1 /*
   2  * Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.util.stream;
  26 
  27 import java.util.Arrays;
  28 import java.util.IntSummaryStatistics;
  29 import java.util.Objects;
  30 import java.util.OptionalDouble;
  31 import java.util.OptionalInt;
  32 import java.util.PrimitiveIterator;
  33 import java.util.Spliterator;
  34 import java.util.Spliterators;
  35 import java.util.function.BiConsumer;
  36 import java.util.function.Function;
  37 import java.util.function.IntBinaryOperator;
  38 import java.util.function.IntConsumer;
  39 import java.util.function.IntFunction;
  40 import java.util.function.IntPredicate;
  41 import java.util.function.IntSupplier;
  42 import java.util.function.IntToDoubleFunction;
  43 import java.util.function.IntToLongFunction;
  44 import java.util.function.IntUnaryOperator;
  45 import java.util.function.ObjIntConsumer;
  46 import java.util.function.Supplier;
  47 
  48 /**
  49  * A sequence of primitive int-valued elements supporting sequential and parallel
  50  * aggregate operations.  This is the {@code int} primitive specialization of
  51  * {@link Stream}.
  52  *
  53  * <p>The following example illustrates an aggregate operation using
  54  * {@link Stream} and {@link IntStream}, computing the sum of the weights of the
  55  * red widgets:
  56  *
  57  * <pre>{@code
  58  *     int sum = widgets.stream()
  59  *                      .filter(w -> w.getColor() == RED)
  60  *                      .mapToInt(w -> w.getWeight())
  61  *                      .sum();
  62  * }</pre>
  63  *
  64  * See the class documentation for {@link Stream} and the package documentation
  65  * for <a href="package-summary.html">java.util.stream</a> for additional
  66  * specification of streams, stream operations, stream pipelines, and
  67  * parallelism.
  68  *
  69  * @since 1.8
  70  * @see Stream
  71  * @see <a href="package-summary.html">java.util.stream</a>
  72  */
  73 public interface IntStream extends BaseStream<Integer, IntStream> {
  74 
  75     /**
  76      * Returns a stream consisting of the elements of this stream that match
  77      * the given predicate.
  78      *
  79      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
  80      * operation</a>.
  81      *
  82      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
  83      *                  <a href="package-summary.html#Statelessness">stateless</a>
  84      *                  predicate to apply to each element to determine if it
  85      *                  should be included
  86      * @return the new stream
  87      */
  88     IntStream filter(IntPredicate predicate);
  89 
  90     /**
  91      * Returns a stream consisting of the results of applying the given
  92      * function to the elements of this stream.
  93      *
  94      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
  95      * operation</a>.
  96      *
  97      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
  98      *               <a href="package-summary.html#Statelessness">stateless</a>
  99      *               function to apply to each element
 100      * @return the new stream
 101      */
 102     IntStream map(IntUnaryOperator mapper);
 103 
 104     /**
 105      * Returns an object-valued {@code Stream} consisting of the results of
 106      * applying the given function to the elements of this stream.
 107      *
 108      * <p>This is an <a href="package-summary.html#StreamOps">
 109      *     intermediate operation</a>.
 110      *
 111      * @param <U> the element type of the new stream
 112      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 113      *               <a href="package-summary.html#Statelessness">stateless</a>
 114      *               function to apply to each element
 115      * @return the new stream
 116      */
 117     <U> Stream<U> mapToObj(IntFunction<? extends U> mapper);
 118 
 119     /**
 120      * Returns a {@code LongStream} consisting of the results of applying the
 121      * given function to the elements of this stream.
 122      *
 123      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 124      * operation</a>.
 125      *
 126      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 127      *               <a href="package-summary.html#Statelessness">stateless</a>
 128      *               function to apply to each element
 129      * @return the new stream
 130      */
 131     LongStream mapToLong(IntToLongFunction mapper);
 132 
 133     /**
 134      * Returns a {@code DoubleStream} consisting of the results of applying the
 135      * given function to the elements of this stream.
 136      *
 137      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 138      * operation</a>.
 139      *
 140      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 141      *               <a href="package-summary.html#Statelessness">stateless</a>
 142      *               function to apply to each element
 143      * @return the new stream
 144      */
 145     DoubleStream mapToDouble(IntToDoubleFunction mapper);
 146 
 147     /**
 148      * Returns a stream consisting of the results of replacing each element of
 149      * this stream with the contents of a mapped stream produced by applying
 150      * the provided mapping function to each element.  Each mapped stream is
 151      * {@link java.util.stream.BaseStream#close() closed} after its contents
 152      * have been placed into this stream.  (If a mapped stream is {@code null}
 153      * an empty stream is used, instead.)
 154      *
 155      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 156      * operation</a>.
 157      *
 158      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
 159      *               <a href="package-summary.html#Statelessness">stateless</a>
 160      *               function to apply to each element which produces an
 161      *               {@code IntStream} of new values
 162      * @return the new stream
 163      * @see Stream#flatMap(Function)
 164      */
 165     IntStream flatMap(IntFunction<? extends IntStream> mapper);
 166 
 167     /**
 168      * Returns a stream consisting of the distinct elements of this stream.
 169      *
 170      * <p>This is a <a href="package-summary.html#StreamOps">stateful
 171      * intermediate operation</a>.
 172      *
 173      * @return the new stream
 174      */
 175     IntStream distinct();
 176 
 177     /**
 178      * Returns a stream consisting of the elements of this stream in sorted
 179      * order.
 180      *
 181      * <p>This is a <a href="package-summary.html#StreamOps">stateful
 182      * intermediate operation</a>.
 183      *
 184      * @return the new stream
 185      */
 186     IntStream sorted();
 187 
 188     /**
 189      * Returns a stream consisting of the elements of this stream, additionally
 190      * performing the provided action on each element as elements are consumed
 191      * from the resulting stream.
 192      *
 193      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 194      * operation</a>.
 195      *
 196      * <p>For parallel stream pipelines, the action may be called at
 197      * whatever time and in whatever thread the element is made available by the
 198      * upstream operation.  If the action modifies shared state,
 199      * it is responsible for providing the required synchronization.
 200      *
 201      * @apiNote This method exists mainly to support debugging, where you want
 202      * to see the elements as they flow past a certain point in a pipeline:
 203      * <pre>{@code
 204      *     IntStream.of(1, 2, 3, 4)
 205      *         .filter(e -> e > 2)
 206      *         .peek(e -> System.out.println("Filtered value: " + e))
 207      *         .map(e -> e * e)
 208      *         .peek(e -> System.out.println("Mapped value: " + e))
 209      *         .sum();
 210      * }</pre>
 211      *
 212      * @param action a <a href="package-summary.html#NonInterference">
 213      *               non-interfering</a> action to perform on the elements as
 214      *               they are consumed from the stream
 215      * @return the new stream
 216      */
 217     IntStream peek(IntConsumer action);
 218 
 219     /**
 220      * Returns a stream consisting of the elements of this stream, truncated
 221      * to be no longer than {@code maxSize} in length.
 222      *
 223      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 224      * stateful intermediate operation</a>.
 225      *
 226      * @apiNote
 227      * While {@code limit()} is generally a cheap operation on sequential
 228      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
 229      * especially for large values of {@code maxSize}, since {@code limit(n)}
 230      * is constrained to return not just any <em>n</em> elements, but the
 231      * <em>first n</em> elements in the encounter order.  Using an unordered
 232      * stream source (such as {@link #generate(IntSupplier)}) or removing the
 233      * ordering constraint with {@link #unordered()} may result in significant
 234      * speedups of {@code limit()} in parallel pipelines, if the semantics of
 235      * your situation permit.  If consistency with encounter order is required,
 236      * and you are experiencing poor performance or memory utilization with
 237      * {@code limit()} in parallel pipelines, switching to sequential execution
 238      * with {@link #sequential()} may improve performance.
 239      *
 240      * @param maxSize the number of elements the stream should be limited to
 241      * @return the new stream
 242      * @throws IllegalArgumentException if {@code maxSize} is negative
 243      */
 244     IntStream limit(long maxSize);
 245 
 246     /**
 247      * Returns a stream consisting of the remaining elements of this stream
 248      * after discarding the first {@code n} elements of the stream.
 249      * If this stream contains fewer than {@code n} elements then an
 250      * empty stream will be returned.
 251      *
 252      * <p>This is a <a href="package-summary.html#StreamOps">stateful
 253      * intermediate operation</a>.
 254      *
 255      * @apiNote
 256      * While {@code skip()} is generally a cheap operation on sequential
 257      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
 258      * especially for large values of {@code n}, since {@code skip(n)}
 259      * is constrained to skip not just any <em>n</em> elements, but the
 260      * <em>first n</em> elements in the encounter order.  Using an unordered
 261      * stream source (such as {@link #generate(IntSupplier)}) or removing the
 262      * ordering constraint with {@link #unordered()} may result in significant
 263      * speedups of {@code skip()} in parallel pipelines, if the semantics of
 264      * your situation permit.  If consistency with encounter order is required,
 265      * and you are experiencing poor performance or memory utilization with
 266      * {@code skip()} in parallel pipelines, switching to sequential execution
 267      * with {@link #sequential()} may improve performance.
 268      *
 269      * @param n the number of leading elements to skip
 270      * @return the new stream
 271      * @throws IllegalArgumentException if {@code n} is negative
 272      */
 273     IntStream skip(long n);
 274 
 275     /**
 276      * Returns, if this stream is ordered, a stream consisting of the longest
 277      * prefix of elements taken from this stream that match the given predicate.
 278      * Otherwise returns, if this stream is unordered, a stream consisting of a
 279      * subset of elements taken from this stream that match the given predicate.
 280      *
 281      * <p>If this stream is ordered then the longest prefix is a contiguous
 282      * sequence of elements of this stream that match the given predicate.  The
 283      * first element of the sequence is the first element of this stream, and
 284      * the element immediately following the last element of the sequence does
 285      * not match the given predicate.
 286      *
 287      * <p>If this stream is unordered, and some (but not all) elements of this
 288      * stream match the given predicate, then the behavior of this operation is
 289      * nondeterministic; it is free to take any subset of matching elements
 290      * (which includes the empty set).
 291      *
 292      * <p>Independent of whether this stream is ordered or unordered if all
 293      * elements of this stream match the given predicate then this operation
 294      * takes all elements (the result is the same as the input), or if no
 295      * elements of the stream match the given predicate then no elements are
 296      * taken (the result is an empty stream).
 297      *
 298      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 299      * stateful intermediate operation</a>.
 300      *
 301      * @implSpec
 302      * The default implementation obtains the {@link #spliterator() spliterator}
 303      * of this stream, wraps that spliterator so as to support the semantics
 304      * of this operation on traversal, and returns a new stream associated with
 305      * the wrapped spliterator.  The returned stream preserves the execution
 306      * characteristics of this stream (namely parallel or sequential execution
 307      * as per {@link #isParallel()}) but the wrapped spliterator may choose to
 308      * not support splitting.  When the returned stream is closed, the close
 309      * handlers for both the returned and this stream are invoked.
 310      *
 311      * @apiNote
 312      * While {@code takeWhile()} is generally a cheap operation on sequential
 313      * stream pipelines, it can be quite expensive on ordered parallel
 314      * pipelines, since the operation is constrained to return not just any
 315      * valid prefix, but the longest prefix of elements in the encounter order.
 316      * Using an unordered stream source (such as {@link #generate(IntSupplier)})
 317      * or removing the ordering constraint with {@link #unordered()} may result
 318      * in significant speedups of {@code takeWhile()} in parallel pipelines, if
 319      * the semantics of your situation permit.  If consistency with encounter
 320      * order is required, and you are experiencing poor performance or memory
 321      * utilization with {@code takeWhile()} in parallel pipelines, switching to
 322      * sequential execution with {@link #sequential()} may improve performance.
 323      *
 324      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
 325      *                  <a href="package-summary.html#Statelessness">stateless</a>
 326      *                  predicate to apply to elements to determine the longest
 327      *                  prefix of elements.
 328      * @return the new stream
 329      * @since 9
 330      */
 331     default IntStream takeWhile(IntPredicate predicate) {
 332         Objects.requireNonNull(predicate);
 333         // Reuses the unordered spliterator, which, when encounter is present,
 334         // is safe to use as long as it configured not to split
 335         return StreamSupport.intStream(
 336                 new WhileOps.UnorderedWhileSpliterator.OfInt.Taking(spliterator(), true, predicate),
 337                 isParallel()).onClose(this::close);
 338     }
 339 
 340     /**
 341      * Returns, if this stream is ordered, a stream consisting of the remaining
 342      * elements of this stream after dropping the longest prefix of elements
 343      * that match the given predicate.  Otherwise returns, if this stream is
 344      * unordered, a stream consisting of the remaining elements of this stream
 345      * after dropping a subset of elements that match the given predicate.
 346      *
 347      * <p>If this stream is ordered then the longest prefix is a contiguous
 348      * sequence of elements of this stream that match the given predicate.  The
 349      * first element of the sequence is the first element of this stream, and
 350      * the element immediately following the last element of the sequence does
 351      * not match the given predicate.
 352      *
 353      * <p>If this stream is unordered, and some (but not all) elements of this
 354      * stream match the given predicate, then the behavior of this operation is
 355      * nondeterministic; it is free to drop any subset of matching elements
 356      * (which includes the empty set).
 357      *
 358      * <p>Independent of whether this stream is ordered or unordered if all
 359      * elements of this stream match the given predicate then this operation
 360      * drops all elements (the result is an empty stream), or if no elements of
 361      * the stream match the given predicate then no elements are dropped (the
 362      * result is the same as the input).
 363      *
 364      * <p>This is a <a href="package-summary.html#StreamOps">stateful
 365      * intermediate operation</a>.
 366      *
 367      * @implSpec
 368      * The default implementation obtains the {@link #spliterator() spliterator}
 369      * of this stream, wraps that spliterator so as to support the semantics
 370      * of this operation on traversal, and returns a new stream associated with
 371      * the wrapped spliterator.  The returned stream preserves the execution
 372      * characteristics of this stream (namely parallel or sequential execution
 373      * as per {@link #isParallel()}) but the wrapped spliterator may choose to
 374      * not support splitting.  When the returned stream is closed, the close
 375      * handlers for both the returned and this stream are invoked.
 376      *
 377      * @apiNote
 378      * While {@code dropWhile()} is generally a cheap operation on sequential
 379      * stream pipelines, it can be quite expensive on ordered parallel
 380      * pipelines, since the operation is constrained to return not just any
 381      * valid prefix, but the longest prefix of elements in the encounter order.
 382      * Using an unordered stream source (such as {@link #generate(IntSupplier)})
 383      * or removing the ordering constraint with {@link #unordered()} may result
 384      * in significant speedups of {@code dropWhile()} in parallel pipelines, if
 385      * the semantics of your situation permit.  If consistency with encounter
 386      * order is required, and you are experiencing poor performance or memory
 387      * utilization with {@code dropWhile()} in parallel pipelines, switching to
 388      * sequential execution with {@link #sequential()} may improve performance.
 389      *
 390      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
 391      *                  <a href="package-summary.html#Statelessness">stateless</a>
 392      *                  predicate to apply to elements to determine the longest
 393      *                  prefix of elements.
 394      * @return the new stream
 395      * @since 9
 396      */
 397     default IntStream dropWhile(IntPredicate predicate) {
 398         Objects.requireNonNull(predicate);
 399         // Reuses the unordered spliterator, which, when encounter is present,
 400         // is safe to use as long as it configured not to split
 401         return StreamSupport.intStream(
 402                 new WhileOps.UnorderedWhileSpliterator.OfInt.Dropping(spliterator(), true, predicate),
 403                 isParallel()).onClose(this::close);
 404     }
 405 
 406     /**
 407      * Performs an action for each element of this stream.
 408      *
 409      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 410      * operation</a>.
 411      *
 412      * <p>For parallel stream pipelines, this operation does <em>not</em>
 413      * guarantee to respect the encounter order of the stream, as doing so
 414      * would sacrifice the benefit of parallelism.  For any given element, the
 415      * action may be performed at whatever time and in whatever thread the
 416      * library chooses.  If the action accesses shared state, it is
 417      * responsible for providing the required synchronization.
 418      *
 419      * @param action a <a href="package-summary.html#NonInterference">
 420      *               non-interfering</a> action to perform on the elements
 421      */
 422     void forEach(IntConsumer action);
 423 
 424     /**
 425      * Performs an action for each element of this stream, guaranteeing that
 426      * each element is processed in encounter order for streams that have a
 427      * defined encounter order.
 428      *
 429      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 430      * operation</a>.
 431      *
 432      * @param action a <a href="package-summary.html#NonInterference">
 433      *               non-interfering</a> action to perform on the elements
 434      * @see #forEach(IntConsumer)
 435      */
 436     void forEachOrdered(IntConsumer action);
 437 
 438     /**
 439      * Returns an array containing the elements of this stream.
 440      *
 441      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 442      * operation</a>.
 443      *
 444      * @return an array containing the elements of this stream
 445      */
 446     int[] toArray();
 447 
 448     /**
 449      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
 450      * elements of this stream, using the provided identity value and an
 451      * <a href="package-summary.html#Associativity">associative</a>
 452      * accumulation function, and returns the reduced value.  This is equivalent
 453      * to:
 454      * <pre>{@code
 455      *     int result = identity;
 456      *     for (int element : this stream)
 457      *         result = accumulator.applyAsInt(result, element)
 458      *     return result;
 459      * }</pre>
 460      *
 461      * but is not constrained to execute sequentially.
 462      *
 463      * <p>The {@code identity} value must be an identity for the accumulator
 464      * function. This means that for all {@code x},
 465      * {@code accumulator.apply(identity, x)} is equal to {@code x}.
 466      * The {@code accumulator} function must be an
 467      * <a href="package-summary.html#Associativity">associative</a> function.
 468      *
 469      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 470      * operation</a>.
 471      *
 472      * @apiNote Sum, min, max, and average are all special cases of reduction.
 473      * Summing a stream of numbers can be expressed as:
 474      *
 475      * <pre>{@code
 476      *     int sum = integers.reduce(0, (a, b) -> a+b);
 477      * }</pre>
 478      *
 479      * or more compactly:
 480      *
 481      * <pre>{@code
 482      *     int sum = integers.reduce(0, Integer::sum);
 483      * }</pre>
 484      *
 485      * <p>While this may seem a more roundabout way to perform an aggregation
 486      * compared to simply mutating a running total in a loop, reduction
 487      * operations parallelize more gracefully, without needing additional
 488      * synchronization and with greatly reduced risk of data races.
 489      *
 490      * @param identity the identity value for the accumulating function
 491      * @param op an <a href="package-summary.html#Associativity">associative</a>,
 492      *           <a href="package-summary.html#NonInterference">non-interfering</a>,
 493      *           <a href="package-summary.html#Statelessness">stateless</a>
 494      *           function for combining two values
 495      * @return the result of the reduction
 496      * @see #sum()
 497      * @see #min()
 498      * @see #max()
 499      * @see #average()
 500      */
 501     int reduce(int identity, IntBinaryOperator op);
 502 
 503     /**
 504      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
 505      * elements of this stream, using an
 506      * <a href="package-summary.html#Associativity">associative</a> accumulation
 507      * function, and returns an {@code OptionalInt} describing the reduced value,
 508      * if any. This is equivalent to:
 509      * <pre>{@code
 510      *     boolean foundAny = false;
 511      *     int result = null;
 512      *     for (int element : this stream) {
 513      *         if (!foundAny) {
 514      *             foundAny = true;
 515      *             result = element;
 516      *         }
 517      *         else
 518      *             result = accumulator.applyAsInt(result, element);
 519      *     }
 520      *     return foundAny ? OptionalInt.of(result) : OptionalInt.empty();
 521      * }</pre>
 522      *
 523      * but is not constrained to execute sequentially.
 524      *
 525      * <p>The {@code accumulator} function must be an
 526      * <a href="package-summary.html#Associativity">associative</a> function.
 527      *
 528      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 529      * operation</a>.
 530      *
 531      * @param op an <a href="package-summary.html#Associativity">associative</a>,
 532      *           <a href="package-summary.html#NonInterference">non-interfering</a>,
 533      *           <a href="package-summary.html#Statelessness">stateless</a>
 534      *           function for combining two values
 535      * @return the result of the reduction
 536      * @see #reduce(int, IntBinaryOperator)
 537      */
 538     OptionalInt reduce(IntBinaryOperator op);
 539 
 540     /**
 541      * Performs a <a href="package-summary.html#MutableReduction">mutable
 542      * reduction</a> operation on the elements of this stream.  A mutable
 543      * reduction is one in which the reduced value is a mutable result container,
 544      * such as an {@code ArrayList}, and elements are incorporated by updating
 545      * the state of the result rather than by replacing the result.  This
 546      * produces a result equivalent to:
 547      * <pre>{@code
 548      *     R result = supplier.get();
 549      *     for (int element : this stream)
 550      *         accumulator.accept(result, element);
 551      *     return result;
 552      * }</pre>
 553      *
 554      * <p>Like {@link #reduce(int, IntBinaryOperator)}, {@code collect} operations
 555      * can be parallelized without requiring additional synchronization.
 556      *
 557      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 558      * operation</a>.
 559      *
 560      * @param <R> type of the result
 561      * @param supplier a function that creates a new result container. For a
 562      *                 parallel execution, this function may be called
 563      *                 multiple times and must return a fresh value each time.
 564      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
 565      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
 566      *                    <a href="package-summary.html#Statelessness">stateless</a>
 567      *                    function for incorporating an additional element into a result
 568      * @param combiner an <a href="package-summary.html#Associativity">associative</a>,
 569      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
 570      *                    <a href="package-summary.html#Statelessness">stateless</a>
 571      *                    function for combining two values, which must be
 572      *                    compatible with the accumulator function
 573      * @return the result of the reduction
 574      * @see Stream#collect(Supplier, BiConsumer, BiConsumer)
 575      */
 576     <R> R collect(Supplier<R> supplier,
 577                   ObjIntConsumer<R> accumulator,
 578                   BiConsumer<R, R> combiner);
 579 
 580     /**
 581      * Returns the sum of elements in this stream.  This is a special case
 582      * of a <a href="package-summary.html#Reduction">reduction</a>
 583      * and is equivalent to:
 584      * <pre>{@code
 585      *     return reduce(0, Integer::sum);
 586      * }</pre>
 587      *
 588      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 589      * operation</a>.
 590      *
 591      * @return the sum of elements in this stream
 592      */
 593     int sum();
 594 
 595     /**
 596      * Returns an {@code OptionalInt} describing the minimum element of this
 597      * stream, or an empty optional if this stream is empty.  This is a special
 598      * case of a <a href="package-summary.html#Reduction">reduction</a>
 599      * and is equivalent to:
 600      * <pre>{@code
 601      *     return reduce(Integer::min);
 602      * }</pre>
 603      *
 604      * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
 605      *
 606      * @return an {@code OptionalInt} containing the minimum element of this
 607      * stream, or an empty {@code OptionalInt} if the stream is empty
 608      */
 609     OptionalInt min();
 610 
 611     /**
 612      * Returns an {@code OptionalInt} describing the maximum element of this
 613      * stream, or an empty optional if this stream is empty.  This is a special
 614      * case of a <a href="package-summary.html#Reduction">reduction</a>
 615      * and is equivalent to:
 616      * <pre>{@code
 617      *     return reduce(Integer::max);
 618      * }</pre>
 619      *
 620      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 621      * operation</a>.
 622      *
 623      * @return an {@code OptionalInt} containing the maximum element of this
 624      * stream, or an empty {@code OptionalInt} if the stream is empty
 625      */
 626     OptionalInt max();
 627 
 628     /**
 629      * Returns the count of elements in this stream.  This is a special case of
 630      * a <a href="package-summary.html#Reduction">reduction</a> and is
 631      * equivalent to:
 632      * <pre>{@code
 633      *     return mapToLong(e -> 1L).sum();
 634      * }</pre>
 635      *
 636      * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
 637      *
 638      * @apiNote
 639      * An implementation may choose to not execute the stream pipeline (either
 640      * sequentially or in parallel) if it is capable of computing the count
 641      * directly from the stream source.  In such cases no source elements will
 642      * be traversed and no intermediate operations will be evaluated.
 643      * Behavioral parameters with side-effects, which are strongly discouraged
 644      * except for harmless cases such as debugging, may be affected.  For
 645      * example, consider the following stream:
 646      * <pre>{@code
 647      *     IntStream s = IntStream.of(1, 2, 3, 4);
 648      *     long count = s.peek(System.out::println).count();
 649      * }</pre>
 650      * The number of elements covered by the stream source is known and the
 651      * intermediate operation, {@code peek}, does not inject into or remove
 652      * elements from the stream (as may be the case for {@code flatMap} or
 653      * {@code filter} operations).  Thus the count is 4 and there is no need to
 654      * execute the pipeline and, as a side-effect, print out the elements.
 655      *
 656      * @return the count of elements in this stream
 657      */
 658     long count();
 659 
 660     /**
 661      * Returns an {@code OptionalDouble} describing the arithmetic mean of elements of
 662      * this stream, or an empty optional if this stream is empty.  This is a
 663      * special case of a
 664      * <a href="package-summary.html#Reduction">reduction</a>.
 665      *
 666      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 667      * operation</a>.
 668      *
 669      * @return an {@code OptionalDouble} containing the average element of this
 670      * stream, or an empty optional if the stream is empty
 671      */
 672     OptionalDouble average();
 673 
 674     /**
 675      * Returns an {@code IntSummaryStatistics} describing various
 676      * summary data about the elements of this stream.  This is a special
 677      * case of a <a href="package-summary.html#Reduction">reduction</a>.
 678      *
 679      * <p>This is a <a href="package-summary.html#StreamOps">terminal
 680      * operation</a>.
 681      *
 682      * @return an {@code IntSummaryStatistics} describing various summary data
 683      * about the elements of this stream
 684      */
 685     IntSummaryStatistics summaryStatistics();
 686 
 687     /**
 688      * Returns whether any elements of this stream match the provided
 689      * predicate.  May not evaluate the predicate on all elements if not
 690      * necessary for determining the result.  If the stream is empty then
 691      * {@code false} is returned and the predicate is not evaluated.
 692      *
 693      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 694      * terminal operation</a>.
 695      *
 696      * @apiNote
 697      * This method evaluates the <em>existential quantification</em> of the
 698      * predicate over the elements of the stream (for some x P(x)).
 699      *
 700      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
 701      *                  <a href="package-summary.html#Statelessness">stateless</a>
 702      *                  predicate to apply to elements of this stream
 703      * @return {@code true} if any elements of the stream match the provided
 704      * predicate, otherwise {@code false}
 705      */
 706     boolean anyMatch(IntPredicate predicate);
 707 
 708     /**
 709      * Returns whether all elements of this stream match the provided predicate.
 710      * May not evaluate the predicate on all elements if not necessary for
 711      * determining the result.  If the stream is empty then {@code true} is
 712      * returned and the predicate is not evaluated.
 713      *
 714      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 715      * terminal operation</a>.
 716      *
 717      * @apiNote
 718      * This method evaluates the <em>universal quantification</em> of the
 719      * predicate over the elements of the stream (for all x P(x)).  If the
 720      * stream is empty, the quantification is said to be <em>vacuously
 721      * satisfied</em> and is always {@code true} (regardless of P(x)).
 722      *
 723      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
 724      *                  <a href="package-summary.html#Statelessness">stateless</a>
 725      *                  predicate to apply to elements of this stream
 726      * @return {@code true} if either all elements of the stream match the
 727      * provided predicate or the stream is empty, otherwise {@code false}
 728      */
 729     boolean allMatch(IntPredicate predicate);
 730 
 731     /**
 732      * Returns whether no elements of this stream match the provided predicate.
 733      * May not evaluate the predicate on all elements if not necessary for
 734      * determining the result.  If the stream is empty then {@code true} is
 735      * returned and the predicate is not evaluated.
 736      *
 737      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 738      * terminal operation</a>.
 739      *
 740      * @apiNote
 741      * This method evaluates the <em>universal quantification</em> of the
 742      * negated predicate over the elements of the stream (for all x ~P(x)).  If
 743      * the stream is empty, the quantification is said to be vacuously satisfied
 744      * and is always {@code true}, regardless of P(x).
 745      *
 746      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
 747      *                  <a href="package-summary.html#Statelessness">stateless</a>
 748      *                  predicate to apply to elements of this stream
 749      * @return {@code true} if either no elements of the stream match the
 750      * provided predicate or the stream is empty, otherwise {@code false}
 751      */
 752     boolean noneMatch(IntPredicate predicate);
 753 
 754     /**
 755      * Returns an {@link OptionalInt} describing the first element of this
 756      * stream, or an empty {@code OptionalInt} if the stream is empty.  If the
 757      * stream has no encounter order, then any element may be returned.
 758      *
 759      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 760      * terminal operation</a>.
 761      *
 762      * @return an {@code OptionalInt} describing the first element of this stream,
 763      * or an empty {@code OptionalInt} if the stream is empty
 764      */
 765     OptionalInt findFirst();
 766 
 767     /**
 768      * Returns an {@link OptionalInt} describing some element of the stream, or
 769      * an empty {@code OptionalInt} if the stream is empty.
 770      *
 771      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
 772      * terminal operation</a>.
 773      *
 774      * <p>The behavior of this operation is explicitly nondeterministic; it is
 775      * free to select any element in the stream.  This is to allow for maximal
 776      * performance in parallel operations; the cost is that multiple invocations
 777      * on the same source may not return the same result.  (If a stable result
 778      * is desired, use {@link #findFirst()} instead.)
 779      *
 780      * @return an {@code OptionalInt} describing some element of this stream, or
 781      * an empty {@code OptionalInt} if the stream is empty
 782      * @see #findFirst()
 783      */
 784     OptionalInt findAny();
 785 
 786     /**
 787      * Returns a {@code LongStream} consisting of the elements of this stream,
 788      * converted to {@code long}.
 789      *
 790      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 791      * operation</a>.
 792      *
 793      * @return a {@code LongStream} consisting of the elements of this stream,
 794      * converted to {@code long}
 795      */
 796     LongStream asLongStream();
 797 
 798     /**
 799      * Returns a {@code DoubleStream} consisting of the elements of this stream,
 800      * converted to {@code double}.
 801      *
 802      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 803      * operation</a>.
 804      *
 805      * @return a {@code DoubleStream} consisting of the elements of this stream,
 806      * converted to {@code double}
 807      */
 808     DoubleStream asDoubleStream();
 809 
 810     /**
 811      * Returns a {@code Stream} consisting of the elements of this stream,
 812      * each boxed to an {@code Integer}.
 813      *
 814      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
 815      * operation</a>.
 816      *
 817      * @return a {@code Stream} consistent of the elements of this stream,
 818      * each boxed to an {@code Integer}
 819      */
 820     Stream<Integer> boxed();
 821 
 822     @Override
 823     IntStream sequential();
 824 
 825     @Override
 826     IntStream parallel();
 827 
 828     @Override
 829     PrimitiveIterator.OfInt iterator();
 830 
 831     @Override
 832     Spliterator.OfInt spliterator();
 833 
 834     // Static factories
 835 
 836     /**
 837      * Returns a builder for an {@code IntStream}.
 838      *
 839      * @return a stream builder
 840      */
 841     public static Builder builder() {
 842         return new Streams.IntStreamBuilderImpl();
 843     }
 844 
 845     /**
 846      * Returns an empty sequential {@code IntStream}.
 847      *
 848      * @return an empty sequential stream
 849      */
 850     public static IntStream empty() {
 851         return StreamSupport.intStream(Spliterators.emptyIntSpliterator(), false);
 852     }
 853 
 854     /**
 855      * Returns a sequential {@code IntStream} containing a single element.
 856      *
 857      * @param t the single element
 858      * @return a singleton sequential stream
 859      */
 860     public static IntStream of(int t) {
 861         return StreamSupport.intStream(new Streams.IntStreamBuilderImpl(t), false);
 862     }
 863 
 864     /**
 865      * Returns a sequential ordered stream whose elements are the specified values.
 866      *
 867      * @param values the elements of the new stream
 868      * @return the new stream
 869      */
 870     public static IntStream of(int... values) {
 871         return Arrays.stream(values);
 872     }
 873 
 874     /**
 875      * Returns an infinite sequential ordered {@code IntStream} produced by iterative
 876      * application of a function {@code f} to an initial element {@code seed},
 877      * producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
 878      * {@code f(f(seed))}, etc.
 879      *
 880      * <p>The first element (position {@code 0}) in the {@code IntStream} will be
 881      * the provided {@code seed}.  For {@code n > 0}, the element at position
 882      * {@code n}, will be the result of applying the function {@code f} to the
 883      * element at position {@code n - 1}.
 884      *
 885      * @param seed the initial element
 886      * @param f a function to be applied to the previous element to produce
 887      *          a new element
 888      * @return a new sequential {@code IntStream}
 889      */
 890     public static IntStream iterate(final int seed, final IntUnaryOperator f) {
 891         Objects.requireNonNull(f);
 892         Spliterator.OfInt spliterator = new Spliterators.AbstractIntSpliterator(Long.MAX_VALUE, 
 893                Spliterator.ORDERED | Spliterator.IMMUTABLE) {
 894             int prev;
 895             boolean started;
 896 
 897             @Override
 898             public boolean tryAdvance(IntConsumer action) {
 899                 Objects.requireNonNull(action);
 900                 int t;
 901                 if (started)
 902                     t = f.applyAsInt(prev);
 903                 else {
 904                     t = seed;
 905                     started = true;
 906                 }
 907                 action.accept(prev = t);
 908                 return true;
 909             }
 910         };
 911         return StreamSupport.intStream(spliterator, false);
 912     }
 913 
 914     /**
 915      * Returns a sequential ordered {@code IntStream} produced by iterative
 916      * application of a function to an initial element, conditioned on 
 917      * satisfying the supplied predicate.  The stream terminates as soon as
 918      * the predicate function returns false.
 919      *
 920      * <p>
 921      * {@code IntStream.iterate} should produce the same sequence of elements
 922      * as produced by the corresponding for-loop:
 923      * <pre>{@code
 924      *     for (int index=seed; predicate.test(index); index = f.apply(index)) { 
 925      *         ... 
 926      *     }
 927      * }</pre>
 928      *
 929      * <p>
 930      * The resulting sequence may be empty if the predicate does not hold on 
 931      * the seed value.  Otherwise the first element will be the supplied seed
 932      * value, the next element (if present) will be the result of applying the
 933      * function f to the seed value, and so on iteratively until the predicate
 934      * indicates that the stream should terminate.
 935      *
 936      * @param seed the initial element
 937      * @param predicate a predicate to apply to elements to determine when the 
 938      *          stream must terminate.
 939      * @param f a function to be applied to the previous element to produce
 940      *          a new element
 941      * @return a new sequential {@code IntStream}
 942      * @since 9
 943      */
 944     public static IntStream iterate(int seed, IntPredicate predicate, IntUnaryOperator f) {
 945         Objects.requireNonNull(f);
 946         Objects.requireNonNull(predicate);
 947         Spliterator.OfInt spliterator = new Spliterators.AbstractIntSpliterator(Long.MAX_VALUE, 
 948                Spliterator.ORDERED | Spliterator.IMMUTABLE) {
 949             int prev;
 950             boolean started, finished;
 951 
 952             @Override
 953             public boolean tryAdvance(IntConsumer action) {
 954                 Objects.requireNonNull(action);
 955                 if (finished)
 956                     return false;
 957                 int t;
 958                 if (started)
 959                     t = f.applyAsInt(prev);
 960                 else {
 961                     t = seed;
 962                     started = true;
 963                 }
 964                 if (!predicate.test(t)) {
 965                     finished = true;
 966                     return false;
 967                 }
 968                 action.accept(prev = t);
 969                 return true;
 970             }
 971 
 972             @Override
 973             public void forEachRemaining(IntConsumer action) {
 974                 Objects.requireNonNull(action);
 975                 if (finished)
 976                     return;
 977                 int t = started ? f.applyAsInt(prev) : seed;
 978                 finished = true;
 979                 while (predicate.test(t)) {
 980                     action.accept(t);
 981                     t = f.applyAsInt(t);
 982                 }
 983             }
 984         };
 985         return StreamSupport.intStream(spliterator, false);
 986     }
 987 
 988     /**
 989      * Returns an infinite sequential unordered stream where each element is
 990      * generated by the provided {@code IntSupplier}.  This is suitable for
 991      * generating constant streams, streams of random elements, etc.
 992      *
 993      * @param s the {@code IntSupplier} for generated elements
 994      * @return a new infinite sequential unordered {@code IntStream}
 995      */
 996     public static IntStream generate(IntSupplier s) {
 997         Objects.requireNonNull(s);
 998         return StreamSupport.intStream(
 999                 new StreamSpliterators.InfiniteSupplyingSpliterator.OfInt(Long.MAX_VALUE, s), false);
1000     }
1001 
1002     /**
1003      * Returns a sequential ordered {@code IntStream} from {@code startInclusive}
1004      * (inclusive) to {@code endExclusive} (exclusive) by an incremental step of
1005      * {@code 1}.
1006      *
1007      * @apiNote
1008      * <p>An equivalent sequence of increasing values can be produced
1009      * sequentially using a {@code for} loop as follows:
1010      * <pre>{@code
1011      *     for (int i = startInclusive; i < endExclusive ; i++) { ... }
1012      * }</pre>
1013      *
1014      * @param startInclusive the (inclusive) initial value
1015      * @param endExclusive the exclusive upper bound
1016      * @return a sequential {@code IntStream} for the range of {@code int}
1017      *         elements
1018      */
1019     public static IntStream range(int startInclusive, int endExclusive) {
1020         if (startInclusive >= endExclusive) {
1021             return empty();
1022         } else {
1023             return StreamSupport.intStream(
1024                     new Streams.RangeIntSpliterator(startInclusive, endExclusive, false), false);
1025         }
1026     }
1027 
1028     /**
1029      * Returns a sequential ordered {@code IntStream} from {@code startInclusive}
1030      * (inclusive) to {@code endInclusive} (inclusive) by an incremental step of
1031      * {@code 1}.
1032      *
1033      * @apiNote
1034      * <p>An equivalent sequence of increasing values can be produced
1035      * sequentially using a {@code for} loop as follows:
1036      * <pre>{@code
1037      *     for (int i = startInclusive; i <= endInclusive ; i++) { ... }
1038      * }</pre>
1039      *
1040      * @param startInclusive the (inclusive) initial value
1041      * @param endInclusive the inclusive upper bound
1042      * @return a sequential {@code IntStream} for the range of {@code int}
1043      *         elements
1044      */
1045     public static IntStream rangeClosed(int startInclusive, int endInclusive) {
1046         if (startInclusive > endInclusive) {
1047             return empty();
1048         } else {
1049             return StreamSupport.intStream(
1050                     new Streams.RangeIntSpliterator(startInclusive, endInclusive, true), false);
1051         }
1052     }
1053 
1054     /**
1055      * Creates a lazily concatenated stream whose elements are all the
1056      * elements of the first stream followed by all the elements of the
1057      * second stream.  The resulting stream is ordered if both
1058      * of the input streams are ordered, and parallel if either of the input
1059      * streams is parallel.  When the resulting stream is closed, the close
1060      * handlers for both input streams are invoked.
1061      *
1062      * @implNote
1063      * Use caution when constructing streams from repeated concatenation.
1064      * Accessing an element of a deeply concatenated stream can result in deep
1065      * call chains, or even {@code StackOverflowError}.
1066      *
1067      * @param a the first stream
1068      * @param b the second stream
1069      * @return the concatenation of the two input streams
1070      */
1071     public static IntStream concat(IntStream a, IntStream b) {
1072         Objects.requireNonNull(a);
1073         Objects.requireNonNull(b);
1074 
1075         Spliterator.OfInt split = new Streams.ConcatSpliterator.OfInt(
1076                 a.spliterator(), b.spliterator());
1077         IntStream stream = StreamSupport.intStream(split, a.isParallel() || b.isParallel());
1078         return stream.onClose(Streams.composedClose(a, b));
1079     }
1080 
1081     /**
1082      * A mutable builder for an {@code IntStream}.
1083      *
1084      * <p>A stream builder has a lifecycle, which starts in a building
1085      * phase, during which elements can be added, and then transitions to a built
1086      * phase, after which elements may not be added.  The built phase
1087      * begins when the {@link #build()} method is called, which creates an
1088      * ordered stream whose elements are the elements that were added to the
1089      * stream builder, in the order they were added.
1090      *
1091      * @see IntStream#builder()
1092      * @since 1.8
1093      */
1094     public interface Builder extends IntConsumer {
1095 
1096         /**
1097          * Adds an element to the stream being built.
1098          *
1099          * @throws IllegalStateException if the builder has already transitioned
1100          * to the built state
1101          */
1102         @Override
1103         void accept(int t);
1104 
1105         /**
1106          * Adds an element to the stream being built.
1107          *
1108          * @implSpec
1109          * The default implementation behaves as if:
1110          * <pre>{@code
1111          *     accept(t)
1112          *     return this;
1113          * }</pre>
1114          *
1115          * @param t the element to add
1116          * @return {@code this} builder
1117          * @throws IllegalStateException if the builder has already transitioned
1118          * to the built state
1119          */
1120         default Builder add(int t) {
1121             accept(t);
1122             return this;
1123         }
1124 
1125         /**
1126          * Builds the stream, transitioning this builder to the built state.
1127          * An {@code IllegalStateException} is thrown if there are further
1128          * attempts to operate on the builder after it has entered the built
1129          * state.
1130          *
1131          * @return the built stream
1132          * @throws IllegalStateException if the builder has already transitioned to
1133          * the built state
1134          */
1135         IntStream build();
1136     }
1137 }