1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1DirtyCardQueue.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  38 #include "gc/g1/g1StringDedup.hpp"
  39 #include "gc/g1/g1ThreadLocalData.hpp"
  40 #include "gc/g1/g1Trace.hpp"
  41 #include "gc/g1/heapRegion.inline.hpp"
  42 #include "gc/g1/heapRegionRemSet.hpp"
  43 #include "gc/g1/heapRegionSet.inline.hpp"
  44 #include "gc/shared/gcId.hpp"
  45 #include "gc/shared/gcTimer.hpp"
  46 #include "gc/shared/gcTraceTime.inline.hpp"
  47 #include "gc/shared/gcVMOperations.hpp"
  48 #include "gc/shared/genOopClosures.inline.hpp"
  49 #include "gc/shared/referencePolicy.hpp"
  50 #include "gc/shared/strongRootsScope.hpp"
  51 #include "gc/shared/suspendibleThreadSet.hpp"
  52 #include "gc/shared/taskTerminator.hpp"
  53 #include "gc/shared/taskqueue.inline.hpp"
  54 #include "gc/shared/weakProcessor.inline.hpp"
  55 #include "gc/shared/workerPolicy.hpp"
  56 #include "include/jvm.h"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.hpp"
  60 #include "memory/resourceArea.hpp"
  61 #include "memory/universe.hpp"
  62 #include "oops/access.inline.hpp"
  63 #include "oops/oop.inline.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/orderAccess.hpp"
  68 #include "runtime/prefetch.inline.hpp"
  69 #include "services/memTracker.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/growableArray.hpp"
  72 
  73 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  74   assert(addr < _cm->finger(), "invariant");
  75   assert(addr >= _task->finger(), "invariant");
  76 
  77   // We move that task's local finger along.
  78   _task->move_finger_to(addr);
  79 
  80   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  81   // we only partially drain the local queue and global stack
  82   _task->drain_local_queue(true);
  83   _task->drain_global_stack(true);
  84 
  85   // if the has_aborted flag has been raised, we need to bail out of
  86   // the iteration
  87   return !_task->has_aborted();
  88 }
  89 
  90 G1CMMarkStack::G1CMMarkStack() :
  91   _max_chunk_capacity(0),
  92   _base(NULL),
  93   _chunk_capacity(0) {
  94   set_empty();
  95 }
  96 
  97 bool G1CMMarkStack::resize(size_t new_capacity) {
  98   assert(is_empty(), "Only resize when stack is empty.");
  99   assert(new_capacity <= _max_chunk_capacity,
 100          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
 101 
 102   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
 103 
 104   if (new_base == NULL) {
 105     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 106     return false;
 107   }
 108   // Release old mapping.
 109   if (_base != NULL) {
 110     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 111   }
 112 
 113   _base = new_base;
 114   _chunk_capacity = new_capacity;
 115   set_empty();
 116 
 117   return true;
 118 }
 119 
 120 size_t G1CMMarkStack::capacity_alignment() {
 121   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 122 }
 123 
 124 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 125   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 126 
 127   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 128 
 129   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 130   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 131 
 132   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 133             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 134             _max_chunk_capacity,
 135             initial_chunk_capacity);
 136 
 137   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 138                 initial_chunk_capacity, _max_chunk_capacity);
 139 
 140   return resize(initial_chunk_capacity);
 141 }
 142 
 143 void G1CMMarkStack::expand() {
 144   if (_chunk_capacity == _max_chunk_capacity) {
 145     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 146     return;
 147   }
 148   size_t old_capacity = _chunk_capacity;
 149   // Double capacity if possible
 150   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 151 
 152   if (resize(new_capacity)) {
 153     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 154                   old_capacity, new_capacity);
 155   } else {
 156     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 157                     old_capacity, new_capacity);
 158   }
 159 }
 160 
 161 G1CMMarkStack::~G1CMMarkStack() {
 162   if (_base != NULL) {
 163     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 164   }
 165 }
 166 
 167 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 168   elem->next = *list;
 169   *list = elem;
 170 }
 171 
 172 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 173   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 174   add_chunk_to_list(&_chunk_list, elem);
 175   _chunks_in_chunk_list++;
 176 }
 177 
 178 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 179   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 180   add_chunk_to_list(&_free_list, elem);
 181 }
 182 
 183 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 184   TaskQueueEntryChunk* result = *list;
 185   if (result != NULL) {
 186     *list = (*list)->next;
 187   }
 188   return result;
 189 }
 190 
 191 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 192   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 193   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 194   if (result != NULL) {
 195     _chunks_in_chunk_list--;
 196   }
 197   return result;
 198 }
 199 
 200 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 201   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 202   return remove_chunk_from_list(&_free_list);
 203 }
 204 
 205 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 206   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 207   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 208   // wraparound of _hwm.
 209   if (_hwm >= _chunk_capacity) {
 210     return NULL;
 211   }
 212 
 213   size_t cur_idx = Atomic::fetch_and_add(&_hwm, 1u);
 214   if (cur_idx >= _chunk_capacity) {
 215     return NULL;
 216   }
 217 
 218   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 219   result->next = NULL;
 220   return result;
 221 }
 222 
 223 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 224   // Get a new chunk.
 225   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 226 
 227   if (new_chunk == NULL) {
 228     // Did not get a chunk from the free list. Allocate from backing memory.
 229     new_chunk = allocate_new_chunk();
 230 
 231     if (new_chunk == NULL) {
 232       return false;
 233     }
 234   }
 235 
 236   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 237 
 238   add_chunk_to_chunk_list(new_chunk);
 239 
 240   return true;
 241 }
 242 
 243 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 244   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 245 
 246   if (cur == NULL) {
 247     return false;
 248   }
 249 
 250   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 251 
 252   add_chunk_to_free_list(cur);
 253   return true;
 254 }
 255 
 256 void G1CMMarkStack::set_empty() {
 257   _chunks_in_chunk_list = 0;
 258   _hwm = 0;
 259   _chunk_list = NULL;
 260   _free_list = NULL;
 261 }
 262 
 263 G1CMRootMemRegions::G1CMRootMemRegions(uint const max_regions) :
 264     _root_regions(MemRegion::create_array(max_regions, mtGC)),
 265     _max_regions(max_regions),
 266     _num_root_regions(0),
 267     _claimed_root_regions(0),
 268     _scan_in_progress(false),
 269     _should_abort(false) { }
 270 
 271 G1CMRootMemRegions::~G1CMRootMemRegions() {
 272   MemRegion::destroy_array(_root_regions, _max_regions);
 273 }
 274 
 275 void G1CMRootMemRegions::reset() {
 276   _num_root_regions = 0;
 277 }
 278 
 279 void G1CMRootMemRegions::add(HeapWord* start, HeapWord* end) {
 280   assert_at_safepoint();
 281   size_t idx = Atomic::fetch_and_add(&_num_root_regions, 1u);
 282   assert(idx < _max_regions, "Trying to add more root MemRegions than there is space " SIZE_FORMAT, _max_regions);
 283   assert(start != NULL && end != NULL && start <= end, "Start (" PTR_FORMAT ") should be less or equal to "
 284          "end (" PTR_FORMAT ")", p2i(start), p2i(end));
 285   _root_regions[idx].set_start(start);
 286   _root_regions[idx].set_end(end);
 287 }
 288 
 289 void G1CMRootMemRegions::prepare_for_scan() {
 290   assert(!scan_in_progress(), "pre-condition");
 291 
 292   _scan_in_progress = _num_root_regions > 0;
 293 
 294   _claimed_root_regions = 0;
 295   _should_abort = false;
 296 }
 297 
 298 const MemRegion* G1CMRootMemRegions::claim_next() {
 299   if (_should_abort) {
 300     // If someone has set the should_abort flag, we return NULL to
 301     // force the caller to bail out of their loop.
 302     return NULL;
 303   }
 304 
 305   if (_claimed_root_regions >= _num_root_regions) {
 306     return NULL;
 307   }
 308 
 309   size_t claimed_index = Atomic::fetch_and_add(&_claimed_root_regions, 1u);
 310   if (claimed_index < _num_root_regions) {
 311     return &_root_regions[claimed_index];
 312   }
 313   return NULL;
 314 }
 315 
 316 uint G1CMRootMemRegions::num_root_regions() const {
 317   return (uint)_num_root_regions;
 318 }
 319 
 320 void G1CMRootMemRegions::notify_scan_done() {
 321   MutexLocker x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 322   _scan_in_progress = false;
 323   RootRegionScan_lock->notify_all();
 324 }
 325 
 326 void G1CMRootMemRegions::cancel_scan() {
 327   notify_scan_done();
 328 }
 329 
 330 void G1CMRootMemRegions::scan_finished() {
 331   assert(scan_in_progress(), "pre-condition");
 332 
 333   if (!_should_abort) {
 334     assert(_claimed_root_regions >= num_root_regions(),
 335            "we should have claimed all root regions, claimed " SIZE_FORMAT ", length = %u",
 336            _claimed_root_regions, num_root_regions());
 337   }
 338 
 339   notify_scan_done();
 340 }
 341 
 342 bool G1CMRootMemRegions::wait_until_scan_finished() {
 343   if (!scan_in_progress()) {
 344     return false;
 345   }
 346 
 347   {
 348     MonitorLocker ml(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 349     while (scan_in_progress()) {
 350       ml.wait();
 351     }
 352   }
 353   return true;
 354 }
 355 
 356 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 357                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 358                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 359   // _cm_thread set inside the constructor
 360   _g1h(g1h),
 361 
 362   _mark_bitmap_1(),
 363   _mark_bitmap_2(),
 364   _prev_mark_bitmap(&_mark_bitmap_1),
 365   _next_mark_bitmap(&_mark_bitmap_2),
 366 
 367   _heap(_g1h->reserved_region()),
 368 
 369   _root_regions(_g1h->max_regions()),
 370 
 371   _global_mark_stack(),
 372 
 373   // _finger set in set_non_marking_state
 374 
 375   _worker_id_offset(G1DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 376   _max_num_tasks(ParallelGCThreads),
 377   // _num_active_tasks set in set_non_marking_state()
 378   // _tasks set inside the constructor
 379 
 380   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 381   _terminator((int) _max_num_tasks, _task_queues),
 382 
 383   _first_overflow_barrier_sync(),
 384   _second_overflow_barrier_sync(),
 385 
 386   _has_overflown(false),
 387   _concurrent(false),
 388   _has_aborted(false),
 389   _restart_for_overflow(false),
 390   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 391   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 392 
 393   // _verbose_level set below
 394 
 395   _init_times(),
 396   _remark_times(),
 397   _remark_mark_times(),
 398   _remark_weak_ref_times(),
 399   _cleanup_times(),
 400   _total_cleanup_time(0.0),
 401 
 402   _accum_task_vtime(NULL),
 403 
 404   _concurrent_workers(NULL),
 405   _num_concurrent_workers(0),
 406   _max_concurrent_workers(0),
 407 
 408   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 409   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 410 {
 411   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 412 
 413   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 414   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 415 
 416   // Create & start ConcurrentMark thread.
 417   _cm_thread = new G1ConcurrentMarkThread(this);
 418   if (_cm_thread->osthread() == NULL) {
 419     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 420   }
 421 
 422   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 423   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 424 
 425   _num_concurrent_workers = ConcGCThreads;
 426   _max_concurrent_workers = _num_concurrent_workers;
 427 
 428   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 429   _concurrent_workers->initialize_workers();
 430 
 431   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 432     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 433   }
 434 
 435   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 436   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 437 
 438   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 439   _num_active_tasks = _max_num_tasks;
 440 
 441   for (uint i = 0; i < _max_num_tasks; ++i) {
 442     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 443     task_queue->initialize();
 444     _task_queues->register_queue(i, task_queue);
 445 
 446     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats);
 447 
 448     _accum_task_vtime[i] = 0.0;
 449   }
 450 
 451   reset_at_marking_complete();
 452 }
 453 
 454 void G1ConcurrentMark::reset() {
 455   _has_aborted = false;
 456 
 457   reset_marking_for_restart();
 458 
 459   // Reset all tasks, since different phases will use different number of active
 460   // threads. So, it's easiest to have all of them ready.
 461   for (uint i = 0; i < _max_num_tasks; ++i) {
 462     _tasks[i]->reset(_next_mark_bitmap);
 463   }
 464 
 465   uint max_regions = _g1h->max_regions();
 466   for (uint i = 0; i < max_regions; i++) {
 467     _top_at_rebuild_starts[i] = NULL;
 468     _region_mark_stats[i].clear();
 469   }
 470 }
 471 
 472 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 473   for (uint j = 0; j < _max_num_tasks; ++j) {
 474     _tasks[j]->clear_mark_stats_cache(region_idx);
 475   }
 476   _top_at_rebuild_starts[region_idx] = NULL;
 477   _region_mark_stats[region_idx].clear();
 478 }
 479 
 480 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 481   uint const region_idx = r->hrm_index();
 482   if (r->is_humongous()) {
 483     assert(r->is_starts_humongous(), "Got humongous continues region here");
 484     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 485     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 486       clear_statistics_in_region(j);
 487     }
 488   } else {
 489     clear_statistics_in_region(region_idx);
 490   }
 491 }
 492 
 493 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 494   if (bitmap->is_marked(addr)) {
 495     bitmap->clear(addr);
 496   }
 497 }
 498 
 499 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 500   assert_at_safepoint_on_vm_thread();
 501 
 502   // Need to clear all mark bits of the humongous object.
 503   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 504   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 505 
 506   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 507     return;
 508   }
 509 
 510   // Clear any statistics about the region gathered so far.
 511   clear_statistics(r);
 512 }
 513 
 514 void G1ConcurrentMark::reset_marking_for_restart() {
 515   _global_mark_stack.set_empty();
 516 
 517   // Expand the marking stack, if we have to and if we can.
 518   if (has_overflown()) {
 519     _global_mark_stack.expand();
 520 
 521     uint max_regions = _g1h->max_regions();
 522     for (uint i = 0; i < max_regions; i++) {
 523       _region_mark_stats[i].clear_during_overflow();
 524     }
 525   }
 526 
 527   clear_has_overflown();
 528   _finger = _heap.start();
 529 
 530   for (uint i = 0; i < _max_num_tasks; ++i) {
 531     G1CMTaskQueue* queue = _task_queues->queue(i);
 532     queue->set_empty();
 533   }
 534 }
 535 
 536 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 537   assert(active_tasks <= _max_num_tasks, "we should not have more");
 538 
 539   _num_active_tasks = active_tasks;
 540   // Need to update the three data structures below according to the
 541   // number of active threads for this phase.
 542   _terminator.reset_for_reuse(active_tasks);
 543   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 544   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 545 }
 546 
 547 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 548   set_concurrency(active_tasks);
 549 
 550   _concurrent = concurrent;
 551 
 552   if (!concurrent) {
 553     // At this point we should be in a STW phase, and completed marking.
 554     assert_at_safepoint_on_vm_thread();
 555     assert(out_of_regions(),
 556            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 557            p2i(_finger), p2i(_heap.end()));
 558   }
 559 }
 560 
 561 void G1ConcurrentMark::reset_at_marking_complete() {
 562   // We set the global marking state to some default values when we're
 563   // not doing marking.
 564   reset_marking_for_restart();
 565   _num_active_tasks = 0;
 566 }
 567 
 568 G1ConcurrentMark::~G1ConcurrentMark() {
 569   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 570   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 571   // The G1ConcurrentMark instance is never freed.
 572   ShouldNotReachHere();
 573 }
 574 
 575 class G1ClearBitMapTask : public AbstractGangTask {
 576 public:
 577   static size_t chunk_size() { return M; }
 578 
 579 private:
 580   // Heap region closure used for clearing the given mark bitmap.
 581   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 582   private:
 583     G1CMBitMap* _bitmap;
 584     G1ConcurrentMark* _cm;
 585   public:
 586     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _bitmap(bitmap), _cm(cm) {
 587     }
 588 
 589     virtual bool do_heap_region(HeapRegion* r) {
 590       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 591 
 592       HeapWord* cur = r->bottom();
 593       HeapWord* const end = r->end();
 594 
 595       while (cur < end) {
 596         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 597         _bitmap->clear_range(mr);
 598 
 599         cur += chunk_size_in_words;
 600 
 601         // Abort iteration if after yielding the marking has been aborted.
 602         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 603           return true;
 604         }
 605         // Repeat the asserts from before the start of the closure. We will do them
 606         // as asserts here to minimize their overhead on the product. However, we
 607         // will have them as guarantees at the beginning / end of the bitmap
 608         // clearing to get some checking in the product.
 609         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 610         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 611       }
 612       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 613 
 614       return false;
 615     }
 616   };
 617 
 618   G1ClearBitmapHRClosure _cl;
 619   HeapRegionClaimer _hr_claimer;
 620   bool _suspendible; // If the task is suspendible, workers must join the STS.
 621 
 622 public:
 623   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 624     AbstractGangTask("G1 Clear Bitmap"),
 625     _cl(bitmap, suspendible ? cm : NULL),
 626     _hr_claimer(n_workers),
 627     _suspendible(suspendible)
 628   { }
 629 
 630   void work(uint worker_id) {
 631     SuspendibleThreadSetJoiner sts_join(_suspendible);
 632     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 633   }
 634 
 635   bool is_complete() {
 636     return _cl.is_complete();
 637   }
 638 };
 639 
 640 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 641   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 642 
 643   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 644   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 645 
 646   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 647 
 648   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 649 
 650   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 651   workers->run_task(&cl, num_workers);
 652   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 653 }
 654 
 655 void G1ConcurrentMark::cleanup_for_next_mark() {
 656   // Make sure that the concurrent mark thread looks to still be in
 657   // the current cycle.
 658   guarantee(cm_thread()->during_cycle(), "invariant");
 659 
 660   // We are finishing up the current cycle by clearing the next
 661   // marking bitmap and getting it ready for the next cycle. During
 662   // this time no other cycle can start. So, let's make sure that this
 663   // is the case.
 664   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 665 
 666   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 667 
 668   // Repeat the asserts from above.
 669   guarantee(cm_thread()->during_cycle(), "invariant");
 670   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 671 }
 672 
 673 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 674   assert_at_safepoint_on_vm_thread();
 675   clear_bitmap(_prev_mark_bitmap, workers, false);
 676 }
 677 
 678 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 679 public:
 680   bool do_heap_region(HeapRegion* r) {
 681     r->note_start_of_marking();
 682     return false;
 683   }
 684 };
 685 
 686 void G1ConcurrentMark::pre_concurrent_start() {
 687   assert_at_safepoint_on_vm_thread();
 688 
 689   // Reset marking state.
 690   reset();
 691 
 692   // For each region note start of marking.
 693   NoteStartOfMarkHRClosure startcl;
 694   _g1h->heap_region_iterate(&startcl);
 695 
 696   _root_regions.reset();
 697 }
 698 
 699 
 700 void G1ConcurrentMark::post_concurrent_start() {
 701   // Start Concurrent Marking weak-reference discovery.
 702   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 703   // enable ("weak") refs discovery
 704   rp->enable_discovery();
 705   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 706 
 707   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
 708   // This is the start of  the marking cycle, we're expected all
 709   // threads to have SATB queues with active set to false.
 710   satb_mq_set.set_active_all_threads(true, /* new active value */
 711                                      false /* expected_active */);
 712 
 713   _root_regions.prepare_for_scan();
 714 
 715   // update_g1_committed() will be called at the end of an evac pause
 716   // when marking is on. So, it's also called at the end of the
 717   // concurrent start pause to update the heap end, if the heap expands
 718   // during it. No need to call it here.
 719 }
 720 
 721 /*
 722  * Notice that in the next two methods, we actually leave the STS
 723  * during the barrier sync and join it immediately afterwards. If we
 724  * do not do this, the following deadlock can occur: one thread could
 725  * be in the barrier sync code, waiting for the other thread to also
 726  * sync up, whereas another one could be trying to yield, while also
 727  * waiting for the other threads to sync up too.
 728  *
 729  * Note, however, that this code is also used during remark and in
 730  * this case we should not attempt to leave / enter the STS, otherwise
 731  * we'll either hit an assert (debug / fastdebug) or deadlock
 732  * (product). So we should only leave / enter the STS if we are
 733  * operating concurrently.
 734  *
 735  * Because the thread that does the sync barrier has left the STS, it
 736  * is possible to be suspended for a Full GC or an evacuation pause
 737  * could occur. This is actually safe, since the entering the sync
 738  * barrier is one of the last things do_marking_step() does, and it
 739  * doesn't manipulate any data structures afterwards.
 740  */
 741 
 742 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 743   bool barrier_aborted;
 744   {
 745     SuspendibleThreadSetLeaver sts_leave(concurrent());
 746     barrier_aborted = !_first_overflow_barrier_sync.enter();
 747   }
 748 
 749   // at this point everyone should have synced up and not be doing any
 750   // more work
 751 
 752   if (barrier_aborted) {
 753     // If the barrier aborted we ignore the overflow condition and
 754     // just abort the whole marking phase as quickly as possible.
 755     return;
 756   }
 757 }
 758 
 759 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 760   SuspendibleThreadSetLeaver sts_leave(concurrent());
 761   _second_overflow_barrier_sync.enter();
 762 
 763   // at this point everything should be re-initialized and ready to go
 764 }
 765 
 766 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 767   G1ConcurrentMark*     _cm;
 768 
 769 public:
 770   void work(uint worker_id) {
 771     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 772     ResourceMark rm;
 773 
 774     double start_vtime = os::elapsedVTime();
 775 
 776     {
 777       SuspendibleThreadSetJoiner sts_join;
 778 
 779       assert(worker_id < _cm->active_tasks(), "invariant");
 780 
 781       G1CMTask* task = _cm->task(worker_id);
 782       task->record_start_time();
 783       if (!_cm->has_aborted()) {
 784         do {
 785           task->do_marking_step(G1ConcMarkStepDurationMillis,
 786                                 true  /* do_termination */,
 787                                 false /* is_serial*/);
 788 
 789           _cm->do_yield_check();
 790         } while (!_cm->has_aborted() && task->has_aborted());
 791       }
 792       task->record_end_time();
 793       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 794     }
 795 
 796     double end_vtime = os::elapsedVTime();
 797     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 798   }
 799 
 800   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 801       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 802 
 803   ~G1CMConcurrentMarkingTask() { }
 804 };
 805 
 806 uint G1ConcurrentMark::calc_active_marking_workers() {
 807   uint result = 0;
 808   if (!UseDynamicNumberOfGCThreads || !FLAG_IS_DEFAULT(ConcGCThreads)) {
 809     result = _max_concurrent_workers;
 810   } else {
 811     result =
 812       WorkerPolicy::calc_default_active_workers(_max_concurrent_workers,
 813                                                 1, /* Minimum workers */
 814                                                 _num_concurrent_workers,
 815                                                 Threads::number_of_non_daemon_threads());
 816     // Don't scale the result down by scale_concurrent_workers() because
 817     // that scaling has already gone into "_max_concurrent_workers".
 818   }
 819   assert(result > 0 && result <= _max_concurrent_workers,
 820          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 821          _max_concurrent_workers, result);
 822   return result;
 823 }
 824 
 825 void G1ConcurrentMark::scan_root_region(const MemRegion* region, uint worker_id) {
 826 #ifdef ASSERT
 827   HeapWord* last = region->last();
 828   HeapRegion* hr = _g1h->heap_region_containing(last);
 829   assert(hr->is_old() || hr->next_top_at_mark_start() == hr->bottom(),
 830          "Root regions must be old or survivor/eden but region %u is %s", hr->hrm_index(), hr->get_type_str());
 831   assert(hr->next_top_at_mark_start() == region->start(),
 832          "MemRegion start should be equal to nTAMS");
 833 #endif
 834 
 835   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 836 
 837   const uintx interval = PrefetchScanIntervalInBytes;
 838   HeapWord* curr = region->start();
 839   const HeapWord* end = region->end();
 840   while (curr < end) {
 841     Prefetch::read(curr, interval);
 842     oop obj = oop(curr);
 843     int size = obj->oop_iterate_size(&cl);
 844     assert(size == obj->size(), "sanity");
 845     curr += size;
 846   }
 847 }
 848 
 849 class G1CMRootRegionScanTask : public AbstractGangTask {
 850   G1ConcurrentMark* _cm;
 851 public:
 852   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 853     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 854 
 855   void work(uint worker_id) {
 856     assert(Thread::current()->is_ConcurrentGC_thread(),
 857            "this should only be done by a conc GC thread");
 858 
 859     G1CMRootMemRegions* root_regions = _cm->root_regions();
 860     const MemRegion* region = root_regions->claim_next();
 861     while (region != NULL) {
 862       _cm->scan_root_region(region, worker_id);
 863       region = root_regions->claim_next();
 864     }
 865   }
 866 };
 867 
 868 void G1ConcurrentMark::scan_root_regions() {
 869   // scan_in_progress() will have been set to true only if there was
 870   // at least one root region to scan. So, if it's false, we
 871   // should not attempt to do any further work.
 872   if (root_regions()->scan_in_progress()) {
 873     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 874 
 875     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 876                                    // We distribute work on a per-region basis, so starting
 877                                    // more threads than that is useless.
 878                                    root_regions()->num_root_regions());
 879     assert(_num_concurrent_workers <= _max_concurrent_workers,
 880            "Maximum number of marking threads exceeded");
 881 
 882     G1CMRootRegionScanTask task(this);
 883     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 884                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 885     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 886 
 887     // It's possible that has_aborted() is true here without actually
 888     // aborting the survivor scan earlier. This is OK as it's
 889     // mainly used for sanity checking.
 890     root_regions()->scan_finished();
 891   }
 892 }
 893 
 894 void G1ConcurrentMark::concurrent_cycle_start() {
 895   _gc_timer_cm->register_gc_start();
 896 
 897   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 898 
 899   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 900 }
 901 
 902 void G1ConcurrentMark::concurrent_cycle_end() {
 903   _g1h->collector_state()->set_clearing_next_bitmap(false);
 904 
 905   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 906 
 907   if (has_aborted()) {
 908     log_info(gc, marking)("Concurrent Mark Abort");
 909     _gc_tracer_cm->report_concurrent_mode_failure();
 910   }
 911 
 912   _gc_timer_cm->register_gc_end();
 913 
 914   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 915 }
 916 
 917 void G1ConcurrentMark::mark_from_roots() {
 918   _restart_for_overflow = false;
 919 
 920   _num_concurrent_workers = calc_active_marking_workers();
 921 
 922   uint active_workers = MAX2(1U, _num_concurrent_workers);
 923 
 924   // Setting active workers is not guaranteed since fewer
 925   // worker threads may currently exist and more may not be
 926   // available.
 927   active_workers = _concurrent_workers->update_active_workers(active_workers);
 928   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 929 
 930   // Parallel task terminator is set in "set_concurrency_and_phase()"
 931   set_concurrency_and_phase(active_workers, true /* concurrent */);
 932 
 933   G1CMConcurrentMarkingTask marking_task(this);
 934   _concurrent_workers->run_task(&marking_task);
 935   print_stats();
 936 }
 937 
 938 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 939   G1HeapVerifier* verifier = _g1h->verifier();
 940 
 941   verifier->verify_region_sets_optional();
 942 
 943   if (VerifyDuringGC) {
 944     GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm);
 945 
 946     size_t const BufLen = 512;
 947     char buffer[BufLen];
 948 
 949     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
 950     verifier->verify(type, vo, buffer);
 951   }
 952 
 953   verifier->check_bitmaps(caller);
 954 }
 955 
 956 class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask {
 957   G1CollectedHeap* _g1h;
 958   G1ConcurrentMark* _cm;
 959   HeapRegionClaimer _hrclaimer;
 960   uint volatile _total_selected_for_rebuild;
 961 
 962   G1PrintRegionLivenessInfoClosure _cl;
 963 
 964   class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
 965     G1CollectedHeap* _g1h;
 966     G1ConcurrentMark* _cm;
 967 
 968     G1PrintRegionLivenessInfoClosure* _cl;
 969 
 970     uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
 971 
 972     void update_remset_before_rebuild(HeapRegion* hr) {
 973       G1RemSetTrackingPolicy* tracking_policy = _g1h->policy()->remset_tracker();
 974 
 975       bool selected_for_rebuild;
 976       if (hr->is_humongous()) {
 977         bool const is_live = _cm->liveness(hr->humongous_start_region()->hrm_index()) > 0;
 978         selected_for_rebuild = tracking_policy->update_humongous_before_rebuild(hr, is_live);
 979       } else {
 980         size_t const live_bytes = _cm->liveness(hr->hrm_index());
 981         selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
 982       }
 983       if (selected_for_rebuild) {
 984         _num_regions_selected_for_rebuild++;
 985       }
 986       _cm->update_top_at_rebuild_start(hr);
 987     }
 988 
 989     // Distribute the given words across the humongous object starting with hr and
 990     // note end of marking.
 991     void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
 992       uint const region_idx = hr->hrm_index();
 993       size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size();
 994       uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words);
 995 
 996       // "Distributing" zero words means that we only note end of marking for these
 997       // regions.
 998       assert(marked_words == 0 || obj_size_in_words == marked_words,
 999              "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT,
1000              obj_size_in_words, marked_words);
1001 
1002       for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1003         HeapRegion* const r = _g1h->region_at(i);
1004         size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1005 
1006         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)",
1007                                words_to_add, i, r->get_type_str());
1008         add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize);
1009         marked_words -= words_to_add;
1010       }
1011       assert(marked_words == 0,
1012              SIZE_FORMAT " words left after distributing space across %u regions",
1013              marked_words, num_regions_in_humongous);
1014     }
1015 
1016     void update_marked_bytes(HeapRegion* hr) {
1017       uint const region_idx = hr->hrm_index();
1018       size_t const marked_words = _cm->liveness(region_idx);
1019       // The marking attributes the object's size completely to the humongous starts
1020       // region. We need to distribute this value across the entire set of regions a
1021       // humongous object spans.
1022       if (hr->is_humongous()) {
1023         assert(hr->is_starts_humongous() || marked_words == 0,
1024                "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1025                marked_words, region_idx, hr->get_type_str());
1026         if (hr->is_starts_humongous()) {
1027           distribute_marked_bytes(hr, marked_words);
1028         }
1029       } else {
1030         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1031         add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize);
1032       }
1033     }
1034 
1035     void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) {
1036       hr->add_to_marked_bytes(marked_bytes);
1037       _cl->do_heap_region(hr);
1038       hr->note_end_of_marking();
1039     }
1040 
1041   public:
1042     G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) :
1043       _g1h(g1h), _cm(cm), _cl(cl), _num_regions_selected_for_rebuild(0) { }
1044 
1045     virtual bool do_heap_region(HeapRegion* r) {
1046       update_remset_before_rebuild(r);
1047       update_marked_bytes(r);
1048 
1049       return false;
1050     }
1051 
1052     uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1053   };
1054 
1055 public:
1056   G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) :
1057     AbstractGangTask("G1 Update RemSet Tracking Before Rebuild"),
1058     _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking") { }
1059 
1060   virtual void work(uint worker_id) {
1061     G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl);
1062     _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id);
1063     Atomic::add(&_total_selected_for_rebuild, update_cl.num_selected_for_rebuild());
1064   }
1065 
1066   uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
1067 
1068   // Number of regions for which roughly one thread should be spawned for this work.
1069   static const uint RegionsPerThread = 384;
1070 };
1071 
1072 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1073   G1CollectedHeap* _g1h;
1074 public:
1075   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1076 
1077   virtual bool do_heap_region(HeapRegion* r) {
1078     _g1h->policy()->remset_tracker()->update_after_rebuild(r);
1079     return false;
1080   }
1081 };
1082 
1083 void G1ConcurrentMark::remark() {
1084   assert_at_safepoint_on_vm_thread();
1085 
1086   // If a full collection has happened, we should not continue. However we might
1087   // have ended up here as the Remark VM operation has been scheduled already.
1088   if (has_aborted()) {
1089     return;
1090   }
1091 
1092   G1Policy* policy = _g1h->policy();
1093   policy->record_concurrent_mark_remark_start();
1094 
1095   double start = os::elapsedTime();
1096 
1097   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1098 
1099   {
1100     GCTraceTime(Debug, gc, phases) debug("Finalize Marking", _gc_timer_cm);
1101     finalize_marking();
1102   }
1103 
1104   double mark_work_end = os::elapsedTime();
1105 
1106   bool const mark_finished = !has_overflown();
1107   if (mark_finished) {
1108     weak_refs_work(false /* clear_all_soft_refs */);
1109 
1110     SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1111     // We're done with marking.
1112     // This is the end of the marking cycle, we're expected all
1113     // threads to have SATB queues with active set to true.
1114     satb_mq_set.set_active_all_threads(false, /* new active value */
1115                                        true /* expected_active */);
1116 
1117     {
1118       GCTraceTime(Debug, gc, phases) debug("Flush Task Caches", _gc_timer_cm);
1119       flush_all_task_caches();
1120     }
1121 
1122     // Install newly created mark bitmap as "prev".
1123     swap_mark_bitmaps();
1124     {
1125       GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1126 
1127       uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) /
1128                                        G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread;
1129       uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity);
1130 
1131       G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers);
1132       log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap", cl.name(), num_workers, _g1h->num_regions());
1133       _g1h->workers()->run_task(&cl, num_workers);
1134 
1135       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1136                                       _g1h->num_regions(), cl.total_selected_for_rebuild());
1137     }
1138     {
1139       GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions", _gc_timer_cm);
1140       reclaim_empty_regions();
1141     }
1142 
1143     // Clean out dead classes
1144     if (ClassUnloadingWithConcurrentMark) {
1145       GCTraceTime(Debug, gc, phases) debug("Purge Metaspace", _gc_timer_cm);
1146       ClassLoaderDataGraph::purge();
1147     }
1148 
1149     _g1h->resize_heap_if_necessary();
1150 
1151     compute_new_sizes();
1152 
1153     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1154 
1155     assert(!restart_for_overflow(), "sanity");
1156     // Completely reset the marking state since marking completed
1157     reset_at_marking_complete();
1158   } else {
1159     // We overflowed.  Restart concurrent marking.
1160     _restart_for_overflow = true;
1161 
1162     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1163 
1164     // Clear the marking state because we will be restarting
1165     // marking due to overflowing the global mark stack.
1166     reset_marking_for_restart();
1167   }
1168 
1169   {
1170     GCTraceTime(Debug, gc, phases) debug("Report Object Count", _gc_timer_cm);
1171     report_object_count(mark_finished);
1172   }
1173 
1174   // Statistics
1175   double now = os::elapsedTime();
1176   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1177   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1178   _remark_times.add((now - start) * 1000.0);
1179 
1180   policy->record_concurrent_mark_remark_end();
1181 }
1182 
1183 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1184   // Per-region work during the Cleanup pause.
1185   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1186     G1CollectedHeap* _g1h;
1187     size_t _freed_bytes;
1188     FreeRegionList* _local_cleanup_list;
1189     uint _old_regions_removed;
1190     uint _humongous_regions_removed;
1191 
1192   public:
1193     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1194                                  FreeRegionList* local_cleanup_list) :
1195       _g1h(g1h),
1196       _freed_bytes(0),
1197       _local_cleanup_list(local_cleanup_list),
1198       _old_regions_removed(0),
1199       _humongous_regions_removed(0) { }
1200 
1201     size_t freed_bytes() { return _freed_bytes; }
1202     const uint old_regions_removed() { return _old_regions_removed; }
1203     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1204 
1205     bool do_heap_region(HeapRegion *hr) {
1206       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1207         _freed_bytes += hr->used();
1208         hr->set_containing_set(NULL);
1209         if (hr->is_humongous()) {
1210           _humongous_regions_removed++;
1211           _g1h->free_humongous_region(hr, _local_cleanup_list);
1212         } else {
1213           _old_regions_removed++;
1214           _g1h->free_region(hr, _local_cleanup_list);
1215         }
1216         hr->clear_cardtable();
1217         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1218         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1219       }
1220 
1221       return false;
1222     }
1223   };
1224 
1225   G1CollectedHeap* _g1h;
1226   FreeRegionList* _cleanup_list;
1227   HeapRegionClaimer _hrclaimer;
1228 
1229 public:
1230   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1231     AbstractGangTask("G1 Cleanup"),
1232     _g1h(g1h),
1233     _cleanup_list(cleanup_list),
1234     _hrclaimer(n_workers) {
1235   }
1236 
1237   void work(uint worker_id) {
1238     FreeRegionList local_cleanup_list("Local Cleanup List");
1239     G1ReclaimEmptyRegionsClosure cl(_g1h, &local_cleanup_list);
1240     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1241     assert(cl.is_complete(), "Shouldn't have aborted!");
1242 
1243     // Now update the old/humongous region sets
1244     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1245     {
1246       MutexLocker x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1247       _g1h->decrement_summary_bytes(cl.freed_bytes());
1248 
1249       _cleanup_list->add_ordered(&local_cleanup_list);
1250       assert(local_cleanup_list.is_empty(), "post-condition");
1251     }
1252   }
1253 };
1254 
1255 void G1ConcurrentMark::reclaim_empty_regions() {
1256   WorkGang* workers = _g1h->workers();
1257   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1258 
1259   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1260   workers->run_task(&cl);
1261 
1262   if (!empty_regions_list.is_empty()) {
1263     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1264     // Now print the empty regions list.
1265     G1HRPrinter* hrp = _g1h->hr_printer();
1266     if (hrp->is_active()) {
1267       FreeRegionListIterator iter(&empty_regions_list);
1268       while (iter.more_available()) {
1269         HeapRegion* hr = iter.get_next();
1270         hrp->cleanup(hr);
1271       }
1272     }
1273     // And actually make them available.
1274     _g1h->prepend_to_freelist(&empty_regions_list);
1275   }
1276 }
1277 
1278 void G1ConcurrentMark::compute_new_sizes() {
1279   MetaspaceGC::compute_new_size();
1280 
1281   // Cleanup will have freed any regions completely full of garbage.
1282   // Update the soft reference policy with the new heap occupancy.
1283   Universe::update_heap_info_at_gc();
1284 
1285   // We reclaimed old regions so we should calculate the sizes to make
1286   // sure we update the old gen/space data.
1287   _g1h->g1mm()->update_sizes();
1288 }
1289 
1290 void G1ConcurrentMark::cleanup() {
1291   assert_at_safepoint_on_vm_thread();
1292 
1293   // If a full collection has happened, we shouldn't do this.
1294   if (has_aborted()) {
1295     return;
1296   }
1297 
1298   G1Policy* policy = _g1h->policy();
1299   policy->record_concurrent_mark_cleanup_start();
1300 
1301   double start = os::elapsedTime();
1302 
1303   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1304 
1305   {
1306     GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1307     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1308     _g1h->heap_region_iterate(&cl);
1309   }
1310 
1311   if (log_is_enabled(Trace, gc, liveness)) {
1312     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1313     _g1h->heap_region_iterate(&cl);
1314   }
1315 
1316   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1317 
1318   // We need to make this be a "collection" so any collection pause that
1319   // races with it goes around and waits for Cleanup to finish.
1320   _g1h->increment_total_collections();
1321 
1322   // Local statistics
1323   double recent_cleanup_time = (os::elapsedTime() - start);
1324   _total_cleanup_time += recent_cleanup_time;
1325   _cleanup_times.add(recent_cleanup_time);
1326 
1327   {
1328     GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1329     policy->record_concurrent_mark_cleanup_end();
1330   }
1331 }
1332 
1333 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1334 // Uses the G1CMTask associated with a worker thread (for serial reference
1335 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1336 // trace referent objects.
1337 //
1338 // Using the G1CMTask and embedded local queues avoids having the worker
1339 // threads operating on the global mark stack. This reduces the risk
1340 // of overflowing the stack - which we would rather avoid at this late
1341 // state. Also using the tasks' local queues removes the potential
1342 // of the workers interfering with each other that could occur if
1343 // operating on the global stack.
1344 
1345 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1346   G1ConcurrentMark* _cm;
1347   G1CMTask*         _task;
1348   uint              _ref_counter_limit;
1349   uint              _ref_counter;
1350   bool              _is_serial;
1351 public:
1352   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1353     _cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval),
1354     _ref_counter(_ref_counter_limit), _is_serial(is_serial) {
1355     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1356   }
1357 
1358   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1359   virtual void do_oop(      oop* p) { do_oop_work(p); }
1360 
1361   template <class T> void do_oop_work(T* p) {
1362     if (_cm->has_overflown()) {
1363       return;
1364     }
1365     if (!_task->deal_with_reference(p)) {
1366       // We did not add anything to the mark bitmap (or mark stack), so there is
1367       // no point trying to drain it.
1368       return;
1369     }
1370     _ref_counter--;
1371 
1372     if (_ref_counter == 0) {
1373       // We have dealt with _ref_counter_limit references, pushing them
1374       // and objects reachable from them on to the local stack (and
1375       // possibly the global stack). Call G1CMTask::do_marking_step() to
1376       // process these entries.
1377       //
1378       // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1379       // there's nothing more to do (i.e. we're done with the entries that
1380       // were pushed as a result of the G1CMTask::deal_with_reference() calls
1381       // above) or we overflow.
1382       //
1383       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1384       // flag while there may still be some work to do. (See the comment at
1385       // the beginning of G1CMTask::do_marking_step() for those conditions -
1386       // one of which is reaching the specified time target.) It is only
1387       // when G1CMTask::do_marking_step() returns without setting the
1388       // has_aborted() flag that the marking step has completed.
1389       do {
1390         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1391         _task->do_marking_step(mark_step_duration_ms,
1392                                false      /* do_termination */,
1393                                _is_serial);
1394       } while (_task->has_aborted() && !_cm->has_overflown());
1395       _ref_counter = _ref_counter_limit;
1396     }
1397   }
1398 };
1399 
1400 // 'Drain' oop closure used by both serial and parallel reference processing.
1401 // Uses the G1CMTask associated with a given worker thread (for serial
1402 // reference processing the G1CMtask for worker 0 is used). Calls the
1403 // do_marking_step routine, with an unbelievably large timeout value,
1404 // to drain the marking data structures of the remaining entries
1405 // added by the 'keep alive' oop closure above.
1406 
1407 class G1CMDrainMarkingStackClosure : public VoidClosure {
1408   G1ConcurrentMark* _cm;
1409   G1CMTask*         _task;
1410   bool              _is_serial;
1411  public:
1412   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1413     _cm(cm), _task(task), _is_serial(is_serial) {
1414     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1415   }
1416 
1417   void do_void() {
1418     do {
1419       // We call G1CMTask::do_marking_step() to completely drain the local
1420       // and global marking stacks of entries pushed by the 'keep alive'
1421       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1422       //
1423       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1424       // if there's nothing more to do (i.e. we've completely drained the
1425       // entries that were pushed as a a result of applying the 'keep alive'
1426       // closure to the entries on the discovered ref lists) or we overflow
1427       // the global marking stack.
1428       //
1429       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1430       // flag while there may still be some work to do. (See the comment at
1431       // the beginning of G1CMTask::do_marking_step() for those conditions -
1432       // one of which is reaching the specified time target.) It is only
1433       // when G1CMTask::do_marking_step() returns without setting the
1434       // has_aborted() flag that the marking step has completed.
1435 
1436       _task->do_marking_step(1000000000.0 /* something very large */,
1437                              true         /* do_termination */,
1438                              _is_serial);
1439     } while (_task->has_aborted() && !_cm->has_overflown());
1440   }
1441 };
1442 
1443 // Implementation of AbstractRefProcTaskExecutor for parallel
1444 // reference processing at the end of G1 concurrent marking
1445 
1446 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1447 private:
1448   G1CollectedHeap*  _g1h;
1449   G1ConcurrentMark* _cm;
1450   WorkGang*         _workers;
1451   uint              _active_workers;
1452 
1453 public:
1454   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1455                           G1ConcurrentMark* cm,
1456                           WorkGang* workers,
1457                           uint n_workers) :
1458     _g1h(g1h), _cm(cm),
1459     _workers(workers), _active_workers(n_workers) { }
1460 
1461   virtual void execute(ProcessTask& task, uint ergo_workers);
1462 };
1463 
1464 class G1CMRefProcTaskProxy : public AbstractGangTask {
1465   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1466   ProcessTask&      _proc_task;
1467   G1CollectedHeap*  _g1h;
1468   G1ConcurrentMark* _cm;
1469 
1470 public:
1471   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1472                        G1CollectedHeap* g1h,
1473                        G1ConcurrentMark* cm) :
1474     AbstractGangTask("Process reference objects in parallel"),
1475     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1476     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1477     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1478   }
1479 
1480   virtual void work(uint worker_id) {
1481     ResourceMark rm;
1482     G1CMTask* task = _cm->task(worker_id);
1483     G1CMIsAliveClosure g1_is_alive(_g1h);
1484     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1485     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1486 
1487     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1488   }
1489 };
1490 
1491 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
1492   assert(_workers != NULL, "Need parallel worker threads.");
1493   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1494   assert(_workers->active_workers() >= ergo_workers,
1495          "Ergonomically chosen workers(%u) should be less than or equal to active workers(%u)",
1496          ergo_workers, _workers->active_workers());
1497 
1498   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1499 
1500   // We need to reset the concurrency level before each
1501   // proxy task execution, so that the termination protocol
1502   // and overflow handling in G1CMTask::do_marking_step() knows
1503   // how many workers to wait for.
1504   _cm->set_concurrency(ergo_workers);
1505   _workers->run_task(&proc_task_proxy, ergo_workers);
1506 }
1507 
1508 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1509   ResourceMark rm;
1510 
1511   // Is alive closure.
1512   G1CMIsAliveClosure g1_is_alive(_g1h);
1513 
1514   // Inner scope to exclude the cleaning of the string table
1515   // from the displayed time.
1516   {
1517     GCTraceTime(Debug, gc, phases) debug("Reference Processing", _gc_timer_cm);
1518 
1519     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1520 
1521     // See the comment in G1CollectedHeap::ref_processing_init()
1522     // about how reference processing currently works in G1.
1523 
1524     // Set the soft reference policy
1525     rp->setup_policy(clear_all_soft_refs);
1526     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1527 
1528     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1529     // in serial reference processing. Note these closures are also
1530     // used for serially processing (by the the current thread) the
1531     // JNI references during parallel reference processing.
1532     //
1533     // These closures do not need to synchronize with the worker
1534     // threads involved in parallel reference processing as these
1535     // instances are executed serially by the current thread (e.g.
1536     // reference processing is not multi-threaded and is thus
1537     // performed by the current thread instead of a gang worker).
1538     //
1539     // The gang tasks involved in parallel reference processing create
1540     // their own instances of these closures, which do their own
1541     // synchronization among themselves.
1542     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1543     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1544 
1545     // We need at least one active thread. If reference processing
1546     // is not multi-threaded we use the current (VMThread) thread,
1547     // otherwise we use the work gang from the G1CollectedHeap and
1548     // we utilize all the worker threads we can.
1549     bool processing_is_mt = rp->processing_is_mt();
1550     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1551     active_workers = clamp(active_workers, 1u, _max_num_tasks);
1552 
1553     // Parallel processing task executor.
1554     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1555                                               _g1h->workers(), active_workers);
1556     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1557 
1558     // Set the concurrency level. The phase was already set prior to
1559     // executing the remark task.
1560     set_concurrency(active_workers);
1561 
1562     // Set the degree of MT processing here.  If the discovery was done MT,
1563     // the number of threads involved during discovery could differ from
1564     // the number of active workers.  This is OK as long as the discovered
1565     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1566     rp->set_active_mt_degree(active_workers);
1567 
1568     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
1569 
1570     // Process the weak references.
1571     const ReferenceProcessorStats& stats =
1572         rp->process_discovered_references(&g1_is_alive,
1573                                           &g1_keep_alive,
1574                                           &g1_drain_mark_stack,
1575                                           executor,
1576                                           &pt);
1577     _gc_tracer_cm->report_gc_reference_stats(stats);
1578     pt.print_all_references();
1579 
1580     // The do_oop work routines of the keep_alive and drain_marking_stack
1581     // oop closures will set the has_overflown flag if we overflow the
1582     // global marking stack.
1583 
1584     assert(has_overflown() || _global_mark_stack.is_empty(),
1585            "Mark stack should be empty (unless it has overflown)");
1586 
1587     assert(rp->num_queues() == active_workers, "why not");
1588 
1589     rp->verify_no_references_recorded();
1590     assert(!rp->discovery_enabled(), "Post condition");
1591   }
1592 
1593   if (has_overflown()) {
1594     // We can not trust g1_is_alive and the contents of the heap if the marking stack
1595     // overflowed while processing references. Exit the VM.
1596     fatal("Overflow during reference processing, can not continue. Please "
1597           "increase MarkStackSizeMax (current value: " SIZE_FORMAT ") and "
1598           "restart.", MarkStackSizeMax);
1599     return;
1600   }
1601 
1602   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1603 
1604   {
1605     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1606     WeakProcessor::weak_oops_do(_g1h->workers(), &g1_is_alive, &do_nothing_cl, 1);
1607   }
1608 
1609   // Unload Klasses, String, Code Cache, etc.
1610   if (ClassUnloadingWithConcurrentMark) {
1611     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1612     bool purged_classes = SystemDictionary::do_unloading(_gc_timer_cm);
1613     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1614   } else if (StringDedup::is_enabled()) {
1615     GCTraceTime(Debug, gc, phases) debug("String Deduplication", _gc_timer_cm);
1616     _g1h->string_dedup_cleaning(&g1_is_alive, NULL);
1617   }
1618 }
1619 
1620 class G1PrecleanYieldClosure : public YieldClosure {
1621   G1ConcurrentMark* _cm;
1622 
1623 public:
1624   G1PrecleanYieldClosure(G1ConcurrentMark* cm) : _cm(cm) { }
1625 
1626   virtual bool should_return() {
1627     return _cm->has_aborted();
1628   }
1629 
1630   virtual bool should_return_fine_grain() {
1631     _cm->do_yield_check();
1632     return _cm->has_aborted();
1633   }
1634 };
1635 
1636 void G1ConcurrentMark::preclean() {
1637   assert(G1UseReferencePrecleaning, "Precleaning must be enabled.");
1638 
1639   SuspendibleThreadSetJoiner joiner;
1640 
1641   G1CMKeepAliveAndDrainClosure keep_alive(this, task(0), true /* is_serial */);
1642   G1CMDrainMarkingStackClosure drain_mark_stack(this, task(0), true /* is_serial */);
1643 
1644   set_concurrency_and_phase(1, true);
1645 
1646   G1PrecleanYieldClosure yield_cl(this);
1647 
1648   ReferenceProcessor* rp = _g1h->ref_processor_cm();
1649   // Precleaning is single threaded. Temporarily disable MT discovery.
1650   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
1651   rp->preclean_discovered_references(rp->is_alive_non_header(),
1652                                      &keep_alive,
1653                                      &drain_mark_stack,
1654                                      &yield_cl,
1655                                      _gc_timer_cm);
1656 }
1657 
1658 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1659 // the prev bitmap determining liveness.
1660 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1661   G1CollectedHeap* _g1h;
1662 public:
1663   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1664 
1665   bool do_object_b(oop obj) {
1666     return obj != NULL &&
1667            (!_g1h->is_in_g1_reserved(obj) || !_g1h->is_obj_dead(obj));
1668   }
1669 };
1670 
1671 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1672   // Depending on the completion of the marking liveness needs to be determined
1673   // using either the next or prev bitmap.
1674   if (mark_completed) {
1675     G1ObjectCountIsAliveClosure is_alive(_g1h);
1676     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1677   } else {
1678     G1CMIsAliveClosure is_alive(_g1h);
1679     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1680   }
1681 }
1682 
1683 
1684 void G1ConcurrentMark::swap_mark_bitmaps() {
1685   G1CMBitMap* temp = _prev_mark_bitmap;
1686   _prev_mark_bitmap = _next_mark_bitmap;
1687   _next_mark_bitmap = temp;
1688   _g1h->collector_state()->set_clearing_next_bitmap(true);
1689 }
1690 
1691 // Closure for marking entries in SATB buffers.
1692 class G1CMSATBBufferClosure : public SATBBufferClosure {
1693 private:
1694   G1CMTask* _task;
1695   G1CollectedHeap* _g1h;
1696 
1697   // This is very similar to G1CMTask::deal_with_reference, but with
1698   // more relaxed requirements for the argument, so this must be more
1699   // circumspect about treating the argument as an object.
1700   void do_entry(void* entry) const {
1701     _task->increment_refs_reached();
1702     oop const obj = static_cast<oop>(entry);
1703     _task->make_reference_grey(obj);
1704   }
1705 
1706 public:
1707   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1708     : _task(task), _g1h(g1h) { }
1709 
1710   virtual void do_buffer(void** buffer, size_t size) {
1711     for (size_t i = 0; i < size; ++i) {
1712       do_entry(buffer[i]);
1713     }
1714   }
1715 };
1716 
1717 class G1RemarkThreadsClosure : public ThreadClosure {
1718   G1CMSATBBufferClosure _cm_satb_cl;
1719   G1CMOopClosure _cm_cl;
1720   MarkingCodeBlobClosure _code_cl;
1721   uintx _claim_token;
1722 
1723  public:
1724   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1725     _cm_satb_cl(task, g1h),
1726     _cm_cl(g1h, task),
1727     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1728     _claim_token(Threads::thread_claim_token()) {}
1729 
1730   void do_thread(Thread* thread) {
1731     if (thread->claim_threads_do(true, _claim_token)) {
1732       SATBMarkQueue& queue = G1ThreadLocalData::satb_mark_queue(thread);
1733       queue.apply_closure_and_empty(&_cm_satb_cl);
1734       if (thread->is_Java_thread()) {
1735         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1736         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1737         // * Alive if on the stack of an executing method
1738         // * Weakly reachable otherwise
1739         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1740         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1741         JavaThread* jt = (JavaThread*)thread;
1742         jt->nmethods_do(&_code_cl);
1743       }
1744     }
1745   }
1746 };
1747 
1748 class G1CMRemarkTask : public AbstractGangTask {
1749   G1ConcurrentMark* _cm;
1750 public:
1751   void work(uint worker_id) {
1752     G1CMTask* task = _cm->task(worker_id);
1753     task->record_start_time();
1754     {
1755       ResourceMark rm;
1756 
1757       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1758       Threads::threads_do(&threads_f);
1759     }
1760 
1761     do {
1762       task->do_marking_step(1000000000.0 /* something very large */,
1763                             true         /* do_termination       */,
1764                             false        /* is_serial            */);
1765     } while (task->has_aborted() && !_cm->has_overflown());
1766     // If we overflow, then we do not want to restart. We instead
1767     // want to abort remark and do concurrent marking again.
1768     task->record_end_time();
1769   }
1770 
1771   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1772     AbstractGangTask("Par Remark"), _cm(cm) {
1773     _cm->terminator()->reset_for_reuse(active_workers);
1774   }
1775 };
1776 
1777 void G1ConcurrentMark::finalize_marking() {
1778   ResourceMark rm;
1779 
1780   _g1h->ensure_parsability(false);
1781 
1782   // this is remark, so we'll use up all active threads
1783   uint active_workers = _g1h->workers()->active_workers();
1784   set_concurrency_and_phase(active_workers, false /* concurrent */);
1785   // Leave _parallel_marking_threads at it's
1786   // value originally calculated in the G1ConcurrentMark
1787   // constructor and pass values of the active workers
1788   // through the gang in the task.
1789 
1790   {
1791     StrongRootsScope srs(active_workers);
1792 
1793     G1CMRemarkTask remarkTask(this, active_workers);
1794     // We will start all available threads, even if we decide that the
1795     // active_workers will be fewer. The extra ones will just bail out
1796     // immediately.
1797     _g1h->workers()->run_task(&remarkTask);
1798   }
1799 
1800   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1801   guarantee(has_overflown() ||
1802             satb_mq_set.completed_buffers_num() == 0,
1803             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1804             BOOL_TO_STR(has_overflown()),
1805             satb_mq_set.completed_buffers_num());
1806 
1807   print_stats();
1808 }
1809 
1810 void G1ConcurrentMark::flush_all_task_caches() {
1811   size_t hits = 0;
1812   size_t misses = 0;
1813   for (uint i = 0; i < _max_num_tasks; i++) {
1814     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1815     hits += stats.first;
1816     misses += stats.second;
1817   }
1818   size_t sum = hits + misses;
1819   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1820                        hits, misses, percent_of(hits, sum));
1821 }
1822 
1823 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1824   _prev_mark_bitmap->clear_range(mr);
1825 }
1826 
1827 HeapRegion*
1828 G1ConcurrentMark::claim_region(uint worker_id) {
1829   // "checkpoint" the finger
1830   HeapWord* finger = _finger;
1831 
1832   while (finger < _heap.end()) {
1833     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1834 
1835     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1836     // Make sure that the reads below do not float before loading curr_region.
1837     OrderAccess::loadload();
1838     // Above heap_region_containing may return NULL as we always scan claim
1839     // until the end of the heap. In this case, just jump to the next region.
1840     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1841 
1842     // Is the gap between reading the finger and doing the CAS too long?
1843     HeapWord* res = Atomic::cmpxchg(&_finger, finger, end);
1844     if (res == finger && curr_region != NULL) {
1845       // we succeeded
1846       HeapWord*   bottom        = curr_region->bottom();
1847       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1848 
1849       // notice that _finger == end cannot be guaranteed here since,
1850       // someone else might have moved the finger even further
1851       assert(_finger >= end, "the finger should have moved forward");
1852 
1853       if (limit > bottom) {
1854         return curr_region;
1855       } else {
1856         assert(limit == bottom,
1857                "the region limit should be at bottom");
1858         // we return NULL and the caller should try calling
1859         // claim_region() again.
1860         return NULL;
1861       }
1862     } else {
1863       assert(_finger > finger, "the finger should have moved forward");
1864       // read it again
1865       finger = _finger;
1866     }
1867   }
1868 
1869   return NULL;
1870 }
1871 
1872 #ifndef PRODUCT
1873 class VerifyNoCSetOops {
1874   G1CollectedHeap* _g1h;
1875   const char* _phase;
1876   int _info;
1877 
1878 public:
1879   VerifyNoCSetOops(const char* phase, int info = -1) :
1880     _g1h(G1CollectedHeap::heap()),
1881     _phase(phase),
1882     _info(info)
1883   { }
1884 
1885   void operator()(G1TaskQueueEntry task_entry) const {
1886     if (task_entry.is_array_slice()) {
1887       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1888       return;
1889     }
1890     guarantee(oopDesc::is_oop(task_entry.obj()),
1891               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1892               p2i(task_entry.obj()), _phase, _info);
1893     HeapRegion* r = _g1h->heap_region_containing(task_entry.obj());
1894     guarantee(!(r->in_collection_set() || r->has_index_in_opt_cset()),
1895               "obj " PTR_FORMAT " from %s (%d) in region %u in (optional) collection set",
1896               p2i(task_entry.obj()), _phase, _info, r->hrm_index());
1897   }
1898 };
1899 
1900 void G1ConcurrentMark::verify_no_collection_set_oops() {
1901   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1902   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1903     return;
1904   }
1905 
1906   // Verify entries on the global mark stack
1907   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1908 
1909   // Verify entries on the task queues
1910   for (uint i = 0; i < _max_num_tasks; ++i) {
1911     G1CMTaskQueue* queue = _task_queues->queue(i);
1912     queue->iterate(VerifyNoCSetOops("Queue", i));
1913   }
1914 
1915   // Verify the global finger
1916   HeapWord* global_finger = finger();
1917   if (global_finger != NULL && global_finger < _heap.end()) {
1918     // Since we always iterate over all regions, we might get a NULL HeapRegion
1919     // here.
1920     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1921     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1922               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1923               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1924   }
1925 
1926   // Verify the task fingers
1927   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1928   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1929     G1CMTask* task = _tasks[i];
1930     HeapWord* task_finger = task->finger();
1931     if (task_finger != NULL && task_finger < _heap.end()) {
1932       // See above note on the global finger verification.
1933       HeapRegion* r = _g1h->heap_region_containing(task_finger);
1934       guarantee(r == NULL || task_finger == r->bottom() ||
1935                 !r->in_collection_set() || !r->has_index_in_opt_cset(),
1936                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1937                 p2i(task_finger), HR_FORMAT_PARAMS(r));
1938     }
1939   }
1940 }
1941 #endif // PRODUCT
1942 
1943 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1944   _g1h->rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1945 }
1946 
1947 void G1ConcurrentMark::print_stats() {
1948   if (!log_is_enabled(Debug, gc, stats)) {
1949     return;
1950   }
1951   log_debug(gc, stats)("---------------------------------------------------------------------");
1952   for (size_t i = 0; i < _num_active_tasks; ++i) {
1953     _tasks[i]->print_stats();
1954     log_debug(gc, stats)("---------------------------------------------------------------------");
1955   }
1956 }
1957 
1958 void G1ConcurrentMark::concurrent_cycle_abort() {
1959   if (!cm_thread()->during_cycle() || _has_aborted) {
1960     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1961     return;
1962   }
1963 
1964   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1965   // concurrent bitmap clearing.
1966   {
1967     GCTraceTime(Debug, gc) debug("Clear Next Bitmap");
1968     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1969   }
1970   // Note we cannot clear the previous marking bitmap here
1971   // since VerifyDuringGC verifies the objects marked during
1972   // a full GC against the previous bitmap.
1973 
1974   // Empty mark stack
1975   reset_marking_for_restart();
1976   for (uint i = 0; i < _max_num_tasks; ++i) {
1977     _tasks[i]->clear_region_fields();
1978   }
1979   _first_overflow_barrier_sync.abort();
1980   _second_overflow_barrier_sync.abort();
1981   _has_aborted = true;
1982 
1983   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1984   satb_mq_set.abandon_partial_marking();
1985   // This can be called either during or outside marking, we'll read
1986   // the expected_active value from the SATB queue set.
1987   satb_mq_set.set_active_all_threads(
1988                                  false, /* new active value */
1989                                  satb_mq_set.is_active() /* expected_active */);
1990 }
1991 
1992 static void print_ms_time_info(const char* prefix, const char* name,
1993                                NumberSeq& ns) {
1994   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
1995                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
1996   if (ns.num() > 0) {
1997     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
1998                            prefix, ns.sd(), ns.maximum());
1999   }
2000 }
2001 
2002 void G1ConcurrentMark::print_summary_info() {
2003   Log(gc, marking) log;
2004   if (!log.is_trace()) {
2005     return;
2006   }
2007 
2008   log.trace(" Concurrent marking:");
2009   print_ms_time_info("  ", "init marks", _init_times);
2010   print_ms_time_info("  ", "remarks", _remark_times);
2011   {
2012     print_ms_time_info("     ", "final marks", _remark_mark_times);
2013     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2014 
2015   }
2016   print_ms_time_info("  ", "cleanups", _cleanup_times);
2017   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2018             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2019   log.trace("  Total stop_world time = %8.2f s.",
2020             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2021   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2022             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2023 }
2024 
2025 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2026   _concurrent_workers->threads_do(tc);
2027 }
2028 
2029 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2030   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2031                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2032   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2033   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2034 }
2035 
2036 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2037   ReferenceProcessor* result = g1h->ref_processor_cm();
2038   assert(result != NULL, "CM reference processor should not be NULL");
2039   return result;
2040 }
2041 
2042 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2043                                G1CMTask* task)
2044   : MetadataVisitingOopIterateClosure(get_cm_oop_closure_ref_processor(g1h)),
2045     _g1h(g1h), _task(task)
2046 { }
2047 
2048 void G1CMTask::setup_for_region(HeapRegion* hr) {
2049   assert(hr != NULL,
2050         "claim_region() should have filtered out NULL regions");
2051   _curr_region  = hr;
2052   _finger       = hr->bottom();
2053   update_region_limit();
2054 }
2055 
2056 void G1CMTask::update_region_limit() {
2057   HeapRegion* hr            = _curr_region;
2058   HeapWord* bottom          = hr->bottom();
2059   HeapWord* limit           = hr->next_top_at_mark_start();
2060 
2061   if (limit == bottom) {
2062     // The region was collected underneath our feet.
2063     // We set the finger to bottom to ensure that the bitmap
2064     // iteration that will follow this will not do anything.
2065     // (this is not a condition that holds when we set the region up,
2066     // as the region is not supposed to be empty in the first place)
2067     _finger = bottom;
2068   } else if (limit >= _region_limit) {
2069     assert(limit >= _finger, "peace of mind");
2070   } else {
2071     assert(limit < _region_limit, "only way to get here");
2072     // This can happen under some pretty unusual circumstances.  An
2073     // evacuation pause empties the region underneath our feet (NTAMS
2074     // at bottom). We then do some allocation in the region (NTAMS
2075     // stays at bottom), followed by the region being used as a GC
2076     // alloc region (NTAMS will move to top() and the objects
2077     // originally below it will be grayed). All objects now marked in
2078     // the region are explicitly grayed, if below the global finger,
2079     // and we do not need in fact to scan anything else. So, we simply
2080     // set _finger to be limit to ensure that the bitmap iteration
2081     // doesn't do anything.
2082     _finger = limit;
2083   }
2084 
2085   _region_limit = limit;
2086 }
2087 
2088 void G1CMTask::giveup_current_region() {
2089   assert(_curr_region != NULL, "invariant");
2090   clear_region_fields();
2091 }
2092 
2093 void G1CMTask::clear_region_fields() {
2094   // Values for these three fields that indicate that we're not
2095   // holding on to a region.
2096   _curr_region   = NULL;
2097   _finger        = NULL;
2098   _region_limit  = NULL;
2099 }
2100 
2101 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2102   if (cm_oop_closure == NULL) {
2103     assert(_cm_oop_closure != NULL, "invariant");
2104   } else {
2105     assert(_cm_oop_closure == NULL, "invariant");
2106   }
2107   _cm_oop_closure = cm_oop_closure;
2108 }
2109 
2110 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2111   guarantee(next_mark_bitmap != NULL, "invariant");
2112   _next_mark_bitmap              = next_mark_bitmap;
2113   clear_region_fields();
2114 
2115   _calls                         = 0;
2116   _elapsed_time_ms               = 0.0;
2117   _termination_time_ms           = 0.0;
2118   _termination_start_time_ms     = 0.0;
2119 
2120   _mark_stats_cache.reset();
2121 }
2122 
2123 bool G1CMTask::should_exit_termination() {
2124   if (!regular_clock_call()) {
2125     return true;
2126   }
2127 
2128   // This is called when we are in the termination protocol. We should
2129   // quit if, for some reason, this task wants to abort or the global
2130   // stack is not empty (this means that we can get work from it).
2131   return !_cm->mark_stack_empty() || has_aborted();
2132 }
2133 
2134 void G1CMTask::reached_limit() {
2135   assert(_words_scanned >= _words_scanned_limit ||
2136          _refs_reached >= _refs_reached_limit ,
2137          "shouldn't have been called otherwise");
2138   abort_marking_if_regular_check_fail();
2139 }
2140 
2141 bool G1CMTask::regular_clock_call() {
2142   if (has_aborted()) {
2143     return false;
2144   }
2145 
2146   // First, we need to recalculate the words scanned and refs reached
2147   // limits for the next clock call.
2148   recalculate_limits();
2149 
2150   // During the regular clock call we do the following
2151 
2152   // (1) If an overflow has been flagged, then we abort.
2153   if (_cm->has_overflown()) {
2154     return false;
2155   }
2156 
2157   // If we are not concurrent (i.e. we're doing remark) we don't need
2158   // to check anything else. The other steps are only needed during
2159   // the concurrent marking phase.
2160   if (!_cm->concurrent()) {
2161     return true;
2162   }
2163 
2164   // (2) If marking has been aborted for Full GC, then we also abort.
2165   if (_cm->has_aborted()) {
2166     return false;
2167   }
2168 
2169   double curr_time_ms = os::elapsedVTime() * 1000.0;
2170 
2171   // (4) We check whether we should yield. If we have to, then we abort.
2172   if (SuspendibleThreadSet::should_yield()) {
2173     // We should yield. To do this we abort the task. The caller is
2174     // responsible for yielding.
2175     return false;
2176   }
2177 
2178   // (5) We check whether we've reached our time quota. If we have,
2179   // then we abort.
2180   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2181   if (elapsed_time_ms > _time_target_ms) {
2182     _has_timed_out = true;
2183     return false;
2184   }
2185 
2186   // (6) Finally, we check whether there are enough completed STAB
2187   // buffers available for processing. If there are, we abort.
2188   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2189   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2190     // we do need to process SATB buffers, we'll abort and restart
2191     // the marking task to do so
2192     return false;
2193   }
2194   return true;
2195 }
2196 
2197 void G1CMTask::recalculate_limits() {
2198   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2199   _words_scanned_limit      = _real_words_scanned_limit;
2200 
2201   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2202   _refs_reached_limit       = _real_refs_reached_limit;
2203 }
2204 
2205 void G1CMTask::decrease_limits() {
2206   // This is called when we believe that we're going to do an infrequent
2207   // operation which will increase the per byte scanned cost (i.e. move
2208   // entries to/from the global stack). It basically tries to decrease the
2209   // scanning limit so that the clock is called earlier.
2210 
2211   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2212   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2213 }
2214 
2215 void G1CMTask::move_entries_to_global_stack() {
2216   // Local array where we'll store the entries that will be popped
2217   // from the local queue.
2218   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2219 
2220   size_t n = 0;
2221   G1TaskQueueEntry task_entry;
2222   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2223     buffer[n] = task_entry;
2224     ++n;
2225   }
2226   if (n < G1CMMarkStack::EntriesPerChunk) {
2227     buffer[n] = G1TaskQueueEntry();
2228   }
2229 
2230   if (n > 0) {
2231     if (!_cm->mark_stack_push(buffer)) {
2232       set_has_aborted();
2233     }
2234   }
2235 
2236   // This operation was quite expensive, so decrease the limits.
2237   decrease_limits();
2238 }
2239 
2240 bool G1CMTask::get_entries_from_global_stack() {
2241   // Local array where we'll store the entries that will be popped
2242   // from the global stack.
2243   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2244 
2245   if (!_cm->mark_stack_pop(buffer)) {
2246     return false;
2247   }
2248 
2249   // We did actually pop at least one entry.
2250   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2251     G1TaskQueueEntry task_entry = buffer[i];
2252     if (task_entry.is_null()) {
2253       break;
2254     }
2255     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2256     bool success = _task_queue->push(task_entry);
2257     // We only call this when the local queue is empty or under a
2258     // given target limit. So, we do not expect this push to fail.
2259     assert(success, "invariant");
2260   }
2261 
2262   // This operation was quite expensive, so decrease the limits
2263   decrease_limits();
2264   return true;
2265 }
2266 
2267 void G1CMTask::drain_local_queue(bool partially) {
2268   if (has_aborted()) {
2269     return;
2270   }
2271 
2272   // Decide what the target size is, depending whether we're going to
2273   // drain it partially (so that other tasks can steal if they run out
2274   // of things to do) or totally (at the very end).
2275   size_t target_size;
2276   if (partially) {
2277     target_size = MIN2((size_t)_task_queue->max_elems()/3, (size_t)GCDrainStackTargetSize);
2278   } else {
2279     target_size = 0;
2280   }
2281 
2282   if (_task_queue->size() > target_size) {
2283     G1TaskQueueEntry entry;
2284     bool ret = _task_queue->pop_local(entry);
2285     while (ret) {
2286       scan_task_entry(entry);
2287       if (_task_queue->size() <= target_size || has_aborted()) {
2288         ret = false;
2289       } else {
2290         ret = _task_queue->pop_local(entry);
2291       }
2292     }
2293   }
2294 }
2295 
2296 void G1CMTask::drain_global_stack(bool partially) {
2297   if (has_aborted()) {
2298     return;
2299   }
2300 
2301   // We have a policy to drain the local queue before we attempt to
2302   // drain the global stack.
2303   assert(partially || _task_queue->size() == 0, "invariant");
2304 
2305   // Decide what the target size is, depending whether we're going to
2306   // drain it partially (so that other tasks can steal if they run out
2307   // of things to do) or totally (at the very end).
2308   // Notice that when draining the global mark stack partially, due to the racyness
2309   // of the mark stack size update we might in fact drop below the target. But,
2310   // this is not a problem.
2311   // In case of total draining, we simply process until the global mark stack is
2312   // totally empty, disregarding the size counter.
2313   if (partially) {
2314     size_t const target_size = _cm->partial_mark_stack_size_target();
2315     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2316       if (get_entries_from_global_stack()) {
2317         drain_local_queue(partially);
2318       }
2319     }
2320   } else {
2321     while (!has_aborted() && get_entries_from_global_stack()) {
2322       drain_local_queue(partially);
2323     }
2324   }
2325 }
2326 
2327 // SATB Queue has several assumptions on whether to call the par or
2328 // non-par versions of the methods. this is why some of the code is
2329 // replicated. We should really get rid of the single-threaded version
2330 // of the code to simplify things.
2331 void G1CMTask::drain_satb_buffers() {
2332   if (has_aborted()) {
2333     return;
2334   }
2335 
2336   // We set this so that the regular clock knows that we're in the
2337   // middle of draining buffers and doesn't set the abort flag when it
2338   // notices that SATB buffers are available for draining. It'd be
2339   // very counter productive if it did that. :-)
2340   _draining_satb_buffers = true;
2341 
2342   G1CMSATBBufferClosure satb_cl(this, _g1h);
2343   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2344 
2345   // This keeps claiming and applying the closure to completed buffers
2346   // until we run out of buffers or we need to abort.
2347   while (!has_aborted() &&
2348          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2349     abort_marking_if_regular_check_fail();
2350   }
2351 
2352   // Can't assert qset is empty here, even if not aborted.  If concurrent,
2353   // some other thread might be adding to the queue.  If not concurrent,
2354   // some other thread might have won the race for the last buffer, but
2355   // has not yet decremented the count.
2356 
2357   _draining_satb_buffers = false;
2358 
2359   // again, this was a potentially expensive operation, decrease the
2360   // limits to get the regular clock call early
2361   decrease_limits();
2362 }
2363 
2364 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2365   _mark_stats_cache.reset(region_idx);
2366 }
2367 
2368 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2369   return _mark_stats_cache.evict_all();
2370 }
2371 
2372 void G1CMTask::print_stats() {
2373   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2374   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2375                        _elapsed_time_ms, _termination_time_ms);
2376   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2377                        _step_times_ms.num(),
2378                        _step_times_ms.avg(),
2379                        _step_times_ms.sd(),
2380                        _step_times_ms.maximum(),
2381                        _step_times_ms.sum());
2382   size_t const hits = _mark_stats_cache.hits();
2383   size_t const misses = _mark_stats_cache.misses();
2384   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2385                        hits, misses, percent_of(hits, hits + misses));
2386 }
2387 
2388 bool G1ConcurrentMark::try_stealing(uint worker_id, G1TaskQueueEntry& task_entry) {
2389   return _task_queues->steal(worker_id, task_entry);
2390 }
2391 
2392 /*****************************************************************************
2393 
2394     The do_marking_step(time_target_ms, ...) method is the building
2395     block of the parallel marking framework. It can be called in parallel
2396     with other invocations of do_marking_step() on different tasks
2397     (but only one per task, obviously) and concurrently with the
2398     mutator threads, or during remark, hence it eliminates the need
2399     for two versions of the code. When called during remark, it will
2400     pick up from where the task left off during the concurrent marking
2401     phase. Interestingly, tasks are also claimable during evacuation
2402     pauses too, since do_marking_step() ensures that it aborts before
2403     it needs to yield.
2404 
2405     The data structures that it uses to do marking work are the
2406     following:
2407 
2408       (1) Marking Bitmap. If there are gray objects that appear only
2409       on the bitmap (this happens either when dealing with an overflow
2410       or when the concurrent start pause has simply marked the roots
2411       and didn't push them on the stack), then tasks claim heap
2412       regions whose bitmap they then scan to find gray objects. A
2413       global finger indicates where the end of the last claimed region
2414       is. A local finger indicates how far into the region a task has
2415       scanned. The two fingers are used to determine how to gray an
2416       object (i.e. whether simply marking it is OK, as it will be
2417       visited by a task in the future, or whether it needs to be also
2418       pushed on a stack).
2419 
2420       (2) Local Queue. The local queue of the task which is accessed
2421       reasonably efficiently by the task. Other tasks can steal from
2422       it when they run out of work. Throughout the marking phase, a
2423       task attempts to keep its local queue short but not totally
2424       empty, so that entries are available for stealing by other
2425       tasks. Only when there is no more work, a task will totally
2426       drain its local queue.
2427 
2428       (3) Global Mark Stack. This handles local queue overflow. During
2429       marking only sets of entries are moved between it and the local
2430       queues, as access to it requires a mutex and more fine-grain
2431       interaction with it which might cause contention. If it
2432       overflows, then the marking phase should restart and iterate
2433       over the bitmap to identify gray objects. Throughout the marking
2434       phase, tasks attempt to keep the global mark stack at a small
2435       length but not totally empty, so that entries are available for
2436       popping by other tasks. Only when there is no more work, tasks
2437       will totally drain the global mark stack.
2438 
2439       (4) SATB Buffer Queue. This is where completed SATB buffers are
2440       made available. Buffers are regularly removed from this queue
2441       and scanned for roots, so that the queue doesn't get too
2442       long. During remark, all completed buffers are processed, as
2443       well as the filled in parts of any uncompleted buffers.
2444 
2445     The do_marking_step() method tries to abort when the time target
2446     has been reached. There are a few other cases when the
2447     do_marking_step() method also aborts:
2448 
2449       (1) When the marking phase has been aborted (after a Full GC).
2450 
2451       (2) When a global overflow (on the global stack) has been
2452       triggered. Before the task aborts, it will actually sync up with
2453       the other tasks to ensure that all the marking data structures
2454       (local queues, stacks, fingers etc.)  are re-initialized so that
2455       when do_marking_step() completes, the marking phase can
2456       immediately restart.
2457 
2458       (3) When enough completed SATB buffers are available. The
2459       do_marking_step() method only tries to drain SATB buffers right
2460       at the beginning. So, if enough buffers are available, the
2461       marking step aborts and the SATB buffers are processed at
2462       the beginning of the next invocation.
2463 
2464       (4) To yield. when we have to yield then we abort and yield
2465       right at the end of do_marking_step(). This saves us from a lot
2466       of hassle as, by yielding we might allow a Full GC. If this
2467       happens then objects will be compacted underneath our feet, the
2468       heap might shrink, etc. We save checking for this by just
2469       aborting and doing the yield right at the end.
2470 
2471     From the above it follows that the do_marking_step() method should
2472     be called in a loop (or, otherwise, regularly) until it completes.
2473 
2474     If a marking step completes without its has_aborted() flag being
2475     true, it means it has completed the current marking phase (and
2476     also all other marking tasks have done so and have all synced up).
2477 
2478     A method called regular_clock_call() is invoked "regularly" (in
2479     sub ms intervals) throughout marking. It is this clock method that
2480     checks all the abort conditions which were mentioned above and
2481     decides when the task should abort. A work-based scheme is used to
2482     trigger this clock method: when the number of object words the
2483     marking phase has scanned or the number of references the marking
2484     phase has visited reach a given limit. Additional invocations to
2485     the method clock have been planted in a few other strategic places
2486     too. The initial reason for the clock method was to avoid calling
2487     vtime too regularly, as it is quite expensive. So, once it was in
2488     place, it was natural to piggy-back all the other conditions on it
2489     too and not constantly check them throughout the code.
2490 
2491     If do_termination is true then do_marking_step will enter its
2492     termination protocol.
2493 
2494     The value of is_serial must be true when do_marking_step is being
2495     called serially (i.e. by the VMThread) and do_marking_step should
2496     skip any synchronization in the termination and overflow code.
2497     Examples include the serial remark code and the serial reference
2498     processing closures.
2499 
2500     The value of is_serial must be false when do_marking_step is
2501     being called by any of the worker threads in a work gang.
2502     Examples include the concurrent marking code (CMMarkingTask),
2503     the MT remark code, and the MT reference processing closures.
2504 
2505  *****************************************************************************/
2506 
2507 void G1CMTask::do_marking_step(double time_target_ms,
2508                                bool do_termination,
2509                                bool is_serial) {
2510   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2511 
2512   _start_time_ms = os::elapsedVTime() * 1000.0;
2513 
2514   // If do_stealing is true then do_marking_step will attempt to
2515   // steal work from the other G1CMTasks. It only makes sense to
2516   // enable stealing when the termination protocol is enabled
2517   // and do_marking_step() is not being called serially.
2518   bool do_stealing = do_termination && !is_serial;
2519 
2520   G1Predictions const& predictor = _g1h->policy()->predictor();
2521   double diff_prediction_ms = predictor.predict_zero_bounded(&_marking_step_diff_ms);
2522   _time_target_ms = time_target_ms - diff_prediction_ms;
2523 
2524   // set up the variables that are used in the work-based scheme to
2525   // call the regular clock method
2526   _words_scanned = 0;
2527   _refs_reached  = 0;
2528   recalculate_limits();
2529 
2530   // clear all flags
2531   clear_has_aborted();
2532   _has_timed_out = false;
2533   _draining_satb_buffers = false;
2534 
2535   ++_calls;
2536 
2537   // Set up the bitmap and oop closures. Anything that uses them is
2538   // eventually called from this method, so it is OK to allocate these
2539   // statically.
2540   G1CMBitMapClosure bitmap_closure(this, _cm);
2541   G1CMOopClosure cm_oop_closure(_g1h, this);
2542   set_cm_oop_closure(&cm_oop_closure);
2543 
2544   if (_cm->has_overflown()) {
2545     // This can happen if the mark stack overflows during a GC pause
2546     // and this task, after a yield point, restarts. We have to abort
2547     // as we need to get into the overflow protocol which happens
2548     // right at the end of this task.
2549     set_has_aborted();
2550   }
2551 
2552   // First drain any available SATB buffers. After this, we will not
2553   // look at SATB buffers before the next invocation of this method.
2554   // If enough completed SATB buffers are queued up, the regular clock
2555   // will abort this task so that it restarts.
2556   drain_satb_buffers();
2557   // ...then partially drain the local queue and the global stack
2558   drain_local_queue(true);
2559   drain_global_stack(true);
2560 
2561   do {
2562     if (!has_aborted() && _curr_region != NULL) {
2563       // This means that we're already holding on to a region.
2564       assert(_finger != NULL, "if region is not NULL, then the finger "
2565              "should not be NULL either");
2566 
2567       // We might have restarted this task after an evacuation pause
2568       // which might have evacuated the region we're holding on to
2569       // underneath our feet. Let's read its limit again to make sure
2570       // that we do not iterate over a region of the heap that
2571       // contains garbage (update_region_limit() will also move
2572       // _finger to the start of the region if it is found empty).
2573       update_region_limit();
2574       // We will start from _finger not from the start of the region,
2575       // as we might be restarting this task after aborting half-way
2576       // through scanning this region. In this case, _finger points to
2577       // the address where we last found a marked object. If this is a
2578       // fresh region, _finger points to start().
2579       MemRegion mr = MemRegion(_finger, _region_limit);
2580 
2581       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2582              "humongous regions should go around loop once only");
2583 
2584       // Some special cases:
2585       // If the memory region is empty, we can just give up the region.
2586       // If the current region is humongous then we only need to check
2587       // the bitmap for the bit associated with the start of the object,
2588       // scan the object if it's live, and give up the region.
2589       // Otherwise, let's iterate over the bitmap of the part of the region
2590       // that is left.
2591       // If the iteration is successful, give up the region.
2592       if (mr.is_empty()) {
2593         giveup_current_region();
2594         abort_marking_if_regular_check_fail();
2595       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2596         if (_next_mark_bitmap->is_marked(mr.start())) {
2597           // The object is marked - apply the closure
2598           bitmap_closure.do_addr(mr.start());
2599         }
2600         // Even if this task aborted while scanning the humongous object
2601         // we can (and should) give up the current region.
2602         giveup_current_region();
2603         abort_marking_if_regular_check_fail();
2604       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2605         giveup_current_region();
2606         abort_marking_if_regular_check_fail();
2607       } else {
2608         assert(has_aborted(), "currently the only way to do so");
2609         // The only way to abort the bitmap iteration is to return
2610         // false from the do_bit() method. However, inside the
2611         // do_bit() method we move the _finger to point to the
2612         // object currently being looked at. So, if we bail out, we
2613         // have definitely set _finger to something non-null.
2614         assert(_finger != NULL, "invariant");
2615 
2616         // Region iteration was actually aborted. So now _finger
2617         // points to the address of the object we last scanned. If we
2618         // leave it there, when we restart this task, we will rescan
2619         // the object. It is easy to avoid this. We move the finger by
2620         // enough to point to the next possible object header.
2621         assert(_finger < _region_limit, "invariant");
2622         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2623         // Check if bitmap iteration was aborted while scanning the last object
2624         if (new_finger >= _region_limit) {
2625           giveup_current_region();
2626         } else {
2627           move_finger_to(new_finger);
2628         }
2629       }
2630     }
2631     // At this point we have either completed iterating over the
2632     // region we were holding on to, or we have aborted.
2633 
2634     // We then partially drain the local queue and the global stack.
2635     // (Do we really need this?)
2636     drain_local_queue(true);
2637     drain_global_stack(true);
2638 
2639     // Read the note on the claim_region() method on why it might
2640     // return NULL with potentially more regions available for
2641     // claiming and why we have to check out_of_regions() to determine
2642     // whether we're done or not.
2643     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2644       // We are going to try to claim a new region. We should have
2645       // given up on the previous one.
2646       // Separated the asserts so that we know which one fires.
2647       assert(_curr_region  == NULL, "invariant");
2648       assert(_finger       == NULL, "invariant");
2649       assert(_region_limit == NULL, "invariant");
2650       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2651       if (claimed_region != NULL) {
2652         // Yes, we managed to claim one
2653         setup_for_region(claimed_region);
2654         assert(_curr_region == claimed_region, "invariant");
2655       }
2656       // It is important to call the regular clock here. It might take
2657       // a while to claim a region if, for example, we hit a large
2658       // block of empty regions. So we need to call the regular clock
2659       // method once round the loop to make sure it's called
2660       // frequently enough.
2661       abort_marking_if_regular_check_fail();
2662     }
2663 
2664     if (!has_aborted() && _curr_region == NULL) {
2665       assert(_cm->out_of_regions(),
2666              "at this point we should be out of regions");
2667     }
2668   } while ( _curr_region != NULL && !has_aborted());
2669 
2670   if (!has_aborted()) {
2671     // We cannot check whether the global stack is empty, since other
2672     // tasks might be pushing objects to it concurrently.
2673     assert(_cm->out_of_regions(),
2674            "at this point we should be out of regions");
2675     // Try to reduce the number of available SATB buffers so that
2676     // remark has less work to do.
2677     drain_satb_buffers();
2678   }
2679 
2680   // Since we've done everything else, we can now totally drain the
2681   // local queue and global stack.
2682   drain_local_queue(false);
2683   drain_global_stack(false);
2684 
2685   // Attempt at work stealing from other task's queues.
2686   if (do_stealing && !has_aborted()) {
2687     // We have not aborted. This means that we have finished all that
2688     // we could. Let's try to do some stealing...
2689 
2690     // We cannot check whether the global stack is empty, since other
2691     // tasks might be pushing objects to it concurrently.
2692     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2693            "only way to reach here");
2694     while (!has_aborted()) {
2695       G1TaskQueueEntry entry;
2696       if (_cm->try_stealing(_worker_id, entry)) {
2697         scan_task_entry(entry);
2698 
2699         // And since we're towards the end, let's totally drain the
2700         // local queue and global stack.
2701         drain_local_queue(false);
2702         drain_global_stack(false);
2703       } else {
2704         break;
2705       }
2706     }
2707   }
2708 
2709   // We still haven't aborted. Now, let's try to get into the
2710   // termination protocol.
2711   if (do_termination && !has_aborted()) {
2712     // We cannot check whether the global stack is empty, since other
2713     // tasks might be concurrently pushing objects on it.
2714     // Separated the asserts so that we know which one fires.
2715     assert(_cm->out_of_regions(), "only way to reach here");
2716     assert(_task_queue->size() == 0, "only way to reach here");
2717     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2718 
2719     // The G1CMTask class also extends the TerminatorTerminator class,
2720     // hence its should_exit_termination() method will also decide
2721     // whether to exit the termination protocol or not.
2722     bool finished = (is_serial ||
2723                      _cm->terminator()->offer_termination(this));
2724     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2725     _termination_time_ms +=
2726       termination_end_time_ms - _termination_start_time_ms;
2727 
2728     if (finished) {
2729       // We're all done.
2730 
2731       // We can now guarantee that the global stack is empty, since
2732       // all other tasks have finished. We separated the guarantees so
2733       // that, if a condition is false, we can immediately find out
2734       // which one.
2735       guarantee(_cm->out_of_regions(), "only way to reach here");
2736       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2737       guarantee(_task_queue->size() == 0, "only way to reach here");
2738       guarantee(!_cm->has_overflown(), "only way to reach here");
2739       guarantee(!has_aborted(), "should never happen if termination has completed");
2740     } else {
2741       // Apparently there's more work to do. Let's abort this task. It
2742       // will restart it and we can hopefully find more things to do.
2743       set_has_aborted();
2744     }
2745   }
2746 
2747   // Mainly for debugging purposes to make sure that a pointer to the
2748   // closure which was statically allocated in this frame doesn't
2749   // escape it by accident.
2750   set_cm_oop_closure(NULL);
2751   double end_time_ms = os::elapsedVTime() * 1000.0;
2752   double elapsed_time_ms = end_time_ms - _start_time_ms;
2753   // Update the step history.
2754   _step_times_ms.add(elapsed_time_ms);
2755 
2756   if (has_aborted()) {
2757     // The task was aborted for some reason.
2758     if (_has_timed_out) {
2759       double diff_ms = elapsed_time_ms - _time_target_ms;
2760       // Keep statistics of how well we did with respect to hitting
2761       // our target only if we actually timed out (if we aborted for
2762       // other reasons, then the results might get skewed).
2763       _marking_step_diff_ms.add(diff_ms);
2764     }
2765 
2766     if (_cm->has_overflown()) {
2767       // This is the interesting one. We aborted because a global
2768       // overflow was raised. This means we have to restart the
2769       // marking phase and start iterating over regions. However, in
2770       // order to do this we have to make sure that all tasks stop
2771       // what they are doing and re-initialize in a safe manner. We
2772       // will achieve this with the use of two barrier sync points.
2773 
2774       if (!is_serial) {
2775         // We only need to enter the sync barrier if being called
2776         // from a parallel context
2777         _cm->enter_first_sync_barrier(_worker_id);
2778 
2779         // When we exit this sync barrier we know that all tasks have
2780         // stopped doing marking work. So, it's now safe to
2781         // re-initialize our data structures.
2782       }
2783 
2784       clear_region_fields();
2785       flush_mark_stats_cache();
2786 
2787       if (!is_serial) {
2788         // If we're executing the concurrent phase of marking, reset the marking
2789         // state; otherwise the marking state is reset after reference processing,
2790         // during the remark pause.
2791         // If we reset here as a result of an overflow during the remark we will
2792         // see assertion failures from any subsequent set_concurrency_and_phase()
2793         // calls.
2794         if (_cm->concurrent() && _worker_id == 0) {
2795           // Worker 0 is responsible for clearing the global data structures because
2796           // of an overflow. During STW we should not clear the overflow flag (in
2797           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2798           // method to abort the pause and restart concurrent marking.
2799           _cm->reset_marking_for_restart();
2800 
2801           log_info(gc, marking)("Concurrent Mark reset for overflow");
2802         }
2803 
2804         // ...and enter the second barrier.
2805         _cm->enter_second_sync_barrier(_worker_id);
2806       }
2807       // At this point, if we're during the concurrent phase of
2808       // marking, everything has been re-initialized and we're
2809       // ready to restart.
2810     }
2811   }
2812 }
2813 
2814 G1CMTask::G1CMTask(uint worker_id,
2815                    G1ConcurrentMark* cm,
2816                    G1CMTaskQueue* task_queue,
2817                    G1RegionMarkStats* mark_stats) :
2818   _objArray_processor(this),
2819   _worker_id(worker_id),
2820   _g1h(G1CollectedHeap::heap()),
2821   _cm(cm),
2822   _next_mark_bitmap(NULL),
2823   _task_queue(task_queue),
2824   _mark_stats_cache(mark_stats, RegionMarkStatsCacheSize),
2825   _calls(0),
2826   _time_target_ms(0.0),
2827   _start_time_ms(0.0),
2828   _cm_oop_closure(NULL),
2829   _curr_region(NULL),
2830   _finger(NULL),
2831   _region_limit(NULL),
2832   _words_scanned(0),
2833   _words_scanned_limit(0),
2834   _real_words_scanned_limit(0),
2835   _refs_reached(0),
2836   _refs_reached_limit(0),
2837   _real_refs_reached_limit(0),
2838   _has_aborted(false),
2839   _has_timed_out(false),
2840   _draining_satb_buffers(false),
2841   _step_times_ms(),
2842   _elapsed_time_ms(0.0),
2843   _termination_time_ms(0.0),
2844   _termination_start_time_ms(0.0),
2845   _marking_step_diff_ms()
2846 {
2847   guarantee(task_queue != NULL, "invariant");
2848 
2849   _marking_step_diff_ms.add(0.5);
2850 }
2851 
2852 // These are formatting macros that are used below to ensure
2853 // consistent formatting. The *_H_* versions are used to format the
2854 // header for a particular value and they should be kept consistent
2855 // with the corresponding macro. Also note that most of the macros add
2856 // the necessary white space (as a prefix) which makes them a bit
2857 // easier to compose.
2858 
2859 // All the output lines are prefixed with this string to be able to
2860 // identify them easily in a large log file.
2861 #define G1PPRL_LINE_PREFIX            "###"
2862 
2863 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2864 #ifdef _LP64
2865 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2866 #else // _LP64
2867 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2868 #endif // _LP64
2869 
2870 // For per-region info
2871 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2872 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2873 #define G1PPRL_STATE_FORMAT           "   %-5s"
2874 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2875 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2876 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2877 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2878 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2879 
2880 // For summary info
2881 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2882 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2883 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2884 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2885 
2886 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2887   _total_used_bytes(0), _total_capacity_bytes(0),
2888   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2889   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2890 {
2891   if (!log_is_enabled(Trace, gc, liveness)) {
2892     return;
2893   }
2894 
2895   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2896   MemRegion g1_reserved = g1h->g1_reserved();
2897   double now = os::elapsedTime();
2898 
2899   // Print the header of the output.
2900   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2901   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2902                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2903                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2904                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2905                           HeapRegion::GrainBytes);
2906   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2907   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2908                           G1PPRL_TYPE_H_FORMAT
2909                           G1PPRL_ADDR_BASE_H_FORMAT
2910                           G1PPRL_BYTE_H_FORMAT
2911                           G1PPRL_BYTE_H_FORMAT
2912                           G1PPRL_BYTE_H_FORMAT
2913                           G1PPRL_DOUBLE_H_FORMAT
2914                           G1PPRL_BYTE_H_FORMAT
2915                           G1PPRL_STATE_H_FORMAT
2916                           G1PPRL_BYTE_H_FORMAT,
2917                           "type", "address-range",
2918                           "used", "prev-live", "next-live", "gc-eff",
2919                           "remset", "state", "code-roots");
2920   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2921                           G1PPRL_TYPE_H_FORMAT
2922                           G1PPRL_ADDR_BASE_H_FORMAT
2923                           G1PPRL_BYTE_H_FORMAT
2924                           G1PPRL_BYTE_H_FORMAT
2925                           G1PPRL_BYTE_H_FORMAT
2926                           G1PPRL_DOUBLE_H_FORMAT
2927                           G1PPRL_BYTE_H_FORMAT
2928                           G1PPRL_STATE_H_FORMAT
2929                           G1PPRL_BYTE_H_FORMAT,
2930                           "", "",
2931                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2932                           "(bytes)", "", "(bytes)");
2933 }
2934 
2935 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2936   if (!log_is_enabled(Trace, gc, liveness)) {
2937     return false;
2938   }
2939 
2940   const char* type       = r->get_type_str();
2941   HeapWord* bottom       = r->bottom();
2942   HeapWord* end          = r->end();
2943   size_t capacity_bytes  = r->capacity();
2944   size_t used_bytes      = r->used();
2945   size_t prev_live_bytes = r->live_bytes();
2946   size_t next_live_bytes = r->next_live_bytes();
2947   double gc_eff          = r->gc_efficiency();
2948   size_t remset_bytes    = r->rem_set()->mem_size();
2949   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2950   const char* remset_type = r->rem_set()->get_short_state_str();
2951 
2952   _total_used_bytes      += used_bytes;
2953   _total_capacity_bytes  += capacity_bytes;
2954   _total_prev_live_bytes += prev_live_bytes;
2955   _total_next_live_bytes += next_live_bytes;
2956   _total_remset_bytes    += remset_bytes;
2957   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2958 
2959   // Print a line for this particular region.
2960   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2961                           G1PPRL_TYPE_FORMAT
2962                           G1PPRL_ADDR_BASE_FORMAT
2963                           G1PPRL_BYTE_FORMAT
2964                           G1PPRL_BYTE_FORMAT
2965                           G1PPRL_BYTE_FORMAT
2966                           G1PPRL_DOUBLE_FORMAT
2967                           G1PPRL_BYTE_FORMAT
2968                           G1PPRL_STATE_FORMAT
2969                           G1PPRL_BYTE_FORMAT,
2970                           type, p2i(bottom), p2i(end),
2971                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2972                           remset_bytes, remset_type, strong_code_roots_bytes);
2973 
2974   return false;
2975 }
2976 
2977 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2978   if (!log_is_enabled(Trace, gc, liveness)) {
2979     return;
2980   }
2981 
2982   // add static memory usages to remembered set sizes
2983   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
2984   // Print the footer of the output.
2985   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2986   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2987                          " SUMMARY"
2988                          G1PPRL_SUM_MB_FORMAT("capacity")
2989                          G1PPRL_SUM_MB_PERC_FORMAT("used")
2990                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
2991                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
2992                          G1PPRL_SUM_MB_FORMAT("remset")
2993                          G1PPRL_SUM_MB_FORMAT("code-roots"),
2994                          bytes_to_mb(_total_capacity_bytes),
2995                          bytes_to_mb(_total_used_bytes),
2996                          percent_of(_total_used_bytes, _total_capacity_bytes),
2997                          bytes_to_mb(_total_prev_live_bytes),
2998                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
2999                          bytes_to_mb(_total_next_live_bytes),
3000                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3001                          bytes_to_mb(_total_remset_bytes),
3002                          bytes_to_mb(_total_strong_code_roots_bytes));
3003 }