1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
  27 #endif
  28 
  29 #include "precompiled.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  33 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  34 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  35 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  36 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  37 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  38 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  39 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  40 #include "gc_implementation/g1/g1EvacFailure.hpp"
  41 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  42 #include "gc_implementation/g1/g1Log.hpp"
  43 #include "gc_implementation/g1/g1MarkSweep.hpp"
  44 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  45 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  46 #include "gc_implementation/g1/g1StringDedup.hpp"
  47 #include "gc_implementation/g1/g1YCTypes.hpp"
  48 #include "gc_implementation/g1/heapRegion.inline.hpp"
  49 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  50 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  51 #include "gc_implementation/g1/vm_operations_g1.hpp"
  52 #include "gc_implementation/shared/gcHeapSummary.hpp"
  53 #include "gc_implementation/shared/gcTimer.hpp"
  54 #include "gc_implementation/shared/gcTrace.hpp"
  55 #include "gc_implementation/shared/gcTraceTime.hpp"
  56 #include "gc_implementation/shared/isGCActiveMark.hpp"
  57 #include "memory/gcLocker.inline.hpp"
  58 #include "memory/generationSpec.hpp"
  59 #include "memory/iterator.hpp"
  60 #include "memory/referenceProcessor.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "oops/oop.pcgc.inline.hpp"
  63 #include "runtime/prefetch.inline.hpp"
  64 #include "runtime/orderAccess.inline.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "utilities/ticks.hpp"
  67 
  68 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  69 
  70 // turn it on so that the contents of the young list (scan-only /
  71 // to-be-collected) are printed at "strategic" points before / during
  72 // / after the collection --- this is useful for debugging
  73 #define YOUNG_LIST_VERBOSE 0
  74 // CURRENT STATUS
  75 // This file is under construction.  Search for "FIXME".
  76 
  77 // INVARIANTS/NOTES
  78 //
  79 // All allocation activity covered by the G1CollectedHeap interface is
  80 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  81 // and allocate_new_tlab, which are the "entry" points to the
  82 // allocation code from the rest of the JVM.  (Note that this does not
  83 // apply to TLAB allocation, which is not part of this interface: it
  84 // is done by clients of this interface.)
  85 
  86 // Notes on implementation of parallelism in different tasks.
  87 //
  88 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  89 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  90 // It does use run_task() which sets _n_workers in the task.
  91 // G1ParTask executes g1_process_strong_roots() ->
  92 // SharedHeap::process_strong_roots() which calls eventually to
  93 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  94 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  95 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  96 //
  97 
  98 // Local to this file.
  99 
 100 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 101   G1RemSet* _g1rs;
 102   ConcurrentG1Refine* _cg1r;
 103   bool _concurrent;
 104 public:
 105   RefineCardTableEntryClosure(G1RemSet* g1rs,
 106                               ConcurrentG1Refine* cg1r) :
 107     _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 108   {}
 109   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 110     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 111     // This path is executed by the concurrent refine or mutator threads,
 112     // concurrently, and so we do not care if card_ptr contains references
 113     // that point into the collection set.
 114     assert(!oops_into_cset, "should be");
 115 
 116     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 117       // Caller will actually yield.
 118       return false;
 119     }
 120     // Otherwise, we finished successfully; return true.
 121     return true;
 122   }
 123   void set_concurrent(bool b) { _concurrent = b; }
 124 };
 125 
 126 
 127 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 128   int _calls;
 129   G1CollectedHeap* _g1h;
 130   CardTableModRefBS* _ctbs;
 131   int _histo[256];
 132 public:
 133   ClearLoggedCardTableEntryClosure() :
 134     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
 135   {
 136     for (int i = 0; i < 256; i++) _histo[i] = 0;
 137   }
 138   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 139     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 140       _calls++;
 141       unsigned char* ujb = (unsigned char*)card_ptr;
 142       int ind = (int)(*ujb);
 143       _histo[ind]++;
 144       *card_ptr = -1;
 145     }
 146     return true;
 147   }
 148   int calls() { return _calls; }
 149   void print_histo() {
 150     gclog_or_tty->print_cr("Card table value histogram:");
 151     for (int i = 0; i < 256; i++) {
 152       if (_histo[i] != 0) {
 153         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 154       }
 155     }
 156   }
 157 };
 158 
 159 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 160   int _calls;
 161   G1CollectedHeap* _g1h;
 162   CardTableModRefBS* _ctbs;
 163 public:
 164   RedirtyLoggedCardTableEntryClosure() :
 165     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}
 166 
 167   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 168     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 169       _calls++;
 170       *card_ptr = 0;
 171     }
 172     return true;
 173   }
 174   int calls() { return _calls; }
 175 };
 176 
 177 YoungList::YoungList(G1CollectedHeap* g1h) :
 178     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 179     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 180   guarantee(check_list_empty(false), "just making sure...");
 181 }
 182 
 183 void YoungList::push_region(HeapRegion *hr) {
 184   assert(!hr->is_young(), "should not already be young");
 185   assert(hr->get_next_young_region() == NULL, "cause it should!");
 186 
 187   hr->set_next_young_region(_head);
 188   _head = hr;
 189 
 190   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 191   ++_length;
 192 }
 193 
 194 void YoungList::add_survivor_region(HeapRegion* hr) {
 195   assert(hr->is_survivor(), "should be flagged as survivor region");
 196   assert(hr->get_next_young_region() == NULL, "cause it should!");
 197 
 198   hr->set_next_young_region(_survivor_head);
 199   if (_survivor_head == NULL) {
 200     _survivor_tail = hr;
 201   }
 202   _survivor_head = hr;
 203   ++_survivor_length;
 204 }
 205 
 206 void YoungList::empty_list(HeapRegion* list) {
 207   while (list != NULL) {
 208     HeapRegion* next = list->get_next_young_region();
 209     list->set_next_young_region(NULL);
 210     list->uninstall_surv_rate_group();
 211     list->set_not_young();
 212     list = next;
 213   }
 214 }
 215 
 216 void YoungList::empty_list() {
 217   assert(check_list_well_formed(), "young list should be well formed");
 218 
 219   empty_list(_head);
 220   _head = NULL;
 221   _length = 0;
 222 
 223   empty_list(_survivor_head);
 224   _survivor_head = NULL;
 225   _survivor_tail = NULL;
 226   _survivor_length = 0;
 227 
 228   _last_sampled_rs_lengths = 0;
 229 
 230   assert(check_list_empty(false), "just making sure...");
 231 }
 232 
 233 bool YoungList::check_list_well_formed() {
 234   bool ret = true;
 235 
 236   uint length = 0;
 237   HeapRegion* curr = _head;
 238   HeapRegion* last = NULL;
 239   while (curr != NULL) {
 240     if (!curr->is_young()) {
 241       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 242                              "incorrectly tagged (y: %d, surv: %d)",
 243                              curr->bottom(), curr->end(),
 244                              curr->is_young(), curr->is_survivor());
 245       ret = false;
 246     }
 247     ++length;
 248     last = curr;
 249     curr = curr->get_next_young_region();
 250   }
 251   ret = ret && (length == _length);
 252 
 253   if (!ret) {
 254     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 255     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 256                            length, _length);
 257   }
 258 
 259   return ret;
 260 }
 261 
 262 bool YoungList::check_list_empty(bool check_sample) {
 263   bool ret = true;
 264 
 265   if (_length != 0) {
 266     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 267                   _length);
 268     ret = false;
 269   }
 270   if (check_sample && _last_sampled_rs_lengths != 0) {
 271     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 272     ret = false;
 273   }
 274   if (_head != NULL) {
 275     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 276     ret = false;
 277   }
 278   if (!ret) {
 279     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 280   }
 281 
 282   return ret;
 283 }
 284 
 285 void
 286 YoungList::rs_length_sampling_init() {
 287   _sampled_rs_lengths = 0;
 288   _curr               = _head;
 289 }
 290 
 291 bool
 292 YoungList::rs_length_sampling_more() {
 293   return _curr != NULL;
 294 }
 295 
 296 void
 297 YoungList::rs_length_sampling_next() {
 298   assert( _curr != NULL, "invariant" );
 299   size_t rs_length = _curr->rem_set()->occupied();
 300 
 301   _sampled_rs_lengths += rs_length;
 302 
 303   // The current region may not yet have been added to the
 304   // incremental collection set (it gets added when it is
 305   // retired as the current allocation region).
 306   if (_curr->in_collection_set()) {
 307     // Update the collection set policy information for this region
 308     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 309   }
 310 
 311   _curr = _curr->get_next_young_region();
 312   if (_curr == NULL) {
 313     _last_sampled_rs_lengths = _sampled_rs_lengths;
 314     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 315   }
 316 }
 317 
 318 void
 319 YoungList::reset_auxilary_lists() {
 320   guarantee( is_empty(), "young list should be empty" );
 321   assert(check_list_well_formed(), "young list should be well formed");
 322 
 323   // Add survivor regions to SurvRateGroup.
 324   _g1h->g1_policy()->note_start_adding_survivor_regions();
 325   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 326 
 327   int young_index_in_cset = 0;
 328   for (HeapRegion* curr = _survivor_head;
 329        curr != NULL;
 330        curr = curr->get_next_young_region()) {
 331     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 332 
 333     // The region is a non-empty survivor so let's add it to
 334     // the incremental collection set for the next evacuation
 335     // pause.
 336     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 337     young_index_in_cset += 1;
 338   }
 339   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 340   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 341 
 342   _head   = _survivor_head;
 343   _length = _survivor_length;
 344   if (_survivor_head != NULL) {
 345     assert(_survivor_tail != NULL, "cause it shouldn't be");
 346     assert(_survivor_length > 0, "invariant");
 347     _survivor_tail->set_next_young_region(NULL);
 348   }
 349 
 350   // Don't clear the survivor list handles until the start of
 351   // the next evacuation pause - we need it in order to re-tag
 352   // the survivor regions from this evacuation pause as 'young'
 353   // at the start of the next.
 354 
 355   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 356 
 357   assert(check_list_well_formed(), "young list should be well formed");
 358 }
 359 
 360 void YoungList::print() {
 361   HeapRegion* lists[] = {_head,   _survivor_head};
 362   const char* names[] = {"YOUNG", "SURVIVOR"};
 363 
 364   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 365     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 366     HeapRegion *curr = lists[list];
 367     if (curr == NULL)
 368       gclog_or_tty->print_cr("  empty");
 369     while (curr != NULL) {
 370       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 371                              HR_FORMAT_PARAMS(curr),
 372                              curr->prev_top_at_mark_start(),
 373                              curr->next_top_at_mark_start(),
 374                              curr->age_in_surv_rate_group_cond());
 375       curr = curr->get_next_young_region();
 376     }
 377   }
 378 
 379   gclog_or_tty->cr();
 380 }
 381 
 382 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 383 {
 384   // Claim the right to put the region on the dirty cards region list
 385   // by installing a self pointer.
 386   HeapRegion* next = hr->get_next_dirty_cards_region();
 387   if (next == NULL) {
 388     HeapRegion* res = (HeapRegion*)
 389       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 390                           NULL);
 391     if (res == NULL) {
 392       HeapRegion* head;
 393       do {
 394         // Put the region to the dirty cards region list.
 395         head = _dirty_cards_region_list;
 396         next = (HeapRegion*)
 397           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 398         if (next == head) {
 399           assert(hr->get_next_dirty_cards_region() == hr,
 400                  "hr->get_next_dirty_cards_region() != hr");
 401           if (next == NULL) {
 402             // The last region in the list points to itself.
 403             hr->set_next_dirty_cards_region(hr);
 404           } else {
 405             hr->set_next_dirty_cards_region(next);
 406           }
 407         }
 408       } while (next != head);
 409     }
 410   }
 411 }
 412 
 413 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 414 {
 415   HeapRegion* head;
 416   HeapRegion* hr;
 417   do {
 418     head = _dirty_cards_region_list;
 419     if (head == NULL) {
 420       return NULL;
 421     }
 422     HeapRegion* new_head = head->get_next_dirty_cards_region();
 423     if (head == new_head) {
 424       // The last region.
 425       new_head = NULL;
 426     }
 427     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 428                                           head);
 429   } while (hr != head);
 430   assert(hr != NULL, "invariant");
 431   hr->set_next_dirty_cards_region(NULL);
 432   return hr;
 433 }
 434 
 435 #ifdef ASSERT
 436 // A region is added to the collection set as it is retired
 437 // so an address p can point to a region which will be in the
 438 // collection set but has not yet been retired.  This method
 439 // therefore is only accurate during a GC pause after all
 440 // regions have been retired.  It is used for debugging
 441 // to check if an nmethod has references to objects that can
 442 // be move during a partial collection.  Though it can be
 443 // inaccurate, it is sufficient for G1 because the conservative
 444 // implementation of is_scavengable() for G1 will indicate that
 445 // all nmethods must be scanned during a partial collection.
 446 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 447   HeapRegion* hr = heap_region_containing(p);
 448   return hr != NULL && hr->in_collection_set();
 449 }
 450 #endif
 451 
 452 // Returns true if the reference points to an object that
 453 // can move in an incremental collection.
 454 bool G1CollectedHeap::is_scavengable(const void* p) {
 455   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 456   G1CollectorPolicy* g1p = g1h->g1_policy();
 457   HeapRegion* hr = heap_region_containing(p);
 458   if (hr == NULL) {
 459      // null
 460      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 461      return false;
 462   } else {
 463     return !hr->isHumongous();
 464   }
 465 }
 466 
 467 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 468   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 469   CardTableModRefBS* ct_bs = g1_barrier_set();
 470 
 471   // Count the dirty cards at the start.
 472   CountNonCleanMemRegionClosure count1(this);
 473   ct_bs->mod_card_iterate(&count1);
 474   int orig_count = count1.n();
 475 
 476   // First clear the logged cards.
 477   ClearLoggedCardTableEntryClosure clear;
 478   dcqs.set_closure(&clear);
 479   dcqs.apply_closure_to_all_completed_buffers();
 480   dcqs.iterate_closure_all_threads(false);
 481   clear.print_histo();
 482 
 483   // Now ensure that there's no dirty cards.
 484   CountNonCleanMemRegionClosure count2(this);
 485   ct_bs->mod_card_iterate(&count2);
 486   if (count2.n() != 0) {
 487     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 488                            count2.n(), orig_count);
 489   }
 490   guarantee(count2.n() == 0, "Card table should be clean.");
 491 
 492   RedirtyLoggedCardTableEntryClosure redirty;
 493   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 494   dcqs.apply_closure_to_all_completed_buffers();
 495   dcqs.iterate_closure_all_threads(false);
 496   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 497                          clear.calls(), orig_count);
 498   guarantee(redirty.calls() == clear.calls(),
 499             "Or else mechanism is broken.");
 500 
 501   CountNonCleanMemRegionClosure count3(this);
 502   ct_bs->mod_card_iterate(&count3);
 503   if (count3.n() != orig_count) {
 504     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 505                            orig_count, count3.n());
 506     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 507   }
 508 
 509   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 510 }
 511 
 512 // Private class members.
 513 
 514 G1CollectedHeap* G1CollectedHeap::_g1h;
 515 
 516 // Private methods.
 517 
 518 HeapRegion*
 519 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 520   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 521   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 522     if (!_secondary_free_list.is_empty()) {
 523       if (G1ConcRegionFreeingVerbose) {
 524         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 525                                "secondary_free_list has %u entries",
 526                                _secondary_free_list.length());
 527       }
 528       // It looks as if there are free regions available on the
 529       // secondary_free_list. Let's move them to the free_list and try
 530       // again to allocate from it.
 531       append_secondary_free_list();
 532 
 533       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 534              "empty we should have moved at least one entry to the free_list");
 535       HeapRegion* res = _free_list.remove_region(is_old);
 536       if (G1ConcRegionFreeingVerbose) {
 537         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 538                                "allocated "HR_FORMAT" from secondary_free_list",
 539                                HR_FORMAT_PARAMS(res));
 540       }
 541       return res;
 542     }
 543 
 544     // Wait here until we get notified either when (a) there are no
 545     // more free regions coming or (b) some regions have been moved on
 546     // the secondary_free_list.
 547     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 548   }
 549 
 550   if (G1ConcRegionFreeingVerbose) {
 551     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 552                            "could not allocate from secondary_free_list");
 553   }
 554   return NULL;
 555 }
 556 
 557 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 558   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 559          "the only time we use this to allocate a humongous region is "
 560          "when we are allocating a single humongous region");
 561 
 562   HeapRegion* res;
 563   if (G1StressConcRegionFreeing) {
 564     if (!_secondary_free_list.is_empty()) {
 565       if (G1ConcRegionFreeingVerbose) {
 566         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 567                                "forced to look at the secondary_free_list");
 568       }
 569       res = new_region_try_secondary_free_list(is_old);
 570       if (res != NULL) {
 571         return res;
 572       }
 573     }
 574   }
 575 
 576   res = _free_list.remove_region(is_old);
 577 
 578   if (res == NULL) {
 579     if (G1ConcRegionFreeingVerbose) {
 580       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 581                              "res == NULL, trying the secondary_free_list");
 582     }
 583     res = new_region_try_secondary_free_list(is_old);
 584   }
 585   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 586     // Currently, only attempts to allocate GC alloc regions set
 587     // do_expand to true. So, we should only reach here during a
 588     // safepoint. If this assumption changes we might have to
 589     // reconsider the use of _expand_heap_after_alloc_failure.
 590     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 591 
 592     ergo_verbose1(ErgoHeapSizing,
 593                   "attempt heap expansion",
 594                   ergo_format_reason("region allocation request failed")
 595                   ergo_format_byte("allocation request"),
 596                   word_size * HeapWordSize);
 597     if (expand(word_size * HeapWordSize)) {
 598       // Given that expand() succeeded in expanding the heap, and we
 599       // always expand the heap by an amount aligned to the heap
 600       // region size, the free list should in theory not be empty.
 601       // In either case remove_region() will check for NULL.
 602       res = _free_list.remove_region(is_old);
 603     } else {
 604       _expand_heap_after_alloc_failure = false;
 605     }
 606   }
 607   return res;
 608 }
 609 
 610 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 611                                                         size_t word_size) {
 612   assert(isHumongous(word_size), "word_size should be humongous");
 613   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 614 
 615   uint first = G1_NULL_HRS_INDEX;
 616   if (num_regions == 1) {
 617     // Only one region to allocate, no need to go through the slower
 618     // path. The caller will attempt the expansion if this fails, so
 619     // let's not try to expand here too.
 620     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 621     if (hr != NULL) {
 622       first = hr->hrs_index();
 623     } else {
 624       first = G1_NULL_HRS_INDEX;
 625     }
 626   } else {
 627     // We can't allocate humongous regions while cleanupComplete() is
 628     // running, since some of the regions we find to be empty might not
 629     // yet be added to the free list and it is not straightforward to
 630     // know which list they are on so that we can remove them. Note
 631     // that we only need to do this if we need to allocate more than
 632     // one region to satisfy the current humongous allocation
 633     // request. If we are only allocating one region we use the common
 634     // region allocation code (see above).
 635     wait_while_free_regions_coming();
 636     append_secondary_free_list_if_not_empty_with_lock();
 637 
 638     if (free_regions() >= num_regions) {
 639       first = _hrs.find_contiguous(num_regions);
 640       if (first != G1_NULL_HRS_INDEX) {
 641         for (uint i = first; i < first + num_regions; ++i) {
 642           HeapRegion* hr = region_at(i);
 643           assert(hr->is_empty(), "sanity");
 644           assert(is_on_master_free_list(hr), "sanity");
 645           hr->set_pending_removal(true);
 646         }
 647         _free_list.remove_all_pending(num_regions);
 648       }
 649     }
 650   }
 651   return first;
 652 }
 653 
 654 HeapWord*
 655 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 656                                                            uint num_regions,
 657                                                            size_t word_size) {
 658   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 659   assert(isHumongous(word_size), "word_size should be humongous");
 660   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 661 
 662   // Index of last region in the series + 1.
 663   uint last = first + num_regions;
 664 
 665   // We need to initialize the region(s) we just discovered. This is
 666   // a bit tricky given that it can happen concurrently with
 667   // refinement threads refining cards on these regions and
 668   // potentially wanting to refine the BOT as they are scanning
 669   // those cards (this can happen shortly after a cleanup; see CR
 670   // 6991377). So we have to set up the region(s) carefully and in
 671   // a specific order.
 672 
 673   // The word size sum of all the regions we will allocate.
 674   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 675   assert(word_size <= word_size_sum, "sanity");
 676 
 677   // This will be the "starts humongous" region.
 678   HeapRegion* first_hr = region_at(first);
 679   // The header of the new object will be placed at the bottom of
 680   // the first region.
 681   HeapWord* new_obj = first_hr->bottom();
 682   // This will be the new end of the first region in the series that
 683   // should also match the end of the last region in the series.
 684   HeapWord* new_end = new_obj + word_size_sum;
 685   // This will be the new top of the first region that will reflect
 686   // this allocation.
 687   HeapWord* new_top = new_obj + word_size;
 688 
 689   // First, we need to zero the header of the space that we will be
 690   // allocating. When we update top further down, some refinement
 691   // threads might try to scan the region. By zeroing the header we
 692   // ensure that any thread that will try to scan the region will
 693   // come across the zero klass word and bail out.
 694   //
 695   // NOTE: It would not have been correct to have used
 696   // CollectedHeap::fill_with_object() and make the space look like
 697   // an int array. The thread that is doing the allocation will
 698   // later update the object header to a potentially different array
 699   // type and, for a very short period of time, the klass and length
 700   // fields will be inconsistent. This could cause a refinement
 701   // thread to calculate the object size incorrectly.
 702   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 703 
 704   // We will set up the first region as "starts humongous". This
 705   // will also update the BOT covering all the regions to reflect
 706   // that there is a single object that starts at the bottom of the
 707   // first region.
 708   first_hr->set_startsHumongous(new_top, new_end);
 709 
 710   // Then, if there are any, we will set up the "continues
 711   // humongous" regions.
 712   HeapRegion* hr = NULL;
 713   for (uint i = first + 1; i < last; ++i) {
 714     hr = region_at(i);
 715     hr->set_continuesHumongous(first_hr);
 716   }
 717   // If we have "continues humongous" regions (hr != NULL), then the
 718   // end of the last one should match new_end.
 719   assert(hr == NULL || hr->end() == new_end, "sanity");
 720 
 721   // Up to this point no concurrent thread would have been able to
 722   // do any scanning on any region in this series. All the top
 723   // fields still point to bottom, so the intersection between
 724   // [bottom,top] and [card_start,card_end] will be empty. Before we
 725   // update the top fields, we'll do a storestore to make sure that
 726   // no thread sees the update to top before the zeroing of the
 727   // object header and the BOT initialization.
 728   OrderAccess::storestore();
 729 
 730   // Now that the BOT and the object header have been initialized,
 731   // we can update top of the "starts humongous" region.
 732   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 733          "new_top should be in this region");
 734   first_hr->set_top(new_top);
 735   if (_hr_printer.is_active()) {
 736     HeapWord* bottom = first_hr->bottom();
 737     HeapWord* end = first_hr->orig_end();
 738     if ((first + 1) == last) {
 739       // the series has a single humongous region
 740       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 741     } else {
 742       // the series has more than one humongous regions
 743       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 744     }
 745   }
 746 
 747   // Now, we will update the top fields of the "continues humongous"
 748   // regions. The reason we need to do this is that, otherwise,
 749   // these regions would look empty and this will confuse parts of
 750   // G1. For example, the code that looks for a consecutive number
 751   // of empty regions will consider them empty and try to
 752   // re-allocate them. We can extend is_empty() to also include
 753   // !continuesHumongous(), but it is easier to just update the top
 754   // fields here. The way we set top for all regions (i.e., top ==
 755   // end for all regions but the last one, top == new_top for the
 756   // last one) is actually used when we will free up the humongous
 757   // region in free_humongous_region().
 758   hr = NULL;
 759   for (uint i = first + 1; i < last; ++i) {
 760     hr = region_at(i);
 761     if ((i + 1) == last) {
 762       // last continues humongous region
 763       assert(hr->bottom() < new_top && new_top <= hr->end(),
 764              "new_top should fall on this region");
 765       hr->set_top(new_top);
 766       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 767     } else {
 768       // not last one
 769       assert(new_top > hr->end(), "new_top should be above this region");
 770       hr->set_top(hr->end());
 771       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 772     }
 773   }
 774   // If we have continues humongous regions (hr != NULL), then the
 775   // end of the last one should match new_end and its top should
 776   // match new_top.
 777   assert(hr == NULL ||
 778          (hr->end() == new_end && hr->top() == new_top), "sanity");
 779 
 780   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 781   _summary_bytes_used += first_hr->used();
 782   _humongous_set.add(first_hr);
 783 
 784   return new_obj;
 785 }
 786 
 787 // If could fit into free regions w/o expansion, try.
 788 // Otherwise, if can expand, do so.
 789 // Otherwise, if using ex regions might help, try with ex given back.
 790 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 791   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 792 
 793   verify_region_sets_optional();
 794 
 795   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 796   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 797   uint x_num = expansion_regions();
 798   uint fs = _hrs.free_suffix();
 799   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 800   if (first == G1_NULL_HRS_INDEX) {
 801     // The only thing we can do now is attempt expansion.
 802     if (fs + x_num >= num_regions) {
 803       // If the number of regions we're trying to allocate for this
 804       // object is at most the number of regions in the free suffix,
 805       // then the call to humongous_obj_allocate_find_first() above
 806       // should have succeeded and we wouldn't be here.
 807       //
 808       // We should only be trying to expand when the free suffix is
 809       // not sufficient for the object _and_ we have some expansion
 810       // room available.
 811       assert(num_regions > fs, "earlier allocation should have succeeded");
 812 
 813       ergo_verbose1(ErgoHeapSizing,
 814                     "attempt heap expansion",
 815                     ergo_format_reason("humongous allocation request failed")
 816                     ergo_format_byte("allocation request"),
 817                     word_size * HeapWordSize);
 818       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 819         // Even though the heap was expanded, it might not have
 820         // reached the desired size. So, we cannot assume that the
 821         // allocation will succeed.
 822         first = humongous_obj_allocate_find_first(num_regions, word_size);
 823       }
 824     }
 825   }
 826 
 827   HeapWord* result = NULL;
 828   if (first != G1_NULL_HRS_INDEX) {
 829     result =
 830       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 831     assert(result != NULL, "it should always return a valid result");
 832 
 833     // A successful humongous object allocation changes the used space
 834     // information of the old generation so we need to recalculate the
 835     // sizes and update the jstat counters here.
 836     g1mm()->update_sizes();
 837   }
 838 
 839   verify_region_sets_optional();
 840 
 841   return result;
 842 }
 843 
 844 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 845   assert_heap_not_locked_and_not_at_safepoint();
 846   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 847 
 848   unsigned int dummy_gc_count_before;
 849   int dummy_gclocker_retry_count = 0;
 850   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 851 }
 852 
 853 HeapWord*
 854 G1CollectedHeap::mem_allocate(size_t word_size,
 855                               bool*  gc_overhead_limit_was_exceeded) {
 856   assert_heap_not_locked_and_not_at_safepoint();
 857 
 858   // Loop until the allocation is satisfied, or unsatisfied after GC.
 859   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 860     unsigned int gc_count_before;
 861 
 862     HeapWord* result = NULL;
 863     if (!isHumongous(word_size)) {
 864       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 865     } else {
 866       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 867     }
 868     if (result != NULL) {
 869       return result;
 870     }
 871 
 872     // Create the garbage collection operation...
 873     VM_G1CollectForAllocation op(gc_count_before, word_size);
 874     // ...and get the VM thread to execute it.
 875     VMThread::execute(&op);
 876 
 877     if (op.prologue_succeeded() && op.pause_succeeded()) {
 878       // If the operation was successful we'll return the result even
 879       // if it is NULL. If the allocation attempt failed immediately
 880       // after a Full GC, it's unlikely we'll be able to allocate now.
 881       HeapWord* result = op.result();
 882       if (result != NULL && !isHumongous(word_size)) {
 883         // Allocations that take place on VM operations do not do any
 884         // card dirtying and we have to do it here. We only have to do
 885         // this for non-humongous allocations, though.
 886         dirty_young_block(result, word_size);
 887       }
 888       return result;
 889     } else {
 890       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 891         return NULL;
 892       }
 893       assert(op.result() == NULL,
 894              "the result should be NULL if the VM op did not succeed");
 895     }
 896 
 897     // Give a warning if we seem to be looping forever.
 898     if ((QueuedAllocationWarningCount > 0) &&
 899         (try_count % QueuedAllocationWarningCount == 0)) {
 900       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 901     }
 902   }
 903 
 904   ShouldNotReachHere();
 905   return NULL;
 906 }
 907 
 908 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 909                                            unsigned int *gc_count_before_ret,
 910                                            int* gclocker_retry_count_ret) {
 911   // Make sure you read the note in attempt_allocation_humongous().
 912 
 913   assert_heap_not_locked_and_not_at_safepoint();
 914   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 915          "be called for humongous allocation requests");
 916 
 917   // We should only get here after the first-level allocation attempt
 918   // (attempt_allocation()) failed to allocate.
 919 
 920   // We will loop until a) we manage to successfully perform the
 921   // allocation or b) we successfully schedule a collection which
 922   // fails to perform the allocation. b) is the only case when we'll
 923   // return NULL.
 924   HeapWord* result = NULL;
 925   for (int try_count = 1; /* we'll return */; try_count += 1) {
 926     bool should_try_gc;
 927     unsigned int gc_count_before;
 928 
 929     {
 930       MutexLockerEx x(Heap_lock);
 931 
 932       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 933                                                       false /* bot_updates */);
 934       if (result != NULL) {
 935         return result;
 936       }
 937 
 938       // If we reach here, attempt_allocation_locked() above failed to
 939       // allocate a new region. So the mutator alloc region should be NULL.
 940       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 941 
 942       if (GC_locker::is_active_and_needs_gc()) {
 943         if (g1_policy()->can_expand_young_list()) {
 944           // No need for an ergo verbose message here,
 945           // can_expand_young_list() does this when it returns true.
 946           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 947                                                       false /* bot_updates */);
 948           if (result != NULL) {
 949             return result;
 950           }
 951         }
 952         should_try_gc = false;
 953       } else {
 954         // The GCLocker may not be active but the GCLocker initiated
 955         // GC may not yet have been performed (GCLocker::needs_gc()
 956         // returns true). In this case we do not try this GC and
 957         // wait until the GCLocker initiated GC is performed, and
 958         // then retry the allocation.
 959         if (GC_locker::needs_gc()) {
 960           should_try_gc = false;
 961         } else {
 962           // Read the GC count while still holding the Heap_lock.
 963           gc_count_before = total_collections();
 964           should_try_gc = true;
 965         }
 966       }
 967     }
 968 
 969     if (should_try_gc) {
 970       bool succeeded;
 971       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 972           GCCause::_g1_inc_collection_pause);
 973       if (result != NULL) {
 974         assert(succeeded, "only way to get back a non-NULL result");
 975         return result;
 976       }
 977 
 978       if (succeeded) {
 979         // If we get here we successfully scheduled a collection which
 980         // failed to allocate. No point in trying to allocate
 981         // further. We'll just return NULL.
 982         MutexLockerEx x(Heap_lock);
 983         *gc_count_before_ret = total_collections();
 984         return NULL;
 985       }
 986     } else {
 987       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 988         MutexLockerEx x(Heap_lock);
 989         *gc_count_before_ret = total_collections();
 990         return NULL;
 991       }
 992       // The GCLocker is either active or the GCLocker initiated
 993       // GC has not yet been performed. Stall until it is and
 994       // then retry the allocation.
 995       GC_locker::stall_until_clear();
 996       (*gclocker_retry_count_ret) += 1;
 997     }
 998 
 999     // We can reach here if we were unsuccessful in scheduling a
1000     // collection (because another thread beat us to it) or if we were
1001     // stalled due to the GC locker. In either can we should retry the
1002     // allocation attempt in case another thread successfully
1003     // performed a collection and reclaimed enough space. We do the
1004     // first attempt (without holding the Heap_lock) here and the
1005     // follow-on attempt will be at the start of the next loop
1006     // iteration (after taking the Heap_lock).
1007     result = _mutator_alloc_region.attempt_allocation(word_size,
1008                                                       false /* bot_updates */);
1009     if (result != NULL) {
1010       return result;
1011     }
1012 
1013     // Give a warning if we seem to be looping forever.
1014     if ((QueuedAllocationWarningCount > 0) &&
1015         (try_count % QueuedAllocationWarningCount == 0)) {
1016       warning("G1CollectedHeap::attempt_allocation_slow() "
1017               "retries %d times", try_count);
1018     }
1019   }
1020 
1021   ShouldNotReachHere();
1022   return NULL;
1023 }
1024 
1025 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1026                                           unsigned int * gc_count_before_ret,
1027                                           int* gclocker_retry_count_ret) {
1028   // The structure of this method has a lot of similarities to
1029   // attempt_allocation_slow(). The reason these two were not merged
1030   // into a single one is that such a method would require several "if
1031   // allocation is not humongous do this, otherwise do that"
1032   // conditional paths which would obscure its flow. In fact, an early
1033   // version of this code did use a unified method which was harder to
1034   // follow and, as a result, it had subtle bugs that were hard to
1035   // track down. So keeping these two methods separate allows each to
1036   // be more readable. It will be good to keep these two in sync as
1037   // much as possible.
1038 
1039   assert_heap_not_locked_and_not_at_safepoint();
1040   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1041          "should only be called for humongous allocations");
1042 
1043   // Humongous objects can exhaust the heap quickly, so we should check if we
1044   // need to start a marking cycle at each humongous object allocation. We do
1045   // the check before we do the actual allocation. The reason for doing it
1046   // before the allocation is that we avoid having to keep track of the newly
1047   // allocated memory while we do a GC.
1048   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1049                                            word_size)) {
1050     collect(GCCause::_g1_humongous_allocation);
1051   }
1052 
1053   // We will loop until a) we manage to successfully perform the
1054   // allocation or b) we successfully schedule a collection which
1055   // fails to perform the allocation. b) is the only case when we'll
1056   // return NULL.
1057   HeapWord* result = NULL;
1058   for (int try_count = 1; /* we'll return */; try_count += 1) {
1059     bool should_try_gc;
1060     unsigned int gc_count_before;
1061 
1062     {
1063       MutexLockerEx x(Heap_lock);
1064 
1065       // Given that humongous objects are not allocated in young
1066       // regions, we'll first try to do the allocation without doing a
1067       // collection hoping that there's enough space in the heap.
1068       result = humongous_obj_allocate(word_size);
1069       if (result != NULL) {
1070         return result;
1071       }
1072 
1073       if (GC_locker::is_active_and_needs_gc()) {
1074         should_try_gc = false;
1075       } else {
1076          // The GCLocker may not be active but the GCLocker initiated
1077         // GC may not yet have been performed (GCLocker::needs_gc()
1078         // returns true). In this case we do not try this GC and
1079         // wait until the GCLocker initiated GC is performed, and
1080         // then retry the allocation.
1081         if (GC_locker::needs_gc()) {
1082           should_try_gc = false;
1083         } else {
1084           // Read the GC count while still holding the Heap_lock.
1085           gc_count_before = total_collections();
1086           should_try_gc = true;
1087         }
1088       }
1089     }
1090 
1091     if (should_try_gc) {
1092       // If we failed to allocate the humongous object, we should try to
1093       // do a collection pause (if we're allowed) in case it reclaims
1094       // enough space for the allocation to succeed after the pause.
1095 
1096       bool succeeded;
1097       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1098           GCCause::_g1_humongous_allocation);
1099       if (result != NULL) {
1100         assert(succeeded, "only way to get back a non-NULL result");
1101         return result;
1102       }
1103 
1104       if (succeeded) {
1105         // If we get here we successfully scheduled a collection which
1106         // failed to allocate. No point in trying to allocate
1107         // further. We'll just return NULL.
1108         MutexLockerEx x(Heap_lock);
1109         *gc_count_before_ret = total_collections();
1110         return NULL;
1111       }
1112     } else {
1113       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1114         MutexLockerEx x(Heap_lock);
1115         *gc_count_before_ret = total_collections();
1116         return NULL;
1117       }
1118       // The GCLocker is either active or the GCLocker initiated
1119       // GC has not yet been performed. Stall until it is and
1120       // then retry the allocation.
1121       GC_locker::stall_until_clear();
1122       (*gclocker_retry_count_ret) += 1;
1123     }
1124 
1125     // We can reach here if we were unsuccessful in scheduling a
1126     // collection (because another thread beat us to it) or if we were
1127     // stalled due to the GC locker. In either can we should retry the
1128     // allocation attempt in case another thread successfully
1129     // performed a collection and reclaimed enough space.  Give a
1130     // warning if we seem to be looping forever.
1131 
1132     if ((QueuedAllocationWarningCount > 0) &&
1133         (try_count % QueuedAllocationWarningCount == 0)) {
1134       warning("G1CollectedHeap::attempt_allocation_humongous() "
1135               "retries %d times", try_count);
1136     }
1137   }
1138 
1139   ShouldNotReachHere();
1140   return NULL;
1141 }
1142 
1143 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1144                                        bool expect_null_mutator_alloc_region) {
1145   assert_at_safepoint(true /* should_be_vm_thread */);
1146   assert(_mutator_alloc_region.get() == NULL ||
1147                                              !expect_null_mutator_alloc_region,
1148          "the current alloc region was unexpectedly found to be non-NULL");
1149 
1150   if (!isHumongous(word_size)) {
1151     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1152                                                       false /* bot_updates */);
1153   } else {
1154     HeapWord* result = humongous_obj_allocate(word_size);
1155     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1156       g1_policy()->set_initiate_conc_mark_if_possible();
1157     }
1158     return result;
1159   }
1160 
1161   ShouldNotReachHere();
1162 }
1163 
1164 class PostMCRemSetClearClosure: public HeapRegionClosure {
1165   G1CollectedHeap* _g1h;
1166   ModRefBarrierSet* _mr_bs;
1167 public:
1168   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1169     _g1h(g1h), _mr_bs(mr_bs) {}
1170 
1171   bool doHeapRegion(HeapRegion* r) {
1172     HeapRegionRemSet* hrrs = r->rem_set();
1173 
1174     if (r->continuesHumongous()) {
1175       // We'll assert that the strong code root list and RSet is empty
1176       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1177       assert(hrrs->occupied() == 0, "RSet should be empty");
1178       return false;
1179     }
1180 
1181     _g1h->reset_gc_time_stamps(r);
1182     hrrs->clear();
1183     // You might think here that we could clear just the cards
1184     // corresponding to the used region.  But no: if we leave a dirty card
1185     // in a region we might allocate into, then it would prevent that card
1186     // from being enqueued, and cause it to be missed.
1187     // Re: the performance cost: we shouldn't be doing full GC anyway!
1188     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1189 
1190     return false;
1191   }
1192 };
1193 
1194 void G1CollectedHeap::clear_rsets_post_compaction() {
1195   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1196   heap_region_iterate(&rs_clear);
1197 }
1198 
1199 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1200   G1CollectedHeap*   _g1h;
1201   UpdateRSOopClosure _cl;
1202   int                _worker_i;
1203 public:
1204   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1205     _cl(g1->g1_rem_set(), worker_i),
1206     _worker_i(worker_i),
1207     _g1h(g1)
1208   { }
1209 
1210   bool doHeapRegion(HeapRegion* r) {
1211     if (!r->continuesHumongous()) {
1212       _cl.set_from(r);
1213       r->oop_iterate(&_cl);
1214     }
1215     return false;
1216   }
1217 };
1218 
1219 class ParRebuildRSTask: public AbstractGangTask {
1220   G1CollectedHeap* _g1;
1221 public:
1222   ParRebuildRSTask(G1CollectedHeap* g1)
1223     : AbstractGangTask("ParRebuildRSTask"),
1224       _g1(g1)
1225   { }
1226 
1227   void work(uint worker_id) {
1228     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1229     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1230                                           _g1->workers()->active_workers(),
1231                                          HeapRegion::RebuildRSClaimValue);
1232   }
1233 };
1234 
1235 class PostCompactionPrinterClosure: public HeapRegionClosure {
1236 private:
1237   G1HRPrinter* _hr_printer;
1238 public:
1239   bool doHeapRegion(HeapRegion* hr) {
1240     assert(!hr->is_young(), "not expecting to find young regions");
1241     // We only generate output for non-empty regions.
1242     if (!hr->is_empty()) {
1243       if (!hr->isHumongous()) {
1244         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1245       } else if (hr->startsHumongous()) {
1246         if (hr->region_num() == 1) {
1247           // single humongous region
1248           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1249         } else {
1250           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1251         }
1252       } else {
1253         assert(hr->continuesHumongous(), "only way to get here");
1254         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1255       }
1256     }
1257     return false;
1258   }
1259 
1260   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1261     : _hr_printer(hr_printer) { }
1262 };
1263 
1264 void G1CollectedHeap::print_hrs_post_compaction() {
1265   PostCompactionPrinterClosure cl(hr_printer());
1266   heap_region_iterate(&cl);
1267 }
1268 
1269 bool G1CollectedHeap::do_collection(bool explicit_gc,
1270                                     bool clear_all_soft_refs,
1271                                     size_t word_size) {
1272   assert_at_safepoint(true /* should_be_vm_thread */);
1273 
1274   if (GC_locker::check_active_before_gc()) {
1275     return false;
1276   }
1277 
1278   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1279   gc_timer->register_gc_start();
1280 
1281   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1282   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1283 
1284   SvcGCMarker sgcm(SvcGCMarker::FULL);
1285   ResourceMark rm;
1286 
1287   print_heap_before_gc();
1288   trace_heap_before_gc(gc_tracer);
1289 
1290   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1291 
1292   verify_region_sets_optional();
1293 
1294   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1295                            collector_policy()->should_clear_all_soft_refs();
1296 
1297   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1298 
1299   {
1300     IsGCActiveMark x;
1301 
1302     // Timing
1303     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1304     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1305     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1306 
1307     {
1308       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1309       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1310       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1311 
1312       double start = os::elapsedTime();
1313       g1_policy()->record_full_collection_start();
1314 
1315       // Note: When we have a more flexible GC logging framework that
1316       // allows us to add optional attributes to a GC log record we
1317       // could consider timing and reporting how long we wait in the
1318       // following two methods.
1319       wait_while_free_regions_coming();
1320       // If we start the compaction before the CM threads finish
1321       // scanning the root regions we might trip them over as we'll
1322       // be moving objects / updating references. So let's wait until
1323       // they are done. By telling them to abort, they should complete
1324       // early.
1325       _cm->root_regions()->abort();
1326       _cm->root_regions()->wait_until_scan_finished();
1327       append_secondary_free_list_if_not_empty_with_lock();
1328 
1329       gc_prologue(true);
1330       increment_total_collections(true /* full gc */);
1331       increment_old_marking_cycles_started();
1332 
1333       assert(used() == recalculate_used(), "Should be equal");
1334 
1335       verify_before_gc();
1336 
1337       pre_full_gc_dump(gc_timer);
1338 
1339       COMPILER2_PRESENT(DerivedPointerTable::clear());
1340 
1341       // Disable discovery and empty the discovered lists
1342       // for the CM ref processor.
1343       ref_processor_cm()->disable_discovery();
1344       ref_processor_cm()->abandon_partial_discovery();
1345       ref_processor_cm()->verify_no_references_recorded();
1346 
1347       // Abandon current iterations of concurrent marking and concurrent
1348       // refinement, if any are in progress. We have to do this before
1349       // wait_until_scan_finished() below.
1350       concurrent_mark()->abort();
1351 
1352       // Make sure we'll choose a new allocation region afterwards.
1353       release_mutator_alloc_region();
1354       abandon_gc_alloc_regions();
1355       g1_rem_set()->cleanupHRRS();
1356 
1357       // We should call this after we retire any currently active alloc
1358       // regions so that all the ALLOC / RETIRE events are generated
1359       // before the start GC event.
1360       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1361 
1362       // We may have added regions to the current incremental collection
1363       // set between the last GC or pause and now. We need to clear the
1364       // incremental collection set and then start rebuilding it afresh
1365       // after this full GC.
1366       abandon_collection_set(g1_policy()->inc_cset_head());
1367       g1_policy()->clear_incremental_cset();
1368       g1_policy()->stop_incremental_cset_building();
1369 
1370       tear_down_region_sets(false /* free_list_only */);
1371       g1_policy()->set_gcs_are_young(true);
1372 
1373       // See the comments in g1CollectedHeap.hpp and
1374       // G1CollectedHeap::ref_processing_init() about
1375       // how reference processing currently works in G1.
1376 
1377       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1378       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1379 
1380       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1381       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1382 
1383       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1384       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1385 
1386       // Do collection work
1387       {
1388         HandleMark hm;  // Discard invalid handles created during gc
1389         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1390       }
1391 
1392       assert(free_regions() == 0, "we should not have added any free regions");
1393       rebuild_region_sets(false /* free_list_only */);
1394 
1395       // Enqueue any discovered reference objects that have
1396       // not been removed from the discovered lists.
1397       ref_processor_stw()->enqueue_discovered_references();
1398 
1399       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1400 
1401       MemoryService::track_memory_usage();
1402 
1403       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1404       ref_processor_stw()->verify_no_references_recorded();
1405 
1406       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1407       ClassLoaderDataGraph::purge();
1408       MetaspaceAux::verify_metrics();
1409 
1410       // Note: since we've just done a full GC, concurrent
1411       // marking is no longer active. Therefore we need not
1412       // re-enable reference discovery for the CM ref processor.
1413       // That will be done at the start of the next marking cycle.
1414       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1415       ref_processor_cm()->verify_no_references_recorded();
1416 
1417       reset_gc_time_stamp();
1418       // Since everything potentially moved, we will clear all remembered
1419       // sets, and clear all cards.  Later we will rebuild remembered
1420       // sets. We will also reset the GC time stamps of the regions.
1421       clear_rsets_post_compaction();
1422       check_gc_time_stamps();
1423 
1424       // Resize the heap if necessary.
1425       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1426 
1427       if (_hr_printer.is_active()) {
1428         // We should do this after we potentially resize the heap so
1429         // that all the COMMIT / UNCOMMIT events are generated before
1430         // the end GC event.
1431 
1432         print_hrs_post_compaction();
1433         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1434       }
1435 
1436       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1437       if (hot_card_cache->use_cache()) {
1438         hot_card_cache->reset_card_counts();
1439         hot_card_cache->reset_hot_cache();
1440       }
1441 
1442       // Rebuild remembered sets of all regions.
1443       if (G1CollectedHeap::use_parallel_gc_threads()) {
1444         uint n_workers =
1445           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1446                                                   workers()->active_workers(),
1447                                                   Threads::number_of_non_daemon_threads());
1448         assert(UseDynamicNumberOfGCThreads ||
1449                n_workers == workers()->total_workers(),
1450                "If not dynamic should be using all the  workers");
1451         workers()->set_active_workers(n_workers);
1452         // Set parallel threads in the heap (_n_par_threads) only
1453         // before a parallel phase and always reset it to 0 after
1454         // the phase so that the number of parallel threads does
1455         // no get carried forward to a serial phase where there
1456         // may be code that is "possibly_parallel".
1457         set_par_threads(n_workers);
1458 
1459         ParRebuildRSTask rebuild_rs_task(this);
1460         assert(check_heap_region_claim_values(
1461                HeapRegion::InitialClaimValue), "sanity check");
1462         assert(UseDynamicNumberOfGCThreads ||
1463                workers()->active_workers() == workers()->total_workers(),
1464                "Unless dynamic should use total workers");
1465         // Use the most recent number of  active workers
1466         assert(workers()->active_workers() > 0,
1467                "Active workers not properly set");
1468         set_par_threads(workers()->active_workers());
1469         workers()->run_task(&rebuild_rs_task);
1470         set_par_threads(0);
1471         assert(check_heap_region_claim_values(
1472                HeapRegion::RebuildRSClaimValue), "sanity check");
1473         reset_heap_region_claim_values();
1474       } else {
1475         RebuildRSOutOfRegionClosure rebuild_rs(this);
1476         heap_region_iterate(&rebuild_rs);
1477       }
1478 
1479       // Rebuild the strong code root lists for each region
1480       rebuild_strong_code_roots();
1481 
1482       if (true) { // FIXME
1483         MetaspaceGC::compute_new_size();
1484       }
1485 
1486 #ifdef TRACESPINNING
1487       ParallelTaskTerminator::print_termination_counts();
1488 #endif
1489 
1490       // Discard all rset updates
1491       JavaThread::dirty_card_queue_set().abandon_logs();
1492       assert(!G1DeferredRSUpdate
1493              || (G1DeferredRSUpdate &&
1494                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1495 
1496       _young_list->reset_sampled_info();
1497       // At this point there should be no regions in the
1498       // entire heap tagged as young.
1499       assert(check_young_list_empty(true /* check_heap */),
1500              "young list should be empty at this point");
1501 
1502       // Update the number of full collections that have been completed.
1503       increment_old_marking_cycles_completed(false /* concurrent */);
1504 
1505       _hrs.verify_optional();
1506       verify_region_sets_optional();
1507 
1508       verify_after_gc();
1509 
1510       // Start a new incremental collection set for the next pause
1511       assert(g1_policy()->collection_set() == NULL, "must be");
1512       g1_policy()->start_incremental_cset_building();
1513 
1514       clear_cset_fast_test();
1515 
1516       init_mutator_alloc_region();
1517 
1518       double end = os::elapsedTime();
1519       g1_policy()->record_full_collection_end();
1520 
1521       if (G1Log::fine()) {
1522         g1_policy()->print_heap_transition();
1523       }
1524 
1525       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1526       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1527       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1528       // before any GC notifications are raised.
1529       g1mm()->update_sizes();
1530 
1531       gc_epilogue(true);
1532     }
1533 
1534     if (G1Log::finer()) {
1535       g1_policy()->print_detailed_heap_transition(true /* full */);
1536     }
1537 
1538     print_heap_after_gc();
1539     trace_heap_after_gc(gc_tracer);
1540 
1541     post_full_gc_dump(gc_timer);
1542 
1543     gc_timer->register_gc_end();
1544     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1545   }
1546 
1547   return true;
1548 }
1549 
1550 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1551   // do_collection() will return whether it succeeded in performing
1552   // the GC. Currently, there is no facility on the
1553   // do_full_collection() API to notify the caller than the collection
1554   // did not succeed (e.g., because it was locked out by the GC
1555   // locker). So, right now, we'll ignore the return value.
1556   bool dummy = do_collection(true,                /* explicit_gc */
1557                              clear_all_soft_refs,
1558                              0                    /* word_size */);
1559 }
1560 
1561 // This code is mostly copied from TenuredGeneration.
1562 void
1563 G1CollectedHeap::
1564 resize_if_necessary_after_full_collection(size_t word_size) {
1565   // Include the current allocation, if any, and bytes that will be
1566   // pre-allocated to support collections, as "used".
1567   const size_t used_after_gc = used();
1568   const size_t capacity_after_gc = capacity();
1569   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1570 
1571   // This is enforced in arguments.cpp.
1572   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1573          "otherwise the code below doesn't make sense");
1574 
1575   // We don't have floating point command-line arguments
1576   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1577   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1578   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1579   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1580 
1581   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1582   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1583 
1584   // We have to be careful here as these two calculations can overflow
1585   // 32-bit size_t's.
1586   double used_after_gc_d = (double) used_after_gc;
1587   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1588   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1589 
1590   // Let's make sure that they are both under the max heap size, which
1591   // by default will make them fit into a size_t.
1592   double desired_capacity_upper_bound = (double) max_heap_size;
1593   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1594                                     desired_capacity_upper_bound);
1595   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1596                                     desired_capacity_upper_bound);
1597 
1598   // We can now safely turn them into size_t's.
1599   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1600   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1601 
1602   // This assert only makes sense here, before we adjust them
1603   // with respect to the min and max heap size.
1604   assert(minimum_desired_capacity <= maximum_desired_capacity,
1605          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1606                  "maximum_desired_capacity = "SIZE_FORMAT,
1607                  minimum_desired_capacity, maximum_desired_capacity));
1608 
1609   // Should not be greater than the heap max size. No need to adjust
1610   // it with respect to the heap min size as it's a lower bound (i.e.,
1611   // we'll try to make the capacity larger than it, not smaller).
1612   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1613   // Should not be less than the heap min size. No need to adjust it
1614   // with respect to the heap max size as it's an upper bound (i.e.,
1615   // we'll try to make the capacity smaller than it, not greater).
1616   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1617 
1618   if (capacity_after_gc < minimum_desired_capacity) {
1619     // Don't expand unless it's significant
1620     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1621     ergo_verbose4(ErgoHeapSizing,
1622                   "attempt heap expansion",
1623                   ergo_format_reason("capacity lower than "
1624                                      "min desired capacity after Full GC")
1625                   ergo_format_byte("capacity")
1626                   ergo_format_byte("occupancy")
1627                   ergo_format_byte_perc("min desired capacity"),
1628                   capacity_after_gc, used_after_gc,
1629                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1630     expand(expand_bytes);
1631 
1632     // No expansion, now see if we want to shrink
1633   } else if (capacity_after_gc > maximum_desired_capacity) {
1634     // Capacity too large, compute shrinking size
1635     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1636     ergo_verbose4(ErgoHeapSizing,
1637                   "attempt heap shrinking",
1638                   ergo_format_reason("capacity higher than "
1639                                      "max desired capacity after Full GC")
1640                   ergo_format_byte("capacity")
1641                   ergo_format_byte("occupancy")
1642                   ergo_format_byte_perc("max desired capacity"),
1643                   capacity_after_gc, used_after_gc,
1644                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1645     shrink(shrink_bytes);
1646   }
1647 }
1648 
1649 
1650 HeapWord*
1651 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1652                                            bool* succeeded) {
1653   assert_at_safepoint(true /* should_be_vm_thread */);
1654 
1655   *succeeded = true;
1656   // Let's attempt the allocation first.
1657   HeapWord* result =
1658     attempt_allocation_at_safepoint(word_size,
1659                                  false /* expect_null_mutator_alloc_region */);
1660   if (result != NULL) {
1661     assert(*succeeded, "sanity");
1662     return result;
1663   }
1664 
1665   // In a G1 heap, we're supposed to keep allocation from failing by
1666   // incremental pauses.  Therefore, at least for now, we'll favor
1667   // expansion over collection.  (This might change in the future if we can
1668   // do something smarter than full collection to satisfy a failed alloc.)
1669   result = expand_and_allocate(word_size);
1670   if (result != NULL) {
1671     assert(*succeeded, "sanity");
1672     return result;
1673   }
1674 
1675   // Expansion didn't work, we'll try to do a Full GC.
1676   bool gc_succeeded = do_collection(false, /* explicit_gc */
1677                                     false, /* clear_all_soft_refs */
1678                                     word_size);
1679   if (!gc_succeeded) {
1680     *succeeded = false;
1681     return NULL;
1682   }
1683 
1684   // Retry the allocation
1685   result = attempt_allocation_at_safepoint(word_size,
1686                                   true /* expect_null_mutator_alloc_region */);
1687   if (result != NULL) {
1688     assert(*succeeded, "sanity");
1689     return result;
1690   }
1691 
1692   // Then, try a Full GC that will collect all soft references.
1693   gc_succeeded = do_collection(false, /* explicit_gc */
1694                                true,  /* clear_all_soft_refs */
1695                                word_size);
1696   if (!gc_succeeded) {
1697     *succeeded = false;
1698     return NULL;
1699   }
1700 
1701   // Retry the allocation once more
1702   result = attempt_allocation_at_safepoint(word_size,
1703                                   true /* expect_null_mutator_alloc_region */);
1704   if (result != NULL) {
1705     assert(*succeeded, "sanity");
1706     return result;
1707   }
1708 
1709   assert(!collector_policy()->should_clear_all_soft_refs(),
1710          "Flag should have been handled and cleared prior to this point");
1711 
1712   // What else?  We might try synchronous finalization later.  If the total
1713   // space available is large enough for the allocation, then a more
1714   // complete compaction phase than we've tried so far might be
1715   // appropriate.
1716   assert(*succeeded, "sanity");
1717   return NULL;
1718 }
1719 
1720 // Attempting to expand the heap sufficiently
1721 // to support an allocation of the given "word_size".  If
1722 // successful, perform the allocation and return the address of the
1723 // allocated block, or else "NULL".
1724 
1725 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1726   assert_at_safepoint(true /* should_be_vm_thread */);
1727 
1728   verify_region_sets_optional();
1729 
1730   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1731   ergo_verbose1(ErgoHeapSizing,
1732                 "attempt heap expansion",
1733                 ergo_format_reason("allocation request failed")
1734                 ergo_format_byte("allocation request"),
1735                 word_size * HeapWordSize);
1736   if (expand(expand_bytes)) {
1737     _hrs.verify_optional();
1738     verify_region_sets_optional();
1739     return attempt_allocation_at_safepoint(word_size,
1740                                  false /* expect_null_mutator_alloc_region */);
1741   }
1742   return NULL;
1743 }
1744 
1745 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1746                                              HeapWord* new_end) {
1747   assert(old_end != new_end, "don't call this otherwise");
1748   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1749 
1750   // Update the committed mem region.
1751   _g1_committed.set_end(new_end);
1752   // Tell the card table about the update.
1753   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1754   // Tell the BOT about the update.
1755   _bot_shared->resize(_g1_committed.word_size());
1756   // Tell the hot card cache about the update
1757   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1758 }
1759 
1760 bool G1CollectedHeap::expand(size_t expand_bytes) {
1761   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1762   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1763                                        HeapRegion::GrainBytes);
1764   ergo_verbose2(ErgoHeapSizing,
1765                 "expand the heap",
1766                 ergo_format_byte("requested expansion amount")
1767                 ergo_format_byte("attempted expansion amount"),
1768                 expand_bytes, aligned_expand_bytes);
1769 
1770   if (_g1_storage.uncommitted_size() == 0) {
1771     ergo_verbose0(ErgoHeapSizing,
1772                       "did not expand the heap",
1773                       ergo_format_reason("heap already fully expanded"));
1774     return false;
1775   }
1776 
1777   // First commit the memory.
1778   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1779   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1780   if (successful) {
1781     // Then propagate this update to the necessary data structures.
1782     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1783     update_committed_space(old_end, new_end);
1784 
1785     FreeRegionList expansion_list("Local Expansion List");
1786     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1787     assert(mr.start() == old_end, "post-condition");
1788     // mr might be a smaller region than what was requested if
1789     // expand_by() was unable to allocate the HeapRegion instances
1790     assert(mr.end() <= new_end, "post-condition");
1791 
1792     size_t actual_expand_bytes = mr.byte_size();
1793     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1794     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1795            "post-condition");
1796     if (actual_expand_bytes < aligned_expand_bytes) {
1797       // We could not expand _hrs to the desired size. In this case we
1798       // need to shrink the committed space accordingly.
1799       assert(mr.end() < new_end, "invariant");
1800 
1801       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1802       // First uncommit the memory.
1803       _g1_storage.shrink_by(diff_bytes);
1804       // Then propagate this update to the necessary data structures.
1805       update_committed_space(new_end, mr.end());
1806     }
1807     _free_list.add_as_tail(&expansion_list);
1808 
1809     if (_hr_printer.is_active()) {
1810       HeapWord* curr = mr.start();
1811       while (curr < mr.end()) {
1812         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1813         _hr_printer.commit(curr, curr_end);
1814         curr = curr_end;
1815       }
1816       assert(curr == mr.end(), "post-condition");
1817     }
1818     g1_policy()->record_new_heap_size(n_regions());
1819   } else {
1820     ergo_verbose0(ErgoHeapSizing,
1821                   "did not expand the heap",
1822                   ergo_format_reason("heap expansion operation failed"));
1823     // The expansion of the virtual storage space was unsuccessful.
1824     // Let's see if it was because we ran out of swap.
1825     if (G1ExitOnExpansionFailure &&
1826         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1827       // We had head room...
1828       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1829     }
1830   }
1831   return successful;
1832 }
1833 
1834 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1835   size_t aligned_shrink_bytes =
1836     ReservedSpace::page_align_size_down(shrink_bytes);
1837   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1838                                          HeapRegion::GrainBytes);
1839   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1840 
1841   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1842   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1843   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1844 
1845   ergo_verbose3(ErgoHeapSizing,
1846                 "shrink the heap",
1847                 ergo_format_byte("requested shrinking amount")
1848                 ergo_format_byte("aligned shrinking amount")
1849                 ergo_format_byte("attempted shrinking amount"),
1850                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1851   if (num_regions_removed > 0) {
1852     _g1_storage.shrink_by(shrunk_bytes);
1853     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1854 
1855     if (_hr_printer.is_active()) {
1856       HeapWord* curr = old_end;
1857       while (curr > new_end) {
1858         HeapWord* curr_end = curr;
1859         curr -= HeapRegion::GrainWords;
1860         _hr_printer.uncommit(curr, curr_end);
1861       }
1862     }
1863 
1864     _expansion_regions += num_regions_removed;
1865     update_committed_space(old_end, new_end);
1866     HeapRegionRemSet::shrink_heap(n_regions());
1867     g1_policy()->record_new_heap_size(n_regions());
1868   } else {
1869     ergo_verbose0(ErgoHeapSizing,
1870                   "did not shrink the heap",
1871                   ergo_format_reason("heap shrinking operation failed"));
1872   }
1873 }
1874 
1875 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1876   verify_region_sets_optional();
1877 
1878   // We should only reach here at the end of a Full GC which means we
1879   // should not not be holding to any GC alloc regions. The method
1880   // below will make sure of that and do any remaining clean up.
1881   abandon_gc_alloc_regions();
1882 
1883   // Instead of tearing down / rebuilding the free lists here, we
1884   // could instead use the remove_all_pending() method on free_list to
1885   // remove only the ones that we need to remove.
1886   tear_down_region_sets(true /* free_list_only */);
1887   shrink_helper(shrink_bytes);
1888   rebuild_region_sets(true /* free_list_only */);
1889 
1890   _hrs.verify_optional();
1891   verify_region_sets_optional();
1892 }
1893 
1894 // Public methods.
1895 
1896 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1897 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1898 #endif // _MSC_VER
1899 
1900 
1901 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1902   SharedHeap(policy_),
1903   _g1_policy(policy_),
1904   _dirty_card_queue_set(false),
1905   _into_cset_dirty_card_queue_set(false),
1906   _is_alive_closure_cm(this),
1907   _is_alive_closure_stw(this),
1908   _ref_processor_cm(NULL),
1909   _ref_processor_stw(NULL),
1910   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1911   _bot_shared(NULL),
1912   _evac_failure_scan_stack(NULL),
1913   _mark_in_progress(false),
1914   _cg1r(NULL), _summary_bytes_used(0),
1915   _g1mm(NULL),
1916   _refine_cte_cl(NULL),
1917   _full_collection(false),
1918   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
1919   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1920   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1921   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1922   _free_regions_coming(false),
1923   _young_list(new YoungList(this)),
1924   _gc_time_stamp(0),
1925   _retained_old_gc_alloc_region(NULL),
1926   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1927   _old_plab_stats(OldPLABSize, PLABWeight),
1928   _expand_heap_after_alloc_failure(true),
1929   _surviving_young_words(NULL),
1930   _old_marking_cycles_started(0),
1931   _old_marking_cycles_completed(0),
1932   _concurrent_cycle_started(false),
1933   _in_cset_fast_test(),
1934   _dirty_cards_region_list(NULL),
1935   _worker_cset_start_region(NULL),
1936   _worker_cset_start_region_time_stamp(NULL),
1937   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1938   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1939   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1940   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1941 
1942   _g1h = this;
1943   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1944     vm_exit_during_initialization("Failed necessary allocation.");
1945   }
1946 
1947   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1948 
1949   int n_queues = MAX2((int)ParallelGCThreads, 1);
1950   _task_queues = new RefToScanQueueSet(n_queues);
1951 
1952   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1953   assert(n_rem_sets > 0, "Invariant.");
1954 
1955   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1956   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1957   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1958 
1959   for (int i = 0; i < n_queues; i++) {
1960     RefToScanQueue* q = new RefToScanQueue();
1961     q->initialize();
1962     _task_queues->register_queue(i, q);
1963     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1964   }
1965   clear_cset_start_regions();
1966 
1967   // Initialize the G1EvacuationFailureALot counters and flags.
1968   NOT_PRODUCT(reset_evacuation_should_fail();)
1969 
1970   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1971 }
1972 
1973 jint G1CollectedHeap::initialize() {
1974   CollectedHeap::pre_initialize();
1975   os::enable_vtime();
1976 
1977   G1Log::init();
1978 
1979   // Necessary to satisfy locking discipline assertions.
1980 
1981   MutexLocker x(Heap_lock);
1982 
1983   // We have to initialize the printer before committing the heap, as
1984   // it will be used then.
1985   _hr_printer.set_active(G1PrintHeapRegions);
1986 
1987   // While there are no constraints in the GC code that HeapWordSize
1988   // be any particular value, there are multiple other areas in the
1989   // system which believe this to be true (e.g. oop->object_size in some
1990   // cases incorrectly returns the size in wordSize units rather than
1991   // HeapWordSize).
1992   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1993 
1994   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1995   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1996   size_t heap_alignment = collector_policy()->heap_alignment();
1997 
1998   // Ensure that the sizes are properly aligned.
1999   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2000   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2001   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2002 
2003   _cg1r = new ConcurrentG1Refine(this);
2004 
2005   // Reserve the maximum.
2006 
2007   // When compressed oops are enabled, the preferred heap base
2008   // is calculated by subtracting the requested size from the
2009   // 32Gb boundary and using the result as the base address for
2010   // heap reservation. If the requested size is not aligned to
2011   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2012   // into the ReservedHeapSpace constructor) then the actual
2013   // base of the reserved heap may end up differing from the
2014   // address that was requested (i.e. the preferred heap base).
2015   // If this happens then we could end up using a non-optimal
2016   // compressed oops mode.
2017 
2018   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2019                                                  heap_alignment);
2020 
2021   // It is important to do this in a way such that concurrent readers can't
2022   // temporarily think something is in the heap.  (I've actually seen this
2023   // happen in asserts: DLD.)
2024   _reserved.set_word_size(0);
2025   _reserved.set_start((HeapWord*)heap_rs.base());
2026   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2027 
2028   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2029 
2030   // Create the gen rem set (and barrier set) for the entire reserved region.
2031   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2032   set_barrier_set(rem_set()->bs());
2033   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2034     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2035     return JNI_ENOMEM;
2036   }
2037 
2038   // Also create a G1 rem set.
2039   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2040 
2041   // Carve out the G1 part of the heap.
2042 
2043   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2044   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2045                            g1_rs.size()/HeapWordSize);
2046 
2047   _g1_storage.initialize(g1_rs, 0);
2048   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2049   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2050                   (HeapWord*) _g1_reserved.end());
2051   assert(_hrs.max_length() == _expansion_regions,
2052          err_msg("max length: %u expansion regions: %u",
2053                  _hrs.max_length(), _expansion_regions));
2054 
2055   // Do later initialization work for concurrent refinement.
2056   _cg1r->init();
2057 
2058   // 6843694 - ensure that the maximum region index can fit
2059   // in the remembered set structures.
2060   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2061   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2062 
2063   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2064   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2065   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2066             "too many cards per region");
2067 
2068   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2069 
2070   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2071                                              heap_word_size(init_byte_size));
2072 
2073   _g1h = this;
2074 
2075   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
2076 
2077   // Create the ConcurrentMark data structure and thread.
2078   // (Must do this late, so that "max_regions" is defined.)
2079   _cm = new ConcurrentMark(this, heap_rs);
2080   if (_cm == NULL || !_cm->completed_initialization()) {
2081     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2082     return JNI_ENOMEM;
2083   }
2084   _cmThread = _cm->cmThread();
2085 
2086   // Initialize the from_card cache structure of HeapRegionRemSet.
2087   HeapRegionRemSet::init_heap(max_regions());
2088 
2089   // Now expand into the initial heap size.
2090   if (!expand(init_byte_size)) {
2091     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2092     return JNI_ENOMEM;
2093   }
2094 
2095   // Perform any initialization actions delegated to the policy.
2096   g1_policy()->init();
2097 
2098   _refine_cte_cl =
2099     new RefineCardTableEntryClosure(g1_rem_set(),
2100                                     concurrent_g1_refine());
2101   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2102 
2103   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2104                                                SATB_Q_FL_lock,
2105                                                G1SATBProcessCompletedThreshold,
2106                                                Shared_SATB_Q_lock);
2107 
2108   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2109                                                 DirtyCardQ_FL_lock,
2110                                                 concurrent_g1_refine()->yellow_zone(),
2111                                                 concurrent_g1_refine()->red_zone(),
2112                                                 Shared_DirtyCardQ_lock);
2113 
2114   if (G1DeferredRSUpdate) {
2115     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2116                                       DirtyCardQ_FL_lock,
2117                                       -1, // never trigger processing
2118                                       -1, // no limit on length
2119                                       Shared_DirtyCardQ_lock,
2120                                       &JavaThread::dirty_card_queue_set());
2121   }
2122 
2123   // Initialize the card queue set used to hold cards containing
2124   // references into the collection set.
2125   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2126                                              DirtyCardQ_FL_lock,
2127                                              -1, // never trigger processing
2128                                              -1, // no limit on length
2129                                              Shared_DirtyCardQ_lock,
2130                                              &JavaThread::dirty_card_queue_set());
2131 
2132   // In case we're keeping closure specialization stats, initialize those
2133   // counts and that mechanism.
2134   SpecializationStats::clear();
2135 
2136   // Here we allocate the dummy full region that is required by the
2137   // G1AllocRegion class. If we don't pass an address in the reserved
2138   // space here, lots of asserts fire.
2139 
2140   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2141                                              _g1_reserved.start());
2142   // We'll re-use the same region whether the alloc region will
2143   // require BOT updates or not and, if it doesn't, then a non-young
2144   // region will complain that it cannot support allocations without
2145   // BOT updates. So we'll tag the dummy region as young to avoid that.
2146   dummy_region->set_young();
2147   // Make sure it's full.
2148   dummy_region->set_top(dummy_region->end());
2149   G1AllocRegion::setup(this, dummy_region);
2150 
2151   init_mutator_alloc_region();
2152 
2153   // Do create of the monitoring and management support so that
2154   // values in the heap have been properly initialized.
2155   _g1mm = new G1MonitoringSupport(this);
2156 
2157   G1StringDedup::initialize();
2158 
2159   return JNI_OK;
2160 }
2161 
2162 void G1CollectedHeap::stop() {
2163   // Stop all concurrent threads. We do this to make sure these threads
2164   // do not continue to execute and access resources (e.g. gclog_or_tty)
2165   // that are destroyed during shutdown.
2166   _cg1r->stop();
2167   _cmThread->stop();
2168   if (G1StringDedup::is_enabled()) {
2169     G1StringDedup::stop();
2170   }
2171 }
2172 
2173 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2174   return HeapRegion::max_region_size();
2175 }
2176 
2177 void G1CollectedHeap::ref_processing_init() {
2178   // Reference processing in G1 currently works as follows:
2179   //
2180   // * There are two reference processor instances. One is
2181   //   used to record and process discovered references
2182   //   during concurrent marking; the other is used to
2183   //   record and process references during STW pauses
2184   //   (both full and incremental).
2185   // * Both ref processors need to 'span' the entire heap as
2186   //   the regions in the collection set may be dotted around.
2187   //
2188   // * For the concurrent marking ref processor:
2189   //   * Reference discovery is enabled at initial marking.
2190   //   * Reference discovery is disabled and the discovered
2191   //     references processed etc during remarking.
2192   //   * Reference discovery is MT (see below).
2193   //   * Reference discovery requires a barrier (see below).
2194   //   * Reference processing may or may not be MT
2195   //     (depending on the value of ParallelRefProcEnabled
2196   //     and ParallelGCThreads).
2197   //   * A full GC disables reference discovery by the CM
2198   //     ref processor and abandons any entries on it's
2199   //     discovered lists.
2200   //
2201   // * For the STW processor:
2202   //   * Non MT discovery is enabled at the start of a full GC.
2203   //   * Processing and enqueueing during a full GC is non-MT.
2204   //   * During a full GC, references are processed after marking.
2205   //
2206   //   * Discovery (may or may not be MT) is enabled at the start
2207   //     of an incremental evacuation pause.
2208   //   * References are processed near the end of a STW evacuation pause.
2209   //   * For both types of GC:
2210   //     * Discovery is atomic - i.e. not concurrent.
2211   //     * Reference discovery will not need a barrier.
2212 
2213   SharedHeap::ref_processing_init();
2214   MemRegion mr = reserved_region();
2215 
2216   // Concurrent Mark ref processor
2217   _ref_processor_cm =
2218     new ReferenceProcessor(mr,    // span
2219                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2220                                 // mt processing
2221                            (int) ParallelGCThreads,
2222                                 // degree of mt processing
2223                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2224                                 // mt discovery
2225                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2226                                 // degree of mt discovery
2227                            false,
2228                                 // Reference discovery is not atomic
2229                            &_is_alive_closure_cm);
2230                                 // is alive closure
2231                                 // (for efficiency/performance)
2232 
2233   // STW ref processor
2234   _ref_processor_stw =
2235     new ReferenceProcessor(mr,    // span
2236                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2237                                 // mt processing
2238                            MAX2((int)ParallelGCThreads, 1),
2239                                 // degree of mt processing
2240                            (ParallelGCThreads > 1),
2241                                 // mt discovery
2242                            MAX2((int)ParallelGCThreads, 1),
2243                                 // degree of mt discovery
2244                            true,
2245                                 // Reference discovery is atomic
2246                            &_is_alive_closure_stw);
2247                                 // is alive closure
2248                                 // (for efficiency/performance)
2249 }
2250 
2251 size_t G1CollectedHeap::capacity() const {
2252   return _g1_committed.byte_size();
2253 }
2254 
2255 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2256   assert(!hr->continuesHumongous(), "pre-condition");
2257   hr->reset_gc_time_stamp();
2258   if (hr->startsHumongous()) {
2259     uint first_index = hr->hrs_index() + 1;
2260     uint last_index = hr->last_hc_index();
2261     for (uint i = first_index; i < last_index; i += 1) {
2262       HeapRegion* chr = region_at(i);
2263       assert(chr->continuesHumongous(), "sanity");
2264       chr->reset_gc_time_stamp();
2265     }
2266   }
2267 }
2268 
2269 #ifndef PRODUCT
2270 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2271 private:
2272   unsigned _gc_time_stamp;
2273   bool _failures;
2274 
2275 public:
2276   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2277     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2278 
2279   virtual bool doHeapRegion(HeapRegion* hr) {
2280     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2281     if (_gc_time_stamp != region_gc_time_stamp) {
2282       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2283                              "expected %d", HR_FORMAT_PARAMS(hr),
2284                              region_gc_time_stamp, _gc_time_stamp);
2285       _failures = true;
2286     }
2287     return false;
2288   }
2289 
2290   bool failures() { return _failures; }
2291 };
2292 
2293 void G1CollectedHeap::check_gc_time_stamps() {
2294   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2295   heap_region_iterate(&cl);
2296   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2297 }
2298 #endif // PRODUCT
2299 
2300 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2301                                                  DirtyCardQueue* into_cset_dcq,
2302                                                  bool concurrent,
2303                                                  uint worker_i) {
2304   // Clean cards in the hot card cache
2305   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2306   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2307 
2308   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2309   int n_completed_buffers = 0;
2310   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2311     n_completed_buffers++;
2312   }
2313   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2314   dcqs.clear_n_completed_buffers();
2315   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2316 }
2317 
2318 
2319 // Computes the sum of the storage used by the various regions.
2320 
2321 size_t G1CollectedHeap::used() const {
2322   assert(Heap_lock->owner() != NULL,
2323          "Should be owned on this thread's behalf.");
2324   size_t result = _summary_bytes_used;
2325   // Read only once in case it is set to NULL concurrently
2326   HeapRegion* hr = _mutator_alloc_region.get();
2327   if (hr != NULL)
2328     result += hr->used();
2329   return result;
2330 }
2331 
2332 size_t G1CollectedHeap::used_unlocked() const {
2333   size_t result = _summary_bytes_used;
2334   return result;
2335 }
2336 
2337 class SumUsedClosure: public HeapRegionClosure {
2338   size_t _used;
2339 public:
2340   SumUsedClosure() : _used(0) {}
2341   bool doHeapRegion(HeapRegion* r) {
2342     if (!r->continuesHumongous()) {
2343       _used += r->used();
2344     }
2345     return false;
2346   }
2347   size_t result() { return _used; }
2348 };
2349 
2350 size_t G1CollectedHeap::recalculate_used() const {
2351   double recalculate_used_start = os::elapsedTime();
2352 
2353   SumUsedClosure blk;
2354   heap_region_iterate(&blk);
2355 
2356   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2357   return blk.result();
2358 }
2359 
2360 size_t G1CollectedHeap::unsafe_max_alloc() {
2361   if (free_regions() > 0) return HeapRegion::GrainBytes;
2362   // otherwise, is there space in the current allocation region?
2363 
2364   // We need to store the current allocation region in a local variable
2365   // here. The problem is that this method doesn't take any locks and
2366   // there may be other threads which overwrite the current allocation
2367   // region field. attempt_allocation(), for example, sets it to NULL
2368   // and this can happen *after* the NULL check here but before the call
2369   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2370   // to be a problem in the optimized build, since the two loads of the
2371   // current allocation region field are optimized away.
2372   HeapRegion* hr = _mutator_alloc_region.get();
2373   if (hr == NULL) {
2374     return 0;
2375   }
2376   return hr->free();
2377 }
2378 
2379 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2380   switch (cause) {
2381     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2382     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2383     case GCCause::_g1_humongous_allocation: return true;
2384     default:                                return false;
2385   }
2386 }
2387 
2388 #ifndef PRODUCT
2389 void G1CollectedHeap::allocate_dummy_regions() {
2390   // Let's fill up most of the region
2391   size_t word_size = HeapRegion::GrainWords - 1024;
2392   // And as a result the region we'll allocate will be humongous.
2393   guarantee(isHumongous(word_size), "sanity");
2394 
2395   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2396     // Let's use the existing mechanism for the allocation
2397     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2398     if (dummy_obj != NULL) {
2399       MemRegion mr(dummy_obj, word_size);
2400       CollectedHeap::fill_with_object(mr);
2401     } else {
2402       // If we can't allocate once, we probably cannot allocate
2403       // again. Let's get out of the loop.
2404       break;
2405     }
2406   }
2407 }
2408 #endif // !PRODUCT
2409 
2410 void G1CollectedHeap::increment_old_marking_cycles_started() {
2411   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2412     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2413     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2414     _old_marking_cycles_started, _old_marking_cycles_completed));
2415 
2416   _old_marking_cycles_started++;
2417 }
2418 
2419 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2420   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2421 
2422   // We assume that if concurrent == true, then the caller is a
2423   // concurrent thread that was joined the Suspendible Thread
2424   // Set. If there's ever a cheap way to check this, we should add an
2425   // assert here.
2426 
2427   // Given that this method is called at the end of a Full GC or of a
2428   // concurrent cycle, and those can be nested (i.e., a Full GC can
2429   // interrupt a concurrent cycle), the number of full collections
2430   // completed should be either one (in the case where there was no
2431   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2432   // behind the number of full collections started.
2433 
2434   // This is the case for the inner caller, i.e. a Full GC.
2435   assert(concurrent ||
2436          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2437          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2438          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2439                  "is inconsistent with _old_marking_cycles_completed = %u",
2440                  _old_marking_cycles_started, _old_marking_cycles_completed));
2441 
2442   // This is the case for the outer caller, i.e. the concurrent cycle.
2443   assert(!concurrent ||
2444          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2445          err_msg("for outer caller (concurrent cycle): "
2446                  "_old_marking_cycles_started = %u "
2447                  "is inconsistent with _old_marking_cycles_completed = %u",
2448                  _old_marking_cycles_started, _old_marking_cycles_completed));
2449 
2450   _old_marking_cycles_completed += 1;
2451 
2452   // We need to clear the "in_progress" flag in the CM thread before
2453   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2454   // is set) so that if a waiter requests another System.gc() it doesn't
2455   // incorrectly see that a marking cycle is still in progress.
2456   if (concurrent) {
2457     _cmThread->clear_in_progress();
2458   }
2459 
2460   // This notify_all() will ensure that a thread that called
2461   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2462   // and it's waiting for a full GC to finish will be woken up. It is
2463   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2464   FullGCCount_lock->notify_all();
2465 }
2466 
2467 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2468   _concurrent_cycle_started = true;
2469   _gc_timer_cm->register_gc_start(start_time);
2470 
2471   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2472   trace_heap_before_gc(_gc_tracer_cm);
2473 }
2474 
2475 void G1CollectedHeap::register_concurrent_cycle_end() {
2476   if (_concurrent_cycle_started) {
2477     if (_cm->has_aborted()) {
2478       _gc_tracer_cm->report_concurrent_mode_failure();
2479     }
2480 
2481     _gc_timer_cm->register_gc_end();
2482     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2483 
2484     _concurrent_cycle_started = false;
2485   }
2486 }
2487 
2488 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2489   if (_concurrent_cycle_started) {
2490     trace_heap_after_gc(_gc_tracer_cm);
2491   }
2492 }
2493 
2494 G1YCType G1CollectedHeap::yc_type() {
2495   bool is_young = g1_policy()->gcs_are_young();
2496   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2497   bool is_during_mark = mark_in_progress();
2498 
2499   if (is_initial_mark) {
2500     return InitialMark;
2501   } else if (is_during_mark) {
2502     return DuringMark;
2503   } else if (is_young) {
2504     return Normal;
2505   } else {
2506     return Mixed;
2507   }
2508 }
2509 
2510 void G1CollectedHeap::collect(GCCause::Cause cause) {
2511   assert_heap_not_locked();
2512 
2513   unsigned int gc_count_before;
2514   unsigned int old_marking_count_before;
2515   bool retry_gc;
2516 
2517   do {
2518     retry_gc = false;
2519 
2520     {
2521       MutexLocker ml(Heap_lock);
2522 
2523       // Read the GC count while holding the Heap_lock
2524       gc_count_before = total_collections();
2525       old_marking_count_before = _old_marking_cycles_started;
2526     }
2527 
2528     if (should_do_concurrent_full_gc(cause)) {
2529       // Schedule an initial-mark evacuation pause that will start a
2530       // concurrent cycle. We're setting word_size to 0 which means that
2531       // we are not requesting a post-GC allocation.
2532       VM_G1IncCollectionPause op(gc_count_before,
2533                                  0,     /* word_size */
2534                                  true,  /* should_initiate_conc_mark */
2535                                  g1_policy()->max_pause_time_ms(),
2536                                  cause);
2537 
2538       VMThread::execute(&op);
2539       if (!op.pause_succeeded()) {
2540         if (old_marking_count_before == _old_marking_cycles_started) {
2541           retry_gc = op.should_retry_gc();
2542         } else {
2543           // A Full GC happened while we were trying to schedule the
2544           // initial-mark GC. No point in starting a new cycle given
2545           // that the whole heap was collected anyway.
2546         }
2547 
2548         if (retry_gc) {
2549           if (GC_locker::is_active_and_needs_gc()) {
2550             GC_locker::stall_until_clear();
2551           }
2552         }
2553       }
2554     } else {
2555       if (cause == GCCause::_gc_locker
2556           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2557 
2558         // Schedule a standard evacuation pause. We're setting word_size
2559         // to 0 which means that we are not requesting a post-GC allocation.
2560         VM_G1IncCollectionPause op(gc_count_before,
2561                                    0,     /* word_size */
2562                                    false, /* should_initiate_conc_mark */
2563                                    g1_policy()->max_pause_time_ms(),
2564                                    cause);
2565         VMThread::execute(&op);
2566       } else {
2567         // Schedule a Full GC.
2568         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2569         VMThread::execute(&op);
2570       }
2571     }
2572   } while (retry_gc);
2573 }
2574 
2575 bool G1CollectedHeap::is_in(const void* p) const {
2576   if (_g1_committed.contains(p)) {
2577     // Given that we know that p is in the committed space,
2578     // heap_region_containing_raw() should successfully
2579     // return the containing region.
2580     HeapRegion* hr = heap_region_containing_raw(p);
2581     return hr->is_in(p);
2582   } else {
2583     return false;
2584   }
2585 }
2586 
2587 // Iteration functions.
2588 
2589 // Iterates an OopClosure over all ref-containing fields of objects
2590 // within a HeapRegion.
2591 
2592 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2593   MemRegion _mr;
2594   ExtendedOopClosure* _cl;
2595 public:
2596   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2597     : _mr(mr), _cl(cl) {}
2598   bool doHeapRegion(HeapRegion* r) {
2599     if (!r->continuesHumongous()) {
2600       r->oop_iterate(_cl);
2601     }
2602     return false;
2603   }
2604 };
2605 
2606 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2607   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2608   heap_region_iterate(&blk);
2609 }
2610 
2611 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2612   IterateOopClosureRegionClosure blk(mr, cl);
2613   heap_region_iterate(&blk);
2614 }
2615 
2616 // Iterates an ObjectClosure over all objects within a HeapRegion.
2617 
2618 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2619   ObjectClosure* _cl;
2620 public:
2621   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2622   bool doHeapRegion(HeapRegion* r) {
2623     if (! r->continuesHumongous()) {
2624       r->object_iterate(_cl);
2625     }
2626     return false;
2627   }
2628 };
2629 
2630 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2631   IterateObjectClosureRegionClosure blk(cl);
2632   heap_region_iterate(&blk);
2633 }
2634 
2635 // Calls a SpaceClosure on a HeapRegion.
2636 
2637 class SpaceClosureRegionClosure: public HeapRegionClosure {
2638   SpaceClosure* _cl;
2639 public:
2640   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2641   bool doHeapRegion(HeapRegion* r) {
2642     _cl->do_space(r);
2643     return false;
2644   }
2645 };
2646 
2647 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2648   SpaceClosureRegionClosure blk(cl);
2649   heap_region_iterate(&blk);
2650 }
2651 
2652 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2653   _hrs.iterate(cl);
2654 }
2655 
2656 void
2657 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2658                                                  uint worker_id,
2659                                                  uint no_of_par_workers,
2660                                                  jint claim_value) {
2661   const uint regions = n_regions();
2662   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2663                              no_of_par_workers :
2664                              1);
2665   assert(UseDynamicNumberOfGCThreads ||
2666          no_of_par_workers == workers()->total_workers(),
2667          "Non dynamic should use fixed number of workers");
2668   // try to spread out the starting points of the workers
2669   const HeapRegion* start_hr =
2670                         start_region_for_worker(worker_id, no_of_par_workers);
2671   const uint start_index = start_hr->hrs_index();
2672 
2673   // each worker will actually look at all regions
2674   for (uint count = 0; count < regions; ++count) {
2675     const uint index = (start_index + count) % regions;
2676     assert(0 <= index && index < regions, "sanity");
2677     HeapRegion* r = region_at(index);
2678     // we'll ignore "continues humongous" regions (we'll process them
2679     // when we come across their corresponding "start humongous"
2680     // region) and regions already claimed
2681     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2682       continue;
2683     }
2684     // OK, try to claim it
2685     if (r->claimHeapRegion(claim_value)) {
2686       // success!
2687       assert(!r->continuesHumongous(), "sanity");
2688       if (r->startsHumongous()) {
2689         // If the region is "starts humongous" we'll iterate over its
2690         // "continues humongous" first; in fact we'll do them
2691         // first. The order is important. In on case, calling the
2692         // closure on the "starts humongous" region might de-allocate
2693         // and clear all its "continues humongous" regions and, as a
2694         // result, we might end up processing them twice. So, we'll do
2695         // them first (notice: most closures will ignore them anyway) and
2696         // then we'll do the "starts humongous" region.
2697         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2698           HeapRegion* chr = region_at(ch_index);
2699 
2700           // if the region has already been claimed or it's not
2701           // "continues humongous" we're done
2702           if (chr->claim_value() == claim_value ||
2703               !chr->continuesHumongous()) {
2704             break;
2705           }
2706 
2707           // No one should have claimed it directly. We can given
2708           // that we claimed its "starts humongous" region.
2709           assert(chr->claim_value() != claim_value, "sanity");
2710           assert(chr->humongous_start_region() == r, "sanity");
2711 
2712           if (chr->claimHeapRegion(claim_value)) {
2713             // we should always be able to claim it; no one else should
2714             // be trying to claim this region
2715 
2716             bool res2 = cl->doHeapRegion(chr);
2717             assert(!res2, "Should not abort");
2718 
2719             // Right now, this holds (i.e., no closure that actually
2720             // does something with "continues humongous" regions
2721             // clears them). We might have to weaken it in the future,
2722             // but let's leave these two asserts here for extra safety.
2723             assert(chr->continuesHumongous(), "should still be the case");
2724             assert(chr->humongous_start_region() == r, "sanity");
2725           } else {
2726             guarantee(false, "we should not reach here");
2727           }
2728         }
2729       }
2730 
2731       assert(!r->continuesHumongous(), "sanity");
2732       bool res = cl->doHeapRegion(r);
2733       assert(!res, "Should not abort");
2734     }
2735   }
2736 }
2737 
2738 class ResetClaimValuesClosure: public HeapRegionClosure {
2739 public:
2740   bool doHeapRegion(HeapRegion* r) {
2741     r->set_claim_value(HeapRegion::InitialClaimValue);
2742     return false;
2743   }
2744 };
2745 
2746 void G1CollectedHeap::reset_heap_region_claim_values() {
2747   ResetClaimValuesClosure blk;
2748   heap_region_iterate(&blk);
2749 }
2750 
2751 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2752   ResetClaimValuesClosure blk;
2753   collection_set_iterate(&blk);
2754 }
2755 
2756 #ifdef ASSERT
2757 // This checks whether all regions in the heap have the correct claim
2758 // value. I also piggy-backed on this a check to ensure that the
2759 // humongous_start_region() information on "continues humongous"
2760 // regions is correct.
2761 
2762 class CheckClaimValuesClosure : public HeapRegionClosure {
2763 private:
2764   jint _claim_value;
2765   uint _failures;
2766   HeapRegion* _sh_region;
2767 
2768 public:
2769   CheckClaimValuesClosure(jint claim_value) :
2770     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2771   bool doHeapRegion(HeapRegion* r) {
2772     if (r->claim_value() != _claim_value) {
2773       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2774                              "claim value = %d, should be %d",
2775                              HR_FORMAT_PARAMS(r),
2776                              r->claim_value(), _claim_value);
2777       ++_failures;
2778     }
2779     if (!r->isHumongous()) {
2780       _sh_region = NULL;
2781     } else if (r->startsHumongous()) {
2782       _sh_region = r;
2783     } else if (r->continuesHumongous()) {
2784       if (r->humongous_start_region() != _sh_region) {
2785         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2786                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2787                                HR_FORMAT_PARAMS(r),
2788                                r->humongous_start_region(),
2789                                _sh_region);
2790         ++_failures;
2791       }
2792     }
2793     return false;
2794   }
2795   uint failures() { return _failures; }
2796 };
2797 
2798 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2799   CheckClaimValuesClosure cl(claim_value);
2800   heap_region_iterate(&cl);
2801   return cl.failures() == 0;
2802 }
2803 
2804 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2805 private:
2806   jint _claim_value;
2807   uint _failures;
2808 
2809 public:
2810   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2811     _claim_value(claim_value), _failures(0) { }
2812 
2813   uint failures() { return _failures; }
2814 
2815   bool doHeapRegion(HeapRegion* hr) {
2816     assert(hr->in_collection_set(), "how?");
2817     assert(!hr->isHumongous(), "H-region in CSet");
2818     if (hr->claim_value() != _claim_value) {
2819       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2820                              "claim value = %d, should be %d",
2821                              HR_FORMAT_PARAMS(hr),
2822                              hr->claim_value(), _claim_value);
2823       _failures += 1;
2824     }
2825     return false;
2826   }
2827 };
2828 
2829 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2830   CheckClaimValuesInCSetHRClosure cl(claim_value);
2831   collection_set_iterate(&cl);
2832   return cl.failures() == 0;
2833 }
2834 #endif // ASSERT
2835 
2836 // Clear the cached CSet starting regions and (more importantly)
2837 // the time stamps. Called when we reset the GC time stamp.
2838 void G1CollectedHeap::clear_cset_start_regions() {
2839   assert(_worker_cset_start_region != NULL, "sanity");
2840   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2841 
2842   int n_queues = MAX2((int)ParallelGCThreads, 1);
2843   for (int i = 0; i < n_queues; i++) {
2844     _worker_cset_start_region[i] = NULL;
2845     _worker_cset_start_region_time_stamp[i] = 0;
2846   }
2847 }
2848 
2849 // Given the id of a worker, obtain or calculate a suitable
2850 // starting region for iterating over the current collection set.
2851 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2852   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2853 
2854   HeapRegion* result = NULL;
2855   unsigned gc_time_stamp = get_gc_time_stamp();
2856 
2857   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2858     // Cached starting region for current worker was set
2859     // during the current pause - so it's valid.
2860     // Note: the cached starting heap region may be NULL
2861     // (when the collection set is empty).
2862     result = _worker_cset_start_region[worker_i];
2863     assert(result == NULL || result->in_collection_set(), "sanity");
2864     return result;
2865   }
2866 
2867   // The cached entry was not valid so let's calculate
2868   // a suitable starting heap region for this worker.
2869 
2870   // We want the parallel threads to start their collection
2871   // set iteration at different collection set regions to
2872   // avoid contention.
2873   // If we have:
2874   //          n collection set regions
2875   //          p threads
2876   // Then thread t will start at region floor ((t * n) / p)
2877 
2878   result = g1_policy()->collection_set();
2879   if (G1CollectedHeap::use_parallel_gc_threads()) {
2880     uint cs_size = g1_policy()->cset_region_length();
2881     uint active_workers = workers()->active_workers();
2882     assert(UseDynamicNumberOfGCThreads ||
2883              active_workers == workers()->total_workers(),
2884              "Unless dynamic should use total workers");
2885 
2886     uint end_ind   = (cs_size * worker_i) / active_workers;
2887     uint start_ind = 0;
2888 
2889     if (worker_i > 0 &&
2890         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2891       // Previous workers starting region is valid
2892       // so let's iterate from there
2893       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2894       result = _worker_cset_start_region[worker_i - 1];
2895     }
2896 
2897     for (uint i = start_ind; i < end_ind; i++) {
2898       result = result->next_in_collection_set();
2899     }
2900   }
2901 
2902   // Note: the calculated starting heap region may be NULL
2903   // (when the collection set is empty).
2904   assert(result == NULL || result->in_collection_set(), "sanity");
2905   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2906          "should be updated only once per pause");
2907   _worker_cset_start_region[worker_i] = result;
2908   OrderAccess::storestore();
2909   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2910   return result;
2911 }
2912 
2913 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2914                                                      uint no_of_par_workers) {
2915   uint worker_num =
2916            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2917   assert(UseDynamicNumberOfGCThreads ||
2918          no_of_par_workers == workers()->total_workers(),
2919          "Non dynamic should use fixed number of workers");
2920   const uint start_index = n_regions() * worker_i / worker_num;
2921   return region_at(start_index);
2922 }
2923 
2924 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2925   HeapRegion* r = g1_policy()->collection_set();
2926   while (r != NULL) {
2927     HeapRegion* next = r->next_in_collection_set();
2928     if (cl->doHeapRegion(r)) {
2929       cl->incomplete();
2930       return;
2931     }
2932     r = next;
2933   }
2934 }
2935 
2936 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2937                                                   HeapRegionClosure *cl) {
2938   if (r == NULL) {
2939     // The CSet is empty so there's nothing to do.
2940     return;
2941   }
2942 
2943   assert(r->in_collection_set(),
2944          "Start region must be a member of the collection set.");
2945   HeapRegion* cur = r;
2946   while (cur != NULL) {
2947     HeapRegion* next = cur->next_in_collection_set();
2948     if (cl->doHeapRegion(cur) && false) {
2949       cl->incomplete();
2950       return;
2951     }
2952     cur = next;
2953   }
2954   cur = g1_policy()->collection_set();
2955   while (cur != r) {
2956     HeapRegion* next = cur->next_in_collection_set();
2957     if (cl->doHeapRegion(cur) && false) {
2958       cl->incomplete();
2959       return;
2960     }
2961     cur = next;
2962   }
2963 }
2964 
2965 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2966   return n_regions() > 0 ? region_at(0) : NULL;
2967 }
2968 
2969 
2970 Space* G1CollectedHeap::space_containing(const void* addr) const {
2971   Space* res = heap_region_containing(addr);
2972   return res;
2973 }
2974 
2975 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2976   Space* sp = space_containing(addr);
2977   if (sp != NULL) {
2978     return sp->block_start(addr);
2979   }
2980   return NULL;
2981 }
2982 
2983 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2984   Space* sp = space_containing(addr);
2985   assert(sp != NULL, "block_size of address outside of heap");
2986   return sp->block_size(addr);
2987 }
2988 
2989 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2990   Space* sp = space_containing(addr);
2991   return sp->block_is_obj(addr);
2992 }
2993 
2994 bool G1CollectedHeap::supports_tlab_allocation() const {
2995   return true;
2996 }
2997 
2998 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2999   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
3000 }
3001 
3002 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
3003   return young_list()->eden_used_bytes();
3004 }
3005 
3006 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
3007 // must be smaller than the humongous object limit.
3008 size_t G1CollectedHeap::max_tlab_size() const {
3009   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3010 }
3011 
3012 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3013   // Return the remaining space in the cur alloc region, but not less than
3014   // the min TLAB size.
3015 
3016   // Also, this value can be at most the humongous object threshold,
3017   // since we can't allow tlabs to grow big enough to accommodate
3018   // humongous objects.
3019 
3020   HeapRegion* hr = _mutator_alloc_region.get();
3021   size_t max_tlab = max_tlab_size() * wordSize;
3022   if (hr == NULL) {
3023     return max_tlab;
3024   } else {
3025     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3026   }
3027 }
3028 
3029 size_t G1CollectedHeap::max_capacity() const {
3030   return _g1_reserved.byte_size();
3031 }
3032 
3033 jlong G1CollectedHeap::millis_since_last_gc() {
3034   // assert(false, "NYI");
3035   return 0;
3036 }
3037 
3038 void G1CollectedHeap::prepare_for_verify() {
3039   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3040     ensure_parsability(false);
3041   }
3042   g1_rem_set()->prepare_for_verify();
3043 }
3044 
3045 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3046                                               VerifyOption vo) {
3047   switch (vo) {
3048   case VerifyOption_G1UsePrevMarking:
3049     return hr->obj_allocated_since_prev_marking(obj);
3050   case VerifyOption_G1UseNextMarking:
3051     return hr->obj_allocated_since_next_marking(obj);
3052   case VerifyOption_G1UseMarkWord:
3053     return false;
3054   default:
3055     ShouldNotReachHere();
3056   }
3057   return false; // keep some compilers happy
3058 }
3059 
3060 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3061   switch (vo) {
3062   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3063   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3064   case VerifyOption_G1UseMarkWord:    return NULL;
3065   default:                            ShouldNotReachHere();
3066   }
3067   return NULL; // keep some compilers happy
3068 }
3069 
3070 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3071   switch (vo) {
3072   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3073   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3074   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3075   default:                            ShouldNotReachHere();
3076   }
3077   return false; // keep some compilers happy
3078 }
3079 
3080 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3081   switch (vo) {
3082   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3083   case VerifyOption_G1UseNextMarking: return "NTAMS";
3084   case VerifyOption_G1UseMarkWord:    return "NONE";
3085   default:                            ShouldNotReachHere();
3086   }
3087   return NULL; // keep some compilers happy
3088 }
3089 
3090 class VerifyRootsClosure: public OopClosure {
3091 private:
3092   G1CollectedHeap* _g1h;
3093   VerifyOption     _vo;
3094   bool             _failures;
3095 public:
3096   // _vo == UsePrevMarking -> use "prev" marking information,
3097   // _vo == UseNextMarking -> use "next" marking information,
3098   // _vo == UseMarkWord    -> use mark word from object header.
3099   VerifyRootsClosure(VerifyOption vo) :
3100     _g1h(G1CollectedHeap::heap()),
3101     _vo(vo),
3102     _failures(false) { }
3103 
3104   bool failures() { return _failures; }
3105 
3106   template <class T> void do_oop_nv(T* p) {
3107     T heap_oop = oopDesc::load_heap_oop(p);
3108     if (!oopDesc::is_null(heap_oop)) {
3109       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3110       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3111         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3112                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3113         if (_vo == VerifyOption_G1UseMarkWord) {
3114           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3115         }
3116         obj->print_on(gclog_or_tty);
3117         _failures = true;
3118       }
3119     }
3120   }
3121 
3122   void do_oop(oop* p)       { do_oop_nv(p); }
3123   void do_oop(narrowOop* p) { do_oop_nv(p); }
3124 };
3125 
3126 class G1VerifyCodeRootOopClosure: public OopClosure {
3127   G1CollectedHeap* _g1h;
3128   OopClosure* _root_cl;
3129   nmethod* _nm;
3130   VerifyOption _vo;
3131   bool _failures;
3132 
3133   template <class T> void do_oop_work(T* p) {
3134     // First verify that this root is live
3135     _root_cl->do_oop(p);
3136 
3137     if (!G1VerifyHeapRegionCodeRoots) {
3138       // We're not verifying the code roots attached to heap region.
3139       return;
3140     }
3141 
3142     // Don't check the code roots during marking verification in a full GC
3143     if (_vo == VerifyOption_G1UseMarkWord) {
3144       return;
3145     }
3146 
3147     // Now verify that the current nmethod (which contains p) is
3148     // in the code root list of the heap region containing the
3149     // object referenced by p.
3150 
3151     T heap_oop = oopDesc::load_heap_oop(p);
3152     if (!oopDesc::is_null(heap_oop)) {
3153       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3154 
3155       // Now fetch the region containing the object
3156       HeapRegion* hr = _g1h->heap_region_containing(obj);
3157       HeapRegionRemSet* hrrs = hr->rem_set();
3158       // Verify that the strong code root list for this region
3159       // contains the nmethod
3160       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3161         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3162                               "from nmethod "PTR_FORMAT" not in strong "
3163                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3164                               p, _nm, hr->bottom(), hr->end());
3165         _failures = true;
3166       }
3167     }
3168   }
3169 
3170 public:
3171   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3172     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3173 
3174   void do_oop(oop* p) { do_oop_work(p); }
3175   void do_oop(narrowOop* p) { do_oop_work(p); }
3176 
3177   void set_nmethod(nmethod* nm) { _nm = nm; }
3178   bool failures() { return _failures; }
3179 };
3180 
3181 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3182   G1VerifyCodeRootOopClosure* _oop_cl;
3183 
3184 public:
3185   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3186     _oop_cl(oop_cl) {}
3187 
3188   void do_code_blob(CodeBlob* cb) {
3189     nmethod* nm = cb->as_nmethod_or_null();
3190     if (nm != NULL) {
3191       _oop_cl->set_nmethod(nm);
3192       nm->oops_do(_oop_cl);
3193     }
3194   }
3195 };
3196 
3197 class YoungRefCounterClosure : public OopClosure {
3198   G1CollectedHeap* _g1h;
3199   int              _count;
3200  public:
3201   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3202   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3203   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3204 
3205   int count() { return _count; }
3206   void reset_count() { _count = 0; };
3207 };
3208 
3209 class VerifyKlassClosure: public KlassClosure {
3210   YoungRefCounterClosure _young_ref_counter_closure;
3211   OopClosure *_oop_closure;
3212  public:
3213   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3214   void do_klass(Klass* k) {
3215     k->oops_do(_oop_closure);
3216 
3217     _young_ref_counter_closure.reset_count();
3218     k->oops_do(&_young_ref_counter_closure);
3219     if (_young_ref_counter_closure.count() > 0) {
3220       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3221     }
3222   }
3223 };
3224 
3225 class VerifyLivenessOopClosure: public OopClosure {
3226   G1CollectedHeap* _g1h;
3227   VerifyOption _vo;
3228 public:
3229   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3230     _g1h(g1h), _vo(vo)
3231   { }
3232   void do_oop(narrowOop *p) { do_oop_work(p); }
3233   void do_oop(      oop *p) { do_oop_work(p); }
3234 
3235   template <class T> void do_oop_work(T *p) {
3236     oop obj = oopDesc::load_decode_heap_oop(p);
3237     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3238               "Dead object referenced by a not dead object");
3239   }
3240 };
3241 
3242 class VerifyObjsInRegionClosure: public ObjectClosure {
3243 private:
3244   G1CollectedHeap* _g1h;
3245   size_t _live_bytes;
3246   HeapRegion *_hr;
3247   VerifyOption _vo;
3248 public:
3249   // _vo == UsePrevMarking -> use "prev" marking information,
3250   // _vo == UseNextMarking -> use "next" marking information,
3251   // _vo == UseMarkWord    -> use mark word from object header.
3252   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3253     : _live_bytes(0), _hr(hr), _vo(vo) {
3254     _g1h = G1CollectedHeap::heap();
3255   }
3256   void do_object(oop o) {
3257     VerifyLivenessOopClosure isLive(_g1h, _vo);
3258     assert(o != NULL, "Huh?");
3259     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3260       // If the object is alive according to the mark word,
3261       // then verify that the marking information agrees.
3262       // Note we can't verify the contra-positive of the
3263       // above: if the object is dead (according to the mark
3264       // word), it may not be marked, or may have been marked
3265       // but has since became dead, or may have been allocated
3266       // since the last marking.
3267       if (_vo == VerifyOption_G1UseMarkWord) {
3268         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3269       }
3270 
3271       o->oop_iterate_no_header(&isLive);
3272       if (!_hr->obj_allocated_since_prev_marking(o)) {
3273         size_t obj_size = o->size();    // Make sure we don't overflow
3274         _live_bytes += (obj_size * HeapWordSize);
3275       }
3276     }
3277   }
3278   size_t live_bytes() { return _live_bytes; }
3279 };
3280 
3281 class PrintObjsInRegionClosure : public ObjectClosure {
3282   HeapRegion *_hr;
3283   G1CollectedHeap *_g1;
3284 public:
3285   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3286     _g1 = G1CollectedHeap::heap();
3287   };
3288 
3289   void do_object(oop o) {
3290     if (o != NULL) {
3291       HeapWord *start = (HeapWord *) o;
3292       size_t word_sz = o->size();
3293       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3294                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3295                           (void*) o, word_sz,
3296                           _g1->isMarkedPrev(o),
3297                           _g1->isMarkedNext(o),
3298                           _hr->obj_allocated_since_prev_marking(o));
3299       HeapWord *end = start + word_sz;
3300       HeapWord *cur;
3301       int *val;
3302       for (cur = start; cur < end; cur++) {
3303         val = (int *) cur;
3304         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3305       }
3306     }
3307   }
3308 };
3309 
3310 class VerifyRegionClosure: public HeapRegionClosure {
3311 private:
3312   bool             _par;
3313   VerifyOption     _vo;
3314   bool             _failures;
3315 public:
3316   // _vo == UsePrevMarking -> use "prev" marking information,
3317   // _vo == UseNextMarking -> use "next" marking information,
3318   // _vo == UseMarkWord    -> use mark word from object header.
3319   VerifyRegionClosure(bool par, VerifyOption vo)
3320     : _par(par),
3321       _vo(vo),
3322       _failures(false) {}
3323 
3324   bool failures() {
3325     return _failures;
3326   }
3327 
3328   bool doHeapRegion(HeapRegion* r) {
3329     if (!r->continuesHumongous()) {
3330       bool failures = false;
3331       r->verify(_vo, &failures);
3332       if (failures) {
3333         _failures = true;
3334       } else {
3335         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3336         r->object_iterate(&not_dead_yet_cl);
3337         if (_vo != VerifyOption_G1UseNextMarking) {
3338           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3339             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3340                                    "max_live_bytes "SIZE_FORMAT" "
3341                                    "< calculated "SIZE_FORMAT,
3342                                    r->bottom(), r->end(),
3343                                    r->max_live_bytes(),
3344                                  not_dead_yet_cl.live_bytes());
3345             _failures = true;
3346           }
3347         } else {
3348           // When vo == UseNextMarking we cannot currently do a sanity
3349           // check on the live bytes as the calculation has not been
3350           // finalized yet.
3351         }
3352       }
3353     }
3354     return false; // stop the region iteration if we hit a failure
3355   }
3356 };
3357 
3358 // This is the task used for parallel verification of the heap regions
3359 
3360 class G1ParVerifyTask: public AbstractGangTask {
3361 private:
3362   G1CollectedHeap* _g1h;
3363   VerifyOption     _vo;
3364   bool             _failures;
3365 
3366 public:
3367   // _vo == UsePrevMarking -> use "prev" marking information,
3368   // _vo == UseNextMarking -> use "next" marking information,
3369   // _vo == UseMarkWord    -> use mark word from object header.
3370   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3371     AbstractGangTask("Parallel verify task"),
3372     _g1h(g1h),
3373     _vo(vo),
3374     _failures(false) { }
3375 
3376   bool failures() {
3377     return _failures;
3378   }
3379 
3380   void work(uint worker_id) {
3381     HandleMark hm;
3382     VerifyRegionClosure blk(true, _vo);
3383     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3384                                           _g1h->workers()->active_workers(),
3385                                           HeapRegion::ParVerifyClaimValue);
3386     if (blk.failures()) {
3387       _failures = true;
3388     }
3389   }
3390 };
3391 
3392 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3393   if (SafepointSynchronize::is_at_safepoint()) {
3394     assert(Thread::current()->is_VM_thread(),
3395            "Expected to be executed serially by the VM thread at this point");
3396 
3397     if (!silent) { gclog_or_tty->print("Roots "); }
3398     VerifyRootsClosure rootsCl(vo);
3399     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3400     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3401     VerifyKlassClosure klassCl(this, &rootsCl);
3402 
3403     // We apply the relevant closures to all the oops in the
3404     // system dictionary, the string table and the code cache.
3405     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3406 
3407     // Need cleared claim bits for the strong roots processing
3408     ClassLoaderDataGraph::clear_claimed_marks();
3409 
3410     process_strong_roots(true,      // activate StrongRootsScope
3411                          false,     // we set "is scavenging" to false,
3412                                     // so we don't reset the dirty cards.
3413                          ScanningOption(so),  // roots scanning options
3414                          &rootsCl,
3415                          &blobsCl,
3416                          &klassCl
3417                          );
3418 
3419     bool failures = rootsCl.failures() || codeRootsCl.failures();
3420 
3421     if (vo != VerifyOption_G1UseMarkWord) {
3422       // If we're verifying during a full GC then the region sets
3423       // will have been torn down at the start of the GC. Therefore
3424       // verifying the region sets will fail. So we only verify
3425       // the region sets when not in a full GC.
3426       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3427       verify_region_sets();
3428     }
3429 
3430     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3431     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3432       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3433              "sanity check");
3434 
3435       G1ParVerifyTask task(this, vo);
3436       assert(UseDynamicNumberOfGCThreads ||
3437         workers()->active_workers() == workers()->total_workers(),
3438         "If not dynamic should be using all the workers");
3439       int n_workers = workers()->active_workers();
3440       set_par_threads(n_workers);
3441       workers()->run_task(&task);
3442       set_par_threads(0);
3443       if (task.failures()) {
3444         failures = true;
3445       }
3446 
3447       // Checks that the expected amount of parallel work was done.
3448       // The implication is that n_workers is > 0.
3449       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3450              "sanity check");
3451 
3452       reset_heap_region_claim_values();
3453 
3454       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3455              "sanity check");
3456     } else {
3457       VerifyRegionClosure blk(false, vo);
3458       heap_region_iterate(&blk);
3459       if (blk.failures()) {
3460         failures = true;
3461       }
3462     }
3463     if (!silent) gclog_or_tty->print("RemSet ");
3464     rem_set()->verify();
3465 
3466     if (G1StringDedup::is_enabled()) {
3467       if (!silent) gclog_or_tty->print("StrDedup ");
3468       G1StringDedup::verify();
3469     }
3470 
3471     if (failures) {
3472       gclog_or_tty->print_cr("Heap:");
3473       // It helps to have the per-region information in the output to
3474       // help us track down what went wrong. This is why we call
3475       // print_extended_on() instead of print_on().
3476       print_extended_on(gclog_or_tty);
3477       gclog_or_tty->cr();
3478 #ifndef PRODUCT
3479       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3480         concurrent_mark()->print_reachable("at-verification-failure",
3481                                            vo, false /* all */);
3482       }
3483 #endif
3484       gclog_or_tty->flush();
3485     }
3486     guarantee(!failures, "there should not have been any failures");
3487   } else {
3488     if (!silent) {
3489       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3490       if (G1StringDedup::is_enabled()) {
3491         gclog_or_tty->print(", StrDedup");
3492       }
3493       gclog_or_tty->print(") ");
3494     }
3495   }
3496 }
3497 
3498 void G1CollectedHeap::verify(bool silent) {
3499   verify(silent, VerifyOption_G1UsePrevMarking);
3500 }
3501 
3502 double G1CollectedHeap::verify(bool guard, const char* msg) {
3503   double verify_time_ms = 0.0;
3504 
3505   if (guard && total_collections() >= VerifyGCStartAt) {
3506     double verify_start = os::elapsedTime();
3507     HandleMark hm;  // Discard invalid handles created during verification
3508     prepare_for_verify();
3509     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3510     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3511   }
3512 
3513   return verify_time_ms;
3514 }
3515 
3516 void G1CollectedHeap::verify_before_gc() {
3517   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3518   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3519 }
3520 
3521 void G1CollectedHeap::verify_after_gc() {
3522   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3523   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3524 }
3525 
3526 class PrintRegionClosure: public HeapRegionClosure {
3527   outputStream* _st;
3528 public:
3529   PrintRegionClosure(outputStream* st) : _st(st) {}
3530   bool doHeapRegion(HeapRegion* r) {
3531     r->print_on(_st);
3532     return false;
3533   }
3534 };
3535 
3536 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3537                                        const HeapRegion* hr,
3538                                        const VerifyOption vo) const {
3539   switch (vo) {
3540   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3541   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3542   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3543   default:                            ShouldNotReachHere();
3544   }
3545   return false; // keep some compilers happy
3546 }
3547 
3548 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3549                                        const VerifyOption vo) const {
3550   switch (vo) {
3551   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3552   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3553   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3554   default:                            ShouldNotReachHere();
3555   }
3556   return false; // keep some compilers happy
3557 }
3558 
3559 void G1CollectedHeap::print_on(outputStream* st) const {
3560   st->print(" %-20s", "garbage-first heap");
3561   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3562             capacity()/K, used_unlocked()/K);
3563   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3564             _g1_storage.low_boundary(),
3565             _g1_storage.high(),
3566             _g1_storage.high_boundary());
3567   st->cr();
3568   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3569   uint young_regions = _young_list->length();
3570   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3571             (size_t) young_regions * HeapRegion::GrainBytes / K);
3572   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3573   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3574             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3575   st->cr();
3576   MetaspaceAux::print_on(st);
3577 }
3578 
3579 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3580   print_on(st);
3581 
3582   // Print the per-region information.
3583   st->cr();
3584   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3585                "HS=humongous(starts), HC=humongous(continues), "
3586                "CS=collection set, F=free, TS=gc time stamp, "
3587                "PTAMS=previous top-at-mark-start, "
3588                "NTAMS=next top-at-mark-start)");
3589   PrintRegionClosure blk(st);
3590   heap_region_iterate(&blk);
3591 }
3592 
3593 void G1CollectedHeap::print_on_error(outputStream* st) const {
3594   this->CollectedHeap::print_on_error(st);
3595 
3596   if (_cm != NULL) {
3597     st->cr();
3598     _cm->print_on_error(st);
3599   }
3600 }
3601 
3602 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3603   if (G1CollectedHeap::use_parallel_gc_threads()) {
3604     workers()->print_worker_threads_on(st);
3605   }
3606   _cmThread->print_on(st);
3607   st->cr();
3608   _cm->print_worker_threads_on(st);
3609   _cg1r->print_worker_threads_on(st);
3610   if (G1StringDedup::is_enabled()) {
3611     G1StringDedup::print_worker_threads_on(st);
3612   }
3613 }
3614 
3615 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3616   if (G1CollectedHeap::use_parallel_gc_threads()) {
3617     workers()->threads_do(tc);
3618   }
3619   tc->do_thread(_cmThread);
3620   _cg1r->threads_do(tc);
3621   if (G1StringDedup::is_enabled()) {
3622     G1StringDedup::threads_do(tc);
3623   }
3624 }
3625 
3626 void G1CollectedHeap::print_tracing_info() const {
3627   // We'll overload this to mean "trace GC pause statistics."
3628   if (TraceGen0Time || TraceGen1Time) {
3629     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3630     // to that.
3631     g1_policy()->print_tracing_info();
3632   }
3633   if (G1SummarizeRSetStats) {
3634     g1_rem_set()->print_summary_info();
3635   }
3636   if (G1SummarizeConcMark) {
3637     concurrent_mark()->print_summary_info();
3638   }
3639   g1_policy()->print_yg_surv_rate_info();
3640   SpecializationStats::print();
3641 }
3642 
3643 #ifndef PRODUCT
3644 // Helpful for debugging RSet issues.
3645 
3646 class PrintRSetsClosure : public HeapRegionClosure {
3647 private:
3648   const char* _msg;
3649   size_t _occupied_sum;
3650 
3651 public:
3652   bool doHeapRegion(HeapRegion* r) {
3653     HeapRegionRemSet* hrrs = r->rem_set();
3654     size_t occupied = hrrs->occupied();
3655     _occupied_sum += occupied;
3656 
3657     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3658                            HR_FORMAT_PARAMS(r));
3659     if (occupied == 0) {
3660       gclog_or_tty->print_cr("  RSet is empty");
3661     } else {
3662       hrrs->print();
3663     }
3664     gclog_or_tty->print_cr("----------");
3665     return false;
3666   }
3667 
3668   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3669     gclog_or_tty->cr();
3670     gclog_or_tty->print_cr("========================================");
3671     gclog_or_tty->print_cr("%s", msg);
3672     gclog_or_tty->cr();
3673   }
3674 
3675   ~PrintRSetsClosure() {
3676     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3677     gclog_or_tty->print_cr("========================================");
3678     gclog_or_tty->cr();
3679   }
3680 };
3681 
3682 void G1CollectedHeap::print_cset_rsets() {
3683   PrintRSetsClosure cl("Printing CSet RSets");
3684   collection_set_iterate(&cl);
3685 }
3686 
3687 void G1CollectedHeap::print_all_rsets() {
3688   PrintRSetsClosure cl("Printing All RSets");;
3689   heap_region_iterate(&cl);
3690 }
3691 #endif // PRODUCT
3692 
3693 G1CollectedHeap* G1CollectedHeap::heap() {
3694   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3695          "not a garbage-first heap");
3696   return _g1h;
3697 }
3698 
3699 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3700   // always_do_update_barrier = false;
3701   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3702   // Fill TLAB's and such
3703   accumulate_statistics_all_tlabs();
3704   ensure_parsability(true);
3705 
3706   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3707       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3708     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3709   }
3710 }
3711 
3712 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3713 
3714   if (G1SummarizeRSetStats &&
3715       (G1SummarizeRSetStatsPeriod > 0) &&
3716       // we are at the end of the GC. Total collections has already been increased.
3717       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3718     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3719   }
3720 
3721   // FIXME: what is this about?
3722   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3723   // is set.
3724   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3725                         "derived pointer present"));
3726   // always_do_update_barrier = true;
3727 
3728   resize_all_tlabs();
3729 
3730   // We have just completed a GC. Update the soft reference
3731   // policy with the new heap occupancy
3732   Universe::update_heap_info_at_gc();
3733 }
3734 
3735 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3736                                                unsigned int gc_count_before,
3737                                                bool* succeeded,
3738                                                GCCause::Cause gc_cause) {
3739   assert_heap_not_locked_and_not_at_safepoint();
3740   g1_policy()->record_stop_world_start();
3741   VM_G1IncCollectionPause op(gc_count_before,
3742                              word_size,
3743                              false, /* should_initiate_conc_mark */
3744                              g1_policy()->max_pause_time_ms(),
3745                              gc_cause);
3746   VMThread::execute(&op);
3747 
3748   HeapWord* result = op.result();
3749   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3750   assert(result == NULL || ret_succeeded,
3751          "the result should be NULL if the VM did not succeed");
3752   *succeeded = ret_succeeded;
3753 
3754   assert_heap_not_locked();
3755   return result;
3756 }
3757 
3758 void
3759 G1CollectedHeap::doConcurrentMark() {
3760   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3761   if (!_cmThread->in_progress()) {
3762     _cmThread->set_started();
3763     CGC_lock->notify();
3764   }
3765 }
3766 
3767 size_t G1CollectedHeap::pending_card_num() {
3768   size_t extra_cards = 0;
3769   JavaThread *curr = Threads::first();
3770   while (curr != NULL) {
3771     DirtyCardQueue& dcq = curr->dirty_card_queue();
3772     extra_cards += dcq.size();
3773     curr = curr->next();
3774   }
3775   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3776   size_t buffer_size = dcqs.buffer_size();
3777   size_t buffer_num = dcqs.completed_buffers_num();
3778 
3779   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3780   // in bytes - not the number of 'entries'. We need to convert
3781   // into a number of cards.
3782   return (buffer_size * buffer_num + extra_cards) / oopSize;
3783 }
3784 
3785 size_t G1CollectedHeap::cards_scanned() {
3786   return g1_rem_set()->cardsScanned();
3787 }
3788 
3789 void
3790 G1CollectedHeap::setup_surviving_young_words() {
3791   assert(_surviving_young_words == NULL, "pre-condition");
3792   uint array_length = g1_policy()->young_cset_region_length();
3793   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3794   if (_surviving_young_words == NULL) {
3795     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3796                           "Not enough space for young surv words summary.");
3797   }
3798   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3799 #ifdef ASSERT
3800   for (uint i = 0;  i < array_length; ++i) {
3801     assert( _surviving_young_words[i] == 0, "memset above" );
3802   }
3803 #endif // !ASSERT
3804 }
3805 
3806 void
3807 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3808   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3809   uint array_length = g1_policy()->young_cset_region_length();
3810   for (uint i = 0; i < array_length; ++i) {
3811     _surviving_young_words[i] += surv_young_words[i];
3812   }
3813 }
3814 
3815 void
3816 G1CollectedHeap::cleanup_surviving_young_words() {
3817   guarantee( _surviving_young_words != NULL, "pre-condition" );
3818   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3819   _surviving_young_words = NULL;
3820 }
3821 
3822 #ifdef ASSERT
3823 class VerifyCSetClosure: public HeapRegionClosure {
3824 public:
3825   bool doHeapRegion(HeapRegion* hr) {
3826     // Here we check that the CSet region's RSet is ready for parallel
3827     // iteration. The fields that we'll verify are only manipulated
3828     // when the region is part of a CSet and is collected. Afterwards,
3829     // we reset these fields when we clear the region's RSet (when the
3830     // region is freed) so they are ready when the region is
3831     // re-allocated. The only exception to this is if there's an
3832     // evacuation failure and instead of freeing the region we leave
3833     // it in the heap. In that case, we reset these fields during
3834     // evacuation failure handling.
3835     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3836 
3837     // Here's a good place to add any other checks we'd like to
3838     // perform on CSet regions.
3839     return false;
3840   }
3841 };
3842 #endif // ASSERT
3843 
3844 #if TASKQUEUE_STATS
3845 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3846   st->print_raw_cr("GC Task Stats");
3847   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3848   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3849 }
3850 
3851 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3852   print_taskqueue_stats_hdr(st);
3853 
3854   TaskQueueStats totals;
3855   const int n = workers() != NULL ? workers()->total_workers() : 1;
3856   for (int i = 0; i < n; ++i) {
3857     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3858     totals += task_queue(i)->stats;
3859   }
3860   st->print_raw("tot "); totals.print(st); st->cr();
3861 
3862   DEBUG_ONLY(totals.verify());
3863 }
3864 
3865 void G1CollectedHeap::reset_taskqueue_stats() {
3866   const int n = workers() != NULL ? workers()->total_workers() : 1;
3867   for (int i = 0; i < n; ++i) {
3868     task_queue(i)->stats.reset();
3869   }
3870 }
3871 #endif // TASKQUEUE_STATS
3872 
3873 void G1CollectedHeap::log_gc_header() {
3874   if (!G1Log::fine()) {
3875     return;
3876   }
3877 
3878   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3879 
3880   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3881     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3882     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3883 
3884   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3885 }
3886 
3887 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3888   if (!G1Log::fine()) {
3889     return;
3890   }
3891 
3892   if (G1Log::finer()) {
3893     if (evacuation_failed()) {
3894       gclog_or_tty->print(" (to-space exhausted)");
3895     }
3896     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3897     g1_policy()->phase_times()->note_gc_end();
3898     g1_policy()->phase_times()->print(pause_time_sec);
3899     g1_policy()->print_detailed_heap_transition();
3900   } else {
3901     if (evacuation_failed()) {
3902       gclog_or_tty->print("--");
3903     }
3904     g1_policy()->print_heap_transition();
3905     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3906   }
3907   gclog_or_tty->flush();
3908 }
3909 
3910 bool
3911 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3912   assert_at_safepoint(true /* should_be_vm_thread */);
3913   guarantee(!is_gc_active(), "collection is not reentrant");
3914 
3915   if (GC_locker::check_active_before_gc()) {
3916     return false;
3917   }
3918 
3919   _gc_timer_stw->register_gc_start();
3920 
3921   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3922 
3923   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3924   ResourceMark rm;
3925 
3926   print_heap_before_gc();
3927   trace_heap_before_gc(_gc_tracer_stw);
3928 
3929   verify_region_sets_optional();
3930   verify_dirty_young_regions();
3931 
3932   // This call will decide whether this pause is an initial-mark
3933   // pause. If it is, during_initial_mark_pause() will return true
3934   // for the duration of this pause.
3935   g1_policy()->decide_on_conc_mark_initiation();
3936 
3937   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3938   assert(!g1_policy()->during_initial_mark_pause() ||
3939           g1_policy()->gcs_are_young(), "sanity");
3940 
3941   // We also do not allow mixed GCs during marking.
3942   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3943 
3944   // Record whether this pause is an initial mark. When the current
3945   // thread has completed its logging output and it's safe to signal
3946   // the CM thread, the flag's value in the policy has been reset.
3947   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3948 
3949   // Inner scope for scope based logging, timers, and stats collection
3950   {
3951     EvacuationInfo evacuation_info;
3952 
3953     if (g1_policy()->during_initial_mark_pause()) {
3954       // We are about to start a marking cycle, so we increment the
3955       // full collection counter.
3956       increment_old_marking_cycles_started();
3957       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3958     }
3959 
3960     _gc_tracer_stw->report_yc_type(yc_type());
3961 
3962     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3963 
3964     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3965                                 workers()->active_workers() : 1);
3966     double pause_start_sec = os::elapsedTime();
3967     g1_policy()->phase_times()->note_gc_start(active_workers);
3968     log_gc_header();
3969 
3970     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3971     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3972 
3973     // If the secondary_free_list is not empty, append it to the
3974     // free_list. No need to wait for the cleanup operation to finish;
3975     // the region allocation code will check the secondary_free_list
3976     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3977     // set, skip this step so that the region allocation code has to
3978     // get entries from the secondary_free_list.
3979     if (!G1StressConcRegionFreeing) {
3980       append_secondary_free_list_if_not_empty_with_lock();
3981     }
3982 
3983     assert(check_young_list_well_formed(), "young list should be well formed");
3984     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3985            "sanity check");
3986 
3987     // Don't dynamically change the number of GC threads this early.  A value of
3988     // 0 is used to indicate serial work.  When parallel work is done,
3989     // it will be set.
3990 
3991     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3992       IsGCActiveMark x;
3993 
3994       gc_prologue(false);
3995       increment_total_collections(false /* full gc */);
3996       increment_gc_time_stamp();
3997 
3998       verify_before_gc();
3999 
4000       COMPILER2_PRESENT(DerivedPointerTable::clear());
4001 
4002       // Please see comment in g1CollectedHeap.hpp and
4003       // G1CollectedHeap::ref_processing_init() to see how
4004       // reference processing currently works in G1.
4005 
4006       // Enable discovery in the STW reference processor
4007       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
4008                                             true /*verify_no_refs*/);
4009 
4010       {
4011         // We want to temporarily turn off discovery by the
4012         // CM ref processor, if necessary, and turn it back on
4013         // on again later if we do. Using a scoped
4014         // NoRefDiscovery object will do this.
4015         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4016 
4017         // Forget the current alloc region (we might even choose it to be part
4018         // of the collection set!).
4019         release_mutator_alloc_region();
4020 
4021         // We should call this after we retire the mutator alloc
4022         // region(s) so that all the ALLOC / RETIRE events are generated
4023         // before the start GC event.
4024         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4025 
4026         // This timing is only used by the ergonomics to handle our pause target.
4027         // It is unclear why this should not include the full pause. We will
4028         // investigate this in CR 7178365.
4029         //
4030         // Preserving the old comment here if that helps the investigation:
4031         //
4032         // The elapsed time induced by the start time below deliberately elides
4033         // the possible verification above.
4034         double sample_start_time_sec = os::elapsedTime();
4035 
4036 #if YOUNG_LIST_VERBOSE
4037         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4038         _young_list->print();
4039         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4040 #endif // YOUNG_LIST_VERBOSE
4041 
4042         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4043 
4044         double scan_wait_start = os::elapsedTime();
4045         // We have to wait until the CM threads finish scanning the
4046         // root regions as it's the only way to ensure that all the
4047         // objects on them have been correctly scanned before we start
4048         // moving them during the GC.
4049         bool waited = _cm->root_regions()->wait_until_scan_finished();
4050         double wait_time_ms = 0.0;
4051         if (waited) {
4052           double scan_wait_end = os::elapsedTime();
4053           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4054         }
4055         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4056 
4057 #if YOUNG_LIST_VERBOSE
4058         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4059         _young_list->print();
4060 #endif // YOUNG_LIST_VERBOSE
4061 
4062         if (g1_policy()->during_initial_mark_pause()) {
4063           concurrent_mark()->checkpointRootsInitialPre();
4064         }
4065 
4066 #if YOUNG_LIST_VERBOSE
4067         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4068         _young_list->print();
4069         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4070 #endif // YOUNG_LIST_VERBOSE
4071 
4072         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4073 
4074         _cm->note_start_of_gc();
4075         // We should not verify the per-thread SATB buffers given that
4076         // we have not filtered them yet (we'll do so during the
4077         // GC). We also call this after finalize_cset() to
4078         // ensure that the CSet has been finalized.
4079         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4080                                  true  /* verify_enqueued_buffers */,
4081                                  false /* verify_thread_buffers */,
4082                                  true  /* verify_fingers */);
4083 
4084         if (_hr_printer.is_active()) {
4085           HeapRegion* hr = g1_policy()->collection_set();
4086           while (hr != NULL) {
4087             G1HRPrinter::RegionType type;
4088             if (!hr->is_young()) {
4089               type = G1HRPrinter::Old;
4090             } else if (hr->is_survivor()) {
4091               type = G1HRPrinter::Survivor;
4092             } else {
4093               type = G1HRPrinter::Eden;
4094             }
4095             _hr_printer.cset(hr);
4096             hr = hr->next_in_collection_set();
4097           }
4098         }
4099 
4100 #ifdef ASSERT
4101         VerifyCSetClosure cl;
4102         collection_set_iterate(&cl);
4103 #endif // ASSERT
4104 
4105         setup_surviving_young_words();
4106 
4107         // Initialize the GC alloc regions.
4108         init_gc_alloc_regions(evacuation_info);
4109 
4110         // Actually do the work...
4111         evacuate_collection_set(evacuation_info);
4112 
4113         // We do this to mainly verify the per-thread SATB buffers
4114         // (which have been filtered by now) since we didn't verify
4115         // them earlier. No point in re-checking the stacks / enqueued
4116         // buffers given that the CSet has not changed since last time
4117         // we checked.
4118         _cm->verify_no_cset_oops(false /* verify_stacks */,
4119                                  false /* verify_enqueued_buffers */,
4120                                  true  /* verify_thread_buffers */,
4121                                  true  /* verify_fingers */);
4122 
4123         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4124         g1_policy()->clear_collection_set();
4125 
4126         cleanup_surviving_young_words();
4127 
4128         // Start a new incremental collection set for the next pause.
4129         g1_policy()->start_incremental_cset_building();
4130 
4131         clear_cset_fast_test();
4132 
4133         _young_list->reset_sampled_info();
4134 
4135         // Don't check the whole heap at this point as the
4136         // GC alloc regions from this pause have been tagged
4137         // as survivors and moved on to the survivor list.
4138         // Survivor regions will fail the !is_young() check.
4139         assert(check_young_list_empty(false /* check_heap */),
4140           "young list should be empty");
4141 
4142 #if YOUNG_LIST_VERBOSE
4143         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4144         _young_list->print();
4145 #endif // YOUNG_LIST_VERBOSE
4146 
4147         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4148                                              _young_list->first_survivor_region(),
4149                                              _young_list->last_survivor_region());
4150 
4151         _young_list->reset_auxilary_lists();
4152 
4153         if (evacuation_failed()) {
4154           _summary_bytes_used = recalculate_used();
4155           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4156           for (uint i = 0; i < n_queues; i++) {
4157             if (_evacuation_failed_info_array[i].has_failed()) {
4158               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4159             }
4160           }
4161         } else {
4162           // The "used" of the the collection set have already been subtracted
4163           // when they were freed.  Add in the bytes evacuated.
4164           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4165         }
4166 
4167         if (g1_policy()->during_initial_mark_pause()) {
4168           // We have to do this before we notify the CM threads that
4169           // they can start working to make sure that all the
4170           // appropriate initialization is done on the CM object.
4171           concurrent_mark()->checkpointRootsInitialPost();
4172           set_marking_started();
4173           // Note that we don't actually trigger the CM thread at
4174           // this point. We do that later when we're sure that
4175           // the current thread has completed its logging output.
4176         }
4177 
4178         allocate_dummy_regions();
4179 
4180 #if YOUNG_LIST_VERBOSE
4181         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4182         _young_list->print();
4183         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4184 #endif // YOUNG_LIST_VERBOSE
4185 
4186         init_mutator_alloc_region();
4187 
4188         {
4189           size_t expand_bytes = g1_policy()->expansion_amount();
4190           if (expand_bytes > 0) {
4191             size_t bytes_before = capacity();
4192             // No need for an ergo verbose message here,
4193             // expansion_amount() does this when it returns a value > 0.
4194             if (!expand(expand_bytes)) {
4195               // We failed to expand the heap so let's verify that
4196               // committed/uncommitted amount match the backing store
4197               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4198               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4199             }
4200           }
4201         }
4202 
4203         // We redo the verification but now wrt to the new CSet which
4204         // has just got initialized after the previous CSet was freed.
4205         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4206                                  true  /* verify_enqueued_buffers */,
4207                                  true  /* verify_thread_buffers */,
4208                                  true  /* verify_fingers */);
4209         _cm->note_end_of_gc();
4210 
4211         // This timing is only used by the ergonomics to handle our pause target.
4212         // It is unclear why this should not include the full pause. We will
4213         // investigate this in CR 7178365.
4214         double sample_end_time_sec = os::elapsedTime();
4215         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4216         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4217 
4218         MemoryService::track_memory_usage();
4219 
4220         // In prepare_for_verify() below we'll need to scan the deferred
4221         // update buffers to bring the RSets up-to-date if
4222         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4223         // the update buffers we'll probably need to scan cards on the
4224         // regions we just allocated to (i.e., the GC alloc
4225         // regions). However, during the last GC we called
4226         // set_saved_mark() on all the GC alloc regions, so card
4227         // scanning might skip the [saved_mark_word()...top()] area of
4228         // those regions (i.e., the area we allocated objects into
4229         // during the last GC). But it shouldn't. Given that
4230         // saved_mark_word() is conditional on whether the GC time stamp
4231         // on the region is current or not, by incrementing the GC time
4232         // stamp here we invalidate all the GC time stamps on all the
4233         // regions and saved_mark_word() will simply return top() for
4234         // all the regions. This is a nicer way of ensuring this rather
4235         // than iterating over the regions and fixing them. In fact, the
4236         // GC time stamp increment here also ensures that
4237         // saved_mark_word() will return top() between pauses, i.e.,
4238         // during concurrent refinement. So we don't need the
4239         // is_gc_active() check to decided which top to use when
4240         // scanning cards (see CR 7039627).
4241         increment_gc_time_stamp();
4242 
4243         verify_after_gc();
4244 
4245         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4246         ref_processor_stw()->verify_no_references_recorded();
4247 
4248         // CM reference discovery will be re-enabled if necessary.
4249       }
4250 
4251       // We should do this after we potentially expand the heap so
4252       // that all the COMMIT events are generated before the end GC
4253       // event, and after we retire the GC alloc regions so that all
4254       // RETIRE events are generated before the end GC event.
4255       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4256 
4257       if (mark_in_progress()) {
4258         concurrent_mark()->update_g1_committed();
4259       }
4260 
4261 #ifdef TRACESPINNING
4262       ParallelTaskTerminator::print_termination_counts();
4263 #endif
4264 
4265       gc_epilogue(false);
4266     }
4267 
4268     // Print the remainder of the GC log output.
4269     log_gc_footer(os::elapsedTime() - pause_start_sec);
4270 
4271     // It is not yet to safe to tell the concurrent mark to
4272     // start as we have some optional output below. We don't want the
4273     // output from the concurrent mark thread interfering with this
4274     // logging output either.
4275 
4276     _hrs.verify_optional();
4277     verify_region_sets_optional();
4278 
4279     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4280     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4281 
4282     print_heap_after_gc();
4283     trace_heap_after_gc(_gc_tracer_stw);
4284 
4285     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4286     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4287     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4288     // before any GC notifications are raised.
4289     g1mm()->update_sizes();
4290 
4291     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4292     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4293     _gc_timer_stw->register_gc_end();
4294     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4295   }
4296   // It should now be safe to tell the concurrent mark thread to start
4297   // without its logging output interfering with the logging output
4298   // that came from the pause.
4299 
4300   if (should_start_conc_mark) {
4301     // CAUTION: after the doConcurrentMark() call below,
4302     // the concurrent marking thread(s) could be running
4303     // concurrently with us. Make sure that anything after
4304     // this point does not assume that we are the only GC thread
4305     // running. Note: of course, the actual marking work will
4306     // not start until the safepoint itself is released in
4307     // SuspendibleThreadSet::desynchronize().
4308     doConcurrentMark();
4309   }
4310 
4311   return true;
4312 }
4313 
4314 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4315 {
4316   size_t gclab_word_size;
4317   switch (purpose) {
4318     case GCAllocForSurvived:
4319       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4320       break;
4321     case GCAllocForTenured:
4322       gclab_word_size = _old_plab_stats.desired_plab_sz();
4323       break;
4324     default:
4325       assert(false, "unknown GCAllocPurpose");
4326       gclab_word_size = _old_plab_stats.desired_plab_sz();
4327       break;
4328   }
4329 
4330   // Prevent humongous PLAB sizes for two reasons:
4331   // * PLABs are allocated using a similar paths as oops, but should
4332   //   never be in a humongous region
4333   // * Allowing humongous PLABs needlessly churns the region free lists
4334   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4335 }
4336 
4337 void G1CollectedHeap::init_mutator_alloc_region() {
4338   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4339   _mutator_alloc_region.init();
4340 }
4341 
4342 void G1CollectedHeap::release_mutator_alloc_region() {
4343   _mutator_alloc_region.release();
4344   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4345 }
4346 
4347 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4348   assert_at_safepoint(true /* should_be_vm_thread */);
4349 
4350   _survivor_gc_alloc_region.init();
4351   _old_gc_alloc_region.init();
4352   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4353   _retained_old_gc_alloc_region = NULL;
4354 
4355   // We will discard the current GC alloc region if:
4356   // a) it's in the collection set (it can happen!),
4357   // b) it's already full (no point in using it),
4358   // c) it's empty (this means that it was emptied during
4359   // a cleanup and it should be on the free list now), or
4360   // d) it's humongous (this means that it was emptied
4361   // during a cleanup and was added to the free list, but
4362   // has been subsequently used to allocate a humongous
4363   // object that may be less than the region size).
4364   if (retained_region != NULL &&
4365       !retained_region->in_collection_set() &&
4366       !(retained_region->top() == retained_region->end()) &&
4367       !retained_region->is_empty() &&
4368       !retained_region->isHumongous()) {
4369     retained_region->set_saved_mark();
4370     // The retained region was added to the old region set when it was
4371     // retired. We have to remove it now, since we don't allow regions
4372     // we allocate to in the region sets. We'll re-add it later, when
4373     // it's retired again.
4374     _old_set.remove(retained_region);
4375     bool during_im = g1_policy()->during_initial_mark_pause();
4376     retained_region->note_start_of_copying(during_im);
4377     _old_gc_alloc_region.set(retained_region);
4378     _hr_printer.reuse(retained_region);
4379     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4380   }
4381 }
4382 
4383 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4384   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4385                                          _old_gc_alloc_region.count());
4386   _survivor_gc_alloc_region.release();
4387   // If we have an old GC alloc region to release, we'll save it in
4388   // _retained_old_gc_alloc_region. If we don't
4389   // _retained_old_gc_alloc_region will become NULL. This is what we
4390   // want either way so no reason to check explicitly for either
4391   // condition.
4392   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4393 
4394   if (ResizePLAB) {
4395     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4396     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4397   }
4398 }
4399 
4400 void G1CollectedHeap::abandon_gc_alloc_regions() {
4401   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4402   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4403   _retained_old_gc_alloc_region = NULL;
4404 }
4405 
4406 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4407   _drain_in_progress = false;
4408   set_evac_failure_closure(cl);
4409   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4410 }
4411 
4412 void G1CollectedHeap::finalize_for_evac_failure() {
4413   assert(_evac_failure_scan_stack != NULL &&
4414          _evac_failure_scan_stack->length() == 0,
4415          "Postcondition");
4416   assert(!_drain_in_progress, "Postcondition");
4417   delete _evac_failure_scan_stack;
4418   _evac_failure_scan_stack = NULL;
4419 }
4420 
4421 void G1CollectedHeap::remove_self_forwarding_pointers() {
4422   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4423 
4424   double remove_self_forwards_start = os::elapsedTime();
4425 
4426   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4427 
4428   if (G1CollectedHeap::use_parallel_gc_threads()) {
4429     set_par_threads();
4430     workers()->run_task(&rsfp_task);
4431     set_par_threads(0);
4432   } else {
4433     rsfp_task.work(0);
4434   }
4435 
4436   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4437 
4438   // Reset the claim values in the regions in the collection set.
4439   reset_cset_heap_region_claim_values();
4440 
4441   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4442 
4443   // Now restore saved marks, if any.
4444   assert(_objs_with_preserved_marks.size() ==
4445             _preserved_marks_of_objs.size(), "Both or none.");
4446   while (!_objs_with_preserved_marks.is_empty()) {
4447     oop obj = _objs_with_preserved_marks.pop();
4448     markOop m = _preserved_marks_of_objs.pop();
4449     obj->set_mark(m);
4450   }
4451   _objs_with_preserved_marks.clear(true);
4452   _preserved_marks_of_objs.clear(true);
4453 
4454   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4455 }
4456 
4457 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4458   _evac_failure_scan_stack->push(obj);
4459 }
4460 
4461 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4462   assert(_evac_failure_scan_stack != NULL, "precondition");
4463 
4464   while (_evac_failure_scan_stack->length() > 0) {
4465      oop obj = _evac_failure_scan_stack->pop();
4466      _evac_failure_closure->set_region(heap_region_containing(obj));
4467      obj->oop_iterate_backwards(_evac_failure_closure);
4468   }
4469 }
4470 
4471 oop
4472 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4473                                                oop old) {
4474   assert(obj_in_cs(old),
4475          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4476                  (HeapWord*) old));
4477   markOop m = old->mark();
4478   oop forward_ptr = old->forward_to_atomic(old);
4479   if (forward_ptr == NULL) {
4480     // Forward-to-self succeeded.
4481     assert(_par_scan_state != NULL, "par scan state");
4482     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4483     uint queue_num = _par_scan_state->queue_num();
4484 
4485     _evacuation_failed = true;
4486     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4487     if (_evac_failure_closure != cl) {
4488       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4489       assert(!_drain_in_progress,
4490              "Should only be true while someone holds the lock.");
4491       // Set the global evac-failure closure to the current thread's.
4492       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4493       set_evac_failure_closure(cl);
4494       // Now do the common part.
4495       handle_evacuation_failure_common(old, m);
4496       // Reset to NULL.
4497       set_evac_failure_closure(NULL);
4498     } else {
4499       // The lock is already held, and this is recursive.
4500       assert(_drain_in_progress, "This should only be the recursive case.");
4501       handle_evacuation_failure_common(old, m);
4502     }
4503     return old;
4504   } else {
4505     // Forward-to-self failed. Either someone else managed to allocate
4506     // space for this object (old != forward_ptr) or they beat us in
4507     // self-forwarding it (old == forward_ptr).
4508     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4509            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4510                    "should not be in the CSet",
4511                    (HeapWord*) old, (HeapWord*) forward_ptr));
4512     return forward_ptr;
4513   }
4514 }
4515 
4516 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4517   preserve_mark_if_necessary(old, m);
4518 
4519   HeapRegion* r = heap_region_containing(old);
4520   if (!r->evacuation_failed()) {
4521     r->set_evacuation_failed(true);
4522     _hr_printer.evac_failure(r);
4523   }
4524 
4525   push_on_evac_failure_scan_stack(old);
4526 
4527   if (!_drain_in_progress) {
4528     // prevent recursion in copy_to_survivor_space()
4529     _drain_in_progress = true;
4530     drain_evac_failure_scan_stack();
4531     _drain_in_progress = false;
4532   }
4533 }
4534 
4535 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4536   assert(evacuation_failed(), "Oversaving!");
4537   // We want to call the "for_promotion_failure" version only in the
4538   // case of a promotion failure.
4539   if (m->must_be_preserved_for_promotion_failure(obj)) {
4540     _objs_with_preserved_marks.push(obj);
4541     _preserved_marks_of_objs.push(m);
4542   }
4543 }
4544 
4545 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4546                                                   size_t word_size) {
4547   if (purpose == GCAllocForSurvived) {
4548     HeapWord* result = survivor_attempt_allocation(word_size);
4549     if (result != NULL) {
4550       return result;
4551     } else {
4552       // Let's try to allocate in the old gen in case we can fit the
4553       // object there.
4554       return old_attempt_allocation(word_size);
4555     }
4556   } else {
4557     assert(purpose ==  GCAllocForTenured, "sanity");
4558     HeapWord* result = old_attempt_allocation(word_size);
4559     if (result != NULL) {
4560       return result;
4561     } else {
4562       // Let's try to allocate in the survivors in case we can fit the
4563       // object there.
4564       return survivor_attempt_allocation(word_size);
4565     }
4566   }
4567 
4568   ShouldNotReachHere();
4569   // Trying to keep some compilers happy.
4570   return NULL;
4571 }
4572 
4573 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4574   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4575 
4576 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4577   : _g1h(g1h),
4578     _refs(g1h->task_queue(queue_num)),
4579     _dcq(&g1h->dirty_card_queue_set()),
4580     _ct_bs(g1h->g1_barrier_set()),
4581     _g1_rem(g1h->g1_rem_set()),
4582     _hash_seed(17), _queue_num(queue_num),
4583     _term_attempts(0),
4584     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4585     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4586     _age_table(false), _scanner(g1h, this, rp),
4587     _strong_roots_time(0), _term_time(0),
4588     _alloc_buffer_waste(0), _undo_waste(0) {
4589   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4590   // we "sacrifice" entry 0 to keep track of surviving bytes for
4591   // non-young regions (where the age is -1)
4592   // We also add a few elements at the beginning and at the end in
4593   // an attempt to eliminate cache contention
4594   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4595   uint array_length = PADDING_ELEM_NUM +
4596                       real_length +
4597                       PADDING_ELEM_NUM;
4598   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4599   if (_surviving_young_words_base == NULL)
4600     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4601                           "Not enough space for young surv histo.");
4602   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4603   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4604 
4605   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4606   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4607 
4608   _start = os::elapsedTime();
4609 }
4610 
4611 void
4612 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4613 {
4614   st->print_raw_cr("GC Termination Stats");
4615   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4616                    " ------waste (KiB)------");
4617   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4618                    "  total   alloc    undo");
4619   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4620                    " ------- ------- -------");
4621 }
4622 
4623 void
4624 G1ParScanThreadState::print_termination_stats(int i,
4625                                               outputStream* const st) const
4626 {
4627   const double elapsed_ms = elapsed_time() * 1000.0;
4628   const double s_roots_ms = strong_roots_time() * 1000.0;
4629   const double term_ms    = term_time() * 1000.0;
4630   st->print_cr("%3d %9.2f %9.2f %6.2f "
4631                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4632                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4633                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4634                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4635                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4636                alloc_buffer_waste() * HeapWordSize / K,
4637                undo_waste() * HeapWordSize / K);
4638 }
4639 
4640 #ifdef ASSERT
4641 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4642   assert(ref != NULL, "invariant");
4643   assert(UseCompressedOops, "sanity");
4644   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4645   oop p = oopDesc::load_decode_heap_oop(ref);
4646   assert(_g1h->is_in_g1_reserved(p),
4647          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4648   return true;
4649 }
4650 
4651 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4652   assert(ref != NULL, "invariant");
4653   if (has_partial_array_mask(ref)) {
4654     // Must be in the collection set--it's already been copied.
4655     oop p = clear_partial_array_mask(ref);
4656     assert(_g1h->obj_in_cs(p),
4657            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4658   } else {
4659     oop p = oopDesc::load_decode_heap_oop(ref);
4660     assert(_g1h->is_in_g1_reserved(p),
4661            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4662   }
4663   return true;
4664 }
4665 
4666 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4667   if (ref.is_narrow()) {
4668     return verify_ref((narrowOop*) ref);
4669   } else {
4670     return verify_ref((oop*) ref);
4671   }
4672 }
4673 #endif // ASSERT
4674 
4675 void G1ParScanThreadState::trim_queue() {
4676   assert(_evac_failure_cl != NULL, "not set");
4677 
4678   StarTask ref;
4679   do {
4680     // Drain the overflow stack first, so other threads can steal.
4681     while (refs()->pop_overflow(ref)) {
4682       deal_with_reference(ref);
4683     }
4684 
4685     while (refs()->pop_local(ref)) {
4686       deal_with_reference(ref);
4687     }
4688   } while (!refs()->is_empty());
4689 }
4690 
4691 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4692                                      G1ParScanThreadState* par_scan_state) :
4693   _g1(g1), _par_scan_state(par_scan_state),
4694   _worker_id(par_scan_state->queue_num()) { }
4695 
4696 void G1ParCopyHelper::mark_object(oop obj) {
4697 #ifdef ASSERT
4698   HeapRegion* hr = _g1->heap_region_containing(obj);
4699   assert(hr != NULL, "sanity");
4700   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4701 #endif // ASSERT
4702 
4703   // We know that the object is not moving so it's safe to read its size.
4704   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4705 }
4706 
4707 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4708 #ifdef ASSERT
4709   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4710   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4711   assert(from_obj != to_obj, "should not be self-forwarded");
4712 
4713   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4714   assert(from_hr != NULL, "sanity");
4715   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4716 
4717   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4718   assert(to_hr != NULL, "sanity");
4719   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4720 #endif // ASSERT
4721 
4722   // The object might be in the process of being copied by another
4723   // worker so we cannot trust that its to-space image is
4724   // well-formed. So we have to read its size from its from-space
4725   // image which we know should not be changing.
4726   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4727 }
4728 
4729 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4730   size_t word_sz = old->size();
4731   HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4732   // +1 to make the -1 indexes valid...
4733   int       young_index = from_region->young_index_in_cset()+1;
4734   assert( (from_region->is_young() && young_index >  0) ||
4735          (!from_region->is_young() && young_index == 0), "invariant" );
4736   G1CollectorPolicy* g1p = _g1h->g1_policy();
4737   markOop m = old->mark();
4738   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4739                                            : m->age();
4740   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4741                                                              word_sz);
4742   HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4743 #ifndef PRODUCT
4744   // Should this evacuation fail?
4745   if (_g1h->evacuation_should_fail()) {
4746     if (obj_ptr != NULL) {
4747       undo_allocation(alloc_purpose, obj_ptr, word_sz);
4748       obj_ptr = NULL;
4749     }
4750   }
4751 #endif // !PRODUCT
4752 
4753   if (obj_ptr == NULL) {
4754     // This will either forward-to-self, or detect that someone else has
4755     // installed a forwarding pointer.
4756     return _g1h->handle_evacuation_failure_par(this, old);
4757   }
4758 
4759   oop obj = oop(obj_ptr);
4760 
4761   // We're going to allocate linearly, so might as well prefetch ahead.
4762   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4763 
4764   oop forward_ptr = old->forward_to_atomic(obj);
4765   if (forward_ptr == NULL) {
4766     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4767 
4768     // alloc_purpose is just a hint to allocate() above, recheck the type of region
4769     // we actually allocated from and update alloc_purpose accordingly
4770     HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
4771     alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
4772 
4773     if (g1p->track_object_age(alloc_purpose)) {
4774       // We could simply do obj->incr_age(). However, this causes a
4775       // performance issue. obj->incr_age() will first check whether
4776       // the object has a displaced mark by checking its mark word;
4777       // getting the mark word from the new location of the object
4778       // stalls. So, given that we already have the mark word and we
4779       // are about to install it anyway, it's better to increase the
4780       // age on the mark word, when the object does not have a
4781       // displaced mark word. We're not expecting many objects to have
4782       // a displaced marked word, so that case is not optimized
4783       // further (it could be...) and we simply call obj->incr_age().
4784 
4785       if (m->has_displaced_mark_helper()) {
4786         // in this case, we have to install the mark word first,
4787         // otherwise obj looks to be forwarded (the old mark word,
4788         // which contains the forward pointer, was copied)
4789         obj->set_mark(m);
4790         obj->incr_age();
4791       } else {
4792         m = m->incr_age();
4793         obj->set_mark(m);
4794       }
4795       age_table()->add(obj, word_sz);
4796     } else {
4797       obj->set_mark(m);
4798     }
4799 
4800     if (G1StringDedup::is_enabled()) {
4801       G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
4802                                              to_region->is_young(),
4803                                              queue_num(),
4804                                              obj);
4805     }
4806 
4807     size_t* surv_young_words = surviving_young_words();
4808     surv_young_words[young_index] += word_sz;
4809 
4810     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4811       // We keep track of the next start index in the length field of
4812       // the to-space object. The actual length can be found in the
4813       // length field of the from-space object.
4814       arrayOop(obj)->set_length(0);
4815       oop* old_p = set_partial_array_mask(old);
4816       push_on_queue(old_p);
4817     } else {
4818       // No point in using the slower heap_region_containing() method,
4819       // given that we know obj is in the heap.
4820       _scanner.set_region(_g1h->heap_region_containing_raw(obj));
4821       obj->oop_iterate_backwards(&_scanner);
4822     }
4823   } else {
4824     undo_allocation(alloc_purpose, obj_ptr, word_sz);
4825     obj = forward_ptr;
4826   }
4827   return obj;
4828 }
4829 
4830 template <class T>
4831 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4832   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4833     _scanned_klass->record_modified_oops();
4834   }
4835 }
4836 
4837 template <G1Barrier barrier, bool do_mark_object>
4838 template <class T>
4839 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4840   T heap_oop = oopDesc::load_heap_oop(p);
4841 
4842   if (oopDesc::is_null(heap_oop)) {
4843     return;
4844   }
4845 
4846   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4847 
4848   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4849 
4850   if (_g1->in_cset_fast_test(obj)) {
4851     oop forwardee;
4852     if (obj->is_forwarded()) {
4853       forwardee = obj->forwardee();
4854     } else {
4855       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4856     }
4857     assert(forwardee != NULL, "forwardee should not be NULL");
4858     oopDesc::encode_store_heap_oop(p, forwardee);
4859     if (do_mark_object && forwardee != obj) {
4860       // If the object is self-forwarded we don't need to explicitly
4861       // mark it, the evacuation failure protocol will do so.
4862       mark_forwarded_object(obj, forwardee);
4863     }
4864 
4865     if (barrier == G1BarrierKlass) {
4866       do_klass_barrier(p, forwardee);
4867     }
4868   } else {
4869     // The object is not in collection set. If we're a root scanning
4870     // closure during an initial mark pause (i.e. do_mark_object will
4871     // be true) then attempt to mark the object.
4872     if (do_mark_object) {
4873       mark_object(obj);
4874     }
4875   }
4876 
4877   if (barrier == G1BarrierEvac) {
4878     _par_scan_state->update_rs(_from, p, _worker_id);
4879   }
4880 }
4881 
4882 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
4883 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4884 
4885 class G1ParEvacuateFollowersClosure : public VoidClosure {
4886 protected:
4887   G1CollectedHeap*              _g1h;
4888   G1ParScanThreadState*         _par_scan_state;
4889   RefToScanQueueSet*            _queues;
4890   ParallelTaskTerminator*       _terminator;
4891 
4892   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4893   RefToScanQueueSet*      queues()         { return _queues; }
4894   ParallelTaskTerminator* terminator()     { return _terminator; }
4895 
4896 public:
4897   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4898                                 G1ParScanThreadState* par_scan_state,
4899                                 RefToScanQueueSet* queues,
4900                                 ParallelTaskTerminator* terminator)
4901     : _g1h(g1h), _par_scan_state(par_scan_state),
4902       _queues(queues), _terminator(terminator) {}
4903 
4904   void do_void();
4905 
4906 private:
4907   inline bool offer_termination();
4908 };
4909 
4910 bool G1ParEvacuateFollowersClosure::offer_termination() {
4911   G1ParScanThreadState* const pss = par_scan_state();
4912   pss->start_term_time();
4913   const bool res = terminator()->offer_termination();
4914   pss->end_term_time();
4915   return res;
4916 }
4917 
4918 void G1ParEvacuateFollowersClosure::do_void() {
4919   StarTask stolen_task;
4920   G1ParScanThreadState* const pss = par_scan_state();
4921   pss->trim_queue();
4922 
4923   do {
4924     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4925       assert(pss->verify_task(stolen_task), "sanity");
4926       if (stolen_task.is_narrow()) {
4927         pss->deal_with_reference((narrowOop*) stolen_task);
4928       } else {
4929         pss->deal_with_reference((oop*) stolen_task);
4930       }
4931 
4932       // We've just processed a reference and we might have made
4933       // available new entries on the queues. So we have to make sure
4934       // we drain the queues as necessary.
4935       pss->trim_queue();
4936     }
4937   } while (!offer_termination());
4938 
4939   pss->retire_alloc_buffers();
4940 }
4941 
4942 class G1KlassScanClosure : public KlassClosure {
4943  G1ParCopyHelper* _closure;
4944  bool             _process_only_dirty;
4945  int              _count;
4946  public:
4947   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4948       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4949   void do_klass(Klass* klass) {
4950     // If the klass has not been dirtied we know that there's
4951     // no references into  the young gen and we can skip it.
4952    if (!_process_only_dirty || klass->has_modified_oops()) {
4953       // Clean the klass since we're going to scavenge all the metadata.
4954       klass->clear_modified_oops();
4955 
4956       // Tell the closure that this klass is the Klass to scavenge
4957       // and is the one to dirty if oops are left pointing into the young gen.
4958       _closure->set_scanned_klass(klass);
4959 
4960       klass->oops_do(_closure);
4961 
4962       _closure->set_scanned_klass(NULL);
4963     }
4964     _count++;
4965   }
4966 };
4967 
4968 class G1ParTask : public AbstractGangTask {
4969 protected:
4970   G1CollectedHeap*       _g1h;
4971   RefToScanQueueSet      *_queues;
4972   ParallelTaskTerminator _terminator;
4973   uint _n_workers;
4974 
4975   Mutex _stats_lock;
4976   Mutex* stats_lock() { return &_stats_lock; }
4977 
4978   size_t getNCards() {
4979     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4980       / G1BlockOffsetSharedArray::N_bytes;
4981   }
4982 
4983 public:
4984   G1ParTask(G1CollectedHeap* g1h,
4985             RefToScanQueueSet *task_queues)
4986     : AbstractGangTask("G1 collection"),
4987       _g1h(g1h),
4988       _queues(task_queues),
4989       _terminator(0, _queues),
4990       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4991   {}
4992 
4993   RefToScanQueueSet* queues() { return _queues; }
4994 
4995   RefToScanQueue *work_queue(int i) {
4996     return queues()->queue(i);
4997   }
4998 
4999   ParallelTaskTerminator* terminator() { return &_terminator; }
5000 
5001   virtual void set_for_termination(int active_workers) {
5002     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
5003     // in the young space (_par_seq_tasks) in the G1 heap
5004     // for SequentialSubTasksDone.
5005     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
5006     // both of which need setting by set_n_termination().
5007     _g1h->SharedHeap::set_n_termination(active_workers);
5008     _g1h->set_n_termination(active_workers);
5009     terminator()->reset_for_reuse(active_workers);
5010     _n_workers = active_workers;
5011   }
5012 
5013   void work(uint worker_id) {
5014     if (worker_id >= _n_workers) return;  // no work needed this round
5015 
5016     double start_time_ms = os::elapsedTime() * 1000.0;
5017     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5018 
5019     {
5020       ResourceMark rm;
5021       HandleMark   hm;
5022 
5023       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5024 
5025       G1ParScanThreadState            pss(_g1h, worker_id, rp);
5026       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5027 
5028       pss.set_evac_failure_closure(&evac_failure_cl);
5029 
5030       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5031       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5032 
5033       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5034       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5035 
5036       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5037       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5038       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5039 
5040       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5041       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5042 
5043       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5044         // We also need to mark copied objects.
5045         scan_root_cl = &scan_mark_root_cl;
5046         scan_klasses_cl = &scan_mark_klasses_cl_s;
5047       }
5048 
5049       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5050 
5051       // Don't scan the scavengable methods in the code cache as part
5052       // of strong root scanning. The code roots that point into a
5053       // region in the collection set are scanned when we scan the
5054       // region's RSet.
5055       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5056 
5057       pss.start_strong_roots();
5058       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5059                                     SharedHeap::ScanningOption(so),
5060                                     scan_root_cl,
5061                                     &push_heap_rs_cl,
5062                                     scan_klasses_cl,
5063                                     worker_id);
5064       pss.end_strong_roots();
5065 
5066       {
5067         double start = os::elapsedTime();
5068         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5069         evac.do_void();
5070         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5071         double term_ms = pss.term_time()*1000.0;
5072         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5073         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5074       }
5075       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5076       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5077 
5078       if (ParallelGCVerbose) {
5079         MutexLocker x(stats_lock());
5080         pss.print_termination_stats(worker_id);
5081       }
5082 
5083       assert(pss.refs()->is_empty(), "should be empty");
5084 
5085       // Close the inner scope so that the ResourceMark and HandleMark
5086       // destructors are executed here and are included as part of the
5087       // "GC Worker Time".
5088     }
5089 
5090     double end_time_ms = os::elapsedTime() * 1000.0;
5091     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5092   }
5093 };
5094 
5095 // *** Common G1 Evacuation Stuff
5096 
5097 // This method is run in a GC worker.
5098 
5099 void
5100 G1CollectedHeap::
5101 g1_process_strong_roots(bool is_scavenging,
5102                         ScanningOption so,
5103                         OopClosure* scan_non_heap_roots,
5104                         OopsInHeapRegionClosure* scan_rs,
5105                         G1KlassScanClosure* scan_klasses,
5106                         uint worker_i) {
5107 
5108   // First scan the strong roots
5109   double ext_roots_start = os::elapsedTime();
5110   double closure_app_time_sec = 0.0;
5111 
5112   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5113 
5114   assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
5115   // Walk the code cache/strong code roots w/o buffering, because StarTask
5116   // cannot handle unaligned oop locations.
5117   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5118 
5119   process_strong_roots(false, // no scoping; this is parallel code
5120                        is_scavenging, so,
5121                        &buf_scan_non_heap_roots,
5122                        &eager_scan_code_roots,
5123                        scan_klasses
5124                        );
5125 
5126   // Now the CM ref_processor roots.
5127   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5128     // We need to treat the discovered reference lists of the
5129     // concurrent mark ref processor as roots and keep entries
5130     // (which are added by the marking threads) on them live
5131     // until they can be processed at the end of marking.
5132     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5133   }
5134 
5135   // Finish up any enqueued closure apps (attributed as object copy time).
5136   buf_scan_non_heap_roots.done();
5137 
5138   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5139 
5140   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5141 
5142   double ext_root_time_ms =
5143     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5144 
5145   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5146 
5147   // During conc marking we have to filter the per-thread SATB buffers
5148   // to make sure we remove any oops into the CSet (which will show up
5149   // as implicitly live).
5150   double satb_filtering_ms = 0.0;
5151   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5152     if (mark_in_progress()) {
5153       double satb_filter_start = os::elapsedTime();
5154 
5155       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5156 
5157       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5158     }
5159   }
5160   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5161 
5162   // If this is an initial mark pause, and we're not scanning
5163   // the entire code cache, we need to mark the oops in the
5164   // strong code root lists for the regions that are not in
5165   // the collection set.
5166   // Note all threads participate in this set of root tasks.
5167   double mark_strong_code_roots_ms = 0.0;
5168   if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
5169     double mark_strong_roots_start = os::elapsedTime();
5170     mark_strong_code_roots(worker_i);
5171     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5172   }
5173   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5174 
5175   // Now scan the complement of the collection set.
5176   if (scan_rs != NULL) {
5177     g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5178   }
5179   _process_strong_tasks->all_tasks_completed();
5180 }
5181 
5182 void
5183 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5184   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5185   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5186 }
5187 
5188 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
5189 private:
5190   BoolObjectClosure* _is_alive;
5191   int _initial_string_table_size;
5192   int _initial_symbol_table_size;
5193 
5194   bool  _process_strings;
5195   int _strings_processed;
5196   int _strings_removed;
5197 
5198   bool  _process_symbols;
5199   int _symbols_processed;
5200   int _symbols_removed;
5201 
5202   bool _do_in_parallel;
5203 public:
5204   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
5205     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5206     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5207     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
5208     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
5209 
5210     _initial_string_table_size = StringTable::the_table()->table_size();
5211     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
5212     if (process_strings) {
5213       StringTable::clear_parallel_claimed_index();
5214     }
5215     if (process_symbols) {
5216       SymbolTable::clear_parallel_claimed_index();
5217     }
5218   }
5219 
5220   ~G1StringSymbolTableUnlinkTask() {
5221     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5222               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
5223                       StringTable::parallel_claimed_index(), _initial_string_table_size));
5224     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5225               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
5226                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
5227   }
5228 
5229   void work(uint worker_id) {
5230     if (_do_in_parallel) {
5231       int strings_processed = 0;
5232       int strings_removed = 0;
5233       int symbols_processed = 0;
5234       int symbols_removed = 0;
5235       if (_process_strings) {
5236         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
5237         Atomic::add(strings_processed, &_strings_processed);
5238         Atomic::add(strings_removed, &_strings_removed);
5239       }
5240       if (_process_symbols) {
5241         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
5242         Atomic::add(symbols_processed, &_symbols_processed);
5243         Atomic::add(symbols_removed, &_symbols_removed);
5244       }
5245     } else {
5246       if (_process_strings) {
5247         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
5248       }
5249       if (_process_symbols) {
5250         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
5251       }
5252     }
5253   }
5254 
5255   size_t strings_processed() const { return (size_t)_strings_processed; }
5256   size_t strings_removed()   const { return (size_t)_strings_removed; }
5257 
5258   size_t symbols_processed() const { return (size_t)_symbols_processed; }
5259   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
5260 };
5261 
5262 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5263                                                      bool process_strings, bool process_symbols) {
5264   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5265                    _g1h->workers()->active_workers() : 1);
5266 
5267   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5268   if (G1CollectedHeap::use_parallel_gc_threads()) {
5269     set_par_threads(n_workers);
5270     workers()->run_task(&g1_unlink_task);
5271     set_par_threads(0);
5272   } else {
5273     g1_unlink_task.work(0);
5274   }
5275   if (G1TraceStringSymbolTableScrubbing) {
5276     gclog_or_tty->print_cr("Cleaned string and symbol table, "
5277                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
5278                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
5279                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
5280                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
5281   }
5282 
5283   if (G1StringDedup::is_enabled()) {
5284     G1StringDedup::unlink(is_alive);
5285   }
5286 }
5287 
5288 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
5289 public:
5290   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
5291     *card_ptr = CardTableModRefBS::dirty_card_val();
5292     return true;
5293   }
5294 };
5295 
5296 void G1CollectedHeap::redirty_logged_cards() {
5297   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
5298   double redirty_logged_cards_start = os::elapsedTime();
5299 
5300   RedirtyLoggedCardTableEntryFastClosure redirty;
5301   dirty_card_queue_set().set_closure(&redirty);
5302   dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5303 
5304   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5305   dcq.merge_bufferlists(&dirty_card_queue_set());
5306   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5307 
5308   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5309 }
5310 
5311 // Weak Reference Processing support
5312 
5313 // An always "is_alive" closure that is used to preserve referents.
5314 // If the object is non-null then it's alive.  Used in the preservation
5315 // of referent objects that are pointed to by reference objects
5316 // discovered by the CM ref processor.
5317 class G1AlwaysAliveClosure: public BoolObjectClosure {
5318   G1CollectedHeap* _g1;
5319 public:
5320   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5321   bool do_object_b(oop p) {
5322     if (p != NULL) {
5323       return true;
5324     }
5325     return false;
5326   }
5327 };
5328 
5329 bool G1STWIsAliveClosure::do_object_b(oop p) {
5330   // An object is reachable if it is outside the collection set,
5331   // or is inside and copied.
5332   return !_g1->obj_in_cs(p) || p->is_forwarded();
5333 }
5334 
5335 // Non Copying Keep Alive closure
5336 class G1KeepAliveClosure: public OopClosure {
5337   G1CollectedHeap* _g1;
5338 public:
5339   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5340   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5341   void do_oop(      oop* p) {
5342     oop obj = *p;
5343 
5344     if (_g1->obj_in_cs(obj)) {
5345       assert( obj->is_forwarded(), "invariant" );
5346       *p = obj->forwardee();
5347     }
5348   }
5349 };
5350 
5351 // Copying Keep Alive closure - can be called from both
5352 // serial and parallel code as long as different worker
5353 // threads utilize different G1ParScanThreadState instances
5354 // and different queues.
5355 
5356 class G1CopyingKeepAliveClosure: public OopClosure {
5357   G1CollectedHeap*         _g1h;
5358   OopClosure*              _copy_non_heap_obj_cl;
5359   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5360   G1ParScanThreadState*    _par_scan_state;
5361 
5362 public:
5363   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5364                             OopClosure* non_heap_obj_cl,
5365                             OopsInHeapRegionClosure* metadata_obj_cl,
5366                             G1ParScanThreadState* pss):
5367     _g1h(g1h),
5368     _copy_non_heap_obj_cl(non_heap_obj_cl),
5369     _copy_metadata_obj_cl(metadata_obj_cl),
5370     _par_scan_state(pss)
5371   {}
5372 
5373   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5374   virtual void do_oop(      oop* p) { do_oop_work(p); }
5375 
5376   template <class T> void do_oop_work(T* p) {
5377     oop obj = oopDesc::load_decode_heap_oop(p);
5378 
5379     if (_g1h->obj_in_cs(obj)) {
5380       // If the referent object has been forwarded (either copied
5381       // to a new location or to itself in the event of an
5382       // evacuation failure) then we need to update the reference
5383       // field and, if both reference and referent are in the G1
5384       // heap, update the RSet for the referent.
5385       //
5386       // If the referent has not been forwarded then we have to keep
5387       // it alive by policy. Therefore we have copy the referent.
5388       //
5389       // If the reference field is in the G1 heap then we can push
5390       // on the PSS queue. When the queue is drained (after each
5391       // phase of reference processing) the object and it's followers
5392       // will be copied, the reference field set to point to the
5393       // new location, and the RSet updated. Otherwise we need to
5394       // use the the non-heap or metadata closures directly to copy
5395       // the referent object and update the pointer, while avoiding
5396       // updating the RSet.
5397 
5398       if (_g1h->is_in_g1_reserved(p)) {
5399         _par_scan_state->push_on_queue(p);
5400       } else {
5401         assert(!Metaspace::contains((const void*)p),
5402                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5403                               PTR_FORMAT, p));
5404           _copy_non_heap_obj_cl->do_oop(p);
5405         }
5406       }
5407     }
5408 };
5409 
5410 // Serial drain queue closure. Called as the 'complete_gc'
5411 // closure for each discovered list in some of the
5412 // reference processing phases.
5413 
5414 class G1STWDrainQueueClosure: public VoidClosure {
5415 protected:
5416   G1CollectedHeap* _g1h;
5417   G1ParScanThreadState* _par_scan_state;
5418 
5419   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5420 
5421 public:
5422   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5423     _g1h(g1h),
5424     _par_scan_state(pss)
5425   { }
5426 
5427   void do_void() {
5428     G1ParScanThreadState* const pss = par_scan_state();
5429     pss->trim_queue();
5430   }
5431 };
5432 
5433 // Parallel Reference Processing closures
5434 
5435 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5436 // processing during G1 evacuation pauses.
5437 
5438 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5439 private:
5440   G1CollectedHeap*   _g1h;
5441   RefToScanQueueSet* _queues;
5442   FlexibleWorkGang*  _workers;
5443   int                _active_workers;
5444 
5445 public:
5446   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5447                         FlexibleWorkGang* workers,
5448                         RefToScanQueueSet *task_queues,
5449                         int n_workers) :
5450     _g1h(g1h),
5451     _queues(task_queues),
5452     _workers(workers),
5453     _active_workers(n_workers)
5454   {
5455     assert(n_workers > 0, "shouldn't call this otherwise");
5456   }
5457 
5458   // Executes the given task using concurrent marking worker threads.
5459   virtual void execute(ProcessTask& task);
5460   virtual void execute(EnqueueTask& task);
5461 };
5462 
5463 // Gang task for possibly parallel reference processing
5464 
5465 class G1STWRefProcTaskProxy: public AbstractGangTask {
5466   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5467   ProcessTask&     _proc_task;
5468   G1CollectedHeap* _g1h;
5469   RefToScanQueueSet *_task_queues;
5470   ParallelTaskTerminator* _terminator;
5471 
5472 public:
5473   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5474                      G1CollectedHeap* g1h,
5475                      RefToScanQueueSet *task_queues,
5476                      ParallelTaskTerminator* terminator) :
5477     AbstractGangTask("Process reference objects in parallel"),
5478     _proc_task(proc_task),
5479     _g1h(g1h),
5480     _task_queues(task_queues),
5481     _terminator(terminator)
5482   {}
5483 
5484   virtual void work(uint worker_id) {
5485     // The reference processing task executed by a single worker.
5486     ResourceMark rm;
5487     HandleMark   hm;
5488 
5489     G1STWIsAliveClosure is_alive(_g1h);
5490 
5491     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5492     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5493 
5494     pss.set_evac_failure_closure(&evac_failure_cl);
5495 
5496     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5497     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5498 
5499     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5500     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5501 
5502     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5503     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5504 
5505     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5506       // We also need to mark copied objects.
5507       copy_non_heap_cl = &copy_mark_non_heap_cl;
5508       copy_metadata_cl = &copy_mark_metadata_cl;
5509     }
5510 
5511     // Keep alive closure.
5512     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5513 
5514     // Complete GC closure
5515     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5516 
5517     // Call the reference processing task's work routine.
5518     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5519 
5520     // Note we cannot assert that the refs array is empty here as not all
5521     // of the processing tasks (specifically phase2 - pp2_work) execute
5522     // the complete_gc closure (which ordinarily would drain the queue) so
5523     // the queue may not be empty.
5524   }
5525 };
5526 
5527 // Driver routine for parallel reference processing.
5528 // Creates an instance of the ref processing gang
5529 // task and has the worker threads execute it.
5530 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5531   assert(_workers != NULL, "Need parallel worker threads.");
5532 
5533   ParallelTaskTerminator terminator(_active_workers, _queues);
5534   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5535 
5536   _g1h->set_par_threads(_active_workers);
5537   _workers->run_task(&proc_task_proxy);
5538   _g1h->set_par_threads(0);
5539 }
5540 
5541 // Gang task for parallel reference enqueueing.
5542 
5543 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5544   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5545   EnqueueTask& _enq_task;
5546 
5547 public:
5548   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5549     AbstractGangTask("Enqueue reference objects in parallel"),
5550     _enq_task(enq_task)
5551   { }
5552 
5553   virtual void work(uint worker_id) {
5554     _enq_task.work(worker_id);
5555   }
5556 };
5557 
5558 // Driver routine for parallel reference enqueueing.
5559 // Creates an instance of the ref enqueueing gang
5560 // task and has the worker threads execute it.
5561 
5562 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5563   assert(_workers != NULL, "Need parallel worker threads.");
5564 
5565   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5566 
5567   _g1h->set_par_threads(_active_workers);
5568   _workers->run_task(&enq_task_proxy);
5569   _g1h->set_par_threads(0);
5570 }
5571 
5572 // End of weak reference support closures
5573 
5574 // Abstract task used to preserve (i.e. copy) any referent objects
5575 // that are in the collection set and are pointed to by reference
5576 // objects discovered by the CM ref processor.
5577 
5578 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5579 protected:
5580   G1CollectedHeap* _g1h;
5581   RefToScanQueueSet      *_queues;
5582   ParallelTaskTerminator _terminator;
5583   uint _n_workers;
5584 
5585 public:
5586   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5587     AbstractGangTask("ParPreserveCMReferents"),
5588     _g1h(g1h),
5589     _queues(task_queues),
5590     _terminator(workers, _queues),
5591     _n_workers(workers)
5592   { }
5593 
5594   void work(uint worker_id) {
5595     ResourceMark rm;
5596     HandleMark   hm;
5597 
5598     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5599     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5600 
5601     pss.set_evac_failure_closure(&evac_failure_cl);
5602 
5603     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5604 
5605 
5606     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5607     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5608 
5609     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5610     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5611 
5612     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5613     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5614 
5615     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5616       // We also need to mark copied objects.
5617       copy_non_heap_cl = &copy_mark_non_heap_cl;
5618       copy_metadata_cl = &copy_mark_metadata_cl;
5619     }
5620 
5621     // Is alive closure
5622     G1AlwaysAliveClosure always_alive(_g1h);
5623 
5624     // Copying keep alive closure. Applied to referent objects that need
5625     // to be copied.
5626     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5627 
5628     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5629 
5630     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5631     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5632 
5633     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5634     // So this must be true - but assert just in case someone decides to
5635     // change the worker ids.
5636     assert(0 <= worker_id && worker_id < limit, "sanity");
5637     assert(!rp->discovery_is_atomic(), "check this code");
5638 
5639     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5640     for (uint idx = worker_id; idx < limit; idx += stride) {
5641       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5642 
5643       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5644       while (iter.has_next()) {
5645         // Since discovery is not atomic for the CM ref processor, we
5646         // can see some null referent objects.
5647         iter.load_ptrs(DEBUG_ONLY(true));
5648         oop ref = iter.obj();
5649 
5650         // This will filter nulls.
5651         if (iter.is_referent_alive()) {
5652           iter.make_referent_alive();
5653         }
5654         iter.move_to_next();
5655       }
5656     }
5657 
5658     // Drain the queue - which may cause stealing
5659     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5660     drain_queue.do_void();
5661     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5662     assert(pss.refs()->is_empty(), "should be");
5663   }
5664 };
5665 
5666 // Weak Reference processing during an evacuation pause (part 1).
5667 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5668   double ref_proc_start = os::elapsedTime();
5669 
5670   ReferenceProcessor* rp = _ref_processor_stw;
5671   assert(rp->discovery_enabled(), "should have been enabled");
5672 
5673   // Any reference objects, in the collection set, that were 'discovered'
5674   // by the CM ref processor should have already been copied (either by
5675   // applying the external root copy closure to the discovered lists, or
5676   // by following an RSet entry).
5677   //
5678   // But some of the referents, that are in the collection set, that these
5679   // reference objects point to may not have been copied: the STW ref
5680   // processor would have seen that the reference object had already
5681   // been 'discovered' and would have skipped discovering the reference,
5682   // but would not have treated the reference object as a regular oop.
5683   // As a result the copy closure would not have been applied to the
5684   // referent object.
5685   //
5686   // We need to explicitly copy these referent objects - the references
5687   // will be processed at the end of remarking.
5688   //
5689   // We also need to do this copying before we process the reference
5690   // objects discovered by the STW ref processor in case one of these
5691   // referents points to another object which is also referenced by an
5692   // object discovered by the STW ref processor.
5693 
5694   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5695            no_of_gc_workers == workers()->active_workers(),
5696            "Need to reset active GC workers");
5697 
5698   set_par_threads(no_of_gc_workers);
5699   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5700                                                  no_of_gc_workers,
5701                                                  _task_queues);
5702 
5703   if (G1CollectedHeap::use_parallel_gc_threads()) {
5704     workers()->run_task(&keep_cm_referents);
5705   } else {
5706     keep_cm_referents.work(0);
5707   }
5708 
5709   set_par_threads(0);
5710 
5711   // Closure to test whether a referent is alive.
5712   G1STWIsAliveClosure is_alive(this);
5713 
5714   // Even when parallel reference processing is enabled, the processing
5715   // of JNI refs is serial and performed serially by the current thread
5716   // rather than by a worker. The following PSS will be used for processing
5717   // JNI refs.
5718 
5719   // Use only a single queue for this PSS.
5720   G1ParScanThreadState            pss(this, 0, NULL);
5721 
5722   // We do not embed a reference processor in the copying/scanning
5723   // closures while we're actually processing the discovered
5724   // reference objects.
5725   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5726 
5727   pss.set_evac_failure_closure(&evac_failure_cl);
5728 
5729   assert(pss.refs()->is_empty(), "pre-condition");
5730 
5731   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5732   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5733 
5734   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5735   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5736 
5737   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5738   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5739 
5740   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5741     // We also need to mark copied objects.
5742     copy_non_heap_cl = &copy_mark_non_heap_cl;
5743     copy_metadata_cl = &copy_mark_metadata_cl;
5744   }
5745 
5746   // Keep alive closure.
5747   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5748 
5749   // Serial Complete GC closure
5750   G1STWDrainQueueClosure drain_queue(this, &pss);
5751 
5752   // Setup the soft refs policy...
5753   rp->setup_policy(false);
5754 
5755   ReferenceProcessorStats stats;
5756   if (!rp->processing_is_mt()) {
5757     // Serial reference processing...
5758     stats = rp->process_discovered_references(&is_alive,
5759                                               &keep_alive,
5760                                               &drain_queue,
5761                                               NULL,
5762                                               _gc_timer_stw,
5763                                               _gc_tracer_stw->gc_id());
5764   } else {
5765     // Parallel reference processing
5766     assert(rp->num_q() == no_of_gc_workers, "sanity");
5767     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5768 
5769     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5770     stats = rp->process_discovered_references(&is_alive,
5771                                               &keep_alive,
5772                                               &drain_queue,
5773                                               &par_task_executor,
5774                                               _gc_timer_stw,
5775                                               _gc_tracer_stw->gc_id());
5776   }
5777 
5778   _gc_tracer_stw->report_gc_reference_stats(stats);
5779   // We have completed copying any necessary live referent objects
5780   // (that were not copied during the actual pause) so we can
5781   // retire any active alloc buffers
5782   pss.retire_alloc_buffers();
5783   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5784 
5785   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5786   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5787 }
5788 
5789 // Weak Reference processing during an evacuation pause (part 2).
5790 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5791   double ref_enq_start = os::elapsedTime();
5792 
5793   ReferenceProcessor* rp = _ref_processor_stw;
5794   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5795 
5796   // Now enqueue any remaining on the discovered lists on to
5797   // the pending list.
5798   if (!rp->processing_is_mt()) {
5799     // Serial reference processing...
5800     rp->enqueue_discovered_references();
5801   } else {
5802     // Parallel reference enqueueing
5803 
5804     assert(no_of_gc_workers == workers()->active_workers(),
5805            "Need to reset active workers");
5806     assert(rp->num_q() == no_of_gc_workers, "sanity");
5807     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5808 
5809     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5810     rp->enqueue_discovered_references(&par_task_executor);
5811   }
5812 
5813   rp->verify_no_references_recorded();
5814   assert(!rp->discovery_enabled(), "should have been disabled");
5815 
5816   // FIXME
5817   // CM's reference processing also cleans up the string and symbol tables.
5818   // Should we do that here also? We could, but it is a serial operation
5819   // and could significantly increase the pause time.
5820 
5821   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5822   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5823 }
5824 
5825 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5826   _expand_heap_after_alloc_failure = true;
5827   _evacuation_failed = false;
5828 
5829   // Should G1EvacuationFailureALot be in effect for this GC?
5830   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5831 
5832   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5833 
5834   // Disable the hot card cache.
5835   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5836   hot_card_cache->reset_hot_cache_claimed_index();
5837   hot_card_cache->set_use_cache(false);
5838 
5839   uint n_workers;
5840   if (G1CollectedHeap::use_parallel_gc_threads()) {
5841     n_workers =
5842       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5843                                      workers()->active_workers(),
5844                                      Threads::number_of_non_daemon_threads());
5845     assert(UseDynamicNumberOfGCThreads ||
5846            n_workers == workers()->total_workers(),
5847            "If not dynamic should be using all the  workers");
5848     workers()->set_active_workers(n_workers);
5849     set_par_threads(n_workers);
5850   } else {
5851     assert(n_par_threads() == 0,
5852            "Should be the original non-parallel value");
5853     n_workers = 1;
5854   }
5855 
5856   G1ParTask g1_par_task(this, _task_queues);
5857 
5858   init_for_evac_failure(NULL);
5859 
5860   rem_set()->prepare_for_younger_refs_iterate(true);
5861 
5862   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5863   double start_par_time_sec = os::elapsedTime();
5864   double end_par_time_sec;
5865 
5866   {
5867     StrongRootsScope srs(this);
5868 
5869     if (G1CollectedHeap::use_parallel_gc_threads()) {
5870       // The individual threads will set their evac-failure closures.
5871       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5872       // These tasks use ShareHeap::_process_strong_tasks
5873       assert(UseDynamicNumberOfGCThreads ||
5874              workers()->active_workers() == workers()->total_workers(),
5875              "If not dynamic should be using all the  workers");
5876       workers()->run_task(&g1_par_task);
5877     } else {
5878       g1_par_task.set_for_termination(n_workers);
5879       g1_par_task.work(0);
5880     }
5881     end_par_time_sec = os::elapsedTime();
5882 
5883     // Closing the inner scope will execute the destructor
5884     // for the StrongRootsScope object. We record the current
5885     // elapsed time before closing the scope so that time
5886     // taken for the SRS destructor is NOT included in the
5887     // reported parallel time.
5888   }
5889 
5890   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5891   g1_policy()->phase_times()->record_par_time(par_time_ms);
5892 
5893   double code_root_fixup_time_ms =
5894         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5895   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5896 
5897   set_par_threads(0);
5898 
5899   // Process any discovered reference objects - we have
5900   // to do this _before_ we retire the GC alloc regions
5901   // as we may have to copy some 'reachable' referent
5902   // objects (and their reachable sub-graphs) that were
5903   // not copied during the pause.
5904   process_discovered_references(n_workers);
5905 
5906   // Weak root processing.
5907   {
5908     G1STWIsAliveClosure is_alive(this);
5909     G1KeepAliveClosure keep_alive(this);
5910     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5911     if (G1StringDedup::is_enabled()) {
5912       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5913     }
5914   }
5915 
5916   release_gc_alloc_regions(n_workers, evacuation_info);
5917   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5918 
5919   // Reset and re-enable the hot card cache.
5920   // Note the counts for the cards in the regions in the
5921   // collection set are reset when the collection set is freed.
5922   hot_card_cache->reset_hot_cache();
5923   hot_card_cache->set_use_cache(true);
5924 
5925   // Migrate the strong code roots attached to each region in
5926   // the collection set. Ideally we would like to do this
5927   // after we have finished the scanning/evacuation of the
5928   // strong code roots for a particular heap region.
5929   migrate_strong_code_roots();
5930 
5931   purge_code_root_memory();
5932 
5933   if (g1_policy()->during_initial_mark_pause()) {
5934     // Reset the claim values set during marking the strong code roots
5935     reset_heap_region_claim_values();
5936   }
5937 
5938   finalize_for_evac_failure();
5939 
5940   if (evacuation_failed()) {
5941     remove_self_forwarding_pointers();
5942 
5943     // Reset the G1EvacuationFailureALot counters and flags
5944     // Note: the values are reset only when an actual
5945     // evacuation failure occurs.
5946     NOT_PRODUCT(reset_evacuation_should_fail();)
5947   }
5948 
5949   // Enqueue any remaining references remaining on the STW
5950   // reference processor's discovered lists. We need to do
5951   // this after the card table is cleaned (and verified) as
5952   // the act of enqueueing entries on to the pending list
5953   // will log these updates (and dirty their associated
5954   // cards). We need these updates logged to update any
5955   // RSets.
5956   enqueue_discovered_references(n_workers);
5957 
5958   if (G1DeferredRSUpdate) {
5959     redirty_logged_cards();
5960   }
5961   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5962 }
5963 
5964 void G1CollectedHeap::free_region(HeapRegion* hr,
5965                                   FreeRegionList* free_list,
5966                                   bool par,
5967                                   bool locked) {
5968   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5969   assert(!hr->is_empty(), "the region should not be empty");
5970   assert(free_list != NULL, "pre-condition");
5971 
5972   // Clear the card counts for this region.
5973   // Note: we only need to do this if the region is not young
5974   // (since we don't refine cards in young regions).
5975   if (!hr->is_young()) {
5976     _cg1r->hot_card_cache()->reset_card_counts(hr);
5977   }
5978   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5979   free_list->add_ordered(hr);
5980 }
5981 
5982 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5983                                      FreeRegionList* free_list,
5984                                      bool par) {
5985   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5986   assert(free_list != NULL, "pre-condition");
5987 
5988   size_t hr_capacity = hr->capacity();
5989   // We need to read this before we make the region non-humongous,
5990   // otherwise the information will be gone.
5991   uint last_index = hr->last_hc_index();
5992   hr->set_notHumongous();
5993   free_region(hr, free_list, par);
5994 
5995   uint i = hr->hrs_index() + 1;
5996   while (i < last_index) {
5997     HeapRegion* curr_hr = region_at(i);
5998     assert(curr_hr->continuesHumongous(), "invariant");
5999     curr_hr->set_notHumongous();
6000     free_region(curr_hr, free_list, par);
6001     i += 1;
6002   }
6003 }
6004 
6005 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
6006                                        const HeapRegionSetCount& humongous_regions_removed) {
6007   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
6008     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6009     _old_set.bulk_remove(old_regions_removed);
6010     _humongous_set.bulk_remove(humongous_regions_removed);
6011   }
6012 
6013 }
6014 
6015 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
6016   assert(list != NULL, "list can't be null");
6017   if (!list->is_empty()) {
6018     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6019     _free_list.add_ordered(list);
6020   }
6021 }
6022 
6023 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6024   assert(_summary_bytes_used >= bytes,
6025          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
6026                   _summary_bytes_used, bytes));
6027   _summary_bytes_used -= bytes;
6028 }
6029 
6030 class G1ParCleanupCTTask : public AbstractGangTask {
6031   G1SATBCardTableModRefBS* _ct_bs;
6032   G1CollectedHeap* _g1h;
6033   HeapRegion* volatile _su_head;
6034 public:
6035   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6036                      G1CollectedHeap* g1h) :
6037     AbstractGangTask("G1 Par Cleanup CT Task"),
6038     _ct_bs(ct_bs), _g1h(g1h) { }
6039 
6040   void work(uint worker_id) {
6041     HeapRegion* r;
6042     while (r = _g1h->pop_dirty_cards_region()) {
6043       clear_cards(r);
6044     }
6045   }
6046 
6047   void clear_cards(HeapRegion* r) {
6048     // Cards of the survivors should have already been dirtied.
6049     if (!r->is_survivor()) {
6050       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6051     }
6052   }
6053 };
6054 
6055 #ifndef PRODUCT
6056 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6057   G1CollectedHeap* _g1h;
6058   G1SATBCardTableModRefBS* _ct_bs;
6059 public:
6060   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6061     : _g1h(g1h), _ct_bs(ct_bs) { }
6062   virtual bool doHeapRegion(HeapRegion* r) {
6063     if (r->is_survivor()) {
6064       _g1h->verify_dirty_region(r);
6065     } else {
6066       _g1h->verify_not_dirty_region(r);
6067     }
6068     return false;
6069   }
6070 };
6071 
6072 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6073   // All of the region should be clean.
6074   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6075   MemRegion mr(hr->bottom(), hr->end());
6076   ct_bs->verify_not_dirty_region(mr);
6077 }
6078 
6079 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6080   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6081   // dirty allocated blocks as they allocate them. The thread that
6082   // retires each region and replaces it with a new one will do a
6083   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6084   // not dirty that area (one less thing to have to do while holding
6085   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6086   // is dirty.
6087   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6088   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6089   if (hr->is_young()) {
6090     ct_bs->verify_g1_young_region(mr);
6091   } else {
6092     ct_bs->verify_dirty_region(mr);
6093   }
6094 }
6095 
6096 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6097   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6098   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6099     verify_dirty_region(hr);
6100   }
6101 }
6102 
6103 void G1CollectedHeap::verify_dirty_young_regions() {
6104   verify_dirty_young_list(_young_list->first_region());
6105 }
6106 #endif
6107 
6108 void G1CollectedHeap::cleanUpCardTable() {
6109   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6110   double start = os::elapsedTime();
6111 
6112   {
6113     // Iterate over the dirty cards region list.
6114     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6115 
6116     if (G1CollectedHeap::use_parallel_gc_threads()) {
6117       set_par_threads();
6118       workers()->run_task(&cleanup_task);
6119       set_par_threads(0);
6120     } else {
6121       while (_dirty_cards_region_list) {
6122         HeapRegion* r = _dirty_cards_region_list;
6123         cleanup_task.clear_cards(r);
6124         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6125         if (_dirty_cards_region_list == r) {
6126           // The last region.
6127           _dirty_cards_region_list = NULL;
6128         }
6129         r->set_next_dirty_cards_region(NULL);
6130       }
6131     }
6132 #ifndef PRODUCT
6133     if (G1VerifyCTCleanup || VerifyAfterGC) {
6134       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6135       heap_region_iterate(&cleanup_verifier);
6136     }
6137 #endif
6138   }
6139 
6140   double elapsed = os::elapsedTime() - start;
6141   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6142 }
6143 
6144 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6145   size_t pre_used = 0;
6146   FreeRegionList local_free_list("Local List for CSet Freeing");
6147 
6148   double young_time_ms     = 0.0;
6149   double non_young_time_ms = 0.0;
6150 
6151   // Since the collection set is a superset of the the young list,
6152   // all we need to do to clear the young list is clear its
6153   // head and length, and unlink any young regions in the code below
6154   _young_list->clear();
6155 
6156   G1CollectorPolicy* policy = g1_policy();
6157 
6158   double start_sec = os::elapsedTime();
6159   bool non_young = true;
6160 
6161   HeapRegion* cur = cs_head;
6162   int age_bound = -1;
6163   size_t rs_lengths = 0;
6164 
6165   while (cur != NULL) {
6166     assert(!is_on_master_free_list(cur), "sanity");
6167     if (non_young) {
6168       if (cur->is_young()) {
6169         double end_sec = os::elapsedTime();
6170         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6171         non_young_time_ms += elapsed_ms;
6172 
6173         start_sec = os::elapsedTime();
6174         non_young = false;
6175       }
6176     } else {
6177       if (!cur->is_young()) {
6178         double end_sec = os::elapsedTime();
6179         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6180         young_time_ms += elapsed_ms;
6181 
6182         start_sec = os::elapsedTime();
6183         non_young = true;
6184       }
6185     }
6186 
6187     rs_lengths += cur->rem_set()->occupied_locked();
6188 
6189     HeapRegion* next = cur->next_in_collection_set();
6190     assert(cur->in_collection_set(), "bad CS");
6191     cur->set_next_in_collection_set(NULL);
6192     cur->set_in_collection_set(false);
6193 
6194     if (cur->is_young()) {
6195       int index = cur->young_index_in_cset();
6196       assert(index != -1, "invariant");
6197       assert((uint) index < policy->young_cset_region_length(), "invariant");
6198       size_t words_survived = _surviving_young_words[index];
6199       cur->record_surv_words_in_group(words_survived);
6200 
6201       // At this point the we have 'popped' cur from the collection set
6202       // (linked via next_in_collection_set()) but it is still in the
6203       // young list (linked via next_young_region()). Clear the
6204       // _next_young_region field.
6205       cur->set_next_young_region(NULL);
6206     } else {
6207       int index = cur->young_index_in_cset();
6208       assert(index == -1, "invariant");
6209     }
6210 
6211     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6212             (!cur->is_young() && cur->young_index_in_cset() == -1),
6213             "invariant" );
6214 
6215     if (!cur->evacuation_failed()) {
6216       MemRegion used_mr = cur->used_region();
6217 
6218       // And the region is empty.
6219       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6220       pre_used += cur->used();
6221       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6222     } else {
6223       cur->uninstall_surv_rate_group();
6224       if (cur->is_young()) {
6225         cur->set_young_index_in_cset(-1);
6226       }
6227       cur->set_not_young();
6228       cur->set_evacuation_failed(false);
6229       // The region is now considered to be old.
6230       _old_set.add(cur);
6231       evacuation_info.increment_collectionset_used_after(cur->used());
6232     }
6233     cur = next;
6234   }
6235 
6236   evacuation_info.set_regions_freed(local_free_list.length());
6237   policy->record_max_rs_lengths(rs_lengths);
6238   policy->cset_regions_freed();
6239 
6240   double end_sec = os::elapsedTime();
6241   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6242 
6243   if (non_young) {
6244     non_young_time_ms += elapsed_ms;
6245   } else {
6246     young_time_ms += elapsed_ms;
6247   }
6248 
6249   prepend_to_freelist(&local_free_list);
6250   decrement_summary_bytes(pre_used);
6251   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6252   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6253 }
6254 
6255 // This routine is similar to the above but does not record
6256 // any policy statistics or update free lists; we are abandoning
6257 // the current incremental collection set in preparation of a
6258 // full collection. After the full GC we will start to build up
6259 // the incremental collection set again.
6260 // This is only called when we're doing a full collection
6261 // and is immediately followed by the tearing down of the young list.
6262 
6263 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6264   HeapRegion* cur = cs_head;
6265 
6266   while (cur != NULL) {
6267     HeapRegion* next = cur->next_in_collection_set();
6268     assert(cur->in_collection_set(), "bad CS");
6269     cur->set_next_in_collection_set(NULL);
6270     cur->set_in_collection_set(false);
6271     cur->set_young_index_in_cset(-1);
6272     cur = next;
6273   }
6274 }
6275 
6276 void G1CollectedHeap::set_free_regions_coming() {
6277   if (G1ConcRegionFreeingVerbose) {
6278     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6279                            "setting free regions coming");
6280   }
6281 
6282   assert(!free_regions_coming(), "pre-condition");
6283   _free_regions_coming = true;
6284 }
6285 
6286 void G1CollectedHeap::reset_free_regions_coming() {
6287   assert(free_regions_coming(), "pre-condition");
6288 
6289   {
6290     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6291     _free_regions_coming = false;
6292     SecondaryFreeList_lock->notify_all();
6293   }
6294 
6295   if (G1ConcRegionFreeingVerbose) {
6296     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6297                            "reset free regions coming");
6298   }
6299 }
6300 
6301 void G1CollectedHeap::wait_while_free_regions_coming() {
6302   // Most of the time we won't have to wait, so let's do a quick test
6303   // first before we take the lock.
6304   if (!free_regions_coming()) {
6305     return;
6306   }
6307 
6308   if (G1ConcRegionFreeingVerbose) {
6309     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6310                            "waiting for free regions");
6311   }
6312 
6313   {
6314     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6315     while (free_regions_coming()) {
6316       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6317     }
6318   }
6319 
6320   if (G1ConcRegionFreeingVerbose) {
6321     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6322                            "done waiting for free regions");
6323   }
6324 }
6325 
6326 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6327   assert(heap_lock_held_for_gc(),
6328               "the heap lock should already be held by or for this thread");
6329   _young_list->push_region(hr);
6330 }
6331 
6332 class NoYoungRegionsClosure: public HeapRegionClosure {
6333 private:
6334   bool _success;
6335 public:
6336   NoYoungRegionsClosure() : _success(true) { }
6337   bool doHeapRegion(HeapRegion* r) {
6338     if (r->is_young()) {
6339       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6340                              r->bottom(), r->end());
6341       _success = false;
6342     }
6343     return false;
6344   }
6345   bool success() { return _success; }
6346 };
6347 
6348 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6349   bool ret = _young_list->check_list_empty(check_sample);
6350 
6351   if (check_heap) {
6352     NoYoungRegionsClosure closure;
6353     heap_region_iterate(&closure);
6354     ret = ret && closure.success();
6355   }
6356 
6357   return ret;
6358 }
6359 
6360 class TearDownRegionSetsClosure : public HeapRegionClosure {
6361 private:
6362   HeapRegionSet *_old_set;
6363 
6364 public:
6365   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6366 
6367   bool doHeapRegion(HeapRegion* r) {
6368     if (r->is_empty()) {
6369       // We ignore empty regions, we'll empty the free list afterwards
6370     } else if (r->is_young()) {
6371       // We ignore young regions, we'll empty the young list afterwards
6372     } else if (r->isHumongous()) {
6373       // We ignore humongous regions, we're not tearing down the
6374       // humongous region set
6375     } else {
6376       // The rest should be old
6377       _old_set->remove(r);
6378     }
6379     return false;
6380   }
6381 
6382   ~TearDownRegionSetsClosure() {
6383     assert(_old_set->is_empty(), "post-condition");
6384   }
6385 };
6386 
6387 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6388   assert_at_safepoint(true /* should_be_vm_thread */);
6389 
6390   if (!free_list_only) {
6391     TearDownRegionSetsClosure cl(&_old_set);
6392     heap_region_iterate(&cl);
6393 
6394     // Note that emptying the _young_list is postponed and instead done as
6395     // the first step when rebuilding the regions sets again. The reason for
6396     // this is that during a full GC string deduplication needs to know if
6397     // a collected region was young or old when the full GC was initiated.
6398   }
6399   _free_list.remove_all();
6400 }
6401 
6402 class RebuildRegionSetsClosure : public HeapRegionClosure {
6403 private:
6404   bool            _free_list_only;
6405   HeapRegionSet*   _old_set;
6406   FreeRegionList* _free_list;
6407   size_t          _total_used;
6408 
6409 public:
6410   RebuildRegionSetsClosure(bool free_list_only,
6411                            HeapRegionSet* old_set, FreeRegionList* free_list) :
6412     _free_list_only(free_list_only),
6413     _old_set(old_set), _free_list(free_list), _total_used(0) {
6414     assert(_free_list->is_empty(), "pre-condition");
6415     if (!free_list_only) {
6416       assert(_old_set->is_empty(), "pre-condition");
6417     }
6418   }
6419 
6420   bool doHeapRegion(HeapRegion* r) {
6421     if (r->continuesHumongous()) {
6422       return false;
6423     }
6424 
6425     if (r->is_empty()) {
6426       // Add free regions to the free list
6427       _free_list->add_as_tail(r);
6428     } else if (!_free_list_only) {
6429       assert(!r->is_young(), "we should not come across young regions");
6430 
6431       if (r->isHumongous()) {
6432         // We ignore humongous regions, we left the humongous set unchanged
6433       } else {
6434         // The rest should be old, add them to the old set
6435         _old_set->add(r);
6436       }
6437       _total_used += r->used();
6438     }
6439 
6440     return false;
6441   }
6442 
6443   size_t total_used() {
6444     return _total_used;
6445   }
6446 };
6447 
6448 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6449   assert_at_safepoint(true /* should_be_vm_thread */);
6450 
6451   if (!free_list_only) {
6452     _young_list->empty_list();
6453   }
6454 
6455   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6456   heap_region_iterate(&cl);
6457 
6458   if (!free_list_only) {
6459     _summary_bytes_used = cl.total_used();
6460   }
6461   assert(_summary_bytes_used == recalculate_used(),
6462          err_msg("inconsistent _summary_bytes_used, "
6463                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6464                  _summary_bytes_used, recalculate_used()));
6465 }
6466 
6467 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6468   _refine_cte_cl->set_concurrent(concurrent);
6469 }
6470 
6471 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6472   HeapRegion* hr = heap_region_containing(p);
6473   if (hr == NULL) {
6474     return false;
6475   } else {
6476     return hr->is_in(p);
6477   }
6478 }
6479 
6480 // Methods for the mutator alloc region
6481 
6482 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6483                                                       bool force) {
6484   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6485   assert(!force || g1_policy()->can_expand_young_list(),
6486          "if force is true we should be able to expand the young list");
6487   bool young_list_full = g1_policy()->is_young_list_full();
6488   if (force || !young_list_full) {
6489     HeapRegion* new_alloc_region = new_region(word_size,
6490                                               false /* is_old */,
6491                                               false /* do_expand */);
6492     if (new_alloc_region != NULL) {
6493       set_region_short_lived_locked(new_alloc_region);
6494       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6495       return new_alloc_region;
6496     }
6497   }
6498   return NULL;
6499 }
6500 
6501 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6502                                                   size_t allocated_bytes) {
6503   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6504   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6505 
6506   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6507   _summary_bytes_used += allocated_bytes;
6508   _hr_printer.retire(alloc_region);
6509   // We update the eden sizes here, when the region is retired,
6510   // instead of when it's allocated, since this is the point that its
6511   // used space has been recored in _summary_bytes_used.
6512   g1mm()->update_eden_size();
6513 }
6514 
6515 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6516                                                     bool force) {
6517   return _g1h->new_mutator_alloc_region(word_size, force);
6518 }
6519 
6520 void G1CollectedHeap::set_par_threads() {
6521   // Don't change the number of workers.  Use the value previously set
6522   // in the workgroup.
6523   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6524   uint n_workers = workers()->active_workers();
6525   assert(UseDynamicNumberOfGCThreads ||
6526            n_workers == workers()->total_workers(),
6527       "Otherwise should be using the total number of workers");
6528   if (n_workers == 0) {
6529     assert(false, "Should have been set in prior evacuation pause.");
6530     n_workers = ParallelGCThreads;
6531     workers()->set_active_workers(n_workers);
6532   }
6533   set_par_threads(n_workers);
6534 }
6535 
6536 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6537                                        size_t allocated_bytes) {
6538   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6539 }
6540 
6541 // Methods for the GC alloc regions
6542 
6543 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6544                                                  uint count,
6545                                                  GCAllocPurpose ap) {
6546   assert(FreeList_lock->owned_by_self(), "pre-condition");
6547 
6548   if (count < g1_policy()->max_regions(ap)) {
6549     bool survivor = (ap == GCAllocForSurvived);
6550     HeapRegion* new_alloc_region = new_region(word_size,
6551                                               !survivor,
6552                                               true /* do_expand */);
6553     if (new_alloc_region != NULL) {
6554       // We really only need to do this for old regions given that we
6555       // should never scan survivors. But it doesn't hurt to do it
6556       // for survivors too.
6557       new_alloc_region->set_saved_mark();
6558       if (survivor) {
6559         new_alloc_region->set_survivor();
6560         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6561       } else {
6562         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6563       }
6564       bool during_im = g1_policy()->during_initial_mark_pause();
6565       new_alloc_region->note_start_of_copying(during_im);
6566       return new_alloc_region;
6567     } else {
6568       g1_policy()->note_alloc_region_limit_reached(ap);
6569     }
6570   }
6571   return NULL;
6572 }
6573 
6574 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6575                                              size_t allocated_bytes,
6576                                              GCAllocPurpose ap) {
6577   bool during_im = g1_policy()->during_initial_mark_pause();
6578   alloc_region->note_end_of_copying(during_im);
6579   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6580   if (ap == GCAllocForSurvived) {
6581     young_list()->add_survivor_region(alloc_region);
6582   } else {
6583     _old_set.add(alloc_region);
6584   }
6585   _hr_printer.retire(alloc_region);
6586 }
6587 
6588 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6589                                                        bool force) {
6590   assert(!force, "not supported for GC alloc regions");
6591   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6592 }
6593 
6594 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6595                                           size_t allocated_bytes) {
6596   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6597                                GCAllocForSurvived);
6598 }
6599 
6600 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6601                                                   bool force) {
6602   assert(!force, "not supported for GC alloc regions");
6603   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6604 }
6605 
6606 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6607                                      size_t allocated_bytes) {
6608   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6609                                GCAllocForTenured);
6610 }
6611 // Heap region set verification
6612 
6613 class VerifyRegionListsClosure : public HeapRegionClosure {
6614 private:
6615   HeapRegionSet*   _old_set;
6616   HeapRegionSet*   _humongous_set;
6617   FreeRegionList*  _free_list;
6618 
6619 public:
6620   HeapRegionSetCount _old_count;
6621   HeapRegionSetCount _humongous_count;
6622   HeapRegionSetCount _free_count;
6623 
6624   VerifyRegionListsClosure(HeapRegionSet* old_set,
6625                            HeapRegionSet* humongous_set,
6626                            FreeRegionList* free_list) :
6627     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
6628     _old_count(), _humongous_count(), _free_count(){ }
6629 
6630   bool doHeapRegion(HeapRegion* hr) {
6631     if (hr->continuesHumongous()) {
6632       return false;
6633     }
6634 
6635     if (hr->is_young()) {
6636       // TODO
6637     } else if (hr->startsHumongous()) {
6638       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
6639       _humongous_count.increment(1u, hr->capacity());
6640     } else if (hr->is_empty()) {
6641       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
6642       _free_count.increment(1u, hr->capacity());
6643     } else {
6644       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
6645       _old_count.increment(1u, hr->capacity());
6646     }
6647     return false;
6648   }
6649 
6650   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
6651     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6652     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6653         old_set->total_capacity_bytes(), _old_count.capacity()));
6654 
6655     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6656     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6657         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6658 
6659     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
6660     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6661         free_list->total_capacity_bytes(), _free_count.capacity()));
6662   }
6663 };
6664 
6665 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6666                                              HeapWord* bottom) {
6667   HeapWord* end = bottom + HeapRegion::GrainWords;
6668   MemRegion mr(bottom, end);
6669   assert(_g1_reserved.contains(mr), "invariant");
6670   // This might return NULL if the allocation fails
6671   return new HeapRegion(hrs_index, _bot_shared, mr);
6672 }
6673 
6674 void G1CollectedHeap::verify_region_sets() {
6675   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6676 
6677   // First, check the explicit lists.
6678   _free_list.verify_list();
6679   {
6680     // Given that a concurrent operation might be adding regions to
6681     // the secondary free list we have to take the lock before
6682     // verifying it.
6683     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6684     _secondary_free_list.verify_list();
6685   }
6686 
6687   // If a concurrent region freeing operation is in progress it will
6688   // be difficult to correctly attributed any free regions we come
6689   // across to the correct free list given that they might belong to
6690   // one of several (free_list, secondary_free_list, any local lists,
6691   // etc.). So, if that's the case we will skip the rest of the
6692   // verification operation. Alternatively, waiting for the concurrent
6693   // operation to complete will have a non-trivial effect on the GC's
6694   // operation (no concurrent operation will last longer than the
6695   // interval between two calls to verification) and it might hide
6696   // any issues that we would like to catch during testing.
6697   if (free_regions_coming()) {
6698     return;
6699   }
6700 
6701   // Make sure we append the secondary_free_list on the free_list so
6702   // that all free regions we will come across can be safely
6703   // attributed to the free_list.
6704   append_secondary_free_list_if_not_empty_with_lock();
6705 
6706   // Finally, make sure that the region accounting in the lists is
6707   // consistent with what we see in the heap.
6708 
6709   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6710   heap_region_iterate(&cl);
6711   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6712 }
6713 
6714 // Optimized nmethod scanning
6715 
6716 class RegisterNMethodOopClosure: public OopClosure {
6717   G1CollectedHeap* _g1h;
6718   nmethod* _nm;
6719 
6720   template <class T> void do_oop_work(T* p) {
6721     T heap_oop = oopDesc::load_heap_oop(p);
6722     if (!oopDesc::is_null(heap_oop)) {
6723       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6724       HeapRegion* hr = _g1h->heap_region_containing(obj);
6725       assert(!hr->continuesHumongous(),
6726              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6727                      " starting at "HR_FORMAT,
6728                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6729 
6730       // HeapRegion::add_strong_code_root() avoids adding duplicate
6731       // entries but having duplicates is  OK since we "mark" nmethods
6732       // as visited when we scan the strong code root lists during the GC.
6733       hr->add_strong_code_root(_nm);
6734       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6735              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6736                      _nm, HR_FORMAT_PARAMS(hr)));
6737     }
6738   }
6739 
6740 public:
6741   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6742     _g1h(g1h), _nm(nm) {}
6743 
6744   void do_oop(oop* p)       { do_oop_work(p); }
6745   void do_oop(narrowOop* p) { do_oop_work(p); }
6746 };
6747 
6748 class UnregisterNMethodOopClosure: public OopClosure {
6749   G1CollectedHeap* _g1h;
6750   nmethod* _nm;
6751 
6752   template <class T> void do_oop_work(T* p) {
6753     T heap_oop = oopDesc::load_heap_oop(p);
6754     if (!oopDesc::is_null(heap_oop)) {
6755       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6756       HeapRegion* hr = _g1h->heap_region_containing(obj);
6757       assert(!hr->continuesHumongous(),
6758              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6759                      " starting at "HR_FORMAT,
6760                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6761 
6762       hr->remove_strong_code_root(_nm);
6763       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6764              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6765                      _nm, HR_FORMAT_PARAMS(hr)));
6766     }
6767   }
6768 
6769 public:
6770   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6771     _g1h(g1h), _nm(nm) {}
6772 
6773   void do_oop(oop* p)       { do_oop_work(p); }
6774   void do_oop(narrowOop* p) { do_oop_work(p); }
6775 };
6776 
6777 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6778   CollectedHeap::register_nmethod(nm);
6779 
6780   guarantee(nm != NULL, "sanity");
6781   RegisterNMethodOopClosure reg_cl(this, nm);
6782   nm->oops_do(&reg_cl);
6783 }
6784 
6785 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6786   CollectedHeap::unregister_nmethod(nm);
6787 
6788   guarantee(nm != NULL, "sanity");
6789   UnregisterNMethodOopClosure reg_cl(this, nm);
6790   nm->oops_do(&reg_cl, true);
6791 }
6792 
6793 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6794 public:
6795   bool doHeapRegion(HeapRegion *hr) {
6796     assert(!hr->isHumongous(),
6797            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6798                    HR_FORMAT_PARAMS(hr)));
6799     hr->migrate_strong_code_roots();
6800     return false;
6801   }
6802 };
6803 
6804 void G1CollectedHeap::migrate_strong_code_roots() {
6805   MigrateCodeRootsHeapRegionClosure cl;
6806   double migrate_start = os::elapsedTime();
6807   collection_set_iterate(&cl);
6808   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6809   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6810 }
6811 
6812 void G1CollectedHeap::purge_code_root_memory() {
6813   double purge_start = os::elapsedTime();
6814   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
6815   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6816   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6817 }
6818 
6819 // Mark all the code roots that point into regions *not* in the
6820 // collection set.
6821 //
6822 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6823 // walking the the code roots lists of regions not in the collection
6824 // set. Suppose we have an nmethod (M) that points to objects in two
6825 // separate regions - one in the collection set (R1) and one not (R2).
6826 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6827 // nmethod M when walking the code roots for R1. When we come to scan
6828 // the code roots for R2, we would see that M is already marked and it
6829 // would be skipped and the objects in R2 that are referenced from M
6830 // would not be evacuated.
6831 
6832 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6833 
6834   class MarkStrongCodeRootOopClosure: public OopClosure {
6835     ConcurrentMark* _cm;
6836     HeapRegion* _hr;
6837     uint _worker_id;
6838 
6839     template <class T> void do_oop_work(T* p) {
6840       T heap_oop = oopDesc::load_heap_oop(p);
6841       if (!oopDesc::is_null(heap_oop)) {
6842         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6843         // Only mark objects in the region (which is assumed
6844         // to be not in the collection set).
6845         if (_hr->is_in(obj)) {
6846           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6847         }
6848       }
6849     }
6850 
6851   public:
6852     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6853       _cm(cm), _hr(hr), _worker_id(worker_id) {
6854       assert(!_hr->in_collection_set(), "sanity");
6855     }
6856 
6857     void do_oop(narrowOop* p) { do_oop_work(p); }
6858     void do_oop(oop* p)       { do_oop_work(p); }
6859   };
6860 
6861   MarkStrongCodeRootOopClosure _oop_cl;
6862 
6863 public:
6864   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6865     _oop_cl(cm, hr, worker_id) {}
6866 
6867   void do_code_blob(CodeBlob* cb) {
6868     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6869     if (nm != NULL) {
6870       nm->oops_do(&_oop_cl);
6871     }
6872   }
6873 };
6874 
6875 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6876   G1CollectedHeap* _g1h;
6877   uint _worker_id;
6878 
6879 public:
6880   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6881     _g1h(g1h), _worker_id(worker_id) {}
6882 
6883   bool doHeapRegion(HeapRegion *hr) {
6884     HeapRegionRemSet* hrrs = hr->rem_set();
6885     if (hr->continuesHumongous()) {
6886       // Code roots should never be attached to a continuation of a humongous region
6887       assert(hrrs->strong_code_roots_list_length() == 0,
6888              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6889                      " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6890                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
6891                      hrrs->strong_code_roots_list_length()));
6892       return false;
6893     }
6894 
6895     if (hr->in_collection_set()) {
6896       // Don't mark code roots into regions in the collection set here.
6897       // They will be marked when we scan them.
6898       return false;
6899     }
6900 
6901     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6902     hr->strong_code_roots_do(&cb_cl);
6903     return false;
6904   }
6905 };
6906 
6907 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6908   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6909   if (G1CollectedHeap::use_parallel_gc_threads()) {
6910     heap_region_par_iterate_chunked(&cl,
6911                                     worker_id,
6912                                     workers()->active_workers(),
6913                                     HeapRegion::ParMarkRootClaimValue);
6914   } else {
6915     heap_region_iterate(&cl);
6916   }
6917 }
6918 
6919 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6920   G1CollectedHeap* _g1h;
6921 
6922 public:
6923   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6924     _g1h(g1h) {}
6925 
6926   void do_code_blob(CodeBlob* cb) {
6927     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6928     if (nm == NULL) {
6929       return;
6930     }
6931 
6932     if (ScavengeRootsInCode) {
6933       _g1h->register_nmethod(nm);
6934     }
6935   }
6936 };
6937 
6938 void G1CollectedHeap::rebuild_strong_code_roots() {
6939   RebuildStrongCodeRootClosure blob_cl(this);
6940   CodeCache::blobs_do(&blob_cl);
6941 }