1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1ThreadLocalData.hpp"
  58 #include "gc/g1/g1YCTypes.hpp"
  59 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  60 #include "gc/g1/heapRegion.inline.hpp"
  61 #include "gc/g1/heapRegionRemSet.hpp"
  62 #include "gc/g1/heapRegionSet.inline.hpp"
  63 #include "gc/g1/vm_operations_g1.hpp"
  64 #include "gc/shared/adaptiveSizePolicy.hpp"
  65 #include "gc/shared/gcHeapSummary.hpp"
  66 #include "gc/shared/gcId.hpp"
  67 #include "gc/shared/gcLocker.hpp"
  68 #include "gc/shared/gcTimer.hpp"
  69 #include "gc/shared/gcTrace.hpp"
  70 #include "gc/shared/gcTraceTime.inline.hpp"
  71 #include "gc/shared/generationSpec.hpp"
  72 #include "gc/shared/isGCActiveMark.hpp"
  73 #include "gc/shared/oopStorageParState.hpp"
  74 #include "gc/shared/parallelCleaning.hpp"
  75 #include "gc/shared/preservedMarks.inline.hpp"
  76 #include "gc/shared/suspendibleThreadSet.hpp"
  77 #include "gc/shared/referenceProcessor.inline.hpp"
  78 #include "gc/shared/taskqueue.inline.hpp"
  79 #include "gc/shared/weakProcessor.inline.hpp"
  80 #include "logging/log.hpp"
  81 #include "memory/allocation.hpp"
  82 #include "memory/iterator.hpp"
  83 #include "memory/resourceArea.hpp"
  84 #include "oops/access.inline.hpp"
  85 #include "oops/compressedOops.inline.hpp"
  86 #include "oops/oop.inline.hpp"
  87 #include "runtime/atomic.hpp"
  88 #include "runtime/flags/flagSetting.hpp"
  89 #include "runtime/handles.inline.hpp"
  90 #include "runtime/init.hpp"
  91 #include "runtime/orderAccess.hpp"
  92 #include "runtime/threadSMR.hpp"
  93 #include "runtime/vmThread.hpp"
  94 #include "utilities/align.hpp"
  95 #include "utilities/globalDefinitions.hpp"
  96 #include "utilities/stack.inline.hpp"
  97 
  98 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  99 
 100 // INVARIANTS/NOTES
 101 //
 102 // All allocation activity covered by the G1CollectedHeap interface is
 103 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 104 // and allocate_new_tlab, which are the "entry" points to the
 105 // allocation code from the rest of the JVM.  (Note that this does not
 106 // apply to TLAB allocation, which is not part of this interface: it
 107 // is done by clients of this interface.)
 108 
 109 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 110  private:
 111   size_t _num_dirtied;
 112   G1CollectedHeap* _g1h;
 113   G1CardTable* _g1_ct;
 114 
 115   HeapRegion* region_for_card(jbyte* card_ptr) const {
 116     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 117   }
 118 
 119   bool will_become_free(HeapRegion* hr) const {
 120     // A region will be freed by free_collection_set if the region is in the
 121     // collection set and has not had an evacuation failure.
 122     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 123   }
 124 
 125  public:
 126   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 127     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 128 
 129   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 130     HeapRegion* hr = region_for_card(card_ptr);
 131 
 132     // Should only dirty cards in regions that won't be freed.
 133     if (!will_become_free(hr)) {
 134       *card_ptr = G1CardTable::dirty_card_val();
 135       _num_dirtied++;
 136     }
 137 
 138     return true;
 139   }
 140 
 141   size_t num_dirtied()   const { return _num_dirtied; }
 142 };
 143 
 144 
 145 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 146   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 147 }
 148 
 149 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 150   // The from card cache is not the memory that is actually committed. So we cannot
 151   // take advantage of the zero_filled parameter.
 152   reset_from_card_cache(start_idx, num_regions);
 153 }
 154 
 155 
 156 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 157                                              MemRegion mr) {
 158   return new HeapRegion(hrs_index, bot(), mr);
 159 }
 160 
 161 // Private methods.
 162 
 163 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 164   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 165          "the only time we use this to allocate a humongous region is "
 166          "when we are allocating a single humongous region");
 167 
 168   HeapRegion* res = _hrm.allocate_free_region(is_old);
 169 
 170   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 171     // Currently, only attempts to allocate GC alloc regions set
 172     // do_expand to true. So, we should only reach here during a
 173     // safepoint. If this assumption changes we might have to
 174     // reconsider the use of _expand_heap_after_alloc_failure.
 175     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 176 
 177     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 178                               word_size * HeapWordSize);
 179 
 180     if (expand(word_size * HeapWordSize)) {
 181       // Given that expand() succeeded in expanding the heap, and we
 182       // always expand the heap by an amount aligned to the heap
 183       // region size, the free list should in theory not be empty.
 184       // In either case allocate_free_region() will check for NULL.
 185       res = _hrm.allocate_free_region(is_old);
 186     } else {
 187       _expand_heap_after_alloc_failure = false;
 188     }
 189   }
 190   return res;
 191 }
 192 
 193 HeapWord*
 194 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 195                                                            uint num_regions,
 196                                                            size_t word_size) {
 197   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 198   assert(is_humongous(word_size), "word_size should be humongous");
 199   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 200 
 201   // Index of last region in the series.
 202   uint last = first + num_regions - 1;
 203 
 204   // We need to initialize the region(s) we just discovered. This is
 205   // a bit tricky given that it can happen concurrently with
 206   // refinement threads refining cards on these regions and
 207   // potentially wanting to refine the BOT as they are scanning
 208   // those cards (this can happen shortly after a cleanup; see CR
 209   // 6991377). So we have to set up the region(s) carefully and in
 210   // a specific order.
 211 
 212   // The word size sum of all the regions we will allocate.
 213   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 214   assert(word_size <= word_size_sum, "sanity");
 215 
 216   // This will be the "starts humongous" region.
 217   HeapRegion* first_hr = region_at(first);
 218   // The header of the new object will be placed at the bottom of
 219   // the first region.
 220   HeapWord* new_obj = first_hr->bottom();
 221   // This will be the new top of the new object.
 222   HeapWord* obj_top = new_obj + word_size;
 223 
 224   // First, we need to zero the header of the space that we will be
 225   // allocating. When we update top further down, some refinement
 226   // threads might try to scan the region. By zeroing the header we
 227   // ensure that any thread that will try to scan the region will
 228   // come across the zero klass word and bail out.
 229   //
 230   // NOTE: It would not have been correct to have used
 231   // CollectedHeap::fill_with_object() and make the space look like
 232   // an int array. The thread that is doing the allocation will
 233   // later update the object header to a potentially different array
 234   // type and, for a very short period of time, the klass and length
 235   // fields will be inconsistent. This could cause a refinement
 236   // thread to calculate the object size incorrectly.
 237   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 238 
 239   // Next, pad out the unused tail of the last region with filler
 240   // objects, for improved usage accounting.
 241   // How many words we use for filler objects.
 242   size_t word_fill_size = word_size_sum - word_size;
 243 
 244   // How many words memory we "waste" which cannot hold a filler object.
 245   size_t words_not_fillable = 0;
 246 
 247   if (word_fill_size >= min_fill_size()) {
 248     fill_with_objects(obj_top, word_fill_size);
 249   } else if (word_fill_size > 0) {
 250     // We have space to fill, but we cannot fit an object there.
 251     words_not_fillable = word_fill_size;
 252     word_fill_size = 0;
 253   }
 254 
 255   // We will set up the first region as "starts humongous". This
 256   // will also update the BOT covering all the regions to reflect
 257   // that there is a single object that starts at the bottom of the
 258   // first region.
 259   first_hr->set_starts_humongous(obj_top, word_fill_size);
 260   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 261   // Then, if there are any, we will set up the "continues
 262   // humongous" regions.
 263   HeapRegion* hr = NULL;
 264   for (uint i = first + 1; i <= last; ++i) {
 265     hr = region_at(i);
 266     hr->set_continues_humongous(first_hr);
 267     _g1_policy->remset_tracker()->update_at_allocate(hr);
 268   }
 269 
 270   // Up to this point no concurrent thread would have been able to
 271   // do any scanning on any region in this series. All the top
 272   // fields still point to bottom, so the intersection between
 273   // [bottom,top] and [card_start,card_end] will be empty. Before we
 274   // update the top fields, we'll do a storestore to make sure that
 275   // no thread sees the update to top before the zeroing of the
 276   // object header and the BOT initialization.
 277   OrderAccess::storestore();
 278 
 279   // Now, we will update the top fields of the "continues humongous"
 280   // regions except the last one.
 281   for (uint i = first; i < last; ++i) {
 282     hr = region_at(i);
 283     hr->set_top(hr->end());
 284   }
 285 
 286   hr = region_at(last);
 287   // If we cannot fit a filler object, we must set top to the end
 288   // of the humongous object, otherwise we cannot iterate the heap
 289   // and the BOT will not be complete.
 290   hr->set_top(hr->end() - words_not_fillable);
 291 
 292   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 293          "obj_top should be in last region");
 294 
 295   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 296 
 297   assert(words_not_fillable == 0 ||
 298          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 299          "Miscalculation in humongous allocation");
 300 
 301   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 302 
 303   for (uint i = first; i <= last; ++i) {
 304     hr = region_at(i);
 305     _humongous_set.add(hr);
 306     _hr_printer.alloc(hr);
 307   }
 308 
 309   return new_obj;
 310 }
 311 
 312 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 313   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 314   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 315 }
 316 
 317 // If could fit into free regions w/o expansion, try.
 318 // Otherwise, if can expand, do so.
 319 // Otherwise, if using ex regions might help, try with ex given back.
 320 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 321   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 322 
 323   _verifier->verify_region_sets_optional();
 324 
 325   uint first = G1_NO_HRM_INDEX;
 326   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 327 
 328   if (obj_regions == 1) {
 329     // Only one region to allocate, try to use a fast path by directly allocating
 330     // from the free lists. Do not try to expand here, we will potentially do that
 331     // later.
 332     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 333     if (hr != NULL) {
 334       first = hr->hrm_index();
 335     }
 336   } else {
 337     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 338     // are lucky enough to find some.
 339     first = _hrm.find_contiguous_only_empty(obj_regions);
 340     if (first != G1_NO_HRM_INDEX) {
 341       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 342     }
 343   }
 344 
 345   if (first == G1_NO_HRM_INDEX) {
 346     // Policy: We could not find enough regions for the humongous object in the
 347     // free list. Look through the heap to find a mix of free and uncommitted regions.
 348     // If so, try expansion.
 349     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 350     if (first != G1_NO_HRM_INDEX) {
 351       // We found something. Make sure these regions are committed, i.e. expand
 352       // the heap. Alternatively we could do a defragmentation GC.
 353       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 354                                     word_size * HeapWordSize);
 355 
 356       _hrm.expand_at(first, obj_regions, workers());
 357       g1_policy()->record_new_heap_size(num_regions());
 358 
 359 #ifdef ASSERT
 360       for (uint i = first; i < first + obj_regions; ++i) {
 361         HeapRegion* hr = region_at(i);
 362         assert(hr->is_free(), "sanity");
 363         assert(hr->is_empty(), "sanity");
 364         assert(is_on_master_free_list(hr), "sanity");
 365       }
 366 #endif
 367       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 368     } else {
 369       // Policy: Potentially trigger a defragmentation GC.
 370     }
 371   }
 372 
 373   HeapWord* result = NULL;
 374   if (first != G1_NO_HRM_INDEX) {
 375     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 376     assert(result != NULL, "it should always return a valid result");
 377 
 378     // A successful humongous object allocation changes the used space
 379     // information of the old generation so we need to recalculate the
 380     // sizes and update the jstat counters here.
 381     g1mm()->update_sizes();
 382   }
 383 
 384   _verifier->verify_region_sets_optional();
 385 
 386   return result;
 387 }
 388 
 389 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 390                                              size_t requested_size,
 391                                              size_t* actual_size) {
 392   assert_heap_not_locked_and_not_at_safepoint();
 393   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 394 
 395   return attempt_allocation(min_size, requested_size, actual_size);
 396 }
 397 
 398 HeapWord*
 399 G1CollectedHeap::mem_allocate(size_t word_size,
 400                               bool*  gc_overhead_limit_was_exceeded) {
 401   assert_heap_not_locked_and_not_at_safepoint();
 402 
 403   if (is_humongous(word_size)) {
 404     return attempt_allocation_humongous(word_size);
 405   }
 406   size_t dummy = 0;
 407   return attempt_allocation(word_size, word_size, &dummy);
 408 }
 409 
 410 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 411   ResourceMark rm; // For retrieving the thread names in log messages.
 412 
 413   // Make sure you read the note in attempt_allocation_humongous().
 414 
 415   assert_heap_not_locked_and_not_at_safepoint();
 416   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 417          "be called for humongous allocation requests");
 418 
 419   // We should only get here after the first-level allocation attempt
 420   // (attempt_allocation()) failed to allocate.
 421 
 422   // We will loop until a) we manage to successfully perform the
 423   // allocation or b) we successfully schedule a collection which
 424   // fails to perform the allocation. b) is the only case when we'll
 425   // return NULL.
 426   HeapWord* result = NULL;
 427   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 428     bool should_try_gc;
 429     uint gc_count_before;
 430 
 431     {
 432       MutexLockerEx x(Heap_lock);
 433       result = _allocator->attempt_allocation_locked(word_size);
 434       if (result != NULL) {
 435         return result;
 436       }
 437 
 438       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 439       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 440       // waiting because the GCLocker is active to not wait too long.
 441       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 442         // No need for an ergo message here, can_expand_young_list() does this when
 443         // it returns true.
 444         result = _allocator->attempt_allocation_force(word_size);
 445         if (result != NULL) {
 446           return result;
 447         }
 448       }
 449       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 450       // the GCLocker initiated GC has been performed and then retry. This includes
 451       // the case when the GC Locker is not active but has not been performed.
 452       should_try_gc = !GCLocker::needs_gc();
 453       // Read the GC count while still holding the Heap_lock.
 454       gc_count_before = total_collections();
 455     }
 456 
 457     if (should_try_gc) {
 458       bool succeeded;
 459       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 460                                    GCCause::_g1_inc_collection_pause);
 461       if (result != NULL) {
 462         assert(succeeded, "only way to get back a non-NULL result");
 463         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 464                              Thread::current()->name(), p2i(result));
 465         return result;
 466       }
 467 
 468       if (succeeded) {
 469         // We successfully scheduled a collection which failed to allocate. No
 470         // point in trying to allocate further. We'll just return NULL.
 471         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 472                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 473         return NULL;
 474       }
 475       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 476                            Thread::current()->name(), word_size);
 477     } else {
 478       // Failed to schedule a collection.
 479       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 480         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 481                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 482         return NULL;
 483       }
 484       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 485       // The GCLocker is either active or the GCLocker initiated
 486       // GC has not yet been performed. Stall until it is and
 487       // then retry the allocation.
 488       GCLocker::stall_until_clear();
 489       gclocker_retry_count += 1;
 490     }
 491 
 492     // We can reach here if we were unsuccessful in scheduling a
 493     // collection (because another thread beat us to it) or if we were
 494     // stalled due to the GC locker. In either can we should retry the
 495     // allocation attempt in case another thread successfully
 496     // performed a collection and reclaimed enough space. We do the
 497     // first attempt (without holding the Heap_lock) here and the
 498     // follow-on attempt will be at the start of the next loop
 499     // iteration (after taking the Heap_lock).
 500     size_t dummy = 0;
 501     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 502     if (result != NULL) {
 503       return result;
 504     }
 505 
 506     // Give a warning if we seem to be looping forever.
 507     if ((QueuedAllocationWarningCount > 0) &&
 508         (try_count % QueuedAllocationWarningCount == 0)) {
 509       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 510                              Thread::current()->name(), try_count, word_size);
 511     }
 512   }
 513 
 514   ShouldNotReachHere();
 515   return NULL;
 516 }
 517 
 518 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 519   assert_at_safepoint_on_vm_thread();
 520   if (_archive_allocator == NULL) {
 521     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 522   }
 523 }
 524 
 525 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 526   // Allocations in archive regions cannot be of a size that would be considered
 527   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 528   // may be different at archive-restore time.
 529   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 530 }
 531 
 532 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 533   assert_at_safepoint_on_vm_thread();
 534   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 535   if (is_archive_alloc_too_large(word_size)) {
 536     return NULL;
 537   }
 538   return _archive_allocator->archive_mem_allocate(word_size);
 539 }
 540 
 541 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 542                                               size_t end_alignment_in_bytes) {
 543   assert_at_safepoint_on_vm_thread();
 544   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 545 
 546   // Call complete_archive to do the real work, filling in the MemRegion
 547   // array with the archive regions.
 548   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 549   delete _archive_allocator;
 550   _archive_allocator = NULL;
 551 }
 552 
 553 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 554   assert(ranges != NULL, "MemRegion array NULL");
 555   assert(count != 0, "No MemRegions provided");
 556   MemRegion reserved = _hrm.reserved();
 557   for (size_t i = 0; i < count; i++) {
 558     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 559       return false;
 560     }
 561   }
 562   return true;
 563 }
 564 
 565 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 566                                             size_t count,
 567                                             bool open) {
 568   assert(!is_init_completed(), "Expect to be called at JVM init time");
 569   assert(ranges != NULL, "MemRegion array NULL");
 570   assert(count != 0, "No MemRegions provided");
 571   MutexLockerEx x(Heap_lock);
 572 
 573   MemRegion reserved = _hrm.reserved();
 574   HeapWord* prev_last_addr = NULL;
 575   HeapRegion* prev_last_region = NULL;
 576 
 577   // Temporarily disable pretouching of heap pages. This interface is used
 578   // when mmap'ing archived heap data in, so pre-touching is wasted.
 579   FlagSetting fs(AlwaysPreTouch, false);
 580 
 581   // Enable archive object checking used by G1MarkSweep. We have to let it know
 582   // about each archive range, so that objects in those ranges aren't marked.
 583   G1ArchiveAllocator::enable_archive_object_check();
 584 
 585   // For each specified MemRegion range, allocate the corresponding G1
 586   // regions and mark them as archive regions. We expect the ranges
 587   // in ascending starting address order, without overlap.
 588   for (size_t i = 0; i < count; i++) {
 589     MemRegion curr_range = ranges[i];
 590     HeapWord* start_address = curr_range.start();
 591     size_t word_size = curr_range.word_size();
 592     HeapWord* last_address = curr_range.last();
 593     size_t commits = 0;
 594 
 595     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 596               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 597               p2i(start_address), p2i(last_address));
 598     guarantee(start_address > prev_last_addr,
 599               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 600               p2i(start_address), p2i(prev_last_addr));
 601     prev_last_addr = last_address;
 602 
 603     // Check for ranges that start in the same G1 region in which the previous
 604     // range ended, and adjust the start address so we don't try to allocate
 605     // the same region again. If the current range is entirely within that
 606     // region, skip it, just adjusting the recorded top.
 607     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 608     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 609       start_address = start_region->end();
 610       if (start_address > last_address) {
 611         increase_used(word_size * HeapWordSize);
 612         start_region->set_top(last_address + 1);
 613         continue;
 614       }
 615       start_region->set_top(start_address);
 616       curr_range = MemRegion(start_address, last_address + 1);
 617       start_region = _hrm.addr_to_region(start_address);
 618     }
 619 
 620     // Perform the actual region allocation, exiting if it fails.
 621     // Then note how much new space we have allocated.
 622     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 623       return false;
 624     }
 625     increase_used(word_size * HeapWordSize);
 626     if (commits != 0) {
 627       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 628                                 HeapRegion::GrainWords * HeapWordSize * commits);
 629 
 630     }
 631 
 632     // Mark each G1 region touched by the range as archive, add it to
 633     // the old set, and set top.
 634     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 635     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 636     prev_last_region = last_region;
 637 
 638     while (curr_region != NULL) {
 639       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 640              "Region already in use (index %u)", curr_region->hrm_index());
 641       if (open) {
 642         curr_region->set_open_archive();
 643       } else {
 644         curr_region->set_closed_archive();
 645       }
 646       _hr_printer.alloc(curr_region);
 647       _archive_set.add(curr_region);
 648       HeapWord* top;
 649       HeapRegion* next_region;
 650       if (curr_region != last_region) {
 651         top = curr_region->end();
 652         next_region = _hrm.next_region_in_heap(curr_region);
 653       } else {
 654         top = last_address + 1;
 655         next_region = NULL;
 656       }
 657       curr_region->set_top(top);
 658       curr_region->set_first_dead(top);
 659       curr_region->set_end_of_live(top);
 660       curr_region = next_region;
 661     }
 662 
 663     // Notify mark-sweep of the archive
 664     G1ArchiveAllocator::set_range_archive(curr_range, open);
 665   }
 666   return true;
 667 }
 668 
 669 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 670   assert(!is_init_completed(), "Expect to be called at JVM init time");
 671   assert(ranges != NULL, "MemRegion array NULL");
 672   assert(count != 0, "No MemRegions provided");
 673   MemRegion reserved = _hrm.reserved();
 674   HeapWord *prev_last_addr = NULL;
 675   HeapRegion* prev_last_region = NULL;
 676 
 677   // For each MemRegion, create filler objects, if needed, in the G1 regions
 678   // that contain the address range. The address range actually within the
 679   // MemRegion will not be modified. That is assumed to have been initialized
 680   // elsewhere, probably via an mmap of archived heap data.
 681   MutexLockerEx x(Heap_lock);
 682   for (size_t i = 0; i < count; i++) {
 683     HeapWord* start_address = ranges[i].start();
 684     HeapWord* last_address = ranges[i].last();
 685 
 686     assert(reserved.contains(start_address) && reserved.contains(last_address),
 687            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 688            p2i(start_address), p2i(last_address));
 689     assert(start_address > prev_last_addr,
 690            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 691            p2i(start_address), p2i(prev_last_addr));
 692 
 693     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 694     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 695     HeapWord* bottom_address = start_region->bottom();
 696 
 697     // Check for a range beginning in the same region in which the
 698     // previous one ended.
 699     if (start_region == prev_last_region) {
 700       bottom_address = prev_last_addr + 1;
 701     }
 702 
 703     // Verify that the regions were all marked as archive regions by
 704     // alloc_archive_regions.
 705     HeapRegion* curr_region = start_region;
 706     while (curr_region != NULL) {
 707       guarantee(curr_region->is_archive(),
 708                 "Expected archive region at index %u", curr_region->hrm_index());
 709       if (curr_region != last_region) {
 710         curr_region = _hrm.next_region_in_heap(curr_region);
 711       } else {
 712         curr_region = NULL;
 713       }
 714     }
 715 
 716     prev_last_addr = last_address;
 717     prev_last_region = last_region;
 718 
 719     // Fill the memory below the allocated range with dummy object(s),
 720     // if the region bottom does not match the range start, or if the previous
 721     // range ended within the same G1 region, and there is a gap.
 722     if (start_address != bottom_address) {
 723       size_t fill_size = pointer_delta(start_address, bottom_address);
 724       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 725       increase_used(fill_size * HeapWordSize);
 726     }
 727   }
 728 }
 729 
 730 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 731                                                      size_t desired_word_size,
 732                                                      size_t* actual_word_size) {
 733   assert_heap_not_locked_and_not_at_safepoint();
 734   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 735          "be called for humongous allocation requests");
 736 
 737   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 738 
 739   if (result == NULL) {
 740     *actual_word_size = desired_word_size;
 741     result = attempt_allocation_slow(desired_word_size);
 742   }
 743 
 744   assert_heap_not_locked();
 745   if (result != NULL) {
 746     assert(*actual_word_size != 0, "Actual size must have been set here");
 747     dirty_young_block(result, *actual_word_size);
 748   } else {
 749     *actual_word_size = 0;
 750   }
 751 
 752   return result;
 753 }
 754 
 755 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 756   assert(!is_init_completed(), "Expect to be called at JVM init time");
 757   assert(ranges != NULL, "MemRegion array NULL");
 758   assert(count != 0, "No MemRegions provided");
 759   MemRegion reserved = _hrm.reserved();
 760   HeapWord* prev_last_addr = NULL;
 761   HeapRegion* prev_last_region = NULL;
 762   size_t size_used = 0;
 763   size_t uncommitted_regions = 0;
 764 
 765   // For each Memregion, free the G1 regions that constitute it, and
 766   // notify mark-sweep that the range is no longer to be considered 'archive.'
 767   MutexLockerEx x(Heap_lock);
 768   for (size_t i = 0; i < count; i++) {
 769     HeapWord* start_address = ranges[i].start();
 770     HeapWord* last_address = ranges[i].last();
 771 
 772     assert(reserved.contains(start_address) && reserved.contains(last_address),
 773            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 774            p2i(start_address), p2i(last_address));
 775     assert(start_address > prev_last_addr,
 776            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 777            p2i(start_address), p2i(prev_last_addr));
 778     size_used += ranges[i].byte_size();
 779     prev_last_addr = last_address;
 780 
 781     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 782     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 783 
 784     // Check for ranges that start in the same G1 region in which the previous
 785     // range ended, and adjust the start address so we don't try to free
 786     // the same region again. If the current range is entirely within that
 787     // region, skip it.
 788     if (start_region == prev_last_region) {
 789       start_address = start_region->end();
 790       if (start_address > last_address) {
 791         continue;
 792       }
 793       start_region = _hrm.addr_to_region(start_address);
 794     }
 795     prev_last_region = last_region;
 796 
 797     // After verifying that each region was marked as an archive region by
 798     // alloc_archive_regions, set it free and empty and uncommit it.
 799     HeapRegion* curr_region = start_region;
 800     while (curr_region != NULL) {
 801       guarantee(curr_region->is_archive(),
 802                 "Expected archive region at index %u", curr_region->hrm_index());
 803       uint curr_index = curr_region->hrm_index();
 804       _archive_set.remove(curr_region);
 805       curr_region->set_free();
 806       curr_region->set_top(curr_region->bottom());
 807       if (curr_region != last_region) {
 808         curr_region = _hrm.next_region_in_heap(curr_region);
 809       } else {
 810         curr_region = NULL;
 811       }
 812       _hrm.shrink_at(curr_index, 1);
 813       uncommitted_regions++;
 814     }
 815 
 816     // Notify mark-sweep that this is no longer an archive range.
 817     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 818   }
 819 
 820   if (uncommitted_regions != 0) {
 821     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 822                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 823   }
 824   decrease_used(size_used);
 825 }
 826 
 827 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 828   assert(obj != NULL, "archived obj is NULL");
 829   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 830 
 831   // Loading an archived object makes it strongly reachable. If it is
 832   // loaded during concurrent marking, it must be enqueued to the SATB
 833   // queue, shading the previously white object gray.
 834   G1BarrierSet::enqueue(obj);
 835 
 836   return obj;
 837 }
 838 
 839 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 840   ResourceMark rm; // For retrieving the thread names in log messages.
 841 
 842   // The structure of this method has a lot of similarities to
 843   // attempt_allocation_slow(). The reason these two were not merged
 844   // into a single one is that such a method would require several "if
 845   // allocation is not humongous do this, otherwise do that"
 846   // conditional paths which would obscure its flow. In fact, an early
 847   // version of this code did use a unified method which was harder to
 848   // follow and, as a result, it had subtle bugs that were hard to
 849   // track down. So keeping these two methods separate allows each to
 850   // be more readable. It will be good to keep these two in sync as
 851   // much as possible.
 852 
 853   assert_heap_not_locked_and_not_at_safepoint();
 854   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 855          "should only be called for humongous allocations");
 856 
 857   // Humongous objects can exhaust the heap quickly, so we should check if we
 858   // need to start a marking cycle at each humongous object allocation. We do
 859   // the check before we do the actual allocation. The reason for doing it
 860   // before the allocation is that we avoid having to keep track of the newly
 861   // allocated memory while we do a GC.
 862   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 863                                            word_size)) {
 864     collect(GCCause::_g1_humongous_allocation);
 865   }
 866 
 867   // We will loop until a) we manage to successfully perform the
 868   // allocation or b) we successfully schedule a collection which
 869   // fails to perform the allocation. b) is the only case when we'll
 870   // return NULL.
 871   HeapWord* result = NULL;
 872   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 873     bool should_try_gc;
 874     uint gc_count_before;
 875 
 876 
 877     {
 878       MutexLockerEx x(Heap_lock);
 879 
 880       // Given that humongous objects are not allocated in young
 881       // regions, we'll first try to do the allocation without doing a
 882       // collection hoping that there's enough space in the heap.
 883       result = humongous_obj_allocate(word_size);
 884       if (result != NULL) {
 885         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 886         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 887         return result;
 888       }
 889 
 890       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 891       // the GCLocker initiated GC has been performed and then retry. This includes
 892       // the case when the GC Locker is not active but has not been performed.
 893       should_try_gc = !GCLocker::needs_gc();
 894       // Read the GC count while still holding the Heap_lock.
 895       gc_count_before = total_collections();
 896     }
 897 
 898     if (should_try_gc) {
 899       bool succeeded;
 900       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 901                                    GCCause::_g1_humongous_allocation);
 902       if (result != NULL) {
 903         assert(succeeded, "only way to get back a non-NULL result");
 904         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 905                              Thread::current()->name(), p2i(result));
 906         return result;
 907       }
 908 
 909       if (succeeded) {
 910         // We successfully scheduled a collection which failed to allocate. No
 911         // point in trying to allocate further. We'll just return NULL.
 912         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 913                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 914         return NULL;
 915       }
 916       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 917                            Thread::current()->name(), word_size);
 918     } else {
 919       // Failed to schedule a collection.
 920       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 921         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 922                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 923         return NULL;
 924       }
 925       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 926       // The GCLocker is either active or the GCLocker initiated
 927       // GC has not yet been performed. Stall until it is and
 928       // then retry the allocation.
 929       GCLocker::stall_until_clear();
 930       gclocker_retry_count += 1;
 931     }
 932 
 933 
 934     // We can reach here if we were unsuccessful in scheduling a
 935     // collection (because another thread beat us to it) or if we were
 936     // stalled due to the GC locker. In either can we should retry the
 937     // allocation attempt in case another thread successfully
 938     // performed a collection and reclaimed enough space.
 939     // Humongous object allocation always needs a lock, so we wait for the retry
 940     // in the next iteration of the loop, unlike for the regular iteration case.
 941     // Give a warning if we seem to be looping forever.
 942 
 943     if ((QueuedAllocationWarningCount > 0) &&
 944         (try_count % QueuedAllocationWarningCount == 0)) {
 945       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 946                              Thread::current()->name(), try_count, word_size);
 947     }
 948   }
 949 
 950   ShouldNotReachHere();
 951   return NULL;
 952 }
 953 
 954 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 955                                                            bool expect_null_mutator_alloc_region) {
 956   assert_at_safepoint_on_vm_thread();
 957   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 958          "the current alloc region was unexpectedly found to be non-NULL");
 959 
 960   if (!is_humongous(word_size)) {
 961     return _allocator->attempt_allocation_locked(word_size);
 962   } else {
 963     HeapWord* result = humongous_obj_allocate(word_size);
 964     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 965       collector_state()->set_initiate_conc_mark_if_possible(true);
 966     }
 967     return result;
 968   }
 969 
 970   ShouldNotReachHere();
 971 }
 972 
 973 class PostCompactionPrinterClosure: public HeapRegionClosure {
 974 private:
 975   G1HRPrinter* _hr_printer;
 976 public:
 977   bool do_heap_region(HeapRegion* hr) {
 978     assert(!hr->is_young(), "not expecting to find young regions");
 979     _hr_printer->post_compaction(hr);
 980     return false;
 981   }
 982 
 983   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 984     : _hr_printer(hr_printer) { }
 985 };
 986 
 987 void G1CollectedHeap::print_hrm_post_compaction() {
 988   if (_hr_printer.is_active()) {
 989     PostCompactionPrinterClosure cl(hr_printer());
 990     heap_region_iterate(&cl);
 991   }
 992 }
 993 
 994 void G1CollectedHeap::abort_concurrent_cycle() {
 995   // If we start the compaction before the CM threads finish
 996   // scanning the root regions we might trip them over as we'll
 997   // be moving objects / updating references. So let's wait until
 998   // they are done. By telling them to abort, they should complete
 999   // early.
1000   _cm->root_regions()->abort();
1001   _cm->root_regions()->wait_until_scan_finished();
1002 
1003   // Disable discovery and empty the discovered lists
1004   // for the CM ref processor.
1005   _ref_processor_cm->disable_discovery();
1006   _ref_processor_cm->abandon_partial_discovery();
1007   _ref_processor_cm->verify_no_references_recorded();
1008 
1009   // Abandon current iterations of concurrent marking and concurrent
1010   // refinement, if any are in progress.
1011   concurrent_mark()->concurrent_cycle_abort();
1012 }
1013 
1014 void G1CollectedHeap::prepare_heap_for_full_collection() {
1015   // Make sure we'll choose a new allocation region afterwards.
1016   _allocator->release_mutator_alloc_region();
1017   _allocator->abandon_gc_alloc_regions();
1018   g1_rem_set()->cleanupHRRS();
1019 
1020   // We may have added regions to the current incremental collection
1021   // set between the last GC or pause and now. We need to clear the
1022   // incremental collection set and then start rebuilding it afresh
1023   // after this full GC.
1024   abandon_collection_set(collection_set());
1025 
1026   tear_down_region_sets(false /* free_list_only */);
1027 }
1028 
1029 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1030   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1031   assert(used() == recalculate_used(), "Should be equal");
1032   _verifier->verify_region_sets_optional();
1033   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1034   _verifier->check_bitmaps("Full GC Start");
1035 }
1036 
1037 void G1CollectedHeap::prepare_heap_for_mutators() {
1038   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1039   ClassLoaderDataGraph::purge();
1040   MetaspaceUtils::verify_metrics();
1041 
1042   // Prepare heap for normal collections.
1043   assert(num_free_regions() == 0, "we should not have added any free regions");
1044   rebuild_region_sets(false /* free_list_only */);
1045   abort_refinement();
1046   resize_heap_if_necessary();
1047 
1048   // Rebuild the strong code root lists for each region
1049   rebuild_strong_code_roots();
1050 
1051   // Purge code root memory
1052   purge_code_root_memory();
1053 
1054   // Start a new incremental collection set for the next pause
1055   start_new_collection_set();
1056 
1057   _allocator->init_mutator_alloc_region();
1058 
1059   // Post collection state updates.
1060   MetaspaceGC::compute_new_size();
1061 }
1062 
1063 void G1CollectedHeap::abort_refinement() {
1064   if (_hot_card_cache->use_cache()) {
1065     _hot_card_cache->reset_hot_cache();
1066   }
1067 
1068   // Discard all remembered set updates.
1069   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1070   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1071 }
1072 
1073 void G1CollectedHeap::verify_after_full_collection() {
1074   _hrm.verify_optional();
1075   _verifier->verify_region_sets_optional();
1076   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1077   // Clear the previous marking bitmap, if needed for bitmap verification.
1078   // Note we cannot do this when we clear the next marking bitmap in
1079   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1080   // objects marked during a full GC against the previous bitmap.
1081   // But we need to clear it before calling check_bitmaps below since
1082   // the full GC has compacted objects and updated TAMS but not updated
1083   // the prev bitmap.
1084   if (G1VerifyBitmaps) {
1085     GCTraceTime(Debug, gc)("Clear Prev Bitmap for Verification");
1086     _cm->clear_prev_bitmap(workers());
1087   }
1088   // This call implicitly verifies that the next bitmap is clear after Full GC.
1089   _verifier->check_bitmaps("Full GC End");
1090 
1091   // At this point there should be no regions in the
1092   // entire heap tagged as young.
1093   assert(check_young_list_empty(), "young list should be empty at this point");
1094 
1095   // Note: since we've just done a full GC, concurrent
1096   // marking is no longer active. Therefore we need not
1097   // re-enable reference discovery for the CM ref processor.
1098   // That will be done at the start of the next marking cycle.
1099   // We also know that the STW processor should no longer
1100   // discover any new references.
1101   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1102   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1103   _ref_processor_stw->verify_no_references_recorded();
1104   _ref_processor_cm->verify_no_references_recorded();
1105 }
1106 
1107 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1108   // Post collection logging.
1109   // We should do this after we potentially resize the heap so
1110   // that all the COMMIT / UNCOMMIT events are generated before
1111   // the compaction events.
1112   print_hrm_post_compaction();
1113   heap_transition->print();
1114   print_heap_after_gc();
1115   print_heap_regions();
1116 #ifdef TRACESPINNING
1117   ParallelTaskTerminator::print_termination_counts();
1118 #endif
1119 }
1120 
1121 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1122                                          bool clear_all_soft_refs) {
1123   assert_at_safepoint_on_vm_thread();
1124 
1125   if (GCLocker::check_active_before_gc()) {
1126     // Full GC was not completed.
1127     return false;
1128   }
1129 
1130   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1131       soft_ref_policy()->should_clear_all_soft_refs();
1132 
1133   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1134   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1135 
1136   collector.prepare_collection();
1137   collector.collect();
1138   collector.complete_collection();
1139 
1140   // Full collection was successfully completed.
1141   return true;
1142 }
1143 
1144 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1145   // Currently, there is no facility in the do_full_collection(bool) API to notify
1146   // the caller that the collection did not succeed (e.g., because it was locked
1147   // out by the GC locker). So, right now, we'll ignore the return value.
1148   bool dummy = do_full_collection(true,                /* explicit_gc */
1149                                   clear_all_soft_refs);
1150 }
1151 
1152 void G1CollectedHeap::resize_heap_if_necessary() {
1153   assert_at_safepoint_on_vm_thread();
1154 
1155   // Capacity, free and used after the GC counted as full regions to
1156   // include the waste in the following calculations.
1157   const size_t capacity_after_gc = capacity();
1158   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1159 
1160   // This is enforced in arguments.cpp.
1161   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1162          "otherwise the code below doesn't make sense");
1163 
1164   // We don't have floating point command-line arguments
1165   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1166   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1167   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1168   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1169 
1170   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1171   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1172 
1173   // We have to be careful here as these two calculations can overflow
1174   // 32-bit size_t's.
1175   double used_after_gc_d = (double) used_after_gc;
1176   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1177   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1178 
1179   // Let's make sure that they are both under the max heap size, which
1180   // by default will make them fit into a size_t.
1181   double desired_capacity_upper_bound = (double) max_heap_size;
1182   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1183                                     desired_capacity_upper_bound);
1184   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1185                                     desired_capacity_upper_bound);
1186 
1187   // We can now safely turn them into size_t's.
1188   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1189   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1190 
1191   // This assert only makes sense here, before we adjust them
1192   // with respect to the min and max heap size.
1193   assert(minimum_desired_capacity <= maximum_desired_capacity,
1194          "minimum_desired_capacity = " SIZE_FORMAT ", "
1195          "maximum_desired_capacity = " SIZE_FORMAT,
1196          minimum_desired_capacity, maximum_desired_capacity);
1197 
1198   // Should not be greater than the heap max size. No need to adjust
1199   // it with respect to the heap min size as it's a lower bound (i.e.,
1200   // we'll try to make the capacity larger than it, not smaller).
1201   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1202   // Should not be less than the heap min size. No need to adjust it
1203   // with respect to the heap max size as it's an upper bound (i.e.,
1204   // we'll try to make the capacity smaller than it, not greater).
1205   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1206 
1207   if (capacity_after_gc < minimum_desired_capacity) {
1208     // Don't expand unless it's significant
1209     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1210 
1211     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1212                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1213                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1214                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1215 
1216     expand(expand_bytes, _workers);
1217 
1218     // No expansion, now see if we want to shrink
1219   } else if (capacity_after_gc > maximum_desired_capacity) {
1220     // Capacity too large, compute shrinking size
1221     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1222 
1223     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1224                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1225                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1226                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1227 
1228     shrink(shrink_bytes);
1229   }
1230 }
1231 
1232 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1233                                                             bool do_gc,
1234                                                             bool clear_all_soft_refs,
1235                                                             bool expect_null_mutator_alloc_region,
1236                                                             bool* gc_succeeded) {
1237   *gc_succeeded = true;
1238   // Let's attempt the allocation first.
1239   HeapWord* result =
1240     attempt_allocation_at_safepoint(word_size,
1241                                     expect_null_mutator_alloc_region);
1242   if (result != NULL) {
1243     return result;
1244   }
1245 
1246   // In a G1 heap, we're supposed to keep allocation from failing by
1247   // incremental pauses.  Therefore, at least for now, we'll favor
1248   // expansion over collection.  (This might change in the future if we can
1249   // do something smarter than full collection to satisfy a failed alloc.)
1250   result = expand_and_allocate(word_size);
1251   if (result != NULL) {
1252     return result;
1253   }
1254 
1255   if (do_gc) {
1256     // Expansion didn't work, we'll try to do a Full GC.
1257     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1258                                        clear_all_soft_refs);
1259   }
1260 
1261   return NULL;
1262 }
1263 
1264 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1265                                                      bool* succeeded) {
1266   assert_at_safepoint_on_vm_thread();
1267 
1268   // Attempts to allocate followed by Full GC.
1269   HeapWord* result =
1270     satisfy_failed_allocation_helper(word_size,
1271                                      true,  /* do_gc */
1272                                      false, /* clear_all_soft_refs */
1273                                      false, /* expect_null_mutator_alloc_region */
1274                                      succeeded);
1275 
1276   if (result != NULL || !*succeeded) {
1277     return result;
1278   }
1279 
1280   // Attempts to allocate followed by Full GC that will collect all soft references.
1281   result = satisfy_failed_allocation_helper(word_size,
1282                                             true, /* do_gc */
1283                                             true, /* clear_all_soft_refs */
1284                                             true, /* expect_null_mutator_alloc_region */
1285                                             succeeded);
1286 
1287   if (result != NULL || !*succeeded) {
1288     return result;
1289   }
1290 
1291   // Attempts to allocate, no GC
1292   result = satisfy_failed_allocation_helper(word_size,
1293                                             false, /* do_gc */
1294                                             false, /* clear_all_soft_refs */
1295                                             true,  /* expect_null_mutator_alloc_region */
1296                                             succeeded);
1297 
1298   if (result != NULL) {
1299     return result;
1300   }
1301 
1302   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1303          "Flag should have been handled and cleared prior to this point");
1304 
1305   // What else?  We might try synchronous finalization later.  If the total
1306   // space available is large enough for the allocation, then a more
1307   // complete compaction phase than we've tried so far might be
1308   // appropriate.
1309   return NULL;
1310 }
1311 
1312 // Attempting to expand the heap sufficiently
1313 // to support an allocation of the given "word_size".  If
1314 // successful, perform the allocation and return the address of the
1315 // allocated block, or else "NULL".
1316 
1317 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1318   assert_at_safepoint_on_vm_thread();
1319 
1320   _verifier->verify_region_sets_optional();
1321 
1322   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1323   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1324                             word_size * HeapWordSize);
1325 
1326 
1327   if (expand(expand_bytes, _workers)) {
1328     _hrm.verify_optional();
1329     _verifier->verify_region_sets_optional();
1330     return attempt_allocation_at_safepoint(word_size,
1331                                            false /* expect_null_mutator_alloc_region */);
1332   }
1333   return NULL;
1334 }
1335 
1336 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1337   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1338   aligned_expand_bytes = align_up(aligned_expand_bytes,
1339                                        HeapRegion::GrainBytes);
1340 
1341   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1342                             expand_bytes, aligned_expand_bytes);
1343 
1344   if (is_maximal_no_gc()) {
1345     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1346     return false;
1347   }
1348 
1349   double expand_heap_start_time_sec = os::elapsedTime();
1350   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1351   assert(regions_to_expand > 0, "Must expand by at least one region");
1352 
1353   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1354   if (expand_time_ms != NULL) {
1355     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1356   }
1357 
1358   if (expanded_by > 0) {
1359     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1360     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1361     g1_policy()->record_new_heap_size(num_regions());
1362   } else {
1363     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1364 
1365     // The expansion of the virtual storage space was unsuccessful.
1366     // Let's see if it was because we ran out of swap.
1367     if (G1ExitOnExpansionFailure &&
1368         _hrm.available() >= regions_to_expand) {
1369       // We had head room...
1370       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1371     }
1372   }
1373   return regions_to_expand > 0;
1374 }
1375 
1376 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1377   size_t aligned_shrink_bytes =
1378     ReservedSpace::page_align_size_down(shrink_bytes);
1379   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1380                                          HeapRegion::GrainBytes);
1381   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1382 
1383   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1384   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1385 
1386 
1387   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1388                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1389   if (num_regions_removed > 0) {
1390     g1_policy()->record_new_heap_size(num_regions());
1391   } else {
1392     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1393   }
1394 }
1395 
1396 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1397   _verifier->verify_region_sets_optional();
1398 
1399   // We should only reach here at the end of a Full GC or during Remark which
1400   // means we should not not be holding to any GC alloc regions. The method
1401   // below will make sure of that and do any remaining clean up.
1402   _allocator->abandon_gc_alloc_regions();
1403 
1404   // Instead of tearing down / rebuilding the free lists here, we
1405   // could instead use the remove_all_pending() method on free_list to
1406   // remove only the ones that we need to remove.
1407   tear_down_region_sets(true /* free_list_only */);
1408   shrink_helper(shrink_bytes);
1409   rebuild_region_sets(true /* free_list_only */);
1410 
1411   _hrm.verify_optional();
1412   _verifier->verify_region_sets_optional();
1413 }
1414 
1415 class OldRegionSetChecker : public HeapRegionSetChecker {
1416 public:
1417   void check_mt_safety() {
1418     // Master Old Set MT safety protocol:
1419     // (a) If we're at a safepoint, operations on the master old set
1420     // should be invoked:
1421     // - by the VM thread (which will serialize them), or
1422     // - by the GC workers while holding the FreeList_lock, if we're
1423     //   at a safepoint for an evacuation pause (this lock is taken
1424     //   anyway when an GC alloc region is retired so that a new one
1425     //   is allocated from the free list), or
1426     // - by the GC workers while holding the OldSets_lock, if we're at a
1427     //   safepoint for a cleanup pause.
1428     // (b) If we're not at a safepoint, operations on the master old set
1429     // should be invoked while holding the Heap_lock.
1430 
1431     if (SafepointSynchronize::is_at_safepoint()) {
1432       guarantee(Thread::current()->is_VM_thread() ||
1433                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1434                 "master old set MT safety protocol at a safepoint");
1435     } else {
1436       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1437     }
1438   }
1439   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1440   const char* get_description() { return "Old Regions"; }
1441 };
1442 
1443 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1444 public:
1445   void check_mt_safety() {
1446     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1447               "May only change archive regions during initialization or safepoint.");
1448   }
1449   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1450   const char* get_description() { return "Archive Regions"; }
1451 };
1452 
1453 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1454 public:
1455   void check_mt_safety() {
1456     // Humongous Set MT safety protocol:
1457     // (a) If we're at a safepoint, operations on the master humongous
1458     // set should be invoked by either the VM thread (which will
1459     // serialize them) or by the GC workers while holding the
1460     // OldSets_lock.
1461     // (b) If we're not at a safepoint, operations on the master
1462     // humongous set should be invoked while holding the Heap_lock.
1463 
1464     if (SafepointSynchronize::is_at_safepoint()) {
1465       guarantee(Thread::current()->is_VM_thread() ||
1466                 OldSets_lock->owned_by_self(),
1467                 "master humongous set MT safety protocol at a safepoint");
1468     } else {
1469       guarantee(Heap_lock->owned_by_self(),
1470                 "master humongous set MT safety protocol outside a safepoint");
1471     }
1472   }
1473   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1474   const char* get_description() { return "Humongous Regions"; }
1475 };
1476 
1477 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1478   CollectedHeap(),
1479   _young_gen_sampling_thread(NULL),
1480   _workers(NULL),
1481   _collector_policy(collector_policy),
1482   _card_table(NULL),
1483   _soft_ref_policy(),
1484   _old_set("Old Region Set", new OldRegionSetChecker()),
1485   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1486   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1487   _bot(NULL),
1488   _listener(),
1489   _hrm(),
1490   _allocator(NULL),
1491   _verifier(NULL),
1492   _summary_bytes_used(0),
1493   _archive_allocator(NULL),
1494   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1495   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1496   _expand_heap_after_alloc_failure(true),
1497   _g1mm(NULL),
1498   _humongous_reclaim_candidates(),
1499   _has_humongous_reclaim_candidates(false),
1500   _hr_printer(),
1501   _collector_state(),
1502   _old_marking_cycles_started(0),
1503   _old_marking_cycles_completed(0),
1504   _eden(),
1505   _survivor(),
1506   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1507   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1508   _g1_policy(new G1Policy(_gc_timer_stw)),
1509   _heap_sizing_policy(NULL),
1510   _collection_set(this, _g1_policy),
1511   _hot_card_cache(NULL),
1512   _g1_rem_set(NULL),
1513   _dirty_card_queue_set(false),
1514   _cm(NULL),
1515   _cm_thread(NULL),
1516   _cr(NULL),
1517   _task_queues(NULL),
1518   _evacuation_failed(false),
1519   _evacuation_failed_info_array(NULL),
1520   _preserved_marks_set(true /* in_c_heap */),
1521 #ifndef PRODUCT
1522   _evacuation_failure_alot_for_current_gc(false),
1523   _evacuation_failure_alot_gc_number(0),
1524   _evacuation_failure_alot_count(0),
1525 #endif
1526   _ref_processor_stw(NULL),
1527   _is_alive_closure_stw(this),
1528   _is_subject_to_discovery_stw(this),
1529   _ref_processor_cm(NULL),
1530   _is_alive_closure_cm(this),
1531   _is_subject_to_discovery_cm(this),
1532   _in_cset_fast_test() {
1533 
1534   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1535                           true /* are_GC_task_threads */,
1536                           false /* are_ConcurrentGC_threads */);
1537   _workers->initialize_workers();
1538   _verifier = new G1HeapVerifier(this);
1539 
1540   _allocator = new G1Allocator(this);
1541 
1542   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1543 
1544   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1545 
1546   // Override the default _filler_array_max_size so that no humongous filler
1547   // objects are created.
1548   _filler_array_max_size = _humongous_object_threshold_in_words;
1549 
1550   uint n_queues = ParallelGCThreads;
1551   _task_queues = new RefToScanQueueSet(n_queues);
1552 
1553   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1554 
1555   for (uint i = 0; i < n_queues; i++) {
1556     RefToScanQueue* q = new RefToScanQueue();
1557     q->initialize();
1558     _task_queues->register_queue(i, q);
1559     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1560   }
1561 
1562   // Initialize the G1EvacuationFailureALot counters and flags.
1563   NOT_PRODUCT(reset_evacuation_should_fail();)
1564 
1565   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1566 }
1567 
1568 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1569                                                                  size_t size,
1570                                                                  size_t translation_factor) {
1571   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1572   // Allocate a new reserved space, preferring to use large pages.
1573   ReservedSpace rs(size, preferred_page_size);
1574   G1RegionToSpaceMapper* result  =
1575     G1RegionToSpaceMapper::create_mapper(rs,
1576                                          size,
1577                                          rs.alignment(),
1578                                          HeapRegion::GrainBytes,
1579                                          translation_factor,
1580                                          mtGC);
1581 
1582   os::trace_page_sizes_for_requested_size(description,
1583                                           size,
1584                                           preferred_page_size,
1585                                           rs.alignment(),
1586                                           rs.base(),
1587                                           rs.size());
1588 
1589   return result;
1590 }
1591 
1592 jint G1CollectedHeap::initialize_concurrent_refinement() {
1593   jint ecode = JNI_OK;
1594   _cr = G1ConcurrentRefine::create(&ecode);
1595   return ecode;
1596 }
1597 
1598 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1599   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1600   if (_young_gen_sampling_thread->osthread() == NULL) {
1601     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1602     return JNI_ENOMEM;
1603   }
1604   return JNI_OK;
1605 }
1606 
1607 jint G1CollectedHeap::initialize() {
1608   os::enable_vtime();
1609 
1610   // Necessary to satisfy locking discipline assertions.
1611 
1612   MutexLocker x(Heap_lock);
1613 
1614   // While there are no constraints in the GC code that HeapWordSize
1615   // be any particular value, there are multiple other areas in the
1616   // system which believe this to be true (e.g. oop->object_size in some
1617   // cases incorrectly returns the size in wordSize units rather than
1618   // HeapWordSize).
1619   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1620 
1621   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1622   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1623   size_t heap_alignment = collector_policy()->heap_alignment();
1624 
1625   // Ensure that the sizes are properly aligned.
1626   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1627   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1628   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1629 
1630   // Reserve the maximum.
1631 
1632   // When compressed oops are enabled, the preferred heap base
1633   // is calculated by subtracting the requested size from the
1634   // 32Gb boundary and using the result as the base address for
1635   // heap reservation. If the requested size is not aligned to
1636   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1637   // into the ReservedHeapSpace constructor) then the actual
1638   // base of the reserved heap may end up differing from the
1639   // address that was requested (i.e. the preferred heap base).
1640   // If this happens then we could end up using a non-optimal
1641   // compressed oops mode.
1642 
1643   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1644                                                  heap_alignment);
1645 
1646   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1647 
1648   // Create the barrier set for the entire reserved region.
1649   G1CardTable* ct = new G1CardTable(reserved_region());
1650   ct->initialize();
1651   G1BarrierSet* bs = new G1BarrierSet(ct);
1652   bs->initialize();
1653   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1654   BarrierSet::set_barrier_set(bs);
1655   _card_table = ct;
1656 
1657   // Create the hot card cache.
1658   _hot_card_cache = new G1HotCardCache(this);
1659 
1660   // Carve out the G1 part of the heap.
1661   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1662   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1663   G1RegionToSpaceMapper* heap_storage =
1664     G1RegionToSpaceMapper::create_mapper(g1_rs,
1665                                          g1_rs.size(),
1666                                          page_size,
1667                                          HeapRegion::GrainBytes,
1668                                          1,
1669                                          mtJavaHeap);
1670   os::trace_page_sizes("Heap",
1671                        collector_policy()->min_heap_byte_size(),
1672                        max_byte_size,
1673                        page_size,
1674                        heap_rs.base(),
1675                        heap_rs.size());
1676   heap_storage->set_mapping_changed_listener(&_listener);
1677 
1678   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1679   G1RegionToSpaceMapper* bot_storage =
1680     create_aux_memory_mapper("Block Offset Table",
1681                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1682                              G1BlockOffsetTable::heap_map_factor());
1683 
1684   G1RegionToSpaceMapper* cardtable_storage =
1685     create_aux_memory_mapper("Card Table",
1686                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1687                              G1CardTable::heap_map_factor());
1688 
1689   G1RegionToSpaceMapper* card_counts_storage =
1690     create_aux_memory_mapper("Card Counts Table",
1691                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1692                              G1CardCounts::heap_map_factor());
1693 
1694   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1695   G1RegionToSpaceMapper* prev_bitmap_storage =
1696     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1697   G1RegionToSpaceMapper* next_bitmap_storage =
1698     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1699 
1700   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1701   _card_table->initialize(cardtable_storage);
1702   // Do later initialization work for concurrent refinement.
1703   _hot_card_cache->initialize(card_counts_storage);
1704 
1705   // 6843694 - ensure that the maximum region index can fit
1706   // in the remembered set structures.
1707   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1708   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1709 
1710   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1711   // start within the first card.
1712   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1713   // Also create a G1 rem set.
1714   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1715   _g1_rem_set->initialize(max_capacity(), max_regions());
1716 
1717   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1718   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1719   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1720             "too many cards per region");
1721 
1722   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1723 
1724   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1725 
1726   {
1727     HeapWord* start = _hrm.reserved().start();
1728     HeapWord* end = _hrm.reserved().end();
1729     size_t granularity = HeapRegion::GrainBytes;
1730 
1731     _in_cset_fast_test.initialize(start, end, granularity);
1732     _humongous_reclaim_candidates.initialize(start, end, granularity);
1733   }
1734 
1735   // Create the G1ConcurrentMark data structure and thread.
1736   // (Must do this late, so that "max_regions" is defined.)
1737   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1738   if (_cm == NULL || !_cm->completed_initialization()) {
1739     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1740     return JNI_ENOMEM;
1741   }
1742   _cm_thread = _cm->cm_thread();
1743 
1744   // Now expand into the initial heap size.
1745   if (!expand(init_byte_size, _workers)) {
1746     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1747     return JNI_ENOMEM;
1748   }
1749 
1750   // Perform any initialization actions delegated to the policy.
1751   g1_policy()->init(this, &_collection_set);
1752 
1753   G1BarrierSet::satb_mark_queue_set().initialize(this,
1754                                                  SATB_Q_CBL_mon,
1755                                                  SATB_Q_FL_lock,
1756                                                  G1SATBProcessCompletedThreshold,
1757                                                  G1SATBBufferEnqueueingThresholdPercent,
1758                                                  Shared_SATB_Q_lock);
1759 
1760   jint ecode = initialize_concurrent_refinement();
1761   if (ecode != JNI_OK) {
1762     return ecode;
1763   }
1764 
1765   ecode = initialize_young_gen_sampling_thread();
1766   if (ecode != JNI_OK) {
1767     return ecode;
1768   }
1769 
1770   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1771                                                   DirtyCardQ_FL_lock,
1772                                                   (int)concurrent_refine()->yellow_zone(),
1773                                                   (int)concurrent_refine()->red_zone(),
1774                                                   Shared_DirtyCardQ_lock,
1775                                                   NULL,  // fl_owner
1776                                                   true); // init_free_ids
1777 
1778   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1779                                     DirtyCardQ_FL_lock,
1780                                     -1, // never trigger processing
1781                                     -1, // no limit on length
1782                                     Shared_DirtyCardQ_lock,
1783                                     &G1BarrierSet::dirty_card_queue_set());
1784 
1785   // Here we allocate the dummy HeapRegion that is required by the
1786   // G1AllocRegion class.
1787   HeapRegion* dummy_region = _hrm.get_dummy_region();
1788 
1789   // We'll re-use the same region whether the alloc region will
1790   // require BOT updates or not and, if it doesn't, then a non-young
1791   // region will complain that it cannot support allocations without
1792   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1793   dummy_region->set_eden();
1794   // Make sure it's full.
1795   dummy_region->set_top(dummy_region->end());
1796   G1AllocRegion::setup(this, dummy_region);
1797 
1798   _allocator->init_mutator_alloc_region();
1799 
1800   // Do create of the monitoring and management support so that
1801   // values in the heap have been properly initialized.
1802   _g1mm = new G1MonitoringSupport(this);
1803 
1804   G1StringDedup::initialize();
1805 
1806   _preserved_marks_set.init(ParallelGCThreads);
1807 
1808   _collection_set.initialize(max_regions());
1809 
1810   return JNI_OK;
1811 }
1812 
1813 void G1CollectedHeap::stop() {
1814   // Stop all concurrent threads. We do this to make sure these threads
1815   // do not continue to execute and access resources (e.g. logging)
1816   // that are destroyed during shutdown.
1817   _cr->stop();
1818   _young_gen_sampling_thread->stop();
1819   _cm_thread->stop();
1820   if (G1StringDedup::is_enabled()) {
1821     G1StringDedup::stop();
1822   }
1823 }
1824 
1825 void G1CollectedHeap::safepoint_synchronize_begin() {
1826   SuspendibleThreadSet::synchronize();
1827 }
1828 
1829 void G1CollectedHeap::safepoint_synchronize_end() {
1830   SuspendibleThreadSet::desynchronize();
1831 }
1832 
1833 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1834   return HeapRegion::max_region_size();
1835 }
1836 
1837 void G1CollectedHeap::post_initialize() {
1838   CollectedHeap::post_initialize();
1839   ref_processing_init();
1840 }
1841 
1842 void G1CollectedHeap::ref_processing_init() {
1843   // Reference processing in G1 currently works as follows:
1844   //
1845   // * There are two reference processor instances. One is
1846   //   used to record and process discovered references
1847   //   during concurrent marking; the other is used to
1848   //   record and process references during STW pauses
1849   //   (both full and incremental).
1850   // * Both ref processors need to 'span' the entire heap as
1851   //   the regions in the collection set may be dotted around.
1852   //
1853   // * For the concurrent marking ref processor:
1854   //   * Reference discovery is enabled at initial marking.
1855   //   * Reference discovery is disabled and the discovered
1856   //     references processed etc during remarking.
1857   //   * Reference discovery is MT (see below).
1858   //   * Reference discovery requires a barrier (see below).
1859   //   * Reference processing may or may not be MT
1860   //     (depending on the value of ParallelRefProcEnabled
1861   //     and ParallelGCThreads).
1862   //   * A full GC disables reference discovery by the CM
1863   //     ref processor and abandons any entries on it's
1864   //     discovered lists.
1865   //
1866   // * For the STW processor:
1867   //   * Non MT discovery is enabled at the start of a full GC.
1868   //   * Processing and enqueueing during a full GC is non-MT.
1869   //   * During a full GC, references are processed after marking.
1870   //
1871   //   * Discovery (may or may not be MT) is enabled at the start
1872   //     of an incremental evacuation pause.
1873   //   * References are processed near the end of a STW evacuation pause.
1874   //   * For both types of GC:
1875   //     * Discovery is atomic - i.e. not concurrent.
1876   //     * Reference discovery will not need a barrier.
1877 
1878   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1879 
1880   // Concurrent Mark ref processor
1881   _ref_processor_cm =
1882     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1883                            mt_processing,                                  // mt processing
1884                            ParallelGCThreads,                              // degree of mt processing
1885                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1886                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1887                            false,                                          // Reference discovery is not atomic
1888                            &_is_alive_closure_cm,                          // is alive closure
1889                            true);                                          // allow changes to number of processing threads
1890 
1891   // STW ref processor
1892   _ref_processor_stw =
1893     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1894                            mt_processing,                        // mt processing
1895                            ParallelGCThreads,                    // degree of mt processing
1896                            (ParallelGCThreads > 1),              // mt discovery
1897                            ParallelGCThreads,                    // degree of mt discovery
1898                            true,                                 // Reference discovery is atomic
1899                            &_is_alive_closure_stw,               // is alive closure
1900                            true);                                // allow changes to number of processing threads
1901 }
1902 
1903 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1904   return _collector_policy;
1905 }
1906 
1907 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1908   return &_soft_ref_policy;
1909 }
1910 
1911 size_t G1CollectedHeap::capacity() const {
1912   return _hrm.length() * HeapRegion::GrainBytes;
1913 }
1914 
1915 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1916   return _hrm.total_free_bytes();
1917 }
1918 
1919 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1920   _hot_card_cache->drain(cl, worker_i);
1921 }
1922 
1923 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1924   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1925   size_t n_completed_buffers = 0;
1926   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1927     n_completed_buffers++;
1928   }
1929   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1930   dcqs.clear_n_completed_buffers();
1931   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1932 }
1933 
1934 // Computes the sum of the storage used by the various regions.
1935 size_t G1CollectedHeap::used() const {
1936   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1937   if (_archive_allocator != NULL) {
1938     result += _archive_allocator->used();
1939   }
1940   return result;
1941 }
1942 
1943 size_t G1CollectedHeap::used_unlocked() const {
1944   return _summary_bytes_used;
1945 }
1946 
1947 class SumUsedClosure: public HeapRegionClosure {
1948   size_t _used;
1949 public:
1950   SumUsedClosure() : _used(0) {}
1951   bool do_heap_region(HeapRegion* r) {
1952     _used += r->used();
1953     return false;
1954   }
1955   size_t result() { return _used; }
1956 };
1957 
1958 size_t G1CollectedHeap::recalculate_used() const {
1959   SumUsedClosure blk;
1960   heap_region_iterate(&blk);
1961   return blk.result();
1962 }
1963 
1964 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1965   switch (cause) {
1966     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1967     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1968     case GCCause::_wb_conc_mark:                        return true;
1969     default :                                           return false;
1970   }
1971 }
1972 
1973 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1974   switch (cause) {
1975     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1976     case GCCause::_g1_humongous_allocation: return true;
1977     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1978     default:                                return is_user_requested_concurrent_full_gc(cause);
1979   }
1980 }
1981 
1982 #ifndef PRODUCT
1983 void G1CollectedHeap::allocate_dummy_regions() {
1984   // Let's fill up most of the region
1985   size_t word_size = HeapRegion::GrainWords - 1024;
1986   // And as a result the region we'll allocate will be humongous.
1987   guarantee(is_humongous(word_size), "sanity");
1988 
1989   // _filler_array_max_size is set to humongous object threshold
1990   // but temporarily change it to use CollectedHeap::fill_with_object().
1991   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1992 
1993   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1994     // Let's use the existing mechanism for the allocation
1995     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1996     if (dummy_obj != NULL) {
1997       MemRegion mr(dummy_obj, word_size);
1998       CollectedHeap::fill_with_object(mr);
1999     } else {
2000       // If we can't allocate once, we probably cannot allocate
2001       // again. Let's get out of the loop.
2002       break;
2003     }
2004   }
2005 }
2006 #endif // !PRODUCT
2007 
2008 void G1CollectedHeap::increment_old_marking_cycles_started() {
2009   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2010          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2011          "Wrong marking cycle count (started: %d, completed: %d)",
2012          _old_marking_cycles_started, _old_marking_cycles_completed);
2013 
2014   _old_marking_cycles_started++;
2015 }
2016 
2017 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2018   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2019 
2020   // We assume that if concurrent == true, then the caller is a
2021   // concurrent thread that was joined the Suspendible Thread
2022   // Set. If there's ever a cheap way to check this, we should add an
2023   // assert here.
2024 
2025   // Given that this method is called at the end of a Full GC or of a
2026   // concurrent cycle, and those can be nested (i.e., a Full GC can
2027   // interrupt a concurrent cycle), the number of full collections
2028   // completed should be either one (in the case where there was no
2029   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2030   // behind the number of full collections started.
2031 
2032   // This is the case for the inner caller, i.e. a Full GC.
2033   assert(concurrent ||
2034          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2035          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2036          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2037          "is inconsistent with _old_marking_cycles_completed = %u",
2038          _old_marking_cycles_started, _old_marking_cycles_completed);
2039 
2040   // This is the case for the outer caller, i.e. the concurrent cycle.
2041   assert(!concurrent ||
2042          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2043          "for outer caller (concurrent cycle): "
2044          "_old_marking_cycles_started = %u "
2045          "is inconsistent with _old_marking_cycles_completed = %u",
2046          _old_marking_cycles_started, _old_marking_cycles_completed);
2047 
2048   _old_marking_cycles_completed += 1;
2049 
2050   // We need to clear the "in_progress" flag in the CM thread before
2051   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2052   // is set) so that if a waiter requests another System.gc() it doesn't
2053   // incorrectly see that a marking cycle is still in progress.
2054   if (concurrent) {
2055     _cm_thread->set_idle();
2056   }
2057 
2058   // This notify_all() will ensure that a thread that called
2059   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2060   // and it's waiting for a full GC to finish will be woken up. It is
2061   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2062   FullGCCount_lock->notify_all();
2063 }
2064 
2065 void G1CollectedHeap::collect(GCCause::Cause cause) {
2066   assert_heap_not_locked();
2067 
2068   uint gc_count_before;
2069   uint old_marking_count_before;
2070   uint full_gc_count_before;
2071   bool retry_gc;
2072 
2073   do {
2074     retry_gc = false;
2075 
2076     {
2077       MutexLocker ml(Heap_lock);
2078 
2079       // Read the GC count while holding the Heap_lock
2080       gc_count_before = total_collections();
2081       full_gc_count_before = total_full_collections();
2082       old_marking_count_before = _old_marking_cycles_started;
2083     }
2084 
2085     if (should_do_concurrent_full_gc(cause)) {
2086       // Schedule an initial-mark evacuation pause that will start a
2087       // concurrent cycle. We're setting word_size to 0 which means that
2088       // we are not requesting a post-GC allocation.
2089       VM_G1CollectForAllocation op(0,     /* word_size */
2090                                    gc_count_before,
2091                                    cause,
2092                                    true,  /* should_initiate_conc_mark */
2093                                    g1_policy()->max_pause_time_ms());
2094       VMThread::execute(&op);
2095       if (!op.pause_succeeded()) {
2096         if (old_marking_count_before == _old_marking_cycles_started) {
2097           retry_gc = op.should_retry_gc();
2098         } else {
2099           // A Full GC happened while we were trying to schedule the
2100           // initial-mark GC. No point in starting a new cycle given
2101           // that the whole heap was collected anyway.
2102         }
2103 
2104         if (retry_gc) {
2105           if (GCLocker::is_active_and_needs_gc()) {
2106             GCLocker::stall_until_clear();
2107           }
2108         }
2109       }
2110     } else {
2111       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2112           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2113 
2114         // Schedule a standard evacuation pause. We're setting word_size
2115         // to 0 which means that we are not requesting a post-GC allocation.
2116         VM_G1CollectForAllocation op(0,     /* word_size */
2117                                      gc_count_before,
2118                                      cause,
2119                                      false, /* should_initiate_conc_mark */
2120                                      g1_policy()->max_pause_time_ms());
2121         VMThread::execute(&op);
2122       } else {
2123         // Schedule a Full GC.
2124         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2125         VMThread::execute(&op);
2126       }
2127     }
2128   } while (retry_gc);
2129 }
2130 
2131 bool G1CollectedHeap::is_in(const void* p) const {
2132   if (_hrm.reserved().contains(p)) {
2133     // Given that we know that p is in the reserved space,
2134     // heap_region_containing() should successfully
2135     // return the containing region.
2136     HeapRegion* hr = heap_region_containing(p);
2137     return hr->is_in(p);
2138   } else {
2139     return false;
2140   }
2141 }
2142 
2143 #ifdef ASSERT
2144 bool G1CollectedHeap::is_in_exact(const void* p) const {
2145   bool contains = reserved_region().contains(p);
2146   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2147   if (contains && available) {
2148     return true;
2149   } else {
2150     return false;
2151   }
2152 }
2153 #endif
2154 
2155 // Iteration functions.
2156 
2157 // Iterates an ObjectClosure over all objects within a HeapRegion.
2158 
2159 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2160   ObjectClosure* _cl;
2161 public:
2162   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2163   bool do_heap_region(HeapRegion* r) {
2164     if (!r->is_continues_humongous()) {
2165       r->object_iterate(_cl);
2166     }
2167     return false;
2168   }
2169 };
2170 
2171 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2172   IterateObjectClosureRegionClosure blk(cl);
2173   heap_region_iterate(&blk);
2174 }
2175 
2176 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2177   _hrm.iterate(cl);
2178 }
2179 
2180 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2181                                                                  HeapRegionClaimer *hrclaimer,
2182                                                                  uint worker_id) const {
2183   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2184 }
2185 
2186 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2187                                                          HeapRegionClaimer *hrclaimer) const {
2188   _hrm.par_iterate(cl, hrclaimer, 0);
2189 }
2190 
2191 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2192   _collection_set.iterate(cl);
2193 }
2194 
2195 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2196   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2197 }
2198 
2199 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2200   HeapRegion* hr = heap_region_containing(addr);
2201   return hr->block_start(addr);
2202 }
2203 
2204 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2205   HeapRegion* hr = heap_region_containing(addr);
2206   return hr->block_size(addr);
2207 }
2208 
2209 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2210   HeapRegion* hr = heap_region_containing(addr);
2211   return hr->block_is_obj(addr);
2212 }
2213 
2214 bool G1CollectedHeap::supports_tlab_allocation() const {
2215   return true;
2216 }
2217 
2218 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2219   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2220 }
2221 
2222 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2223   return _eden.length() * HeapRegion::GrainBytes;
2224 }
2225 
2226 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2227 // must be equal to the humongous object limit.
2228 size_t G1CollectedHeap::max_tlab_size() const {
2229   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2230 }
2231 
2232 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2233   return _allocator->unsafe_max_tlab_alloc();
2234 }
2235 
2236 size_t G1CollectedHeap::max_capacity() const {
2237   return _hrm.reserved().byte_size();
2238 }
2239 
2240 jlong G1CollectedHeap::millis_since_last_gc() {
2241   // See the notes in GenCollectedHeap::millis_since_last_gc()
2242   // for more information about the implementation.
2243   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2244     _g1_policy->collection_pause_end_millis();
2245   if (ret_val < 0) {
2246     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2247       ". returning zero instead.", ret_val);
2248     return 0;
2249   }
2250   return ret_val;
2251 }
2252 
2253 void G1CollectedHeap::deduplicate_string(oop str) {
2254   assert(java_lang_String::is_instance(str), "invariant");
2255 
2256   if (G1StringDedup::is_enabled()) {
2257     G1StringDedup::deduplicate(str);
2258   }
2259 }
2260 
2261 void G1CollectedHeap::prepare_for_verify() {
2262   _verifier->prepare_for_verify();
2263 }
2264 
2265 void G1CollectedHeap::verify(VerifyOption vo) {
2266   _verifier->verify(vo);
2267 }
2268 
2269 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2270   return true;
2271 }
2272 
2273 const char* const* G1CollectedHeap::concurrent_phases() const {
2274   return _cm_thread->concurrent_phases();
2275 }
2276 
2277 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2278   return _cm_thread->request_concurrent_phase(phase);
2279 }
2280 
2281 class PrintRegionClosure: public HeapRegionClosure {
2282   outputStream* _st;
2283 public:
2284   PrintRegionClosure(outputStream* st) : _st(st) {}
2285   bool do_heap_region(HeapRegion* r) {
2286     r->print_on(_st);
2287     return false;
2288   }
2289 };
2290 
2291 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2292                                        const HeapRegion* hr,
2293                                        const VerifyOption vo) const {
2294   switch (vo) {
2295   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2296   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2297   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2298   default:                            ShouldNotReachHere();
2299   }
2300   return false; // keep some compilers happy
2301 }
2302 
2303 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2304                                        const VerifyOption vo) const {
2305   switch (vo) {
2306   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2307   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2308   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2309   default:                            ShouldNotReachHere();
2310   }
2311   return false; // keep some compilers happy
2312 }
2313 
2314 void G1CollectedHeap::print_heap_regions() const {
2315   LogTarget(Trace, gc, heap, region) lt;
2316   if (lt.is_enabled()) {
2317     LogStream ls(lt);
2318     print_regions_on(&ls);
2319   }
2320 }
2321 
2322 void G1CollectedHeap::print_on(outputStream* st) const {
2323   st->print(" %-20s", "garbage-first heap");
2324   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2325             capacity()/K, used_unlocked()/K);
2326   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2327             p2i(_hrm.reserved().start()),
2328             p2i(_hrm.reserved().end()));
2329   st->cr();
2330   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2331   uint young_regions = young_regions_count();
2332   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2333             (size_t) young_regions * HeapRegion::GrainBytes / K);
2334   uint survivor_regions = survivor_regions_count();
2335   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2336             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2337   st->cr();
2338   MetaspaceUtils::print_on(st);
2339 }
2340 
2341 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2342   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2343                "HS=humongous(starts), HC=humongous(continues), "
2344                "CS=collection set, F=free, A=archive, "
2345                "TAMS=top-at-mark-start (previous, next)");
2346   PrintRegionClosure blk(st);
2347   heap_region_iterate(&blk);
2348 }
2349 
2350 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2351   print_on(st);
2352 
2353   // Print the per-region information.
2354   print_regions_on(st);
2355 }
2356 
2357 void G1CollectedHeap::print_on_error(outputStream* st) const {
2358   this->CollectedHeap::print_on_error(st);
2359 
2360   if (_cm != NULL) {
2361     st->cr();
2362     _cm->print_on_error(st);
2363   }
2364 }
2365 
2366 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2367   workers()->print_worker_threads_on(st);
2368   _cm_thread->print_on(st);
2369   st->cr();
2370   _cm->print_worker_threads_on(st);
2371   _cr->print_threads_on(st);
2372   _young_gen_sampling_thread->print_on(st);
2373   if (G1StringDedup::is_enabled()) {
2374     G1StringDedup::print_worker_threads_on(st);
2375   }
2376 }
2377 
2378 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2379   workers()->threads_do(tc);
2380   tc->do_thread(_cm_thread);
2381   _cm->threads_do(tc);
2382   _cr->threads_do(tc);
2383   tc->do_thread(_young_gen_sampling_thread);
2384   if (G1StringDedup::is_enabled()) {
2385     G1StringDedup::threads_do(tc);
2386   }
2387 }
2388 
2389 void G1CollectedHeap::print_tracing_info() const {
2390   g1_rem_set()->print_summary_info();
2391   concurrent_mark()->print_summary_info();
2392 }
2393 
2394 #ifndef PRODUCT
2395 // Helpful for debugging RSet issues.
2396 
2397 class PrintRSetsClosure : public HeapRegionClosure {
2398 private:
2399   const char* _msg;
2400   size_t _occupied_sum;
2401 
2402 public:
2403   bool do_heap_region(HeapRegion* r) {
2404     HeapRegionRemSet* hrrs = r->rem_set();
2405     size_t occupied = hrrs->occupied();
2406     _occupied_sum += occupied;
2407 
2408     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2409     if (occupied == 0) {
2410       tty->print_cr("  RSet is empty");
2411     } else {
2412       hrrs->print();
2413     }
2414     tty->print_cr("----------");
2415     return false;
2416   }
2417 
2418   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2419     tty->cr();
2420     tty->print_cr("========================================");
2421     tty->print_cr("%s", msg);
2422     tty->cr();
2423   }
2424 
2425   ~PrintRSetsClosure() {
2426     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2427     tty->print_cr("========================================");
2428     tty->cr();
2429   }
2430 };
2431 
2432 void G1CollectedHeap::print_cset_rsets() {
2433   PrintRSetsClosure cl("Printing CSet RSets");
2434   collection_set_iterate(&cl);
2435 }
2436 
2437 void G1CollectedHeap::print_all_rsets() {
2438   PrintRSetsClosure cl("Printing All RSets");;
2439   heap_region_iterate(&cl);
2440 }
2441 #endif // PRODUCT
2442 
2443 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2444 
2445   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2446   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2447   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2448 
2449   size_t eden_capacity_bytes =
2450     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2451 
2452   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2453   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2454                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2455 }
2456 
2457 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2458   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2459                        stats->unused(), stats->used(), stats->region_end_waste(),
2460                        stats->regions_filled(), stats->direct_allocated(),
2461                        stats->failure_used(), stats->failure_waste());
2462 }
2463 
2464 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2465   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2466   gc_tracer->report_gc_heap_summary(when, heap_summary);
2467 
2468   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2469   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2470 }
2471 
2472 G1CollectedHeap* G1CollectedHeap::heap() {
2473   CollectedHeap* heap = Universe::heap();
2474   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2475   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2476   return (G1CollectedHeap*)heap;
2477 }
2478 
2479 void G1CollectedHeap::gc_prologue(bool full) {
2480   // always_do_update_barrier = false;
2481   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2482 
2483   // This summary needs to be printed before incrementing total collections.
2484   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2485 
2486   // Update common counters.
2487   increment_total_collections(full /* full gc */);
2488   if (full) {
2489     increment_old_marking_cycles_started();
2490   }
2491 
2492   // Fill TLAB's and such
2493   double start = os::elapsedTime();
2494   ensure_parsability(true);
2495   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2496 }
2497 
2498 void G1CollectedHeap::gc_epilogue(bool full) {
2499   // Update common counters.
2500   if (full) {
2501     // Update the number of full collections that have been completed.
2502     increment_old_marking_cycles_completed(false /* concurrent */);
2503   }
2504 
2505   // We are at the end of the GC. Total collections has already been increased.
2506   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2507 
2508   // FIXME: what is this about?
2509   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2510   // is set.
2511 #if COMPILER2_OR_JVMCI
2512   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2513 #endif
2514   // always_do_update_barrier = true;
2515 
2516   double start = os::elapsedTime();
2517   resize_all_tlabs();
2518   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2519 
2520   MemoryService::track_memory_usage();
2521   // We have just completed a GC. Update the soft reference
2522   // policy with the new heap occupancy
2523   Universe::update_heap_info_at_gc();
2524 }
2525 
2526 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2527                                                uint gc_count_before,
2528                                                bool* succeeded,
2529                                                GCCause::Cause gc_cause) {
2530   assert_heap_not_locked_and_not_at_safepoint();
2531   VM_G1CollectForAllocation op(word_size,
2532                                gc_count_before,
2533                                gc_cause,
2534                                false, /* should_initiate_conc_mark */
2535                                g1_policy()->max_pause_time_ms());
2536   VMThread::execute(&op);
2537 
2538   HeapWord* result = op.result();
2539   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2540   assert(result == NULL || ret_succeeded,
2541          "the result should be NULL if the VM did not succeed");
2542   *succeeded = ret_succeeded;
2543 
2544   assert_heap_not_locked();
2545   return result;
2546 }
2547 
2548 void G1CollectedHeap::do_concurrent_mark() {
2549   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2550   if (!_cm_thread->in_progress()) {
2551     _cm_thread->set_started();
2552     CGC_lock->notify();
2553   }
2554 }
2555 
2556 size_t G1CollectedHeap::pending_card_num() {
2557   size_t extra_cards = 0;
2558   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2559     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2560     extra_cards += dcq.size();
2561   }
2562   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2563   size_t buffer_size = dcqs.buffer_size();
2564   size_t buffer_num = dcqs.completed_buffers_num();
2565 
2566   return buffer_size * buffer_num + extra_cards;
2567 }
2568 
2569 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2570   // We don't nominate objects with many remembered set entries, on
2571   // the assumption that such objects are likely still live.
2572   HeapRegionRemSet* rem_set = r->rem_set();
2573 
2574   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2575          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2576          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2577 }
2578 
2579 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2580  private:
2581   size_t _total_humongous;
2582   size_t _candidate_humongous;
2583 
2584   DirtyCardQueue _dcq;
2585 
2586   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2587     assert(region->is_starts_humongous(), "Must start a humongous object");
2588 
2589     oop obj = oop(region->bottom());
2590 
2591     // Dead objects cannot be eager reclaim candidates. Due to class
2592     // unloading it is unsafe to query their classes so we return early.
2593     if (g1h->is_obj_dead(obj, region)) {
2594       return false;
2595     }
2596 
2597     // If we do not have a complete remembered set for the region, then we can
2598     // not be sure that we have all references to it.
2599     if (!region->rem_set()->is_complete()) {
2600       return false;
2601     }
2602     // Candidate selection must satisfy the following constraints
2603     // while concurrent marking is in progress:
2604     //
2605     // * In order to maintain SATB invariants, an object must not be
2606     // reclaimed if it was allocated before the start of marking and
2607     // has not had its references scanned.  Such an object must have
2608     // its references (including type metadata) scanned to ensure no
2609     // live objects are missed by the marking process.  Objects
2610     // allocated after the start of concurrent marking don't need to
2611     // be scanned.
2612     //
2613     // * An object must not be reclaimed if it is on the concurrent
2614     // mark stack.  Objects allocated after the start of concurrent
2615     // marking are never pushed on the mark stack.
2616     //
2617     // Nominating only objects allocated after the start of concurrent
2618     // marking is sufficient to meet both constraints.  This may miss
2619     // some objects that satisfy the constraints, but the marking data
2620     // structures don't support efficiently performing the needed
2621     // additional tests or scrubbing of the mark stack.
2622     //
2623     // However, we presently only nominate is_typeArray() objects.
2624     // A humongous object containing references induces remembered
2625     // set entries on other regions.  In order to reclaim such an
2626     // object, those remembered sets would need to be cleaned up.
2627     //
2628     // We also treat is_typeArray() objects specially, allowing them
2629     // to be reclaimed even if allocated before the start of
2630     // concurrent mark.  For this we rely on mark stack insertion to
2631     // exclude is_typeArray() objects, preventing reclaiming an object
2632     // that is in the mark stack.  We also rely on the metadata for
2633     // such objects to be built-in and so ensured to be kept live.
2634     // Frequent allocation and drop of large binary blobs is an
2635     // important use case for eager reclaim, and this special handling
2636     // may reduce needed headroom.
2637 
2638     return obj->is_typeArray() &&
2639            g1h->is_potential_eager_reclaim_candidate(region);
2640   }
2641 
2642  public:
2643   RegisterHumongousWithInCSetFastTestClosure()
2644   : _total_humongous(0),
2645     _candidate_humongous(0),
2646     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2647   }
2648 
2649   virtual bool do_heap_region(HeapRegion* r) {
2650     if (!r->is_starts_humongous()) {
2651       return false;
2652     }
2653     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2654 
2655     bool is_candidate = humongous_region_is_candidate(g1h, r);
2656     uint rindex = r->hrm_index();
2657     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2658     if (is_candidate) {
2659       _candidate_humongous++;
2660       g1h->register_humongous_region_with_cset(rindex);
2661       // Is_candidate already filters out humongous object with large remembered sets.
2662       // If we have a humongous object with a few remembered sets, we simply flush these
2663       // remembered set entries into the DCQS. That will result in automatic
2664       // re-evaluation of their remembered set entries during the following evacuation
2665       // phase.
2666       if (!r->rem_set()->is_empty()) {
2667         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2668                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2669         G1CardTable* ct = g1h->card_table();
2670         HeapRegionRemSetIterator hrrs(r->rem_set());
2671         size_t card_index;
2672         while (hrrs.has_next(card_index)) {
2673           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2674           // The remembered set might contain references to already freed
2675           // regions. Filter out such entries to avoid failing card table
2676           // verification.
2677           if (!g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2678             continue;
2679           }
2680           if (*card_ptr != G1CardTable::dirty_card_val()) {
2681             *card_ptr = G1CardTable::dirty_card_val();
2682             _dcq.enqueue(card_ptr);
2683           }
2684         }
2685         // We should only clear the card based remembered set here as we will not
2686         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2687         // (and probably never) we do not enter this path if there are other kind of
2688         // remembered sets for this region.
2689         r->rem_set()->clear_locked(true /* only_cardset */);
2690         // Clear_locked() above sets the state to Empty. However we want to continue
2691         // collecting remembered set entries for humongous regions that were not
2692         // reclaimed.
2693         r->rem_set()->set_state_complete();
2694       }
2695       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2696     }
2697     _total_humongous++;
2698 
2699     return false;
2700   }
2701 
2702   size_t total_humongous() const { return _total_humongous; }
2703   size_t candidate_humongous() const { return _candidate_humongous; }
2704 
2705   void flush_rem_set_entries() { _dcq.flush(); }
2706 };
2707 
2708 void G1CollectedHeap::register_humongous_regions_with_cset() {
2709   if (!G1EagerReclaimHumongousObjects) {
2710     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2711     return;
2712   }
2713   double time = os::elapsed_counter();
2714 
2715   // Collect reclaim candidate information and register candidates with cset.
2716   RegisterHumongousWithInCSetFastTestClosure cl;
2717   heap_region_iterate(&cl);
2718 
2719   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2720   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2721                                                                   cl.total_humongous(),
2722                                                                   cl.candidate_humongous());
2723   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2724 
2725   // Finally flush all remembered set entries to re-check into the global DCQS.
2726   cl.flush_rem_set_entries();
2727 }
2728 
2729 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2730   public:
2731     bool do_heap_region(HeapRegion* hr) {
2732       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2733         hr->verify_rem_set();
2734       }
2735       return false;
2736     }
2737 };
2738 
2739 uint G1CollectedHeap::num_task_queues() const {
2740   return _task_queues->size();
2741 }
2742 
2743 #if TASKQUEUE_STATS
2744 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2745   st->print_raw_cr("GC Task Stats");
2746   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2747   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2748 }
2749 
2750 void G1CollectedHeap::print_taskqueue_stats() const {
2751   if (!log_is_enabled(Trace, gc, task, stats)) {
2752     return;
2753   }
2754   Log(gc, task, stats) log;
2755   ResourceMark rm;
2756   LogStream ls(log.trace());
2757   outputStream* st = &ls;
2758 
2759   print_taskqueue_stats_hdr(st);
2760 
2761   TaskQueueStats totals;
2762   const uint n = num_task_queues();
2763   for (uint i = 0; i < n; ++i) {
2764     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2765     totals += task_queue(i)->stats;
2766   }
2767   st->print_raw("tot "); totals.print(st); st->cr();
2768 
2769   DEBUG_ONLY(totals.verify());
2770 }
2771 
2772 void G1CollectedHeap::reset_taskqueue_stats() {
2773   const uint n = num_task_queues();
2774   for (uint i = 0; i < n; ++i) {
2775     task_queue(i)->stats.reset();
2776   }
2777 }
2778 #endif // TASKQUEUE_STATS
2779 
2780 void G1CollectedHeap::wait_for_root_region_scanning() {
2781   double scan_wait_start = os::elapsedTime();
2782   // We have to wait until the CM threads finish scanning the
2783   // root regions as it's the only way to ensure that all the
2784   // objects on them have been correctly scanned before we start
2785   // moving them during the GC.
2786   bool waited = _cm->root_regions()->wait_until_scan_finished();
2787   double wait_time_ms = 0.0;
2788   if (waited) {
2789     double scan_wait_end = os::elapsedTime();
2790     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2791   }
2792   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2793 }
2794 
2795 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2796 private:
2797   G1HRPrinter* _hr_printer;
2798 public:
2799   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2800 
2801   virtual bool do_heap_region(HeapRegion* r) {
2802     _hr_printer->cset(r);
2803     return false;
2804   }
2805 };
2806 
2807 void G1CollectedHeap::start_new_collection_set() {
2808   collection_set()->start_incremental_building();
2809 
2810   clear_cset_fast_test();
2811 
2812   guarantee(_eden.length() == 0, "eden should have been cleared");
2813   g1_policy()->transfer_survivors_to_cset(survivor());
2814 }
2815 
2816 bool
2817 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2818   assert_at_safepoint_on_vm_thread();
2819   guarantee(!is_gc_active(), "collection is not reentrant");
2820 
2821   if (GCLocker::check_active_before_gc()) {
2822     return false;
2823   }
2824 
2825   _gc_timer_stw->register_gc_start();
2826 
2827   GCIdMark gc_id_mark;
2828   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2829 
2830   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2831   ResourceMark rm;
2832 
2833   g1_policy()->note_gc_start();
2834 
2835   wait_for_root_region_scanning();
2836 
2837   print_heap_before_gc();
2838   print_heap_regions();
2839   trace_heap_before_gc(_gc_tracer_stw);
2840 
2841   _verifier->verify_region_sets_optional();
2842   _verifier->verify_dirty_young_regions();
2843 
2844   // We should not be doing initial mark unless the conc mark thread is running
2845   if (!_cm_thread->should_terminate()) {
2846     // This call will decide whether this pause is an initial-mark
2847     // pause. If it is, in_initial_mark_gc() will return true
2848     // for the duration of this pause.
2849     g1_policy()->decide_on_conc_mark_initiation();
2850   }
2851 
2852   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2853   assert(!collector_state()->in_initial_mark_gc() ||
2854           collector_state()->in_young_only_phase(), "sanity");
2855 
2856   // We also do not allow mixed GCs during marking.
2857   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2858 
2859   // Record whether this pause is an initial mark. When the current
2860   // thread has completed its logging output and it's safe to signal
2861   // the CM thread, the flag's value in the policy has been reset.
2862   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2863 
2864   // Inner scope for scope based logging, timers, and stats collection
2865   {
2866     EvacuationInfo evacuation_info;
2867 
2868     if (collector_state()->in_initial_mark_gc()) {
2869       // We are about to start a marking cycle, so we increment the
2870       // full collection counter.
2871       increment_old_marking_cycles_started();
2872       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2873     }
2874 
2875     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2876 
2877     GCTraceCPUTime tcpu;
2878 
2879     G1HeapVerifier::G1VerifyType verify_type;
2880     FormatBuffer<> gc_string("Pause Young ");
2881     if (collector_state()->in_initial_mark_gc()) {
2882       gc_string.append("(Concurrent Start)");
2883       verify_type = G1HeapVerifier::G1VerifyConcurrentStart;
2884     } else if (collector_state()->in_young_only_phase()) {
2885       if (collector_state()->in_young_gc_before_mixed()) {
2886         gc_string.append("(Prepare Mixed)");
2887       } else {
2888         gc_string.append("(Normal)");
2889       }
2890       verify_type = G1HeapVerifier::G1VerifyYoungNormal;
2891     } else {
2892       gc_string.append("(Mixed)");
2893       verify_type = G1HeapVerifier::G1VerifyMixed;
2894     }
2895     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2896 
2897     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2898                                                                   workers()->active_workers(),
2899                                                                   Threads::number_of_non_daemon_threads());
2900     active_workers = workers()->update_active_workers(active_workers);
2901     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2902 
2903     G1MonitoringScope ms(g1mm(),
2904                          false /* full_gc */,
2905                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2906 
2907     G1HeapTransition heap_transition(this);
2908     size_t heap_used_bytes_before_gc = used();
2909 
2910     // Don't dynamically change the number of GC threads this early.  A value of
2911     // 0 is used to indicate serial work.  When parallel work is done,
2912     // it will be set.
2913 
2914     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2915       IsGCActiveMark x;
2916 
2917       gc_prologue(false);
2918 
2919       if (VerifyRememberedSets) {
2920         log_info(gc, verify)("[Verifying RemSets before GC]");
2921         VerifyRegionRemSetClosure v_cl;
2922         heap_region_iterate(&v_cl);
2923       }
2924 
2925       _verifier->verify_before_gc(verify_type);
2926 
2927       _verifier->check_bitmaps("GC Start");
2928 
2929 #if COMPILER2_OR_JVMCI
2930       DerivedPointerTable::clear();
2931 #endif
2932 
2933       // Please see comment in g1CollectedHeap.hpp and
2934       // G1CollectedHeap::ref_processing_init() to see how
2935       // reference processing currently works in G1.
2936 
2937       // Enable discovery in the STW reference processor
2938       _ref_processor_stw->enable_discovery();
2939 
2940       {
2941         // We want to temporarily turn off discovery by the
2942         // CM ref processor, if necessary, and turn it back on
2943         // on again later if we do. Using a scoped
2944         // NoRefDiscovery object will do this.
2945         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2946 
2947         // Forget the current alloc region (we might even choose it to be part
2948         // of the collection set!).
2949         _allocator->release_mutator_alloc_region();
2950 
2951         // This timing is only used by the ergonomics to handle our pause target.
2952         // It is unclear why this should not include the full pause. We will
2953         // investigate this in CR 7178365.
2954         //
2955         // Preserving the old comment here if that helps the investigation:
2956         //
2957         // The elapsed time induced by the start time below deliberately elides
2958         // the possible verification above.
2959         double sample_start_time_sec = os::elapsedTime();
2960 
2961         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2962 
2963         if (collector_state()->in_initial_mark_gc()) {
2964           concurrent_mark()->pre_initial_mark();
2965         }
2966 
2967         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2968 
2969         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2970 
2971         // Make sure the remembered sets are up to date. This needs to be
2972         // done before register_humongous_regions_with_cset(), because the
2973         // remembered sets are used there to choose eager reclaim candidates.
2974         // If the remembered sets are not up to date we might miss some
2975         // entries that need to be handled.
2976         g1_rem_set()->cleanupHRRS();
2977 
2978         register_humongous_regions_with_cset();
2979 
2980         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2981 
2982         // We call this after finalize_cset() to
2983         // ensure that the CSet has been finalized.
2984         _cm->verify_no_cset_oops();
2985 
2986         if (_hr_printer.is_active()) {
2987           G1PrintCollectionSetClosure cl(&_hr_printer);
2988           _collection_set.iterate(&cl);
2989         }
2990 
2991         // Initialize the GC alloc regions.
2992         _allocator->init_gc_alloc_regions(evacuation_info);
2993 
2994         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2995         pre_evacuate_collection_set();
2996 
2997         // Actually do the work...
2998         evacuate_collection_set(&per_thread_states);
2999 
3000         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3001 
3002         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3003         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3004 
3005         eagerly_reclaim_humongous_regions();
3006 
3007         record_obj_copy_mem_stats();
3008         _survivor_evac_stats.adjust_desired_plab_sz();
3009         _old_evac_stats.adjust_desired_plab_sz();
3010 
3011         double start = os::elapsedTime();
3012         start_new_collection_set();
3013         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3014 
3015         if (evacuation_failed()) {
3016           double recalculate_used_start = os::elapsedTime();
3017           set_used(recalculate_used());
3018           g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3019 
3020           if (_archive_allocator != NULL) {
3021             _archive_allocator->clear_used();
3022           }
3023           for (uint i = 0; i < ParallelGCThreads; i++) {
3024             if (_evacuation_failed_info_array[i].has_failed()) {
3025               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3026             }
3027           }
3028         } else {
3029           // The "used" of the the collection set have already been subtracted
3030           // when they were freed.  Add in the bytes evacuated.
3031           increase_used(g1_policy()->bytes_copied_during_gc());
3032         }
3033 
3034         if (collector_state()->in_initial_mark_gc()) {
3035           // We have to do this before we notify the CM threads that
3036           // they can start working to make sure that all the
3037           // appropriate initialization is done on the CM object.
3038           concurrent_mark()->post_initial_mark();
3039           // Note that we don't actually trigger the CM thread at
3040           // this point. We do that later when we're sure that
3041           // the current thread has completed its logging output.
3042         }
3043 
3044         allocate_dummy_regions();
3045 
3046         _allocator->init_mutator_alloc_region();
3047 
3048         {
3049           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3050           if (expand_bytes > 0) {
3051             size_t bytes_before = capacity();
3052             // No need for an ergo logging here,
3053             // expansion_amount() does this when it returns a value > 0.
3054             double expand_ms;
3055             if (!expand(expand_bytes, _workers, &expand_ms)) {
3056               // We failed to expand the heap. Cannot do anything about it.
3057             }
3058             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3059           }
3060         }
3061 
3062         // We redo the verification but now wrt to the new CSet which
3063         // has just got initialized after the previous CSet was freed.
3064         _cm->verify_no_cset_oops();
3065 
3066         // This timing is only used by the ergonomics to handle our pause target.
3067         // It is unclear why this should not include the full pause. We will
3068         // investigate this in CR 7178365.
3069         double sample_end_time_sec = os::elapsedTime();
3070         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3071         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3072         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3073 
3074         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3075         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3076 
3077         if (VerifyRememberedSets) {
3078           log_info(gc, verify)("[Verifying RemSets after GC]");
3079           VerifyRegionRemSetClosure v_cl;
3080           heap_region_iterate(&v_cl);
3081         }
3082 
3083         _verifier->verify_after_gc(verify_type);
3084         _verifier->check_bitmaps("GC End");
3085 
3086         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3087         _ref_processor_stw->verify_no_references_recorded();
3088 
3089         // CM reference discovery will be re-enabled if necessary.
3090       }
3091 
3092 #ifdef TRACESPINNING
3093       ParallelTaskTerminator::print_termination_counts();
3094 #endif
3095 
3096       gc_epilogue(false);
3097     }
3098 
3099     // Print the remainder of the GC log output.
3100     if (evacuation_failed()) {
3101       log_info(gc)("To-space exhausted");
3102     }
3103 
3104     g1_policy()->print_phases();
3105     heap_transition.print();
3106 
3107     // It is not yet to safe to tell the concurrent mark to
3108     // start as we have some optional output below. We don't want the
3109     // output from the concurrent mark thread interfering with this
3110     // logging output either.
3111 
3112     _hrm.verify_optional();
3113     _verifier->verify_region_sets_optional();
3114 
3115     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3116     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3117 
3118     print_heap_after_gc();
3119     print_heap_regions();
3120     trace_heap_after_gc(_gc_tracer_stw);
3121 
3122     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3123     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3124     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3125     // before any GC notifications are raised.
3126     g1mm()->update_sizes();
3127 
3128     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3129     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3130     _gc_timer_stw->register_gc_end();
3131     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3132   }
3133   // It should now be safe to tell the concurrent mark thread to start
3134   // without its logging output interfering with the logging output
3135   // that came from the pause.
3136 
3137   if (should_start_conc_mark) {
3138     // CAUTION: after the doConcurrentMark() call below,
3139     // the concurrent marking thread(s) could be running
3140     // concurrently with us. Make sure that anything after
3141     // this point does not assume that we are the only GC thread
3142     // running. Note: of course, the actual marking work will
3143     // not start until the safepoint itself is released in
3144     // SuspendibleThreadSet::desynchronize().
3145     do_concurrent_mark();
3146   }
3147 
3148   return true;
3149 }
3150 
3151 void G1CollectedHeap::remove_self_forwarding_pointers() {
3152   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3153   workers()->run_task(&rsfp_task);
3154 }
3155 
3156 void G1CollectedHeap::restore_after_evac_failure() {
3157   double remove_self_forwards_start = os::elapsedTime();
3158 
3159   remove_self_forwarding_pointers();
3160   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3161   _preserved_marks_set.restore(&task_executor);
3162 
3163   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3164 }
3165 
3166 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3167   if (!_evacuation_failed) {
3168     _evacuation_failed = true;
3169   }
3170 
3171   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3172   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3173 }
3174 
3175 bool G1ParEvacuateFollowersClosure::offer_termination() {
3176   EventGCPhaseParallel event;
3177   G1ParScanThreadState* const pss = par_scan_state();
3178   start_term_time();
3179   const bool res = terminator()->offer_termination();
3180   end_term_time();
3181   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3182   return res;
3183 }
3184 
3185 void G1ParEvacuateFollowersClosure::do_void() {
3186   EventGCPhaseParallel event;
3187   G1ParScanThreadState* const pss = par_scan_state();
3188   pss->trim_queue();
3189   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3190   do {
3191     EventGCPhaseParallel event;
3192     pss->steal_and_trim_queue(queues());
3193     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3194   } while (!offer_termination());
3195 }
3196 
3197 class G1ParTask : public AbstractGangTask {
3198 protected:
3199   G1CollectedHeap*         _g1h;
3200   G1ParScanThreadStateSet* _pss;
3201   RefToScanQueueSet*       _queues;
3202   G1RootProcessor*         _root_processor;
3203   ParallelTaskTerminator   _terminator;
3204   uint                     _n_workers;
3205 
3206 public:
3207   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3208     : AbstractGangTask("G1 collection"),
3209       _g1h(g1h),
3210       _pss(per_thread_states),
3211       _queues(task_queues),
3212       _root_processor(root_processor),
3213       _terminator(n_workers, _queues),
3214       _n_workers(n_workers)
3215   {}
3216 
3217   void work(uint worker_id) {
3218     if (worker_id >= _n_workers) return;  // no work needed this round
3219 
3220     double start_sec = os::elapsedTime();
3221     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3222 
3223     {
3224       ResourceMark rm;
3225       HandleMark   hm;
3226 
3227       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3228 
3229       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3230       pss->set_ref_discoverer(rp);
3231 
3232       double start_strong_roots_sec = os::elapsedTime();
3233 
3234       _root_processor->evacuate_roots(pss, worker_id);
3235 
3236       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3237       // treating the nmethods visited to act as roots for concurrent marking.
3238       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3239       // objects copied by the current evacuation.
3240       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3241 
3242       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3243 
3244       double term_sec = 0.0;
3245       size_t evac_term_attempts = 0;
3246       {
3247         double start = os::elapsedTime();
3248         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3249         evac.do_void();
3250 
3251         evac_term_attempts = evac.term_attempts();
3252         term_sec = evac.term_time();
3253         double elapsed_sec = os::elapsedTime() - start;
3254 
3255         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3256         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3257         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3258         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3259       }
3260 
3261       assert(pss->queue_is_empty(), "should be empty");
3262 
3263       if (log_is_enabled(Debug, gc, task, stats)) {
3264         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3265         size_t lab_waste;
3266         size_t lab_undo_waste;
3267         pss->waste(lab_waste, lab_undo_waste);
3268         _g1h->print_termination_stats(worker_id,
3269                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3270                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3271                                       term_sec * 1000.0,                          /* evac term time */
3272                                       evac_term_attempts,                         /* evac term attempts */
3273                                       lab_waste,                                  /* alloc buffer waste */
3274                                       lab_undo_waste                              /* undo waste */
3275                                       );
3276       }
3277 
3278       // Close the inner scope so that the ResourceMark and HandleMark
3279       // destructors are executed here and are included as part of the
3280       // "GC Worker Time".
3281     }
3282     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3283   }
3284 };
3285 
3286 void G1CollectedHeap::print_termination_stats_hdr() {
3287   log_debug(gc, task, stats)("GC Termination Stats");
3288   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3289   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3290   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3291 }
3292 
3293 void G1CollectedHeap::print_termination_stats(uint worker_id,
3294                                               double elapsed_ms,
3295                                               double strong_roots_ms,
3296                                               double term_ms,
3297                                               size_t term_attempts,
3298                                               size_t alloc_buffer_waste,
3299                                               size_t undo_waste) const {
3300   log_debug(gc, task, stats)
3301               ("%3d %9.2f %9.2f %6.2f "
3302                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3303                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3304                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3305                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3306                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3307                alloc_buffer_waste * HeapWordSize / K,
3308                undo_waste * HeapWordSize / K);
3309 }
3310 
3311 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3312                                         bool class_unloading_occurred) {
3313   uint n_workers = workers()->active_workers();
3314 
3315   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3316   ParallelCleaningTask g1_unlink_task(is_alive, &dedup_closure, n_workers, class_unloading_occurred);
3317   workers()->run_task(&g1_unlink_task);
3318 }
3319 
3320 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3321                                        bool process_strings,
3322                                        bool process_string_dedup) {
3323   if (!process_strings && !process_string_dedup) {
3324     // Nothing to clean.
3325     return;
3326   }
3327 
3328   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3329   StringCleaningTask g1_unlink_task(is_alive, process_string_dedup ? &dedup_closure : NULL, process_strings);
3330   workers()->run_task(&g1_unlink_task);
3331 }
3332 
3333 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3334  private:
3335   DirtyCardQueueSet* _queue;
3336   G1CollectedHeap* _g1h;
3337  public:
3338   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3339     _queue(queue), _g1h(g1h) { }
3340 
3341   virtual void work(uint worker_id) {
3342     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3343     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3344 
3345     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3346     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3347 
3348     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3349   }
3350 };
3351 
3352 void G1CollectedHeap::redirty_logged_cards() {
3353   double redirty_logged_cards_start = os::elapsedTime();
3354 
3355   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3356   dirty_card_queue_set().reset_for_par_iteration();
3357   workers()->run_task(&redirty_task);
3358 
3359   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3360   dcq.merge_bufferlists(&dirty_card_queue_set());
3361   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3362 
3363   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3364 }
3365 
3366 // Weak Reference Processing support
3367 
3368 bool G1STWIsAliveClosure::do_object_b(oop p) {
3369   // An object is reachable if it is outside the collection set,
3370   // or is inside and copied.
3371   return !_g1h->is_in_cset(p) || p->is_forwarded();
3372 }
3373 
3374 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3375   assert(obj != NULL, "must not be NULL");
3376   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3377   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3378   // may falsely indicate that this is not the case here: however the collection set only
3379   // contains old regions when concurrent mark is not running.
3380   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3381 }
3382 
3383 // Non Copying Keep Alive closure
3384 class G1KeepAliveClosure: public OopClosure {
3385   G1CollectedHeap*_g1h;
3386 public:
3387   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3388   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3389   void do_oop(oop* p) {
3390     oop obj = *p;
3391     assert(obj != NULL, "the caller should have filtered out NULL values");
3392 
3393     const InCSetState cset_state =_g1h->in_cset_state(obj);
3394     if (!cset_state.is_in_cset_or_humongous()) {
3395       return;
3396     }
3397     if (cset_state.is_in_cset()) {
3398       assert( obj->is_forwarded(), "invariant" );
3399       *p = obj->forwardee();
3400     } else {
3401       assert(!obj->is_forwarded(), "invariant" );
3402       assert(cset_state.is_humongous(),
3403              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3404      _g1h->set_humongous_is_live(obj);
3405     }
3406   }
3407 };
3408 
3409 // Copying Keep Alive closure - can be called from both
3410 // serial and parallel code as long as different worker
3411 // threads utilize different G1ParScanThreadState instances
3412 // and different queues.
3413 
3414 class G1CopyingKeepAliveClosure: public OopClosure {
3415   G1CollectedHeap*         _g1h;
3416   G1ParScanThreadState*    _par_scan_state;
3417 
3418 public:
3419   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3420                             G1ParScanThreadState* pss):
3421     _g1h(g1h),
3422     _par_scan_state(pss)
3423   {}
3424 
3425   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3426   virtual void do_oop(      oop* p) { do_oop_work(p); }
3427 
3428   template <class T> void do_oop_work(T* p) {
3429     oop obj = RawAccess<>::oop_load(p);
3430 
3431     if (_g1h->is_in_cset_or_humongous(obj)) {
3432       // If the referent object has been forwarded (either copied
3433       // to a new location or to itself in the event of an
3434       // evacuation failure) then we need to update the reference
3435       // field and, if both reference and referent are in the G1
3436       // heap, update the RSet for the referent.
3437       //
3438       // If the referent has not been forwarded then we have to keep
3439       // it alive by policy. Therefore we have copy the referent.
3440       //
3441       // When the queue is drained (after each phase of reference processing)
3442       // the object and it's followers will be copied, the reference field set
3443       // to point to the new location, and the RSet updated.
3444       _par_scan_state->push_on_queue(p);
3445     }
3446   }
3447 };
3448 
3449 // Serial drain queue closure. Called as the 'complete_gc'
3450 // closure for each discovered list in some of the
3451 // reference processing phases.
3452 
3453 class G1STWDrainQueueClosure: public VoidClosure {
3454 protected:
3455   G1CollectedHeap* _g1h;
3456   G1ParScanThreadState* _par_scan_state;
3457 
3458   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3459 
3460 public:
3461   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3462     _g1h(g1h),
3463     _par_scan_state(pss)
3464   { }
3465 
3466   void do_void() {
3467     G1ParScanThreadState* const pss = par_scan_state();
3468     pss->trim_queue();
3469   }
3470 };
3471 
3472 // Parallel Reference Processing closures
3473 
3474 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3475 // processing during G1 evacuation pauses.
3476 
3477 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3478 private:
3479   G1CollectedHeap*          _g1h;
3480   G1ParScanThreadStateSet*  _pss;
3481   RefToScanQueueSet*        _queues;
3482   WorkGang*                 _workers;
3483 
3484 public:
3485   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3486                            G1ParScanThreadStateSet* per_thread_states,
3487                            WorkGang* workers,
3488                            RefToScanQueueSet *task_queues) :
3489     _g1h(g1h),
3490     _pss(per_thread_states),
3491     _queues(task_queues),
3492     _workers(workers)
3493   {
3494     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3495   }
3496 
3497   // Executes the given task using concurrent marking worker threads.
3498   virtual void execute(ProcessTask& task, uint ergo_workers);
3499 };
3500 
3501 // Gang task for possibly parallel reference processing
3502 
3503 class G1STWRefProcTaskProxy: public AbstractGangTask {
3504   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3505   ProcessTask&     _proc_task;
3506   G1CollectedHeap* _g1h;
3507   G1ParScanThreadStateSet* _pss;
3508   RefToScanQueueSet* _task_queues;
3509   ParallelTaskTerminator* _terminator;
3510 
3511 public:
3512   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3513                         G1CollectedHeap* g1h,
3514                         G1ParScanThreadStateSet* per_thread_states,
3515                         RefToScanQueueSet *task_queues,
3516                         ParallelTaskTerminator* terminator) :
3517     AbstractGangTask("Process reference objects in parallel"),
3518     _proc_task(proc_task),
3519     _g1h(g1h),
3520     _pss(per_thread_states),
3521     _task_queues(task_queues),
3522     _terminator(terminator)
3523   {}
3524 
3525   virtual void work(uint worker_id) {
3526     // The reference processing task executed by a single worker.
3527     ResourceMark rm;
3528     HandleMark   hm;
3529 
3530     G1STWIsAliveClosure is_alive(_g1h);
3531 
3532     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3533     pss->set_ref_discoverer(NULL);
3534 
3535     // Keep alive closure.
3536     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3537 
3538     // Complete GC closure
3539     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3540 
3541     // Call the reference processing task's work routine.
3542     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3543 
3544     // Note we cannot assert that the refs array is empty here as not all
3545     // of the processing tasks (specifically phase2 - pp2_work) execute
3546     // the complete_gc closure (which ordinarily would drain the queue) so
3547     // the queue may not be empty.
3548   }
3549 };
3550 
3551 // Driver routine for parallel reference processing.
3552 // Creates an instance of the ref processing gang
3553 // task and has the worker threads execute it.
3554 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3555   assert(_workers != NULL, "Need parallel worker threads.");
3556 
3557   assert(_workers->active_workers() >= ergo_workers,
3558          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3559          ergo_workers, _workers->active_workers());
3560   ParallelTaskTerminator terminator(ergo_workers, _queues);
3561   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3562 
3563   _workers->run_task(&proc_task_proxy, ergo_workers);
3564 }
3565 
3566 // End of weak reference support closures
3567 
3568 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3569   double ref_proc_start = os::elapsedTime();
3570 
3571   ReferenceProcessor* rp = _ref_processor_stw;
3572   assert(rp->discovery_enabled(), "should have been enabled");
3573 
3574   // Closure to test whether a referent is alive.
3575   G1STWIsAliveClosure is_alive(this);
3576 
3577   // Even when parallel reference processing is enabled, the processing
3578   // of JNI refs is serial and performed serially by the current thread
3579   // rather than by a worker. The following PSS will be used for processing
3580   // JNI refs.
3581 
3582   // Use only a single queue for this PSS.
3583   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3584   pss->set_ref_discoverer(NULL);
3585   assert(pss->queue_is_empty(), "pre-condition");
3586 
3587   // Keep alive closure.
3588   G1CopyingKeepAliveClosure keep_alive(this, pss);
3589 
3590   // Serial Complete GC closure
3591   G1STWDrainQueueClosure drain_queue(this, pss);
3592 
3593   // Setup the soft refs policy...
3594   rp->setup_policy(false);
3595 
3596   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3597 
3598   ReferenceProcessorStats stats;
3599   if (!rp->processing_is_mt()) {
3600     // Serial reference processing...
3601     stats = rp->process_discovered_references(&is_alive,
3602                                               &keep_alive,
3603                                               &drain_queue,
3604                                               NULL,
3605                                               pt);
3606   } else {
3607     uint no_of_gc_workers = workers()->active_workers();
3608 
3609     // Parallel reference processing
3610     assert(no_of_gc_workers <= rp->max_num_queues(),
3611            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3612            no_of_gc_workers,  rp->max_num_queues());
3613 
3614     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3615     stats = rp->process_discovered_references(&is_alive,
3616                                               &keep_alive,
3617                                               &drain_queue,
3618                                               &par_task_executor,
3619                                               pt);
3620   }
3621 
3622   _gc_tracer_stw->report_gc_reference_stats(stats);
3623 
3624   // We have completed copying any necessary live referent objects.
3625   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3626 
3627   make_pending_list_reachable();
3628 
3629   rp->verify_no_references_recorded();
3630 
3631   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3632   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3633 }
3634 
3635 void G1CollectedHeap::make_pending_list_reachable() {
3636   if (collector_state()->in_initial_mark_gc()) {
3637     oop pll_head = Universe::reference_pending_list();
3638     if (pll_head != NULL) {
3639       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3640       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3641     }
3642   }
3643 }
3644 
3645 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3646   double merge_pss_time_start = os::elapsedTime();
3647   per_thread_states->flush();
3648   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3649 }
3650 
3651 void G1CollectedHeap::pre_evacuate_collection_set() {
3652   _expand_heap_after_alloc_failure = true;
3653   _evacuation_failed = false;
3654 
3655   // Disable the hot card cache.
3656   _hot_card_cache->reset_hot_cache_claimed_index();
3657   _hot_card_cache->set_use_cache(false);
3658 
3659   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3660   _preserved_marks_set.assert_empty();
3661 
3662   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3663 
3664   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3665   if (collector_state()->in_initial_mark_gc()) {
3666     double start_clear_claimed_marks = os::elapsedTime();
3667 
3668     ClassLoaderDataGraph::clear_claimed_marks();
3669 
3670     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3671     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3672   }
3673 }
3674 
3675 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3676   // Should G1EvacuationFailureALot be in effect for this GC?
3677   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3678 
3679   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3680 
3681   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3682 
3683   double start_par_time_sec = os::elapsedTime();
3684   double end_par_time_sec;
3685 
3686   {
3687     const uint n_workers = workers()->active_workers();
3688     G1RootProcessor root_processor(this, n_workers);
3689     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3690 
3691     print_termination_stats_hdr();
3692 
3693     workers()->run_task(&g1_par_task);
3694     end_par_time_sec = os::elapsedTime();
3695 
3696     // Closing the inner scope will execute the destructor
3697     // for the G1RootProcessor object. We record the current
3698     // elapsed time before closing the scope so that time
3699     // taken for the destructor is NOT included in the
3700     // reported parallel time.
3701   }
3702 
3703   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
3704   phase_times->record_par_time(par_time_ms);
3705 
3706   double code_root_fixup_time_ms =
3707         (os::elapsedTime() - end_par_time_sec) * 1000.0;
3708   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
3709 }
3710 
3711 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3712   // Also cleans the card table from temporary duplicate detection information used
3713   // during UpdateRS/ScanRS.
3714   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
3715 
3716   // Process any discovered reference objects - we have
3717   // to do this _before_ we retire the GC alloc regions
3718   // as we may have to copy some 'reachable' referent
3719   // objects (and their reachable sub-graphs) that were
3720   // not copied during the pause.
3721   process_discovered_references(per_thread_states);
3722 
3723   // FIXME
3724   // CM's reference processing also cleans up the string table.
3725   // Should we do that here also? We could, but it is a serial operation
3726   // and could significantly increase the pause time.
3727 
3728   G1STWIsAliveClosure is_alive(this);
3729   G1KeepAliveClosure keep_alive(this);
3730 
3731   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3732                               g1_policy()->phase_times()->weak_phase_times());
3733 
3734   if (G1StringDedup::is_enabled()) {
3735     double fixup_start = os::elapsedTime();
3736 
3737     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
3738 
3739     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
3740     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
3741   }
3742 
3743   if (evacuation_failed()) {
3744     restore_after_evac_failure();
3745 
3746     // Reset the G1EvacuationFailureALot counters and flags
3747     // Note: the values are reset only when an actual
3748     // evacuation failure occurs.
3749     NOT_PRODUCT(reset_evacuation_should_fail();)
3750   }
3751 
3752   _preserved_marks_set.assert_empty();
3753 
3754   _allocator->release_gc_alloc_regions(evacuation_info);
3755 
3756   merge_per_thread_state_info(per_thread_states);
3757 
3758   // Reset and re-enable the hot card cache.
3759   // Note the counts for the cards in the regions in the
3760   // collection set are reset when the collection set is freed.
3761   _hot_card_cache->reset_hot_cache();
3762   _hot_card_cache->set_use_cache(true);
3763 
3764   purge_code_root_memory();
3765 
3766   redirty_logged_cards();
3767 #if COMPILER2_OR_JVMCI
3768   double start = os::elapsedTime();
3769   DerivedPointerTable::update_pointers();
3770   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3771 #endif
3772   g1_policy()->print_age_table();
3773 }
3774 
3775 void G1CollectedHeap::record_obj_copy_mem_stats() {
3776   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3777 
3778   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3779                                                create_g1_evac_summary(&_old_evac_stats));
3780 }
3781 
3782 void G1CollectedHeap::free_region(HeapRegion* hr,
3783                                   FreeRegionList* free_list,
3784                                   bool skip_remset,
3785                                   bool skip_hot_card_cache,
3786                                   bool locked) {
3787   assert(!hr->is_free(), "the region should not be free");
3788   assert(!hr->is_empty(), "the region should not be empty");
3789   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
3790   assert(free_list != NULL, "pre-condition");
3791 
3792   if (G1VerifyBitmaps) {
3793     MemRegion mr(hr->bottom(), hr->end());
3794     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3795   }
3796 
3797   // Clear the card counts for this region.
3798   // Note: we only need to do this if the region is not young
3799   // (since we don't refine cards in young regions).
3800   if (!skip_hot_card_cache && !hr->is_young()) {
3801     _hot_card_cache->reset_card_counts(hr);
3802   }
3803   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3804   _g1_policy->remset_tracker()->update_at_free(hr);
3805   free_list->add_ordered(hr);
3806 }
3807 
3808 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3809                                             FreeRegionList* free_list) {
3810   assert(hr->is_humongous(), "this is only for humongous regions");
3811   assert(free_list != NULL, "pre-condition");
3812   hr->clear_humongous();
3813   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3814 }
3815 
3816 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3817                                            const uint humongous_regions_removed) {
3818   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3819     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3820     _old_set.bulk_remove(old_regions_removed);
3821     _humongous_set.bulk_remove(humongous_regions_removed);
3822   }
3823 
3824 }
3825 
3826 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3827   assert(list != NULL, "list can't be null");
3828   if (!list->is_empty()) {
3829     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3830     _hrm.insert_list_into_free_list(list);
3831   }
3832 }
3833 
3834 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3835   decrease_used(bytes);
3836 }
3837 
3838 class G1FreeCollectionSetTask : public AbstractGangTask {
3839 private:
3840 
3841   // Closure applied to all regions in the collection set to do work that needs to
3842   // be done serially in a single thread.
3843   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3844   private:
3845     EvacuationInfo* _evacuation_info;
3846     const size_t* _surviving_young_words;
3847 
3848     // Bytes used in successfully evacuated regions before the evacuation.
3849     size_t _before_used_bytes;
3850     // Bytes used in unsucessfully evacuated regions before the evacuation
3851     size_t _after_used_bytes;
3852 
3853     size_t _bytes_allocated_in_old_since_last_gc;
3854 
3855     size_t _failure_used_words;
3856     size_t _failure_waste_words;
3857 
3858     FreeRegionList _local_free_list;
3859   public:
3860     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3861       HeapRegionClosure(),
3862       _evacuation_info(evacuation_info),
3863       _surviving_young_words(surviving_young_words),
3864       _before_used_bytes(0),
3865       _after_used_bytes(0),
3866       _bytes_allocated_in_old_since_last_gc(0),
3867       _failure_used_words(0),
3868       _failure_waste_words(0),
3869       _local_free_list("Local Region List for CSet Freeing") {
3870     }
3871 
3872     virtual bool do_heap_region(HeapRegion* r) {
3873       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3874 
3875       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3876       g1h->clear_in_cset(r);
3877 
3878       if (r->is_young()) {
3879         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
3880                "Young index %d is wrong for region %u of type %s with %u young regions",
3881                r->young_index_in_cset(),
3882                r->hrm_index(),
3883                r->get_type_str(),
3884                g1h->collection_set()->young_region_length());
3885         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
3886         r->record_surv_words_in_group(words_survived);
3887       }
3888 
3889       if (!r->evacuation_failed()) {
3890         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
3891         _before_used_bytes += r->used();
3892         g1h->free_region(r,
3893                          &_local_free_list,
3894                          true, /* skip_remset */
3895                          true, /* skip_hot_card_cache */
3896                          true  /* locked */);
3897       } else {
3898         r->uninstall_surv_rate_group();
3899         r->set_young_index_in_cset(-1);
3900         r->set_evacuation_failed(false);
3901         // When moving a young gen region to old gen, we "allocate" that whole region
3902         // there. This is in addition to any already evacuated objects. Notify the
3903         // policy about that.
3904         // Old gen regions do not cause an additional allocation: both the objects
3905         // still in the region and the ones already moved are accounted for elsewhere.
3906         if (r->is_young()) {
3907           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
3908         }
3909         // The region is now considered to be old.
3910         r->set_old();
3911         // Do some allocation statistics accounting. Regions that failed evacuation
3912         // are always made old, so there is no need to update anything in the young
3913         // gen statistics, but we need to update old gen statistics.
3914         size_t used_words = r->marked_bytes() / HeapWordSize;
3915 
3916         _failure_used_words += used_words;
3917         _failure_waste_words += HeapRegion::GrainWords - used_words;
3918 
3919         g1h->old_set_add(r);
3920         _after_used_bytes += r->used();
3921       }
3922       return false;
3923     }
3924 
3925     void complete_work() {
3926       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3927 
3928       _evacuation_info->set_regions_freed(_local_free_list.length());
3929       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
3930 
3931       g1h->prepend_to_freelist(&_local_free_list);
3932       g1h->decrement_summary_bytes(_before_used_bytes);
3933 
3934       G1Policy* policy = g1h->g1_policy();
3935       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
3936 
3937       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
3938     }
3939   };
3940 
3941   G1CollectionSet* _collection_set;
3942   G1SerialFreeCollectionSetClosure _cl;
3943   const size_t* _surviving_young_words;
3944 
3945   size_t _rs_lengths;
3946 
3947   volatile jint _serial_work_claim;
3948 
3949   struct WorkItem {
3950     uint region_idx;
3951     bool is_young;
3952     bool evacuation_failed;
3953 
3954     WorkItem(HeapRegion* r) {
3955       region_idx = r->hrm_index();
3956       is_young = r->is_young();
3957       evacuation_failed = r->evacuation_failed();
3958     }
3959   };
3960 
3961   volatile size_t _parallel_work_claim;
3962   size_t _num_work_items;
3963   WorkItem* _work_items;
3964 
3965   void do_serial_work() {
3966     // Need to grab the lock to be allowed to modify the old region list.
3967     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3968     _collection_set->iterate(&_cl);
3969   }
3970 
3971   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
3972     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3973 
3974     HeapRegion* r = g1h->region_at(region_idx);
3975     assert(!g1h->is_on_master_free_list(r), "sanity");
3976 
3977     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
3978 
3979     if (!is_young) {
3980       g1h->_hot_card_cache->reset_card_counts(r);
3981     }
3982 
3983     if (!evacuation_failed) {
3984       r->rem_set()->clear_locked();
3985     }
3986   }
3987 
3988   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
3989   private:
3990     size_t _cur_idx;
3991     WorkItem* _work_items;
3992   public:
3993     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
3994 
3995     virtual bool do_heap_region(HeapRegion* r) {
3996       _work_items[_cur_idx++] = WorkItem(r);
3997       return false;
3998     }
3999   };
4000 
4001   void prepare_work() {
4002     G1PrepareFreeCollectionSetClosure cl(_work_items);
4003     _collection_set->iterate(&cl);
4004   }
4005 
4006   void complete_work() {
4007     _cl.complete_work();
4008 
4009     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4010     policy->record_max_rs_lengths(_rs_lengths);
4011     policy->cset_regions_freed();
4012   }
4013 public:
4014   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4015     AbstractGangTask("G1 Free Collection Set"),
4016     _collection_set(collection_set),
4017     _cl(evacuation_info, surviving_young_words),
4018     _surviving_young_words(surviving_young_words),
4019     _rs_lengths(0),
4020     _serial_work_claim(0),
4021     _parallel_work_claim(0),
4022     _num_work_items(collection_set->region_length()),
4023     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4024     prepare_work();
4025   }
4026 
4027   ~G1FreeCollectionSetTask() {
4028     complete_work();
4029     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4030   }
4031 
4032   // Chunk size for work distribution. The chosen value has been determined experimentally
4033   // to be a good tradeoff between overhead and achievable parallelism.
4034   static uint chunk_size() { return 32; }
4035 
4036   virtual void work(uint worker_id) {
4037     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4038 
4039     // Claim serial work.
4040     if (_serial_work_claim == 0) {
4041       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4042       if (value == 0) {
4043         double serial_time = os::elapsedTime();
4044         do_serial_work();
4045         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4046       }
4047     }
4048 
4049     // Start parallel work.
4050     double young_time = 0.0;
4051     bool has_young_time = false;
4052     double non_young_time = 0.0;
4053     bool has_non_young_time = false;
4054 
4055     while (true) {
4056       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4057       size_t cur = end - chunk_size();
4058 
4059       if (cur >= _num_work_items) {
4060         break;
4061       }
4062 
4063       EventGCPhaseParallel event;
4064       double start_time = os::elapsedTime();
4065 
4066       end = MIN2(end, _num_work_items);
4067 
4068       for (; cur < end; cur++) {
4069         bool is_young = _work_items[cur].is_young;
4070 
4071         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4072 
4073         double end_time = os::elapsedTime();
4074         double time_taken = end_time - start_time;
4075         if (is_young) {
4076           young_time += time_taken;
4077           has_young_time = true;
4078           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4079         } else {
4080           non_young_time += time_taken;
4081           has_non_young_time = true;
4082           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4083         }
4084         start_time = end_time;
4085       }
4086     }
4087 
4088     if (has_young_time) {
4089       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4090     }
4091     if (has_non_young_time) {
4092       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4093     }
4094   }
4095 };
4096 
4097 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4098   _eden.clear();
4099 
4100   double free_cset_start_time = os::elapsedTime();
4101 
4102   {
4103     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4104     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4105 
4106     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4107 
4108     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4109                         cl.name(),
4110                         num_workers,
4111                         _collection_set.region_length());
4112     workers()->run_task(&cl, num_workers);
4113   }
4114   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4115 
4116   collection_set->clear();
4117 }
4118 
4119 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4120  private:
4121   FreeRegionList* _free_region_list;
4122   HeapRegionSet* _proxy_set;
4123   uint _humongous_objects_reclaimed;
4124   uint _humongous_regions_reclaimed;
4125   size_t _freed_bytes;
4126  public:
4127 
4128   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4129     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4130   }
4131 
4132   virtual bool do_heap_region(HeapRegion* r) {
4133     if (!r->is_starts_humongous()) {
4134       return false;
4135     }
4136 
4137     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4138 
4139     oop obj = (oop)r->bottom();
4140     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4141 
4142     // The following checks whether the humongous object is live are sufficient.
4143     // The main additional check (in addition to having a reference from the roots
4144     // or the young gen) is whether the humongous object has a remembered set entry.
4145     //
4146     // A humongous object cannot be live if there is no remembered set for it
4147     // because:
4148     // - there can be no references from within humongous starts regions referencing
4149     // the object because we never allocate other objects into them.
4150     // (I.e. there are no intra-region references that may be missed by the
4151     // remembered set)
4152     // - as soon there is a remembered set entry to the humongous starts region
4153     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4154     // until the end of a concurrent mark.
4155     //
4156     // It is not required to check whether the object has been found dead by marking
4157     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4158     // all objects allocated during that time are considered live.
4159     // SATB marking is even more conservative than the remembered set.
4160     // So if at this point in the collection there is no remembered set entry,
4161     // nobody has a reference to it.
4162     // At the start of collection we flush all refinement logs, and remembered sets
4163     // are completely up-to-date wrt to references to the humongous object.
4164     //
4165     // Other implementation considerations:
4166     // - never consider object arrays at this time because they would pose
4167     // considerable effort for cleaning up the the remembered sets. This is
4168     // required because stale remembered sets might reference locations that
4169     // are currently allocated into.
4170     uint region_idx = r->hrm_index();
4171     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4172         !r->rem_set()->is_empty()) {
4173       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4174                                region_idx,
4175                                (size_t)obj->size() * HeapWordSize,
4176                                p2i(r->bottom()),
4177                                r->rem_set()->occupied(),
4178                                r->rem_set()->strong_code_roots_list_length(),
4179                                next_bitmap->is_marked(r->bottom()),
4180                                g1h->is_humongous_reclaim_candidate(region_idx),
4181                                obj->is_typeArray()
4182                               );
4183       return false;
4184     }
4185 
4186     guarantee(obj->is_typeArray(),
4187               "Only eagerly reclaiming type arrays is supported, but the object "
4188               PTR_FORMAT " is not.", p2i(r->bottom()));
4189 
4190     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4191                              region_idx,
4192                              (size_t)obj->size() * HeapWordSize,
4193                              p2i(r->bottom()),
4194                              r->rem_set()->occupied(),
4195                              r->rem_set()->strong_code_roots_list_length(),
4196                              next_bitmap->is_marked(r->bottom()),
4197                              g1h->is_humongous_reclaim_candidate(region_idx),
4198                              obj->is_typeArray()
4199                             );
4200 
4201     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4202     cm->humongous_object_eagerly_reclaimed(r);
4203     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4204            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4205            region_idx,
4206            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4207            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4208     _humongous_objects_reclaimed++;
4209     do {
4210       HeapRegion* next = g1h->next_region_in_humongous(r);
4211       _freed_bytes += r->used();
4212       r->set_containing_set(NULL);
4213       _humongous_regions_reclaimed++;
4214       g1h->free_humongous_region(r, _free_region_list);
4215       r = next;
4216     } while (r != NULL);
4217 
4218     return false;
4219   }
4220 
4221   uint humongous_objects_reclaimed() {
4222     return _humongous_objects_reclaimed;
4223   }
4224 
4225   uint humongous_regions_reclaimed() {
4226     return _humongous_regions_reclaimed;
4227   }
4228 
4229   size_t bytes_freed() const {
4230     return _freed_bytes;
4231   }
4232 };
4233 
4234 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4235   assert_at_safepoint_on_vm_thread();
4236 
4237   if (!G1EagerReclaimHumongousObjects ||
4238       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4239     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4240     return;
4241   }
4242 
4243   double start_time = os::elapsedTime();
4244 
4245   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4246 
4247   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4248   heap_region_iterate(&cl);
4249 
4250   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4251 
4252   G1HRPrinter* hrp = hr_printer();
4253   if (hrp->is_active()) {
4254     FreeRegionListIterator iter(&local_cleanup_list);
4255     while (iter.more_available()) {
4256       HeapRegion* hr = iter.get_next();
4257       hrp->cleanup(hr);
4258     }
4259   }
4260 
4261   prepend_to_freelist(&local_cleanup_list);
4262   decrement_summary_bytes(cl.bytes_freed());
4263 
4264   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4265                                                                     cl.humongous_objects_reclaimed());
4266 }
4267 
4268 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4269 public:
4270   virtual bool do_heap_region(HeapRegion* r) {
4271     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4272     G1CollectedHeap::heap()->clear_in_cset(r);
4273     r->set_young_index_in_cset(-1);
4274     return false;
4275   }
4276 };
4277 
4278 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4279   G1AbandonCollectionSetClosure cl;
4280   collection_set->iterate(&cl);
4281 
4282   collection_set->clear();
4283   collection_set->stop_incremental_building();
4284 }
4285 
4286 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4287   return _allocator->is_retained_old_region(hr);
4288 }
4289 
4290 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4291   _eden.add(hr);
4292   _g1_policy->set_region_eden(hr);
4293 }
4294 
4295 #ifdef ASSERT
4296 
4297 class NoYoungRegionsClosure: public HeapRegionClosure {
4298 private:
4299   bool _success;
4300 public:
4301   NoYoungRegionsClosure() : _success(true) { }
4302   bool do_heap_region(HeapRegion* r) {
4303     if (r->is_young()) {
4304       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4305                             p2i(r->bottom()), p2i(r->end()));
4306       _success = false;
4307     }
4308     return false;
4309   }
4310   bool success() { return _success; }
4311 };
4312 
4313 bool G1CollectedHeap::check_young_list_empty() {
4314   bool ret = (young_regions_count() == 0);
4315 
4316   NoYoungRegionsClosure closure;
4317   heap_region_iterate(&closure);
4318   ret = ret && closure.success();
4319 
4320   return ret;
4321 }
4322 
4323 #endif // ASSERT
4324 
4325 class TearDownRegionSetsClosure : public HeapRegionClosure {
4326   HeapRegionSet *_old_set;
4327 
4328 public:
4329   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4330 
4331   bool do_heap_region(HeapRegion* r) {
4332     if (r->is_old()) {
4333       _old_set->remove(r);
4334     } else if(r->is_young()) {
4335       r->uninstall_surv_rate_group();
4336     } else {
4337       // We ignore free regions, we'll empty the free list afterwards.
4338       // We ignore humongous and archive regions, we're not tearing down these
4339       // sets.
4340       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4341              "it cannot be another type");
4342     }
4343     return false;
4344   }
4345 
4346   ~TearDownRegionSetsClosure() {
4347     assert(_old_set->is_empty(), "post-condition");
4348   }
4349 };
4350 
4351 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4352   assert_at_safepoint_on_vm_thread();
4353 
4354   if (!free_list_only) {
4355     TearDownRegionSetsClosure cl(&_old_set);
4356     heap_region_iterate(&cl);
4357 
4358     // Note that emptying the _young_list is postponed and instead done as
4359     // the first step when rebuilding the regions sets again. The reason for
4360     // this is that during a full GC string deduplication needs to know if
4361     // a collected region was young or old when the full GC was initiated.
4362   }
4363   _hrm.remove_all_free_regions();
4364 }
4365 
4366 void G1CollectedHeap::increase_used(size_t bytes) {
4367   _summary_bytes_used += bytes;
4368 }
4369 
4370 void G1CollectedHeap::decrease_used(size_t bytes) {
4371   assert(_summary_bytes_used >= bytes,
4372          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4373          _summary_bytes_used, bytes);
4374   _summary_bytes_used -= bytes;
4375 }
4376 
4377 void G1CollectedHeap::set_used(size_t bytes) {
4378   _summary_bytes_used = bytes;
4379 }
4380 
4381 class RebuildRegionSetsClosure : public HeapRegionClosure {
4382 private:
4383   bool _free_list_only;
4384 
4385   HeapRegionSet* _old_set;
4386   HeapRegionManager* _hrm;
4387 
4388   size_t _total_used;
4389 
4390 public:
4391   RebuildRegionSetsClosure(bool free_list_only,
4392                            HeapRegionSet* old_set,
4393                            HeapRegionManager* hrm) :
4394     _free_list_only(free_list_only),
4395     _old_set(old_set), _hrm(hrm), _total_used(0) {
4396     assert(_hrm->num_free_regions() == 0, "pre-condition");
4397     if (!free_list_only) {
4398       assert(_old_set->is_empty(), "pre-condition");
4399     }
4400   }
4401 
4402   bool do_heap_region(HeapRegion* r) {
4403     if (r->is_empty()) {
4404       // Add free regions to the free list
4405       r->set_free();
4406       _hrm->insert_into_free_list(r);
4407     } else if (!_free_list_only) {
4408       // Only if we rebuild everything, clear remembered sets.
4409       r->rem_set()->clear(true);
4410 
4411       if (r->is_archive() || r->is_humongous()) {
4412         // We ignore archive and humongous regions. We left these sets unchanged.
4413       } else {
4414         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4415         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4416         r->move_to_old();
4417         _old_set->add(r);
4418       }
4419       _total_used += r->used();
4420     }
4421 
4422     return false;
4423   }
4424 
4425   size_t total_used() {
4426     return _total_used;
4427   }
4428 };
4429 
4430 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4431   assert_at_safepoint_on_vm_thread();
4432 
4433   if (!free_list_only) {
4434     _eden.clear();
4435     _survivor.clear();
4436   }
4437 
4438   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4439   heap_region_iterate(&cl);
4440 
4441   if (!free_list_only) {
4442     set_used(cl.total_used());
4443     if (_archive_allocator != NULL) {
4444       _archive_allocator->clear_used();
4445     }
4446   }
4447   assert(used() == recalculate_used(),
4448          "inconsistent used(), value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4449          used(), recalculate_used());
4450 }
4451 
4452 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4453   HeapRegion* hr = heap_region_containing(p);
4454   return hr->is_in(p);
4455 }
4456 
4457 // Methods for the mutator alloc region
4458 
4459 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4460                                                       bool force) {
4461   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4462   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4463   if (force || should_allocate) {
4464     HeapRegion* new_alloc_region = new_region(word_size,
4465                                               false /* is_old */,
4466                                               false /* do_expand */);
4467     if (new_alloc_region != NULL) {
4468       set_region_short_lived_locked(new_alloc_region);
4469       _hr_printer.alloc(new_alloc_region, !should_allocate);
4470       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4471       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4472       return new_alloc_region;
4473     }
4474   }
4475   return NULL;
4476 }
4477 
4478 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4479                                                   size_t allocated_bytes) {
4480   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4481   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4482 
4483   collection_set()->add_eden_region(alloc_region);
4484   increase_used(allocated_bytes);
4485   _hr_printer.retire(alloc_region);
4486   // We update the eden sizes here, when the region is retired,
4487   // instead of when it's allocated, since this is the point that its
4488   // used space has been recorded in _summary_bytes_used.
4489   g1mm()->update_eden_size();
4490 }
4491 
4492 // Methods for the GC alloc regions
4493 
4494 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4495   if (dest.is_old()) {
4496     return true;
4497   } else {
4498     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4499   }
4500 }
4501 
4502 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4503   assert(FreeList_lock->owned_by_self(), "pre-condition");
4504 
4505   if (!has_more_regions(dest)) {
4506     return NULL;
4507   }
4508 
4509   const bool is_survivor = dest.is_young();
4510 
4511   HeapRegion* new_alloc_region = new_region(word_size,
4512                                             !is_survivor,
4513                                             true /* do_expand */);
4514   if (new_alloc_region != NULL) {
4515     if (is_survivor) {
4516       new_alloc_region->set_survivor();
4517       _survivor.add(new_alloc_region);
4518       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4519     } else {
4520       new_alloc_region->set_old();
4521       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4522     }
4523     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4524     _hr_printer.alloc(new_alloc_region);
4525     bool during_im = collector_state()->in_initial_mark_gc();
4526     new_alloc_region->note_start_of_copying(during_im);
4527     return new_alloc_region;
4528   }
4529   return NULL;
4530 }
4531 
4532 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4533                                              size_t allocated_bytes,
4534                                              InCSetState dest) {
4535   bool during_im = collector_state()->in_initial_mark_gc();
4536   alloc_region->note_end_of_copying(during_im);
4537   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4538   if (dest.is_old()) {
4539     old_set_add(alloc_region);
4540   }
4541   _hr_printer.retire(alloc_region);
4542 }
4543 
4544 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4545   bool expanded = false;
4546   uint index = _hrm.find_highest_free(&expanded);
4547 
4548   if (index != G1_NO_HRM_INDEX) {
4549     if (expanded) {
4550       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4551                                 HeapRegion::GrainWords * HeapWordSize);
4552     }
4553     _hrm.allocate_free_regions_starting_at(index, 1);
4554     return region_at(index);
4555   }
4556   return NULL;
4557 }
4558 
4559 // Optimized nmethod scanning
4560 
4561 class RegisterNMethodOopClosure: public OopClosure {
4562   G1CollectedHeap* _g1h;
4563   nmethod* _nm;
4564 
4565   template <class T> void do_oop_work(T* p) {
4566     T heap_oop = RawAccess<>::oop_load(p);
4567     if (!CompressedOops::is_null(heap_oop)) {
4568       oop obj = CompressedOops::decode_not_null(heap_oop);
4569       HeapRegion* hr = _g1h->heap_region_containing(obj);
4570       assert(!hr->is_continues_humongous(),
4571              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4572              " starting at " HR_FORMAT,
4573              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4574 
4575       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4576       hr->add_strong_code_root_locked(_nm);
4577     }
4578   }
4579 
4580 public:
4581   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4582     _g1h(g1h), _nm(nm) {}
4583 
4584   void do_oop(oop* p)       { do_oop_work(p); }
4585   void do_oop(narrowOop* p) { do_oop_work(p); }
4586 };
4587 
4588 class UnregisterNMethodOopClosure: public OopClosure {
4589   G1CollectedHeap* _g1h;
4590   nmethod* _nm;
4591 
4592   template <class T> void do_oop_work(T* p) {
4593     T heap_oop = RawAccess<>::oop_load(p);
4594     if (!CompressedOops::is_null(heap_oop)) {
4595       oop obj = CompressedOops::decode_not_null(heap_oop);
4596       HeapRegion* hr = _g1h->heap_region_containing(obj);
4597       assert(!hr->is_continues_humongous(),
4598              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4599              " starting at " HR_FORMAT,
4600              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4601 
4602       hr->remove_strong_code_root(_nm);
4603     }
4604   }
4605 
4606 public:
4607   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4608     _g1h(g1h), _nm(nm) {}
4609 
4610   void do_oop(oop* p)       { do_oop_work(p); }
4611   void do_oop(narrowOop* p) { do_oop_work(p); }
4612 };
4613 
4614 // Returns true if the reference points to an object that
4615 // can move in an incremental collection.
4616 bool G1CollectedHeap::is_scavengable(oop obj) {
4617   HeapRegion* hr = heap_region_containing(obj);
4618   return !hr->is_pinned();
4619 }
4620 
4621 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4622   guarantee(nm != NULL, "sanity");
4623   RegisterNMethodOopClosure reg_cl(this, nm);
4624   nm->oops_do(&reg_cl);
4625 }
4626 
4627 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4628   guarantee(nm != NULL, "sanity");
4629   UnregisterNMethodOopClosure reg_cl(this, nm);
4630   nm->oops_do(&reg_cl, true);
4631 }
4632 
4633 void G1CollectedHeap::purge_code_root_memory() {
4634   double purge_start = os::elapsedTime();
4635   G1CodeRootSet::purge();
4636   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4637   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4638 }
4639 
4640 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4641   G1CollectedHeap* _g1h;
4642 
4643 public:
4644   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4645     _g1h(g1h) {}
4646 
4647   void do_code_blob(CodeBlob* cb) {
4648     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4649     if (nm == NULL) {
4650       return;
4651     }
4652 
4653     if (ScavengeRootsInCode) {
4654       _g1h->register_nmethod(nm);
4655     }
4656   }
4657 };
4658 
4659 void G1CollectedHeap::rebuild_strong_code_roots() {
4660   RebuildStrongCodeRootClosure blob_cl(this);
4661   CodeCache::blobs_do(&blob_cl);
4662 }
4663 
4664 void G1CollectedHeap::initialize_serviceability() {
4665   _g1mm->initialize_serviceability();
4666 }
4667 
4668 MemoryUsage G1CollectedHeap::memory_usage() {
4669   return _g1mm->memory_usage();
4670 }
4671 
4672 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4673   return _g1mm->memory_managers();
4674 }
4675 
4676 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4677   return _g1mm->memory_pools();
4678 }