< prev index next >

src/hotspot/share/gc/g1/g1Policy.cpp

Print this page
rev 59792 : imported patch 8244603-sjohanss-review


  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectionSetCandidates.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1ConcurrentRefine.hpp"
  34 #include "gc/g1/g1ConcurrentRefineStats.hpp"
  35 #include "gc/g1/g1CollectionSetChooser.hpp"
  36 #include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
  37 #include "gc/g1/g1HotCardCache.hpp"
  38 #include "gc/g1/g1IHOPControl.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Policy.hpp"
  41 #include "gc/g1/g1SurvivorRegions.hpp"
  42 #include "gc/g1/g1YoungGenSizer.hpp"
  43 #include "gc/g1/heapRegion.inline.hpp"
  44 #include "gc/g1/heapRegionRemSet.hpp"
  45 #include "gc/shared/concurrentGCBreakpoints.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "logging/log.hpp"
  48 #include "runtime/arguments.hpp"

  49 #include "runtime/java.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "utilities/debug.hpp"
  52 #include "utilities/growableArray.hpp"
  53 #include "utilities/pair.hpp"
  54 
  55 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  56   _predictor(G1ConfidencePercent / 100.0),
  57   _analytics(new G1Analytics(&_predictor)),
  58   _remset_tracker(),
  59   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  60   _ihop_control(create_ihop_control(&_predictor)),
  61   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  62   _full_collection_start_sec(0.0),
  63   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC),

  64   _young_list_target_length(0),
  65   _young_list_fixed_length(0),
  66   _young_list_max_length(0),
  67   _eden_surv_rate_group(new G1SurvRateGroup()),
  68   _survivor_surv_rate_group(new G1SurvRateGroup()),
  69   _reserve_factor((double) G1ReservePercent / 100.0),
  70   _reserve_regions(0),
  71   _young_gen_sizer(G1YoungGenSizer::create_gen_sizer()),
  72   _free_regions_at_end_of_collection(0),
  73   _rs_length(0),
  74   _rs_length_prediction(0),
  75   _pending_cards_at_gc_start(0),
  76   _old_gen_alloc_tracker(),
  77   _initial_mark_to_mixed(),
  78   _collection_set(NULL),
  79   _g1h(NULL),
  80   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
  81   _mark_remark_start_sec(0),
  82   _mark_cleanup_start_sec(0),
  83   _tenuring_threshold(MaxTenuringThreshold),
  84   _max_survivor_regions(0),
  85   _survivors_age_table(true)


  90   delete _ihop_control;
  91   delete _young_gen_sizer;
  92 }
  93 
  94 G1Policy* G1Policy::create_policy(STWGCTimer* gc_timer_stw) {
  95   if (G1Arguments::is_heterogeneous_heap()) {
  96     return new G1HeterogeneousHeapPolicy(gc_timer_stw);
  97   } else {
  98     return new G1Policy(gc_timer_stw);
  99   }
 100 }
 101 
 102 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
 103 
 104 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
 105   _g1h = g1h;
 106   _collection_set = collection_set;
 107 
 108   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 109 
 110   if (!use_adaptive_young_list_length()) {
 111     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 112   }
 113   _young_gen_sizer->adjust_max_new_size(_g1h->max_expandable_regions());
 114 
 115   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 116 
 117   update_young_list_max_and_target_length();
 118   // We may immediately start allocating regions and placing them on the
 119   // collection set list. Initialize the per-collection set info
 120   _collection_set->start_incremental_building();
 121 }
 122 
 123 void G1Policy::note_gc_start() {
 124   phase_times()->note_gc_start();
 125 }
 126 
 127 class G1YoungLengthPredictor {
 128   const double _base_time_ms;
 129   const double _base_free_regions;
 130   const double _target_pause_time_ms;
 131   const G1Policy* const _policy;
 132 
 133  public:
 134   G1YoungLengthPredictor(double base_time_ms,
 135                          double base_free_regions,
 136                          double target_pause_time_ms,
 137                          const G1Policy* policy) :


 172       return false;
 173     }
 174 
 175     // success!
 176     return true;
 177   }
 178 };
 179 
 180 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 181   // re-calculate the necessary reserve
 182   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 183   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 184   // smaller than 1.0) we'll get 1.
 185   _reserve_regions = (uint) ceil(reserve_regions_d);
 186 
 187   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 188 
 189   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 190 }
 191 
 192 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {



 193   uint desired_min_length = 0;
 194   if (use_adaptive_young_list_length()) {
 195     if (_analytics->num_alloc_rate_ms() > 3) {
 196       double now_sec = os::elapsedTime();
 197       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 198       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 199       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 200     } else {
 201       // otherwise we don't have enough info to make the prediction
 202     }
 203   }
 204   desired_min_length += base_min_length;
 205   // make sure we don't go below any user-defined minimum bound
 206   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 207 }
 208 
 209 uint G1Policy::calculate_young_list_desired_max_length() const {
 210   // Here, we might want to also take into account any additional
 211   // constraints (i.e., user-defined minimum bound). Currently, we
 212   // effectively don't set this bound.
 213   return _young_gen_sizer->max_desired_young_length();
 214 }
 215 
 216 uint G1Policy::update_young_list_max_and_target_length() {
 217   return update_young_list_max_and_target_length(_analytics->predict_rs_length());
 218 }
 219 
 220 uint G1Policy::update_young_list_max_and_target_length(size_t rs_length) {
 221   uint unbounded_target_length = update_young_list_target_length(rs_length);
 222   update_max_gc_locker_expansion();
 223   return unbounded_target_length;
 224 }
 225 
 226 uint G1Policy::update_young_list_target_length(size_t rs_length) {
 227   YoungTargetLengths young_lengths = young_list_target_lengths(rs_length);
 228   _young_list_target_length = young_lengths.first;
 229 
 230   return young_lengths.second;
 231 }
 232 
 233 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_length) const {
 234   YoungTargetLengths result;


































 235 
 236   // Calculate the absolute and desired min bounds first.
 237 
 238   // This is how many young regions we already have (currently: the survivors).
 239   const uint base_min_length = _g1h->survivor_regions_count();
 240   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 241   // This is the absolute minimum young length. Ensure that we
 242   // will at least have one eden region available for allocation.
 243   uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
 244   // If we shrank the young list target it should not shrink below the current size.
 245   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 246   // Calculate the absolute and desired max bounds.
 247 
 248   uint desired_max_length = calculate_young_list_desired_max_length();





 249 
 250   uint young_list_target_length = 0;
 251   if (use_adaptive_young_list_length()) {
 252     if (collector_state()->in_young_only_phase()) {
 253       young_list_target_length =
 254                         calculate_young_list_target_length(rs_length,
 255                                                            base_min_length,
 256                                                            desired_min_length,
 257                                                            desired_max_length);




 258     } else {
 259       // Don't calculate anything and let the code below bound it to
 260       // the desired_min_length, i.e., do the next GC as soon as
 261       // possible to maximize how many old regions we can add to it.
 262     }














 263   } else {
 264     // The user asked for a fixed young gen so we'll fix the young gen
 265     // whether the next GC is young or mixed.
 266     young_list_target_length = _young_list_fixed_length;
 267   }


 268 
 269   result.second = young_list_target_length;
 270 
 271   // We will try our best not to "eat" into the reserve.
 272   uint absolute_max_length = 0;
 273   if (_free_regions_at_end_of_collection > _reserve_regions) {
 274     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;

























































































 275   }
 276   if (desired_max_length > absolute_max_length) {
 277     desired_max_length = absolute_max_length;
 278   }
 279 
 280   // Make sure we don't go over the desired max length, nor under the
 281   // desired min length. In case they clash, desired_min_length wins
 282   // which is why that test is second.
 283   if (young_list_target_length > desired_max_length) {
 284     young_list_target_length = desired_max_length;
 285   }
 286   if (young_list_target_length < desired_min_length) {
 287     young_list_target_length = desired_min_length;
 288   }
 289 
 290   assert(young_list_target_length > base_min_length,
 291          "we should be able to allocate at least one eden region");
 292   assert(young_list_target_length >= absolute_min_length, "post-condition");
 293 
 294   result.first = young_list_target_length;
 295   return result;





 296 }
 297 
 298 uint G1Policy::calculate_young_list_target_length(size_t rs_length,
 299                                                   uint base_min_length,
 300                                                   uint desired_min_length,
 301                                                   uint desired_max_length) const {
 302   assert(use_adaptive_young_list_length(), "pre-condition");
 303   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
 304 
 305   // In case some edge-condition makes the desired max length too small...
 306   if (desired_max_length <= desired_min_length) {
 307     return desired_min_length;
 308   }
 309 
 310   // We'll adjust min_young_length and max_young_length not to include
 311   // the already allocated young regions (i.e., so they reflect the
 312   // min and max eden regions we'll allocate). The base_min_length
 313   // will be reflected in the predictions by the
 314   // survivor_regions_evac_time prediction.
 315   assert(desired_min_length > base_min_length, "invariant");
 316   uint min_young_length = desired_min_length - base_min_length;
 317   assert(desired_max_length > base_min_length, "invariant");
 318   uint max_young_length = desired_max_length - base_min_length;
 319 
 320   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 321   const size_t pending_cards = _analytics->predict_pending_cards();
 322   const double base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
 323   const uint available_free_regions = _free_regions_at_end_of_collection;
 324   const uint base_free_regions =
 325     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 326 
 327   // Here, we will make sure that the shortest young length that
 328   // makes sense fits within the target pause time.
 329 
 330   G1YoungLengthPredictor p(base_time_ms,
 331                            base_free_regions,
 332                            target_pause_time_ms,
 333                            this);
 334   if (p.will_fit(min_young_length)) {
 335     // The shortest young length will fit into the target pause time;
 336     // we'll now check whether the absolute maximum number of young
 337     // regions will fit in the target pause time. If not, we'll do
 338     // a binary search between min_young_length and max_young_length.
 339     if (p.will_fit(max_young_length)) {
 340       // The maximum young length will fit into the target pause time.
 341       // We are done so set min young length to the maximum length (as
 342       // the result is assumed to be returned in min_young_length).
 343       min_young_length = max_young_length;
 344     } else {
 345       // The maximum possible number of young regions will not fit within
 346       // the target pause time so we'll search for the optimal
 347       // length. The loop invariants are:
 348       //
 349       // min_young_length < max_young_length
 350       // min_young_length is known to fit into the target pause time
 351       // max_young_length is known not to fit into the target pause time
 352       //
 353       // Going into the loop we know the above hold as we've just
 354       // checked them. Every time around the loop we check whether
 355       // the middle value between min_young_length and
 356       // max_young_length fits into the target pause time. If it
 357       // does, it becomes the new min. If it doesn't, it becomes
 358       // the new max. This way we maintain the loop invariants.
 359 
 360       assert(min_young_length < max_young_length, "invariant");
 361       uint diff = (max_young_length - min_young_length) / 2;
 362       while (diff > 0) {
 363         uint young_length = min_young_length + diff;
 364         if (p.will_fit(young_length)) {
 365           min_young_length = young_length;
 366         } else {
 367           max_young_length = young_length;
 368         }
 369         assert(min_young_length <  max_young_length, "invariant");
 370         diff = (max_young_length - min_young_length) / 2;
 371       }
 372       // The results is min_young_length which, according to the
 373       // loop invariants, should fit within the target pause time.
 374 
 375       // These are the post-conditions of the binary search above:
 376       assert(min_young_length < max_young_length,
 377              "otherwise we should have discovered that max_young_length "
 378              "fits into the pause target and not done the binary search");
 379       assert(p.will_fit(min_young_length),
 380              "min_young_length, the result of the binary search, should "
 381              "fit into the pause target");
 382       assert(!p.will_fit(min_young_length + 1),
 383              "min_young_length, the result of the binary search, should be "
 384              "optimal, so no larger length should fit into the pause target");
 385     }
 386   } else {
 387     // Even the minimum length doesn't fit into the pause time
 388     // target, return it as the result nevertheless.
 389   }
 390   return base_min_length + min_young_length;



















 391 }
 392 
 393 double G1Policy::predict_survivor_regions_evac_time() const {
 394   double survivor_regions_evac_time = 0.0;
 395   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 396   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 397        it != survivor_regions->end();
 398        ++it) {
 399     survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
 400   }
 401   return survivor_regions_evac_time;
 402 }
 403 
 404 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
 405   guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
 406 
 407   if (rs_length > _rs_length_prediction) {
 408     // add 10% to avoid having to recalculate often
 409     size_t rs_length_prediction = rs_length * 1100 / 1000;
 410     update_rs_length_prediction(rs_length_prediction);
 411 
 412     update_young_list_max_and_target_length(rs_length_prediction);
 413   }
 414 }
 415 
 416 void G1Policy::update_rs_length_prediction() {
 417   update_rs_length_prediction(_analytics->predict_rs_length());
 418 }
 419 
 420 void G1Policy::update_rs_length_prediction(size_t prediction) {
 421   if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
 422     _rs_length_prediction = prediction;
 423   }
 424 }
 425 
 426 void G1Policy::record_full_collection_start() {
 427   _full_collection_start_sec = os::elapsedTime();
 428   // Release the future to-space so that it is available for compaction into.
 429   collector_state()->set_in_young_only_phase(false);
 430   collector_state()->set_in_full_gc(true);
 431   _collection_set->clear_candidates();
 432   _pending_cards_at_gc_start = 0;


 440   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 441 
 442   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 443 
 444   collector_state()->set_in_full_gc(false);
 445 
 446   // "Nuke" the heuristics that control the young/mixed GC
 447   // transitions and make sure we start with young GCs after the Full GC.
 448   collector_state()->set_in_young_only_phase(true);
 449   collector_state()->set_in_young_gc_before_mixed(false);
 450   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 451   collector_state()->set_in_initial_mark_gc(false);
 452   collector_state()->set_mark_or_rebuild_in_progress(false);
 453   collector_state()->set_clearing_next_bitmap(false);
 454 
 455   _eden_surv_rate_group->start_adding_regions();
 456   // also call this on any additional surv rate groups
 457 
 458   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 459   _survivor_surv_rate_group->reset();
 460   update_young_list_max_and_target_length();
 461   update_rs_length_prediction();
 462 
 463   _old_gen_alloc_tracker.reset_after_full_gc();
 464 
 465   record_pause(FullGC, _full_collection_start_sec, end_sec);
 466 }
 467 
 468 static void log_refinement_stats(const char* kind, const G1ConcurrentRefineStats& stats) {
 469   log_debug(gc, refine, stats)
 470            ("%s refinement: %.2fms, refined: " SIZE_FORMAT
 471             ", precleaned: " SIZE_FORMAT ", dirtied: " SIZE_FORMAT,
 472             kind,
 473             stats.refinement_time().seconds() * MILLIUNITS,
 474             stats.refined_cards(),
 475             stats.precleaned_cards(),
 476             stats.dirtied_cards());
 477 }
 478 
 479 void G1Policy::record_concurrent_refinement_stats() {
 480   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();


 770     // During mixed gc we do not use them for young gen sizing.
 771     if (this_pause_was_young_only) {
 772       _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
 773       _analytics->report_rs_length((double) _rs_length);
 774     }
 775   }
 776 
 777   assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
 778          "If the last pause has been an initial mark, we should not have been in the marking window");
 779   if (this_pause_included_initial_mark) {
 780     collector_state()->set_mark_or_rebuild_in_progress(true);
 781   }
 782 
 783   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 784 
 785   update_rs_length_prediction();
 786 
 787   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
 788   // that in this case we are not running in a "normal" operating mode.
 789   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
 790     // IHOP control wants to know the expected young gen length if it were not
 791     // restrained by the heap reserve. Using the actual length would make the
 792     // prediction too small and the limit the young gen every time we get to the
 793     // predicted target occupancy.
 794     size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 795 
 796     _old_gen_alloc_tracker.reset_after_young_gc(app_time_ms / 1000.0);
 797     update_ihop_prediction(_old_gen_alloc_tracker.last_cycle_duration(),
 798                            _old_gen_alloc_tracker.last_cycle_old_bytes(),
 799                            last_unrestrained_young_length * HeapRegion::GrainBytes,
 800                            this_pause_was_young_only);
 801 
 802     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 803   } else {
 804     // Any garbage collection triggered as periodic collection resets the time-to-mixed
 805     // measurement. Periodic collection typically means that the application is "inactive", i.e.
 806     // the marking threads may have received an uncharacterisic amount of cpu time
 807     // for completing the marking, i.e. are faster than expected.
 808     // This skews the predicted marking length towards smaller values which might cause
 809     // the mark start being too late.
 810     _initial_mark_to_mixed.reset();
 811   }
 812 
 813   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 814   double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 815 
 816   if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
 817     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 818                                 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
 819                                 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);


 829                               scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
 830 
 831   _g1h->concurrent_refine()->adjust(logged_cards_time,
 832                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
 833                                     scan_logged_cards_time_goal_ms);
 834 }
 835 
 836 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 837   if (G1UseAdaptiveIHOP) {
 838     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 839                                      predictor,
 840                                      G1ReservePercent,
 841                                      G1HeapWastePercent);
 842   } else {
 843     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 844   }
 845 }
 846 
 847 void G1Policy::update_ihop_prediction(double mutator_time_s,
 848                                       size_t mutator_alloc_bytes,
 849                                       size_t young_gen_size,
 850                                       bool this_gc_was_young_only) {
 851   // Always try to update IHOP prediction. Even evacuation failures give information
 852   // about e.g. whether to start IHOP earlier next time.
 853 
 854   // Avoid using really small application times that might create samples with
 855   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 856   double const min_valid_time = 1e-6;
 857 
 858   bool report = false;
 859 
 860   double marking_to_mixed_time = -1.0;
 861   if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
 862     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 863     assert(marking_to_mixed_time > 0.0,
 864            "Initial mark to mixed time must be larger than zero but is %.3f",
 865            marking_to_mixed_time);
 866     if (marking_to_mixed_time > min_valid_time) {
 867       _ihop_control->update_marking_length(marking_to_mixed_time);
 868       report = true;
 869     }
 870   }
 871 
 872   // As an approximation for the young gc promotion rates during marking we use
 873   // all of them. In many applications there are only a few if any young gcs during
 874   // marking, which makes any prediction useless. This increases the accuracy of the
 875   // prediction.
 876   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {





 877     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 878     report = true;
 879   }
 880 
 881   if (report) {
 882     report_ihop_statistics();
 883   }
 884 }
 885 
 886 void G1Policy::report_ihop_statistics() {
 887   _ihop_control->print();
 888 }
 889 
 890 void G1Policy::print_phases() {
 891   phase_times()->print();
 892 }
 893 
 894 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
 895                                               size_t rs_length) const {
 896   size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());


 963 
 964 bool G1Policy::can_expand_young_list() const {
 965   uint young_list_length = _g1h->young_regions_count();
 966   uint young_list_max_length = _young_list_max_length;
 967   return young_list_length < young_list_max_length;
 968 }
 969 
 970 bool G1Policy::use_adaptive_young_list_length() const {
 971   return _young_gen_sizer->use_adaptive_young_list_length();
 972 }
 973 
 974 size_t G1Policy::desired_survivor_size(uint max_regions) const {
 975   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
 976   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 977 }
 978 
 979 void G1Policy::print_age_table() {
 980   _survivors_age_table.print_age_table(_tenuring_threshold);
 981 }
 982 
 983 void G1Policy::update_max_gc_locker_expansion() {
 984   uint expansion_region_num = 0;
 985   if (GCLockerEdenExpansionPercent > 0) {
 986     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 987     double expansion_region_num_d = perc * (double) _young_list_target_length;
 988     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 989     // less than 1.0) we'll get 1.
 990     expansion_region_num = (uint) ceil(expansion_region_num_d);
 991   } else {
 992     assert(expansion_region_num == 0, "sanity");
 993   }
 994   _young_list_max_length = _young_list_target_length + expansion_region_num;
 995   assert(_young_list_target_length <= _young_list_max_length, "post-condition");

 996 }
 997 
 998 // Calculates survivor space parameters.
 999 void G1Policy::update_survivors_policy() {
1000   double max_survivor_regions_d =
1001                  (double) _young_list_target_length / (double) SurvivorRatio;
1002 
1003   // Calculate desired survivor size based on desired max survivor regions (unconstrained
1004   // by remaining heap). Otherwise we may cause undesired promotions as we are
1005   // already getting close to end of the heap, impacting performance even more.
1006   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1007   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1008 
1009   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1010   if (UsePerfData) {
1011     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1012     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1013   }
1014   // The real maximum survivor size is bounded by the number of regions that can
1015   // be allocated into.


1184       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1185         _initial_mark_to_mixed.record_initial_mark_end(end);
1186       }
1187       break;
1188     case MixedGC:
1189       _initial_mark_to_mixed.record_mixed_gc_start(start);
1190       break;
1191     default:
1192       ShouldNotReachHere();
1193   }
1194 }
1195 
1196 void G1Policy::abort_time_to_mixed_tracking() {
1197   _initial_mark_to_mixed.reset();
1198 }
1199 
1200 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1201                                        const char* false_action_str) const {
1202   G1CollectionSetCandidates* candidates = _collection_set->candidates();
1203 
1204   if (candidates->is_empty()) {

1205     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);

1206     return false;
1207   }
1208 
1209   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1210   size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1211   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1212   double threshold = (double) G1HeapWastePercent;
1213   if (reclaimable_percent <= threshold) {

1214     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1215                         false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);

1216     return false;
1217   }

1218   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1219                       true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);

1220   return true;
1221 }
1222 
1223 uint G1Policy::calc_min_old_cset_length() const {
1224   // The min old CSet region bound is based on the maximum desired
1225   // number of mixed GCs after a cycle. I.e., even if some old regions
1226   // look expensive, we should add them to the CSet anyway to make
1227   // sure we go through the available old regions in no more than the
1228   // maximum desired number of mixed GCs.
1229   //
1230   // The calculation is based on the number of marked regions we added
1231   // to the CSet candidates in the first place, not how many remain, so
1232   // that the result is the same during all mixed GCs that follow a cycle.
1233 
1234   const size_t region_num = _collection_set->candidates()->num_regions();
1235   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1236   size_t result = region_num / gc_num;
1237   // emulate ceiling
1238   if (result * gc_num < region_num) {
1239     result += 1;




  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectionSetCandidates.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1ConcurrentRefine.hpp"
  34 #include "gc/g1/g1ConcurrentRefineStats.hpp"
  35 #include "gc/g1/g1CollectionSetChooser.hpp"
  36 #include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
  37 #include "gc/g1/g1HotCardCache.hpp"
  38 #include "gc/g1/g1IHOPControl.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Policy.hpp"
  41 #include "gc/g1/g1SurvivorRegions.hpp"
  42 #include "gc/g1/g1YoungGenSizer.hpp"
  43 #include "gc/g1/heapRegion.inline.hpp"
  44 #include "gc/g1/heapRegionRemSet.hpp"
  45 #include "gc/shared/concurrentGCBreakpoints.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "logging/log.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "utilities/debug.hpp"
  53 #include "utilities/growableArray.hpp"
  54 #include "utilities/pair.hpp"
  55 
  56 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  57   _predictor(G1ConfidencePercent / 100.0),
  58   _analytics(new G1Analytics(&_predictor)),
  59   _remset_tracker(),
  60   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  61   _ihop_control(create_ihop_control(&_predictor)),
  62   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  63   _full_collection_start_sec(0.0),
  64   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC),
  65   _young_list_desired_length(0),
  66   _young_list_target_length(0),

  67   _young_list_max_length(0),
  68   _eden_surv_rate_group(new G1SurvRateGroup()),
  69   _survivor_surv_rate_group(new G1SurvRateGroup()),
  70   _reserve_factor((double) G1ReservePercent / 100.0),
  71   _reserve_regions(0),
  72   _young_gen_sizer(G1YoungGenSizer::create_gen_sizer()),
  73   _free_regions_at_end_of_collection(0),
  74   _rs_length(0),
  75   _rs_length_prediction(0),
  76   _pending_cards_at_gc_start(0),
  77   _old_gen_alloc_tracker(),
  78   _initial_mark_to_mixed(),
  79   _collection_set(NULL),
  80   _g1h(NULL),
  81   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
  82   _mark_remark_start_sec(0),
  83   _mark_cleanup_start_sec(0),
  84   _tenuring_threshold(MaxTenuringThreshold),
  85   _max_survivor_regions(0),
  86   _survivors_age_table(true)


  91   delete _ihop_control;
  92   delete _young_gen_sizer;
  93 }
  94 
  95 G1Policy* G1Policy::create_policy(STWGCTimer* gc_timer_stw) {
  96   if (G1Arguments::is_heterogeneous_heap()) {
  97     return new G1HeterogeneousHeapPolicy(gc_timer_stw);
  98   } else {
  99     return new G1Policy(gc_timer_stw);
 100   }
 101 }
 102 
 103 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
 104 
 105 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
 106   _g1h = g1h;
 107   _collection_set = collection_set;
 108 
 109   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 110 



 111   _young_gen_sizer->adjust_max_new_size(_g1h->max_expandable_regions());
 112 
 113   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 114 
 115   update_young_length_bounds();
 116   // We may immediately start allocating regions and placing them on the
 117   // collection set list. Initialize the per-collection set info
 118   _collection_set->start_incremental_building();
 119 }
 120 
 121 void G1Policy::note_gc_start() {
 122   phase_times()->note_gc_start();
 123 }
 124 
 125 class G1YoungLengthPredictor {
 126   const double _base_time_ms;
 127   const double _base_free_regions;
 128   const double _target_pause_time_ms;
 129   const G1Policy* const _policy;
 130 
 131  public:
 132   G1YoungLengthPredictor(double base_time_ms,
 133                          double base_free_regions,
 134                          double target_pause_time_ms,
 135                          const G1Policy* policy) :


 170       return false;
 171     }
 172 
 173     // success!
 174     return true;
 175   }
 176 };
 177 
 178 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 179   // re-calculate the necessary reserve
 180   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 181   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 182   // smaller than 1.0) we'll get 1.
 183   _reserve_regions = (uint) ceil(reserve_regions_d);
 184 
 185   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 186 
 187   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 188 }
 189 
 190 uint G1Policy::calculate_desired_eden_length_by_mmu() const {
 191   // One could argue that any useful eden length to keep any MMU would be 1, but
 192   // in theory this is possible. Other constraints enforce a minimum eden of 1
 193   // anyway.
 194   uint desired_min_length = 0;
 195   if (use_adaptive_young_list_length()) {

 196     double now_sec = os::elapsedTime();
 197     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 198     double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 199     desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);



 200   }
 201   return desired_min_length;



















 202 }
 203 
 204 void G1Policy::update_young_length_bounds() {
 205   update_young_length_bounds(_analytics->predict_rs_length());



 206 }
 207 
 208 void G1Policy::update_young_length_bounds(size_t rs_length) {
 209   _young_list_desired_length = calculate_young_desired_length(rs_length);
 210   _young_list_target_length = calculate_young_target_length(_young_list_desired_length);
 211   _young_list_max_length = calculate_young_max_length(_young_list_target_length);
 212 
 213   log_debug(gc,ergo,heap)("Young list lengths: desired: %u, target: %u, max: %u",
 214                           _young_list_desired_length,
 215                           _young_list_target_length,
 216                           _young_list_max_length);
 217 }
 218 
 219 // Calculates desired young gen length. It is calculated from:
 220 //
 221 // - sizer min/max bounds on young gen
 222 // - pause time goal for whole young gen evacuation
 223 // - MMU goal influencing eden to make GCs spaced apart.
 224 // - a minimum one eden region length.
 225 //
 226 // We may enter with already allocated eden and survivor regions, that may be
 227 // higher than the maximum, or the above goals may result in a desired value
 228 // smaller than are already allocated.
 229 // The main reason is revising young length, with our without the GCLocker being
 230 // active.
 231 //
 232 uint G1Policy::calculate_young_desired_length(size_t rs_length) const {
 233   uint min_young_length_by_sizer = _young_gen_sizer->min_desired_young_length();
 234   uint max_young_length_by_sizer = _young_gen_sizer->max_desired_young_length();
 235 
 236   assert(min_young_length_by_sizer >= 1, "invariant");
 237   assert(max_young_length_by_sizer >= min_young_length_by_sizer, "invariant");
 238 
 239   // Absolute minimum eden length.
 240   // Enforcing a minimum eden length helps at startup when the predictors are not
 241   // yet trained on the application to avoid unnecessary (but very short) full gcs
 242   // on very small (initial) heaps.
 243   uint const MinDesiredEdenLength = 1;
 244 
 245   // Calculate the absolute and desired min bounds first.
 246 
 247   // This is how many survivor regions we already have.
 248   const uint survivor_length = _g1h->survivor_regions_count();
 249   // Size of the already allocated young gen.
 250   const uint allocated_young_length = _g1h->young_regions_count();
 251   // This is the absolute minimum young length that we can return. Ensure that we
 252   // don't go below any user-defined minimum bound; but we might have already
 253   // allocated more than that for reasons. In this case, use that.
 254   uint absolute_min_young_length = MAX2(allocated_young_length, min_young_length_by_sizer);
 255   // Calculate the absolute max bounds. After evac failure or when revising the
 256   // young length we might have exceeded absolute min length or absolute_max_length,
 257   // so adjust the result accordingly.
 258   uint absolute_max_young_length = MAX2(max_young_length_by_sizer, absolute_min_young_length);
 259 
 260   uint desired_eden_length_by_mmu = 0;
 261   uint desired_eden_length_by_pause = 0;
 262   uint desired_eden_length_before_mixed = 0;
 263 
 264   uint desired_young_length = 0;
 265   if (use_adaptive_young_list_length()) {
 266     desired_eden_length_by_mmu = calculate_desired_eden_length_by_mmu();
 267 
 268     const size_t pending_cards = _analytics->predict_pending_cards();
 269     double survivor_base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
 270 
 271     if (!next_gc_should_be_mixed(NULL, NULL)) {
 272       desired_eden_length_by_pause =
 273         calculate_desired_eden_length_by_pause(survivor_base_time_ms,
 274                                                absolute_min_young_length - survivor_length,
 275                                                absolute_max_young_length - survivor_length);
 276     } else {
 277       desired_eden_length_before_mixed =
 278         calculate_desired_eden_length_before_mixed(survivor_base_time_ms,
 279                                                    absolute_min_young_length - survivor_length,
 280                                                    absolute_max_young_length - survivor_length);
 281     }
 282     // Above either sets desired_eden_length_by_pause or desired_eden_length_before_mixed,
 283     // the other is zero. Use the one that has been set below.
 284     uint desired_eden_length = MAX2(desired_eden_length_by_pause,
 285                                     desired_eden_length_before_mixed);
 286 
 287     // Finally incorporate MMU concerns; assume that it overrides the pause time
 288     // goal, as the default value has been chosen to effectively disable it.
 289     // Also request at least one eden region, see above for reasons.
 290     desired_eden_length = MAX3(desired_eden_length,
 291                                desired_eden_length_by_mmu,
 292                                MinDesiredEdenLength);
 293 
 294     desired_young_length = desired_eden_length + survivor_length;
 295   } else {
 296     // The user asked for a fixed young gen so we'll fix the young gen
 297     // whether the next GC is young or mixed.
 298     desired_young_length = min_young_length_by_sizer;
 299   }
 300   // Clamp to absolute min/max after we determined desired lengths.
 301   desired_young_length = clamp(desired_young_length, absolute_min_young_length, absolute_max_young_length);
 302 
 303   log_trace(gc, ergo, heap)("Young desired length %u "
 304                             "survivor length %u "
 305                             "allocated young length %u "
 306                             "absolute min young length %u "
 307                             "absolute max young length %u "
 308                             "desired eden length by mmu %u "
 309                             "desired eden length by pause %u "
 310                             "desired eden length before mixed %u"
 311                             "desired eden length by default %u",
 312                             desired_young_length, survivor_length,
 313                             allocated_young_length, absolute_min_young_length,
 314                             absolute_max_young_length, desired_eden_length_by_mmu,
 315                             desired_eden_length_by_pause,
 316                             desired_eden_length_before_mixed,
 317                             MinDesiredEdenLength);
 318 
 319   assert(desired_young_length >= allocated_young_length, "must be");
 320   return desired_young_length;
 321 }
 322 
 323 // Limit the desired (wished) young length by current free regions. If the request
 324 // can be satisfied without using up reserve regions, do so, otherwise eat into
 325 // the reserve, giving away at most what the heap sizer allows.
 326 uint G1Policy::calculate_young_target_length(uint desired_young_length) const {
 327   uint allocated_young_length = _g1h->young_regions_count();
 328 
 329   uint receiving_additional_eden;
 330   if (allocated_young_length >= desired_young_length) {
 331     // Already used up all we actually want (may happen as G1 revises the
 332     // young list length concurrently, or caused by gclocker). Do not allow more,
 333     // potentially resulting in GC.
 334     receiving_additional_eden = 0;
 335     log_trace(gc, ergo, heap)("Young target length: Already used up desired young %u allocated %u",
 336                               desired_young_length,
 337                               allocated_young_length);
 338   } else {
 339     // Now look at how many free regions are there currently, and the heap reserve.
 340     // We will try our best not to "eat" into the reserve as long as we can. If we
 341     // do, we at most eat the sizer's minimum regions into the reserve or half the
 342     // reserve rounded up (if possible; this is an arbitrary value).
 343 
 344     uint max_to_eat_into_reserve = MIN2(_young_gen_sizer->min_desired_young_length(),
 345                                         (_reserve_regions + 1) / 2);
 346 
 347     log_trace(gc, ergo, heap)("Young target length: Common "
 348                               "free regions at end of collection %u "
 349                               "desired young length %u "
 350                               "reserve region %u "
 351                               "max to eat into reserve %u",
 352                               _free_regions_at_end_of_collection,
 353                               desired_young_length,
 354                               _reserve_regions,
 355                               max_to_eat_into_reserve);
 356 
 357     if (_free_regions_at_end_of_collection <= _reserve_regions) {
 358       // Fully eat (or already eating) into the reserve, hand back at most absolute_min_length regions.
 359       uint receiving_young = MIN3(_free_regions_at_end_of_collection,
 360                                   desired_young_length,
 361                                   max_to_eat_into_reserve);
 362       // We could already have allocated more regions than what we could get
 363       // above.
 364       receiving_additional_eden = allocated_young_length < receiving_young ?
 365                                   receiving_young - allocated_young_length : 0;
 366 
 367       log_trace(gc, ergo, heap)("Young target length: Fully eat into reserve "
 368                                 "receiving young %u receiving additional eden %u",
 369                                 receiving_young,
 370                                 receiving_additional_eden);
 371     } else if (_free_regions_at_end_of_collection < (desired_young_length + _reserve_regions)) {
 372       // Partially eat into the reserve, at most max_to_eat_into_reserve regions.
 373       uint free_outside_reserve = _free_regions_at_end_of_collection - _reserve_regions;
 374       assert(free_outside_reserve < desired_young_length,
 375              "must be %u %u",
 376              free_outside_reserve, desired_young_length);
 377 
 378       uint receiving_within_reserve = MIN2(desired_young_length - free_outside_reserve,
 379                                            max_to_eat_into_reserve);
 380       uint receiving_young = free_outside_reserve + receiving_within_reserve;
 381       // Again, we could have already allocated more than we could get.
 382       receiving_additional_eden = allocated_young_length < receiving_young ?
 383                                   receiving_young - allocated_young_length : 0;
 384 
 385       log_trace(gc, ergo, heap)("Young target length: Partially eat into reserve "
 386                                 "free outside reserve %u "
 387                                 "receiving within reserve %u "
 388                                 "receiving young %u "
 389                                 "receiving additional eden %u",
 390                                 free_outside_reserve, receiving_within_reserve,
 391                                 receiving_young, receiving_additional_eden);
 392     } else {
 393       // No need to use the reserve.
 394       receiving_additional_eden = desired_young_length - allocated_young_length;
 395       log_trace(gc, ergo, heap)("Young target length: No need to use reserve "
 396                                 "receiving additional eden %u",
 397                                 receiving_additional_eden);
 398     }


 399   }
 400 
 401   uint target_young_length = allocated_young_length + receiving_additional_eden;








 402 
 403   assert(target_young_length >= allocated_young_length, "must be");


 404 
 405   log_trace(gc, ergo, heap)("Young target length: "
 406                             "young target length %u "
 407                             "allocated young length %u "
 408                             "received additional eden %u",
 409                             target_young_length, allocated_young_length,
 410                             receiving_additional_eden);
 411   return target_young_length;
 412 }
 413 
 414 uint G1Policy::calculate_desired_eden_length_by_pause(double base_time_ms,
 415                                                       uint min_eden_length,
 416                                                       uint max_eden_length) const {

 417   assert(use_adaptive_young_list_length(), "pre-condition");

 418 
 419   assert(min_eden_length <= max_eden_length, "must be %u %u", min_eden_length, max_eden_length);




















 420 
 421   // Here, we will make sure that the shortest young length that
 422   // makes sense fits within the target pause time.
 423 
 424   G1YoungLengthPredictor p(base_time_ms,
 425                            _free_regions_at_end_of_collection,
 426                            _mmu_tracker->max_gc_time() * 1000.0,
 427                            this);
 428   if (p.will_fit(min_eden_length)) {
 429     // The shortest young length will fit into the target pause time;
 430     // we'll now check whether the absolute maximum number of young
 431     // regions will fit in the target pause time. If not, we'll do
 432     // a binary search between min_young_length and max_young_length.
 433     if (p.will_fit(max_eden_length)) {
 434       // The maximum young length will fit into the target pause time.
 435       // We are done so set min young length to the maximum length (as
 436       // the result is assumed to be returned in min_young_length).
 437       min_eden_length = max_eden_length;
 438     } else {
 439       // The maximum possible number of young regions will not fit within
 440       // the target pause time so we'll search for the optimal
 441       // length. The loop invariants are:
 442       //
 443       // min_young_length < max_young_length
 444       // min_young_length is known to fit into the target pause time
 445       // max_young_length is known not to fit into the target pause time
 446       //
 447       // Going into the loop we know the above hold as we've just
 448       // checked them. Every time around the loop we check whether
 449       // the middle value between min_young_length and
 450       // max_young_length fits into the target pause time. If it
 451       // does, it becomes the new min. If it doesn't, it becomes
 452       // the new max. This way we maintain the loop invariants.
 453 
 454       assert(min_eden_length < max_eden_length, "invariant");
 455       uint diff = (max_eden_length - min_eden_length) / 2;
 456       while (diff > 0) {
 457         uint eden_length = min_eden_length + diff;
 458         if (p.will_fit(eden_length)) {
 459           min_eden_length = eden_length;
 460         } else {
 461           max_eden_length = eden_length;
 462         }
 463         assert(min_eden_length <  max_eden_length, "invariant");
 464         diff = (max_eden_length - min_eden_length) / 2;
 465       }
 466       // The results is min_young_length which, according to the
 467       // loop invariants, should fit within the target pause time.
 468 
 469       // These are the post-conditions of the binary search above:
 470       assert(min_eden_length < max_eden_length,
 471              "otherwise we should have discovered that max_eden_length "
 472              "fits into the pause target and not done the binary search");
 473       assert(p.will_fit(min_eden_length),
 474              "min_eden_length, the result of the binary search, should "
 475              "fit into the pause target");
 476       assert(!p.will_fit(min_eden_length + 1),
 477              "min_eden_length, the result of the binary search, should be "
 478              "optimal, so no larger length should fit into the pause target");
 479     }
 480   } else {
 481     // Even the minimum length doesn't fit into the pause time
 482     // target, return it as the result nevertheless.
 483   }
 484   return min_eden_length;
 485 }
 486 
 487 uint G1Policy::calculate_desired_eden_length_before_mixed(double survivor_base_time_ms,
 488                                                           uint min_eden_length,
 489                                                           uint max_eden_length) const {
 490   G1CollectionSetCandidates* candidates = _collection_set->candidates();
 491 
 492   uint min_old_regions_end = MIN2(candidates->cur_idx() + calc_min_old_cset_length(), candidates->num_regions());
 493   double predicted_region_evac_time_ms = survivor_base_time_ms;
 494   for (uint i = candidates->cur_idx(); i < min_old_regions_end; i++) {
 495     HeapRegion* r = candidates->at(i);
 496     predicted_region_evac_time_ms += predict_region_total_time_ms(r, false);
 497   }
 498   uint desired_eden_length_by_min_cset_length =
 499      calculate_desired_eden_length_by_pause(predicted_region_evac_time_ms,
 500                                             min_eden_length,
 501                                             max_eden_length);
 502 
 503   return desired_eden_length_by_min_cset_length;
 504 }
 505 
 506 double G1Policy::predict_survivor_regions_evac_time() const {
 507   double survivor_regions_evac_time = 0.0;
 508   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 509   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 510        it != survivor_regions->end();
 511        ++it) {
 512     survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
 513   }
 514   return survivor_regions_evac_time;
 515 }
 516 
 517 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
 518   guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
 519 
 520   if (rs_length > _rs_length_prediction) {
 521     // add 10% to avoid having to recalculate often
 522     size_t rs_length_prediction = rs_length * 1100 / 1000;
 523     update_rs_length_prediction(rs_length_prediction);
 524     update_young_length_bounds(rs_length_prediction);

 525   }
 526 }
 527 
 528 void G1Policy::update_rs_length_prediction() {
 529   update_rs_length_prediction(_analytics->predict_rs_length());
 530 }
 531 
 532 void G1Policy::update_rs_length_prediction(size_t prediction) {
 533   if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
 534     _rs_length_prediction = prediction;
 535   }
 536 }
 537 
 538 void G1Policy::record_full_collection_start() {
 539   _full_collection_start_sec = os::elapsedTime();
 540   // Release the future to-space so that it is available for compaction into.
 541   collector_state()->set_in_young_only_phase(false);
 542   collector_state()->set_in_full_gc(true);
 543   _collection_set->clear_candidates();
 544   _pending_cards_at_gc_start = 0;


 552   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 553 
 554   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 555 
 556   collector_state()->set_in_full_gc(false);
 557 
 558   // "Nuke" the heuristics that control the young/mixed GC
 559   // transitions and make sure we start with young GCs after the Full GC.
 560   collector_state()->set_in_young_only_phase(true);
 561   collector_state()->set_in_young_gc_before_mixed(false);
 562   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 563   collector_state()->set_in_initial_mark_gc(false);
 564   collector_state()->set_mark_or_rebuild_in_progress(false);
 565   collector_state()->set_clearing_next_bitmap(false);
 566 
 567   _eden_surv_rate_group->start_adding_regions();
 568   // also call this on any additional surv rate groups
 569 
 570   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 571   _survivor_surv_rate_group->reset();
 572   update_young_length_bounds();
 573   update_rs_length_prediction();
 574 
 575   _old_gen_alloc_tracker.reset_after_full_gc();
 576 
 577   record_pause(FullGC, _full_collection_start_sec, end_sec);
 578 }
 579 
 580 static void log_refinement_stats(const char* kind, const G1ConcurrentRefineStats& stats) {
 581   log_debug(gc, refine, stats)
 582            ("%s refinement: %.2fms, refined: " SIZE_FORMAT
 583             ", precleaned: " SIZE_FORMAT ", dirtied: " SIZE_FORMAT,
 584             kind,
 585             stats.refinement_time().seconds() * MILLIUNITS,
 586             stats.refined_cards(),
 587             stats.precleaned_cards(),
 588             stats.dirtied_cards());
 589 }
 590 
 591 void G1Policy::record_concurrent_refinement_stats() {
 592   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();


 882     // During mixed gc we do not use them for young gen sizing.
 883     if (this_pause_was_young_only) {
 884       _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
 885       _analytics->report_rs_length((double) _rs_length);
 886     }
 887   }
 888 
 889   assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
 890          "If the last pause has been an initial mark, we should not have been in the marking window");
 891   if (this_pause_included_initial_mark) {
 892     collector_state()->set_mark_or_rebuild_in_progress(true);
 893   }
 894 
 895   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 896 
 897   update_rs_length_prediction();
 898 
 899   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
 900   // that in this case we are not running in a "normal" operating mode.
 901   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
 902     update_young_length_bounds();




 903 
 904     _old_gen_alloc_tracker.reset_after_young_gc(app_time_ms / 1000.0);
 905     update_ihop_prediction(_old_gen_alloc_tracker.last_cycle_duration(),
 906                            _old_gen_alloc_tracker.last_cycle_old_bytes(),

 907                            this_pause_was_young_only);
 908 
 909     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 910   } else {
 911     // Any garbage collection triggered as periodic collection resets the time-to-mixed
 912     // measurement. Periodic collection typically means that the application is "inactive", i.e.
 913     // the marking threads may have received an uncharacterisic amount of cpu time
 914     // for completing the marking, i.e. are faster than expected.
 915     // This skews the predicted marking length towards smaller values which might cause
 916     // the mark start being too late.
 917     _initial_mark_to_mixed.reset();
 918   }
 919 
 920   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 921   double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 922 
 923   if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
 924     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 925                                 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
 926                                 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);


 936                               scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
 937 
 938   _g1h->concurrent_refine()->adjust(logged_cards_time,
 939                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
 940                                     scan_logged_cards_time_goal_ms);
 941 }
 942 
 943 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 944   if (G1UseAdaptiveIHOP) {
 945     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 946                                      predictor,
 947                                      G1ReservePercent,
 948                                      G1HeapWastePercent);
 949   } else {
 950     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 951   }
 952 }
 953 
 954 void G1Policy::update_ihop_prediction(double mutator_time_s,
 955                                       size_t mutator_alloc_bytes,

 956                                       bool this_gc_was_young_only) {
 957   // Always try to update IHOP prediction. Even evacuation failures give information
 958   // about e.g. whether to start IHOP earlier next time.
 959 
 960   // Avoid using really small application times that might create samples with
 961   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 962   double const min_valid_time = 1e-6;
 963 
 964   bool report = false;
 965 
 966   double marking_to_mixed_time = -1.0;
 967   if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
 968     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 969     assert(marking_to_mixed_time > 0.0,
 970            "Initial mark to mixed time must be larger than zero but is %.3f",
 971            marking_to_mixed_time);
 972     if (marking_to_mixed_time > min_valid_time) {
 973       _ihop_control->update_marking_length(marking_to_mixed_time);
 974       report = true;
 975     }
 976   }
 977 
 978   // As an approximation for the young gc promotion rates during marking we use
 979   // all of them. In many applications there are only a few if any young gcs during
 980   // marking, which makes any prediction useless. This increases the accuracy of the
 981   // prediction.
 982   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 983     // IHOP control wants to know the expected young gen length if it were not
 984     // restrained by the heap reserve. Using the actual length would make the
 985     // prediction too small and the limit the young gen every time we get to the
 986     // predicted target occupancy.
 987     uint young_gen_size = young_list_desired_length() * HeapRegion::GrainBytes;
 988     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 989     report = true;
 990   }
 991 
 992   if (report) {
 993     report_ihop_statistics();
 994   }
 995 }
 996 
 997 void G1Policy::report_ihop_statistics() {
 998   _ihop_control->print();
 999 }
1000 
1001 void G1Policy::print_phases() {
1002   phase_times()->print();
1003 }
1004 
1005 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
1006                                               size_t rs_length) const {
1007   size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());


1074 
1075 bool G1Policy::can_expand_young_list() const {
1076   uint young_list_length = _g1h->young_regions_count();
1077   uint young_list_max_length = _young_list_max_length;
1078   return young_list_length < young_list_max_length;
1079 }
1080 
1081 bool G1Policy::use_adaptive_young_list_length() const {
1082   return _young_gen_sizer->use_adaptive_young_list_length();
1083 }
1084 
1085 size_t G1Policy::desired_survivor_size(uint max_regions) const {
1086   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
1087   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
1088 }
1089 
1090 void G1Policy::print_age_table() {
1091   _survivors_age_table.print_age_table(_tenuring_threshold);
1092 }
1093 
1094 uint G1Policy::calculate_young_max_length(uint target_young_length) const {
1095   uint expansion_region_num = 0;
1096   if (GCLockerEdenExpansionPercent > 0) {
1097     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1098     double expansion_region_num_d = perc * (double) _young_list_target_length;
1099     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1100     // less than 1.0) we'll get 1.
1101     expansion_region_num = (uint) ceil(expansion_region_num_d);
1102   } else {
1103     assert(expansion_region_num == 0, "sanity");
1104   }
1105   uint max_length = target_young_length + expansion_region_num;
1106   assert(target_young_length <= max_length, "post-condition");
1107   return max_length;
1108 }
1109 
1110 // Calculates survivor space parameters.
1111 void G1Policy::update_survivors_policy() {
1112   double max_survivor_regions_d =
1113                  (double) _young_list_target_length / (double) SurvivorRatio;
1114 
1115   // Calculate desired survivor size based on desired max survivor regions (unconstrained
1116   // by remaining heap). Otherwise we may cause undesired promotions as we are
1117   // already getting close to end of the heap, impacting performance even more.
1118   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1119   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1120 
1121   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1122   if (UsePerfData) {
1123     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1124     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1125   }
1126   // The real maximum survivor size is bounded by the number of regions that can
1127   // be allocated into.


1296       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1297         _initial_mark_to_mixed.record_initial_mark_end(end);
1298       }
1299       break;
1300     case MixedGC:
1301       _initial_mark_to_mixed.record_mixed_gc_start(start);
1302       break;
1303     default:
1304       ShouldNotReachHere();
1305   }
1306 }
1307 
1308 void G1Policy::abort_time_to_mixed_tracking() {
1309   _initial_mark_to_mixed.reset();
1310 }
1311 
1312 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1313                                        const char* false_action_str) const {
1314   G1CollectionSetCandidates* candidates = _collection_set->candidates();
1315 
1316   if (candidates == NULL || candidates->is_empty()) {
1317     if (false_action_str != NULL) {
1318       log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1319     }
1320     return false;
1321   }
1322 
1323   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1324   size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1325   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1326   double threshold = (double) G1HeapWastePercent;
1327   if (reclaimable_percent <= threshold) {
1328     if (false_action_str != NULL) {
1329       log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1330                           false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1331     }
1332     return false;
1333   }
1334   if (true_action_str != NULL) {
1335     log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1336                         true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1337   }
1338   return true;
1339 }
1340 
1341 uint G1Policy::calc_min_old_cset_length() const {
1342   // The min old CSet region bound is based on the maximum desired
1343   // number of mixed GCs after a cycle. I.e., even if some old regions
1344   // look expensive, we should add them to the CSet anyway to make
1345   // sure we go through the available old regions in no more than the
1346   // maximum desired number of mixed GCs.
1347   //
1348   // The calculation is based on the number of marked regions we added
1349   // to the CSet candidates in the first place, not how many remain, so
1350   // that the result is the same during all mixed GCs that follow a cycle.
1351 
1352   const size_t region_num = _collection_set->candidates()->num_regions();
1353   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1354   size_t result = region_num / gc_num;
1355   // emulate ceiling
1356   if (result * gc_num < region_num) {
1357     result += 1;


< prev index next >