1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
  27 #endif
  28 
  29 #include "precompiled.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  33 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  34 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  35 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  36 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  37 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  38 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  39 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  40 #include "gc_implementation/g1/g1EvacFailure.hpp"
  41 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  42 #include "gc_implementation/g1/g1Log.hpp"
  43 #include "gc_implementation/g1/g1MarkSweep.hpp"
  44 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  45 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  46 #include "gc_implementation/g1/g1StringDedup.hpp"
  47 #include "gc_implementation/g1/g1YCTypes.hpp"
  48 #include "gc_implementation/g1/heapRegion.inline.hpp"
  49 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  50 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  51 #include "gc_implementation/g1/vm_operations_g1.hpp"
  52 #include "gc_implementation/shared/gcHeapSummary.hpp"
  53 #include "gc_implementation/shared/gcTimer.hpp"
  54 #include "gc_implementation/shared/gcTrace.hpp"
  55 #include "gc_implementation/shared/gcTraceTime.hpp"
  56 #include "gc_implementation/shared/isGCActiveMark.hpp"
  57 #include "memory/gcLocker.inline.hpp"
  58 #include "memory/generationSpec.hpp"
  59 #include "memory/iterator.hpp"
  60 #include "memory/referenceProcessor.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "oops/oop.pcgc.inline.hpp"
  63 #include "runtime/prefetch.inline.hpp"
  64 #include "runtime/orderAccess.inline.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "utilities/ticks.hpp"
  67 
  68 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  69 
  70 // turn it on so that the contents of the young list (scan-only /
  71 // to-be-collected) are printed at "strategic" points before / during
  72 // / after the collection --- this is useful for debugging
  73 #define YOUNG_LIST_VERBOSE 0
  74 // CURRENT STATUS
  75 // This file is under construction.  Search for "FIXME".
  76 
  77 // INVARIANTS/NOTES
  78 //
  79 // All allocation activity covered by the G1CollectedHeap interface is
  80 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  81 // and allocate_new_tlab, which are the "entry" points to the
  82 // allocation code from the rest of the JVM.  (Note that this does not
  83 // apply to TLAB allocation, which is not part of this interface: it
  84 // is done by clients of this interface.)
  85 
  86 // Notes on implementation of parallelism in different tasks.
  87 //
  88 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  89 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  90 // It does use run_task() which sets _n_workers in the task.
  91 // G1ParTask executes g1_process_strong_roots() ->
  92 // SharedHeap::process_strong_roots() which calls eventually to
  93 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  94 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  95 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  96 //
  97 
  98 // Local to this file.
  99 
 100 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 101   bool _concurrent;
 102 public:
 103   RefineCardTableEntryClosure() : _concurrent(true) { }
 104 
 105   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 106     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 107     // This path is executed by the concurrent refine or mutator threads,
 108     // concurrently, and so we do not care if card_ptr contains references
 109     // that point into the collection set.
 110     assert(!oops_into_cset, "should be");
 111 
 112     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 113       // Caller will actually yield.
 114       return false;
 115     }
 116     // Otherwise, we finished successfully; return true.
 117     return true;
 118   }
 119 
 120   void set_concurrent(bool b) { _concurrent = b; }
 121 };
 122 
 123 
 124 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 125   size_t _num_processed;
 126   CardTableModRefBS* _ctbs;
 127   int _histo[256];
 128 
 129  public:
 130   ClearLoggedCardTableEntryClosure() :
 131     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
 132   {
 133     for (int i = 0; i < 256; i++) _histo[i] = 0;
 134   }
 135 
 136   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 137     unsigned char* ujb = (unsigned char*)card_ptr;
 138     int ind = (int)(*ujb);
 139     _histo[ind]++;
 140 
 141     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
 142     _num_processed++;
 143 
 144     return true;
 145   }
 146 
 147   size_t num_processed() { return _num_processed; }
 148 
 149   void print_histo() {
 150     gclog_or_tty->print_cr("Card table value histogram:");
 151     for (int i = 0; i < 256; i++) {
 152       if (_histo[i] != 0) {
 153         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 154       }
 155     }
 156   }
 157 };
 158 
 159 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 160  private:
 161   size_t _num_processed;
 162 
 163  public:
 164   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 165 
 166   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 167     *card_ptr = CardTableModRefBS::dirty_card_val();
 168     _num_processed++;
 169     return true;
 170   }
 171 
 172   size_t num_processed() const { return _num_processed; }
 173 };
 174 
 175 YoungList::YoungList(G1CollectedHeap* g1h) :
 176     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 177     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 178   guarantee(check_list_empty(false), "just making sure...");
 179 }
 180 
 181 void YoungList::push_region(HeapRegion *hr) {
 182   assert(!hr->is_young(), "should not already be young");
 183   assert(hr->get_next_young_region() == NULL, "cause it should!");
 184 
 185   hr->set_next_young_region(_head);
 186   _head = hr;
 187 
 188   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 189   ++_length;
 190 }
 191 
 192 void YoungList::add_survivor_region(HeapRegion* hr) {
 193   assert(hr->is_survivor(), "should be flagged as survivor region");
 194   assert(hr->get_next_young_region() == NULL, "cause it should!");
 195 
 196   hr->set_next_young_region(_survivor_head);
 197   if (_survivor_head == NULL) {
 198     _survivor_tail = hr;
 199   }
 200   _survivor_head = hr;
 201   ++_survivor_length;
 202 }
 203 
 204 void YoungList::empty_list(HeapRegion* list) {
 205   while (list != NULL) {
 206     HeapRegion* next = list->get_next_young_region();
 207     list->set_next_young_region(NULL);
 208     list->uninstall_surv_rate_group();
 209     list->set_not_young();
 210     list = next;
 211   }
 212 }
 213 
 214 void YoungList::empty_list() {
 215   assert(check_list_well_formed(), "young list should be well formed");
 216 
 217   empty_list(_head);
 218   _head = NULL;
 219   _length = 0;
 220 
 221   empty_list(_survivor_head);
 222   _survivor_head = NULL;
 223   _survivor_tail = NULL;
 224   _survivor_length = 0;
 225 
 226   _last_sampled_rs_lengths = 0;
 227 
 228   assert(check_list_empty(false), "just making sure...");
 229 }
 230 
 231 bool YoungList::check_list_well_formed() {
 232   bool ret = true;
 233 
 234   uint length = 0;
 235   HeapRegion* curr = _head;
 236   HeapRegion* last = NULL;
 237   while (curr != NULL) {
 238     if (!curr->is_young()) {
 239       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 240                              "incorrectly tagged (y: %d, surv: %d)",
 241                              curr->bottom(), curr->end(),
 242                              curr->is_young(), curr->is_survivor());
 243       ret = false;
 244     }
 245     ++length;
 246     last = curr;
 247     curr = curr->get_next_young_region();
 248   }
 249   ret = ret && (length == _length);
 250 
 251   if (!ret) {
 252     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 253     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 254                            length, _length);
 255   }
 256 
 257   return ret;
 258 }
 259 
 260 bool YoungList::check_list_empty(bool check_sample) {
 261   bool ret = true;
 262 
 263   if (_length != 0) {
 264     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 265                   _length);
 266     ret = false;
 267   }
 268   if (check_sample && _last_sampled_rs_lengths != 0) {
 269     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 270     ret = false;
 271   }
 272   if (_head != NULL) {
 273     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 274     ret = false;
 275   }
 276   if (!ret) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 278   }
 279 
 280   return ret;
 281 }
 282 
 283 void
 284 YoungList::rs_length_sampling_init() {
 285   _sampled_rs_lengths = 0;
 286   _curr               = _head;
 287 }
 288 
 289 bool
 290 YoungList::rs_length_sampling_more() {
 291   return _curr != NULL;
 292 }
 293 
 294 void
 295 YoungList::rs_length_sampling_next() {
 296   assert( _curr != NULL, "invariant" );
 297   size_t rs_length = _curr->rem_set()->occupied();
 298 
 299   _sampled_rs_lengths += rs_length;
 300 
 301   // The current region may not yet have been added to the
 302   // incremental collection set (it gets added when it is
 303   // retired as the current allocation region).
 304   if (_curr->in_collection_set()) {
 305     // Update the collection set policy information for this region
 306     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 307   }
 308 
 309   _curr = _curr->get_next_young_region();
 310   if (_curr == NULL) {
 311     _last_sampled_rs_lengths = _sampled_rs_lengths;
 312     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 313   }
 314 }
 315 
 316 void
 317 YoungList::reset_auxilary_lists() {
 318   guarantee( is_empty(), "young list should be empty" );
 319   assert(check_list_well_formed(), "young list should be well formed");
 320 
 321   // Add survivor regions to SurvRateGroup.
 322   _g1h->g1_policy()->note_start_adding_survivor_regions();
 323   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 324 
 325   int young_index_in_cset = 0;
 326   for (HeapRegion* curr = _survivor_head;
 327        curr != NULL;
 328        curr = curr->get_next_young_region()) {
 329     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 330 
 331     // The region is a non-empty survivor so let's add it to
 332     // the incremental collection set for the next evacuation
 333     // pause.
 334     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 335     young_index_in_cset += 1;
 336   }
 337   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 338   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 339 
 340   _head   = _survivor_head;
 341   _length = _survivor_length;
 342   if (_survivor_head != NULL) {
 343     assert(_survivor_tail != NULL, "cause it shouldn't be");
 344     assert(_survivor_length > 0, "invariant");
 345     _survivor_tail->set_next_young_region(NULL);
 346   }
 347 
 348   // Don't clear the survivor list handles until the start of
 349   // the next evacuation pause - we need it in order to re-tag
 350   // the survivor regions from this evacuation pause as 'young'
 351   // at the start of the next.
 352 
 353   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 354 
 355   assert(check_list_well_formed(), "young list should be well formed");
 356 }
 357 
 358 void YoungList::print() {
 359   HeapRegion* lists[] = {_head,   _survivor_head};
 360   const char* names[] = {"YOUNG", "SURVIVOR"};
 361 
 362   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 363     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 364     HeapRegion *curr = lists[list];
 365     if (curr == NULL)
 366       gclog_or_tty->print_cr("  empty");
 367     while (curr != NULL) {
 368       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 369                              HR_FORMAT_PARAMS(curr),
 370                              curr->prev_top_at_mark_start(),
 371                              curr->next_top_at_mark_start(),
 372                              curr->age_in_surv_rate_group_cond());
 373       curr = curr->get_next_young_region();
 374     }
 375   }
 376 
 377   gclog_or_tty->cr();
 378 }
 379 
 380 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 381 {
 382   // Claim the right to put the region on the dirty cards region list
 383   // by installing a self pointer.
 384   HeapRegion* next = hr->get_next_dirty_cards_region();
 385   if (next == NULL) {
 386     HeapRegion* res = (HeapRegion*)
 387       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 388                           NULL);
 389     if (res == NULL) {
 390       HeapRegion* head;
 391       do {
 392         // Put the region to the dirty cards region list.
 393         head = _dirty_cards_region_list;
 394         next = (HeapRegion*)
 395           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 396         if (next == head) {
 397           assert(hr->get_next_dirty_cards_region() == hr,
 398                  "hr->get_next_dirty_cards_region() != hr");
 399           if (next == NULL) {
 400             // The last region in the list points to itself.
 401             hr->set_next_dirty_cards_region(hr);
 402           } else {
 403             hr->set_next_dirty_cards_region(next);
 404           }
 405         }
 406       } while (next != head);
 407     }
 408   }
 409 }
 410 
 411 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 412 {
 413   HeapRegion* head;
 414   HeapRegion* hr;
 415   do {
 416     head = _dirty_cards_region_list;
 417     if (head == NULL) {
 418       return NULL;
 419     }
 420     HeapRegion* new_head = head->get_next_dirty_cards_region();
 421     if (head == new_head) {
 422       // The last region.
 423       new_head = NULL;
 424     }
 425     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 426                                           head);
 427   } while (hr != head);
 428   assert(hr != NULL, "invariant");
 429   hr->set_next_dirty_cards_region(NULL);
 430   return hr;
 431 }
 432 
 433 #ifdef ASSERT
 434 // A region is added to the collection set as it is retired
 435 // so an address p can point to a region which will be in the
 436 // collection set but has not yet been retired.  This method
 437 // therefore is only accurate during a GC pause after all
 438 // regions have been retired.  It is used for debugging
 439 // to check if an nmethod has references to objects that can
 440 // be move during a partial collection.  Though it can be
 441 // inaccurate, it is sufficient for G1 because the conservative
 442 // implementation of is_scavengable() for G1 will indicate that
 443 // all nmethods must be scanned during a partial collection.
 444 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 445   HeapRegion* hr = heap_region_containing(p);
 446   return hr != NULL && hr->in_collection_set();
 447 }
 448 #endif
 449 
 450 // Returns true if the reference points to an object that
 451 // can move in an incremental collection.
 452 bool G1CollectedHeap::is_scavengable(const void* p) {
 453   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 454   G1CollectorPolicy* g1p = g1h->g1_policy();
 455   HeapRegion* hr = heap_region_containing(p);
 456   if (hr == NULL) {
 457      // null
 458      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 459      return false;
 460   } else {
 461     return !hr->isHumongous();
 462   }
 463 }
 464 
 465 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 466   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 467   CardTableModRefBS* ct_bs = g1_barrier_set();
 468 
 469   // Count the dirty cards at the start.
 470   CountNonCleanMemRegionClosure count1(this);
 471   ct_bs->mod_card_iterate(&count1);
 472   int orig_count = count1.n();
 473 
 474   // First clear the logged cards.
 475   ClearLoggedCardTableEntryClosure clear;
 476   dcqs.apply_closure_to_all_completed_buffers(&clear);
 477   dcqs.iterate_closure_all_threads(&clear, false);
 478   clear.print_histo();
 479 
 480   // Now ensure that there's no dirty cards.
 481   CountNonCleanMemRegionClosure count2(this);
 482   ct_bs->mod_card_iterate(&count2);
 483   if (count2.n() != 0) {
 484     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 485                            count2.n(), orig_count);
 486   }
 487   guarantee(count2.n() == 0, "Card table should be clean.");
 488 
 489   RedirtyLoggedCardTableEntryClosure redirty;
 490   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 491   dcqs.iterate_closure_all_threads(&redirty, false);
 492   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 493                          clear.num_processed(), orig_count);
 494   guarantee(redirty.num_processed() == clear.num_processed(),
 495             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
 496                     redirty.num_processed(), clear.num_processed()));
 497 
 498   CountNonCleanMemRegionClosure count3(this);
 499   ct_bs->mod_card_iterate(&count3);
 500   if (count3.n() != orig_count) {
 501     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 502                            orig_count, count3.n());
 503     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 504   }
 505 }
 506 
 507 // Private class members.
 508 
 509 G1CollectedHeap* G1CollectedHeap::_g1h;
 510 
 511 // Private methods.
 512 
 513 HeapRegion*
 514 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 515   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 516   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 517     if (!_secondary_free_list.is_empty()) {
 518       if (G1ConcRegionFreeingVerbose) {
 519         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 520                                "secondary_free_list has %u entries",
 521                                _secondary_free_list.length());
 522       }
 523       // It looks as if there are free regions available on the
 524       // secondary_free_list. Let's move them to the free_list and try
 525       // again to allocate from it.
 526       append_secondary_free_list();
 527 
 528       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 529              "empty we should have moved at least one entry to the free_list");
 530       HeapRegion* res = _free_list.remove_region(is_old);
 531       if (G1ConcRegionFreeingVerbose) {
 532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 533                                "allocated "HR_FORMAT" from secondary_free_list",
 534                                HR_FORMAT_PARAMS(res));
 535       }
 536       return res;
 537     }
 538 
 539     // Wait here until we get notified either when (a) there are no
 540     // more free regions coming or (b) some regions have been moved on
 541     // the secondary_free_list.
 542     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 543   }
 544 
 545   if (G1ConcRegionFreeingVerbose) {
 546     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 547                            "could not allocate from secondary_free_list");
 548   }
 549   return NULL;
 550 }
 551 
 552 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 553   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 554          "the only time we use this to allocate a humongous region is "
 555          "when we are allocating a single humongous region");
 556 
 557   HeapRegion* res;
 558   if (G1StressConcRegionFreeing) {
 559     if (!_secondary_free_list.is_empty()) {
 560       if (G1ConcRegionFreeingVerbose) {
 561         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 562                                "forced to look at the secondary_free_list");
 563       }
 564       res = new_region_try_secondary_free_list(is_old);
 565       if (res != NULL) {
 566         return res;
 567       }
 568     }
 569   }
 570 
 571   res = _free_list.remove_region(is_old);
 572 
 573   if (res == NULL) {
 574     if (G1ConcRegionFreeingVerbose) {
 575       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 576                              "res == NULL, trying the secondary_free_list");
 577     }
 578     res = new_region_try_secondary_free_list(is_old);
 579   }
 580   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 581     // Currently, only attempts to allocate GC alloc regions set
 582     // do_expand to true. So, we should only reach here during a
 583     // safepoint. If this assumption changes we might have to
 584     // reconsider the use of _expand_heap_after_alloc_failure.
 585     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 586 
 587     ergo_verbose1(ErgoHeapSizing,
 588                   "attempt heap expansion",
 589                   ergo_format_reason("region allocation request failed")
 590                   ergo_format_byte("allocation request"),
 591                   word_size * HeapWordSize);
 592     if (expand(word_size * HeapWordSize)) {
 593       // Given that expand() succeeded in expanding the heap, and we
 594       // always expand the heap by an amount aligned to the heap
 595       // region size, the free list should in theory not be empty.
 596       // In either case remove_region() will check for NULL.
 597       res = _free_list.remove_region(is_old);
 598     } else {
 599       _expand_heap_after_alloc_failure = false;
 600     }
 601   }
 602   return res;
 603 }
 604 
 605 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 606                                                         size_t word_size) {
 607   assert(isHumongous(word_size), "word_size should be humongous");
 608   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 609 
 610   uint first = G1_NULL_HRS_INDEX;
 611   if (num_regions == 1) {
 612     // Only one region to allocate, no need to go through the slower
 613     // path. The caller will attempt the expansion if this fails, so
 614     // let's not try to expand here too.
 615     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 616     if (hr != NULL) {
 617       first = hr->hrs_index();
 618     } else {
 619       first = G1_NULL_HRS_INDEX;
 620     }
 621   } else {
 622     // We can't allocate humongous regions while cleanupComplete() is
 623     // running, since some of the regions we find to be empty might not
 624     // yet be added to the free list and it is not straightforward to
 625     // know which list they are on so that we can remove them. Note
 626     // that we only need to do this if we need to allocate more than
 627     // one region to satisfy the current humongous allocation
 628     // request. If we are only allocating one region we use the common
 629     // region allocation code (see above).
 630     wait_while_free_regions_coming();
 631     append_secondary_free_list_if_not_empty_with_lock();
 632 
 633     if (free_regions() >= num_regions) {
 634       first = _hrs.find_contiguous(num_regions);
 635       if (first != G1_NULL_HRS_INDEX) {
 636         for (uint i = first; i < first + num_regions; ++i) {
 637           HeapRegion* hr = region_at(i);
 638           assert(hr->is_empty(), "sanity");
 639           assert(is_on_master_free_list(hr), "sanity");
 640           hr->set_pending_removal(true);
 641         }
 642         _free_list.remove_all_pending(num_regions);
 643       }
 644     }
 645   }
 646   return first;
 647 }
 648 
 649 HeapWord*
 650 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 651                                                            uint num_regions,
 652                                                            size_t word_size) {
 653   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 654   assert(isHumongous(word_size), "word_size should be humongous");
 655   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 656 
 657   // Index of last region in the series + 1.
 658   uint last = first + num_regions;
 659 
 660   // We need to initialize the region(s) we just discovered. This is
 661   // a bit tricky given that it can happen concurrently with
 662   // refinement threads refining cards on these regions and
 663   // potentially wanting to refine the BOT as they are scanning
 664   // those cards (this can happen shortly after a cleanup; see CR
 665   // 6991377). So we have to set up the region(s) carefully and in
 666   // a specific order.
 667 
 668   // The word size sum of all the regions we will allocate.
 669   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 670   assert(word_size <= word_size_sum, "sanity");
 671 
 672   // This will be the "starts humongous" region.
 673   HeapRegion* first_hr = region_at(first);
 674   // The header of the new object will be placed at the bottom of
 675   // the first region.
 676   HeapWord* new_obj = first_hr->bottom();
 677   // This will be the new end of the first region in the series that
 678   // should also match the end of the last region in the series.
 679   HeapWord* new_end = new_obj + word_size_sum;
 680   // This will be the new top of the first region that will reflect
 681   // this allocation.
 682   HeapWord* new_top = new_obj + word_size;
 683 
 684   // First, we need to zero the header of the space that we will be
 685   // allocating. When we update top further down, some refinement
 686   // threads might try to scan the region. By zeroing the header we
 687   // ensure that any thread that will try to scan the region will
 688   // come across the zero klass word and bail out.
 689   //
 690   // NOTE: It would not have been correct to have used
 691   // CollectedHeap::fill_with_object() and make the space look like
 692   // an int array. The thread that is doing the allocation will
 693   // later update the object header to a potentially different array
 694   // type and, for a very short period of time, the klass and length
 695   // fields will be inconsistent. This could cause a refinement
 696   // thread to calculate the object size incorrectly.
 697   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 698 
 699   // We will set up the first region as "starts humongous". This
 700   // will also update the BOT covering all the regions to reflect
 701   // that there is a single object that starts at the bottom of the
 702   // first region.
 703   first_hr->set_startsHumongous(new_top, new_end);
 704 
 705   // Then, if there are any, we will set up the "continues
 706   // humongous" regions.
 707   HeapRegion* hr = NULL;
 708   for (uint i = first + 1; i < last; ++i) {
 709     hr = region_at(i);
 710     hr->set_continuesHumongous(first_hr);
 711   }
 712   // If we have "continues humongous" regions (hr != NULL), then the
 713   // end of the last one should match new_end.
 714   assert(hr == NULL || hr->end() == new_end, "sanity");
 715 
 716   // Up to this point no concurrent thread would have been able to
 717   // do any scanning on any region in this series. All the top
 718   // fields still point to bottom, so the intersection between
 719   // [bottom,top] and [card_start,card_end] will be empty. Before we
 720   // update the top fields, we'll do a storestore to make sure that
 721   // no thread sees the update to top before the zeroing of the
 722   // object header and the BOT initialization.
 723   OrderAccess::storestore();
 724 
 725   // Now that the BOT and the object header have been initialized,
 726   // we can update top of the "starts humongous" region.
 727   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 728          "new_top should be in this region");
 729   first_hr->set_top(new_top);
 730   if (_hr_printer.is_active()) {
 731     HeapWord* bottom = first_hr->bottom();
 732     HeapWord* end = first_hr->orig_end();
 733     if ((first + 1) == last) {
 734       // the series has a single humongous region
 735       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 736     } else {
 737       // the series has more than one humongous regions
 738       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 739     }
 740   }
 741 
 742   // Now, we will update the top fields of the "continues humongous"
 743   // regions. The reason we need to do this is that, otherwise,
 744   // these regions would look empty and this will confuse parts of
 745   // G1. For example, the code that looks for a consecutive number
 746   // of empty regions will consider them empty and try to
 747   // re-allocate them. We can extend is_empty() to also include
 748   // !continuesHumongous(), but it is easier to just update the top
 749   // fields here. The way we set top for all regions (i.e., top ==
 750   // end for all regions but the last one, top == new_top for the
 751   // last one) is actually used when we will free up the humongous
 752   // region in free_humongous_region().
 753   hr = NULL;
 754   for (uint i = first + 1; i < last; ++i) {
 755     hr = region_at(i);
 756     if ((i + 1) == last) {
 757       // last continues humongous region
 758       assert(hr->bottom() < new_top && new_top <= hr->end(),
 759              "new_top should fall on this region");
 760       hr->set_top(new_top);
 761       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 762     } else {
 763       // not last one
 764       assert(new_top > hr->end(), "new_top should be above this region");
 765       hr->set_top(hr->end());
 766       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 767     }
 768   }
 769   // If we have continues humongous regions (hr != NULL), then the
 770   // end of the last one should match new_end and its top should
 771   // match new_top.
 772   assert(hr == NULL ||
 773          (hr->end() == new_end && hr->top() == new_top), "sanity");
 774 
 775   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 776   _summary_bytes_used += first_hr->used();
 777   _humongous_set.add(first_hr);
 778 
 779   return new_obj;
 780 }
 781 
 782 // If could fit into free regions w/o expansion, try.
 783 // Otherwise, if can expand, do so.
 784 // Otherwise, if using ex regions might help, try with ex given back.
 785 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 786   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 787 
 788   verify_region_sets_optional();
 789 
 790   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 791   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 792   uint x_num = expansion_regions();
 793   uint fs = _hrs.free_suffix();
 794   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 795   if (first == G1_NULL_HRS_INDEX) {
 796     // The only thing we can do now is attempt expansion.
 797     if (fs + x_num >= num_regions) {
 798       // If the number of regions we're trying to allocate for this
 799       // object is at most the number of regions in the free suffix,
 800       // then the call to humongous_obj_allocate_find_first() above
 801       // should have succeeded and we wouldn't be here.
 802       //
 803       // We should only be trying to expand when the free suffix is
 804       // not sufficient for the object _and_ we have some expansion
 805       // room available.
 806       assert(num_regions > fs, "earlier allocation should have succeeded");
 807 
 808       ergo_verbose1(ErgoHeapSizing,
 809                     "attempt heap expansion",
 810                     ergo_format_reason("humongous allocation request failed")
 811                     ergo_format_byte("allocation request"),
 812                     word_size * HeapWordSize);
 813       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 814         // Even though the heap was expanded, it might not have
 815         // reached the desired size. So, we cannot assume that the
 816         // allocation will succeed.
 817         first = humongous_obj_allocate_find_first(num_regions, word_size);
 818       }
 819     }
 820   }
 821 
 822   HeapWord* result = NULL;
 823   if (first != G1_NULL_HRS_INDEX) {
 824     result =
 825       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 826     assert(result != NULL, "it should always return a valid result");
 827 
 828     // A successful humongous object allocation changes the used space
 829     // information of the old generation so we need to recalculate the
 830     // sizes and update the jstat counters here.
 831     g1mm()->update_sizes();
 832   }
 833 
 834   verify_region_sets_optional();
 835 
 836   return result;
 837 }
 838 
 839 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 840   assert_heap_not_locked_and_not_at_safepoint();
 841   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 842 
 843   unsigned int dummy_gc_count_before;
 844   int dummy_gclocker_retry_count = 0;
 845   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 846 }
 847 
 848 HeapWord*
 849 G1CollectedHeap::mem_allocate(size_t word_size,
 850                               bool*  gc_overhead_limit_was_exceeded) {
 851   assert_heap_not_locked_and_not_at_safepoint();
 852 
 853   // Loop until the allocation is satisfied, or unsatisfied after GC.
 854   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 855     unsigned int gc_count_before;
 856 
 857     HeapWord* result = NULL;
 858     if (!isHumongous(word_size)) {
 859       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 860     } else {
 861       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 862     }
 863     if (result != NULL) {
 864       return result;
 865     }
 866 
 867     // Create the garbage collection operation...
 868     VM_G1CollectForAllocation op(gc_count_before, word_size);
 869     // ...and get the VM thread to execute it.
 870     VMThread::execute(&op);
 871 
 872     if (op.prologue_succeeded() && op.pause_succeeded()) {
 873       // If the operation was successful we'll return the result even
 874       // if it is NULL. If the allocation attempt failed immediately
 875       // after a Full GC, it's unlikely we'll be able to allocate now.
 876       HeapWord* result = op.result();
 877       if (result != NULL && !isHumongous(word_size)) {
 878         // Allocations that take place on VM operations do not do any
 879         // card dirtying and we have to do it here. We only have to do
 880         // this for non-humongous allocations, though.
 881         dirty_young_block(result, word_size);
 882       }
 883       return result;
 884     } else {
 885       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 886         return NULL;
 887       }
 888       assert(op.result() == NULL,
 889              "the result should be NULL if the VM op did not succeed");
 890     }
 891 
 892     // Give a warning if we seem to be looping forever.
 893     if ((QueuedAllocationWarningCount > 0) &&
 894         (try_count % QueuedAllocationWarningCount == 0)) {
 895       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 896     }
 897   }
 898 
 899   ShouldNotReachHere();
 900   return NULL;
 901 }
 902 
 903 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 904                                            unsigned int *gc_count_before_ret,
 905                                            int* gclocker_retry_count_ret) {
 906   // Make sure you read the note in attempt_allocation_humongous().
 907 
 908   assert_heap_not_locked_and_not_at_safepoint();
 909   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 910          "be called for humongous allocation requests");
 911 
 912   // We should only get here after the first-level allocation attempt
 913   // (attempt_allocation()) failed to allocate.
 914 
 915   // We will loop until a) we manage to successfully perform the
 916   // allocation or b) we successfully schedule a collection which
 917   // fails to perform the allocation. b) is the only case when we'll
 918   // return NULL.
 919   HeapWord* result = NULL;
 920   for (int try_count = 1; /* we'll return */; try_count += 1) {
 921     bool should_try_gc;
 922     unsigned int gc_count_before;
 923 
 924     {
 925       MutexLockerEx x(Heap_lock);
 926 
 927       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 928                                                       false /* bot_updates */);
 929       if (result != NULL) {
 930         return result;
 931       }
 932 
 933       // If we reach here, attempt_allocation_locked() above failed to
 934       // allocate a new region. So the mutator alloc region should be NULL.
 935       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 936 
 937       if (GC_locker::is_active_and_needs_gc()) {
 938         if (g1_policy()->can_expand_young_list()) {
 939           // No need for an ergo verbose message here,
 940           // can_expand_young_list() does this when it returns true.
 941           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 942                                                       false /* bot_updates */);
 943           if (result != NULL) {
 944             return result;
 945           }
 946         }
 947         should_try_gc = false;
 948       } else {
 949         // The GCLocker may not be active but the GCLocker initiated
 950         // GC may not yet have been performed (GCLocker::needs_gc()
 951         // returns true). In this case we do not try this GC and
 952         // wait until the GCLocker initiated GC is performed, and
 953         // then retry the allocation.
 954         if (GC_locker::needs_gc()) {
 955           should_try_gc = false;
 956         } else {
 957           // Read the GC count while still holding the Heap_lock.
 958           gc_count_before = total_collections();
 959           should_try_gc = true;
 960         }
 961       }
 962     }
 963 
 964     if (should_try_gc) {
 965       bool succeeded;
 966       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 967           GCCause::_g1_inc_collection_pause);
 968       if (result != NULL) {
 969         assert(succeeded, "only way to get back a non-NULL result");
 970         return result;
 971       }
 972 
 973       if (succeeded) {
 974         // If we get here we successfully scheduled a collection which
 975         // failed to allocate. No point in trying to allocate
 976         // further. We'll just return NULL.
 977         MutexLockerEx x(Heap_lock);
 978         *gc_count_before_ret = total_collections();
 979         return NULL;
 980       }
 981     } else {
 982       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 983         MutexLockerEx x(Heap_lock);
 984         *gc_count_before_ret = total_collections();
 985         return NULL;
 986       }
 987       // The GCLocker is either active or the GCLocker initiated
 988       // GC has not yet been performed. Stall until it is and
 989       // then retry the allocation.
 990       GC_locker::stall_until_clear();
 991       (*gclocker_retry_count_ret) += 1;
 992     }
 993 
 994     // We can reach here if we were unsuccessful in scheduling a
 995     // collection (because another thread beat us to it) or if we were
 996     // stalled due to the GC locker. In either can we should retry the
 997     // allocation attempt in case another thread successfully
 998     // performed a collection and reclaimed enough space. We do the
 999     // first attempt (without holding the Heap_lock) here and the
1000     // follow-on attempt will be at the start of the next loop
1001     // iteration (after taking the Heap_lock).
1002     result = _mutator_alloc_region.attempt_allocation(word_size,
1003                                                       false /* bot_updates */);
1004     if (result != NULL) {
1005       return result;
1006     }
1007 
1008     // Give a warning if we seem to be looping forever.
1009     if ((QueuedAllocationWarningCount > 0) &&
1010         (try_count % QueuedAllocationWarningCount == 0)) {
1011       warning("G1CollectedHeap::attempt_allocation_slow() "
1012               "retries %d times", try_count);
1013     }
1014   }
1015 
1016   ShouldNotReachHere();
1017   return NULL;
1018 }
1019 
1020 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1021                                           unsigned int * gc_count_before_ret,
1022                                           int* gclocker_retry_count_ret) {
1023   // The structure of this method has a lot of similarities to
1024   // attempt_allocation_slow(). The reason these two were not merged
1025   // into a single one is that such a method would require several "if
1026   // allocation is not humongous do this, otherwise do that"
1027   // conditional paths which would obscure its flow. In fact, an early
1028   // version of this code did use a unified method which was harder to
1029   // follow and, as a result, it had subtle bugs that were hard to
1030   // track down. So keeping these two methods separate allows each to
1031   // be more readable. It will be good to keep these two in sync as
1032   // much as possible.
1033 
1034   assert_heap_not_locked_and_not_at_safepoint();
1035   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1036          "should only be called for humongous allocations");
1037 
1038   // Humongous objects can exhaust the heap quickly, so we should check if we
1039   // need to start a marking cycle at each humongous object allocation. We do
1040   // the check before we do the actual allocation. The reason for doing it
1041   // before the allocation is that we avoid having to keep track of the newly
1042   // allocated memory while we do a GC.
1043   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1044                                            word_size)) {
1045     collect(GCCause::_g1_humongous_allocation);
1046   }
1047 
1048   // We will loop until a) we manage to successfully perform the
1049   // allocation or b) we successfully schedule a collection which
1050   // fails to perform the allocation. b) is the only case when we'll
1051   // return NULL.
1052   HeapWord* result = NULL;
1053   for (int try_count = 1; /* we'll return */; try_count += 1) {
1054     bool should_try_gc;
1055     unsigned int gc_count_before;
1056 
1057     {
1058       MutexLockerEx x(Heap_lock);
1059 
1060       // Given that humongous objects are not allocated in young
1061       // regions, we'll first try to do the allocation without doing a
1062       // collection hoping that there's enough space in the heap.
1063       result = humongous_obj_allocate(word_size);
1064       if (result != NULL) {
1065         return result;
1066       }
1067 
1068       if (GC_locker::is_active_and_needs_gc()) {
1069         should_try_gc = false;
1070       } else {
1071          // The GCLocker may not be active but the GCLocker initiated
1072         // GC may not yet have been performed (GCLocker::needs_gc()
1073         // returns true). In this case we do not try this GC and
1074         // wait until the GCLocker initiated GC is performed, and
1075         // then retry the allocation.
1076         if (GC_locker::needs_gc()) {
1077           should_try_gc = false;
1078         } else {
1079           // Read the GC count while still holding the Heap_lock.
1080           gc_count_before = total_collections();
1081           should_try_gc = true;
1082         }
1083       }
1084     }
1085 
1086     if (should_try_gc) {
1087       // If we failed to allocate the humongous object, we should try to
1088       // do a collection pause (if we're allowed) in case it reclaims
1089       // enough space for the allocation to succeed after the pause.
1090 
1091       bool succeeded;
1092       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1093           GCCause::_g1_humongous_allocation);
1094       if (result != NULL) {
1095         assert(succeeded, "only way to get back a non-NULL result");
1096         return result;
1097       }
1098 
1099       if (succeeded) {
1100         // If we get here we successfully scheduled a collection which
1101         // failed to allocate. No point in trying to allocate
1102         // further. We'll just return NULL.
1103         MutexLockerEx x(Heap_lock);
1104         *gc_count_before_ret = total_collections();
1105         return NULL;
1106       }
1107     } else {
1108       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1109         MutexLockerEx x(Heap_lock);
1110         *gc_count_before_ret = total_collections();
1111         return NULL;
1112       }
1113       // The GCLocker is either active or the GCLocker initiated
1114       // GC has not yet been performed. Stall until it is and
1115       // then retry the allocation.
1116       GC_locker::stall_until_clear();
1117       (*gclocker_retry_count_ret) += 1;
1118     }
1119 
1120     // We can reach here if we were unsuccessful in scheduling a
1121     // collection (because another thread beat us to it) or if we were
1122     // stalled due to the GC locker. In either can we should retry the
1123     // allocation attempt in case another thread successfully
1124     // performed a collection and reclaimed enough space.  Give a
1125     // warning if we seem to be looping forever.
1126 
1127     if ((QueuedAllocationWarningCount > 0) &&
1128         (try_count % QueuedAllocationWarningCount == 0)) {
1129       warning("G1CollectedHeap::attempt_allocation_humongous() "
1130               "retries %d times", try_count);
1131     }
1132   }
1133 
1134   ShouldNotReachHere();
1135   return NULL;
1136 }
1137 
1138 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1139                                        bool expect_null_mutator_alloc_region) {
1140   assert_at_safepoint(true /* should_be_vm_thread */);
1141   assert(_mutator_alloc_region.get() == NULL ||
1142                                              !expect_null_mutator_alloc_region,
1143          "the current alloc region was unexpectedly found to be non-NULL");
1144 
1145   if (!isHumongous(word_size)) {
1146     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1147                                                       false /* bot_updates */);
1148   } else {
1149     HeapWord* result = humongous_obj_allocate(word_size);
1150     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1151       g1_policy()->set_initiate_conc_mark_if_possible();
1152     }
1153     return result;
1154   }
1155 
1156   ShouldNotReachHere();
1157 }
1158 
1159 class PostMCRemSetClearClosure: public HeapRegionClosure {
1160   G1CollectedHeap* _g1h;
1161   ModRefBarrierSet* _mr_bs;
1162 public:
1163   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1164     _g1h(g1h), _mr_bs(mr_bs) {}
1165 
1166   bool doHeapRegion(HeapRegion* r) {
1167     HeapRegionRemSet* hrrs = r->rem_set();
1168 
1169     if (r->continuesHumongous()) {
1170       // We'll assert that the strong code root list and RSet is empty
1171       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1172       assert(hrrs->occupied() == 0, "RSet should be empty");
1173       return false;
1174     }
1175 
1176     _g1h->reset_gc_time_stamps(r);
1177     hrrs->clear();
1178     // You might think here that we could clear just the cards
1179     // corresponding to the used region.  But no: if we leave a dirty card
1180     // in a region we might allocate into, then it would prevent that card
1181     // from being enqueued, and cause it to be missed.
1182     // Re: the performance cost: we shouldn't be doing full GC anyway!
1183     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1184 
1185     return false;
1186   }
1187 };
1188 
1189 void G1CollectedHeap::clear_rsets_post_compaction() {
1190   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1191   heap_region_iterate(&rs_clear);
1192 }
1193 
1194 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1195   G1CollectedHeap*   _g1h;
1196   UpdateRSOopClosure _cl;
1197   int                _worker_i;
1198 public:
1199   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1200     _cl(g1->g1_rem_set(), worker_i),
1201     _worker_i(worker_i),
1202     _g1h(g1)
1203   { }
1204 
1205   bool doHeapRegion(HeapRegion* r) {
1206     if (!r->continuesHumongous()) {
1207       _cl.set_from(r);
1208       r->oop_iterate(&_cl);
1209     }
1210     return false;
1211   }
1212 };
1213 
1214 class ParRebuildRSTask: public AbstractGangTask {
1215   G1CollectedHeap* _g1;
1216 public:
1217   ParRebuildRSTask(G1CollectedHeap* g1)
1218     : AbstractGangTask("ParRebuildRSTask"),
1219       _g1(g1)
1220   { }
1221 
1222   void work(uint worker_id) {
1223     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1224     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1225                                           _g1->workers()->active_workers(),
1226                                          HeapRegion::RebuildRSClaimValue);
1227   }
1228 };
1229 
1230 class PostCompactionPrinterClosure: public HeapRegionClosure {
1231 private:
1232   G1HRPrinter* _hr_printer;
1233 public:
1234   bool doHeapRegion(HeapRegion* hr) {
1235     assert(!hr->is_young(), "not expecting to find young regions");
1236     // We only generate output for non-empty regions.
1237     if (!hr->is_empty()) {
1238       if (!hr->isHumongous()) {
1239         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1240       } else if (hr->startsHumongous()) {
1241         if (hr->region_num() == 1) {
1242           // single humongous region
1243           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1244         } else {
1245           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1246         }
1247       } else {
1248         assert(hr->continuesHumongous(), "only way to get here");
1249         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1250       }
1251     }
1252     return false;
1253   }
1254 
1255   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1256     : _hr_printer(hr_printer) { }
1257 };
1258 
1259 void G1CollectedHeap::print_hrs_post_compaction() {
1260   PostCompactionPrinterClosure cl(hr_printer());
1261   heap_region_iterate(&cl);
1262 }
1263 
1264 bool G1CollectedHeap::do_collection(bool explicit_gc,
1265                                     bool clear_all_soft_refs,
1266                                     size_t word_size) {
1267   assert_at_safepoint(true /* should_be_vm_thread */);
1268 
1269   if (GC_locker::check_active_before_gc()) {
1270     return false;
1271   }
1272 
1273   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1274   gc_timer->register_gc_start();
1275 
1276   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1277   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1278 
1279   SvcGCMarker sgcm(SvcGCMarker::FULL);
1280   ResourceMark rm;
1281 
1282   print_heap_before_gc();
1283   trace_heap_before_gc(gc_tracer);
1284 
1285   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1286 
1287   verify_region_sets_optional();
1288 
1289   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1290                            collector_policy()->should_clear_all_soft_refs();
1291 
1292   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1293 
1294   {
1295     IsGCActiveMark x;
1296 
1297     // Timing
1298     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1299     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1300     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1301 
1302     {
1303       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1304       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1305       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1306 
1307       double start = os::elapsedTime();
1308       g1_policy()->record_full_collection_start();
1309 
1310       // Note: When we have a more flexible GC logging framework that
1311       // allows us to add optional attributes to a GC log record we
1312       // could consider timing and reporting how long we wait in the
1313       // following two methods.
1314       wait_while_free_regions_coming();
1315       // If we start the compaction before the CM threads finish
1316       // scanning the root regions we might trip them over as we'll
1317       // be moving objects / updating references. So let's wait until
1318       // they are done. By telling them to abort, they should complete
1319       // early.
1320       _cm->root_regions()->abort();
1321       _cm->root_regions()->wait_until_scan_finished();
1322       append_secondary_free_list_if_not_empty_with_lock();
1323 
1324       gc_prologue(true);
1325       increment_total_collections(true /* full gc */);
1326       increment_old_marking_cycles_started();
1327 
1328       assert(used() == recalculate_used(), "Should be equal");
1329 
1330       verify_before_gc();
1331 
1332       pre_full_gc_dump(gc_timer);
1333 
1334       COMPILER2_PRESENT(DerivedPointerTable::clear());
1335 
1336       // Disable discovery and empty the discovered lists
1337       // for the CM ref processor.
1338       ref_processor_cm()->disable_discovery();
1339       ref_processor_cm()->abandon_partial_discovery();
1340       ref_processor_cm()->verify_no_references_recorded();
1341 
1342       // Abandon current iterations of concurrent marking and concurrent
1343       // refinement, if any are in progress. We have to do this before
1344       // wait_until_scan_finished() below.
1345       concurrent_mark()->abort();
1346 
1347       // Make sure we'll choose a new allocation region afterwards.
1348       release_mutator_alloc_region();
1349       abandon_gc_alloc_regions();
1350       g1_rem_set()->cleanupHRRS();
1351 
1352       // We should call this after we retire any currently active alloc
1353       // regions so that all the ALLOC / RETIRE events are generated
1354       // before the start GC event.
1355       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1356 
1357       // We may have added regions to the current incremental collection
1358       // set between the last GC or pause and now. We need to clear the
1359       // incremental collection set and then start rebuilding it afresh
1360       // after this full GC.
1361       abandon_collection_set(g1_policy()->inc_cset_head());
1362       g1_policy()->clear_incremental_cset();
1363       g1_policy()->stop_incremental_cset_building();
1364 
1365       tear_down_region_sets(false /* free_list_only */);
1366       g1_policy()->set_gcs_are_young(true);
1367 
1368       // See the comments in g1CollectedHeap.hpp and
1369       // G1CollectedHeap::ref_processing_init() about
1370       // how reference processing currently works in G1.
1371 
1372       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1373       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1374 
1375       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1376       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1377 
1378       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1379       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1380 
1381       // Do collection work
1382       {
1383         HandleMark hm;  // Discard invalid handles created during gc
1384         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1385       }
1386 
1387       assert(free_regions() == 0, "we should not have added any free regions");
1388       rebuild_region_sets(false /* free_list_only */);
1389 
1390       // Enqueue any discovered reference objects that have
1391       // not been removed from the discovered lists.
1392       ref_processor_stw()->enqueue_discovered_references();
1393 
1394       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1395 
1396       MemoryService::track_memory_usage();
1397 
1398       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1399       ref_processor_stw()->verify_no_references_recorded();
1400 
1401       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1402       ClassLoaderDataGraph::purge();
1403       MetaspaceAux::verify_metrics();
1404 
1405       // Note: since we've just done a full GC, concurrent
1406       // marking is no longer active. Therefore we need not
1407       // re-enable reference discovery for the CM ref processor.
1408       // That will be done at the start of the next marking cycle.
1409       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1410       ref_processor_cm()->verify_no_references_recorded();
1411 
1412       reset_gc_time_stamp();
1413       // Since everything potentially moved, we will clear all remembered
1414       // sets, and clear all cards.  Later we will rebuild remembered
1415       // sets. We will also reset the GC time stamps of the regions.
1416       clear_rsets_post_compaction();
1417       check_gc_time_stamps();
1418 
1419       // Resize the heap if necessary.
1420       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1421 
1422       if (_hr_printer.is_active()) {
1423         // We should do this after we potentially resize the heap so
1424         // that all the COMMIT / UNCOMMIT events are generated before
1425         // the end GC event.
1426 
1427         print_hrs_post_compaction();
1428         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1429       }
1430 
1431       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1432       if (hot_card_cache->use_cache()) {
1433         hot_card_cache->reset_card_counts();
1434         hot_card_cache->reset_hot_cache();
1435       }
1436 
1437       // Rebuild remembered sets of all regions.
1438       if (G1CollectedHeap::use_parallel_gc_threads()) {
1439         uint n_workers =
1440           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1441                                                   workers()->active_workers(),
1442                                                   Threads::number_of_non_daemon_threads());
1443         assert(UseDynamicNumberOfGCThreads ||
1444                n_workers == workers()->total_workers(),
1445                "If not dynamic should be using all the  workers");
1446         workers()->set_active_workers(n_workers);
1447         // Set parallel threads in the heap (_n_par_threads) only
1448         // before a parallel phase and always reset it to 0 after
1449         // the phase so that the number of parallel threads does
1450         // no get carried forward to a serial phase where there
1451         // may be code that is "possibly_parallel".
1452         set_par_threads(n_workers);
1453 
1454         ParRebuildRSTask rebuild_rs_task(this);
1455         assert(check_heap_region_claim_values(
1456                HeapRegion::InitialClaimValue), "sanity check");
1457         assert(UseDynamicNumberOfGCThreads ||
1458                workers()->active_workers() == workers()->total_workers(),
1459                "Unless dynamic should use total workers");
1460         // Use the most recent number of  active workers
1461         assert(workers()->active_workers() > 0,
1462                "Active workers not properly set");
1463         set_par_threads(workers()->active_workers());
1464         workers()->run_task(&rebuild_rs_task);
1465         set_par_threads(0);
1466         assert(check_heap_region_claim_values(
1467                HeapRegion::RebuildRSClaimValue), "sanity check");
1468         reset_heap_region_claim_values();
1469       } else {
1470         RebuildRSOutOfRegionClosure rebuild_rs(this);
1471         heap_region_iterate(&rebuild_rs);
1472       }
1473 
1474       // Rebuild the strong code root lists for each region
1475       rebuild_strong_code_roots();
1476 
1477       if (true) { // FIXME
1478         MetaspaceGC::compute_new_size();
1479       }
1480 
1481 #ifdef TRACESPINNING
1482       ParallelTaskTerminator::print_termination_counts();
1483 #endif
1484 
1485       // Discard all rset updates
1486       JavaThread::dirty_card_queue_set().abandon_logs();
1487       assert(!G1DeferredRSUpdate
1488              || (G1DeferredRSUpdate &&
1489                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1490 
1491       _young_list->reset_sampled_info();
1492       // At this point there should be no regions in the
1493       // entire heap tagged as young.
1494       assert(check_young_list_empty(true /* check_heap */),
1495              "young list should be empty at this point");
1496 
1497       // Update the number of full collections that have been completed.
1498       increment_old_marking_cycles_completed(false /* concurrent */);
1499 
1500       _hrs.verify_optional();
1501       verify_region_sets_optional();
1502 
1503       verify_after_gc();
1504 
1505       // Start a new incremental collection set for the next pause
1506       assert(g1_policy()->collection_set() == NULL, "must be");
1507       g1_policy()->start_incremental_cset_building();
1508 
1509       clear_cset_fast_test();
1510 
1511       init_mutator_alloc_region();
1512 
1513       double end = os::elapsedTime();
1514       g1_policy()->record_full_collection_end();
1515 
1516       if (G1Log::fine()) {
1517         g1_policy()->print_heap_transition();
1518       }
1519 
1520       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1521       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1522       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1523       // before any GC notifications are raised.
1524       g1mm()->update_sizes();
1525 
1526       gc_epilogue(true);
1527     }
1528 
1529     if (G1Log::finer()) {
1530       g1_policy()->print_detailed_heap_transition(true /* full */);
1531     }
1532 
1533     print_heap_after_gc();
1534     trace_heap_after_gc(gc_tracer);
1535 
1536     post_full_gc_dump(gc_timer);
1537 
1538     gc_timer->register_gc_end();
1539     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1540   }
1541 
1542   return true;
1543 }
1544 
1545 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1546   // do_collection() will return whether it succeeded in performing
1547   // the GC. Currently, there is no facility on the
1548   // do_full_collection() API to notify the caller than the collection
1549   // did not succeed (e.g., because it was locked out by the GC
1550   // locker). So, right now, we'll ignore the return value.
1551   bool dummy = do_collection(true,                /* explicit_gc */
1552                              clear_all_soft_refs,
1553                              0                    /* word_size */);
1554 }
1555 
1556 // This code is mostly copied from TenuredGeneration.
1557 void
1558 G1CollectedHeap::
1559 resize_if_necessary_after_full_collection(size_t word_size) {
1560   // Include the current allocation, if any, and bytes that will be
1561   // pre-allocated to support collections, as "used".
1562   const size_t used_after_gc = used();
1563   const size_t capacity_after_gc = capacity();
1564   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1565 
1566   // This is enforced in arguments.cpp.
1567   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1568          "otherwise the code below doesn't make sense");
1569 
1570   // We don't have floating point command-line arguments
1571   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1572   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1573   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1574   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1575 
1576   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1577   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1578 
1579   // We have to be careful here as these two calculations can overflow
1580   // 32-bit size_t's.
1581   double used_after_gc_d = (double) used_after_gc;
1582   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1583   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1584 
1585   // Let's make sure that they are both under the max heap size, which
1586   // by default will make them fit into a size_t.
1587   double desired_capacity_upper_bound = (double) max_heap_size;
1588   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1589                                     desired_capacity_upper_bound);
1590   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1591                                     desired_capacity_upper_bound);
1592 
1593   // We can now safely turn them into size_t's.
1594   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1595   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1596 
1597   // This assert only makes sense here, before we adjust them
1598   // with respect to the min and max heap size.
1599   assert(minimum_desired_capacity <= maximum_desired_capacity,
1600          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1601                  "maximum_desired_capacity = "SIZE_FORMAT,
1602                  minimum_desired_capacity, maximum_desired_capacity));
1603 
1604   // Should not be greater than the heap max size. No need to adjust
1605   // it with respect to the heap min size as it's a lower bound (i.e.,
1606   // we'll try to make the capacity larger than it, not smaller).
1607   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1608   // Should not be less than the heap min size. No need to adjust it
1609   // with respect to the heap max size as it's an upper bound (i.e.,
1610   // we'll try to make the capacity smaller than it, not greater).
1611   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1612 
1613   if (capacity_after_gc < minimum_desired_capacity) {
1614     // Don't expand unless it's significant
1615     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1616     ergo_verbose4(ErgoHeapSizing,
1617                   "attempt heap expansion",
1618                   ergo_format_reason("capacity lower than "
1619                                      "min desired capacity after Full GC")
1620                   ergo_format_byte("capacity")
1621                   ergo_format_byte("occupancy")
1622                   ergo_format_byte_perc("min desired capacity"),
1623                   capacity_after_gc, used_after_gc,
1624                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1625     expand(expand_bytes);
1626 
1627     // No expansion, now see if we want to shrink
1628   } else if (capacity_after_gc > maximum_desired_capacity) {
1629     // Capacity too large, compute shrinking size
1630     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1631     ergo_verbose4(ErgoHeapSizing,
1632                   "attempt heap shrinking",
1633                   ergo_format_reason("capacity higher than "
1634                                      "max desired capacity after Full GC")
1635                   ergo_format_byte("capacity")
1636                   ergo_format_byte("occupancy")
1637                   ergo_format_byte_perc("max desired capacity"),
1638                   capacity_after_gc, used_after_gc,
1639                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1640     shrink(shrink_bytes);
1641   }
1642 }
1643 
1644 
1645 HeapWord*
1646 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1647                                            bool* succeeded) {
1648   assert_at_safepoint(true /* should_be_vm_thread */);
1649 
1650   *succeeded = true;
1651   // Let's attempt the allocation first.
1652   HeapWord* result =
1653     attempt_allocation_at_safepoint(word_size,
1654                                  false /* expect_null_mutator_alloc_region */);
1655   if (result != NULL) {
1656     assert(*succeeded, "sanity");
1657     return result;
1658   }
1659 
1660   // In a G1 heap, we're supposed to keep allocation from failing by
1661   // incremental pauses.  Therefore, at least for now, we'll favor
1662   // expansion over collection.  (This might change in the future if we can
1663   // do something smarter than full collection to satisfy a failed alloc.)
1664   result = expand_and_allocate(word_size);
1665   if (result != NULL) {
1666     assert(*succeeded, "sanity");
1667     return result;
1668   }
1669 
1670   // Expansion didn't work, we'll try to do a Full GC.
1671   bool gc_succeeded = do_collection(false, /* explicit_gc */
1672                                     false, /* clear_all_soft_refs */
1673                                     word_size);
1674   if (!gc_succeeded) {
1675     *succeeded = false;
1676     return NULL;
1677   }
1678 
1679   // Retry the allocation
1680   result = attempt_allocation_at_safepoint(word_size,
1681                                   true /* expect_null_mutator_alloc_region */);
1682   if (result != NULL) {
1683     assert(*succeeded, "sanity");
1684     return result;
1685   }
1686 
1687   // Then, try a Full GC that will collect all soft references.
1688   gc_succeeded = do_collection(false, /* explicit_gc */
1689                                true,  /* clear_all_soft_refs */
1690                                word_size);
1691   if (!gc_succeeded) {
1692     *succeeded = false;
1693     return NULL;
1694   }
1695 
1696   // Retry the allocation once more
1697   result = attempt_allocation_at_safepoint(word_size,
1698                                   true /* expect_null_mutator_alloc_region */);
1699   if (result != NULL) {
1700     assert(*succeeded, "sanity");
1701     return result;
1702   }
1703 
1704   assert(!collector_policy()->should_clear_all_soft_refs(),
1705          "Flag should have been handled and cleared prior to this point");
1706 
1707   // What else?  We might try synchronous finalization later.  If the total
1708   // space available is large enough for the allocation, then a more
1709   // complete compaction phase than we've tried so far might be
1710   // appropriate.
1711   assert(*succeeded, "sanity");
1712   return NULL;
1713 }
1714 
1715 // Attempting to expand the heap sufficiently
1716 // to support an allocation of the given "word_size".  If
1717 // successful, perform the allocation and return the address of the
1718 // allocated block, or else "NULL".
1719 
1720 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1721   assert_at_safepoint(true /* should_be_vm_thread */);
1722 
1723   verify_region_sets_optional();
1724 
1725   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1726   ergo_verbose1(ErgoHeapSizing,
1727                 "attempt heap expansion",
1728                 ergo_format_reason("allocation request failed")
1729                 ergo_format_byte("allocation request"),
1730                 word_size * HeapWordSize);
1731   if (expand(expand_bytes)) {
1732     _hrs.verify_optional();
1733     verify_region_sets_optional();
1734     return attempt_allocation_at_safepoint(word_size,
1735                                  false /* expect_null_mutator_alloc_region */);
1736   }
1737   return NULL;
1738 }
1739 
1740 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1741                                              HeapWord* new_end) {
1742   assert(old_end != new_end, "don't call this otherwise");
1743   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1744 
1745   // Update the committed mem region.
1746   _g1_committed.set_end(new_end);
1747   // Tell the card table about the update.
1748   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1749   // Tell the BOT about the update.
1750   _bot_shared->resize(_g1_committed.word_size());
1751   // Tell the hot card cache about the update
1752   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1753 }
1754 
1755 bool G1CollectedHeap::expand(size_t expand_bytes) {
1756   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1757   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1758                                        HeapRegion::GrainBytes);
1759   ergo_verbose2(ErgoHeapSizing,
1760                 "expand the heap",
1761                 ergo_format_byte("requested expansion amount")
1762                 ergo_format_byte("attempted expansion amount"),
1763                 expand_bytes, aligned_expand_bytes);
1764 
1765   if (_g1_storage.uncommitted_size() == 0) {
1766     ergo_verbose0(ErgoHeapSizing,
1767                       "did not expand the heap",
1768                       ergo_format_reason("heap already fully expanded"));
1769     return false;
1770   }
1771 
1772   // First commit the memory.
1773   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1774   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1775   if (successful) {
1776     // Then propagate this update to the necessary data structures.
1777     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1778     update_committed_space(old_end, new_end);
1779 
1780     FreeRegionList expansion_list("Local Expansion List");
1781     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1782     assert(mr.start() == old_end, "post-condition");
1783     // mr might be a smaller region than what was requested if
1784     // expand_by() was unable to allocate the HeapRegion instances
1785     assert(mr.end() <= new_end, "post-condition");
1786 
1787     size_t actual_expand_bytes = mr.byte_size();
1788     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1789     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1790            "post-condition");
1791     if (actual_expand_bytes < aligned_expand_bytes) {
1792       // We could not expand _hrs to the desired size. In this case we
1793       // need to shrink the committed space accordingly.
1794       assert(mr.end() < new_end, "invariant");
1795 
1796       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1797       // First uncommit the memory.
1798       _g1_storage.shrink_by(diff_bytes);
1799       // Then propagate this update to the necessary data structures.
1800       update_committed_space(new_end, mr.end());
1801     }
1802     _free_list.add_as_tail(&expansion_list);
1803 
1804     if (_hr_printer.is_active()) {
1805       HeapWord* curr = mr.start();
1806       while (curr < mr.end()) {
1807         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1808         _hr_printer.commit(curr, curr_end);
1809         curr = curr_end;
1810       }
1811       assert(curr == mr.end(), "post-condition");
1812     }
1813     g1_policy()->record_new_heap_size(n_regions());
1814   } else {
1815     ergo_verbose0(ErgoHeapSizing,
1816                   "did not expand the heap",
1817                   ergo_format_reason("heap expansion operation failed"));
1818     // The expansion of the virtual storage space was unsuccessful.
1819     // Let's see if it was because we ran out of swap.
1820     if (G1ExitOnExpansionFailure &&
1821         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1822       // We had head room...
1823       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1824     }
1825   }
1826   return successful;
1827 }
1828 
1829 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1830   size_t aligned_shrink_bytes =
1831     ReservedSpace::page_align_size_down(shrink_bytes);
1832   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1833                                          HeapRegion::GrainBytes);
1834   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1835 
1836   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1837   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1838   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1839 
1840   ergo_verbose3(ErgoHeapSizing,
1841                 "shrink the heap",
1842                 ergo_format_byte("requested shrinking amount")
1843                 ergo_format_byte("aligned shrinking amount")
1844                 ergo_format_byte("attempted shrinking amount"),
1845                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1846   if (num_regions_removed > 0) {
1847     _g1_storage.shrink_by(shrunk_bytes);
1848     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1849 
1850     if (_hr_printer.is_active()) {
1851       HeapWord* curr = old_end;
1852       while (curr > new_end) {
1853         HeapWord* curr_end = curr;
1854         curr -= HeapRegion::GrainWords;
1855         _hr_printer.uncommit(curr, curr_end);
1856       }
1857     }
1858 
1859     _expansion_regions += num_regions_removed;
1860     update_committed_space(old_end, new_end);
1861     HeapRegionRemSet::shrink_heap(n_regions());
1862     g1_policy()->record_new_heap_size(n_regions());
1863   } else {
1864     ergo_verbose0(ErgoHeapSizing,
1865                   "did not shrink the heap",
1866                   ergo_format_reason("heap shrinking operation failed"));
1867   }
1868 }
1869 
1870 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1871   verify_region_sets_optional();
1872 
1873   // We should only reach here at the end of a Full GC which means we
1874   // should not not be holding to any GC alloc regions. The method
1875   // below will make sure of that and do any remaining clean up.
1876   abandon_gc_alloc_regions();
1877 
1878   // Instead of tearing down / rebuilding the free lists here, we
1879   // could instead use the remove_all_pending() method on free_list to
1880   // remove only the ones that we need to remove.
1881   tear_down_region_sets(true /* free_list_only */);
1882   shrink_helper(shrink_bytes);
1883   rebuild_region_sets(true /* free_list_only */);
1884 
1885   _hrs.verify_optional();
1886   verify_region_sets_optional();
1887 }
1888 
1889 // Public methods.
1890 
1891 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1892 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1893 #endif // _MSC_VER
1894 
1895 
1896 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1897   SharedHeap(policy_),
1898   _g1_policy(policy_),
1899   _dirty_card_queue_set(false),
1900   _into_cset_dirty_card_queue_set(false),
1901   _is_alive_closure_cm(this),
1902   _is_alive_closure_stw(this),
1903   _ref_processor_cm(NULL),
1904   _ref_processor_stw(NULL),
1905   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1906   _bot_shared(NULL),
1907   _evac_failure_scan_stack(NULL),
1908   _mark_in_progress(false),
1909   _cg1r(NULL), _summary_bytes_used(0),
1910   _g1mm(NULL),
1911   _refine_cte_cl(NULL),
1912   _full_collection(false),
1913   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
1914   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1915   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1916   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1917   _free_regions_coming(false),
1918   _young_list(new YoungList(this)),
1919   _gc_time_stamp(0),
1920   _retained_old_gc_alloc_region(NULL),
1921   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1922   _old_plab_stats(OldPLABSize, PLABWeight),
1923   _expand_heap_after_alloc_failure(true),
1924   _surviving_young_words(NULL),
1925   _old_marking_cycles_started(0),
1926   _old_marking_cycles_completed(0),
1927   _concurrent_cycle_started(false),
1928   _in_cset_fast_test(),
1929   _dirty_cards_region_list(NULL),
1930   _worker_cset_start_region(NULL),
1931   _worker_cset_start_region_time_stamp(NULL),
1932   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1933   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1934   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1935   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1936 
1937   _g1h = this;
1938   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1939     vm_exit_during_initialization("Failed necessary allocation.");
1940   }
1941 
1942   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1943 
1944   int n_queues = MAX2((int)ParallelGCThreads, 1);
1945   _task_queues = new RefToScanQueueSet(n_queues);
1946 
1947   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1948   assert(n_rem_sets > 0, "Invariant.");
1949 
1950   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1951   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1952   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1953 
1954   for (int i = 0; i < n_queues; i++) {
1955     RefToScanQueue* q = new RefToScanQueue();
1956     q->initialize();
1957     _task_queues->register_queue(i, q);
1958     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1959   }
1960   clear_cset_start_regions();
1961 
1962   // Initialize the G1EvacuationFailureALot counters and flags.
1963   NOT_PRODUCT(reset_evacuation_should_fail();)
1964 
1965   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1966 }
1967 
1968 jint G1CollectedHeap::initialize() {
1969   CollectedHeap::pre_initialize();
1970   os::enable_vtime();
1971 
1972   G1Log::init();
1973 
1974   // Necessary to satisfy locking discipline assertions.
1975 
1976   MutexLocker x(Heap_lock);
1977 
1978   // We have to initialize the printer before committing the heap, as
1979   // it will be used then.
1980   _hr_printer.set_active(G1PrintHeapRegions);
1981 
1982   // While there are no constraints in the GC code that HeapWordSize
1983   // be any particular value, there are multiple other areas in the
1984   // system which believe this to be true (e.g. oop->object_size in some
1985   // cases incorrectly returns the size in wordSize units rather than
1986   // HeapWordSize).
1987   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1988 
1989   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1990   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1991   size_t heap_alignment = collector_policy()->heap_alignment();
1992 
1993   // Ensure that the sizes are properly aligned.
1994   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1995   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1996   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1997 
1998   _refine_cte_cl = new RefineCardTableEntryClosure();
1999 
2000   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2001 
2002   // Reserve the maximum.
2003 
2004   // When compressed oops are enabled, the preferred heap base
2005   // is calculated by subtracting the requested size from the
2006   // 32Gb boundary and using the result as the base address for
2007   // heap reservation. If the requested size is not aligned to
2008   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2009   // into the ReservedHeapSpace constructor) then the actual
2010   // base of the reserved heap may end up differing from the
2011   // address that was requested (i.e. the preferred heap base).
2012   // If this happens then we could end up using a non-optimal
2013   // compressed oops mode.
2014 
2015   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2016                                                  heap_alignment);
2017 
2018   // It is important to do this in a way such that concurrent readers can't
2019   // temporarily think something is in the heap.  (I've actually seen this
2020   // happen in asserts: DLD.)
2021   _reserved.set_word_size(0);
2022   _reserved.set_start((HeapWord*)heap_rs.base());
2023   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2024 
2025   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2026 
2027   // Create the gen rem set (and barrier set) for the entire reserved region.
2028   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2029   set_barrier_set(rem_set()->bs());
2030   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2031     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2032     return JNI_ENOMEM;
2033   }
2034 
2035   // Also create a G1 rem set.
2036   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2037 
2038   // Carve out the G1 part of the heap.
2039 
2040   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2041   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2042                            g1_rs.size()/HeapWordSize);
2043 
2044   _g1_storage.initialize(g1_rs, 0);
2045   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2046   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2047                   (HeapWord*) _g1_reserved.end());
2048   assert(_hrs.max_length() == _expansion_regions,
2049          err_msg("max length: %u expansion regions: %u",
2050                  _hrs.max_length(), _expansion_regions));
2051 
2052   // Do later initialization work for concurrent refinement.
2053   _cg1r->init();
2054 
2055   // 6843694 - ensure that the maximum region index can fit
2056   // in the remembered set structures.
2057   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2058   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2059 
2060   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2061   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2062   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2063             "too many cards per region");
2064 
2065   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2066 
2067   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2068                                              heap_word_size(init_byte_size));
2069 
2070   _g1h = this;
2071 
2072   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
2073 
2074   // Create the ConcurrentMark data structure and thread.
2075   // (Must do this late, so that "max_regions" is defined.)
2076   _cm = new ConcurrentMark(this, heap_rs);
2077   if (_cm == NULL || !_cm->completed_initialization()) {
2078     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2079     return JNI_ENOMEM;
2080   }
2081   _cmThread = _cm->cmThread();
2082 
2083   // Initialize the from_card cache structure of HeapRegionRemSet.
2084   HeapRegionRemSet::init_heap(max_regions());
2085 
2086   // Now expand into the initial heap size.
2087   if (!expand(init_byte_size)) {
2088     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2089     return JNI_ENOMEM;
2090   }
2091 
2092   // Perform any initialization actions delegated to the policy.
2093   g1_policy()->init();
2094 
2095   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2096                                                SATB_Q_FL_lock,
2097                                                G1SATBProcessCompletedThreshold,
2098                                                Shared_SATB_Q_lock);
2099 
2100   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2101                                                 DirtyCardQ_CBL_mon,
2102                                                 DirtyCardQ_FL_lock,
2103                                                 concurrent_g1_refine()->yellow_zone(),
2104                                                 concurrent_g1_refine()->red_zone(),
2105                                                 Shared_DirtyCardQ_lock);
2106 
2107   if (G1DeferredRSUpdate) {
2108     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2109                                       DirtyCardQ_CBL_mon,
2110                                       DirtyCardQ_FL_lock,
2111                                       -1, // never trigger processing
2112                                       -1, // no limit on length
2113                                       Shared_DirtyCardQ_lock,
2114                                       &JavaThread::dirty_card_queue_set());
2115   }
2116 
2117   // Initialize the card queue set used to hold cards containing
2118   // references into the collection set.
2119   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2120                                              DirtyCardQ_CBL_mon,
2121                                              DirtyCardQ_FL_lock,
2122                                              -1, // never trigger processing
2123                                              -1, // no limit on length
2124                                              Shared_DirtyCardQ_lock,
2125                                              &JavaThread::dirty_card_queue_set());
2126 
2127   // In case we're keeping closure specialization stats, initialize those
2128   // counts and that mechanism.
2129   SpecializationStats::clear();
2130 
2131   // Here we allocate the dummy full region that is required by the
2132   // G1AllocRegion class. If we don't pass an address in the reserved
2133   // space here, lots of asserts fire.
2134 
2135   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2136                                              _g1_reserved.start());
2137   // We'll re-use the same region whether the alloc region will
2138   // require BOT updates or not and, if it doesn't, then a non-young
2139   // region will complain that it cannot support allocations without
2140   // BOT updates. So we'll tag the dummy region as young to avoid that.
2141   dummy_region->set_young();
2142   // Make sure it's full.
2143   dummy_region->set_top(dummy_region->end());
2144   G1AllocRegion::setup(this, dummy_region);
2145 
2146   init_mutator_alloc_region();
2147 
2148   // Do create of the monitoring and management support so that
2149   // values in the heap have been properly initialized.
2150   _g1mm = new G1MonitoringSupport(this);
2151 
2152   G1StringDedup::initialize();
2153 
2154   return JNI_OK;
2155 }
2156 
2157 void G1CollectedHeap::stop() {
2158   // Stop all concurrent threads. We do this to make sure these threads
2159   // do not continue to execute and access resources (e.g. gclog_or_tty)
2160   // that are destroyed during shutdown.
2161   _cg1r->stop();
2162   _cmThread->stop();
2163   if (G1StringDedup::is_enabled()) {
2164     G1StringDedup::stop();
2165   }
2166 }
2167 
2168 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2169   return HeapRegion::max_region_size();
2170 }
2171 
2172 void G1CollectedHeap::ref_processing_init() {
2173   // Reference processing in G1 currently works as follows:
2174   //
2175   // * There are two reference processor instances. One is
2176   //   used to record and process discovered references
2177   //   during concurrent marking; the other is used to
2178   //   record and process references during STW pauses
2179   //   (both full and incremental).
2180   // * Both ref processors need to 'span' the entire heap as
2181   //   the regions in the collection set may be dotted around.
2182   //
2183   // * For the concurrent marking ref processor:
2184   //   * Reference discovery is enabled at initial marking.
2185   //   * Reference discovery is disabled and the discovered
2186   //     references processed etc during remarking.
2187   //   * Reference discovery is MT (see below).
2188   //   * Reference discovery requires a barrier (see below).
2189   //   * Reference processing may or may not be MT
2190   //     (depending on the value of ParallelRefProcEnabled
2191   //     and ParallelGCThreads).
2192   //   * A full GC disables reference discovery by the CM
2193   //     ref processor and abandons any entries on it's
2194   //     discovered lists.
2195   //
2196   // * For the STW processor:
2197   //   * Non MT discovery is enabled at the start of a full GC.
2198   //   * Processing and enqueueing during a full GC is non-MT.
2199   //   * During a full GC, references are processed after marking.
2200   //
2201   //   * Discovery (may or may not be MT) is enabled at the start
2202   //     of an incremental evacuation pause.
2203   //   * References are processed near the end of a STW evacuation pause.
2204   //   * For both types of GC:
2205   //     * Discovery is atomic - i.e. not concurrent.
2206   //     * Reference discovery will not need a barrier.
2207 
2208   SharedHeap::ref_processing_init();
2209   MemRegion mr = reserved_region();
2210 
2211   // Concurrent Mark ref processor
2212   _ref_processor_cm =
2213     new ReferenceProcessor(mr,    // span
2214                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2215                                 // mt processing
2216                            (int) ParallelGCThreads,
2217                                 // degree of mt processing
2218                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2219                                 // mt discovery
2220                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2221                                 // degree of mt discovery
2222                            false,
2223                                 // Reference discovery is not atomic
2224                            &_is_alive_closure_cm);
2225                                 // is alive closure
2226                                 // (for efficiency/performance)
2227 
2228   // STW ref processor
2229   _ref_processor_stw =
2230     new ReferenceProcessor(mr,    // span
2231                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2232                                 // mt processing
2233                            MAX2((int)ParallelGCThreads, 1),
2234                                 // degree of mt processing
2235                            (ParallelGCThreads > 1),
2236                                 // mt discovery
2237                            MAX2((int)ParallelGCThreads, 1),
2238                                 // degree of mt discovery
2239                            true,
2240                                 // Reference discovery is atomic
2241                            &_is_alive_closure_stw);
2242                                 // is alive closure
2243                                 // (for efficiency/performance)
2244 }
2245 
2246 size_t G1CollectedHeap::capacity() const {
2247   return _g1_committed.byte_size();
2248 }
2249 
2250 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2251   assert(!hr->continuesHumongous(), "pre-condition");
2252   hr->reset_gc_time_stamp();
2253   if (hr->startsHumongous()) {
2254     uint first_index = hr->hrs_index() + 1;
2255     uint last_index = hr->last_hc_index();
2256     for (uint i = first_index; i < last_index; i += 1) {
2257       HeapRegion* chr = region_at(i);
2258       assert(chr->continuesHumongous(), "sanity");
2259       chr->reset_gc_time_stamp();
2260     }
2261   }
2262 }
2263 
2264 #ifndef PRODUCT
2265 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2266 private:
2267   unsigned _gc_time_stamp;
2268   bool _failures;
2269 
2270 public:
2271   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2272     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2273 
2274   virtual bool doHeapRegion(HeapRegion* hr) {
2275     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2276     if (_gc_time_stamp != region_gc_time_stamp) {
2277       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2278                              "expected %d", HR_FORMAT_PARAMS(hr),
2279                              region_gc_time_stamp, _gc_time_stamp);
2280       _failures = true;
2281     }
2282     return false;
2283   }
2284 
2285   bool failures() { return _failures; }
2286 };
2287 
2288 void G1CollectedHeap::check_gc_time_stamps() {
2289   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2290   heap_region_iterate(&cl);
2291   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2292 }
2293 #endif // PRODUCT
2294 
2295 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2296                                                  DirtyCardQueue* into_cset_dcq,
2297                                                  bool concurrent,
2298                                                  uint worker_i) {
2299   // Clean cards in the hot card cache
2300   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2301   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2302 
2303   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2304   int n_completed_buffers = 0;
2305   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2306     n_completed_buffers++;
2307   }
2308   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2309   dcqs.clear_n_completed_buffers();
2310   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2311 }
2312 
2313 
2314 // Computes the sum of the storage used by the various regions.
2315 
2316 size_t G1CollectedHeap::used() const {
2317   assert(Heap_lock->owner() != NULL,
2318          "Should be owned on this thread's behalf.");
2319   size_t result = _summary_bytes_used;
2320   // Read only once in case it is set to NULL concurrently
2321   HeapRegion* hr = _mutator_alloc_region.get();
2322   if (hr != NULL)
2323     result += hr->used();
2324   return result;
2325 }
2326 
2327 size_t G1CollectedHeap::used_unlocked() const {
2328   size_t result = _summary_bytes_used;
2329   return result;
2330 }
2331 
2332 class SumUsedClosure: public HeapRegionClosure {
2333   size_t _used;
2334 public:
2335   SumUsedClosure() : _used(0) {}
2336   bool doHeapRegion(HeapRegion* r) {
2337     if (!r->continuesHumongous()) {
2338       _used += r->used();
2339     }
2340     return false;
2341   }
2342   size_t result() { return _used; }
2343 };
2344 
2345 size_t G1CollectedHeap::recalculate_used() const {
2346   double recalculate_used_start = os::elapsedTime();
2347 
2348   SumUsedClosure blk;
2349   heap_region_iterate(&blk);
2350 
2351   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2352   return blk.result();
2353 }
2354 
2355 size_t G1CollectedHeap::unsafe_max_alloc() {
2356   if (free_regions() > 0) return HeapRegion::GrainBytes;
2357   // otherwise, is there space in the current allocation region?
2358 
2359   // We need to store the current allocation region in a local variable
2360   // here. The problem is that this method doesn't take any locks and
2361   // there may be other threads which overwrite the current allocation
2362   // region field. attempt_allocation(), for example, sets it to NULL
2363   // and this can happen *after* the NULL check here but before the call
2364   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2365   // to be a problem in the optimized build, since the two loads of the
2366   // current allocation region field are optimized away.
2367   HeapRegion* hr = _mutator_alloc_region.get();
2368   if (hr == NULL) {
2369     return 0;
2370   }
2371   return hr->free();
2372 }
2373 
2374 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2375   switch (cause) {
2376     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2377     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2378     case GCCause::_g1_humongous_allocation: return true;
2379     default:                                return false;
2380   }
2381 }
2382 
2383 #ifndef PRODUCT
2384 void G1CollectedHeap::allocate_dummy_regions() {
2385   // Let's fill up most of the region
2386   size_t word_size = HeapRegion::GrainWords - 1024;
2387   // And as a result the region we'll allocate will be humongous.
2388   guarantee(isHumongous(word_size), "sanity");
2389 
2390   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2391     // Let's use the existing mechanism for the allocation
2392     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2393     if (dummy_obj != NULL) {
2394       MemRegion mr(dummy_obj, word_size);
2395       CollectedHeap::fill_with_object(mr);
2396     } else {
2397       // If we can't allocate once, we probably cannot allocate
2398       // again. Let's get out of the loop.
2399       break;
2400     }
2401   }
2402 }
2403 #endif // !PRODUCT
2404 
2405 void G1CollectedHeap::increment_old_marking_cycles_started() {
2406   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2407     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2408     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2409     _old_marking_cycles_started, _old_marking_cycles_completed));
2410 
2411   _old_marking_cycles_started++;
2412 }
2413 
2414 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2415   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2416 
2417   // We assume that if concurrent == true, then the caller is a
2418   // concurrent thread that was joined the Suspendible Thread
2419   // Set. If there's ever a cheap way to check this, we should add an
2420   // assert here.
2421 
2422   // Given that this method is called at the end of a Full GC or of a
2423   // concurrent cycle, and those can be nested (i.e., a Full GC can
2424   // interrupt a concurrent cycle), the number of full collections
2425   // completed should be either one (in the case where there was no
2426   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2427   // behind the number of full collections started.
2428 
2429   // This is the case for the inner caller, i.e. a Full GC.
2430   assert(concurrent ||
2431          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2432          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2433          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2434                  "is inconsistent with _old_marking_cycles_completed = %u",
2435                  _old_marking_cycles_started, _old_marking_cycles_completed));
2436 
2437   // This is the case for the outer caller, i.e. the concurrent cycle.
2438   assert(!concurrent ||
2439          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2440          err_msg("for outer caller (concurrent cycle): "
2441                  "_old_marking_cycles_started = %u "
2442                  "is inconsistent with _old_marking_cycles_completed = %u",
2443                  _old_marking_cycles_started, _old_marking_cycles_completed));
2444 
2445   _old_marking_cycles_completed += 1;
2446 
2447   // We need to clear the "in_progress" flag in the CM thread before
2448   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2449   // is set) so that if a waiter requests another System.gc() it doesn't
2450   // incorrectly see that a marking cycle is still in progress.
2451   if (concurrent) {
2452     _cmThread->clear_in_progress();
2453   }
2454 
2455   // This notify_all() will ensure that a thread that called
2456   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2457   // and it's waiting for a full GC to finish will be woken up. It is
2458   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2459   FullGCCount_lock->notify_all();
2460 }
2461 
2462 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2463   _concurrent_cycle_started = true;
2464   _gc_timer_cm->register_gc_start(start_time);
2465 
2466   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2467   trace_heap_before_gc(_gc_tracer_cm);
2468 }
2469 
2470 void G1CollectedHeap::register_concurrent_cycle_end() {
2471   if (_concurrent_cycle_started) {
2472     if (_cm->has_aborted()) {
2473       _gc_tracer_cm->report_concurrent_mode_failure();
2474     }
2475 
2476     _gc_timer_cm->register_gc_end();
2477     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2478 
2479     _concurrent_cycle_started = false;
2480   }
2481 }
2482 
2483 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2484   if (_concurrent_cycle_started) {
2485     trace_heap_after_gc(_gc_tracer_cm);
2486   }
2487 }
2488 
2489 G1YCType G1CollectedHeap::yc_type() {
2490   bool is_young = g1_policy()->gcs_are_young();
2491   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2492   bool is_during_mark = mark_in_progress();
2493 
2494   if (is_initial_mark) {
2495     return InitialMark;
2496   } else if (is_during_mark) {
2497     return DuringMark;
2498   } else if (is_young) {
2499     return Normal;
2500   } else {
2501     return Mixed;
2502   }
2503 }
2504 
2505 void G1CollectedHeap::collect(GCCause::Cause cause) {
2506   assert_heap_not_locked();
2507 
2508   unsigned int gc_count_before;
2509   unsigned int old_marking_count_before;
2510   bool retry_gc;
2511 
2512   do {
2513     retry_gc = false;
2514 
2515     {
2516       MutexLocker ml(Heap_lock);
2517 
2518       // Read the GC count while holding the Heap_lock
2519       gc_count_before = total_collections();
2520       old_marking_count_before = _old_marking_cycles_started;
2521     }
2522 
2523     if (should_do_concurrent_full_gc(cause)) {
2524       // Schedule an initial-mark evacuation pause that will start a
2525       // concurrent cycle. We're setting word_size to 0 which means that
2526       // we are not requesting a post-GC allocation.
2527       VM_G1IncCollectionPause op(gc_count_before,
2528                                  0,     /* word_size */
2529                                  true,  /* should_initiate_conc_mark */
2530                                  g1_policy()->max_pause_time_ms(),
2531                                  cause);
2532 
2533       VMThread::execute(&op);
2534       if (!op.pause_succeeded()) {
2535         if (old_marking_count_before == _old_marking_cycles_started) {
2536           retry_gc = op.should_retry_gc();
2537         } else {
2538           // A Full GC happened while we were trying to schedule the
2539           // initial-mark GC. No point in starting a new cycle given
2540           // that the whole heap was collected anyway.
2541         }
2542 
2543         if (retry_gc) {
2544           if (GC_locker::is_active_and_needs_gc()) {
2545             GC_locker::stall_until_clear();
2546           }
2547         }
2548       }
2549     } else {
2550       if (cause == GCCause::_gc_locker
2551           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2552 
2553         // Schedule a standard evacuation pause. We're setting word_size
2554         // to 0 which means that we are not requesting a post-GC allocation.
2555         VM_G1IncCollectionPause op(gc_count_before,
2556                                    0,     /* word_size */
2557                                    false, /* should_initiate_conc_mark */
2558                                    g1_policy()->max_pause_time_ms(),
2559                                    cause);
2560         VMThread::execute(&op);
2561       } else {
2562         // Schedule a Full GC.
2563         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2564         VMThread::execute(&op);
2565       }
2566     }
2567   } while (retry_gc);
2568 }
2569 
2570 bool G1CollectedHeap::is_in(const void* p) const {
2571   if (_g1_committed.contains(p)) {
2572     // Given that we know that p is in the committed space,
2573     // heap_region_containing_raw() should successfully
2574     // return the containing region.
2575     HeapRegion* hr = heap_region_containing_raw(p);
2576     return hr->is_in(p);
2577   } else {
2578     return false;
2579   }
2580 }
2581 
2582 // Iteration functions.
2583 
2584 // Iterates an OopClosure over all ref-containing fields of objects
2585 // within a HeapRegion.
2586 
2587 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2588   MemRegion _mr;
2589   ExtendedOopClosure* _cl;
2590 public:
2591   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2592     : _mr(mr), _cl(cl) {}
2593   bool doHeapRegion(HeapRegion* r) {
2594     if (!r->continuesHumongous()) {
2595       r->oop_iterate(_cl);
2596     }
2597     return false;
2598   }
2599 };
2600 
2601 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2602   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2603   heap_region_iterate(&blk);
2604 }
2605 
2606 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2607   IterateOopClosureRegionClosure blk(mr, cl);
2608   heap_region_iterate(&blk);
2609 }
2610 
2611 // Iterates an ObjectClosure over all objects within a HeapRegion.
2612 
2613 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2614   ObjectClosure* _cl;
2615 public:
2616   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2617   bool doHeapRegion(HeapRegion* r) {
2618     if (! r->continuesHumongous()) {
2619       r->object_iterate(_cl);
2620     }
2621     return false;
2622   }
2623 };
2624 
2625 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2626   IterateObjectClosureRegionClosure blk(cl);
2627   heap_region_iterate(&blk);
2628 }
2629 
2630 // Calls a SpaceClosure on a HeapRegion.
2631 
2632 class SpaceClosureRegionClosure: public HeapRegionClosure {
2633   SpaceClosure* _cl;
2634 public:
2635   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2636   bool doHeapRegion(HeapRegion* r) {
2637     _cl->do_space(r);
2638     return false;
2639   }
2640 };
2641 
2642 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2643   SpaceClosureRegionClosure blk(cl);
2644   heap_region_iterate(&blk);
2645 }
2646 
2647 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2648   _hrs.iterate(cl);
2649 }
2650 
2651 void
2652 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2653                                                  uint worker_id,
2654                                                  uint no_of_par_workers,
2655                                                  jint claim_value) {
2656   const uint regions = n_regions();
2657   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2658                              no_of_par_workers :
2659                              1);
2660   assert(UseDynamicNumberOfGCThreads ||
2661          no_of_par_workers == workers()->total_workers(),
2662          "Non dynamic should use fixed number of workers");
2663   // try to spread out the starting points of the workers
2664   const HeapRegion* start_hr =
2665                         start_region_for_worker(worker_id, no_of_par_workers);
2666   const uint start_index = start_hr->hrs_index();
2667 
2668   // each worker will actually look at all regions
2669   for (uint count = 0; count < regions; ++count) {
2670     const uint index = (start_index + count) % regions;
2671     assert(0 <= index && index < regions, "sanity");
2672     HeapRegion* r = region_at(index);
2673     // we'll ignore "continues humongous" regions (we'll process them
2674     // when we come across their corresponding "start humongous"
2675     // region) and regions already claimed
2676     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2677       continue;
2678     }
2679     // OK, try to claim it
2680     if (r->claimHeapRegion(claim_value)) {
2681       // success!
2682       assert(!r->continuesHumongous(), "sanity");
2683       if (r->startsHumongous()) {
2684         // If the region is "starts humongous" we'll iterate over its
2685         // "continues humongous" first; in fact we'll do them
2686         // first. The order is important. In on case, calling the
2687         // closure on the "starts humongous" region might de-allocate
2688         // and clear all its "continues humongous" regions and, as a
2689         // result, we might end up processing them twice. So, we'll do
2690         // them first (notice: most closures will ignore them anyway) and
2691         // then we'll do the "starts humongous" region.
2692         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2693           HeapRegion* chr = region_at(ch_index);
2694 
2695           // if the region has already been claimed or it's not
2696           // "continues humongous" we're done
2697           if (chr->claim_value() == claim_value ||
2698               !chr->continuesHumongous()) {
2699             break;
2700           }
2701 
2702           // No one should have claimed it directly. We can given
2703           // that we claimed its "starts humongous" region.
2704           assert(chr->claim_value() != claim_value, "sanity");
2705           assert(chr->humongous_start_region() == r, "sanity");
2706 
2707           if (chr->claimHeapRegion(claim_value)) {
2708             // we should always be able to claim it; no one else should
2709             // be trying to claim this region
2710 
2711             bool res2 = cl->doHeapRegion(chr);
2712             assert(!res2, "Should not abort");
2713 
2714             // Right now, this holds (i.e., no closure that actually
2715             // does something with "continues humongous" regions
2716             // clears them). We might have to weaken it in the future,
2717             // but let's leave these two asserts here for extra safety.
2718             assert(chr->continuesHumongous(), "should still be the case");
2719             assert(chr->humongous_start_region() == r, "sanity");
2720           } else {
2721             guarantee(false, "we should not reach here");
2722           }
2723         }
2724       }
2725 
2726       assert(!r->continuesHumongous(), "sanity");
2727       bool res = cl->doHeapRegion(r);
2728       assert(!res, "Should not abort");
2729     }
2730   }
2731 }
2732 
2733 class ResetClaimValuesClosure: public HeapRegionClosure {
2734 public:
2735   bool doHeapRegion(HeapRegion* r) {
2736     r->set_claim_value(HeapRegion::InitialClaimValue);
2737     return false;
2738   }
2739 };
2740 
2741 void G1CollectedHeap::reset_heap_region_claim_values() {
2742   ResetClaimValuesClosure blk;
2743   heap_region_iterate(&blk);
2744 }
2745 
2746 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2747   ResetClaimValuesClosure blk;
2748   collection_set_iterate(&blk);
2749 }
2750 
2751 #ifdef ASSERT
2752 // This checks whether all regions in the heap have the correct claim
2753 // value. I also piggy-backed on this a check to ensure that the
2754 // humongous_start_region() information on "continues humongous"
2755 // regions is correct.
2756 
2757 class CheckClaimValuesClosure : public HeapRegionClosure {
2758 private:
2759   jint _claim_value;
2760   uint _failures;
2761   HeapRegion* _sh_region;
2762 
2763 public:
2764   CheckClaimValuesClosure(jint claim_value) :
2765     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2766   bool doHeapRegion(HeapRegion* r) {
2767     if (r->claim_value() != _claim_value) {
2768       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2769                              "claim value = %d, should be %d",
2770                              HR_FORMAT_PARAMS(r),
2771                              r->claim_value(), _claim_value);
2772       ++_failures;
2773     }
2774     if (!r->isHumongous()) {
2775       _sh_region = NULL;
2776     } else if (r->startsHumongous()) {
2777       _sh_region = r;
2778     } else if (r->continuesHumongous()) {
2779       if (r->humongous_start_region() != _sh_region) {
2780         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2781                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2782                                HR_FORMAT_PARAMS(r),
2783                                r->humongous_start_region(),
2784                                _sh_region);
2785         ++_failures;
2786       }
2787     }
2788     return false;
2789   }
2790   uint failures() { return _failures; }
2791 };
2792 
2793 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2794   CheckClaimValuesClosure cl(claim_value);
2795   heap_region_iterate(&cl);
2796   return cl.failures() == 0;
2797 }
2798 
2799 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2800 private:
2801   jint _claim_value;
2802   uint _failures;
2803 
2804 public:
2805   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2806     _claim_value(claim_value), _failures(0) { }
2807 
2808   uint failures() { return _failures; }
2809 
2810   bool doHeapRegion(HeapRegion* hr) {
2811     assert(hr->in_collection_set(), "how?");
2812     assert(!hr->isHumongous(), "H-region in CSet");
2813     if (hr->claim_value() != _claim_value) {
2814       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2815                              "claim value = %d, should be %d",
2816                              HR_FORMAT_PARAMS(hr),
2817                              hr->claim_value(), _claim_value);
2818       _failures += 1;
2819     }
2820     return false;
2821   }
2822 };
2823 
2824 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2825   CheckClaimValuesInCSetHRClosure cl(claim_value);
2826   collection_set_iterate(&cl);
2827   return cl.failures() == 0;
2828 }
2829 #endif // ASSERT
2830 
2831 // Clear the cached CSet starting regions and (more importantly)
2832 // the time stamps. Called when we reset the GC time stamp.
2833 void G1CollectedHeap::clear_cset_start_regions() {
2834   assert(_worker_cset_start_region != NULL, "sanity");
2835   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2836 
2837   int n_queues = MAX2((int)ParallelGCThreads, 1);
2838   for (int i = 0; i < n_queues; i++) {
2839     _worker_cset_start_region[i] = NULL;
2840     _worker_cset_start_region_time_stamp[i] = 0;
2841   }
2842 }
2843 
2844 // Given the id of a worker, obtain or calculate a suitable
2845 // starting region for iterating over the current collection set.
2846 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2847   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2848 
2849   HeapRegion* result = NULL;
2850   unsigned gc_time_stamp = get_gc_time_stamp();
2851 
2852   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2853     // Cached starting region for current worker was set
2854     // during the current pause - so it's valid.
2855     // Note: the cached starting heap region may be NULL
2856     // (when the collection set is empty).
2857     result = _worker_cset_start_region[worker_i];
2858     assert(result == NULL || result->in_collection_set(), "sanity");
2859     return result;
2860   }
2861 
2862   // The cached entry was not valid so let's calculate
2863   // a suitable starting heap region for this worker.
2864 
2865   // We want the parallel threads to start their collection
2866   // set iteration at different collection set regions to
2867   // avoid contention.
2868   // If we have:
2869   //          n collection set regions
2870   //          p threads
2871   // Then thread t will start at region floor ((t * n) / p)
2872 
2873   result = g1_policy()->collection_set();
2874   if (G1CollectedHeap::use_parallel_gc_threads()) {
2875     uint cs_size = g1_policy()->cset_region_length();
2876     uint active_workers = workers()->active_workers();
2877     assert(UseDynamicNumberOfGCThreads ||
2878              active_workers == workers()->total_workers(),
2879              "Unless dynamic should use total workers");
2880 
2881     uint end_ind   = (cs_size * worker_i) / active_workers;
2882     uint start_ind = 0;
2883 
2884     if (worker_i > 0 &&
2885         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2886       // Previous workers starting region is valid
2887       // so let's iterate from there
2888       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2889       result = _worker_cset_start_region[worker_i - 1];
2890     }
2891 
2892     for (uint i = start_ind; i < end_ind; i++) {
2893       result = result->next_in_collection_set();
2894     }
2895   }
2896 
2897   // Note: the calculated starting heap region may be NULL
2898   // (when the collection set is empty).
2899   assert(result == NULL || result->in_collection_set(), "sanity");
2900   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2901          "should be updated only once per pause");
2902   _worker_cset_start_region[worker_i] = result;
2903   OrderAccess::storestore();
2904   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2905   return result;
2906 }
2907 
2908 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2909                                                      uint no_of_par_workers) {
2910   uint worker_num =
2911            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2912   assert(UseDynamicNumberOfGCThreads ||
2913          no_of_par_workers == workers()->total_workers(),
2914          "Non dynamic should use fixed number of workers");
2915   const uint start_index = n_regions() * worker_i / worker_num;
2916   return region_at(start_index);
2917 }
2918 
2919 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2920   HeapRegion* r = g1_policy()->collection_set();
2921   while (r != NULL) {
2922     HeapRegion* next = r->next_in_collection_set();
2923     if (cl->doHeapRegion(r)) {
2924       cl->incomplete();
2925       return;
2926     }
2927     r = next;
2928   }
2929 }
2930 
2931 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2932                                                   HeapRegionClosure *cl) {
2933   if (r == NULL) {
2934     // The CSet is empty so there's nothing to do.
2935     return;
2936   }
2937 
2938   assert(r->in_collection_set(),
2939          "Start region must be a member of the collection set.");
2940   HeapRegion* cur = r;
2941   while (cur != NULL) {
2942     HeapRegion* next = cur->next_in_collection_set();
2943     if (cl->doHeapRegion(cur) && false) {
2944       cl->incomplete();
2945       return;
2946     }
2947     cur = next;
2948   }
2949   cur = g1_policy()->collection_set();
2950   while (cur != r) {
2951     HeapRegion* next = cur->next_in_collection_set();
2952     if (cl->doHeapRegion(cur) && false) {
2953       cl->incomplete();
2954       return;
2955     }
2956     cur = next;
2957   }
2958 }
2959 
2960 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2961   return n_regions() > 0 ? region_at(0) : NULL;
2962 }
2963 
2964 
2965 Space* G1CollectedHeap::space_containing(const void* addr) const {
2966   Space* res = heap_region_containing(addr);
2967   return res;
2968 }
2969 
2970 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2971   Space* sp = space_containing(addr);
2972   if (sp != NULL) {
2973     return sp->block_start(addr);
2974   }
2975   return NULL;
2976 }
2977 
2978 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2979   Space* sp = space_containing(addr);
2980   assert(sp != NULL, "block_size of address outside of heap");
2981   return sp->block_size(addr);
2982 }
2983 
2984 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2985   Space* sp = space_containing(addr);
2986   return sp->block_is_obj(addr);
2987 }
2988 
2989 bool G1CollectedHeap::supports_tlab_allocation() const {
2990   return true;
2991 }
2992 
2993 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2994   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2995 }
2996 
2997 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2998   return young_list()->eden_used_bytes();
2999 }
3000 
3001 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
3002 // must be smaller than the humongous object limit.
3003 size_t G1CollectedHeap::max_tlab_size() const {
3004   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3005 }
3006 
3007 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3008   // Return the remaining space in the cur alloc region, but not less than
3009   // the min TLAB size.
3010 
3011   // Also, this value can be at most the humongous object threshold,
3012   // since we can't allow tlabs to grow big enough to accommodate
3013   // humongous objects.
3014 
3015   HeapRegion* hr = _mutator_alloc_region.get();
3016   size_t max_tlab = max_tlab_size() * wordSize;
3017   if (hr == NULL) {
3018     return max_tlab;
3019   } else {
3020     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3021   }
3022 }
3023 
3024 size_t G1CollectedHeap::max_capacity() const {
3025   return _g1_reserved.byte_size();
3026 }
3027 
3028 jlong G1CollectedHeap::millis_since_last_gc() {
3029   // assert(false, "NYI");
3030   return 0;
3031 }
3032 
3033 void G1CollectedHeap::prepare_for_verify() {
3034   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3035     ensure_parsability(false);
3036   }
3037   g1_rem_set()->prepare_for_verify();
3038 }
3039 
3040 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3041                                               VerifyOption vo) {
3042   switch (vo) {
3043   case VerifyOption_G1UsePrevMarking:
3044     return hr->obj_allocated_since_prev_marking(obj);
3045   case VerifyOption_G1UseNextMarking:
3046     return hr->obj_allocated_since_next_marking(obj);
3047   case VerifyOption_G1UseMarkWord:
3048     return false;
3049   default:
3050     ShouldNotReachHere();
3051   }
3052   return false; // keep some compilers happy
3053 }
3054 
3055 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3056   switch (vo) {
3057   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3058   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3059   case VerifyOption_G1UseMarkWord:    return NULL;
3060   default:                            ShouldNotReachHere();
3061   }
3062   return NULL; // keep some compilers happy
3063 }
3064 
3065 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3066   switch (vo) {
3067   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3068   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3069   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3070   default:                            ShouldNotReachHere();
3071   }
3072   return false; // keep some compilers happy
3073 }
3074 
3075 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3076   switch (vo) {
3077   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3078   case VerifyOption_G1UseNextMarking: return "NTAMS";
3079   case VerifyOption_G1UseMarkWord:    return "NONE";
3080   default:                            ShouldNotReachHere();
3081   }
3082   return NULL; // keep some compilers happy
3083 }
3084 
3085 class VerifyRootsClosure: public OopClosure {
3086 private:
3087   G1CollectedHeap* _g1h;
3088   VerifyOption     _vo;
3089   bool             _failures;
3090 public:
3091   // _vo == UsePrevMarking -> use "prev" marking information,
3092   // _vo == UseNextMarking -> use "next" marking information,
3093   // _vo == UseMarkWord    -> use mark word from object header.
3094   VerifyRootsClosure(VerifyOption vo) :
3095     _g1h(G1CollectedHeap::heap()),
3096     _vo(vo),
3097     _failures(false) { }
3098 
3099   bool failures() { return _failures; }
3100 
3101   template <class T> void do_oop_nv(T* p) {
3102     T heap_oop = oopDesc::load_heap_oop(p);
3103     if (!oopDesc::is_null(heap_oop)) {
3104       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3105       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3106         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3107                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3108         if (_vo == VerifyOption_G1UseMarkWord) {
3109           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3110         }
3111         obj->print_on(gclog_or_tty);
3112         _failures = true;
3113       }
3114     }
3115   }
3116 
3117   void do_oop(oop* p)       { do_oop_nv(p); }
3118   void do_oop(narrowOop* p) { do_oop_nv(p); }
3119 };
3120 
3121 class G1VerifyCodeRootOopClosure: public OopClosure {
3122   G1CollectedHeap* _g1h;
3123   OopClosure* _root_cl;
3124   nmethod* _nm;
3125   VerifyOption _vo;
3126   bool _failures;
3127 
3128   template <class T> void do_oop_work(T* p) {
3129     // First verify that this root is live
3130     _root_cl->do_oop(p);
3131 
3132     if (!G1VerifyHeapRegionCodeRoots) {
3133       // We're not verifying the code roots attached to heap region.
3134       return;
3135     }
3136 
3137     // Don't check the code roots during marking verification in a full GC
3138     if (_vo == VerifyOption_G1UseMarkWord) {
3139       return;
3140     }
3141 
3142     // Now verify that the current nmethod (which contains p) is
3143     // in the code root list of the heap region containing the
3144     // object referenced by p.
3145 
3146     T heap_oop = oopDesc::load_heap_oop(p);
3147     if (!oopDesc::is_null(heap_oop)) {
3148       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3149 
3150       // Now fetch the region containing the object
3151       HeapRegion* hr = _g1h->heap_region_containing(obj);
3152       HeapRegionRemSet* hrrs = hr->rem_set();
3153       // Verify that the strong code root list for this region
3154       // contains the nmethod
3155       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3156         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3157                               "from nmethod "PTR_FORMAT" not in strong "
3158                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3159                               p, _nm, hr->bottom(), hr->end());
3160         _failures = true;
3161       }
3162     }
3163   }
3164 
3165 public:
3166   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3167     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3168 
3169   void do_oop(oop* p) { do_oop_work(p); }
3170   void do_oop(narrowOop* p) { do_oop_work(p); }
3171 
3172   void set_nmethod(nmethod* nm) { _nm = nm; }
3173   bool failures() { return _failures; }
3174 };
3175 
3176 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3177   G1VerifyCodeRootOopClosure* _oop_cl;
3178 
3179 public:
3180   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3181     _oop_cl(oop_cl) {}
3182 
3183   void do_code_blob(CodeBlob* cb) {
3184     nmethod* nm = cb->as_nmethod_or_null();
3185     if (nm != NULL) {
3186       _oop_cl->set_nmethod(nm);
3187       nm->oops_do(_oop_cl);
3188     }
3189   }
3190 };
3191 
3192 class YoungRefCounterClosure : public OopClosure {
3193   G1CollectedHeap* _g1h;
3194   int              _count;
3195  public:
3196   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3197   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3198   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3199 
3200   int count() { return _count; }
3201   void reset_count() { _count = 0; };
3202 };
3203 
3204 class VerifyKlassClosure: public KlassClosure {
3205   YoungRefCounterClosure _young_ref_counter_closure;
3206   OopClosure *_oop_closure;
3207  public:
3208   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3209   void do_klass(Klass* k) {
3210     k->oops_do(_oop_closure);
3211 
3212     _young_ref_counter_closure.reset_count();
3213     k->oops_do(&_young_ref_counter_closure);
3214     if (_young_ref_counter_closure.count() > 0) {
3215       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3216     }
3217   }
3218 };
3219 
3220 class VerifyLivenessOopClosure: public OopClosure {
3221   G1CollectedHeap* _g1h;
3222   VerifyOption _vo;
3223 public:
3224   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3225     _g1h(g1h), _vo(vo)
3226   { }
3227   void do_oop(narrowOop *p) { do_oop_work(p); }
3228   void do_oop(      oop *p) { do_oop_work(p); }
3229 
3230   template <class T> void do_oop_work(T *p) {
3231     oop obj = oopDesc::load_decode_heap_oop(p);
3232     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3233               "Dead object referenced by a not dead object");
3234   }
3235 };
3236 
3237 class VerifyObjsInRegionClosure: public ObjectClosure {
3238 private:
3239   G1CollectedHeap* _g1h;
3240   size_t _live_bytes;
3241   HeapRegion *_hr;
3242   VerifyOption _vo;
3243 public:
3244   // _vo == UsePrevMarking -> use "prev" marking information,
3245   // _vo == UseNextMarking -> use "next" marking information,
3246   // _vo == UseMarkWord    -> use mark word from object header.
3247   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3248     : _live_bytes(0), _hr(hr), _vo(vo) {
3249     _g1h = G1CollectedHeap::heap();
3250   }
3251   void do_object(oop o) {
3252     VerifyLivenessOopClosure isLive(_g1h, _vo);
3253     assert(o != NULL, "Huh?");
3254     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3255       // If the object is alive according to the mark word,
3256       // then verify that the marking information agrees.
3257       // Note we can't verify the contra-positive of the
3258       // above: if the object is dead (according to the mark
3259       // word), it may not be marked, or may have been marked
3260       // but has since became dead, or may have been allocated
3261       // since the last marking.
3262       if (_vo == VerifyOption_G1UseMarkWord) {
3263         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3264       }
3265 
3266       o->oop_iterate_no_header(&isLive);
3267       if (!_hr->obj_allocated_since_prev_marking(o)) {
3268         size_t obj_size = o->size();    // Make sure we don't overflow
3269         _live_bytes += (obj_size * HeapWordSize);
3270       }
3271     }
3272   }
3273   size_t live_bytes() { return _live_bytes; }
3274 };
3275 
3276 class PrintObjsInRegionClosure : public ObjectClosure {
3277   HeapRegion *_hr;
3278   G1CollectedHeap *_g1;
3279 public:
3280   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3281     _g1 = G1CollectedHeap::heap();
3282   };
3283 
3284   void do_object(oop o) {
3285     if (o != NULL) {
3286       HeapWord *start = (HeapWord *) o;
3287       size_t word_sz = o->size();
3288       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3289                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3290                           (void*) o, word_sz,
3291                           _g1->isMarkedPrev(o),
3292                           _g1->isMarkedNext(o),
3293                           _hr->obj_allocated_since_prev_marking(o));
3294       HeapWord *end = start + word_sz;
3295       HeapWord *cur;
3296       int *val;
3297       for (cur = start; cur < end; cur++) {
3298         val = (int *) cur;
3299         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3300       }
3301     }
3302   }
3303 };
3304 
3305 class VerifyRegionClosure: public HeapRegionClosure {
3306 private:
3307   bool             _par;
3308   VerifyOption     _vo;
3309   bool             _failures;
3310 public:
3311   // _vo == UsePrevMarking -> use "prev" marking information,
3312   // _vo == UseNextMarking -> use "next" marking information,
3313   // _vo == UseMarkWord    -> use mark word from object header.
3314   VerifyRegionClosure(bool par, VerifyOption vo)
3315     : _par(par),
3316       _vo(vo),
3317       _failures(false) {}
3318 
3319   bool failures() {
3320     return _failures;
3321   }
3322 
3323   bool doHeapRegion(HeapRegion* r) {
3324     if (!r->continuesHumongous()) {
3325       bool failures = false;
3326       r->verify(_vo, &failures);
3327       if (failures) {
3328         _failures = true;
3329       } else {
3330         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3331         r->object_iterate(&not_dead_yet_cl);
3332         if (_vo != VerifyOption_G1UseNextMarking) {
3333           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3334             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3335                                    "max_live_bytes "SIZE_FORMAT" "
3336                                    "< calculated "SIZE_FORMAT,
3337                                    r->bottom(), r->end(),
3338                                    r->max_live_bytes(),
3339                                  not_dead_yet_cl.live_bytes());
3340             _failures = true;
3341           }
3342         } else {
3343           // When vo == UseNextMarking we cannot currently do a sanity
3344           // check on the live bytes as the calculation has not been
3345           // finalized yet.
3346         }
3347       }
3348     }
3349     return false; // stop the region iteration if we hit a failure
3350   }
3351 };
3352 
3353 // This is the task used for parallel verification of the heap regions
3354 
3355 class G1ParVerifyTask: public AbstractGangTask {
3356 private:
3357   G1CollectedHeap* _g1h;
3358   VerifyOption     _vo;
3359   bool             _failures;
3360 
3361 public:
3362   // _vo == UsePrevMarking -> use "prev" marking information,
3363   // _vo == UseNextMarking -> use "next" marking information,
3364   // _vo == UseMarkWord    -> use mark word from object header.
3365   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3366     AbstractGangTask("Parallel verify task"),
3367     _g1h(g1h),
3368     _vo(vo),
3369     _failures(false) { }
3370 
3371   bool failures() {
3372     return _failures;
3373   }
3374 
3375   void work(uint worker_id) {
3376     HandleMark hm;
3377     VerifyRegionClosure blk(true, _vo);
3378     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3379                                           _g1h->workers()->active_workers(),
3380                                           HeapRegion::ParVerifyClaimValue);
3381     if (blk.failures()) {
3382       _failures = true;
3383     }
3384   }
3385 };
3386 
3387 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3388   if (SafepointSynchronize::is_at_safepoint()) {
3389     assert(Thread::current()->is_VM_thread(),
3390            "Expected to be executed serially by the VM thread at this point");
3391 
3392     if (!silent) { gclog_or_tty->print("Roots "); }
3393     VerifyRootsClosure rootsCl(vo);
3394     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3395     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3396     VerifyKlassClosure klassCl(this, &rootsCl);
3397 
3398     // We apply the relevant closures to all the oops in the
3399     // system dictionary, the string table and the code cache.
3400     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3401 
3402     // Need cleared claim bits for the strong roots processing
3403     ClassLoaderDataGraph::clear_claimed_marks();
3404 
3405     process_strong_roots(true,      // activate StrongRootsScope
3406                          false,     // we set "is scavenging" to false,
3407                                     // so we don't reset the dirty cards.
3408                          ScanningOption(so),  // roots scanning options
3409                          &rootsCl,
3410                          &blobsCl,
3411                          &klassCl
3412                          );
3413 
3414     bool failures = rootsCl.failures() || codeRootsCl.failures();
3415 
3416     if (vo != VerifyOption_G1UseMarkWord) {
3417       // If we're verifying during a full GC then the region sets
3418       // will have been torn down at the start of the GC. Therefore
3419       // verifying the region sets will fail. So we only verify
3420       // the region sets when not in a full GC.
3421       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3422       verify_region_sets();
3423     }
3424 
3425     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3426     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3427       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3428              "sanity check");
3429 
3430       G1ParVerifyTask task(this, vo);
3431       assert(UseDynamicNumberOfGCThreads ||
3432         workers()->active_workers() == workers()->total_workers(),
3433         "If not dynamic should be using all the workers");
3434       int n_workers = workers()->active_workers();
3435       set_par_threads(n_workers);
3436       workers()->run_task(&task);
3437       set_par_threads(0);
3438       if (task.failures()) {
3439         failures = true;
3440       }
3441 
3442       // Checks that the expected amount of parallel work was done.
3443       // The implication is that n_workers is > 0.
3444       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3445              "sanity check");
3446 
3447       reset_heap_region_claim_values();
3448 
3449       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3450              "sanity check");
3451     } else {
3452       VerifyRegionClosure blk(false, vo);
3453       heap_region_iterate(&blk);
3454       if (blk.failures()) {
3455         failures = true;
3456       }
3457     }
3458     if (!silent) gclog_or_tty->print("RemSet ");
3459     rem_set()->verify();
3460 
3461     if (G1StringDedup::is_enabled()) {
3462       if (!silent) gclog_or_tty->print("StrDedup ");
3463       G1StringDedup::verify();
3464     }
3465 
3466     if (failures) {
3467       gclog_or_tty->print_cr("Heap:");
3468       // It helps to have the per-region information in the output to
3469       // help us track down what went wrong. This is why we call
3470       // print_extended_on() instead of print_on().
3471       print_extended_on(gclog_or_tty);
3472       gclog_or_tty->cr();
3473 #ifndef PRODUCT
3474       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3475         concurrent_mark()->print_reachable("at-verification-failure",
3476                                            vo, false /* all */);
3477       }
3478 #endif
3479       gclog_or_tty->flush();
3480     }
3481     guarantee(!failures, "there should not have been any failures");
3482   } else {
3483     if (!silent) {
3484       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3485       if (G1StringDedup::is_enabled()) {
3486         gclog_or_tty->print(", StrDedup");
3487       }
3488       gclog_or_tty->print(") ");
3489     }
3490   }
3491 }
3492 
3493 void G1CollectedHeap::verify(bool silent) {
3494   verify(silent, VerifyOption_G1UsePrevMarking);
3495 }
3496 
3497 double G1CollectedHeap::verify(bool guard, const char* msg) {
3498   double verify_time_ms = 0.0;
3499 
3500   if (guard && total_collections() >= VerifyGCStartAt) {
3501     double verify_start = os::elapsedTime();
3502     HandleMark hm;  // Discard invalid handles created during verification
3503     prepare_for_verify();
3504     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3505     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3506   }
3507 
3508   return verify_time_ms;
3509 }
3510 
3511 void G1CollectedHeap::verify_before_gc() {
3512   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3513   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3514 }
3515 
3516 void G1CollectedHeap::verify_after_gc() {
3517   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3518   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3519 }
3520 
3521 class PrintRegionClosure: public HeapRegionClosure {
3522   outputStream* _st;
3523 public:
3524   PrintRegionClosure(outputStream* st) : _st(st) {}
3525   bool doHeapRegion(HeapRegion* r) {
3526     r->print_on(_st);
3527     return false;
3528   }
3529 };
3530 
3531 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3532                                        const HeapRegion* hr,
3533                                        const VerifyOption vo) const {
3534   switch (vo) {
3535   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3536   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3537   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3538   default:                            ShouldNotReachHere();
3539   }
3540   return false; // keep some compilers happy
3541 }
3542 
3543 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3544                                        const VerifyOption vo) const {
3545   switch (vo) {
3546   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3547   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3548   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3549   default:                            ShouldNotReachHere();
3550   }
3551   return false; // keep some compilers happy
3552 }
3553 
3554 void G1CollectedHeap::print_on(outputStream* st) const {
3555   st->print(" %-20s", "garbage-first heap");
3556   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3557             capacity()/K, used_unlocked()/K);
3558   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3559             _g1_storage.low_boundary(),
3560             _g1_storage.high(),
3561             _g1_storage.high_boundary());
3562   st->cr();
3563   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3564   uint young_regions = _young_list->length();
3565   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3566             (size_t) young_regions * HeapRegion::GrainBytes / K);
3567   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3568   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3569             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3570   st->cr();
3571   MetaspaceAux::print_on(st);
3572 }
3573 
3574 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3575   print_on(st);
3576 
3577   // Print the per-region information.
3578   st->cr();
3579   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3580                "HS=humongous(starts), HC=humongous(continues), "
3581                "CS=collection set, F=free, TS=gc time stamp, "
3582                "PTAMS=previous top-at-mark-start, "
3583                "NTAMS=next top-at-mark-start)");
3584   PrintRegionClosure blk(st);
3585   heap_region_iterate(&blk);
3586 }
3587 
3588 void G1CollectedHeap::print_on_error(outputStream* st) const {
3589   this->CollectedHeap::print_on_error(st);
3590 
3591   if (_cm != NULL) {
3592     st->cr();
3593     _cm->print_on_error(st);
3594   }
3595 }
3596 
3597 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3598   if (G1CollectedHeap::use_parallel_gc_threads()) {
3599     workers()->print_worker_threads_on(st);
3600   }
3601   _cmThread->print_on(st);
3602   st->cr();
3603   _cm->print_worker_threads_on(st);
3604   _cg1r->print_worker_threads_on(st);
3605   if (G1StringDedup::is_enabled()) {
3606     G1StringDedup::print_worker_threads_on(st);
3607   }
3608 }
3609 
3610 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3611   if (G1CollectedHeap::use_parallel_gc_threads()) {
3612     workers()->threads_do(tc);
3613   }
3614   tc->do_thread(_cmThread);
3615   _cg1r->threads_do(tc);
3616   if (G1StringDedup::is_enabled()) {
3617     G1StringDedup::threads_do(tc);
3618   }
3619 }
3620 
3621 void G1CollectedHeap::print_tracing_info() const {
3622   // We'll overload this to mean "trace GC pause statistics."
3623   if (TraceGen0Time || TraceGen1Time) {
3624     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3625     // to that.
3626     g1_policy()->print_tracing_info();
3627   }
3628   if (G1SummarizeRSetStats) {
3629     g1_rem_set()->print_summary_info();
3630   }
3631   if (G1SummarizeConcMark) {
3632     concurrent_mark()->print_summary_info();
3633   }
3634   g1_policy()->print_yg_surv_rate_info();
3635   SpecializationStats::print();
3636 }
3637 
3638 #ifndef PRODUCT
3639 // Helpful for debugging RSet issues.
3640 
3641 class PrintRSetsClosure : public HeapRegionClosure {
3642 private:
3643   const char* _msg;
3644   size_t _occupied_sum;
3645 
3646 public:
3647   bool doHeapRegion(HeapRegion* r) {
3648     HeapRegionRemSet* hrrs = r->rem_set();
3649     size_t occupied = hrrs->occupied();
3650     _occupied_sum += occupied;
3651 
3652     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3653                            HR_FORMAT_PARAMS(r));
3654     if (occupied == 0) {
3655       gclog_or_tty->print_cr("  RSet is empty");
3656     } else {
3657       hrrs->print();
3658     }
3659     gclog_or_tty->print_cr("----------");
3660     return false;
3661   }
3662 
3663   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3664     gclog_or_tty->cr();
3665     gclog_or_tty->print_cr("========================================");
3666     gclog_or_tty->print_cr("%s", msg);
3667     gclog_or_tty->cr();
3668   }
3669 
3670   ~PrintRSetsClosure() {
3671     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3672     gclog_or_tty->print_cr("========================================");
3673     gclog_or_tty->cr();
3674   }
3675 };
3676 
3677 void G1CollectedHeap::print_cset_rsets() {
3678   PrintRSetsClosure cl("Printing CSet RSets");
3679   collection_set_iterate(&cl);
3680 }
3681 
3682 void G1CollectedHeap::print_all_rsets() {
3683   PrintRSetsClosure cl("Printing All RSets");;
3684   heap_region_iterate(&cl);
3685 }
3686 #endif // PRODUCT
3687 
3688 G1CollectedHeap* G1CollectedHeap::heap() {
3689   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3690          "not a garbage-first heap");
3691   return _g1h;
3692 }
3693 
3694 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3695   // always_do_update_barrier = false;
3696   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3697   // Fill TLAB's and such
3698   accumulate_statistics_all_tlabs();
3699   ensure_parsability(true);
3700 
3701   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3702       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3703     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3704   }
3705 }
3706 
3707 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3708 
3709   if (G1SummarizeRSetStats &&
3710       (G1SummarizeRSetStatsPeriod > 0) &&
3711       // we are at the end of the GC. Total collections has already been increased.
3712       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3713     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3714   }
3715 
3716   // FIXME: what is this about?
3717   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3718   // is set.
3719   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3720                         "derived pointer present"));
3721   // always_do_update_barrier = true;
3722 
3723   resize_all_tlabs();
3724 
3725   // We have just completed a GC. Update the soft reference
3726   // policy with the new heap occupancy
3727   Universe::update_heap_info_at_gc();
3728 }
3729 
3730 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3731                                                unsigned int gc_count_before,
3732                                                bool* succeeded,
3733                                                GCCause::Cause gc_cause) {
3734   assert_heap_not_locked_and_not_at_safepoint();
3735   g1_policy()->record_stop_world_start();
3736   VM_G1IncCollectionPause op(gc_count_before,
3737                              word_size,
3738                              false, /* should_initiate_conc_mark */
3739                              g1_policy()->max_pause_time_ms(),
3740                              gc_cause);
3741   VMThread::execute(&op);
3742 
3743   HeapWord* result = op.result();
3744   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3745   assert(result == NULL || ret_succeeded,
3746          "the result should be NULL if the VM did not succeed");
3747   *succeeded = ret_succeeded;
3748 
3749   assert_heap_not_locked();
3750   return result;
3751 }
3752 
3753 void
3754 G1CollectedHeap::doConcurrentMark() {
3755   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3756   if (!_cmThread->in_progress()) {
3757     _cmThread->set_started();
3758     CGC_lock->notify();
3759   }
3760 }
3761 
3762 size_t G1CollectedHeap::pending_card_num() {
3763   size_t extra_cards = 0;
3764   JavaThread *curr = Threads::first();
3765   while (curr != NULL) {
3766     DirtyCardQueue& dcq = curr->dirty_card_queue();
3767     extra_cards += dcq.size();
3768     curr = curr->next();
3769   }
3770   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3771   size_t buffer_size = dcqs.buffer_size();
3772   size_t buffer_num = dcqs.completed_buffers_num();
3773 
3774   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3775   // in bytes - not the number of 'entries'. We need to convert
3776   // into a number of cards.
3777   return (buffer_size * buffer_num + extra_cards) / oopSize;
3778 }
3779 
3780 size_t G1CollectedHeap::cards_scanned() {
3781   return g1_rem_set()->cardsScanned();
3782 }
3783 
3784 void
3785 G1CollectedHeap::setup_surviving_young_words() {
3786   assert(_surviving_young_words == NULL, "pre-condition");
3787   uint array_length = g1_policy()->young_cset_region_length();
3788   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3789   if (_surviving_young_words == NULL) {
3790     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3791                           "Not enough space for young surv words summary.");
3792   }
3793   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3794 #ifdef ASSERT
3795   for (uint i = 0;  i < array_length; ++i) {
3796     assert( _surviving_young_words[i] == 0, "memset above" );
3797   }
3798 #endif // !ASSERT
3799 }
3800 
3801 void
3802 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3803   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3804   uint array_length = g1_policy()->young_cset_region_length();
3805   for (uint i = 0; i < array_length; ++i) {
3806     _surviving_young_words[i] += surv_young_words[i];
3807   }
3808 }
3809 
3810 void
3811 G1CollectedHeap::cleanup_surviving_young_words() {
3812   guarantee( _surviving_young_words != NULL, "pre-condition" );
3813   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3814   _surviving_young_words = NULL;
3815 }
3816 
3817 #ifdef ASSERT
3818 class VerifyCSetClosure: public HeapRegionClosure {
3819 public:
3820   bool doHeapRegion(HeapRegion* hr) {
3821     // Here we check that the CSet region's RSet is ready for parallel
3822     // iteration. The fields that we'll verify are only manipulated
3823     // when the region is part of a CSet and is collected. Afterwards,
3824     // we reset these fields when we clear the region's RSet (when the
3825     // region is freed) so they are ready when the region is
3826     // re-allocated. The only exception to this is if there's an
3827     // evacuation failure and instead of freeing the region we leave
3828     // it in the heap. In that case, we reset these fields during
3829     // evacuation failure handling.
3830     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3831 
3832     // Here's a good place to add any other checks we'd like to
3833     // perform on CSet regions.
3834     return false;
3835   }
3836 };
3837 #endif // ASSERT
3838 
3839 #if TASKQUEUE_STATS
3840 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3841   st->print_raw_cr("GC Task Stats");
3842   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3843   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3844 }
3845 
3846 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3847   print_taskqueue_stats_hdr(st);
3848 
3849   TaskQueueStats totals;
3850   const int n = workers() != NULL ? workers()->total_workers() : 1;
3851   for (int i = 0; i < n; ++i) {
3852     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3853     totals += task_queue(i)->stats;
3854   }
3855   st->print_raw("tot "); totals.print(st); st->cr();
3856 
3857   DEBUG_ONLY(totals.verify());
3858 }
3859 
3860 void G1CollectedHeap::reset_taskqueue_stats() {
3861   const int n = workers() != NULL ? workers()->total_workers() : 1;
3862   for (int i = 0; i < n; ++i) {
3863     task_queue(i)->stats.reset();
3864   }
3865 }
3866 #endif // TASKQUEUE_STATS
3867 
3868 void G1CollectedHeap::log_gc_header() {
3869   if (!G1Log::fine()) {
3870     return;
3871   }
3872 
3873   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3874 
3875   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3876     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3877     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3878 
3879   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3880 }
3881 
3882 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3883   if (!G1Log::fine()) {
3884     return;
3885   }
3886 
3887   if (G1Log::finer()) {
3888     if (evacuation_failed()) {
3889       gclog_or_tty->print(" (to-space exhausted)");
3890     }
3891     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3892     g1_policy()->phase_times()->note_gc_end();
3893     g1_policy()->phase_times()->print(pause_time_sec);
3894     g1_policy()->print_detailed_heap_transition();
3895   } else {
3896     if (evacuation_failed()) {
3897       gclog_or_tty->print("--");
3898     }
3899     g1_policy()->print_heap_transition();
3900     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3901   }
3902   gclog_or_tty->flush();
3903 }
3904 
3905 bool
3906 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3907   assert_at_safepoint(true /* should_be_vm_thread */);
3908   guarantee(!is_gc_active(), "collection is not reentrant");
3909 
3910   if (GC_locker::check_active_before_gc()) {
3911     return false;
3912   }
3913 
3914   _gc_timer_stw->register_gc_start();
3915 
3916   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3917 
3918   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3919   ResourceMark rm;
3920 
3921   print_heap_before_gc();
3922   trace_heap_before_gc(_gc_tracer_stw);
3923 
3924   verify_region_sets_optional();
3925   verify_dirty_young_regions();
3926 
3927   // This call will decide whether this pause is an initial-mark
3928   // pause. If it is, during_initial_mark_pause() will return true
3929   // for the duration of this pause.
3930   g1_policy()->decide_on_conc_mark_initiation();
3931 
3932   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3933   assert(!g1_policy()->during_initial_mark_pause() ||
3934           g1_policy()->gcs_are_young(), "sanity");
3935 
3936   // We also do not allow mixed GCs during marking.
3937   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3938 
3939   // Record whether this pause is an initial mark. When the current
3940   // thread has completed its logging output and it's safe to signal
3941   // the CM thread, the flag's value in the policy has been reset.
3942   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3943 
3944   // Inner scope for scope based logging, timers, and stats collection
3945   {
3946     EvacuationInfo evacuation_info;
3947 
3948     if (g1_policy()->during_initial_mark_pause()) {
3949       // We are about to start a marking cycle, so we increment the
3950       // full collection counter.
3951       increment_old_marking_cycles_started();
3952       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3953     }
3954 
3955     _gc_tracer_stw->report_yc_type(yc_type());
3956 
3957     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3958 
3959     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3960                                 workers()->active_workers() : 1);
3961     double pause_start_sec = os::elapsedTime();
3962     g1_policy()->phase_times()->note_gc_start(active_workers);
3963     log_gc_header();
3964 
3965     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3966     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3967 
3968     // If the secondary_free_list is not empty, append it to the
3969     // free_list. No need to wait for the cleanup operation to finish;
3970     // the region allocation code will check the secondary_free_list
3971     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3972     // set, skip this step so that the region allocation code has to
3973     // get entries from the secondary_free_list.
3974     if (!G1StressConcRegionFreeing) {
3975       append_secondary_free_list_if_not_empty_with_lock();
3976     }
3977 
3978     assert(check_young_list_well_formed(), "young list should be well formed");
3979     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3980            "sanity check");
3981 
3982     // Don't dynamically change the number of GC threads this early.  A value of
3983     // 0 is used to indicate serial work.  When parallel work is done,
3984     // it will be set.
3985 
3986     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3987       IsGCActiveMark x;
3988 
3989       gc_prologue(false);
3990       increment_total_collections(false /* full gc */);
3991       increment_gc_time_stamp();
3992 
3993       verify_before_gc();
3994 
3995       COMPILER2_PRESENT(DerivedPointerTable::clear());
3996 
3997       // Please see comment in g1CollectedHeap.hpp and
3998       // G1CollectedHeap::ref_processing_init() to see how
3999       // reference processing currently works in G1.
4000 
4001       // Enable discovery in the STW reference processor
4002       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
4003                                             true /*verify_no_refs*/);
4004 
4005       {
4006         // We want to temporarily turn off discovery by the
4007         // CM ref processor, if necessary, and turn it back on
4008         // on again later if we do. Using a scoped
4009         // NoRefDiscovery object will do this.
4010         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4011 
4012         // Forget the current alloc region (we might even choose it to be part
4013         // of the collection set!).
4014         release_mutator_alloc_region();
4015 
4016         // We should call this after we retire the mutator alloc
4017         // region(s) so that all the ALLOC / RETIRE events are generated
4018         // before the start GC event.
4019         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4020 
4021         // This timing is only used by the ergonomics to handle our pause target.
4022         // It is unclear why this should not include the full pause. We will
4023         // investigate this in CR 7178365.
4024         //
4025         // Preserving the old comment here if that helps the investigation:
4026         //
4027         // The elapsed time induced by the start time below deliberately elides
4028         // the possible verification above.
4029         double sample_start_time_sec = os::elapsedTime();
4030 
4031 #if YOUNG_LIST_VERBOSE
4032         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4033         _young_list->print();
4034         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4035 #endif // YOUNG_LIST_VERBOSE
4036 
4037         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4038 
4039         double scan_wait_start = os::elapsedTime();
4040         // We have to wait until the CM threads finish scanning the
4041         // root regions as it's the only way to ensure that all the
4042         // objects on them have been correctly scanned before we start
4043         // moving them during the GC.
4044         bool waited = _cm->root_regions()->wait_until_scan_finished();
4045         double wait_time_ms = 0.0;
4046         if (waited) {
4047           double scan_wait_end = os::elapsedTime();
4048           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4049         }
4050         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4051 
4052 #if YOUNG_LIST_VERBOSE
4053         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4054         _young_list->print();
4055 #endif // YOUNG_LIST_VERBOSE
4056 
4057         if (g1_policy()->during_initial_mark_pause()) {
4058           concurrent_mark()->checkpointRootsInitialPre();
4059         }
4060 
4061 #if YOUNG_LIST_VERBOSE
4062         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4063         _young_list->print();
4064         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4065 #endif // YOUNG_LIST_VERBOSE
4066 
4067         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4068 
4069         _cm->note_start_of_gc();
4070         // We should not verify the per-thread SATB buffers given that
4071         // we have not filtered them yet (we'll do so during the
4072         // GC). We also call this after finalize_cset() to
4073         // ensure that the CSet has been finalized.
4074         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4075                                  true  /* verify_enqueued_buffers */,
4076                                  false /* verify_thread_buffers */,
4077                                  true  /* verify_fingers */);
4078 
4079         if (_hr_printer.is_active()) {
4080           HeapRegion* hr = g1_policy()->collection_set();
4081           while (hr != NULL) {
4082             G1HRPrinter::RegionType type;
4083             if (!hr->is_young()) {
4084               type = G1HRPrinter::Old;
4085             } else if (hr->is_survivor()) {
4086               type = G1HRPrinter::Survivor;
4087             } else {
4088               type = G1HRPrinter::Eden;
4089             }
4090             _hr_printer.cset(hr);
4091             hr = hr->next_in_collection_set();
4092           }
4093         }
4094 
4095 #ifdef ASSERT
4096         VerifyCSetClosure cl;
4097         collection_set_iterate(&cl);
4098 #endif // ASSERT
4099 
4100         setup_surviving_young_words();
4101 
4102         // Initialize the GC alloc regions.
4103         init_gc_alloc_regions(evacuation_info);
4104 
4105         // Actually do the work...
4106         evacuate_collection_set(evacuation_info);
4107 
4108         // We do this to mainly verify the per-thread SATB buffers
4109         // (which have been filtered by now) since we didn't verify
4110         // them earlier. No point in re-checking the stacks / enqueued
4111         // buffers given that the CSet has not changed since last time
4112         // we checked.
4113         _cm->verify_no_cset_oops(false /* verify_stacks */,
4114                                  false /* verify_enqueued_buffers */,
4115                                  true  /* verify_thread_buffers */,
4116                                  true  /* verify_fingers */);
4117 
4118         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4119         g1_policy()->clear_collection_set();
4120 
4121         cleanup_surviving_young_words();
4122 
4123         // Start a new incremental collection set for the next pause.
4124         g1_policy()->start_incremental_cset_building();
4125 
4126         clear_cset_fast_test();
4127 
4128         _young_list->reset_sampled_info();
4129 
4130         // Don't check the whole heap at this point as the
4131         // GC alloc regions from this pause have been tagged
4132         // as survivors and moved on to the survivor list.
4133         // Survivor regions will fail the !is_young() check.
4134         assert(check_young_list_empty(false /* check_heap */),
4135           "young list should be empty");
4136 
4137 #if YOUNG_LIST_VERBOSE
4138         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4139         _young_list->print();
4140 #endif // YOUNG_LIST_VERBOSE
4141 
4142         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4143                                              _young_list->first_survivor_region(),
4144                                              _young_list->last_survivor_region());
4145 
4146         _young_list->reset_auxilary_lists();
4147 
4148         if (evacuation_failed()) {
4149           _summary_bytes_used = recalculate_used();
4150           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4151           for (uint i = 0; i < n_queues; i++) {
4152             if (_evacuation_failed_info_array[i].has_failed()) {
4153               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4154             }
4155           }
4156         } else {
4157           // The "used" of the the collection set have already been subtracted
4158           // when they were freed.  Add in the bytes evacuated.
4159           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4160         }
4161 
4162         if (g1_policy()->during_initial_mark_pause()) {
4163           // We have to do this before we notify the CM threads that
4164           // they can start working to make sure that all the
4165           // appropriate initialization is done on the CM object.
4166           concurrent_mark()->checkpointRootsInitialPost();
4167           set_marking_started();
4168           // Note that we don't actually trigger the CM thread at
4169           // this point. We do that later when we're sure that
4170           // the current thread has completed its logging output.
4171         }
4172 
4173         allocate_dummy_regions();
4174 
4175 #if YOUNG_LIST_VERBOSE
4176         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4177         _young_list->print();
4178         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4179 #endif // YOUNG_LIST_VERBOSE
4180 
4181         init_mutator_alloc_region();
4182 
4183         {
4184           size_t expand_bytes = g1_policy()->expansion_amount();
4185           if (expand_bytes > 0) {
4186             size_t bytes_before = capacity();
4187             // No need for an ergo verbose message here,
4188             // expansion_amount() does this when it returns a value > 0.
4189             if (!expand(expand_bytes)) {
4190               // We failed to expand the heap so let's verify that
4191               // committed/uncommitted amount match the backing store
4192               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4193               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4194             }
4195           }
4196         }
4197 
4198         // We redo the verification but now wrt to the new CSet which
4199         // has just got initialized after the previous CSet was freed.
4200         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4201                                  true  /* verify_enqueued_buffers */,
4202                                  true  /* verify_thread_buffers */,
4203                                  true  /* verify_fingers */);
4204         _cm->note_end_of_gc();
4205 
4206         // This timing is only used by the ergonomics to handle our pause target.
4207         // It is unclear why this should not include the full pause. We will
4208         // investigate this in CR 7178365.
4209         double sample_end_time_sec = os::elapsedTime();
4210         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4211         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4212 
4213         MemoryService::track_memory_usage();
4214 
4215         // In prepare_for_verify() below we'll need to scan the deferred
4216         // update buffers to bring the RSets up-to-date if
4217         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4218         // the update buffers we'll probably need to scan cards on the
4219         // regions we just allocated to (i.e., the GC alloc
4220         // regions). However, during the last GC we called
4221         // set_saved_mark() on all the GC alloc regions, so card
4222         // scanning might skip the [saved_mark_word()...top()] area of
4223         // those regions (i.e., the area we allocated objects into
4224         // during the last GC). But it shouldn't. Given that
4225         // saved_mark_word() is conditional on whether the GC time stamp
4226         // on the region is current or not, by incrementing the GC time
4227         // stamp here we invalidate all the GC time stamps on all the
4228         // regions and saved_mark_word() will simply return top() for
4229         // all the regions. This is a nicer way of ensuring this rather
4230         // than iterating over the regions and fixing them. In fact, the
4231         // GC time stamp increment here also ensures that
4232         // saved_mark_word() will return top() between pauses, i.e.,
4233         // during concurrent refinement. So we don't need the
4234         // is_gc_active() check to decided which top to use when
4235         // scanning cards (see CR 7039627).
4236         increment_gc_time_stamp();
4237 
4238         verify_after_gc();
4239 
4240         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4241         ref_processor_stw()->verify_no_references_recorded();
4242 
4243         // CM reference discovery will be re-enabled if necessary.
4244       }
4245 
4246       // We should do this after we potentially expand the heap so
4247       // that all the COMMIT events are generated before the end GC
4248       // event, and after we retire the GC alloc regions so that all
4249       // RETIRE events are generated before the end GC event.
4250       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4251 
4252       if (mark_in_progress()) {
4253         concurrent_mark()->update_g1_committed();
4254       }
4255 
4256 #ifdef TRACESPINNING
4257       ParallelTaskTerminator::print_termination_counts();
4258 #endif
4259 
4260       gc_epilogue(false);
4261     }
4262 
4263     // Print the remainder of the GC log output.
4264     log_gc_footer(os::elapsedTime() - pause_start_sec);
4265 
4266     // It is not yet to safe to tell the concurrent mark to
4267     // start as we have some optional output below. We don't want the
4268     // output from the concurrent mark thread interfering with this
4269     // logging output either.
4270 
4271     _hrs.verify_optional();
4272     verify_region_sets_optional();
4273 
4274     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4275     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4276 
4277     print_heap_after_gc();
4278     trace_heap_after_gc(_gc_tracer_stw);
4279 
4280     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4281     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4282     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4283     // before any GC notifications are raised.
4284     g1mm()->update_sizes();
4285 
4286     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4287     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4288     _gc_timer_stw->register_gc_end();
4289     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4290   }
4291   // It should now be safe to tell the concurrent mark thread to start
4292   // without its logging output interfering with the logging output
4293   // that came from the pause.
4294 
4295   if (should_start_conc_mark) {
4296     // CAUTION: after the doConcurrentMark() call below,
4297     // the concurrent marking thread(s) could be running
4298     // concurrently with us. Make sure that anything after
4299     // this point does not assume that we are the only GC thread
4300     // running. Note: of course, the actual marking work will
4301     // not start until the safepoint itself is released in
4302     // SuspendibleThreadSet::desynchronize().
4303     doConcurrentMark();
4304   }
4305 
4306   return true;
4307 }
4308 
4309 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4310 {
4311   size_t gclab_word_size;
4312   switch (purpose) {
4313     case GCAllocForSurvived:
4314       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4315       break;
4316     case GCAllocForTenured:
4317       gclab_word_size = _old_plab_stats.desired_plab_sz();
4318       break;
4319     default:
4320       assert(false, "unknown GCAllocPurpose");
4321       gclab_word_size = _old_plab_stats.desired_plab_sz();
4322       break;
4323   }
4324 
4325   // Prevent humongous PLAB sizes for two reasons:
4326   // * PLABs are allocated using a similar paths as oops, but should
4327   //   never be in a humongous region
4328   // * Allowing humongous PLABs needlessly churns the region free lists
4329   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4330 }
4331 
4332 void G1CollectedHeap::init_mutator_alloc_region() {
4333   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4334   _mutator_alloc_region.init();
4335 }
4336 
4337 void G1CollectedHeap::release_mutator_alloc_region() {
4338   _mutator_alloc_region.release();
4339   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4340 }
4341 
4342 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4343   assert_at_safepoint(true /* should_be_vm_thread */);
4344 
4345   _survivor_gc_alloc_region.init();
4346   _old_gc_alloc_region.init();
4347   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4348   _retained_old_gc_alloc_region = NULL;
4349 
4350   // We will discard the current GC alloc region if:
4351   // a) it's in the collection set (it can happen!),
4352   // b) it's already full (no point in using it),
4353   // c) it's empty (this means that it was emptied during
4354   // a cleanup and it should be on the free list now), or
4355   // d) it's humongous (this means that it was emptied
4356   // during a cleanup and was added to the free list, but
4357   // has been subsequently used to allocate a humongous
4358   // object that may be less than the region size).
4359   if (retained_region != NULL &&
4360       !retained_region->in_collection_set() &&
4361       !(retained_region->top() == retained_region->end()) &&
4362       !retained_region->is_empty() &&
4363       !retained_region->isHumongous()) {
4364     retained_region->set_saved_mark();
4365     // The retained region was added to the old region set when it was
4366     // retired. We have to remove it now, since we don't allow regions
4367     // we allocate to in the region sets. We'll re-add it later, when
4368     // it's retired again.
4369     _old_set.remove(retained_region);
4370     bool during_im = g1_policy()->during_initial_mark_pause();
4371     retained_region->note_start_of_copying(during_im);
4372     _old_gc_alloc_region.set(retained_region);
4373     _hr_printer.reuse(retained_region);
4374     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4375   }
4376 }
4377 
4378 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4379   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4380                                          _old_gc_alloc_region.count());
4381   _survivor_gc_alloc_region.release();
4382   // If we have an old GC alloc region to release, we'll save it in
4383   // _retained_old_gc_alloc_region. If we don't
4384   // _retained_old_gc_alloc_region will become NULL. This is what we
4385   // want either way so no reason to check explicitly for either
4386   // condition.
4387   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4388 
4389   if (ResizePLAB) {
4390     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4391     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4392   }
4393 }
4394 
4395 void G1CollectedHeap::abandon_gc_alloc_regions() {
4396   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4397   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4398   _retained_old_gc_alloc_region = NULL;
4399 }
4400 
4401 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4402   _drain_in_progress = false;
4403   set_evac_failure_closure(cl);
4404   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4405 }
4406 
4407 void G1CollectedHeap::finalize_for_evac_failure() {
4408   assert(_evac_failure_scan_stack != NULL &&
4409          _evac_failure_scan_stack->length() == 0,
4410          "Postcondition");
4411   assert(!_drain_in_progress, "Postcondition");
4412   delete _evac_failure_scan_stack;
4413   _evac_failure_scan_stack = NULL;
4414 }
4415 
4416 void G1CollectedHeap::remove_self_forwarding_pointers() {
4417   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4418 
4419   double remove_self_forwards_start = os::elapsedTime();
4420 
4421   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4422 
4423   if (G1CollectedHeap::use_parallel_gc_threads()) {
4424     set_par_threads();
4425     workers()->run_task(&rsfp_task);
4426     set_par_threads(0);
4427   } else {
4428     rsfp_task.work(0);
4429   }
4430 
4431   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4432 
4433   // Reset the claim values in the regions in the collection set.
4434   reset_cset_heap_region_claim_values();
4435 
4436   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4437 
4438   // Now restore saved marks, if any.
4439   assert(_objs_with_preserved_marks.size() ==
4440             _preserved_marks_of_objs.size(), "Both or none.");
4441   while (!_objs_with_preserved_marks.is_empty()) {
4442     oop obj = _objs_with_preserved_marks.pop();
4443     markOop m = _preserved_marks_of_objs.pop();
4444     obj->set_mark(m);
4445   }
4446   _objs_with_preserved_marks.clear(true);
4447   _preserved_marks_of_objs.clear(true);
4448 
4449   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4450 }
4451 
4452 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4453   _evac_failure_scan_stack->push(obj);
4454 }
4455 
4456 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4457   assert(_evac_failure_scan_stack != NULL, "precondition");
4458 
4459   while (_evac_failure_scan_stack->length() > 0) {
4460      oop obj = _evac_failure_scan_stack->pop();
4461      _evac_failure_closure->set_region(heap_region_containing(obj));
4462      obj->oop_iterate_backwards(_evac_failure_closure);
4463   }
4464 }
4465 
4466 oop
4467 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4468                                                oop old) {
4469   assert(obj_in_cs(old),
4470          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4471                  (HeapWord*) old));
4472   markOop m = old->mark();
4473   oop forward_ptr = old->forward_to_atomic(old);
4474   if (forward_ptr == NULL) {
4475     // Forward-to-self succeeded.
4476     assert(_par_scan_state != NULL, "par scan state");
4477     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4478     uint queue_num = _par_scan_state->queue_num();
4479 
4480     _evacuation_failed = true;
4481     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4482     if (_evac_failure_closure != cl) {
4483       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4484       assert(!_drain_in_progress,
4485              "Should only be true while someone holds the lock.");
4486       // Set the global evac-failure closure to the current thread's.
4487       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4488       set_evac_failure_closure(cl);
4489       // Now do the common part.
4490       handle_evacuation_failure_common(old, m);
4491       // Reset to NULL.
4492       set_evac_failure_closure(NULL);
4493     } else {
4494       // The lock is already held, and this is recursive.
4495       assert(_drain_in_progress, "This should only be the recursive case.");
4496       handle_evacuation_failure_common(old, m);
4497     }
4498     return old;
4499   } else {
4500     // Forward-to-self failed. Either someone else managed to allocate
4501     // space for this object (old != forward_ptr) or they beat us in
4502     // self-forwarding it (old == forward_ptr).
4503     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4504            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4505                    "should not be in the CSet",
4506                    (HeapWord*) old, (HeapWord*) forward_ptr));
4507     return forward_ptr;
4508   }
4509 }
4510 
4511 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4512   preserve_mark_if_necessary(old, m);
4513 
4514   HeapRegion* r = heap_region_containing(old);
4515   if (!r->evacuation_failed()) {
4516     r->set_evacuation_failed(true);
4517     _hr_printer.evac_failure(r);
4518   }
4519 
4520   push_on_evac_failure_scan_stack(old);
4521 
4522   if (!_drain_in_progress) {
4523     // prevent recursion in copy_to_survivor_space()
4524     _drain_in_progress = true;
4525     drain_evac_failure_scan_stack();
4526     _drain_in_progress = false;
4527   }
4528 }
4529 
4530 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4531   assert(evacuation_failed(), "Oversaving!");
4532   // We want to call the "for_promotion_failure" version only in the
4533   // case of a promotion failure.
4534   if (m->must_be_preserved_for_promotion_failure(obj)) {
4535     _objs_with_preserved_marks.push(obj);
4536     _preserved_marks_of_objs.push(m);
4537   }
4538 }
4539 
4540 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4541                                                   size_t word_size) {
4542   if (purpose == GCAllocForSurvived) {
4543     HeapWord* result = survivor_attempt_allocation(word_size);
4544     if (result != NULL) {
4545       return result;
4546     } else {
4547       // Let's try to allocate in the old gen in case we can fit the
4548       // object there.
4549       return old_attempt_allocation(word_size);
4550     }
4551   } else {
4552     assert(purpose ==  GCAllocForTenured, "sanity");
4553     HeapWord* result = old_attempt_allocation(word_size);
4554     if (result != NULL) {
4555       return result;
4556     } else {
4557       // Let's try to allocate in the survivors in case we can fit the
4558       // object there.
4559       return survivor_attempt_allocation(word_size);
4560     }
4561   }
4562 
4563   ShouldNotReachHere();
4564   // Trying to keep some compilers happy.
4565   return NULL;
4566 }
4567 
4568 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4569   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
4570 
4571 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4572   : _g1h(g1h),
4573     _refs(g1h->task_queue(queue_num)),
4574     _dcq(&g1h->dirty_card_queue_set()),
4575     _ct_bs(g1h->g1_barrier_set()),
4576     _g1_rem(g1h->g1_rem_set()),
4577     _hash_seed(17), _queue_num(queue_num),
4578     _term_attempts(0),
4579     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4580     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4581     _age_table(false), _scanner(g1h, this, rp),
4582     _strong_roots_time(0), _term_time(0),
4583     _alloc_buffer_waste(0), _undo_waste(0) {
4584   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4585   // we "sacrifice" entry 0 to keep track of surviving bytes for
4586   // non-young regions (where the age is -1)
4587   // We also add a few elements at the beginning and at the end in
4588   // an attempt to eliminate cache contention
4589   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4590   uint array_length = PADDING_ELEM_NUM +
4591                       real_length +
4592                       PADDING_ELEM_NUM;
4593   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4594   if (_surviving_young_words_base == NULL)
4595     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4596                           "Not enough space for young surv histo.");
4597   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4598   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4599 
4600   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4601   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4602 
4603   _start = os::elapsedTime();
4604 }
4605 
4606 void
4607 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4608 {
4609   st->print_raw_cr("GC Termination Stats");
4610   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4611                    " ------waste (KiB)------");
4612   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4613                    "  total   alloc    undo");
4614   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4615                    " ------- ------- -------");
4616 }
4617 
4618 void
4619 G1ParScanThreadState::print_termination_stats(int i,
4620                                               outputStream* const st) const
4621 {
4622   const double elapsed_ms = elapsed_time() * 1000.0;
4623   const double s_roots_ms = strong_roots_time() * 1000.0;
4624   const double term_ms    = term_time() * 1000.0;
4625   st->print_cr("%3d %9.2f %9.2f %6.2f "
4626                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4627                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4628                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4629                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4630                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4631                alloc_buffer_waste() * HeapWordSize / K,
4632                undo_waste() * HeapWordSize / K);
4633 }
4634 
4635 #ifdef ASSERT
4636 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4637   assert(ref != NULL, "invariant");
4638   assert(UseCompressedOops, "sanity");
4639   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4640   oop p = oopDesc::load_decode_heap_oop(ref);
4641   assert(_g1h->is_in_g1_reserved(p),
4642          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4643   return true;
4644 }
4645 
4646 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4647   assert(ref != NULL, "invariant");
4648   if (has_partial_array_mask(ref)) {
4649     // Must be in the collection set--it's already been copied.
4650     oop p = clear_partial_array_mask(ref);
4651     assert(_g1h->obj_in_cs(p),
4652            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4653   } else {
4654     oop p = oopDesc::load_decode_heap_oop(ref);
4655     assert(_g1h->is_in_g1_reserved(p),
4656            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4657   }
4658   return true;
4659 }
4660 
4661 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4662   if (ref.is_narrow()) {
4663     return verify_ref((narrowOop*) ref);
4664   } else {
4665     return verify_ref((oop*) ref);
4666   }
4667 }
4668 #endif // ASSERT
4669 
4670 void G1ParScanThreadState::trim_queue() {
4671   assert(_evac_failure_cl != NULL, "not set");
4672 
4673   StarTask ref;
4674   do {
4675     // Drain the overflow stack first, so other threads can steal.
4676     while (refs()->pop_overflow(ref)) {
4677       deal_with_reference(ref);
4678     }
4679 
4680     while (refs()->pop_local(ref)) {
4681       deal_with_reference(ref);
4682     }
4683   } while (!refs()->is_empty());
4684 }
4685 
4686 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4687                                      G1ParScanThreadState* par_scan_state) :
4688   _g1(g1), _par_scan_state(par_scan_state),
4689   _worker_id(par_scan_state->queue_num()) { }
4690 
4691 void G1ParCopyHelper::mark_object(oop obj) {
4692 #ifdef ASSERT
4693   HeapRegion* hr = _g1->heap_region_containing(obj);
4694   assert(hr != NULL, "sanity");
4695   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4696 #endif // ASSERT
4697 
4698   // We know that the object is not moving so it's safe to read its size.
4699   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4700 }
4701 
4702 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4703 #ifdef ASSERT
4704   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4705   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4706   assert(from_obj != to_obj, "should not be self-forwarded");
4707 
4708   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4709   assert(from_hr != NULL, "sanity");
4710   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4711 
4712   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4713   assert(to_hr != NULL, "sanity");
4714   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4715 #endif // ASSERT
4716 
4717   // The object might be in the process of being copied by another
4718   // worker so we cannot trust that its to-space image is
4719   // well-formed. So we have to read its size from its from-space
4720   // image which we know should not be changing.
4721   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4722 }
4723 
4724 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4725   size_t word_sz = old->size();
4726   HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4727   // +1 to make the -1 indexes valid...
4728   int       young_index = from_region->young_index_in_cset()+1;
4729   assert( (from_region->is_young() && young_index >  0) ||
4730          (!from_region->is_young() && young_index == 0), "invariant" );
4731   G1CollectorPolicy* g1p = _g1h->g1_policy();
4732   markOop m = old->mark();
4733   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4734                                            : m->age();
4735   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4736                                                              word_sz);
4737   HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4738 #ifndef PRODUCT
4739   // Should this evacuation fail?
4740   if (_g1h->evacuation_should_fail()) {
4741     if (obj_ptr != NULL) {
4742       undo_allocation(alloc_purpose, obj_ptr, word_sz);
4743       obj_ptr = NULL;
4744     }
4745   }
4746 #endif // !PRODUCT
4747 
4748   if (obj_ptr == NULL) {
4749     // This will either forward-to-self, or detect that someone else has
4750     // installed a forwarding pointer.
4751     return _g1h->handle_evacuation_failure_par(this, old);
4752   }
4753 
4754   oop obj = oop(obj_ptr);
4755 
4756   // We're going to allocate linearly, so might as well prefetch ahead.
4757   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4758 
4759   oop forward_ptr = old->forward_to_atomic(obj);
4760   if (forward_ptr == NULL) {
4761     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4762 
4763     // alloc_purpose is just a hint to allocate() above, recheck the type of region
4764     // we actually allocated from and update alloc_purpose accordingly
4765     HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
4766     alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
4767 
4768     if (g1p->track_object_age(alloc_purpose)) {
4769       // We could simply do obj->incr_age(). However, this causes a
4770       // performance issue. obj->incr_age() will first check whether
4771       // the object has a displaced mark by checking its mark word;
4772       // getting the mark word from the new location of the object
4773       // stalls. So, given that we already have the mark word and we
4774       // are about to install it anyway, it's better to increase the
4775       // age on the mark word, when the object does not have a
4776       // displaced mark word. We're not expecting many objects to have
4777       // a displaced marked word, so that case is not optimized
4778       // further (it could be...) and we simply call obj->incr_age().
4779 
4780       if (m->has_displaced_mark_helper()) {
4781         // in this case, we have to install the mark word first,
4782         // otherwise obj looks to be forwarded (the old mark word,
4783         // which contains the forward pointer, was copied)
4784         obj->set_mark(m);
4785         obj->incr_age();
4786       } else {
4787         m = m->incr_age();
4788         obj->set_mark(m);
4789       }
4790       age_table()->add(obj, word_sz);
4791     } else {
4792       obj->set_mark(m);
4793     }
4794 
4795     if (G1StringDedup::is_enabled()) {
4796       G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
4797                                              to_region->is_young(),
4798                                              queue_num(),
4799                                              obj);
4800     }
4801 
4802     size_t* surv_young_words = surviving_young_words();
4803     surv_young_words[young_index] += word_sz;
4804 
4805     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4806       // We keep track of the next start index in the length field of
4807       // the to-space object. The actual length can be found in the
4808       // length field of the from-space object.
4809       arrayOop(obj)->set_length(0);
4810       oop* old_p = set_partial_array_mask(old);
4811       push_on_queue(old_p);
4812     } else {
4813       // No point in using the slower heap_region_containing() method,
4814       // given that we know obj is in the heap.
4815       _scanner.set_region(_g1h->heap_region_containing_raw(obj));
4816       obj->oop_iterate_backwards(&_scanner);
4817     }
4818   } else {
4819     undo_allocation(alloc_purpose, obj_ptr, word_sz);
4820     obj = forward_ptr;
4821   }
4822   return obj;
4823 }
4824 
4825 template <class T>
4826 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4827   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4828     _scanned_klass->record_modified_oops();
4829   }
4830 }
4831 
4832 template <G1Barrier barrier, bool do_mark_object>
4833 template <class T>
4834 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4835   T heap_oop = oopDesc::load_heap_oop(p);
4836 
4837   if (oopDesc::is_null(heap_oop)) {
4838     return;
4839   }
4840 
4841   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4842 
4843   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4844 
4845   if (_g1->in_cset_fast_test(obj)) {
4846     oop forwardee;
4847     if (obj->is_forwarded()) {
4848       forwardee = obj->forwardee();
4849     } else {
4850       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4851     }
4852     assert(forwardee != NULL, "forwardee should not be NULL");
4853     oopDesc::encode_store_heap_oop(p, forwardee);
4854     if (do_mark_object && forwardee != obj) {
4855       // If the object is self-forwarded we don't need to explicitly
4856       // mark it, the evacuation failure protocol will do so.
4857       mark_forwarded_object(obj, forwardee);
4858     }
4859 
4860     if (barrier == G1BarrierKlass) {
4861       do_klass_barrier(p, forwardee);
4862     }
4863   } else {
4864     // The object is not in collection set. If we're a root scanning
4865     // closure during an initial mark pause (i.e. do_mark_object will
4866     // be true) then attempt to mark the object.
4867     if (do_mark_object) {
4868       mark_object(obj);
4869     }
4870   }
4871 
4872   if (barrier == G1BarrierEvac) {
4873     _par_scan_state->update_rs(_from, p, _worker_id);
4874   }
4875 }
4876 
4877 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
4878 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4879 
4880 class G1ParEvacuateFollowersClosure : public VoidClosure {
4881 protected:
4882   G1CollectedHeap*              _g1h;
4883   G1ParScanThreadState*         _par_scan_state;
4884   RefToScanQueueSet*            _queues;
4885   ParallelTaskTerminator*       _terminator;
4886 
4887   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4888   RefToScanQueueSet*      queues()         { return _queues; }
4889   ParallelTaskTerminator* terminator()     { return _terminator; }
4890 
4891 public:
4892   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4893                                 G1ParScanThreadState* par_scan_state,
4894                                 RefToScanQueueSet* queues,
4895                                 ParallelTaskTerminator* terminator)
4896     : _g1h(g1h), _par_scan_state(par_scan_state),
4897       _queues(queues), _terminator(terminator) {}
4898 
4899   void do_void();
4900 
4901 private:
4902   inline bool offer_termination();
4903 };
4904 
4905 bool G1ParEvacuateFollowersClosure::offer_termination() {
4906   G1ParScanThreadState* const pss = par_scan_state();
4907   pss->start_term_time();
4908   const bool res = terminator()->offer_termination();
4909   pss->end_term_time();
4910   return res;
4911 }
4912 
4913 void G1ParEvacuateFollowersClosure::do_void() {
4914   StarTask stolen_task;
4915   G1ParScanThreadState* const pss = par_scan_state();
4916   pss->trim_queue();
4917 
4918   do {
4919     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4920       assert(pss->verify_task(stolen_task), "sanity");
4921       if (stolen_task.is_narrow()) {
4922         pss->deal_with_reference((narrowOop*) stolen_task);
4923       } else {
4924         pss->deal_with_reference((oop*) stolen_task);
4925       }
4926 
4927       // We've just processed a reference and we might have made
4928       // available new entries on the queues. So we have to make sure
4929       // we drain the queues as necessary.
4930       pss->trim_queue();
4931     }
4932   } while (!offer_termination());
4933 }
4934 
4935 class G1KlassScanClosure : public KlassClosure {
4936  G1ParCopyHelper* _closure;
4937  bool             _process_only_dirty;
4938  int              _count;
4939  public:
4940   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4941       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4942   void do_klass(Klass* klass) {
4943     // If the klass has not been dirtied we know that there's
4944     // no references into  the young gen and we can skip it.
4945    if (!_process_only_dirty || klass->has_modified_oops()) {
4946       // Clean the klass since we're going to scavenge all the metadata.
4947       klass->clear_modified_oops();
4948 
4949       // Tell the closure that this klass is the Klass to scavenge
4950       // and is the one to dirty if oops are left pointing into the young gen.
4951       _closure->set_scanned_klass(klass);
4952 
4953       klass->oops_do(_closure);
4954 
4955       _closure->set_scanned_klass(NULL);
4956     }
4957     _count++;
4958   }
4959 };
4960 
4961 class G1ParTask : public AbstractGangTask {
4962 protected:
4963   G1CollectedHeap*       _g1h;
4964   RefToScanQueueSet      *_queues;
4965   ParallelTaskTerminator _terminator;
4966   uint _n_workers;
4967 
4968   Mutex _stats_lock;
4969   Mutex* stats_lock() { return &_stats_lock; }
4970 
4971   size_t getNCards() {
4972     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4973       / G1BlockOffsetSharedArray::N_bytes;
4974   }
4975 
4976 public:
4977   G1ParTask(G1CollectedHeap* g1h,
4978             RefToScanQueueSet *task_queues)
4979     : AbstractGangTask("G1 collection"),
4980       _g1h(g1h),
4981       _queues(task_queues),
4982       _terminator(0, _queues),
4983       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4984   {}
4985 
4986   RefToScanQueueSet* queues() { return _queues; }
4987 
4988   RefToScanQueue *work_queue(int i) {
4989     return queues()->queue(i);
4990   }
4991 
4992   ParallelTaskTerminator* terminator() { return &_terminator; }
4993 
4994   virtual void set_for_termination(int active_workers) {
4995     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4996     // in the young space (_par_seq_tasks) in the G1 heap
4997     // for SequentialSubTasksDone.
4998     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4999     // both of which need setting by set_n_termination().
5000     _g1h->SharedHeap::set_n_termination(active_workers);
5001     _g1h->set_n_termination(active_workers);
5002     terminator()->reset_for_reuse(active_workers);
5003     _n_workers = active_workers;
5004   }
5005 
5006   void work(uint worker_id) {
5007     if (worker_id >= _n_workers) return;  // no work needed this round
5008 
5009     double start_time_ms = os::elapsedTime() * 1000.0;
5010     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5011 
5012     {
5013       ResourceMark rm;
5014       HandleMark   hm;
5015 
5016       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5017 
5018       G1ParScanThreadState            pss(_g1h, worker_id, rp);
5019       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5020 
5021       pss.set_evac_failure_closure(&evac_failure_cl);
5022 
5023       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5024       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5025 
5026       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5027       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5028 
5029       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5030       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5031       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5032 
5033       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5034       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5035 
5036       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5037         // We also need to mark copied objects.
5038         scan_root_cl = &scan_mark_root_cl;
5039         scan_klasses_cl = &scan_mark_klasses_cl_s;
5040       }
5041 
5042       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5043 
5044       // Don't scan the scavengable methods in the code cache as part
5045       // of strong root scanning. The code roots that point into a
5046       // region in the collection set are scanned when we scan the
5047       // region's RSet.
5048       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5049 
5050       pss.start_strong_roots();
5051       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5052                                     SharedHeap::ScanningOption(so),
5053                                     scan_root_cl,
5054                                     &push_heap_rs_cl,
5055                                     scan_klasses_cl,
5056                                     worker_id);
5057       pss.end_strong_roots();
5058 
5059       {
5060         double start = os::elapsedTime();
5061         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5062         evac.do_void();
5063         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5064         double term_ms = pss.term_time()*1000.0;
5065         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5066         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5067       }
5068       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5069       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5070 
5071       if (ParallelGCVerbose) {
5072         MutexLocker x(stats_lock());
5073         pss.print_termination_stats(worker_id);
5074       }
5075 
5076       assert(pss.refs()->is_empty(), "should be empty");
5077 
5078       // Close the inner scope so that the ResourceMark and HandleMark
5079       // destructors are executed here and are included as part of the
5080       // "GC Worker Time".
5081     }
5082 
5083     double end_time_ms = os::elapsedTime() * 1000.0;
5084     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5085   }
5086 };
5087 
5088 // *** Common G1 Evacuation Stuff
5089 
5090 // This method is run in a GC worker.
5091 
5092 void
5093 G1CollectedHeap::
5094 g1_process_strong_roots(bool is_scavenging,
5095                         ScanningOption so,
5096                         OopClosure* scan_non_heap_roots,
5097                         OopsInHeapRegionClosure* scan_rs,
5098                         G1KlassScanClosure* scan_klasses,
5099                         uint worker_i) {
5100 
5101   // First scan the strong roots
5102   double ext_roots_start = os::elapsedTime();
5103   double closure_app_time_sec = 0.0;
5104 
5105   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5106 
5107   assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
5108   // Walk the code cache/strong code roots w/o buffering, because StarTask
5109   // cannot handle unaligned oop locations.
5110   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5111 
5112   process_strong_roots(false, // no scoping; this is parallel code
5113                        is_scavenging, so,
5114                        &buf_scan_non_heap_roots,
5115                        &eager_scan_code_roots,
5116                        scan_klasses
5117                        );
5118 
5119   // Now the CM ref_processor roots.
5120   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5121     // We need to treat the discovered reference lists of the
5122     // concurrent mark ref processor as roots and keep entries
5123     // (which are added by the marking threads) on them live
5124     // until they can be processed at the end of marking.
5125     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5126   }
5127 
5128   // Finish up any enqueued closure apps (attributed as object copy time).
5129   buf_scan_non_heap_roots.done();
5130 
5131   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5132 
5133   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5134 
5135   double ext_root_time_ms =
5136     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5137 
5138   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5139 
5140   // During conc marking we have to filter the per-thread SATB buffers
5141   // to make sure we remove any oops into the CSet (which will show up
5142   // as implicitly live).
5143   double satb_filtering_ms = 0.0;
5144   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5145     if (mark_in_progress()) {
5146       double satb_filter_start = os::elapsedTime();
5147 
5148       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5149 
5150       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5151     }
5152   }
5153   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5154 
5155   // If this is an initial mark pause, and we're not scanning
5156   // the entire code cache, we need to mark the oops in the
5157   // strong code root lists for the regions that are not in
5158   // the collection set.
5159   // Note all threads participate in this set of root tasks.
5160   double mark_strong_code_roots_ms = 0.0;
5161   if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
5162     double mark_strong_roots_start = os::elapsedTime();
5163     mark_strong_code_roots(worker_i);
5164     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5165   }
5166   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5167 
5168   // Now scan the complement of the collection set.
5169   if (scan_rs != NULL) {
5170     g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5171   }
5172   _process_strong_tasks->all_tasks_completed();
5173 }
5174 
5175 void
5176 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5177   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5178   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5179 }
5180 
5181 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
5182 private:
5183   BoolObjectClosure* _is_alive;
5184   int _initial_string_table_size;
5185   int _initial_symbol_table_size;
5186 
5187   bool  _process_strings;
5188   int _strings_processed;
5189   int _strings_removed;
5190 
5191   bool  _process_symbols;
5192   int _symbols_processed;
5193   int _symbols_removed;
5194 
5195   bool _do_in_parallel;
5196 public:
5197   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
5198     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5199     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5200     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
5201     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
5202 
5203     _initial_string_table_size = StringTable::the_table()->table_size();
5204     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
5205     if (process_strings) {
5206       StringTable::clear_parallel_claimed_index();
5207     }
5208     if (process_symbols) {
5209       SymbolTable::clear_parallel_claimed_index();
5210     }
5211   }
5212 
5213   ~G1StringSymbolTableUnlinkTask() {
5214     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5215               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
5216                       StringTable::parallel_claimed_index(), _initial_string_table_size));
5217     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5218               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
5219                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
5220   }
5221 
5222   void work(uint worker_id) {
5223     if (_do_in_parallel) {
5224       int strings_processed = 0;
5225       int strings_removed = 0;
5226       int symbols_processed = 0;
5227       int symbols_removed = 0;
5228       if (_process_strings) {
5229         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
5230         Atomic::add(strings_processed, &_strings_processed);
5231         Atomic::add(strings_removed, &_strings_removed);
5232       }
5233       if (_process_symbols) {
5234         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
5235         Atomic::add(symbols_processed, &_symbols_processed);
5236         Atomic::add(symbols_removed, &_symbols_removed);
5237       }
5238     } else {
5239       if (_process_strings) {
5240         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
5241       }
5242       if (_process_symbols) {
5243         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
5244       }
5245     }
5246   }
5247 
5248   size_t strings_processed() const { return (size_t)_strings_processed; }
5249   size_t strings_removed()   const { return (size_t)_strings_removed; }
5250 
5251   size_t symbols_processed() const { return (size_t)_symbols_processed; }
5252   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
5253 };
5254 
5255 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5256                                                      bool process_strings, bool process_symbols) {
5257   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5258                    _g1h->workers()->active_workers() : 1);
5259 
5260   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5261   if (G1CollectedHeap::use_parallel_gc_threads()) {
5262     set_par_threads(n_workers);
5263     workers()->run_task(&g1_unlink_task);
5264     set_par_threads(0);
5265   } else {
5266     g1_unlink_task.work(0);
5267   }
5268   if (G1TraceStringSymbolTableScrubbing) {
5269     gclog_or_tty->print_cr("Cleaned string and symbol table, "
5270                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
5271                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
5272                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
5273                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
5274   }
5275 
5276   if (G1StringDedup::is_enabled()) {
5277     G1StringDedup::unlink(is_alive);
5278   }
5279 }
5280 
5281 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5282  private:
5283   DirtyCardQueueSet* _queue;
5284  public:
5285   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5286 
5287   virtual void work(uint worker_id) {
5288     double start_time = os::elapsedTime();
5289 
5290     RedirtyLoggedCardTableEntryClosure cl;
5291     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5292       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5293     } else {
5294       _queue->apply_closure_to_all_completed_buffers(&cl);
5295     }
5296 
5297     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5298     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5299     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5300   }
5301 };
5302 
5303 void G1CollectedHeap::redirty_logged_cards() {
5304   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
5305   double redirty_logged_cards_start = os::elapsedTime();
5306 
5307   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5308                    _g1h->workers()->active_workers() : 1);
5309 
5310   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5311   dirty_card_queue_set().reset_for_par_iteration();
5312   if (use_parallel_gc_threads()) {
5313     set_par_threads(n_workers);
5314     workers()->run_task(&redirty_task);
5315     set_par_threads(0);
5316   } else {
5317     redirty_task.work(0);
5318   }
5319 
5320   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5321   dcq.merge_bufferlists(&dirty_card_queue_set());
5322   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5323 
5324   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5325 }
5326 
5327 // Weak Reference Processing support
5328 
5329 // An always "is_alive" closure that is used to preserve referents.
5330 // If the object is non-null then it's alive.  Used in the preservation
5331 // of referent objects that are pointed to by reference objects
5332 // discovered by the CM ref processor.
5333 class G1AlwaysAliveClosure: public BoolObjectClosure {
5334   G1CollectedHeap* _g1;
5335 public:
5336   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5337   bool do_object_b(oop p) {
5338     if (p != NULL) {
5339       return true;
5340     }
5341     return false;
5342   }
5343 };
5344 
5345 bool G1STWIsAliveClosure::do_object_b(oop p) {
5346   // An object is reachable if it is outside the collection set,
5347   // or is inside and copied.
5348   return !_g1->obj_in_cs(p) || p->is_forwarded();
5349 }
5350 
5351 // Non Copying Keep Alive closure
5352 class G1KeepAliveClosure: public OopClosure {
5353   G1CollectedHeap* _g1;
5354 public:
5355   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5356   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5357   void do_oop(      oop* p) {
5358     oop obj = *p;
5359 
5360     if (_g1->obj_in_cs(obj)) {
5361       assert( obj->is_forwarded(), "invariant" );
5362       *p = obj->forwardee();
5363     }
5364   }
5365 };
5366 
5367 // Copying Keep Alive closure - can be called from both
5368 // serial and parallel code as long as different worker
5369 // threads utilize different G1ParScanThreadState instances
5370 // and different queues.
5371 
5372 class G1CopyingKeepAliveClosure: public OopClosure {
5373   G1CollectedHeap*         _g1h;
5374   OopClosure*              _copy_non_heap_obj_cl;
5375   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5376   G1ParScanThreadState*    _par_scan_state;
5377 
5378 public:
5379   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5380                             OopClosure* non_heap_obj_cl,
5381                             OopsInHeapRegionClosure* metadata_obj_cl,
5382                             G1ParScanThreadState* pss):
5383     _g1h(g1h),
5384     _copy_non_heap_obj_cl(non_heap_obj_cl),
5385     _copy_metadata_obj_cl(metadata_obj_cl),
5386     _par_scan_state(pss)
5387   {}
5388 
5389   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5390   virtual void do_oop(      oop* p) { do_oop_work(p); }
5391 
5392   template <class T> void do_oop_work(T* p) {
5393     oop obj = oopDesc::load_decode_heap_oop(p);
5394 
5395     if (_g1h->obj_in_cs(obj)) {
5396       // If the referent object has been forwarded (either copied
5397       // to a new location or to itself in the event of an
5398       // evacuation failure) then we need to update the reference
5399       // field and, if both reference and referent are in the G1
5400       // heap, update the RSet for the referent.
5401       //
5402       // If the referent has not been forwarded then we have to keep
5403       // it alive by policy. Therefore we have copy the referent.
5404       //
5405       // If the reference field is in the G1 heap then we can push
5406       // on the PSS queue. When the queue is drained (after each
5407       // phase of reference processing) the object and it's followers
5408       // will be copied, the reference field set to point to the
5409       // new location, and the RSet updated. Otherwise we need to
5410       // use the the non-heap or metadata closures directly to copy
5411       // the referent object and update the pointer, while avoiding
5412       // updating the RSet.
5413 
5414       if (_g1h->is_in_g1_reserved(p)) {
5415         _par_scan_state->push_on_queue(p);
5416       } else {
5417         assert(!Metaspace::contains((const void*)p),
5418                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5419                               PTR_FORMAT, p));
5420           _copy_non_heap_obj_cl->do_oop(p);
5421         }
5422       }
5423     }
5424 };
5425 
5426 // Serial drain queue closure. Called as the 'complete_gc'
5427 // closure for each discovered list in some of the
5428 // reference processing phases.
5429 
5430 class G1STWDrainQueueClosure: public VoidClosure {
5431 protected:
5432   G1CollectedHeap* _g1h;
5433   G1ParScanThreadState* _par_scan_state;
5434 
5435   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5436 
5437 public:
5438   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5439     _g1h(g1h),
5440     _par_scan_state(pss)
5441   { }
5442 
5443   void do_void() {
5444     G1ParScanThreadState* const pss = par_scan_state();
5445     pss->trim_queue();
5446   }
5447 };
5448 
5449 // Parallel Reference Processing closures
5450 
5451 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5452 // processing during G1 evacuation pauses.
5453 
5454 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5455 private:
5456   G1CollectedHeap*   _g1h;
5457   RefToScanQueueSet* _queues;
5458   FlexibleWorkGang*  _workers;
5459   int                _active_workers;
5460 
5461 public:
5462   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5463                         FlexibleWorkGang* workers,
5464                         RefToScanQueueSet *task_queues,
5465                         int n_workers) :
5466     _g1h(g1h),
5467     _queues(task_queues),
5468     _workers(workers),
5469     _active_workers(n_workers)
5470   {
5471     assert(n_workers > 0, "shouldn't call this otherwise");
5472   }
5473 
5474   // Executes the given task using concurrent marking worker threads.
5475   virtual void execute(ProcessTask& task);
5476   virtual void execute(EnqueueTask& task);
5477 };
5478 
5479 // Gang task for possibly parallel reference processing
5480 
5481 class G1STWRefProcTaskProxy: public AbstractGangTask {
5482   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5483   ProcessTask&     _proc_task;
5484   G1CollectedHeap* _g1h;
5485   RefToScanQueueSet *_task_queues;
5486   ParallelTaskTerminator* _terminator;
5487 
5488 public:
5489   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5490                      G1CollectedHeap* g1h,
5491                      RefToScanQueueSet *task_queues,
5492                      ParallelTaskTerminator* terminator) :
5493     AbstractGangTask("Process reference objects in parallel"),
5494     _proc_task(proc_task),
5495     _g1h(g1h),
5496     _task_queues(task_queues),
5497     _terminator(terminator)
5498   {}
5499 
5500   virtual void work(uint worker_id) {
5501     // The reference processing task executed by a single worker.
5502     ResourceMark rm;
5503     HandleMark   hm;
5504 
5505     G1STWIsAliveClosure is_alive(_g1h);
5506 
5507     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5508     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5509 
5510     pss.set_evac_failure_closure(&evac_failure_cl);
5511 
5512     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5513     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5514 
5515     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5516     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5517 
5518     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5519     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5520 
5521     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5522       // We also need to mark copied objects.
5523       copy_non_heap_cl = &copy_mark_non_heap_cl;
5524       copy_metadata_cl = &copy_mark_metadata_cl;
5525     }
5526 
5527     // Keep alive closure.
5528     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5529 
5530     // Complete GC closure
5531     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5532 
5533     // Call the reference processing task's work routine.
5534     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5535 
5536     // Note we cannot assert that the refs array is empty here as not all
5537     // of the processing tasks (specifically phase2 - pp2_work) execute
5538     // the complete_gc closure (which ordinarily would drain the queue) so
5539     // the queue may not be empty.
5540   }
5541 };
5542 
5543 // Driver routine for parallel reference processing.
5544 // Creates an instance of the ref processing gang
5545 // task and has the worker threads execute it.
5546 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5547   assert(_workers != NULL, "Need parallel worker threads.");
5548 
5549   ParallelTaskTerminator terminator(_active_workers, _queues);
5550   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5551 
5552   _g1h->set_par_threads(_active_workers);
5553   _workers->run_task(&proc_task_proxy);
5554   _g1h->set_par_threads(0);
5555 }
5556 
5557 // Gang task for parallel reference enqueueing.
5558 
5559 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5560   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5561   EnqueueTask& _enq_task;
5562 
5563 public:
5564   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5565     AbstractGangTask("Enqueue reference objects in parallel"),
5566     _enq_task(enq_task)
5567   { }
5568 
5569   virtual void work(uint worker_id) {
5570     _enq_task.work(worker_id);
5571   }
5572 };
5573 
5574 // Driver routine for parallel reference enqueueing.
5575 // Creates an instance of the ref enqueueing gang
5576 // task and has the worker threads execute it.
5577 
5578 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5579   assert(_workers != NULL, "Need parallel worker threads.");
5580 
5581   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5582 
5583   _g1h->set_par_threads(_active_workers);
5584   _workers->run_task(&enq_task_proxy);
5585   _g1h->set_par_threads(0);
5586 }
5587 
5588 // End of weak reference support closures
5589 
5590 // Abstract task used to preserve (i.e. copy) any referent objects
5591 // that are in the collection set and are pointed to by reference
5592 // objects discovered by the CM ref processor.
5593 
5594 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5595 protected:
5596   G1CollectedHeap* _g1h;
5597   RefToScanQueueSet      *_queues;
5598   ParallelTaskTerminator _terminator;
5599   uint _n_workers;
5600 
5601 public:
5602   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5603     AbstractGangTask("ParPreserveCMReferents"),
5604     _g1h(g1h),
5605     _queues(task_queues),
5606     _terminator(workers, _queues),
5607     _n_workers(workers)
5608   { }
5609 
5610   void work(uint worker_id) {
5611     ResourceMark rm;
5612     HandleMark   hm;
5613 
5614     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5615     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5616 
5617     pss.set_evac_failure_closure(&evac_failure_cl);
5618 
5619     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5620 
5621 
5622     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5623     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5624 
5625     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5626     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5627 
5628     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5629     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5630 
5631     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5632       // We also need to mark copied objects.
5633       copy_non_heap_cl = &copy_mark_non_heap_cl;
5634       copy_metadata_cl = &copy_mark_metadata_cl;
5635     }
5636 
5637     // Is alive closure
5638     G1AlwaysAliveClosure always_alive(_g1h);
5639 
5640     // Copying keep alive closure. Applied to referent objects that need
5641     // to be copied.
5642     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5643 
5644     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5645 
5646     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5647     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5648 
5649     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5650     // So this must be true - but assert just in case someone decides to
5651     // change the worker ids.
5652     assert(0 <= worker_id && worker_id < limit, "sanity");
5653     assert(!rp->discovery_is_atomic(), "check this code");
5654 
5655     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5656     for (uint idx = worker_id; idx < limit; idx += stride) {
5657       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5658 
5659       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5660       while (iter.has_next()) {
5661         // Since discovery is not atomic for the CM ref processor, we
5662         // can see some null referent objects.
5663         iter.load_ptrs(DEBUG_ONLY(true));
5664         oop ref = iter.obj();
5665 
5666         // This will filter nulls.
5667         if (iter.is_referent_alive()) {
5668           iter.make_referent_alive();
5669         }
5670         iter.move_to_next();
5671       }
5672     }
5673 
5674     // Drain the queue - which may cause stealing
5675     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5676     drain_queue.do_void();
5677     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5678     assert(pss.refs()->is_empty(), "should be");
5679   }
5680 };
5681 
5682 // Weak Reference processing during an evacuation pause (part 1).
5683 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5684   double ref_proc_start = os::elapsedTime();
5685 
5686   ReferenceProcessor* rp = _ref_processor_stw;
5687   assert(rp->discovery_enabled(), "should have been enabled");
5688 
5689   // Any reference objects, in the collection set, that were 'discovered'
5690   // by the CM ref processor should have already been copied (either by
5691   // applying the external root copy closure to the discovered lists, or
5692   // by following an RSet entry).
5693   //
5694   // But some of the referents, that are in the collection set, that these
5695   // reference objects point to may not have been copied: the STW ref
5696   // processor would have seen that the reference object had already
5697   // been 'discovered' and would have skipped discovering the reference,
5698   // but would not have treated the reference object as a regular oop.
5699   // As a result the copy closure would not have been applied to the
5700   // referent object.
5701   //
5702   // We need to explicitly copy these referent objects - the references
5703   // will be processed at the end of remarking.
5704   //
5705   // We also need to do this copying before we process the reference
5706   // objects discovered by the STW ref processor in case one of these
5707   // referents points to another object which is also referenced by an
5708   // object discovered by the STW ref processor.
5709 
5710   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5711            no_of_gc_workers == workers()->active_workers(),
5712            "Need to reset active GC workers");
5713 
5714   set_par_threads(no_of_gc_workers);
5715   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5716                                                  no_of_gc_workers,
5717                                                  _task_queues);
5718 
5719   if (G1CollectedHeap::use_parallel_gc_threads()) {
5720     workers()->run_task(&keep_cm_referents);
5721   } else {
5722     keep_cm_referents.work(0);
5723   }
5724 
5725   set_par_threads(0);
5726 
5727   // Closure to test whether a referent is alive.
5728   G1STWIsAliveClosure is_alive(this);
5729 
5730   // Even when parallel reference processing is enabled, the processing
5731   // of JNI refs is serial and performed serially by the current thread
5732   // rather than by a worker. The following PSS will be used for processing
5733   // JNI refs.
5734 
5735   // Use only a single queue for this PSS.
5736   G1ParScanThreadState            pss(this, 0, NULL);
5737 
5738   // We do not embed a reference processor in the copying/scanning
5739   // closures while we're actually processing the discovered
5740   // reference objects.
5741   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5742 
5743   pss.set_evac_failure_closure(&evac_failure_cl);
5744 
5745   assert(pss.refs()->is_empty(), "pre-condition");
5746 
5747   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5748   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5749 
5750   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5751   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5752 
5753   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5754   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5755 
5756   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5757     // We also need to mark copied objects.
5758     copy_non_heap_cl = &copy_mark_non_heap_cl;
5759     copy_metadata_cl = &copy_mark_metadata_cl;
5760   }
5761 
5762   // Keep alive closure.
5763   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5764 
5765   // Serial Complete GC closure
5766   G1STWDrainQueueClosure drain_queue(this, &pss);
5767 
5768   // Setup the soft refs policy...
5769   rp->setup_policy(false);
5770 
5771   ReferenceProcessorStats stats;
5772   if (!rp->processing_is_mt()) {
5773     // Serial reference processing...
5774     stats = rp->process_discovered_references(&is_alive,
5775                                               &keep_alive,
5776                                               &drain_queue,
5777                                               NULL,
5778                                               _gc_timer_stw,
5779                                               _gc_tracer_stw->gc_id());
5780   } else {
5781     // Parallel reference processing
5782     assert(rp->num_q() == no_of_gc_workers, "sanity");
5783     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5784 
5785     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5786     stats = rp->process_discovered_references(&is_alive,
5787                                               &keep_alive,
5788                                               &drain_queue,
5789                                               &par_task_executor,
5790                                               _gc_timer_stw,
5791                                               _gc_tracer_stw->gc_id());
5792   }
5793 
5794   _gc_tracer_stw->report_gc_reference_stats(stats);
5795 
5796   // We have completed copying any necessary live referent objects.
5797   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5798 
5799   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5800   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5801 }
5802 
5803 // Weak Reference processing during an evacuation pause (part 2).
5804 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5805   double ref_enq_start = os::elapsedTime();
5806 
5807   ReferenceProcessor* rp = _ref_processor_stw;
5808   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5809 
5810   // Now enqueue any remaining on the discovered lists on to
5811   // the pending list.
5812   if (!rp->processing_is_mt()) {
5813     // Serial reference processing...
5814     rp->enqueue_discovered_references();
5815   } else {
5816     // Parallel reference enqueueing
5817 
5818     assert(no_of_gc_workers == workers()->active_workers(),
5819            "Need to reset active workers");
5820     assert(rp->num_q() == no_of_gc_workers, "sanity");
5821     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5822 
5823     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5824     rp->enqueue_discovered_references(&par_task_executor);
5825   }
5826 
5827   rp->verify_no_references_recorded();
5828   assert(!rp->discovery_enabled(), "should have been disabled");
5829 
5830   // FIXME
5831   // CM's reference processing also cleans up the string and symbol tables.
5832   // Should we do that here also? We could, but it is a serial operation
5833   // and could significantly increase the pause time.
5834 
5835   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5836   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5837 }
5838 
5839 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5840   _expand_heap_after_alloc_failure = true;
5841   _evacuation_failed = false;
5842 
5843   // Should G1EvacuationFailureALot be in effect for this GC?
5844   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5845 
5846   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5847 
5848   // Disable the hot card cache.
5849   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5850   hot_card_cache->reset_hot_cache_claimed_index();
5851   hot_card_cache->set_use_cache(false);
5852 
5853   uint n_workers;
5854   if (G1CollectedHeap::use_parallel_gc_threads()) {
5855     n_workers =
5856       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5857                                      workers()->active_workers(),
5858                                      Threads::number_of_non_daemon_threads());
5859     assert(UseDynamicNumberOfGCThreads ||
5860            n_workers == workers()->total_workers(),
5861            "If not dynamic should be using all the  workers");
5862     workers()->set_active_workers(n_workers);
5863     set_par_threads(n_workers);
5864   } else {
5865     assert(n_par_threads() == 0,
5866            "Should be the original non-parallel value");
5867     n_workers = 1;
5868   }
5869 
5870   G1ParTask g1_par_task(this, _task_queues);
5871 
5872   init_for_evac_failure(NULL);
5873 
5874   rem_set()->prepare_for_younger_refs_iterate(true);
5875 
5876   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5877   double start_par_time_sec = os::elapsedTime();
5878   double end_par_time_sec;
5879 
5880   {
5881     StrongRootsScope srs(this);
5882 
5883     if (G1CollectedHeap::use_parallel_gc_threads()) {
5884       // The individual threads will set their evac-failure closures.
5885       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5886       // These tasks use ShareHeap::_process_strong_tasks
5887       assert(UseDynamicNumberOfGCThreads ||
5888              workers()->active_workers() == workers()->total_workers(),
5889              "If not dynamic should be using all the  workers");
5890       workers()->run_task(&g1_par_task);
5891     } else {
5892       g1_par_task.set_for_termination(n_workers);
5893       g1_par_task.work(0);
5894     }
5895     end_par_time_sec = os::elapsedTime();
5896 
5897     // Closing the inner scope will execute the destructor
5898     // for the StrongRootsScope object. We record the current
5899     // elapsed time before closing the scope so that time
5900     // taken for the SRS destructor is NOT included in the
5901     // reported parallel time.
5902   }
5903 
5904   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5905   g1_policy()->phase_times()->record_par_time(par_time_ms);
5906 
5907   double code_root_fixup_time_ms =
5908         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5909   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5910 
5911   set_par_threads(0);
5912 
5913   // Process any discovered reference objects - we have
5914   // to do this _before_ we retire the GC alloc regions
5915   // as we may have to copy some 'reachable' referent
5916   // objects (and their reachable sub-graphs) that were
5917   // not copied during the pause.
5918   process_discovered_references(n_workers);
5919 
5920   // Weak root processing.
5921   {
5922     G1STWIsAliveClosure is_alive(this);
5923     G1KeepAliveClosure keep_alive(this);
5924     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5925     if (G1StringDedup::is_enabled()) {
5926       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5927     }
5928   }
5929 
5930   release_gc_alloc_regions(n_workers, evacuation_info);
5931   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5932 
5933   // Reset and re-enable the hot card cache.
5934   // Note the counts for the cards in the regions in the
5935   // collection set are reset when the collection set is freed.
5936   hot_card_cache->reset_hot_cache();
5937   hot_card_cache->set_use_cache(true);
5938 
5939   // Migrate the strong code roots attached to each region in
5940   // the collection set. Ideally we would like to do this
5941   // after we have finished the scanning/evacuation of the
5942   // strong code roots for a particular heap region.
5943   migrate_strong_code_roots();
5944 
5945   purge_code_root_memory();
5946 
5947   if (g1_policy()->during_initial_mark_pause()) {
5948     // Reset the claim values set during marking the strong code roots
5949     reset_heap_region_claim_values();
5950   }
5951 
5952   finalize_for_evac_failure();
5953 
5954   if (evacuation_failed()) {
5955     remove_self_forwarding_pointers();
5956 
5957     // Reset the G1EvacuationFailureALot counters and flags
5958     // Note: the values are reset only when an actual
5959     // evacuation failure occurs.
5960     NOT_PRODUCT(reset_evacuation_should_fail();)
5961   }
5962 
5963   // Enqueue any remaining references remaining on the STW
5964   // reference processor's discovered lists. We need to do
5965   // this after the card table is cleaned (and verified) as
5966   // the act of enqueueing entries on to the pending list
5967   // will log these updates (and dirty their associated
5968   // cards). We need these updates logged to update any
5969   // RSets.
5970   enqueue_discovered_references(n_workers);
5971 
5972   if (G1DeferredRSUpdate) {
5973     redirty_logged_cards();
5974   }
5975   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5976 }
5977 
5978 void G1CollectedHeap::free_region(HeapRegion* hr,
5979                                   FreeRegionList* free_list,
5980                                   bool par,
5981                                   bool locked) {
5982   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5983   assert(!hr->is_empty(), "the region should not be empty");
5984   assert(free_list != NULL, "pre-condition");
5985 
5986   // Clear the card counts for this region.
5987   // Note: we only need to do this if the region is not young
5988   // (since we don't refine cards in young regions).
5989   if (!hr->is_young()) {
5990     _cg1r->hot_card_cache()->reset_card_counts(hr);
5991   }
5992   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5993   free_list->add_ordered(hr);
5994 }
5995 
5996 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5997                                      FreeRegionList* free_list,
5998                                      bool par) {
5999   assert(hr->startsHumongous(), "this is only for starts humongous regions");
6000   assert(free_list != NULL, "pre-condition");
6001 
6002   size_t hr_capacity = hr->capacity();
6003   // We need to read this before we make the region non-humongous,
6004   // otherwise the information will be gone.
6005   uint last_index = hr->last_hc_index();
6006   hr->set_notHumongous();
6007   free_region(hr, free_list, par);
6008 
6009   uint i = hr->hrs_index() + 1;
6010   while (i < last_index) {
6011     HeapRegion* curr_hr = region_at(i);
6012     assert(curr_hr->continuesHumongous(), "invariant");
6013     curr_hr->set_notHumongous();
6014     free_region(curr_hr, free_list, par);
6015     i += 1;
6016   }
6017 }
6018 
6019 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
6020                                        const HeapRegionSetCount& humongous_regions_removed) {
6021   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
6022     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6023     _old_set.bulk_remove(old_regions_removed);
6024     _humongous_set.bulk_remove(humongous_regions_removed);
6025   }
6026 
6027 }
6028 
6029 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
6030   assert(list != NULL, "list can't be null");
6031   if (!list->is_empty()) {
6032     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6033     _free_list.add_ordered(list);
6034   }
6035 }
6036 
6037 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6038   assert(_summary_bytes_used >= bytes,
6039          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
6040                   _summary_bytes_used, bytes));
6041   _summary_bytes_used -= bytes;
6042 }
6043 
6044 class G1ParCleanupCTTask : public AbstractGangTask {
6045   G1SATBCardTableModRefBS* _ct_bs;
6046   G1CollectedHeap* _g1h;
6047   HeapRegion* volatile _su_head;
6048 public:
6049   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6050                      G1CollectedHeap* g1h) :
6051     AbstractGangTask("G1 Par Cleanup CT Task"),
6052     _ct_bs(ct_bs), _g1h(g1h) { }
6053 
6054   void work(uint worker_id) {
6055     HeapRegion* r;
6056     while (r = _g1h->pop_dirty_cards_region()) {
6057       clear_cards(r);
6058     }
6059   }
6060 
6061   void clear_cards(HeapRegion* r) {
6062     // Cards of the survivors should have already been dirtied.
6063     if (!r->is_survivor()) {
6064       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6065     }
6066   }
6067 };
6068 
6069 #ifndef PRODUCT
6070 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6071   G1CollectedHeap* _g1h;
6072   G1SATBCardTableModRefBS* _ct_bs;
6073 public:
6074   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6075     : _g1h(g1h), _ct_bs(ct_bs) { }
6076   virtual bool doHeapRegion(HeapRegion* r) {
6077     if (r->is_survivor()) {
6078       _g1h->verify_dirty_region(r);
6079     } else {
6080       _g1h->verify_not_dirty_region(r);
6081     }
6082     return false;
6083   }
6084 };
6085 
6086 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6087   // All of the region should be clean.
6088   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6089   MemRegion mr(hr->bottom(), hr->end());
6090   ct_bs->verify_not_dirty_region(mr);
6091 }
6092 
6093 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6094   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6095   // dirty allocated blocks as they allocate them. The thread that
6096   // retires each region and replaces it with a new one will do a
6097   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6098   // not dirty that area (one less thing to have to do while holding
6099   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6100   // is dirty.
6101   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6102   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6103   if (hr->is_young()) {
6104     ct_bs->verify_g1_young_region(mr);
6105   } else {
6106     ct_bs->verify_dirty_region(mr);
6107   }
6108 }
6109 
6110 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6111   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6112   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6113     verify_dirty_region(hr);
6114   }
6115 }
6116 
6117 void G1CollectedHeap::verify_dirty_young_regions() {
6118   verify_dirty_young_list(_young_list->first_region());
6119 }
6120 #endif
6121 
6122 void G1CollectedHeap::cleanUpCardTable() {
6123   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6124   double start = os::elapsedTime();
6125 
6126   {
6127     // Iterate over the dirty cards region list.
6128     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6129 
6130     if (G1CollectedHeap::use_parallel_gc_threads()) {
6131       set_par_threads();
6132       workers()->run_task(&cleanup_task);
6133       set_par_threads(0);
6134     } else {
6135       while (_dirty_cards_region_list) {
6136         HeapRegion* r = _dirty_cards_region_list;
6137         cleanup_task.clear_cards(r);
6138         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6139         if (_dirty_cards_region_list == r) {
6140           // The last region.
6141           _dirty_cards_region_list = NULL;
6142         }
6143         r->set_next_dirty_cards_region(NULL);
6144       }
6145     }
6146 #ifndef PRODUCT
6147     if (G1VerifyCTCleanup || VerifyAfterGC) {
6148       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6149       heap_region_iterate(&cleanup_verifier);
6150     }
6151 #endif
6152   }
6153 
6154   double elapsed = os::elapsedTime() - start;
6155   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6156 }
6157 
6158 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6159   size_t pre_used = 0;
6160   FreeRegionList local_free_list("Local List for CSet Freeing");
6161 
6162   double young_time_ms     = 0.0;
6163   double non_young_time_ms = 0.0;
6164 
6165   // Since the collection set is a superset of the the young list,
6166   // all we need to do to clear the young list is clear its
6167   // head and length, and unlink any young regions in the code below
6168   _young_list->clear();
6169 
6170   G1CollectorPolicy* policy = g1_policy();
6171 
6172   double start_sec = os::elapsedTime();
6173   bool non_young = true;
6174 
6175   HeapRegion* cur = cs_head;
6176   int age_bound = -1;
6177   size_t rs_lengths = 0;
6178 
6179   while (cur != NULL) {
6180     assert(!is_on_master_free_list(cur), "sanity");
6181     if (non_young) {
6182       if (cur->is_young()) {
6183         double end_sec = os::elapsedTime();
6184         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6185         non_young_time_ms += elapsed_ms;
6186 
6187         start_sec = os::elapsedTime();
6188         non_young = false;
6189       }
6190     } else {
6191       if (!cur->is_young()) {
6192         double end_sec = os::elapsedTime();
6193         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6194         young_time_ms += elapsed_ms;
6195 
6196         start_sec = os::elapsedTime();
6197         non_young = true;
6198       }
6199     }
6200 
6201     rs_lengths += cur->rem_set()->occupied_locked();
6202 
6203     HeapRegion* next = cur->next_in_collection_set();
6204     assert(cur->in_collection_set(), "bad CS");
6205     cur->set_next_in_collection_set(NULL);
6206     cur->set_in_collection_set(false);
6207 
6208     if (cur->is_young()) {
6209       int index = cur->young_index_in_cset();
6210       assert(index != -1, "invariant");
6211       assert((uint) index < policy->young_cset_region_length(), "invariant");
6212       size_t words_survived = _surviving_young_words[index];
6213       cur->record_surv_words_in_group(words_survived);
6214 
6215       // At this point the we have 'popped' cur from the collection set
6216       // (linked via next_in_collection_set()) but it is still in the
6217       // young list (linked via next_young_region()). Clear the
6218       // _next_young_region field.
6219       cur->set_next_young_region(NULL);
6220     } else {
6221       int index = cur->young_index_in_cset();
6222       assert(index == -1, "invariant");
6223     }
6224 
6225     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6226             (!cur->is_young() && cur->young_index_in_cset() == -1),
6227             "invariant" );
6228 
6229     if (!cur->evacuation_failed()) {
6230       MemRegion used_mr = cur->used_region();
6231 
6232       // And the region is empty.
6233       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6234       pre_used += cur->used();
6235       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6236     } else {
6237       cur->uninstall_surv_rate_group();
6238       if (cur->is_young()) {
6239         cur->set_young_index_in_cset(-1);
6240       }
6241       cur->set_not_young();
6242       cur->set_evacuation_failed(false);
6243       // The region is now considered to be old.
6244       _old_set.add(cur);
6245       evacuation_info.increment_collectionset_used_after(cur->used());
6246     }
6247     cur = next;
6248   }
6249 
6250   evacuation_info.set_regions_freed(local_free_list.length());
6251   policy->record_max_rs_lengths(rs_lengths);
6252   policy->cset_regions_freed();
6253 
6254   double end_sec = os::elapsedTime();
6255   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6256 
6257   if (non_young) {
6258     non_young_time_ms += elapsed_ms;
6259   } else {
6260     young_time_ms += elapsed_ms;
6261   }
6262 
6263   prepend_to_freelist(&local_free_list);
6264   decrement_summary_bytes(pre_used);
6265   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6266   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6267 }
6268 
6269 // This routine is similar to the above but does not record
6270 // any policy statistics or update free lists; we are abandoning
6271 // the current incremental collection set in preparation of a
6272 // full collection. After the full GC we will start to build up
6273 // the incremental collection set again.
6274 // This is only called when we're doing a full collection
6275 // and is immediately followed by the tearing down of the young list.
6276 
6277 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6278   HeapRegion* cur = cs_head;
6279 
6280   while (cur != NULL) {
6281     HeapRegion* next = cur->next_in_collection_set();
6282     assert(cur->in_collection_set(), "bad CS");
6283     cur->set_next_in_collection_set(NULL);
6284     cur->set_in_collection_set(false);
6285     cur->set_young_index_in_cset(-1);
6286     cur = next;
6287   }
6288 }
6289 
6290 void G1CollectedHeap::set_free_regions_coming() {
6291   if (G1ConcRegionFreeingVerbose) {
6292     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6293                            "setting free regions coming");
6294   }
6295 
6296   assert(!free_regions_coming(), "pre-condition");
6297   _free_regions_coming = true;
6298 }
6299 
6300 void G1CollectedHeap::reset_free_regions_coming() {
6301   assert(free_regions_coming(), "pre-condition");
6302 
6303   {
6304     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6305     _free_regions_coming = false;
6306     SecondaryFreeList_lock->notify_all();
6307   }
6308 
6309   if (G1ConcRegionFreeingVerbose) {
6310     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6311                            "reset free regions coming");
6312   }
6313 }
6314 
6315 void G1CollectedHeap::wait_while_free_regions_coming() {
6316   // Most of the time we won't have to wait, so let's do a quick test
6317   // first before we take the lock.
6318   if (!free_regions_coming()) {
6319     return;
6320   }
6321 
6322   if (G1ConcRegionFreeingVerbose) {
6323     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6324                            "waiting for free regions");
6325   }
6326 
6327   {
6328     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6329     while (free_regions_coming()) {
6330       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6331     }
6332   }
6333 
6334   if (G1ConcRegionFreeingVerbose) {
6335     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6336                            "done waiting for free regions");
6337   }
6338 }
6339 
6340 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6341   assert(heap_lock_held_for_gc(),
6342               "the heap lock should already be held by or for this thread");
6343   _young_list->push_region(hr);
6344 }
6345 
6346 class NoYoungRegionsClosure: public HeapRegionClosure {
6347 private:
6348   bool _success;
6349 public:
6350   NoYoungRegionsClosure() : _success(true) { }
6351   bool doHeapRegion(HeapRegion* r) {
6352     if (r->is_young()) {
6353       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6354                              r->bottom(), r->end());
6355       _success = false;
6356     }
6357     return false;
6358   }
6359   bool success() { return _success; }
6360 };
6361 
6362 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6363   bool ret = _young_list->check_list_empty(check_sample);
6364 
6365   if (check_heap) {
6366     NoYoungRegionsClosure closure;
6367     heap_region_iterate(&closure);
6368     ret = ret && closure.success();
6369   }
6370 
6371   return ret;
6372 }
6373 
6374 class TearDownRegionSetsClosure : public HeapRegionClosure {
6375 private:
6376   HeapRegionSet *_old_set;
6377 
6378 public:
6379   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6380 
6381   bool doHeapRegion(HeapRegion* r) {
6382     if (r->is_empty()) {
6383       // We ignore empty regions, we'll empty the free list afterwards
6384     } else if (r->is_young()) {
6385       // We ignore young regions, we'll empty the young list afterwards
6386     } else if (r->isHumongous()) {
6387       // We ignore humongous regions, we're not tearing down the
6388       // humongous region set
6389     } else {
6390       // The rest should be old
6391       _old_set->remove(r);
6392     }
6393     return false;
6394   }
6395 
6396   ~TearDownRegionSetsClosure() {
6397     assert(_old_set->is_empty(), "post-condition");
6398   }
6399 };
6400 
6401 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6402   assert_at_safepoint(true /* should_be_vm_thread */);
6403 
6404   if (!free_list_only) {
6405     TearDownRegionSetsClosure cl(&_old_set);
6406     heap_region_iterate(&cl);
6407 
6408     // Note that emptying the _young_list is postponed and instead done as
6409     // the first step when rebuilding the regions sets again. The reason for
6410     // this is that during a full GC string deduplication needs to know if
6411     // a collected region was young or old when the full GC was initiated.
6412   }
6413   _free_list.remove_all();
6414 }
6415 
6416 class RebuildRegionSetsClosure : public HeapRegionClosure {
6417 private:
6418   bool            _free_list_only;
6419   HeapRegionSet*   _old_set;
6420   FreeRegionList* _free_list;
6421   size_t          _total_used;
6422 
6423 public:
6424   RebuildRegionSetsClosure(bool free_list_only,
6425                            HeapRegionSet* old_set, FreeRegionList* free_list) :
6426     _free_list_only(free_list_only),
6427     _old_set(old_set), _free_list(free_list), _total_used(0) {
6428     assert(_free_list->is_empty(), "pre-condition");
6429     if (!free_list_only) {
6430       assert(_old_set->is_empty(), "pre-condition");
6431     }
6432   }
6433 
6434   bool doHeapRegion(HeapRegion* r) {
6435     if (r->continuesHumongous()) {
6436       return false;
6437     }
6438 
6439     if (r->is_empty()) {
6440       // Add free regions to the free list
6441       _free_list->add_as_tail(r);
6442     } else if (!_free_list_only) {
6443       assert(!r->is_young(), "we should not come across young regions");
6444 
6445       if (r->isHumongous()) {
6446         // We ignore humongous regions, we left the humongous set unchanged
6447       } else {
6448         // The rest should be old, add them to the old set
6449         _old_set->add(r);
6450       }
6451       _total_used += r->used();
6452     }
6453 
6454     return false;
6455   }
6456 
6457   size_t total_used() {
6458     return _total_used;
6459   }
6460 };
6461 
6462 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6463   assert_at_safepoint(true /* should_be_vm_thread */);
6464 
6465   if (!free_list_only) {
6466     _young_list->empty_list();
6467   }
6468 
6469   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6470   heap_region_iterate(&cl);
6471 
6472   if (!free_list_only) {
6473     _summary_bytes_used = cl.total_used();
6474   }
6475   assert(_summary_bytes_used == recalculate_used(),
6476          err_msg("inconsistent _summary_bytes_used, "
6477                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6478                  _summary_bytes_used, recalculate_used()));
6479 }
6480 
6481 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6482   _refine_cte_cl->set_concurrent(concurrent);
6483 }
6484 
6485 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6486   HeapRegion* hr = heap_region_containing(p);
6487   if (hr == NULL) {
6488     return false;
6489   } else {
6490     return hr->is_in(p);
6491   }
6492 }
6493 
6494 // Methods for the mutator alloc region
6495 
6496 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6497                                                       bool force) {
6498   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6499   assert(!force || g1_policy()->can_expand_young_list(),
6500          "if force is true we should be able to expand the young list");
6501   bool young_list_full = g1_policy()->is_young_list_full();
6502   if (force || !young_list_full) {
6503     HeapRegion* new_alloc_region = new_region(word_size,
6504                                               false /* is_old */,
6505                                               false /* do_expand */);
6506     if (new_alloc_region != NULL) {
6507       set_region_short_lived_locked(new_alloc_region);
6508       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6509       return new_alloc_region;
6510     }
6511   }
6512   return NULL;
6513 }
6514 
6515 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6516                                                   size_t allocated_bytes) {
6517   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6518   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6519 
6520   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6521   _summary_bytes_used += allocated_bytes;
6522   _hr_printer.retire(alloc_region);
6523   // We update the eden sizes here, when the region is retired,
6524   // instead of when it's allocated, since this is the point that its
6525   // used space has been recored in _summary_bytes_used.
6526   g1mm()->update_eden_size();
6527 }
6528 
6529 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6530                                                     bool force) {
6531   return _g1h->new_mutator_alloc_region(word_size, force);
6532 }
6533 
6534 void G1CollectedHeap::set_par_threads() {
6535   // Don't change the number of workers.  Use the value previously set
6536   // in the workgroup.
6537   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6538   uint n_workers = workers()->active_workers();
6539   assert(UseDynamicNumberOfGCThreads ||
6540            n_workers == workers()->total_workers(),
6541       "Otherwise should be using the total number of workers");
6542   if (n_workers == 0) {
6543     assert(false, "Should have been set in prior evacuation pause.");
6544     n_workers = ParallelGCThreads;
6545     workers()->set_active_workers(n_workers);
6546   }
6547   set_par_threads(n_workers);
6548 }
6549 
6550 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6551                                        size_t allocated_bytes) {
6552   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6553 }
6554 
6555 // Methods for the GC alloc regions
6556 
6557 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6558                                                  uint count,
6559                                                  GCAllocPurpose ap) {
6560   assert(FreeList_lock->owned_by_self(), "pre-condition");
6561 
6562   if (count < g1_policy()->max_regions(ap)) {
6563     bool survivor = (ap == GCAllocForSurvived);
6564     HeapRegion* new_alloc_region = new_region(word_size,
6565                                               !survivor,
6566                                               true /* do_expand */);
6567     if (new_alloc_region != NULL) {
6568       // We really only need to do this for old regions given that we
6569       // should never scan survivors. But it doesn't hurt to do it
6570       // for survivors too.
6571       new_alloc_region->set_saved_mark();
6572       if (survivor) {
6573         new_alloc_region->set_survivor();
6574         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6575       } else {
6576         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6577       }
6578       bool during_im = g1_policy()->during_initial_mark_pause();
6579       new_alloc_region->note_start_of_copying(during_im);
6580       return new_alloc_region;
6581     } else {
6582       g1_policy()->note_alloc_region_limit_reached(ap);
6583     }
6584   }
6585   return NULL;
6586 }
6587 
6588 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6589                                              size_t allocated_bytes,
6590                                              GCAllocPurpose ap) {
6591   bool during_im = g1_policy()->during_initial_mark_pause();
6592   alloc_region->note_end_of_copying(during_im);
6593   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6594   if (ap == GCAllocForSurvived) {
6595     young_list()->add_survivor_region(alloc_region);
6596   } else {
6597     _old_set.add(alloc_region);
6598   }
6599   _hr_printer.retire(alloc_region);
6600 }
6601 
6602 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6603                                                        bool force) {
6604   assert(!force, "not supported for GC alloc regions");
6605   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6606 }
6607 
6608 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6609                                           size_t allocated_bytes) {
6610   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6611                                GCAllocForSurvived);
6612 }
6613 
6614 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6615                                                   bool force) {
6616   assert(!force, "not supported for GC alloc regions");
6617   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6618 }
6619 
6620 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6621                                      size_t allocated_bytes) {
6622   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6623                                GCAllocForTenured);
6624 }
6625 // Heap region set verification
6626 
6627 class VerifyRegionListsClosure : public HeapRegionClosure {
6628 private:
6629   HeapRegionSet*   _old_set;
6630   HeapRegionSet*   _humongous_set;
6631   FreeRegionList*  _free_list;
6632 
6633 public:
6634   HeapRegionSetCount _old_count;
6635   HeapRegionSetCount _humongous_count;
6636   HeapRegionSetCount _free_count;
6637 
6638   VerifyRegionListsClosure(HeapRegionSet* old_set,
6639                            HeapRegionSet* humongous_set,
6640                            FreeRegionList* free_list) :
6641     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
6642     _old_count(), _humongous_count(), _free_count(){ }
6643 
6644   bool doHeapRegion(HeapRegion* hr) {
6645     if (hr->continuesHumongous()) {
6646       return false;
6647     }
6648 
6649     if (hr->is_young()) {
6650       // TODO
6651     } else if (hr->startsHumongous()) {
6652       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
6653       _humongous_count.increment(1u, hr->capacity());
6654     } else if (hr->is_empty()) {
6655       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
6656       _free_count.increment(1u, hr->capacity());
6657     } else {
6658       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
6659       _old_count.increment(1u, hr->capacity());
6660     }
6661     return false;
6662   }
6663 
6664   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
6665     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6666     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6667         old_set->total_capacity_bytes(), _old_count.capacity()));
6668 
6669     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6670     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6671         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6672 
6673     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
6674     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6675         free_list->total_capacity_bytes(), _free_count.capacity()));
6676   }
6677 };
6678 
6679 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6680                                              HeapWord* bottom) {
6681   HeapWord* end = bottom + HeapRegion::GrainWords;
6682   MemRegion mr(bottom, end);
6683   assert(_g1_reserved.contains(mr), "invariant");
6684   // This might return NULL if the allocation fails
6685   return new HeapRegion(hrs_index, _bot_shared, mr);
6686 }
6687 
6688 void G1CollectedHeap::verify_region_sets() {
6689   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6690 
6691   // First, check the explicit lists.
6692   _free_list.verify_list();
6693   {
6694     // Given that a concurrent operation might be adding regions to
6695     // the secondary free list we have to take the lock before
6696     // verifying it.
6697     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6698     _secondary_free_list.verify_list();
6699   }
6700 
6701   // If a concurrent region freeing operation is in progress it will
6702   // be difficult to correctly attributed any free regions we come
6703   // across to the correct free list given that they might belong to
6704   // one of several (free_list, secondary_free_list, any local lists,
6705   // etc.). So, if that's the case we will skip the rest of the
6706   // verification operation. Alternatively, waiting for the concurrent
6707   // operation to complete will have a non-trivial effect on the GC's
6708   // operation (no concurrent operation will last longer than the
6709   // interval between two calls to verification) and it might hide
6710   // any issues that we would like to catch during testing.
6711   if (free_regions_coming()) {
6712     return;
6713   }
6714 
6715   // Make sure we append the secondary_free_list on the free_list so
6716   // that all free regions we will come across can be safely
6717   // attributed to the free_list.
6718   append_secondary_free_list_if_not_empty_with_lock();
6719 
6720   // Finally, make sure that the region accounting in the lists is
6721   // consistent with what we see in the heap.
6722 
6723   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6724   heap_region_iterate(&cl);
6725   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6726 }
6727 
6728 // Optimized nmethod scanning
6729 
6730 class RegisterNMethodOopClosure: public OopClosure {
6731   G1CollectedHeap* _g1h;
6732   nmethod* _nm;
6733 
6734   template <class T> void do_oop_work(T* p) {
6735     T heap_oop = oopDesc::load_heap_oop(p);
6736     if (!oopDesc::is_null(heap_oop)) {
6737       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6738       HeapRegion* hr = _g1h->heap_region_containing(obj);
6739       assert(!hr->continuesHumongous(),
6740              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6741                      " starting at "HR_FORMAT,
6742                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6743 
6744       // HeapRegion::add_strong_code_root() avoids adding duplicate
6745       // entries but having duplicates is  OK since we "mark" nmethods
6746       // as visited when we scan the strong code root lists during the GC.
6747       hr->add_strong_code_root(_nm);
6748       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6749              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6750                      _nm, HR_FORMAT_PARAMS(hr)));
6751     }
6752   }
6753 
6754 public:
6755   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6756     _g1h(g1h), _nm(nm) {}
6757 
6758   void do_oop(oop* p)       { do_oop_work(p); }
6759   void do_oop(narrowOop* p) { do_oop_work(p); }
6760 };
6761 
6762 class UnregisterNMethodOopClosure: public OopClosure {
6763   G1CollectedHeap* _g1h;
6764   nmethod* _nm;
6765 
6766   template <class T> void do_oop_work(T* p) {
6767     T heap_oop = oopDesc::load_heap_oop(p);
6768     if (!oopDesc::is_null(heap_oop)) {
6769       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6770       HeapRegion* hr = _g1h->heap_region_containing(obj);
6771       assert(!hr->continuesHumongous(),
6772              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6773                      " starting at "HR_FORMAT,
6774                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6775 
6776       hr->remove_strong_code_root(_nm);
6777       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6778              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6779                      _nm, HR_FORMAT_PARAMS(hr)));
6780     }
6781   }
6782 
6783 public:
6784   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6785     _g1h(g1h), _nm(nm) {}
6786 
6787   void do_oop(oop* p)       { do_oop_work(p); }
6788   void do_oop(narrowOop* p) { do_oop_work(p); }
6789 };
6790 
6791 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6792   CollectedHeap::register_nmethod(nm);
6793 
6794   guarantee(nm != NULL, "sanity");
6795   RegisterNMethodOopClosure reg_cl(this, nm);
6796   nm->oops_do(&reg_cl);
6797 }
6798 
6799 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6800   CollectedHeap::unregister_nmethod(nm);
6801 
6802   guarantee(nm != NULL, "sanity");
6803   UnregisterNMethodOopClosure reg_cl(this, nm);
6804   nm->oops_do(&reg_cl, true);
6805 }
6806 
6807 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6808 public:
6809   bool doHeapRegion(HeapRegion *hr) {
6810     assert(!hr->isHumongous(),
6811            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6812                    HR_FORMAT_PARAMS(hr)));
6813     hr->migrate_strong_code_roots();
6814     return false;
6815   }
6816 };
6817 
6818 void G1CollectedHeap::migrate_strong_code_roots() {
6819   MigrateCodeRootsHeapRegionClosure cl;
6820   double migrate_start = os::elapsedTime();
6821   collection_set_iterate(&cl);
6822   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6823   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6824 }
6825 
6826 void G1CollectedHeap::purge_code_root_memory() {
6827   double purge_start = os::elapsedTime();
6828   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
6829   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6830   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6831 }
6832 
6833 // Mark all the code roots that point into regions *not* in the
6834 // collection set.
6835 //
6836 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6837 // walking the the code roots lists of regions not in the collection
6838 // set. Suppose we have an nmethod (M) that points to objects in two
6839 // separate regions - one in the collection set (R1) and one not (R2).
6840 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6841 // nmethod M when walking the code roots for R1. When we come to scan
6842 // the code roots for R2, we would see that M is already marked and it
6843 // would be skipped and the objects in R2 that are referenced from M
6844 // would not be evacuated.
6845 
6846 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6847 
6848   class MarkStrongCodeRootOopClosure: public OopClosure {
6849     ConcurrentMark* _cm;
6850     HeapRegion* _hr;
6851     uint _worker_id;
6852 
6853     template <class T> void do_oop_work(T* p) {
6854       T heap_oop = oopDesc::load_heap_oop(p);
6855       if (!oopDesc::is_null(heap_oop)) {
6856         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6857         // Only mark objects in the region (which is assumed
6858         // to be not in the collection set).
6859         if (_hr->is_in(obj)) {
6860           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6861         }
6862       }
6863     }
6864 
6865   public:
6866     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6867       _cm(cm), _hr(hr), _worker_id(worker_id) {
6868       assert(!_hr->in_collection_set(), "sanity");
6869     }
6870 
6871     void do_oop(narrowOop* p) { do_oop_work(p); }
6872     void do_oop(oop* p)       { do_oop_work(p); }
6873   };
6874 
6875   MarkStrongCodeRootOopClosure _oop_cl;
6876 
6877 public:
6878   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6879     _oop_cl(cm, hr, worker_id) {}
6880 
6881   void do_code_blob(CodeBlob* cb) {
6882     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6883     if (nm != NULL) {
6884       nm->oops_do(&_oop_cl);
6885     }
6886   }
6887 };
6888 
6889 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6890   G1CollectedHeap* _g1h;
6891   uint _worker_id;
6892 
6893 public:
6894   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6895     _g1h(g1h), _worker_id(worker_id) {}
6896 
6897   bool doHeapRegion(HeapRegion *hr) {
6898     HeapRegionRemSet* hrrs = hr->rem_set();
6899     if (hr->continuesHumongous()) {
6900       // Code roots should never be attached to a continuation of a humongous region
6901       assert(hrrs->strong_code_roots_list_length() == 0,
6902              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6903                      " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6904                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
6905                      hrrs->strong_code_roots_list_length()));
6906       return false;
6907     }
6908 
6909     if (hr->in_collection_set()) {
6910       // Don't mark code roots into regions in the collection set here.
6911       // They will be marked when we scan them.
6912       return false;
6913     }
6914 
6915     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6916     hr->strong_code_roots_do(&cb_cl);
6917     return false;
6918   }
6919 };
6920 
6921 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6922   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6923   if (G1CollectedHeap::use_parallel_gc_threads()) {
6924     heap_region_par_iterate_chunked(&cl,
6925                                     worker_id,
6926                                     workers()->active_workers(),
6927                                     HeapRegion::ParMarkRootClaimValue);
6928   } else {
6929     heap_region_iterate(&cl);
6930   }
6931 }
6932 
6933 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6934   G1CollectedHeap* _g1h;
6935 
6936 public:
6937   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6938     _g1h(g1h) {}
6939 
6940   void do_code_blob(CodeBlob* cb) {
6941     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6942     if (nm == NULL) {
6943       return;
6944     }
6945 
6946     if (ScavengeRootsInCode) {
6947       _g1h->register_nmethod(nm);
6948     }
6949   }
6950 };
6951 
6952 void G1CollectedHeap::rebuild_strong_code_roots() {
6953   RebuildStrongCodeRootClosure blob_cl(this);
6954   CodeCache::blobs_do(&blob_cl);
6955 }