1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1BarrierSet.hpp"
  27 #include "gc/g1/g1ConcurrentRefine.hpp"
  28 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  29 #include "gc/g1/g1DirtyCardQueue.hpp"
  30 #include "logging/log.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/iterator.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/thread.hpp"
  35 #include "utilities/debug.hpp"
  36 #include "utilities/globalDefinitions.hpp"
  37 #include "utilities/pair.hpp"
  38 #include <math.h>
  39 
  40 G1ConcurrentRefineThread* G1ConcurrentRefineThreadControl::create_refinement_thread(uint worker_id, bool initializing) {
  41   G1ConcurrentRefineThread* result = NULL;
  42   if (initializing || !InjectGCWorkerCreationFailure) {
  43     result = new G1ConcurrentRefineThread(_cr, worker_id);
  44   }
  45   if (result == NULL || result->osthread() == NULL) {
  46     log_warning(gc)("Failed to create refinement thread %u, no more %s",
  47                     worker_id,
  48                     result == NULL ? "memory" : "OS threads");
  49   }
  50   return result;
  51 }
  52 
  53 G1ConcurrentRefineThreadControl::G1ConcurrentRefineThreadControl() :
  54   _cr(NULL),
  55   _threads(NULL),
  56   _num_max_threads(0)
  57 {
  58 }
  59 
  60 G1ConcurrentRefineThreadControl::~G1ConcurrentRefineThreadControl() {
  61   for (uint i = 0; i < _num_max_threads; i++) {
  62     G1ConcurrentRefineThread* t = _threads[i];
  63     if (t != NULL) {
  64       delete t;
  65     }
  66   }
  67   FREE_C_HEAP_ARRAY(G1ConcurrentRefineThread*, _threads);
  68 }
  69 
  70 jint G1ConcurrentRefineThreadControl::initialize(G1ConcurrentRefine* cr, uint num_max_threads) {
  71   assert(cr != NULL, "G1ConcurrentRefine must not be NULL");
  72   _cr = cr;
  73   _num_max_threads = num_max_threads;
  74 
  75   _threads = NEW_C_HEAP_ARRAY(G1ConcurrentRefineThread*, num_max_threads, mtGC);
  76 
  77   for (uint i = 0; i < num_max_threads; i++) {
  78     if (UseDynamicNumberOfGCThreads && i != 0 /* Always start first thread. */) {
  79       _threads[i] = NULL;
  80     } else {
  81       _threads[i] = create_refinement_thread(i, true);
  82       if (_threads[i] == NULL) {
  83         vm_shutdown_during_initialization("Could not allocate refinement threads.");
  84         return JNI_ENOMEM;
  85       }
  86     }
  87   }
  88 
  89   if (num_max_threads > 0) {
  90     G1BarrierSet::dirty_card_queue_set().set_primary_refinement_thread(_threads[0]);
  91   }
  92 
  93   return JNI_OK;
  94 }
  95 
  96 void G1ConcurrentRefineThreadControl::maybe_activate_next(uint cur_worker_id) {
  97   assert(cur_worker_id < _num_max_threads,
  98          "Activating another thread from %u not allowed since there can be at most %u",
  99          cur_worker_id, _num_max_threads);
 100   if (cur_worker_id == (_num_max_threads - 1)) {
 101     // Already the last thread, there is no more thread to activate.
 102     return;
 103   }
 104 
 105   uint worker_id = cur_worker_id + 1;
 106   G1ConcurrentRefineThread* thread_to_activate = _threads[worker_id];
 107   if (thread_to_activate == NULL) {
 108     // Still need to create the thread...
 109     _threads[worker_id] = create_refinement_thread(worker_id, false);
 110     thread_to_activate = _threads[worker_id];
 111   }
 112   if (thread_to_activate != NULL) {
 113     thread_to_activate->activate();
 114   }
 115 }
 116 
 117 void G1ConcurrentRefineThreadControl::print_on(outputStream* st) const {
 118   for (uint i = 0; i < _num_max_threads; ++i) {
 119     if (_threads[i] != NULL) {
 120       _threads[i]->print_on(st);
 121       st->cr();
 122     }
 123   }
 124 }
 125 
 126 void G1ConcurrentRefineThreadControl::worker_threads_do(ThreadClosure* tc) {
 127   for (uint i = 0; i < _num_max_threads; i++) {
 128     if (_threads[i] != NULL) {
 129       tc->do_thread(_threads[i]);
 130     }
 131   }
 132 }
 133 
 134 void G1ConcurrentRefineThreadControl::stop() {
 135   for (uint i = 0; i < _num_max_threads; i++) {
 136     if (_threads[i] != NULL) {
 137       _threads[i]->stop();
 138     }
 139   }
 140 }
 141 
 142 // Arbitrary but large limits, to simplify some of the zone calculations.
 143 // The general idea is to allow expressions like
 144 //   MIN2(x OP y, max_XXX_zone)
 145 // without needing to check for overflow in "x OP y", because the
 146 // ranges for x and y have been restricted.
 147 STATIC_ASSERT(sizeof(LP64_ONLY(jint) NOT_LP64(jshort)) <= (sizeof(size_t)/2));
 148 const size_t max_yellow_zone = LP64_ONLY(max_jint) NOT_LP64(max_jshort);
 149 const size_t max_green_zone = max_yellow_zone / 2;
 150 const size_t max_red_zone = INT_MAX; // For dcqs.set_max_cards.
 151 STATIC_ASSERT(max_yellow_zone <= max_red_zone);
 152 
 153 // Range check assertions for green zone values.
 154 #define assert_zone_constraints_g(green)                        \
 155   do {                                                          \
 156     size_t azc_g_green = (green);                               \
 157     assert(azc_g_green <= max_green_zone,                       \
 158            "green exceeds max: " SIZE_FORMAT, azc_g_green);     \
 159   } while (0)
 160 
 161 // Range check assertions for green and yellow zone values.
 162 #define assert_zone_constraints_gy(green, yellow)                       \
 163   do {                                                                  \
 164     size_t azc_gy_green = (green);                                      \
 165     size_t azc_gy_yellow = (yellow);                                    \
 166     assert_zone_constraints_g(azc_gy_green);                            \
 167     assert(azc_gy_yellow <= max_yellow_zone,                            \
 168            "yellow exceeds max: " SIZE_FORMAT, azc_gy_yellow);          \
 169     assert(azc_gy_green <= azc_gy_yellow,                               \
 170            "green (" SIZE_FORMAT ") exceeds yellow (" SIZE_FORMAT ")",  \
 171            azc_gy_green, azc_gy_yellow);                                \
 172   } while (0)
 173 
 174 // Range check assertions for green, yellow, and red zone values.
 175 #define assert_zone_constraints_gyr(green, yellow, red)                 \
 176   do {                                                                  \
 177     size_t azc_gyr_green = (green);                                     \
 178     size_t azc_gyr_yellow = (yellow);                                   \
 179     size_t azc_gyr_red = (red);                                         \
 180     assert_zone_constraints_gy(azc_gyr_green, azc_gyr_yellow);          \
 181     assert(azc_gyr_red <= max_red_zone,                                 \
 182            "red exceeds max: " SIZE_FORMAT, azc_gyr_red);               \
 183     assert(azc_gyr_yellow <= azc_gyr_red,                               \
 184            "yellow (" SIZE_FORMAT ") exceeds red (" SIZE_FORMAT ")",    \
 185            azc_gyr_yellow, azc_gyr_red);                                \
 186   } while (0)
 187 
 188 // Logging tag sequence for refinement control updates.
 189 #define CTRL_TAGS gc, ergo, refine
 190 
 191 // For logging zone values, ensuring consistency of level and tags.
 192 #define LOG_ZONES(...) log_debug( CTRL_TAGS )(__VA_ARGS__)
 193 
 194 static size_t buffers_to_cards(size_t value) {
 195   return value * G1UpdateBufferSize;
 196 }
 197 
 198 // Package for pair of refinement thread activation and deactivation
 199 // thresholds.  The activation and deactivation levels are resp. the first
 200 // and second values of the pair.
 201 typedef Pair<size_t, size_t> Thresholds;
 202 inline size_t activation_level(const Thresholds& t) { return t.first; }
 203 inline size_t deactivation_level(const Thresholds& t) { return t.second; }
 204 
 205 static Thresholds calc_thresholds(size_t green_zone,
 206                                   size_t yellow_zone,
 207                                   uint worker_id) {
 208   double yellow_size = yellow_zone - green_zone;
 209   double step = yellow_size / G1ConcurrentRefine::max_num_threads();
 210   if (worker_id == 0) {
 211     // Potentially activate worker 0 more aggressively, to keep
 212     // available buffers near green_zone value.  When yellow_size is
 213     // large we don't want to allow a full step to accumulate before
 214     // doing any processing, as that might lead to significantly more
 215     // than green_zone buffers to be processed during pause.  So limit
 216     // to an extra half buffer per pause-time processing thread.
 217     step = MIN2(step, buffers_to_cards(ParallelGCThreads) / 2.0);
 218   }
 219   size_t activate_offset = static_cast<size_t>(ceil(step * (worker_id + 1)));
 220   size_t deactivate_offset = static_cast<size_t>(floor(step * worker_id));
 221   return Thresholds(green_zone + activate_offset,
 222                     green_zone + deactivate_offset);
 223 }
 224 
 225 G1ConcurrentRefine::G1ConcurrentRefine(size_t green_zone,
 226                                        size_t yellow_zone,
 227                                        size_t red_zone,
 228                                        size_t min_yellow_zone_size) :
 229   _thread_control(),
 230   _green_zone(green_zone),
 231   _yellow_zone(yellow_zone),
 232   _red_zone(red_zone),
 233   _min_yellow_zone_size(min_yellow_zone_size)
 234 {
 235   assert_zone_constraints_gyr(green_zone, yellow_zone, red_zone);
 236 }
 237 
 238 jint G1ConcurrentRefine::initialize() {
 239   return _thread_control.initialize(this, max_num_threads());
 240 }
 241 
 242 static size_t calc_min_yellow_zone_size() {
 243   size_t step = buffers_to_cards(G1ConcRefinementThresholdStep);
 244   uint n_workers = G1ConcurrentRefine::max_num_threads();
 245   if ((max_yellow_zone / step) < n_workers) {
 246     return max_yellow_zone;
 247   } else {
 248     return step * n_workers;
 249   }
 250 }
 251 
 252 static size_t calc_init_green_zone() {
 253   size_t green = G1ConcRefinementGreenZone;
 254   if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) {
 255     green = ParallelGCThreads;
 256   }
 257   green = buffers_to_cards(green);
 258   return MIN2(green, max_green_zone);
 259 }
 260 
 261 static size_t calc_init_yellow_zone(size_t green, size_t min_size) {
 262   size_t config = buffers_to_cards(G1ConcRefinementYellowZone);
 263   size_t size = 0;
 264   if (FLAG_IS_DEFAULT(G1ConcRefinementYellowZone)) {
 265     size = green * 2;
 266   } else if (green < config) {
 267     size = config - green;
 268   }
 269   size = MAX2(size, min_size);
 270   size = MIN2(size, max_yellow_zone);
 271   return MIN2(green + size, max_yellow_zone);
 272 }
 273 
 274 static size_t calc_init_red_zone(size_t green, size_t yellow) {
 275   size_t size = yellow - green;
 276   if (!FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) {
 277     size_t config = buffers_to_cards(G1ConcRefinementRedZone);
 278     if (yellow < config) {
 279       size = MAX2(size, config - yellow);
 280     }
 281   }
 282   return MIN2(yellow + size, max_red_zone);
 283 }
 284 
 285 G1ConcurrentRefine* G1ConcurrentRefine::create(jint* ecode) {
 286   size_t min_yellow_zone_size = calc_min_yellow_zone_size();
 287   size_t green_zone = calc_init_green_zone();
 288   size_t yellow_zone = calc_init_yellow_zone(green_zone, min_yellow_zone_size);
 289   size_t red_zone = calc_init_red_zone(green_zone, yellow_zone);
 290 
 291   LOG_ZONES("Initial Refinement Zones: "
 292             "green: " SIZE_FORMAT ", "
 293             "yellow: " SIZE_FORMAT ", "
 294             "red: " SIZE_FORMAT ", "
 295             "min yellow size: " SIZE_FORMAT,
 296             green_zone, yellow_zone, red_zone, min_yellow_zone_size);
 297 
 298   G1ConcurrentRefine* cr = new G1ConcurrentRefine(green_zone,
 299                                                   yellow_zone,
 300                                                   red_zone,
 301                                                   min_yellow_zone_size);
 302   *ecode = cr->initialize();
 303   return cr;
 304 }
 305 
 306 void G1ConcurrentRefine::stop() {
 307   _thread_control.stop();
 308 }
 309 
 310 G1ConcurrentRefine::~G1ConcurrentRefine() {
 311 }
 312 
 313 void G1ConcurrentRefine::threads_do(ThreadClosure *tc) {
 314   _thread_control.worker_threads_do(tc);
 315 }
 316 
 317 uint G1ConcurrentRefine::max_num_threads() {
 318   return G1ConcRefinementThreads;
 319 }
 320 
 321 void G1ConcurrentRefine::print_threads_on(outputStream* st) const {
 322   _thread_control.print_on(st);
 323 }
 324 
 325 static size_t calc_new_green_zone(size_t green,
 326                                   double logged_cards_scan_time,
 327                                   size_t processed_logged_cards,
 328                                   double goal_ms) {
 329   // Adjust green zone based on whether we're meeting the time goal.
 330   // Limit to max_green_zone.
 331   const double inc_k = 1.1, dec_k = 0.9;
 332   if (logged_cards_scan_time > goal_ms) {
 333     if (green > 0) {
 334       green = static_cast<size_t>(green * dec_k);
 335     }
 336   } else if (logged_cards_scan_time < goal_ms &&
 337              processed_logged_cards > green) {
 338     green = static_cast<size_t>(MAX2(green * inc_k, green + 1.0));
 339     green = MIN2(green, max_green_zone);
 340   }
 341   return green;
 342 }
 343 
 344 static size_t calc_new_yellow_zone(size_t green, size_t min_yellow_size) {
 345   size_t size = green * 2;
 346   size = MAX2(size, min_yellow_size);
 347   return MIN2(green + size, max_yellow_zone);
 348 }
 349 
 350 static size_t calc_new_red_zone(size_t green, size_t yellow) {
 351   return MIN2(yellow + (yellow - green), max_red_zone);
 352 }
 353 
 354 void G1ConcurrentRefine::update_zones(double logged_cards_scan_time,
 355                                       size_t processed_logged_cards,
 356                                       double goal_ms) {
 357   log_trace( CTRL_TAGS )("Updating Refinement Zones: "
 358                          "logged cards scan time: %.3fms, "
 359                          "processed cards: " SIZE_FORMAT ", "
 360                          "goal time: %.3fms",
 361                          logged_cards_scan_time,
 362                          processed_logged_cards,
 363                          goal_ms);
 364 
 365   _green_zone = calc_new_green_zone(_green_zone,
 366                                     logged_cards_scan_time,
 367                                     processed_logged_cards,
 368                                     goal_ms);
 369   _yellow_zone = calc_new_yellow_zone(_green_zone, _min_yellow_zone_size);
 370   _red_zone = calc_new_red_zone(_green_zone, _yellow_zone);
 371 
 372   assert_zone_constraints_gyr(_green_zone, _yellow_zone, _red_zone);
 373   LOG_ZONES("Updated Refinement Zones: "
 374             "green: " SIZE_FORMAT ", "
 375             "yellow: " SIZE_FORMAT ", "
 376             "red: " SIZE_FORMAT,
 377             _green_zone, _yellow_zone, _red_zone);
 378 }
 379 
 380 void G1ConcurrentRefine::adjust(double logged_cards_scan_time,
 381                                 size_t processed_logged_cards,
 382                                 double goal_ms) {
 383   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 384 
 385   if (G1UseAdaptiveConcRefinement) {
 386     update_zones(logged_cards_scan_time, processed_logged_cards, goal_ms);
 387 
 388     // Change the barrier params
 389     if (max_num_threads() == 0) {
 390       // Disable dcqs notification when there are no threads to notify.
 391       dcqs.set_process_cards_threshold(G1DirtyCardQueueSet::ProcessCardsThresholdNever);
 392     } else {
 393       // Worker 0 is the primary; wakeup is via dcqs notification.
 394       STATIC_ASSERT(max_yellow_zone <= INT_MAX);
 395       size_t activate = activation_threshold(0);
 396       dcqs.set_process_cards_threshold(activate);
 397     }
 398     dcqs.set_max_cards(red_zone());
 399   }
 400 
 401   size_t curr_queue_size = dcqs.num_cards();
 402   if ((dcqs.max_cards() > 0) &&
 403       (curr_queue_size >= yellow_zone())) {
 404     dcqs.set_max_cards_padding(curr_queue_size);
 405   } else {
 406     dcqs.set_max_cards_padding(0);
 407   }
 408   dcqs.notify_if_necessary();
 409 }
 410 
 411 G1ConcurrentRefine::RefinementStats G1ConcurrentRefine::total_refinement_stats() const {
 412   struct CollectData : public ThreadClosure {
 413     Tickspan _total_time;
 414     size_t _total_cards;
 415     CollectData() : _total_time(), _total_cards(0) {}
 416     virtual void do_thread(Thread* t) {
 417       G1ConcurrentRefineThread* crt = static_cast<G1ConcurrentRefineThread*>(t);
 418       _total_time += crt->total_refinement_time();
 419       _total_cards += crt->total_refined_cards();
 420     }
 421   } collector;
 422   // Cast away const so we can call non-modifying closure on threads.
 423   const_cast<G1ConcurrentRefine*>(this)->threads_do(&collector);
 424   return RefinementStats(collector._total_time, collector._total_cards);
 425 }
 426 
 427 size_t G1ConcurrentRefine::activation_threshold(uint worker_id) const {
 428   Thresholds thresholds = calc_thresholds(_green_zone, _yellow_zone, worker_id);
 429   return activation_level(thresholds);
 430 }
 431 
 432 size_t G1ConcurrentRefine::deactivation_threshold(uint worker_id) const {
 433   Thresholds thresholds = calc_thresholds(_green_zone, _yellow_zone, worker_id);
 434   return deactivation_level(thresholds);
 435 }
 436 
 437 uint G1ConcurrentRefine::worker_id_offset() {
 438   return G1DirtyCardQueueSet::num_par_ids();
 439 }
 440 
 441 void G1ConcurrentRefine::maybe_activate_more_threads(uint worker_id, size_t num_cur_cards) {
 442   if (num_cur_cards > activation_threshold(worker_id + 1)) {
 443     _thread_control.maybe_activate_next(worker_id);
 444   }
 445 }
 446 
 447 bool G1ConcurrentRefine::do_refinement_step(uint worker_id,
 448                                             size_t* total_refined_cards) {
 449   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 450 
 451   size_t curr_cards = dcqs.num_cards();
 452   // If the number of the cards falls down into the yellow zone,
 453   // that means that the transition period after the evacuation pause has ended.
 454   // Since the value written to the DCQS is the same for all threads, there is no
 455   // need to synchronize.
 456   if (dcqs.max_cards_padding() > 0 && curr_cards <= yellow_zone()) {
 457     dcqs.set_max_cards_padding(0);
 458   }
 459 
 460   maybe_activate_more_threads(worker_id, curr_cards);
 461 
 462   // Process the next buffer, if there are enough left.
 463   return dcqs.refine_completed_buffer_concurrently(worker_id + worker_id_offset(),
 464                                                    deactivation_threshold(worker_id),
 465                                                    total_refined_cards);
 466 }