEBUG_ONLY(ScavengableNMethods::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 864   }
 865 }
 866 
 867 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 868                                            OopsInGenClosure* root_closure,
 869                                            OopsInGenClosure* old_gen_closure,
 870                                            CLDClosure* cld_closure) {
 871   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 872 
 873   process_roots(scope, SO_ScavengeCodeCache, root_closure,
 874                 cld_closure, cld_closure, &mark_code_closure);
 875 
 876   if (_process_strong_tasks->try_claim_task(GCH_PS_younger_gens)) {
 877     root_closure->reset_generation();
 878   }
 879 
 880   // When collection is parallel, all threads get to cooperate to do
 881   // old generation scanning.
 882   old_gen_closure->set_generation(_old_gen);
 883   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 884   old_gen_closure->reset_generation();
 885 
 886   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 887 }
 888 
 889 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 890                                           bool is_adjust_phase,
 891                                           ScanningOption so,
 892                                           bool only_strong_roots,
 893                                           OopsInGenClosure* root_closure,
 894                                           CLDClosure* cld_closure) {
 895   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 896   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 897 
 898   process_roots(scope, so, root_closure, cld_closure, weak_cld_closure, &mark_code_closure);
 899   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 900 }
 901 
 902 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 903   WeakProcessor::oops_do(root_closure);
 904   _young_gen->ref_processor()->weak_oops_do(root_closure);
 905   _old_gen->ref_processor()->weak_oops_do(root_closure);
 906 }
 907 
 908 bool GenCollectedHeap::no_allocs_since_save_marks() {
 909   return _young_gen->no_allocs_since_save_marks() &&
 910          _old_gen->no_allocs_since_save_marks();
 911 }
 912 
 913 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 914   return _young_gen->supports_inline_contig_alloc();
 915 }
 916 
 917 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 918   return _young_gen->top_addr();
 919 }
 920 
 921 HeapWord** GenCollectedHeap::end_addr() const {
 922   return _young_gen->end_addr();
 923 }
 924 
 925 // public collection interfaces
 926 
 927 void GenCollectedHeap::collect(GCCause::Cause cause) {
 928   if ((cause == GCCause::_wb_young_gc) ||
 929       (cause == GCCause::_gc_locker)) {
 930     // Young collection for WhiteBox or GCLocker.
 931     collect(cause, YoungGen);
 932   } else {
 933 #ifdef ASSERT
 934   if (cause == GCCause::_scavenge_alot) {
 935     // Young collection only.
 936     collect(cause, YoungGen);
 937   } else {
 938     // Stop-the-world full collection.
 939     collect(cause, OldGen);
 940   }
 941 #else
 942     // Stop-the-world full collection.
 943     collect(cause, OldGen);
 944 #endif
 945   }
 946 }
 947 
 948 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 949   // The caller doesn't have the Heap_lock
 950   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 951   MutexLocker ml(Heap_lock);
 952   collect_locked(cause, max_generation);
 953 }
 954 
 955 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 956   // The caller has the Heap_lock
 957   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 958   collect_locked(cause, OldGen);
 959 }
 960 
 961 // this is the private collection interface
 962 // The Heap_lock is expected to be held on entry.
 963 
 964 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 965   // Read the GC count while holding the Heap_lock
 966   unsigned int gc_count_before      = total_collections();
 967   unsigned int full_gc_count_before = total_full_collections();
 968 
 969   if (GCLocker::should_discard(cause, gc_count_before)) {
 970     return;
 971   }
 972 
 973   {
 974     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 975     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 976                          cause, max_generation);
 977     VMThread::execute(&op);
 978   }
 979 }
 980 
 981 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 982    do_full_collection(clear_all_soft_refs, OldGen);
 983 }
 984 
 985 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 986                                           GenerationType last_generation) {
 987   do_collection(true,                   // full
 988                 clear_all_soft_refs,    // clear_all_soft_refs
 989                 0,                      // size
 990                 false,                  // is_tlab
 991                 last_generation);       // last_generation
 992   // Hack XXX FIX ME !!!
 993   // A scavenge may not have been attempted, or may have
 994   // been attempted and failed, because the old gen was too full
 995   if (gc_cause() == GCCause::_gc_locker && incremental_collection_failed()) {
 996     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 997     // This time allow the old gen to be collected as well
 998     do_collection(true,                // full
 999                   clear_all_soft_refs, // clear_all_soft_refs
1000                   0,                   // size
1001                   false,               // is_tlab
1002                   OldGen);             // last_generation
1003   }
1004 }
1005 
1006 bool GenCollectedHeap::is_in_young(oop p) {
1007   bool result = cast_from_oop<HeapWord*>(p) < _old_gen->reserved().start();
1008   assert(result == _young_gen->is_in_reserved(p),
1009          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1010   return result;
1011 }
1012 
1013 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1014 bool GenCollectedHeap::is_in(const void* p) const {
1015   return _young_gen->is_in(p) || _old_gen->is_in(p);
1016 }
1017 
1018 #ifdef ASSERT
1019 // Don't implement this by using is_in_young().  This method is used
1020 // in some cases to check that is_in_young() is correct.
1021 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1022   assert(is_in_reserved(p) || p == NULL,
1023     "Does not work if address is non-null and outside of the heap");
1024   return p < _young_gen->reserved().end() && p != NULL;
1025 }
1026 #endif
1027 
1028 void GenCollectedHeap::oop_iterate(OopIterateClosure* cl) {
1029   _young_gen->oop_iterate(cl);
1030   _old_gen->oop_iterate(cl);
1031 }
1032 
1033 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1034   _young_gen->object_iterate(cl);
1035   _old_gen->object_iterate(cl);
1036 }
1037 
1038 Space* GenCollectedHeap::space_containing(const void* addr) const {
1039   Space* res = _young_gen->space_containing(addr);
1040   if (res != NULL) {
1041     return res;
1042   }
1043   res = _old_gen->space_containing(addr);
1044   assert(res != NULL, "Could not find containing space");
1045   return res;
1046 }
1047 
1048 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1049   assert(is_in_reserved(addr), "block_start of address outside of heap");
1050   if (_young_gen->is_in_reserved(addr)) {
1051     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1052     return _young_gen->block_start(addr);
1053   }
1054 
1055   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1056   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1057   return _old_gen->block_start(addr);
1058 }
1059 
1060 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1061   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1062   assert(block_start(addr) == addr, "addr must be a block start");
1063   if (_young_gen->is_in_reserved(addr)) {
1064     return _young_gen->block_is_obj(addr);
1065   }
1066 
1067   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1068   return _old_gen->block_is_obj(addr);
1069 }
1070 
1071 bool GenCollectedHeap::supports_tlab_allocation() const {
1072   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1073   return _young_gen->supports_tlab_allocation();
1074 }
1075 
1076 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1077   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1078   if (_young_gen->supports_tlab_allocation()) {
1079     return _young_gen->tlab_capacity();
1080   }
1081   return 0;
1082 }
1083 
1084 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1085   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1086   if (_young_gen->supports_tlab_allocation()) {
1087     return _young_gen->tlab_used();
1088   }
1089   return 0;
1090 }
1091 
1092 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1093   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1094   if (_young_gen->supports_tlab_allocation()) {
1095     return _young_gen->unsafe_max_tlab_alloc();
1096   }
1097   return 0;
1098 }
1099 
1100 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t min_size,
1101                                               size_t requested_size,
1102                                               size_t* actual_size) {
1103   bool gc_overhead_limit_was_exceeded;
1104   HeapWord* result = mem_allocate_work(requested_size /* size */,
1105                                        true /* is_tlab */,
1106                                        &gc_overhead_limit_was_exceeded);
1107   if (result != NULL) {
1108     *actual_size = requested_size;
1109   }
1110 
1111   return result;
1112 }
1113 
1114 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1115 // from the list headed by "*prev_ptr".
1116 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1117   bool first = true;
1118   size_t min_size = 0;   // "first" makes this conceptually infinite.
1119   ScratchBlock **smallest_ptr, *smallest;
1120   ScratchBlock  *cur = *prev_ptr;
1121   while (cur) {
1122     assert(*prev_ptr == cur, "just checking");
1123     if (first || cur->num_words < min_size) {
1124       smallest_ptr = prev_ptr;
1125       smallest     = cur;
1126       min_size     = smallest->num_words;
1127       first        = false;
1128     }
1129     prev_ptr = &cur->next;
1130     cur     =  cur->next;
1131   }
1132   smallest      = *smallest_ptr;
1133   *smallest_ptr = smallest->next;
1134   return smallest;
1135 }
1136 
1137 // Sort the scratch block list headed by res into decreasing size order,
1138 // and set "res" to the result.
1139 static void sort_scratch_list(ScratchBlock*& list) {
1140   ScratchBlock* sorted = NULL;
1141   ScratchBlock* unsorted = list;
1142   while (unsorted) {
1143     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1144     smallest->next  = sorted;
1145     sorted          = smallest;
1146   }
1147   list = sorted;
1148 }
1149 
1150 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1151                                                size_t max_alloc_words) {
1152   ScratchBlock* res = NULL;
1153   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1154   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1155   sort_scratch_list(res);
1156   return res;
1157 }
1158 
1159 void GenCollectedHeap::release_scratch() {
1160   _young_gen->reset_scratch();
1161   _old_gen->reset_scratch();
1162 }
1163 
1164 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1165   void do_generation(Generation* gen) {
1166     gen->prepare_for_verify();
1167   }
1168 };
1169 
1170 void GenCollectedHeap::prepare_for_verify() {
1171   ensure_parsability(false);        // no need to retire TLABs
1172   GenPrepareForVerifyClosure blk;
1173   generation_iterate(&blk, false);
1174 }
1175 
1176 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1177                                           bool old_to_young) {
1178   if (old_to_young) {
1179     cl->do_generation(_old_gen);
1180     cl->do_generation(_young_gen);
1181   } else {
1182     cl->do_generation(_young_gen);
1183     cl->do_generation(_old_gen);
1184   }
1185 }
1186 
1187 bool GenCollectedHeap::is_maximal_no_gc() const {
1188   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1189 }
1190 
1191 void GenCollectedHeap::save_marks() {
1192   _young_gen->save_marks();
1193   _old_gen->save_marks();
1194 }
1195 
1196 GenCollectedHeap* GenCollectedHeap::heap() {
1197   CollectedHeap* heap = Universe::heap();
1198   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1199   assert(heap->kind() == CollectedHeap::Serial, "Invalid name");
1200   return (GenCollectedHeap*) heap;
1201 }
1202 
1203 #if INCLUDE_SERIALGC
1204 void GenCollectedHeap::prepare_for_compaction() {
1205   // Start by compacting into same gen.
1206   CompactPoint cp(_old_gen);
1207   _old_gen->prepare_for_compaction(&cp);
1208   _young_gen->prepare_for_compaction(&cp);
1209 }
1210 #endif // INCLUDE_SERIALGC
1211 
1212 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1213   log_debug(gc, verify)("%s", _old_gen->name());
1214   _old_gen->verify();
1215 
1216   log_debug(gc, verify)("%s", _old_gen->name());
1217   _young_gen->verify();
1218 
1219   log_debug(gc, verify)("RemSet");
1220   rem_set()->verify();
1221 }
1222 
1223 void GenCollectedHeap::print_on(outputStream* st) const {
1224   _young_gen->print_on(st);
1225   _old_gen->print_on(st);
1226   MetaspaceUtils::print_on(st);
1227 }
1228 
1229 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1230 }
1231 
1232 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1233 }
1234 
1235 bool GenCollectedHeap::print_location(outputStream* st, void* addr) const {
1236   return BlockLocationPrinter<GenCollectedHeap>::print_location(st, addr);
1237 }
1238 
1239 void GenCollectedHeap::print_tracing_info() const {
1240   if (log_is_enabled(Debug, gc, heap, exit)) {
1241     LogStreamHandle(Debug, gc, heap, exit) lsh;
1242     _young_gen->print_summary_info_on(&lsh);
1243     _old_gen->print_summary_info_on(&lsh);
1244   }
1245 }
1246 
1247 void GenCollectedHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
1248   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
1249 
1250   log_info(gc, heap)(HEAP_CHANGE_FORMAT" "
1251                      HEAP_CHANGE_FORMAT" "
1252                      HEAP_CHANGE_FORMAT,
1253                      HEAP_CHANGE_FORMAT_ARGS(def_new_gen->short_name(),
1254                                              pre_gc_values.young_gen_used(),
1255                                              pre_gc_values.young_gen_capacity(),
1256                                              def_new_gen->used(),
1257                                              def_new_gen->capacity()),
1258                      HEAP_CHANGE_FORMAT_ARGS("Eden",
1259                                              pre_gc_values.eden_used(),
1260                                              pre_gc_values.eden_capacity(),
1261                                              def_new_gen->eden()->used(),
1262                                              def_new_gen->eden()->capacity()),
1263                      HEAP_CHANGE_FORMAT_ARGS("From",
1264                                              pre_gc_values.from_used(),
1265                                              pre_gc_values.from_capacity(),
1266                                              def_new_gen->from()->used(),
1267                                              def_new_gen->from()->capacity()));
1268   log_info(gc, heap)(HEAP_CHANGE_FORMAT,
1269                      HEAP_CHANGE_FORMAT_ARGS(old_gen()->short_name(),
1270                                              pre_gc_values.old_gen_used(),
1271                                              pre_gc_values.old_gen_capacity(),
1272                                              old_gen()->used(),
1273                                              old_gen()->capacity()));
1274   MetaspaceUtils::print_metaspace_change(pre_gc_values.metaspace_sizes());
1275 }
1276 
1277 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1278  private:
1279   bool _full;
1280  public:
1281   void do_generation(Generation* gen) {
1282     gen->gc_prologue(_full);
1283   }
1284   GenGCPrologueClosure(bool full) : _full(full) {};
1285 };
1286 
1287 void GenCollectedHeap::gc_prologue(bool full) {
1288   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1289 
1290   // Fill TLAB's and such
1291   ensure_parsability(true);   // retire TLABs
1292 
1293   // Walk generations
1294   GenGCPrologueClosure blk(full);
1295   generation_iterate(&blk, false);  // not old-to-young.
1296 };
1297 
1298 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1299  private:
1300   bool _full;
1301  public:
1302   void do_generation(Generation* gen) {
1303     gen->gc_epilogue(_full);
1304   }
1305   GenGCEpilogueClosure(bool full) : _full(full) {};
1306 };
1307 
1308 void GenCollectedHeap::gc_epilogue(bool full) {
1309 #if COMPILER2_OR_JVMCI
1310   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1311   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1312   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1313 #endif // COMPILER2_OR_JVMCI
1314 
1315   resize_all_tlabs();
1316 
1317   GenGCEpilogueClosure blk(full);
1318   generation_iterate(&blk, false);  // not old-to-young.
1319 
1320   if (!CleanChunkPoolAsync) {
1321     Chunk::clean_chunk_pool();
1322   }
1323 
1324   MetaspaceCounters::update_performance_counters();
1325   CompressedClassSpaceCounters::update_performance_counters();
1326 };
1327 
1328 #ifndef PRODUCT
1329 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1330  private:
1331  public:
1332   void do_generation(Generation* gen) {
1333     gen->record_spaces_top();
1334   }
1335 };
1336 
1337 void GenCollectedHeap::record_gen_tops_before_GC() {
1338   if (ZapUnusedHeapArea) {
1339     GenGCSaveTopsBeforeGCClosure blk;
1340     generation_iterate(&blk, false);  // not old-to-young.
1341   }
1342 }
1343 #endif  // not PRODUCT
1344 
1345 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1346  public:
1347   void do_generation(Generation* gen) {
1348     gen->ensure_parsability();
1349   }
1350 };
1351 
1352 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1353   CollectedHeap::ensure_parsability(retire_tlabs);
1354   GenEnsureParsabilityClosure ep_cl;
1355   generation_iterate(&ep_cl, false);
1356 }
1357 
1358 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1359                                               oop obj,
1360                                               size_t obj_size) {
1361   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1362   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1363   HeapWord* result = NULL;
1364 
1365   result = old_gen->expand_and_allocate(obj_size, false);
1366 
1367   if (result != NULL) {
1368     Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(obj), result, obj_size);
1369   }
1370   return oop(result);
1371 }
1372 
1373 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1374   jlong _time;   // in ms
1375   jlong _now;    // in ms
1376 
1377  public:
1378   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1379 
1380   jlong time() { return _time; }
1381 
1382   void do_generation(Generation* gen) {
1383     _time = MIN2(_time, gen->time_of_last_gc(_now));
1384   }
1385 };
1386 
1387 jlong GenCollectedHeap::millis_since_last_gc() {
1388   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1389   // provided the underlying platform provides such a time source
1390   // (and it is bug free). So we still have to guard against getting
1391   // back a time later than 'now'.
1392   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1393   GenTimeOfLastGCClosure tolgc_cl(now);
1394   // iterate over generations getting the oldest
1395   // time that a generation was collected
1396   generation_iterate(&tolgc_cl, false);
1397 
1398   jlong retVal = now - tolgc_cl.time();
1399   if (retVal < 0) {
1400     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1401        ". returning zero instead.", retVal);
1402     return 0;
1403   }
1404   return retVal;
1405 }