1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/cardTable.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "gc/shared/space.inline.hpp"
  29 #include "logging/log.hpp"
  30 #include "memory/virtualspace.hpp"
  31 #include "runtime/java.hpp"
  32 #include "runtime/os.hpp"
  33 #include "services/memTracker.hpp"
  34 #include "utilities/align.hpp"
  35 
  36 size_t CardTable::compute_byte_map_size() {
  37   assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
  38                                         "uninitialized, check declaration order");
  39   assert(_page_size != 0, "uninitialized, check declaration order");
  40   const size_t granularity = os::vm_allocation_granularity();
  41   return align_up(_guard_index + 1, MAX2(_page_size, granularity));
  42 }
  43 
  44 CardTable::CardTable(MemRegion whole_heap, bool conc_scan) :
  45   _scanned_concurrently(conc_scan),
  46   _whole_heap(whole_heap),
  47   _guard_index(0),
  48   _last_valid_index(0),
  49   _page_size(os::vm_page_size()),
  50   _byte_map_size(0),
  51   _byte_map(NULL),
  52   _byte_map_base(NULL),
  53   _cur_covered_regions(0),
  54   _covered(NULL),
  55   _committed(NULL),
  56   _guard_region()
  57 {
  58   assert((uintptr_t(_whole_heap.start())  & (card_size - 1))  == 0, "heap must start at card boundary");
  59   assert((uintptr_t(_whole_heap.end()) & (card_size - 1))  == 0, "heap must end at card boundary");
  60 
  61   assert(card_size <= 512, "card_size must be less than 512"); // why?
  62 
  63   _covered = new MemRegion[_max_covered_regions];
  64 }
  65 
  66 CardTable::~CardTable() {
  67   if (_covered) {
  68     delete[] _covered;
  69     _covered = NULL;
  70   }
  71   if (_committed) {
  72     delete[] _committed;
  73     _committed = NULL;
  74   }
  75 }
  76 
  77 void CardTable::initialize() {
  78   _guard_index = cards_required(_whole_heap.word_size()) - 1;
  79   _last_valid_index = _guard_index - 1;
  80 
  81   _byte_map_size = compute_byte_map_size();
  82 
  83   HeapWord* low_bound  = _whole_heap.start();
  84   HeapWord* high_bound = _whole_heap.end();
  85 
  86   _cur_covered_regions = 0;
  87   _committed = new MemRegion[_max_covered_regions];
  88 
  89   const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
  90     MAX2(_page_size, (size_t) os::vm_allocation_granularity());
  91   ReservedSpace heap_rs(_byte_map_size, rs_align, false);
  92 
  93   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
  94 
  95   os::trace_page_sizes("Card Table", _guard_index + 1, _guard_index + 1,
  96                        _page_size, heap_rs.base(), heap_rs.size());
  97   if (!heap_rs.is_reserved()) {
  98     vm_exit_during_initialization("Could not reserve enough space for the "
  99                                   "card marking array");
 100   }
 101 
 102   // The assembler store_check code will do an unsigned shift of the oop,
 103   // then add it to _byte_map_base, i.e.
 104   //
 105   //   _byte_map = _byte_map_base + (uintptr_t(low_bound) >> card_shift)
 106   _byte_map = (CardValue*) heap_rs.base();
 107   _byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
 108   assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
 109   assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
 110 
 111   CardValue* guard_card = &_byte_map[_guard_index];
 112   HeapWord* guard_page = align_down((HeapWord*)guard_card, _page_size);
 113   _guard_region = MemRegion(guard_page, _page_size);
 114   os::commit_memory_or_exit((char*)guard_page, _page_size, _page_size,
 115                             !ExecMem, "card table last card");
 116   *guard_card = last_card;
 117 
 118   log_trace(gc, barrier)("CardTable::CardTable: ");
 119   log_trace(gc, barrier)("    &_byte_map[0]: " INTPTR_FORMAT "  &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
 120                   p2i(&_byte_map[0]), p2i(&_byte_map[_last_valid_index]));
 121   log_trace(gc, barrier)("    _byte_map_base: " INTPTR_FORMAT, p2i(_byte_map_base));
 122 }
 123 
 124 int CardTable::find_covering_region_by_base(HeapWord* base) {
 125   int i;
 126   for (i = 0; i < _cur_covered_regions; i++) {
 127     if (_covered[i].start() == base) return i;
 128     if (_covered[i].start() > base) break;
 129   }
 130   // If we didn't find it, create a new one.
 131   assert(_cur_covered_regions < _max_covered_regions,
 132          "too many covered regions");
 133   // Move the ones above up, to maintain sorted order.
 134   for (int j = _cur_covered_regions; j > i; j--) {
 135     _covered[j] = _covered[j-1];
 136     _committed[j] = _committed[j-1];
 137   }
 138   int res = i;
 139   _cur_covered_regions++;
 140   _covered[res].set_start(base);
 141   _covered[res].set_word_size(0);
 142   CardValue* ct_start = byte_for(base);
 143   HeapWord* ct_start_aligned = align_down((HeapWord*)ct_start, _page_size);
 144   _committed[res].set_start(ct_start_aligned);
 145   _committed[res].set_word_size(0);
 146   return res;
 147 }
 148 
 149 int CardTable::find_covering_region_containing(HeapWord* addr) {
 150   for (int i = 0; i < _cur_covered_regions; i++) {
 151     if (_covered[i].contains(addr)) {
 152       return i;
 153     }
 154   }
 155   assert(0, "address outside of heap?");
 156   return -1;
 157 }
 158 
 159 HeapWord* CardTable::largest_prev_committed_end(int ind) const {
 160   HeapWord* max_end = NULL;
 161   for (int j = 0; j < ind; j++) {
 162     HeapWord* this_end = _committed[j].end();
 163     if (this_end > max_end) max_end = this_end;
 164   }
 165   return max_end;
 166 }
 167 
 168 MemRegion CardTable::committed_unique_to_self(int self, MemRegion mr) const {
 169   MemRegion result = mr;
 170   for (int r = 0; r < _cur_covered_regions; r += 1) {
 171     if (r != self) {
 172       result = result.minus(_committed[r]);
 173     }
 174   }
 175   // Never include the guard page.
 176   result = result.minus(_guard_region);
 177   return result;
 178 }
 179 
 180 void CardTable::resize_covered_region(MemRegion new_region) {
 181   // We don't change the start of a region, only the end.
 182   assert(_whole_heap.contains(new_region),
 183            "attempt to cover area not in reserved area");
 184   debug_only(verify_guard();)
 185   // collided is true if the expansion would push into another committed region
 186   debug_only(bool collided = false;)
 187   int const ind = find_covering_region_by_base(new_region.start());
 188   MemRegion const old_region = _covered[ind];
 189   assert(old_region.start() == new_region.start(), "just checking");
 190   if (new_region.word_size() != old_region.word_size()) {
 191     // Commit new or uncommit old pages, if necessary.
 192     MemRegion cur_committed = _committed[ind];
 193     // Extend the end of this _committed region
 194     // to cover the end of any lower _committed regions.
 195     // This forms overlapping regions, but never interior regions.
 196     HeapWord* const max_prev_end = largest_prev_committed_end(ind);
 197     if (max_prev_end > cur_committed.end()) {
 198       cur_committed.set_end(max_prev_end);
 199     }
 200     // Align the end up to a page size (starts are already aligned).
 201     HeapWord* new_end = (HeapWord*) byte_after(new_region.last());
 202     HeapWord* new_end_aligned = align_up(new_end, _page_size);
 203     assert(new_end_aligned >= new_end, "align up, but less");
 204     // Check the other regions (excludes "ind") to ensure that
 205     // the new_end_aligned does not intrude onto the committed
 206     // space of another region.
 207     int ri = 0;
 208     for (ri = ind + 1; ri < _cur_covered_regions; ri++) {
 209       if (new_end_aligned > _committed[ri].start()) {
 210         assert(new_end_aligned <= _committed[ri].end(),
 211                "An earlier committed region can't cover a later committed region");
 212         // Any region containing the new end
 213         // should start at or beyond the region found (ind)
 214         // for the new end (committed regions are not expected to
 215         // be proper subsets of other committed regions).
 216         assert(_committed[ri].start() >= _committed[ind].start(),
 217                "New end of committed region is inconsistent");
 218         new_end_aligned = _committed[ri].start();
 219         // new_end_aligned can be equal to the start of its
 220         // committed region (i.e., of "ind") if a second
 221         // region following "ind" also start at the same location
 222         // as "ind".
 223         assert(new_end_aligned >= _committed[ind].start(),
 224           "New end of committed region is before start");
 225         debug_only(collided = true;)
 226         // Should only collide with 1 region
 227         break;
 228       }
 229     }
 230 #ifdef ASSERT
 231     for (++ri; ri < _cur_covered_regions; ri++) {
 232       assert(!_committed[ri].contains(new_end_aligned),
 233         "New end of committed region is in a second committed region");
 234     }
 235 #endif
 236     // The guard page is always committed and should not be committed over.
 237     // "guarded" is used for assertion checking below and recalls the fact
 238     // that the would-be end of the new committed region would have
 239     // penetrated the guard page.
 240     HeapWord* new_end_for_commit = new_end_aligned;
 241 
 242     DEBUG_ONLY(bool guarded = false;)
 243     if (new_end_for_commit > _guard_region.start()) {
 244       new_end_for_commit = _guard_region.start();
 245       DEBUG_ONLY(guarded = true;)
 246     }
 247 
 248     if (new_end_for_commit > cur_committed.end()) {
 249       // Must commit new pages.
 250       MemRegion const new_committed =
 251         MemRegion(cur_committed.end(), new_end_for_commit);
 252 
 253       assert(!new_committed.is_empty(), "Region should not be empty here");
 254       os::commit_memory_or_exit((char*)new_committed.start(),
 255                                 new_committed.byte_size(), _page_size,
 256                                 !ExecMem, "card table expansion");
 257     // Use new_end_aligned (as opposed to new_end_for_commit) because
 258     // the cur_committed region may include the guard region.
 259     } else if (new_end_aligned < cur_committed.end()) {
 260       // Must uncommit pages.
 261       MemRegion const uncommit_region =
 262         committed_unique_to_self(ind, MemRegion(new_end_aligned,
 263                                                 cur_committed.end()));
 264       if (!uncommit_region.is_empty()) {
 265         // It is not safe to uncommit cards if the boundary between
 266         // the generations is moving.  A shrink can uncommit cards
 267         // owned by generation A but being used by generation B.
 268         if (!UseAdaptiveGCBoundary) {
 269           if (!os::uncommit_memory((char*)uncommit_region.start(),
 270                                    uncommit_region.byte_size())) {
 271             assert(false, "Card table contraction failed");
 272             // The call failed so don't change the end of the
 273             // committed region.  This is better than taking the
 274             // VM down.
 275             new_end_aligned = _committed[ind].end();
 276           }
 277         } else {
 278           new_end_aligned = _committed[ind].end();
 279         }
 280       }
 281     }
 282     // In any case, we can reset the end of the current committed entry.
 283     _committed[ind].set_end(new_end_aligned);
 284 
 285 #ifdef ASSERT
 286     // Check that the last card in the new region is committed according
 287     // to the tables.
 288     bool covered = false;
 289     for (int cr = 0; cr < _cur_covered_regions; cr++) {
 290       if (_committed[cr].contains(new_end - 1)) {
 291         covered = true;
 292         break;
 293       }
 294     }
 295     assert(covered, "Card for end of new region not committed");
 296 #endif
 297 
 298     // The default of 0 is not necessarily clean cards.
 299     CardValue* entry;
 300     if (old_region.last() < _whole_heap.start()) {
 301       entry = byte_for(_whole_heap.start());
 302     } else {
 303       entry = byte_after(old_region.last());
 304     }
 305     assert(index_for(new_region.last()) <  _guard_index,
 306       "The guard card will be overwritten");
 307     // This line commented out cleans the newly expanded region and
 308     // not the aligned up expanded region.
 309     // CardValue* const end = byte_after(new_region.last());
 310     CardValue* const end = (CardValue*) new_end_for_commit;
 311     assert((end >= byte_after(new_region.last())) || collided || guarded,
 312       "Expect to be beyond new region unless impacting another region");
 313     // do nothing if we resized downward.
 314 #ifdef ASSERT
 315     for (int ri = 0; ri < _cur_covered_regions; ri++) {
 316       if (ri != ind) {
 317         // The end of the new committed region should not
 318         // be in any existing region unless it matches
 319         // the start of the next region.
 320         assert(!_committed[ri].contains(end) ||
 321                (_committed[ri].start() == (HeapWord*) end),
 322                "Overlapping committed regions");
 323       }
 324     }
 325 #endif
 326     if (entry < end) {
 327       memset(entry, clean_card, pointer_delta(end, entry, sizeof(CardValue)));
 328     }
 329   }
 330   // In any case, the covered size changes.
 331   _covered[ind].set_word_size(new_region.word_size());
 332 
 333   log_trace(gc, barrier)("CardTable::resize_covered_region: ");
 334   log_trace(gc, barrier)("    _covered[%d].start(): " INTPTR_FORMAT " _covered[%d].last(): " INTPTR_FORMAT,
 335                          ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last()));
 336   log_trace(gc, barrier)("    _committed[%d].start(): " INTPTR_FORMAT "  _committed[%d].last(): " INTPTR_FORMAT,
 337                          ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last()));
 338   log_trace(gc, barrier)("    byte_for(start): " INTPTR_FORMAT "  byte_for(last): " INTPTR_FORMAT,
 339                          p2i(byte_for(_covered[ind].start())),  p2i(byte_for(_covered[ind].last())));
 340   log_trace(gc, barrier)("    addr_for(start): " INTPTR_FORMAT "  addr_for(last): " INTPTR_FORMAT,
 341                          p2i(addr_for((CardValue*) _committed[ind].start())),  p2i(addr_for((CardValue*) _committed[ind].last())));
 342 
 343   // Touch the last card of the covered region to show that it
 344   // is committed (or SEGV).
 345   debug_only((void) (*byte_for(_covered[ind].last()));)
 346   debug_only(verify_guard();)
 347 }
 348 
 349 // Note that these versions are precise!  The scanning code has to handle the
 350 // fact that the write barrier may be either precise or imprecise.
 351 void CardTable::dirty_MemRegion(MemRegion mr) {
 352   assert(align_down(mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
 353   assert(align_up  (mr.end(),   HeapWordSize) == mr.end(),   "Unaligned end"  );
 354   CardValue* cur  = byte_for(mr.start());
 355   CardValue* last = byte_after(mr.last());
 356   while (cur < last) {
 357     *cur = dirty_card;
 358     cur++;
 359   }
 360 }
 361 
 362 void CardTable::clear_MemRegion(MemRegion mr) {
 363   // Be conservative: only clean cards entirely contained within the
 364   // region.
 365   CardValue* cur;
 366   if (mr.start() == _whole_heap.start()) {
 367     cur = byte_for(mr.start());
 368   } else {
 369     assert(mr.start() > _whole_heap.start(), "mr is not covered.");
 370     cur = byte_after(mr.start() - 1);
 371   }
 372   CardValue* last = byte_after(mr.last());
 373   memset(cur, clean_card, pointer_delta(last, cur, sizeof(CardValue)));
 374 }
 375 
 376 void CardTable::clear(MemRegion mr) {
 377   for (int i = 0; i < _cur_covered_regions; i++) {
 378     MemRegion mri = mr.intersection(_covered[i]);
 379     if (!mri.is_empty()) clear_MemRegion(mri);
 380   }
 381 }
 382 
 383 void CardTable::dirty(MemRegion mr) {
 384   CardValue* first = byte_for(mr.start());
 385   CardValue* last  = byte_after(mr.last());
 386   memset(first, dirty_card, last-first);
 387 }
 388 
 389 // Unlike several other card table methods, dirty_card_iterate()
 390 // iterates over dirty cards ranges in increasing address order.
 391 void CardTable::dirty_card_iterate(MemRegion mr, MemRegionClosure* cl) {
 392   for (int i = 0; i < _cur_covered_regions; i++) {
 393     MemRegion mri = mr.intersection(_covered[i]);
 394     if (!mri.is_empty()) {
 395       CardValue *cur_entry, *next_entry, *limit;
 396       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
 397            cur_entry <= limit;
 398            cur_entry  = next_entry) {
 399         next_entry = cur_entry + 1;
 400         if (*cur_entry == dirty_card) {
 401           size_t dirty_cards;
 402           // Accumulate maximal dirty card range, starting at cur_entry
 403           for (dirty_cards = 1;
 404                next_entry <= limit && *next_entry == dirty_card;
 405                dirty_cards++, next_entry++);
 406           MemRegion cur_cards(addr_for(cur_entry),
 407                               dirty_cards*card_size_in_words);
 408           cl->do_MemRegion(cur_cards);
 409         }
 410       }
 411     }
 412   }
 413 }
 414 
 415 MemRegion CardTable::dirty_card_range_after_reset(MemRegion mr,
 416                                                   bool reset,
 417                                                   int reset_val) {
 418   for (int i = 0; i < _cur_covered_regions; i++) {
 419     MemRegion mri = mr.intersection(_covered[i]);
 420     if (!mri.is_empty()) {
 421       CardValue* cur_entry, *next_entry, *limit;
 422       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
 423            cur_entry <= limit;
 424            cur_entry  = next_entry) {
 425         next_entry = cur_entry + 1;
 426         if (*cur_entry == dirty_card) {
 427           size_t dirty_cards;
 428           // Accumulate maximal dirty card range, starting at cur_entry
 429           for (dirty_cards = 1;
 430                next_entry <= limit && *next_entry == dirty_card;
 431                dirty_cards++, next_entry++);
 432           MemRegion cur_cards(addr_for(cur_entry),
 433                               dirty_cards*card_size_in_words);
 434           if (reset) {
 435             for (size_t i = 0; i < dirty_cards; i++) {
 436               cur_entry[i] = reset_val;
 437             }
 438           }
 439           return cur_cards;
 440         }
 441       }
 442     }
 443   }
 444   return MemRegion(mr.end(), mr.end());
 445 }
 446 
 447 uintx CardTable::ct_max_alignment_constraint() {
 448   return card_size * os::vm_page_size();
 449 }
 450 
 451 void CardTable::verify_guard() {
 452   // For product build verification
 453   guarantee(_byte_map[_guard_index] == last_card,
 454             "card table guard has been modified");
 455 }
 456 
 457 void CardTable::invalidate(MemRegion mr) {
 458   assert(align_down(mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
 459   assert(align_up  (mr.end(),   HeapWordSize) == mr.end(),   "Unaligned end"  );
 460   for (int i = 0; i < _cur_covered_regions; i++) {
 461     MemRegion mri = mr.intersection(_covered[i]);
 462     if (!mri.is_empty()) dirty_MemRegion(mri);
 463   }
 464 }
 465 
 466 void CardTable::verify() {
 467   verify_guard();
 468 }
 469 
 470 #ifndef PRODUCT
 471 void CardTable::verify_region(MemRegion mr, CardValue val, bool val_equals) {
 472   CardValue* start    = byte_for(mr.start());
 473   CardValue* end      = byte_for(mr.last());
 474   bool failures = false;
 475   for (CardValue* curr = start; curr <= end; ++curr) {
 476     CardValue curr_val = *curr;
 477     bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
 478     if (failed) {
 479       if (!failures) {
 480         log_error(gc, verify)("== CT verification failed: [" INTPTR_FORMAT "," INTPTR_FORMAT "]", p2i(start), p2i(end));
 481         log_error(gc, verify)("==   %sexpecting value: %d", (val_equals) ? "" : "not ", val);
 482         failures = true;
 483       }
 484       log_error(gc, verify)("==   card " PTR_FORMAT " [" PTR_FORMAT "," PTR_FORMAT "], val: %d",
 485                             p2i(curr), p2i(addr_for(curr)),
 486                             p2i((HeapWord*) (((size_t) addr_for(curr)) + card_size)),
 487                             (int) curr_val);
 488     }
 489   }
 490   guarantee(!failures, "there should not have been any failures");
 491 }
 492 
 493 void CardTable::verify_not_dirty_region(MemRegion mr) {
 494   verify_region(mr, dirty_card, false /* val_equals */);
 495 }
 496 
 497 void CardTable::verify_dirty_region(MemRegion mr) {
 498   verify_region(mr, dirty_card, true /* val_equals */);
 499 }
 500 #endif
 501 
 502 void CardTable::print_on(outputStream* st) const {
 503   st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] _byte_map_base: " INTPTR_FORMAT,
 504                p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(_byte_map_base));
 505 }