1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/oopFactory.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/instanceKlass.hpp"
  40 #include "oops/objArrayOop.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/symbol.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/jvmtiThreadState.hpp"
  46 #include "prims/privilegedStack.hpp"
  47 #include "runtime/aprofiler.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/frame.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniPeriodicChecker.hpp"
  58 #include "runtime/memprofiler.hpp"
  59 #include "runtime/mutexLocker.hpp"
  60 #include "runtime/objectMonitor.hpp"
  61 #include "runtime/osThread.hpp"
  62 #include "runtime/safepoint.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/statSampler.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/task.hpp"
  67 #include "runtime/threadCritical.hpp"
  68 #include "runtime/threadLocalStorage.hpp"
  69 #include "runtime/vframe.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "runtime/vframe_hp.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "runtime/vm_operations.hpp"
  74 #include "services/attachListener.hpp"
  75 #include "services/management.hpp"
  76 #include "services/threadService.hpp"
  77 #include "trace/traceEventTypes.hpp"
  78 #include "utilities/defaultStream.hpp"
  79 #include "utilities/dtrace.hpp"
  80 #include "utilities/events.hpp"
  81 #include "utilities/preserveException.hpp"
  82 #ifdef TARGET_OS_FAMILY_linux
  83 # include "os_linux.inline.hpp"
  84 # include "thread_linux.inline.hpp"
  85 #endif
  86 #ifdef TARGET_OS_FAMILY_solaris
  87 # include "os_solaris.inline.hpp"
  88 # include "thread_solaris.inline.hpp"
  89 #endif
  90 #ifdef TARGET_OS_FAMILY_windows
  91 # include "os_windows.inline.hpp"
  92 # include "thread_windows.inline.hpp"
  93 #endif
  94 #ifdef TARGET_OS_FAMILY_bsd
  95 # include "os_bsd.inline.hpp"
  96 # include "thread_bsd.inline.hpp"
  97 #endif
  98 #ifndef SERIALGC
  99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 102 #endif
 103 #ifdef COMPILER1
 104 #include "c1/c1_Compiler.hpp"
 105 #endif
 106 #ifdef COMPILER2
 107 #include "opto/c2compiler.hpp"
 108 #include "opto/idealGraphPrinter.hpp"
 109 #endif
 110 
 111 #ifdef DTRACE_ENABLED
 112 
 113 // Only bother with this argument setup if dtrace is available
 114 
 115 #ifndef USDT2
 116 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 117 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 118 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 119   intptr_t, intptr_t, bool);
 120 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 121   intptr_t, intptr_t, bool);
 122 
 123 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 124   {                                                                        \
 125     ResourceMark rm(this);                                                 \
 126     int len = 0;                                                           \
 127     const char* name = (javathread)->get_thread_name();                    \
 128     len = strlen(name);                                                    \
 129     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 130       name, len,                                                           \
 131       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 132       (javathread)->osthread()->thread_id(),                               \
 133       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 134   }
 135 
 136 #else /* USDT2 */
 137 
 138 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 139 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 140 
 141 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 142   {                                                                        \
 143     ResourceMark rm(this);                                                 \
 144     int len = 0;                                                           \
 145     const char* name = (javathread)->get_thread_name();                    \
 146     len = strlen(name);                                                    \
 147     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 148       (char *) name, len,                                                           \
 149       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 150       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 151       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 152   }
 153 
 154 #endif /* USDT2 */
 155 
 156 #else //  ndef DTRACE_ENABLED
 157 
 158 #define DTRACE_THREAD_PROBE(probe, javathread)
 159 
 160 #endif // ndef DTRACE_ENABLED
 161 
 162 // Class hierarchy
 163 // - Thread
 164 //   - VMThread
 165 //   - WatcherThread
 166 //   - ConcurrentMarkSweepThread
 167 //   - JavaThread
 168 //     - CompilerThread
 169 
 170 // ======= Thread ========
 171 
 172 // Support for forcing alignment of thread objects for biased locking
 173 void* Thread::operator new(size_t size) {
 174   if (UseBiasedLocking) {
 175     const int alignment = markOopDesc::biased_lock_alignment;
 176     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 177     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
 178     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 179     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 180            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 181            "JavaThread alignment code overflowed allocated storage");
 182     if (TraceBiasedLocking) {
 183       if (aligned_addr != real_malloc_addr)
 184         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 185                       real_malloc_addr, aligned_addr);
 186     }
 187     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 188     return aligned_addr;
 189   } else {
 190     return CHeapObj::operator new(size);
 191   }
 192 }
 193 
 194 void Thread::operator delete(void* p) {
 195   if (UseBiasedLocking) {
 196     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 197     CHeapObj::operator delete(real_malloc_addr);
 198   } else {
 199     CHeapObj::operator delete(p);
 200   }
 201 }
 202 
 203 
 204 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 205 // JavaThread
 206 
 207 
 208 Thread::Thread() {
 209   // stack and get_thread
 210   set_stack_base(NULL);
 211   set_stack_size(0);
 212   set_self_raw_id(0);
 213   set_lgrp_id(-1);
 214 
 215   // allocated data structures
 216   set_osthread(NULL);
 217   set_resource_area(new ResourceArea());
 218   set_handle_area(new HandleArea(NULL));
 219   set_active_handles(NULL);
 220   set_free_handle_block(NULL);
 221   set_last_handle_mark(NULL);
 222 
 223   // This initial value ==> never claimed.
 224   _oops_do_parity = 0;
 225 
 226   // the handle mark links itself to last_handle_mark
 227   new HandleMark(this);
 228 
 229   // plain initialization
 230   debug_only(_owned_locks = NULL;)
 231   debug_only(_allow_allocation_count = 0;)
 232   NOT_PRODUCT(_allow_safepoint_count = 0;)
 233   NOT_PRODUCT(_skip_gcalot = false;)
 234   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 235   _jvmti_env_iteration_count = 0;
 236   set_allocated_bytes(0);
 237   set_trace_buffer(NULL);
 238   _vm_operation_started_count = 0;
 239   _vm_operation_completed_count = 0;
 240   _current_pending_monitor = NULL;
 241   _current_pending_monitor_is_from_java = true;
 242   _current_waiting_monitor = NULL;
 243   _num_nested_signal = 0;
 244   omFreeList = NULL ;
 245   omFreeCount = 0 ;
 246   omFreeProvision = 32 ;
 247   omInUseList = NULL ;
 248   omInUseCount = 0 ;
 249 
 250 #ifdef ASSERT
 251   _visited_for_critical_count = false;
 252 #endif
 253 
 254   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 255   _suspend_flags = 0;
 256 
 257   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 258   _hashStateX = os::random() ;
 259   _hashStateY = 842502087 ;
 260   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 261   _hashStateW = 273326509 ;
 262 
 263   _OnTrap   = 0 ;
 264   _schedctl = NULL ;
 265   _Stalled  = 0 ;
 266   _TypeTag  = 0x2BAD ;
 267 
 268   // Many of the following fields are effectively final - immutable
 269   // Note that nascent threads can't use the Native Monitor-Mutex
 270   // construct until the _MutexEvent is initialized ...
 271   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 272   // we might instead use a stack of ParkEvents that we could provision on-demand.
 273   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 274   // and ::Release()
 275   _ParkEvent   = ParkEvent::Allocate (this) ;
 276   _SleepEvent  = ParkEvent::Allocate (this) ;
 277   _MutexEvent  = ParkEvent::Allocate (this) ;
 278   _MuxEvent    = ParkEvent::Allocate (this) ;
 279 
 280 #ifdef CHECK_UNHANDLED_OOPS
 281   if (CheckUnhandledOops) {
 282     _unhandled_oops = new UnhandledOops(this);
 283   }
 284 #endif // CHECK_UNHANDLED_OOPS
 285 #ifdef ASSERT
 286   if (UseBiasedLocking) {
 287     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 288     assert(this == _real_malloc_address ||
 289            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 290            "bug in forced alignment of thread objects");
 291   }
 292 #endif /* ASSERT */
 293 }
 294 
 295 void Thread::initialize_thread_local_storage() {
 296   // Note: Make sure this method only calls
 297   // non-blocking operations. Otherwise, it might not work
 298   // with the thread-startup/safepoint interaction.
 299 
 300   // During Java thread startup, safepoint code should allow this
 301   // method to complete because it may need to allocate memory to
 302   // store information for the new thread.
 303 
 304   // initialize structure dependent on thread local storage
 305   ThreadLocalStorage::set_thread(this);
 306 
 307   // set up any platform-specific state.
 308   os::initialize_thread();
 309 
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315 }
 316 
 317 
 318 Thread::~Thread() {
 319   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 320   ObjectSynchronizer::omFlush (this) ;
 321 
 322   // deallocate data structures
 323   delete resource_area();
 324   // since the handle marks are using the handle area, we have to deallocated the root
 325   // handle mark before deallocating the thread's handle area,
 326   assert(last_handle_mark() != NULL, "check we have an element");
 327   delete last_handle_mark();
 328   assert(last_handle_mark() == NULL, "check we have reached the end");
 329 
 330   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 331   // We NULL out the fields for good hygiene.
 332   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 333   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 334   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 335   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 336 
 337   delete handle_area();
 338 
 339   // osthread() can be NULL, if creation of thread failed.
 340   if (osthread() != NULL) os::free_thread(osthread());
 341 
 342   delete _SR_lock;
 343 
 344   // clear thread local storage if the Thread is deleting itself
 345   if (this == Thread::current()) {
 346     ThreadLocalStorage::set_thread(NULL);
 347   } else {
 348     // In the case where we're not the current thread, invalidate all the
 349     // caches in case some code tries to get the current thread or the
 350     // thread that was destroyed, and gets stale information.
 351     ThreadLocalStorage::invalidate_all();
 352   }
 353   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 354 }
 355 
 356 // NOTE: dummy function for assertion purpose.
 357 void Thread::run() {
 358   ShouldNotReachHere();
 359 }
 360 
 361 #ifdef ASSERT
 362 // Private method to check for dangling thread pointer
 363 void check_for_dangling_thread_pointer(Thread *thread) {
 364  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 365          "possibility of dangling Thread pointer");
 366 }
 367 #endif
 368 
 369 
 370 #ifndef PRODUCT
 371 // Tracing method for basic thread operations
 372 void Thread::trace(const char* msg, const Thread* const thread) {
 373   if (!TraceThreadEvents) return;
 374   ResourceMark rm;
 375   ThreadCritical tc;
 376   const char *name = "non-Java thread";
 377   int prio = -1;
 378   if (thread->is_Java_thread()
 379       && !thread->is_Compiler_thread()) {
 380     // The Threads_lock must be held to get information about
 381     // this thread but may not be in some situations when
 382     // tracing  thread events.
 383     bool release_Threads_lock = false;
 384     if (!Threads_lock->owned_by_self()) {
 385       Threads_lock->lock();
 386       release_Threads_lock = true;
 387     }
 388     JavaThread* jt = (JavaThread *)thread;
 389     name = (char *)jt->get_thread_name();
 390     oop thread_oop = jt->threadObj();
 391     if (thread_oop != NULL) {
 392       prio = java_lang_Thread::priority(thread_oop);
 393     }
 394     if (release_Threads_lock) {
 395       Threads_lock->unlock();
 396     }
 397   }
 398   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 399 }
 400 #endif
 401 
 402 
 403 ThreadPriority Thread::get_priority(const Thread* const thread) {
 404   trace("get priority", thread);
 405   ThreadPriority priority;
 406   // Can return an error!
 407   (void)os::get_priority(thread, priority);
 408   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 409   return priority;
 410 }
 411 
 412 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 413   trace("set priority", thread);
 414   debug_only(check_for_dangling_thread_pointer(thread);)
 415   // Can return an error!
 416   (void)os::set_priority(thread, priority);
 417 }
 418 
 419 
 420 void Thread::start(Thread* thread) {
 421   trace("start", thread);
 422   // Start is different from resume in that its safety is guaranteed by context or
 423   // being called from a Java method synchronized on the Thread object.
 424   if (!DisableStartThread) {
 425     if (thread->is_Java_thread()) {
 426       // Initialize the thread state to RUNNABLE before starting this thread.
 427       // Can not set it after the thread started because we do not know the
 428       // exact thread state at that time. It could be in MONITOR_WAIT or
 429       // in SLEEPING or some other state.
 430       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 431                                           java_lang_Thread::RUNNABLE);
 432     }
 433     os::start_thread(thread);
 434   }
 435 }
 436 
 437 // Enqueue a VM_Operation to do the job for us - sometime later
 438 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 439   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 440   VMThread::execute(vm_stop);
 441 }
 442 
 443 
 444 //
 445 // Check if an external suspend request has completed (or has been
 446 // cancelled). Returns true if the thread is externally suspended and
 447 // false otherwise.
 448 //
 449 // The bits parameter returns information about the code path through
 450 // the routine. Useful for debugging:
 451 //
 452 // set in is_ext_suspend_completed():
 453 // 0x00000001 - routine was entered
 454 // 0x00000010 - routine return false at end
 455 // 0x00000100 - thread exited (return false)
 456 // 0x00000200 - suspend request cancelled (return false)
 457 // 0x00000400 - thread suspended (return true)
 458 // 0x00001000 - thread is in a suspend equivalent state (return true)
 459 // 0x00002000 - thread is native and walkable (return true)
 460 // 0x00004000 - thread is native_trans and walkable (needed retry)
 461 //
 462 // set in wait_for_ext_suspend_completion():
 463 // 0x00010000 - routine was entered
 464 // 0x00020000 - suspend request cancelled before loop (return false)
 465 // 0x00040000 - thread suspended before loop (return true)
 466 // 0x00080000 - suspend request cancelled in loop (return false)
 467 // 0x00100000 - thread suspended in loop (return true)
 468 // 0x00200000 - suspend not completed during retry loop (return false)
 469 //
 470 
 471 // Helper class for tracing suspend wait debug bits.
 472 //
 473 // 0x00000100 indicates that the target thread exited before it could
 474 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 475 // 0x00080000 each indicate a cancelled suspend request so they don't
 476 // count as wait failures either.
 477 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 478 
 479 class TraceSuspendDebugBits : public StackObj {
 480  private:
 481   JavaThread * jt;
 482   bool         is_wait;
 483   bool         called_by_wait;  // meaningful when !is_wait
 484   uint32_t *   bits;
 485 
 486  public:
 487   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 488                         uint32_t *_bits) {
 489     jt             = _jt;
 490     is_wait        = _is_wait;
 491     called_by_wait = _called_by_wait;
 492     bits           = _bits;
 493   }
 494 
 495   ~TraceSuspendDebugBits() {
 496     if (!is_wait) {
 497 #if 1
 498       // By default, don't trace bits for is_ext_suspend_completed() calls.
 499       // That trace is very chatty.
 500       return;
 501 #else
 502       if (!called_by_wait) {
 503         // If tracing for is_ext_suspend_completed() is enabled, then only
 504         // trace calls to it from wait_for_ext_suspend_completion()
 505         return;
 506       }
 507 #endif
 508     }
 509 
 510     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 511       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 512         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 513         ResourceMark rm;
 514 
 515         tty->print_cr(
 516             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 517             jt->get_thread_name(), *bits);
 518 
 519         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 520       }
 521     }
 522   }
 523 };
 524 #undef DEBUG_FALSE_BITS
 525 
 526 
 527 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 528   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 529 
 530   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 531   bool do_trans_retry;           // flag to force the retry
 532 
 533   *bits |= 0x00000001;
 534 
 535   do {
 536     do_trans_retry = false;
 537 
 538     if (is_exiting()) {
 539       // Thread is in the process of exiting. This is always checked
 540       // first to reduce the risk of dereferencing a freed JavaThread.
 541       *bits |= 0x00000100;
 542       return false;
 543     }
 544 
 545     if (!is_external_suspend()) {
 546       // Suspend request is cancelled. This is always checked before
 547       // is_ext_suspended() to reduce the risk of a rogue resume
 548       // confusing the thread that made the suspend request.
 549       *bits |= 0x00000200;
 550       return false;
 551     }
 552 
 553     if (is_ext_suspended()) {
 554       // thread is suspended
 555       *bits |= 0x00000400;
 556       return true;
 557     }
 558 
 559     // Now that we no longer do hard suspends of threads running
 560     // native code, the target thread can be changing thread state
 561     // while we are in this routine:
 562     //
 563     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 564     //
 565     // We save a copy of the thread state as observed at this moment
 566     // and make our decision about suspend completeness based on the
 567     // copy. This closes the race where the thread state is seen as
 568     // _thread_in_native_trans in the if-thread_blocked check, but is
 569     // seen as _thread_blocked in if-thread_in_native_trans check.
 570     JavaThreadState save_state = thread_state();
 571 
 572     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 573       // If the thread's state is _thread_blocked and this blocking
 574       // condition is known to be equivalent to a suspend, then we can
 575       // consider the thread to be externally suspended. This means that
 576       // the code that sets _thread_blocked has been modified to do
 577       // self-suspension if the blocking condition releases. We also
 578       // used to check for CONDVAR_WAIT here, but that is now covered by
 579       // the _thread_blocked with self-suspension check.
 580       //
 581       // Return true since we wouldn't be here unless there was still an
 582       // external suspend request.
 583       *bits |= 0x00001000;
 584       return true;
 585     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 586       // Threads running native code will self-suspend on native==>VM/Java
 587       // transitions. If its stack is walkable (should always be the case
 588       // unless this function is called before the actual java_suspend()
 589       // call), then the wait is done.
 590       *bits |= 0x00002000;
 591       return true;
 592     } else if (!called_by_wait && !did_trans_retry &&
 593                save_state == _thread_in_native_trans &&
 594                frame_anchor()->walkable()) {
 595       // The thread is transitioning from thread_in_native to another
 596       // thread state. check_safepoint_and_suspend_for_native_trans()
 597       // will force the thread to self-suspend. If it hasn't gotten
 598       // there yet we may have caught the thread in-between the native
 599       // code check above and the self-suspend. Lucky us. If we were
 600       // called by wait_for_ext_suspend_completion(), then it
 601       // will be doing the retries so we don't have to.
 602       //
 603       // Since we use the saved thread state in the if-statement above,
 604       // there is a chance that the thread has already transitioned to
 605       // _thread_blocked by the time we get here. In that case, we will
 606       // make a single unnecessary pass through the logic below. This
 607       // doesn't hurt anything since we still do the trans retry.
 608 
 609       *bits |= 0x00004000;
 610 
 611       // Once the thread leaves thread_in_native_trans for another
 612       // thread state, we break out of this retry loop. We shouldn't
 613       // need this flag to prevent us from getting back here, but
 614       // sometimes paranoia is good.
 615       did_trans_retry = true;
 616 
 617       // We wait for the thread to transition to a more usable state.
 618       for (int i = 1; i <= SuspendRetryCount; i++) {
 619         // We used to do an "os::yield_all(i)" call here with the intention
 620         // that yielding would increase on each retry. However, the parameter
 621         // is ignored on Linux which means the yield didn't scale up. Waiting
 622         // on the SR_lock below provides a much more predictable scale up for
 623         // the delay. It also provides a simple/direct point to check for any
 624         // safepoint requests from the VMThread
 625 
 626         // temporarily drops SR_lock while doing wait with safepoint check
 627         // (if we're a JavaThread - the WatcherThread can also call this)
 628         // and increase delay with each retry
 629         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 630 
 631         // check the actual thread state instead of what we saved above
 632         if (thread_state() != _thread_in_native_trans) {
 633           // the thread has transitioned to another thread state so
 634           // try all the checks (except this one) one more time.
 635           do_trans_retry = true;
 636           break;
 637         }
 638       } // end retry loop
 639 
 640 
 641     }
 642   } while (do_trans_retry);
 643 
 644   *bits |= 0x00000010;
 645   return false;
 646 }
 647 
 648 //
 649 // Wait for an external suspend request to complete (or be cancelled).
 650 // Returns true if the thread is externally suspended and false otherwise.
 651 //
 652 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 653        uint32_t *bits) {
 654   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 655                              false /* !called_by_wait */, bits);
 656 
 657   // local flag copies to minimize SR_lock hold time
 658   bool is_suspended;
 659   bool pending;
 660   uint32_t reset_bits;
 661 
 662   // set a marker so is_ext_suspend_completed() knows we are the caller
 663   *bits |= 0x00010000;
 664 
 665   // We use reset_bits to reinitialize the bits value at the top of
 666   // each retry loop. This allows the caller to make use of any
 667   // unused bits for their own marking purposes.
 668   reset_bits = *bits;
 669 
 670   {
 671     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 672     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 673                                             delay, bits);
 674     pending = is_external_suspend();
 675   }
 676   // must release SR_lock to allow suspension to complete
 677 
 678   if (!pending) {
 679     // A cancelled suspend request is the only false return from
 680     // is_ext_suspend_completed() that keeps us from entering the
 681     // retry loop.
 682     *bits |= 0x00020000;
 683     return false;
 684   }
 685 
 686   if (is_suspended) {
 687     *bits |= 0x00040000;
 688     return true;
 689   }
 690 
 691   for (int i = 1; i <= retries; i++) {
 692     *bits = reset_bits;  // reinit to only track last retry
 693 
 694     // We used to do an "os::yield_all(i)" call here with the intention
 695     // that yielding would increase on each retry. However, the parameter
 696     // is ignored on Linux which means the yield didn't scale up. Waiting
 697     // on the SR_lock below provides a much more predictable scale up for
 698     // the delay. It also provides a simple/direct point to check for any
 699     // safepoint requests from the VMThread
 700 
 701     {
 702       MutexLocker ml(SR_lock());
 703       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 704       // can also call this)  and increase delay with each retry
 705       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 706 
 707       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 708                                               delay, bits);
 709 
 710       // It is possible for the external suspend request to be cancelled
 711       // (by a resume) before the actual suspend operation is completed.
 712       // Refresh our local copy to see if we still need to wait.
 713       pending = is_external_suspend();
 714     }
 715 
 716     if (!pending) {
 717       // A cancelled suspend request is the only false return from
 718       // is_ext_suspend_completed() that keeps us from staying in the
 719       // retry loop.
 720       *bits |= 0x00080000;
 721       return false;
 722     }
 723 
 724     if (is_suspended) {
 725       *bits |= 0x00100000;
 726       return true;
 727     }
 728   } // end retry loop
 729 
 730   // thread did not suspend after all our retries
 731   *bits |= 0x00200000;
 732   return false;
 733 }
 734 
 735 #ifndef PRODUCT
 736 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 737 
 738   // This should not need to be atomic as the only way for simultaneous
 739   // updates is via interrupts. Even then this should be rare or non-existant
 740   // and we don't care that much anyway.
 741 
 742   int index = _jmp_ring_index;
 743   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 744   _jmp_ring[index]._target = (intptr_t) target;
 745   _jmp_ring[index]._instruction = (intptr_t) instr;
 746   _jmp_ring[index]._file = file;
 747   _jmp_ring[index]._line = line;
 748 }
 749 #endif /* PRODUCT */
 750 
 751 // Called by flat profiler
 752 // Callers have already called wait_for_ext_suspend_completion
 753 // The assertion for that is currently too complex to put here:
 754 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 755   bool gotframe = false;
 756   // self suspension saves needed state.
 757   if (has_last_Java_frame() && _anchor.walkable()) {
 758      *_fr = pd_last_frame();
 759      gotframe = true;
 760   }
 761   return gotframe;
 762 }
 763 
 764 void Thread::interrupt(Thread* thread) {
 765   trace("interrupt", thread);
 766   debug_only(check_for_dangling_thread_pointer(thread);)
 767   os::interrupt(thread);
 768 }
 769 
 770 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 771   trace("is_interrupted", thread);
 772   debug_only(check_for_dangling_thread_pointer(thread);)
 773   // Note:  If clear_interrupted==false, this simply fetches and
 774   // returns the value of the field osthread()->interrupted().
 775   return os::is_interrupted(thread, clear_interrupted);
 776 }
 777 
 778 
 779 // GC Support
 780 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 781   jint thread_parity = _oops_do_parity;
 782   if (thread_parity != strong_roots_parity) {
 783     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 784     if (res == thread_parity) {
 785       return true;
 786     } else {
 787       guarantee(res == strong_roots_parity, "Or else what?");
 788       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 789          "Should only fail when parallel.");
 790       return false;
 791     }
 792   }
 793   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 794          "Should only fail when parallel.");
 795   return false;
 796 }
 797 
 798 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 799   active_handles()->oops_do(f);
 800   // Do oop for ThreadShadow
 801   f->do_oop((oop*)&_pending_exception);
 802   handle_area()->oops_do(f);
 803 }
 804 
 805 void Thread::nmethods_do(CodeBlobClosure* cf) {
 806   // no nmethods in a generic thread...
 807 }
 808 
 809 void Thread::print_on(outputStream* st) const {
 810   // get_priority assumes osthread initialized
 811   if (osthread() != NULL) {
 812     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 813     osthread()->print_on(st);
 814   }
 815   debug_only(if (WizardMode) print_owned_locks_on(st);)
 816 }
 817 
 818 // Thread::print_on_error() is called by fatal error handler. Don't use
 819 // any lock or allocate memory.
 820 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 821   if      (is_VM_thread())                  st->print("VMThread");
 822   else if (is_Compiler_thread())            st->print("CompilerThread");
 823   else if (is_Java_thread())                st->print("JavaThread");
 824   else if (is_GC_task_thread())             st->print("GCTaskThread");
 825   else if (is_Watcher_thread())             st->print("WatcherThread");
 826   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 827   else st->print("Thread");
 828 
 829   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 830             _stack_base - _stack_size, _stack_base);
 831 
 832   if (osthread()) {
 833     st->print(" [id=%d]", osthread()->thread_id());
 834   }
 835 }
 836 
 837 #ifdef ASSERT
 838 void Thread::print_owned_locks_on(outputStream* st) const {
 839   Monitor *cur = _owned_locks;
 840   if (cur == NULL) {
 841     st->print(" (no locks) ");
 842   } else {
 843     st->print_cr(" Locks owned:");
 844     while(cur) {
 845       cur->print_on(st);
 846       cur = cur->next();
 847     }
 848   }
 849 }
 850 
 851 static int ref_use_count  = 0;
 852 
 853 bool Thread::owns_locks_but_compiled_lock() const {
 854   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 855     if (cur != Compile_lock) return true;
 856   }
 857   return false;
 858 }
 859 
 860 
 861 #endif
 862 
 863 #ifndef PRODUCT
 864 
 865 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 866 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 867 // no threads which allow_vm_block's are held
 868 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 869     // Check if current thread is allowed to block at a safepoint
 870     if (!(_allow_safepoint_count == 0))
 871       fatal("Possible safepoint reached by thread that does not allow it");
 872     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 873       fatal("LEAF method calling lock?");
 874     }
 875 
 876 #ifdef ASSERT
 877     if (potential_vm_operation && is_Java_thread()
 878         && !Universe::is_bootstrapping()) {
 879       // Make sure we do not hold any locks that the VM thread also uses.
 880       // This could potentially lead to deadlocks
 881       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 882         // Threads_lock is special, since the safepoint synchronization will not start before this is
 883         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 884         // since it is used to transfer control between JavaThreads and the VMThread
 885         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 886         if ( (cur->allow_vm_block() &&
 887               cur != Threads_lock &&
 888               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 889               cur != VMOperationRequest_lock &&
 890               cur != VMOperationQueue_lock) ||
 891               cur->rank() == Mutex::special) {
 892           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 893         }
 894       }
 895     }
 896 
 897     if (GCALotAtAllSafepoints) {
 898       // We could enter a safepoint here and thus have a gc
 899       InterfaceSupport::check_gc_alot();
 900     }
 901 #endif
 902 }
 903 #endif
 904 
 905 bool Thread::is_in_stack(address adr) const {
 906   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 907   address end = os::current_stack_pointer();
 908   if (stack_base() >= adr && adr >= end) return true;
 909 
 910   return false;
 911 }
 912 
 913 
 914 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 915 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 916 // used for compilation in the future. If that change is made, the need for these methods
 917 // should be revisited, and they should be removed if possible.
 918 
 919 bool Thread::is_lock_owned(address adr) const {
 920   return on_local_stack(adr);
 921 }
 922 
 923 bool Thread::set_as_starting_thread() {
 924  // NOTE: this must be called inside the main thread.
 925   return os::create_main_thread((JavaThread*)this);
 926 }
 927 
 928 static void initialize_class(Symbol* class_name, TRAPS) {
 929   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 930   instanceKlass::cast(klass)->initialize(CHECK);
 931 }
 932 
 933 
 934 // Creates the initial ThreadGroup
 935 static Handle create_initial_thread_group(TRAPS) {
 936   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 937   instanceKlassHandle klass (THREAD, k);
 938 
 939   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 940   {
 941     JavaValue result(T_VOID);
 942     JavaCalls::call_special(&result,
 943                             system_instance,
 944                             klass,
 945                             vmSymbols::object_initializer_name(),
 946                             vmSymbols::void_method_signature(),
 947                             CHECK_NH);
 948   }
 949   Universe::set_system_thread_group(system_instance());
 950 
 951   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 952   {
 953     JavaValue result(T_VOID);
 954     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 955     JavaCalls::call_special(&result,
 956                             main_instance,
 957                             klass,
 958                             vmSymbols::object_initializer_name(),
 959                             vmSymbols::threadgroup_string_void_signature(),
 960                             system_instance,
 961                             string,
 962                             CHECK_NH);
 963   }
 964   return main_instance;
 965 }
 966 
 967 // Creates the initial Thread
 968 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 969   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 970   instanceKlassHandle klass (THREAD, k);
 971   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 972 
 973   java_lang_Thread::set_thread(thread_oop(), thread);
 974   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 975   thread->set_threadObj(thread_oop());
 976 
 977   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 978 
 979   JavaValue result(T_VOID);
 980   JavaCalls::call_special(&result, thread_oop,
 981                                    klass,
 982                                    vmSymbols::object_initializer_name(),
 983                                    vmSymbols::threadgroup_string_void_signature(),
 984                                    thread_group,
 985                                    string,
 986                                    CHECK_NULL);
 987   return thread_oop();
 988 }
 989 
 990 static void call_initializeSystemClass(TRAPS) {
 991   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 992   instanceKlassHandle klass (THREAD, k);
 993 
 994   JavaValue result(T_VOID);
 995   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 996                                          vmSymbols::void_method_signature(), CHECK);
 997 }
 998 
 999 // General purpose hook into Java code, run once when the VM is initialized.
1000 // The Java library method itself may be changed independently from the VM.
1001 static void call_postVMInitHook(TRAPS) {
1002   klassOop k = SystemDictionary::PostVMInitHook_klass();
1003   instanceKlassHandle klass (THREAD, k);
1004   if (klass.not_null()) {
1005     JavaValue result(T_VOID);
1006     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1007                                            vmSymbols::void_method_signature(),
1008                                            CHECK);
1009   }
1010 }
1011 
1012 static void reset_vm_info_property(TRAPS) {
1013   // the vm info string
1014   ResourceMark rm(THREAD);
1015   const char *vm_info = VM_Version::vm_info_string();
1016 
1017   // java.lang.System class
1018   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1019   instanceKlassHandle klass (THREAD, k);
1020 
1021   // setProperty arguments
1022   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1023   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1024 
1025   // return value
1026   JavaValue r(T_OBJECT);
1027 
1028   // public static String setProperty(String key, String value);
1029   JavaCalls::call_static(&r,
1030                          klass,
1031                          vmSymbols::setProperty_name(),
1032                          vmSymbols::string_string_string_signature(),
1033                          key_str,
1034                          value_str,
1035                          CHECK);
1036 }
1037 
1038 
1039 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1040   assert(thread_group.not_null(), "thread group should be specified");
1041   assert(threadObj() == NULL, "should only create Java thread object once");
1042 
1043   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1044   instanceKlassHandle klass (THREAD, k);
1045   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1046 
1047   java_lang_Thread::set_thread(thread_oop(), this);
1048   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1049   set_threadObj(thread_oop());
1050 
1051   JavaValue result(T_VOID);
1052   if (thread_name != NULL) {
1053     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1054     // Thread gets assigned specified name and null target
1055     JavaCalls::call_special(&result,
1056                             thread_oop,
1057                             klass,
1058                             vmSymbols::object_initializer_name(),
1059                             vmSymbols::threadgroup_string_void_signature(),
1060                             thread_group, // Argument 1
1061                             name,         // Argument 2
1062                             THREAD);
1063   } else {
1064     // Thread gets assigned name "Thread-nnn" and null target
1065     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1066     JavaCalls::call_special(&result,
1067                             thread_oop,
1068                             klass,
1069                             vmSymbols::object_initializer_name(),
1070                             vmSymbols::threadgroup_runnable_void_signature(),
1071                             thread_group, // Argument 1
1072                             Handle(),     // Argument 2
1073                             THREAD);
1074   }
1075 
1076 
1077   if (daemon) {
1078       java_lang_Thread::set_daemon(thread_oop());
1079   }
1080 
1081   if (HAS_PENDING_EXCEPTION) {
1082     return;
1083   }
1084 
1085   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1086   Handle threadObj(this, this->threadObj());
1087 
1088   JavaCalls::call_special(&result,
1089                          thread_group,
1090                          group,
1091                          vmSymbols::add_method_name(),
1092                          vmSymbols::thread_void_signature(),
1093                          threadObj,          // Arg 1
1094                          THREAD);
1095 
1096 
1097 }
1098 
1099 // NamedThread --  non-JavaThread subclasses with multiple
1100 // uniquely named instances should derive from this.
1101 NamedThread::NamedThread() : Thread() {
1102   _name = NULL;
1103   _processed_thread = NULL;
1104 }
1105 
1106 NamedThread::~NamedThread() {
1107   if (_name != NULL) {
1108     FREE_C_HEAP_ARRAY(char, _name);
1109     _name = NULL;
1110   }
1111 }
1112 
1113 void NamedThread::set_name(const char* format, ...) {
1114   guarantee(_name == NULL, "Only get to set name once.");
1115   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1116   guarantee(_name != NULL, "alloc failure");
1117   va_list ap;
1118   va_start(ap, format);
1119   jio_vsnprintf(_name, max_name_len, format, ap);
1120   va_end(ap);
1121 }
1122 
1123 // ======= WatcherThread ========
1124 
1125 // The watcher thread exists to simulate timer interrupts.  It should
1126 // be replaced by an abstraction over whatever native support for
1127 // timer interrupts exists on the platform.
1128 
1129 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1130 volatile bool  WatcherThread::_should_terminate = false;
1131 
1132 WatcherThread::WatcherThread() : Thread() {
1133   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1134   if (os::create_thread(this, os::watcher_thread)) {
1135     _watcher_thread = this;
1136 
1137     // Set the watcher thread to the highest OS priority which should not be
1138     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1139     // is created. The only normal thread using this priority is the reference
1140     // handler thread, which runs for very short intervals only.
1141     // If the VMThread's priority is not lower than the WatcherThread profiling
1142     // will be inaccurate.
1143     os::set_priority(this, MaxPriority);
1144     if (!DisableStartThread) {
1145       os::start_thread(this);
1146     }
1147   }
1148 }
1149 
1150 void WatcherThread::run() {
1151   assert(this == watcher_thread(), "just checking");
1152 
1153   this->record_stack_base_and_size();
1154   this->initialize_thread_local_storage();
1155   this->set_active_handles(JNIHandleBlock::allocate_block());
1156   while(!_should_terminate) {
1157     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1158     assert(watcher_thread() == this,  "thread consistency check");
1159 
1160     // Calculate how long it'll be until the next PeriodicTask work
1161     // should be done, and sleep that amount of time.
1162     size_t time_to_wait = PeriodicTask::time_to_wait();
1163 
1164     // we expect this to timeout - we only ever get unparked when
1165     // we should terminate
1166     {
1167       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1168 
1169       jlong prev_time = os::javaTimeNanos();
1170       for (;;) {
1171         int res= _SleepEvent->park(time_to_wait);
1172         if (res == OS_TIMEOUT || _should_terminate)
1173           break;
1174         // spurious wakeup of some kind
1175         jlong now = os::javaTimeNanos();
1176         time_to_wait -= (now - prev_time) / 1000000;
1177         if (time_to_wait <= 0)
1178           break;
1179         prev_time = now;
1180       }
1181     }
1182 
1183     if (is_error_reported()) {
1184       // A fatal error has happened, the error handler(VMError::report_and_die)
1185       // should abort JVM after creating an error log file. However in some
1186       // rare cases, the error handler itself might deadlock. Here we try to
1187       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1188       //
1189       // This code is in WatcherThread because WatcherThread wakes up
1190       // periodically so the fatal error handler doesn't need to do anything;
1191       // also because the WatcherThread is less likely to crash than other
1192       // threads.
1193 
1194       for (;;) {
1195         if (!ShowMessageBoxOnError
1196          && (OnError == NULL || OnError[0] == '\0')
1197          && Arguments::abort_hook() == NULL) {
1198              os::sleep(this, 2 * 60 * 1000, false);
1199              fdStream err(defaultStream::output_fd());
1200              err.print_raw_cr("# [ timer expired, abort... ]");
1201              // skip atexit/vm_exit/vm_abort hooks
1202              os::die();
1203         }
1204 
1205         // Wake up 5 seconds later, the fatal handler may reset OnError or
1206         // ShowMessageBoxOnError when it is ready to abort.
1207         os::sleep(this, 5 * 1000, false);
1208       }
1209     }
1210 
1211     PeriodicTask::real_time_tick(time_to_wait);
1212 
1213     // If we have no more tasks left due to dynamic disenrollment,
1214     // shut down the thread since we don't currently support dynamic enrollment
1215     if (PeriodicTask::num_tasks() == 0) {
1216       _should_terminate = true;
1217     }
1218   }
1219 
1220   // Signal that it is terminated
1221   {
1222     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1223     _watcher_thread = NULL;
1224     Terminator_lock->notify();
1225   }
1226 
1227   // Thread destructor usually does this..
1228   ThreadLocalStorage::set_thread(NULL);
1229 }
1230 
1231 void WatcherThread::start() {
1232   if (watcher_thread() == NULL) {
1233     _should_terminate = false;
1234     // Create the single instance of WatcherThread
1235     new WatcherThread();
1236   }
1237 }
1238 
1239 void WatcherThread::stop() {
1240   // it is ok to take late safepoints here, if needed
1241   MutexLocker mu(Terminator_lock);
1242   _should_terminate = true;
1243   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1244 
1245   Thread* watcher = watcher_thread();
1246   if (watcher != NULL)
1247     watcher->_SleepEvent->unpark();
1248 
1249   while(watcher_thread() != NULL) {
1250     // This wait should make safepoint checks, wait without a timeout,
1251     // and wait as a suspend-equivalent condition.
1252     //
1253     // Note: If the FlatProfiler is running, then this thread is waiting
1254     // for the WatcherThread to terminate and the WatcherThread, via the
1255     // FlatProfiler task, is waiting for the external suspend request on
1256     // this thread to complete. wait_for_ext_suspend_completion() will
1257     // eventually timeout, but that takes time. Making this wait a
1258     // suspend-equivalent condition solves that timeout problem.
1259     //
1260     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1261                           Mutex::_as_suspend_equivalent_flag);
1262   }
1263 }
1264 
1265 void WatcherThread::print_on(outputStream* st) const {
1266   st->print("\"%s\" ", name());
1267   Thread::print_on(st);
1268   st->cr();
1269 }
1270 
1271 // ======= JavaThread ========
1272 
1273 // A JavaThread is a normal Java thread
1274 
1275 void JavaThread::initialize() {
1276   // Initialize fields
1277 
1278   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1279   set_claimed_par_id(-1);
1280 
1281   set_saved_exception_pc(NULL);
1282   set_threadObj(NULL);
1283   _anchor.clear();
1284   set_entry_point(NULL);
1285   set_jni_functions(jni_functions());
1286   set_callee_target(NULL);
1287   set_vm_result(NULL);
1288   set_vm_result_2(NULL);
1289   set_vframe_array_head(NULL);
1290   set_vframe_array_last(NULL);
1291   set_deferred_locals(NULL);
1292   set_deopt_mark(NULL);
1293   set_deopt_nmethod(NULL);
1294   clear_must_deopt_id();
1295   set_monitor_chunks(NULL);
1296   set_next(NULL);
1297   set_thread_state(_thread_new);
1298   _terminated = _not_terminated;
1299   _privileged_stack_top = NULL;
1300   _array_for_gc = NULL;
1301   _suspend_equivalent = false;
1302   _in_deopt_handler = 0;
1303   _doing_unsafe_access = false;
1304   _stack_guard_state = stack_guard_unused;
1305   _exception_oop = NULL;
1306   _exception_pc  = 0;
1307   _exception_handler_pc = 0;
1308   _is_method_handle_return = 0;
1309   _jvmti_thread_state= NULL;
1310   _should_post_on_exceptions_flag = JNI_FALSE;
1311   _jvmti_get_loaded_classes_closure = NULL;
1312   _interp_only_mode    = 0;
1313   _special_runtime_exit_condition = _no_async_condition;
1314   _pending_async_exception = NULL;
1315   _is_compiling = false;
1316   _thread_stat = NULL;
1317   _thread_stat = new ThreadStatistics();
1318   _blocked_on_compilation = false;
1319   _jni_active_critical = 0;
1320   _do_not_unlock_if_synchronized = false;
1321   _cached_monitor_info = NULL;
1322   _parker = Parker::Allocate(this) ;
1323 
1324 #ifndef PRODUCT
1325   _jmp_ring_index = 0;
1326   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1327     record_jump(NULL, NULL, NULL, 0);
1328   }
1329 #endif /* PRODUCT */
1330 
1331   set_thread_profiler(NULL);
1332   if (FlatProfiler::is_active()) {
1333     // This is where we would decide to either give each thread it's own profiler
1334     // or use one global one from FlatProfiler,
1335     // or up to some count of the number of profiled threads, etc.
1336     ThreadProfiler* pp = new ThreadProfiler();
1337     pp->engage();
1338     set_thread_profiler(pp);
1339   }
1340 
1341   // Setup safepoint state info for this thread
1342   ThreadSafepointState::create(this);
1343 
1344   debug_only(_java_call_counter = 0);
1345 
1346   // JVMTI PopFrame support
1347   _popframe_condition = popframe_inactive;
1348   _popframe_preserved_args = NULL;
1349   _popframe_preserved_args_size = 0;
1350 
1351   pd_initialize();
1352 }
1353 
1354 #ifndef SERIALGC
1355 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1356 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1357 #endif // !SERIALGC
1358 
1359 JavaThread::JavaThread(bool is_attaching_via_jni) :
1360   Thread()
1361 #ifndef SERIALGC
1362   , _satb_mark_queue(&_satb_mark_queue_set),
1363   _dirty_card_queue(&_dirty_card_queue_set)
1364 #endif // !SERIALGC
1365 {
1366   initialize();
1367   if (is_attaching_via_jni) {
1368     _jni_attach_state = _attaching_via_jni;
1369   } else {
1370     _jni_attach_state = _not_attaching_via_jni;
1371   }
1372   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1373 }
1374 
1375 bool JavaThread::reguard_stack(address cur_sp) {
1376   if (_stack_guard_state != stack_guard_yellow_disabled) {
1377     return true; // Stack already guarded or guard pages not needed.
1378   }
1379 
1380   if (register_stack_overflow()) {
1381     // For those architectures which have separate register and
1382     // memory stacks, we must check the register stack to see if
1383     // it has overflowed.
1384     return false;
1385   }
1386 
1387   // Java code never executes within the yellow zone: the latter is only
1388   // there to provoke an exception during stack banging.  If java code
1389   // is executing there, either StackShadowPages should be larger, or
1390   // some exception code in c1, c2 or the interpreter isn't unwinding
1391   // when it should.
1392   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1393 
1394   enable_stack_yellow_zone();
1395   return true;
1396 }
1397 
1398 bool JavaThread::reguard_stack(void) {
1399   return reguard_stack(os::current_stack_pointer());
1400 }
1401 
1402 
1403 void JavaThread::block_if_vm_exited() {
1404   if (_terminated == _vm_exited) {
1405     // _vm_exited is set at safepoint, and Threads_lock is never released
1406     // we will block here forever
1407     Threads_lock->lock_without_safepoint_check();
1408     ShouldNotReachHere();
1409   }
1410 }
1411 
1412 
1413 // Remove this ifdef when C1 is ported to the compiler interface.
1414 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1415 
1416 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1417   Thread()
1418 #ifndef SERIALGC
1419   , _satb_mark_queue(&_satb_mark_queue_set),
1420   _dirty_card_queue(&_dirty_card_queue_set)
1421 #endif // !SERIALGC
1422 {
1423   if (TraceThreadEvents) {
1424     tty->print_cr("creating thread %p", this);
1425   }
1426   initialize();
1427   _jni_attach_state = _not_attaching_via_jni;
1428   set_entry_point(entry_point);
1429   // Create the native thread itself.
1430   // %note runtime_23
1431   os::ThreadType thr_type = os::java_thread;
1432   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1433                                                      os::java_thread;
1434   os::create_thread(this, thr_type, stack_sz);
1435 
1436   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1437   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1438   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1439   // the exception consists of creating the exception object & initializing it, initialization
1440   // will leave the VM via a JavaCall and then all locks must be unlocked).
1441   //
1442   // The thread is still suspended when we reach here. Thread must be explicit started
1443   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1444   // by calling Threads:add. The reason why this is not done here, is because the thread
1445   // object must be fully initialized (take a look at JVM_Start)
1446 }
1447 
1448 JavaThread::~JavaThread() {
1449   if (TraceThreadEvents) {
1450       tty->print_cr("terminate thread %p", this);
1451   }
1452 
1453   // JSR166 -- return the parker to the free list
1454   Parker::Release(_parker);
1455   _parker = NULL ;
1456 
1457   // Free any remaining  previous UnrollBlock
1458   vframeArray* old_array = vframe_array_last();
1459 
1460   if (old_array != NULL) {
1461     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1462     old_array->set_unroll_block(NULL);
1463     delete old_info;
1464     delete old_array;
1465   }
1466 
1467   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1468   if (deferred != NULL) {
1469     // This can only happen if thread is destroyed before deoptimization occurs.
1470     assert(deferred->length() != 0, "empty array!");
1471     do {
1472       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1473       deferred->remove_at(0);
1474       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1475       delete dlv;
1476     } while (deferred->length() != 0);
1477     delete deferred;
1478   }
1479 
1480   // All Java related clean up happens in exit
1481   ThreadSafepointState::destroy(this);
1482   if (_thread_profiler != NULL) delete _thread_profiler;
1483   if (_thread_stat != NULL) delete _thread_stat;
1484 }
1485 
1486 
1487 // The first routine called by a new Java thread
1488 void JavaThread::run() {
1489   // initialize thread-local alloc buffer related fields
1490   this->initialize_tlab();
1491 
1492   // used to test validitity of stack trace backs
1493   this->record_base_of_stack_pointer();
1494 
1495   // Record real stack base and size.
1496   this->record_stack_base_and_size();
1497 
1498   // Initialize thread local storage; set before calling MutexLocker
1499   this->initialize_thread_local_storage();
1500 
1501   this->create_stack_guard_pages();
1502 
1503   this->cache_global_variables();
1504 
1505   // Thread is now sufficient initialized to be handled by the safepoint code as being
1506   // in the VM. Change thread state from _thread_new to _thread_in_vm
1507   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1508 
1509   assert(JavaThread::current() == this, "sanity check");
1510   assert(!Thread::current()->owns_locks(), "sanity check");
1511 
1512   DTRACE_THREAD_PROBE(start, this);
1513 
1514   // This operation might block. We call that after all safepoint checks for a new thread has
1515   // been completed.
1516   this->set_active_handles(JNIHandleBlock::allocate_block());
1517 
1518   if (JvmtiExport::should_post_thread_life()) {
1519     JvmtiExport::post_thread_start(this);
1520   }
1521 
1522   EVENT_BEGIN(TraceEventThreadStart, event);
1523   EVENT_COMMIT(event,
1524      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1525 
1526   // We call another function to do the rest so we are sure that the stack addresses used
1527   // from there will be lower than the stack base just computed
1528   thread_main_inner();
1529 
1530   // Note, thread is no longer valid at this point!
1531 }
1532 
1533 
1534 void JavaThread::thread_main_inner() {
1535   assert(JavaThread::current() == this, "sanity check");
1536   assert(this->threadObj() != NULL, "just checking");
1537 
1538   // Execute thread entry point unless this thread has a pending exception
1539   // or has been stopped before starting.
1540   // Note: Due to JVM_StopThread we can have pending exceptions already!
1541   if (!this->has_pending_exception() &&
1542       !java_lang_Thread::is_stillborn(this->threadObj())) {
1543     {
1544       ResourceMark rm(this);
1545       this->set_native_thread_name(this->get_thread_name());
1546     }
1547     HandleMark hm(this);
1548     this->entry_point()(this, this);
1549   }
1550 
1551   DTRACE_THREAD_PROBE(stop, this);
1552 
1553   this->exit(false);
1554   delete this;
1555 }
1556 
1557 
1558 static void ensure_join(JavaThread* thread) {
1559   // We do not need to grap the Threads_lock, since we are operating on ourself.
1560   Handle threadObj(thread, thread->threadObj());
1561   assert(threadObj.not_null(), "java thread object must exist");
1562   ObjectLocker lock(threadObj, thread);
1563   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1564   thread->clear_pending_exception();
1565   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1566   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1567   // Clear the native thread instance - this makes isAlive return false and allows the join()
1568   // to complete once we've done the notify_all below
1569   java_lang_Thread::set_thread(threadObj(), NULL);
1570   lock.notify_all(thread);
1571   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1572   thread->clear_pending_exception();
1573 }
1574 
1575 
1576 // For any new cleanup additions, please check to see if they need to be applied to
1577 // cleanup_failed_attach_current_thread as well.
1578 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1579   assert(this == JavaThread::current(),  "thread consistency check");
1580   if (!InitializeJavaLangSystem) return;
1581 
1582   HandleMark hm(this);
1583   Handle uncaught_exception(this, this->pending_exception());
1584   this->clear_pending_exception();
1585   Handle threadObj(this, this->threadObj());
1586   assert(threadObj.not_null(), "Java thread object should be created");
1587 
1588   if (get_thread_profiler() != NULL) {
1589     get_thread_profiler()->disengage();
1590     ResourceMark rm;
1591     get_thread_profiler()->print(get_thread_name());
1592   }
1593 
1594 
1595   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1596   {
1597     EXCEPTION_MARK;
1598 
1599     CLEAR_PENDING_EXCEPTION;
1600   }
1601   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1602   // has to be fixed by a runtime query method
1603   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1604     // JSR-166: change call from from ThreadGroup.uncaughtException to
1605     // java.lang.Thread.dispatchUncaughtException
1606     if (uncaught_exception.not_null()) {
1607       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1608       {
1609         EXCEPTION_MARK;
1610         // Check if the method Thread.dispatchUncaughtException() exists. If so
1611         // call it.  Otherwise we have an older library without the JSR-166 changes,
1612         // so call ThreadGroup.uncaughtException()
1613         KlassHandle recvrKlass(THREAD, threadObj->klass());
1614         CallInfo callinfo;
1615         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1616         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1617                                            vmSymbols::dispatchUncaughtException_name(),
1618                                            vmSymbols::throwable_void_signature(),
1619                                            KlassHandle(), false, false, THREAD);
1620         CLEAR_PENDING_EXCEPTION;
1621         methodHandle method = callinfo.selected_method();
1622         if (method.not_null()) {
1623           JavaValue result(T_VOID);
1624           JavaCalls::call_virtual(&result,
1625                                   threadObj, thread_klass,
1626                                   vmSymbols::dispatchUncaughtException_name(),
1627                                   vmSymbols::throwable_void_signature(),
1628                                   uncaught_exception,
1629                                   THREAD);
1630         } else {
1631           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1632           JavaValue result(T_VOID);
1633           JavaCalls::call_virtual(&result,
1634                                   group, thread_group,
1635                                   vmSymbols::uncaughtException_name(),
1636                                   vmSymbols::thread_throwable_void_signature(),
1637                                   threadObj,           // Arg 1
1638                                   uncaught_exception,  // Arg 2
1639                                   THREAD);
1640         }
1641         if (HAS_PENDING_EXCEPTION) {
1642           ResourceMark rm(this);
1643           jio_fprintf(defaultStream::error_stream(),
1644                 "\nException: %s thrown from the UncaughtExceptionHandler"
1645                 " in thread \"%s\"\n",
1646                 Klass::cast(pending_exception()->klass())->external_name(),
1647                 get_thread_name());
1648           CLEAR_PENDING_EXCEPTION;
1649         }
1650       }
1651     }
1652 
1653     // Called before the java thread exit since we want to read info
1654     // from java_lang_Thread object
1655     EVENT_BEGIN(TraceEventThreadEnd, event);
1656     EVENT_COMMIT(event,
1657         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1658 
1659     // Call after last event on thread
1660     EVENT_THREAD_EXIT(this);
1661 
1662     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1663     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1664     // is deprecated anyhow.
1665     { int count = 3;
1666       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1667         EXCEPTION_MARK;
1668         JavaValue result(T_VOID);
1669         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1670         JavaCalls::call_virtual(&result,
1671                               threadObj, thread_klass,
1672                               vmSymbols::exit_method_name(),
1673                               vmSymbols::void_method_signature(),
1674                               THREAD);
1675         CLEAR_PENDING_EXCEPTION;
1676       }
1677     }
1678 
1679     // notify JVMTI
1680     if (JvmtiExport::should_post_thread_life()) {
1681       JvmtiExport::post_thread_end(this);
1682     }
1683 
1684     // We have notified the agents that we are exiting, before we go on,
1685     // we must check for a pending external suspend request and honor it
1686     // in order to not surprise the thread that made the suspend request.
1687     while (true) {
1688       {
1689         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1690         if (!is_external_suspend()) {
1691           set_terminated(_thread_exiting);
1692           ThreadService::current_thread_exiting(this);
1693           break;
1694         }
1695         // Implied else:
1696         // Things get a little tricky here. We have a pending external
1697         // suspend request, but we are holding the SR_lock so we
1698         // can't just self-suspend. So we temporarily drop the lock
1699         // and then self-suspend.
1700       }
1701 
1702       ThreadBlockInVM tbivm(this);
1703       java_suspend_self();
1704 
1705       // We're done with this suspend request, but we have to loop around
1706       // and check again. Eventually we will get SR_lock without a pending
1707       // external suspend request and will be able to mark ourselves as
1708       // exiting.
1709     }
1710     // no more external suspends are allowed at this point
1711   } else {
1712     // before_exit() has already posted JVMTI THREAD_END events
1713   }
1714 
1715   // Notify waiters on thread object. This has to be done after exit() is called
1716   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1717   // group should have the destroyed bit set before waiters are notified).
1718   ensure_join(this);
1719   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1720 
1721   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1722   // held by this thread must be released.  A detach operation must only
1723   // get here if there are no Java frames on the stack.  Therefore, any
1724   // owned monitors at this point MUST be JNI-acquired monitors which are
1725   // pre-inflated and in the monitor cache.
1726   //
1727   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1728   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1729     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1730     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1731     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1732   }
1733 
1734   // These things needs to be done while we are still a Java Thread. Make sure that thread
1735   // is in a consistent state, in case GC happens
1736   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1737 
1738   if (active_handles() != NULL) {
1739     JNIHandleBlock* block = active_handles();
1740     set_active_handles(NULL);
1741     JNIHandleBlock::release_block(block);
1742   }
1743 
1744   if (free_handle_block() != NULL) {
1745     JNIHandleBlock* block = free_handle_block();
1746     set_free_handle_block(NULL);
1747     JNIHandleBlock::release_block(block);
1748   }
1749 
1750   // These have to be removed while this is still a valid thread.
1751   remove_stack_guard_pages();
1752 
1753   if (UseTLAB) {
1754     tlab().make_parsable(true);  // retire TLAB
1755   }
1756 
1757   if (JvmtiEnv::environments_might_exist()) {
1758     JvmtiExport::cleanup_thread(this);
1759   }
1760 
1761 #ifndef SERIALGC
1762   // We must flush G1-related buffers before removing a thread from
1763   // the list of active threads.
1764   if (UseG1GC) {
1765     flush_barrier_queues();
1766   }
1767 #endif
1768 
1769   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1770   Threads::remove(this);
1771 }
1772 
1773 #ifndef SERIALGC
1774 // Flush G1-related queues.
1775 void JavaThread::flush_barrier_queues() {
1776   satb_mark_queue().flush();
1777   dirty_card_queue().flush();
1778 }
1779 
1780 void JavaThread::initialize_queues() {
1781   assert(!SafepointSynchronize::is_at_safepoint(),
1782          "we should not be at a safepoint");
1783 
1784   ObjPtrQueue& satb_queue = satb_mark_queue();
1785   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1786   // The SATB queue should have been constructed with its active
1787   // field set to false.
1788   assert(!satb_queue.is_active(), "SATB queue should not be active");
1789   assert(satb_queue.is_empty(), "SATB queue should be empty");
1790   // If we are creating the thread during a marking cycle, we should
1791   // set the active field of the SATB queue to true.
1792   if (satb_queue_set.is_active()) {
1793     satb_queue.set_active(true);
1794   }
1795 
1796   DirtyCardQueue& dirty_queue = dirty_card_queue();
1797   // The dirty card queue should have been constructed with its
1798   // active field set to true.
1799   assert(dirty_queue.is_active(), "dirty card queue should be active");
1800 }
1801 #endif // !SERIALGC
1802 
1803 void JavaThread::cleanup_failed_attach_current_thread() {
1804   if (get_thread_profiler() != NULL) {
1805     get_thread_profiler()->disengage();
1806     ResourceMark rm;
1807     get_thread_profiler()->print(get_thread_name());
1808   }
1809 
1810   if (active_handles() != NULL) {
1811     JNIHandleBlock* block = active_handles();
1812     set_active_handles(NULL);
1813     JNIHandleBlock::release_block(block);
1814   }
1815 
1816   if (free_handle_block() != NULL) {
1817     JNIHandleBlock* block = free_handle_block();
1818     set_free_handle_block(NULL);
1819     JNIHandleBlock::release_block(block);
1820   }
1821 
1822   // These have to be removed while this is still a valid thread.
1823   remove_stack_guard_pages();
1824 
1825   if (UseTLAB) {
1826     tlab().make_parsable(true);  // retire TLAB, if any
1827   }
1828 
1829 #ifndef SERIALGC
1830   if (UseG1GC) {
1831     flush_barrier_queues();
1832   }
1833 #endif
1834 
1835   Threads::remove(this);
1836   delete this;
1837 }
1838 
1839 
1840 
1841 
1842 JavaThread* JavaThread::active() {
1843   Thread* thread = ThreadLocalStorage::thread();
1844   assert(thread != NULL, "just checking");
1845   if (thread->is_Java_thread()) {
1846     return (JavaThread*) thread;
1847   } else {
1848     assert(thread->is_VM_thread(), "this must be a vm thread");
1849     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1850     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1851     assert(ret->is_Java_thread(), "must be a Java thread");
1852     return ret;
1853   }
1854 }
1855 
1856 bool JavaThread::is_lock_owned(address adr) const {
1857   if (Thread::is_lock_owned(adr)) return true;
1858 
1859   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1860     if (chunk->contains(adr)) return true;
1861   }
1862 
1863   return false;
1864 }
1865 
1866 
1867 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1868   chunk->set_next(monitor_chunks());
1869   set_monitor_chunks(chunk);
1870 }
1871 
1872 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1873   guarantee(monitor_chunks() != NULL, "must be non empty");
1874   if (monitor_chunks() == chunk) {
1875     set_monitor_chunks(chunk->next());
1876   } else {
1877     MonitorChunk* prev = monitor_chunks();
1878     while (prev->next() != chunk) prev = prev->next();
1879     prev->set_next(chunk->next());
1880   }
1881 }
1882 
1883 // JVM support.
1884 
1885 // Note: this function shouldn't block if it's called in
1886 // _thread_in_native_trans state (such as from
1887 // check_special_condition_for_native_trans()).
1888 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1889 
1890   if (has_last_Java_frame() && has_async_condition()) {
1891     // If we are at a polling page safepoint (not a poll return)
1892     // then we must defer async exception because live registers
1893     // will be clobbered by the exception path. Poll return is
1894     // ok because the call we a returning from already collides
1895     // with exception handling registers and so there is no issue.
1896     // (The exception handling path kills call result registers but
1897     //  this is ok since the exception kills the result anyway).
1898 
1899     if (is_at_poll_safepoint()) {
1900       // if the code we are returning to has deoptimized we must defer
1901       // the exception otherwise live registers get clobbered on the
1902       // exception path before deoptimization is able to retrieve them.
1903       //
1904       RegisterMap map(this, false);
1905       frame caller_fr = last_frame().sender(&map);
1906       assert(caller_fr.is_compiled_frame(), "what?");
1907       if (caller_fr.is_deoptimized_frame()) {
1908         if (TraceExceptions) {
1909           ResourceMark rm;
1910           tty->print_cr("deferred async exception at compiled safepoint");
1911         }
1912         return;
1913       }
1914     }
1915   }
1916 
1917   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1918   if (condition == _no_async_condition) {
1919     // Conditions have changed since has_special_runtime_exit_condition()
1920     // was called:
1921     // - if we were here only because of an external suspend request,
1922     //   then that was taken care of above (or cancelled) so we are done
1923     // - if we were here because of another async request, then it has
1924     //   been cleared between the has_special_runtime_exit_condition()
1925     //   and now so again we are done
1926     return;
1927   }
1928 
1929   // Check for pending async. exception
1930   if (_pending_async_exception != NULL) {
1931     // Only overwrite an already pending exception, if it is not a threadDeath.
1932     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1933 
1934       // We cannot call Exceptions::_throw(...) here because we cannot block
1935       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1936 
1937       if (TraceExceptions) {
1938         ResourceMark rm;
1939         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1940         if (has_last_Java_frame() ) {
1941           frame f = last_frame();
1942           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1943         }
1944         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1945       }
1946       _pending_async_exception = NULL;
1947       clear_has_async_exception();
1948     }
1949   }
1950 
1951   if (check_unsafe_error &&
1952       condition == _async_unsafe_access_error && !has_pending_exception()) {
1953     condition = _no_async_condition;  // done
1954     switch (thread_state()) {
1955     case _thread_in_vm:
1956       {
1957         JavaThread* THREAD = this;
1958         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1959       }
1960     case _thread_in_native:
1961       {
1962         ThreadInVMfromNative tiv(this);
1963         JavaThread* THREAD = this;
1964         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1965       }
1966     case _thread_in_Java:
1967       {
1968         ThreadInVMfromJava tiv(this);
1969         JavaThread* THREAD = this;
1970         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1971       }
1972     default:
1973       ShouldNotReachHere();
1974     }
1975   }
1976 
1977   assert(condition == _no_async_condition || has_pending_exception() ||
1978          (!check_unsafe_error && condition == _async_unsafe_access_error),
1979          "must have handled the async condition, if no exception");
1980 }
1981 
1982 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1983   //
1984   // Check for pending external suspend. Internal suspend requests do
1985   // not use handle_special_runtime_exit_condition().
1986   // If JNIEnv proxies are allowed, don't self-suspend if the target
1987   // thread is not the current thread. In older versions of jdbx, jdbx
1988   // threads could call into the VM with another thread's JNIEnv so we
1989   // can be here operating on behalf of a suspended thread (4432884).
1990   bool do_self_suspend = is_external_suspend_with_lock();
1991   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1992     //
1993     // Because thread is external suspended the safepoint code will count
1994     // thread as at a safepoint. This can be odd because we can be here
1995     // as _thread_in_Java which would normally transition to _thread_blocked
1996     // at a safepoint. We would like to mark the thread as _thread_blocked
1997     // before calling java_suspend_self like all other callers of it but
1998     // we must then observe proper safepoint protocol. (We can't leave
1999     // _thread_blocked with a safepoint in progress). However we can be
2000     // here as _thread_in_native_trans so we can't use a normal transition
2001     // constructor/destructor pair because they assert on that type of
2002     // transition. We could do something like:
2003     //
2004     // JavaThreadState state = thread_state();
2005     // set_thread_state(_thread_in_vm);
2006     // {
2007     //   ThreadBlockInVM tbivm(this);
2008     //   java_suspend_self()
2009     // }
2010     // set_thread_state(_thread_in_vm_trans);
2011     // if (safepoint) block;
2012     // set_thread_state(state);
2013     //
2014     // but that is pretty messy. Instead we just go with the way the
2015     // code has worked before and note that this is the only path to
2016     // java_suspend_self that doesn't put the thread in _thread_blocked
2017     // mode.
2018 
2019     frame_anchor()->make_walkable(this);
2020     java_suspend_self();
2021 
2022     // We might be here for reasons in addition to the self-suspend request
2023     // so check for other async requests.
2024   }
2025 
2026   if (check_asyncs) {
2027     check_and_handle_async_exceptions();
2028   }
2029 }
2030 
2031 void JavaThread::send_thread_stop(oop java_throwable)  {
2032   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2033   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2034   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2035 
2036   // Do not throw asynchronous exceptions against the compiler thread
2037   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2038   if (is_Compiler_thread()) return;
2039 
2040   {
2041     // Actually throw the Throwable against the target Thread - however
2042     // only if there is no thread death exception installed already.
2043     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2044       // If the topmost frame is a runtime stub, then we are calling into
2045       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2046       // must deoptimize the caller before continuing, as the compiled  exception handler table
2047       // may not be valid
2048       if (has_last_Java_frame()) {
2049         frame f = last_frame();
2050         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2051           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2052           RegisterMap reg_map(this, UseBiasedLocking);
2053           frame compiled_frame = f.sender(&reg_map);
2054           if (compiled_frame.can_be_deoptimized()) {
2055             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2056           }
2057         }
2058       }
2059 
2060       // Set async. pending exception in thread.
2061       set_pending_async_exception(java_throwable);
2062 
2063       if (TraceExceptions) {
2064        ResourceMark rm;
2065        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2066       }
2067       // for AbortVMOnException flag
2068       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
2069     }
2070   }
2071 
2072 
2073   // Interrupt thread so it will wake up from a potential wait()
2074   Thread::interrupt(this);
2075 }
2076 
2077 // External suspension mechanism.
2078 //
2079 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2080 // to any VM_locks and it is at a transition
2081 // Self-suspension will happen on the transition out of the vm.
2082 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2083 //
2084 // Guarantees on return:
2085 //   + Target thread will not execute any new bytecode (that's why we need to
2086 //     force a safepoint)
2087 //   + Target thread will not enter any new monitors
2088 //
2089 void JavaThread::java_suspend() {
2090   { MutexLocker mu(Threads_lock);
2091     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2092        return;
2093     }
2094   }
2095 
2096   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2097     if (!is_external_suspend()) {
2098       // a racing resume has cancelled us; bail out now
2099       return;
2100     }
2101 
2102     // suspend is done
2103     uint32_t debug_bits = 0;
2104     // Warning: is_ext_suspend_completed() may temporarily drop the
2105     // SR_lock to allow the thread to reach a stable thread state if
2106     // it is currently in a transient thread state.
2107     if (is_ext_suspend_completed(false /* !called_by_wait */,
2108                                  SuspendRetryDelay, &debug_bits) ) {
2109       return;
2110     }
2111   }
2112 
2113   VM_ForceSafepoint vm_suspend;
2114   VMThread::execute(&vm_suspend);
2115 }
2116 
2117 // Part II of external suspension.
2118 // A JavaThread self suspends when it detects a pending external suspend
2119 // request. This is usually on transitions. It is also done in places
2120 // where continuing to the next transition would surprise the caller,
2121 // e.g., monitor entry.
2122 //
2123 // Returns the number of times that the thread self-suspended.
2124 //
2125 // Note: DO NOT call java_suspend_self() when you just want to block current
2126 //       thread. java_suspend_self() is the second stage of cooperative
2127 //       suspension for external suspend requests and should only be used
2128 //       to complete an external suspend request.
2129 //
2130 int JavaThread::java_suspend_self() {
2131   int ret = 0;
2132 
2133   // we are in the process of exiting so don't suspend
2134   if (is_exiting()) {
2135      clear_external_suspend();
2136      return ret;
2137   }
2138 
2139   assert(_anchor.walkable() ||
2140     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2141     "must have walkable stack");
2142 
2143   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2144 
2145   assert(!this->is_ext_suspended(),
2146     "a thread trying to self-suspend should not already be suspended");
2147 
2148   if (this->is_suspend_equivalent()) {
2149     // If we are self-suspending as a result of the lifting of a
2150     // suspend equivalent condition, then the suspend_equivalent
2151     // flag is not cleared until we set the ext_suspended flag so
2152     // that wait_for_ext_suspend_completion() returns consistent
2153     // results.
2154     this->clear_suspend_equivalent();
2155   }
2156 
2157   // A racing resume may have cancelled us before we grabbed SR_lock
2158   // above. Or another external suspend request could be waiting for us
2159   // by the time we return from SR_lock()->wait(). The thread
2160   // that requested the suspension may already be trying to walk our
2161   // stack and if we return now, we can change the stack out from under
2162   // it. This would be a "bad thing (TM)" and cause the stack walker
2163   // to crash. We stay self-suspended until there are no more pending
2164   // external suspend requests.
2165   while (is_external_suspend()) {
2166     ret++;
2167     this->set_ext_suspended();
2168 
2169     // _ext_suspended flag is cleared by java_resume()
2170     while (is_ext_suspended()) {
2171       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2172     }
2173   }
2174 
2175   return ret;
2176 }
2177 
2178 #ifdef ASSERT
2179 // verify the JavaThread has not yet been published in the Threads::list, and
2180 // hence doesn't need protection from concurrent access at this stage
2181 void JavaThread::verify_not_published() {
2182   if (!Threads_lock->owned_by_self()) {
2183    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2184    assert( !Threads::includes(this),
2185            "java thread shouldn't have been published yet!");
2186   }
2187   else {
2188    assert( !Threads::includes(this),
2189            "java thread shouldn't have been published yet!");
2190   }
2191 }
2192 #endif
2193 
2194 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2195 // progress or when _suspend_flags is non-zero.
2196 // Current thread needs to self-suspend if there is a suspend request and/or
2197 // block if a safepoint is in progress.
2198 // Async exception ISN'T checked.
2199 // Note only the ThreadInVMfromNative transition can call this function
2200 // directly and when thread state is _thread_in_native_trans
2201 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2202   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2203 
2204   JavaThread *curJT = JavaThread::current();
2205   bool do_self_suspend = thread->is_external_suspend();
2206 
2207   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2208 
2209   // If JNIEnv proxies are allowed, don't self-suspend if the target
2210   // thread is not the current thread. In older versions of jdbx, jdbx
2211   // threads could call into the VM with another thread's JNIEnv so we
2212   // can be here operating on behalf of a suspended thread (4432884).
2213   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2214     JavaThreadState state = thread->thread_state();
2215 
2216     // We mark this thread_blocked state as a suspend-equivalent so
2217     // that a caller to is_ext_suspend_completed() won't be confused.
2218     // The suspend-equivalent state is cleared by java_suspend_self().
2219     thread->set_suspend_equivalent();
2220 
2221     // If the safepoint code sees the _thread_in_native_trans state, it will
2222     // wait until the thread changes to other thread state. There is no
2223     // guarantee on how soon we can obtain the SR_lock and complete the
2224     // self-suspend request. It would be a bad idea to let safepoint wait for
2225     // too long. Temporarily change the state to _thread_blocked to
2226     // let the VM thread know that this thread is ready for GC. The problem
2227     // of changing thread state is that safepoint could happen just after
2228     // java_suspend_self() returns after being resumed, and VM thread will
2229     // see the _thread_blocked state. We must check for safepoint
2230     // after restoring the state and make sure we won't leave while a safepoint
2231     // is in progress.
2232     thread->set_thread_state(_thread_blocked);
2233     thread->java_suspend_self();
2234     thread->set_thread_state(state);
2235     // Make sure new state is seen by VM thread
2236     if (os::is_MP()) {
2237       if (UseMembar) {
2238         // Force a fence between the write above and read below
2239         OrderAccess::fence();
2240       } else {
2241         // Must use this rather than serialization page in particular on Windows
2242         InterfaceSupport::serialize_memory(thread);
2243       }
2244     }
2245   }
2246 
2247   if (SafepointSynchronize::do_call_back()) {
2248     // If we are safepointing, then block the caller which may not be
2249     // the same as the target thread (see above).
2250     SafepointSynchronize::block(curJT);
2251   }
2252 
2253   if (thread->is_deopt_suspend()) {
2254     thread->clear_deopt_suspend();
2255     RegisterMap map(thread, false);
2256     frame f = thread->last_frame();
2257     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2258       f = f.sender(&map);
2259     }
2260     if (f.id() == thread->must_deopt_id()) {
2261       thread->clear_must_deopt_id();
2262       f.deoptimize(thread);
2263     } else {
2264       fatal("missed deoptimization!");
2265     }
2266   }
2267 }
2268 
2269 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2270 // progress or when _suspend_flags is non-zero.
2271 // Current thread needs to self-suspend if there is a suspend request and/or
2272 // block if a safepoint is in progress.
2273 // Also check for pending async exception (not including unsafe access error).
2274 // Note only the native==>VM/Java barriers can call this function and when
2275 // thread state is _thread_in_native_trans.
2276 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2277   check_safepoint_and_suspend_for_native_trans(thread);
2278 
2279   if (thread->has_async_exception()) {
2280     // We are in _thread_in_native_trans state, don't handle unsafe
2281     // access error since that may block.
2282     thread->check_and_handle_async_exceptions(false);
2283   }
2284 }
2285 
2286 // This is a variant of the normal
2287 // check_special_condition_for_native_trans with slightly different
2288 // semantics for use by critical native wrappers.  It does all the
2289 // normal checks but also performs the transition back into
2290 // thread_in_Java state.  This is required so that critical natives
2291 // can potentially block and perform a GC if they are the last thread
2292 // exiting the GC_locker.
2293 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2294   check_special_condition_for_native_trans(thread);
2295 
2296   // Finish the transition
2297   thread->set_thread_state(_thread_in_Java);
2298 
2299   if (thread->do_critical_native_unlock()) {
2300     ThreadInVMfromJavaNoAsyncException tiv(thread);
2301     GC_locker::unlock_critical(thread);
2302     thread->clear_critical_native_unlock();
2303   }
2304 }
2305 
2306 // We need to guarantee the Threads_lock here, since resumes are not
2307 // allowed during safepoint synchronization
2308 // Can only resume from an external suspension
2309 void JavaThread::java_resume() {
2310   assert_locked_or_safepoint(Threads_lock);
2311 
2312   // Sanity check: thread is gone, has started exiting or the thread
2313   // was not externally suspended.
2314   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2315     return;
2316   }
2317 
2318   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2319 
2320   clear_external_suspend();
2321 
2322   if (is_ext_suspended()) {
2323     clear_ext_suspended();
2324     SR_lock()->notify_all();
2325   }
2326 }
2327 
2328 void JavaThread::create_stack_guard_pages() {
2329   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2330   address low_addr = stack_base() - stack_size();
2331   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2332 
2333   int allocate = os::allocate_stack_guard_pages();
2334   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2335 
2336   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2337     warning("Attempt to allocate stack guard pages failed.");
2338     return;
2339   }
2340 
2341   if (os::guard_memory((char *) low_addr, len)) {
2342     _stack_guard_state = stack_guard_enabled;
2343   } else {
2344     warning("Attempt to protect stack guard pages failed.");
2345     if (os::uncommit_memory((char *) low_addr, len)) {
2346       warning("Attempt to deallocate stack guard pages failed.");
2347     }
2348   }
2349 }
2350 
2351 void JavaThread::remove_stack_guard_pages() {
2352   if (_stack_guard_state == stack_guard_unused) return;
2353   address low_addr = stack_base() - stack_size();
2354   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2355 
2356   if (os::allocate_stack_guard_pages()) {
2357     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2358       _stack_guard_state = stack_guard_unused;
2359     } else {
2360       warning("Attempt to deallocate stack guard pages failed.");
2361     }
2362   } else {
2363     if (_stack_guard_state == stack_guard_unused) return;
2364     if (os::unguard_memory((char *) low_addr, len)) {
2365       _stack_guard_state = stack_guard_unused;
2366     } else {
2367         warning("Attempt to unprotect stack guard pages failed.");
2368     }
2369   }
2370 }
2371 
2372 void JavaThread::enable_stack_yellow_zone() {
2373   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2374   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2375 
2376   // The base notation is from the stacks point of view, growing downward.
2377   // We need to adjust it to work correctly with guard_memory()
2378   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2379 
2380   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2381   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2382 
2383   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2384     _stack_guard_state = stack_guard_enabled;
2385   } else {
2386     warning("Attempt to guard stack yellow zone failed.");
2387   }
2388   enable_register_stack_guard();
2389 }
2390 
2391 void JavaThread::disable_stack_yellow_zone() {
2392   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2393   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2394 
2395   // Simply return if called for a thread that does not use guard pages.
2396   if (_stack_guard_state == stack_guard_unused) return;
2397 
2398   // The base notation is from the stacks point of view, growing downward.
2399   // We need to adjust it to work correctly with guard_memory()
2400   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2401 
2402   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2403     _stack_guard_state = stack_guard_yellow_disabled;
2404   } else {
2405     warning("Attempt to unguard stack yellow zone failed.");
2406   }
2407   disable_register_stack_guard();
2408 }
2409 
2410 void JavaThread::enable_stack_red_zone() {
2411   // The base notation is from the stacks point of view, growing downward.
2412   // We need to adjust it to work correctly with guard_memory()
2413   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2414   address base = stack_red_zone_base() - stack_red_zone_size();
2415 
2416   guarantee(base < stack_base(),"Error calculating stack red zone");
2417   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2418 
2419   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2420     warning("Attempt to guard stack red zone failed.");
2421   }
2422 }
2423 
2424 void JavaThread::disable_stack_red_zone() {
2425   // The base notation is from the stacks point of view, growing downward.
2426   // We need to adjust it to work correctly with guard_memory()
2427   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2428   address base = stack_red_zone_base() - stack_red_zone_size();
2429   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2430     warning("Attempt to unguard stack red zone failed.");
2431   }
2432 }
2433 
2434 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2435   // ignore is there is no stack
2436   if (!has_last_Java_frame()) return;
2437   // traverse the stack frames. Starts from top frame.
2438   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2439     frame* fr = fst.current();
2440     f(fr, fst.register_map());
2441   }
2442 }
2443 
2444 
2445 #ifndef PRODUCT
2446 // Deoptimization
2447 // Function for testing deoptimization
2448 void JavaThread::deoptimize() {
2449   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2450   StackFrameStream fst(this, UseBiasedLocking);
2451   bool deopt = false;           // Dump stack only if a deopt actually happens.
2452   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2453   // Iterate over all frames in the thread and deoptimize
2454   for(; !fst.is_done(); fst.next()) {
2455     if(fst.current()->can_be_deoptimized()) {
2456 
2457       if (only_at) {
2458         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2459         // consists of comma or carriage return separated numbers so
2460         // search for the current bci in that string.
2461         address pc = fst.current()->pc();
2462         nmethod* nm =  (nmethod*) fst.current()->cb();
2463         ScopeDesc* sd = nm->scope_desc_at( pc);
2464         char buffer[8];
2465         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2466         size_t len = strlen(buffer);
2467         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2468         while (found != NULL) {
2469           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2470               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2471             // Check that the bci found is bracketed by terminators.
2472             break;
2473           }
2474           found = strstr(found + 1, buffer);
2475         }
2476         if (!found) {
2477           continue;
2478         }
2479       }
2480 
2481       if (DebugDeoptimization && !deopt) {
2482         deopt = true; // One-time only print before deopt
2483         tty->print_cr("[BEFORE Deoptimization]");
2484         trace_frames();
2485         trace_stack();
2486       }
2487       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2488     }
2489   }
2490 
2491   if (DebugDeoptimization && deopt) {
2492     tty->print_cr("[AFTER Deoptimization]");
2493     trace_frames();
2494   }
2495 }
2496 
2497 
2498 // Make zombies
2499 void JavaThread::make_zombies() {
2500   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2501     if (fst.current()->can_be_deoptimized()) {
2502       // it is a Java nmethod
2503       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2504       nm->make_not_entrant();
2505     }
2506   }
2507 }
2508 #endif // PRODUCT
2509 
2510 
2511 void JavaThread::deoptimized_wrt_marked_nmethods() {
2512   if (!has_last_Java_frame()) return;
2513   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2514   StackFrameStream fst(this, UseBiasedLocking);
2515   for(; !fst.is_done(); fst.next()) {
2516     if (fst.current()->should_be_deoptimized()) {
2517       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2518     }
2519   }
2520 }
2521 
2522 
2523 // GC support
2524 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2525 
2526 void JavaThread::gc_epilogue() {
2527   frames_do(frame_gc_epilogue);
2528 }
2529 
2530 
2531 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2532 
2533 void JavaThread::gc_prologue() {
2534   frames_do(frame_gc_prologue);
2535 }
2536 
2537 // If the caller is a NamedThread, then remember, in the current scope,
2538 // the given JavaThread in its _processed_thread field.
2539 class RememberProcessedThread: public StackObj {
2540   NamedThread* _cur_thr;
2541 public:
2542   RememberProcessedThread(JavaThread* jthr) {
2543     Thread* thread = Thread::current();
2544     if (thread->is_Named_thread()) {
2545       _cur_thr = (NamedThread *)thread;
2546       _cur_thr->set_processed_thread(jthr);
2547     } else {
2548       _cur_thr = NULL;
2549     }
2550   }
2551 
2552   ~RememberProcessedThread() {
2553     if (_cur_thr) {
2554       _cur_thr->set_processed_thread(NULL);
2555     }
2556   }
2557 };
2558 
2559 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2560   // Verify that the deferred card marks have been flushed.
2561   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2562 
2563   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2564   // since there may be more than one thread using each ThreadProfiler.
2565 
2566   // Traverse the GCHandles
2567   Thread::oops_do(f, cf);
2568 
2569   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2570           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2571 
2572   if (has_last_Java_frame()) {
2573     // Record JavaThread to GC thread
2574     RememberProcessedThread rpt(this);
2575 
2576     // Traverse the privileged stack
2577     if (_privileged_stack_top != NULL) {
2578       _privileged_stack_top->oops_do(f);
2579     }
2580 
2581     // traverse the registered growable array
2582     if (_array_for_gc != NULL) {
2583       for (int index = 0; index < _array_for_gc->length(); index++) {
2584         f->do_oop(_array_for_gc->adr_at(index));
2585       }
2586     }
2587 
2588     // Traverse the monitor chunks
2589     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2590       chunk->oops_do(f);
2591     }
2592 
2593     // Traverse the execution stack
2594     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2595       fst.current()->oops_do(f, cf, fst.register_map());
2596     }
2597   }
2598 
2599   // callee_target is never live across a gc point so NULL it here should
2600   // it still contain a methdOop.
2601 
2602   set_callee_target(NULL);
2603 
2604   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2605   // If we have deferred set_locals there might be oops waiting to be
2606   // written
2607   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2608   if (list != NULL) {
2609     for (int i = 0; i < list->length(); i++) {
2610       list->at(i)->oops_do(f);
2611     }
2612   }
2613 
2614   // Traverse instance variables at the end since the GC may be moving things
2615   // around using this function
2616   f->do_oop((oop*) &_threadObj);
2617   f->do_oop((oop*) &_vm_result);
2618   f->do_oop((oop*) &_vm_result_2);
2619   f->do_oop((oop*) &_exception_oop);
2620   f->do_oop((oop*) &_pending_async_exception);
2621 
2622   if (jvmti_thread_state() != NULL) {
2623     jvmti_thread_state()->oops_do(f);
2624   }
2625 }
2626 
2627 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2628   Thread::nmethods_do(cf);  // (super method is a no-op)
2629 
2630   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2631           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2632 
2633   if (has_last_Java_frame()) {
2634     // Traverse the execution stack
2635     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2636       fst.current()->nmethods_do(cf);
2637     }
2638   }
2639 }
2640 
2641 // Printing
2642 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2643   switch (_thread_state) {
2644   case _thread_uninitialized:     return "_thread_uninitialized";
2645   case _thread_new:               return "_thread_new";
2646   case _thread_new_trans:         return "_thread_new_trans";
2647   case _thread_in_native:         return "_thread_in_native";
2648   case _thread_in_native_trans:   return "_thread_in_native_trans";
2649   case _thread_in_vm:             return "_thread_in_vm";
2650   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2651   case _thread_in_Java:           return "_thread_in_Java";
2652   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2653   case _thread_blocked:           return "_thread_blocked";
2654   case _thread_blocked_trans:     return "_thread_blocked_trans";
2655   default:                        return "unknown thread state";
2656   }
2657 }
2658 
2659 #ifndef PRODUCT
2660 void JavaThread::print_thread_state_on(outputStream *st) const {
2661   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2662 };
2663 void JavaThread::print_thread_state() const {
2664   print_thread_state_on(tty);
2665 };
2666 #endif // PRODUCT
2667 
2668 // Called by Threads::print() for VM_PrintThreads operation
2669 void JavaThread::print_on(outputStream *st) const {
2670   st->print("\"%s\" ", get_thread_name());
2671   oop thread_oop = threadObj();
2672   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2673   Thread::print_on(st);
2674   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2675   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2676   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2677     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2678   }
2679 #ifndef PRODUCT
2680   print_thread_state_on(st);
2681   _safepoint_state->print_on(st);
2682 #endif // PRODUCT
2683 }
2684 
2685 // Called by fatal error handler. The difference between this and
2686 // JavaThread::print() is that we can't grab lock or allocate memory.
2687 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2688   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2689   oop thread_obj = threadObj();
2690   if (thread_obj != NULL) {
2691      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2692   }
2693   st->print(" [");
2694   st->print("%s", _get_thread_state_name(_thread_state));
2695   if (osthread()) {
2696     st->print(", id=%d", osthread()->thread_id());
2697   }
2698   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2699             _stack_base - _stack_size, _stack_base);
2700   st->print("]");
2701   return;
2702 }
2703 
2704 // Verification
2705 
2706 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2707 
2708 void JavaThread::verify() {
2709   // Verify oops in the thread.
2710   oops_do(&VerifyOopClosure::verify_oop, NULL);
2711 
2712   // Verify the stack frames.
2713   frames_do(frame_verify);
2714 }
2715 
2716 // CR 6300358 (sub-CR 2137150)
2717 // Most callers of this method assume that it can't return NULL but a
2718 // thread may not have a name whilst it is in the process of attaching to
2719 // the VM - see CR 6412693, and there are places where a JavaThread can be
2720 // seen prior to having it's threadObj set (eg JNI attaching threads and
2721 // if vm exit occurs during initialization). These cases can all be accounted
2722 // for such that this method never returns NULL.
2723 const char* JavaThread::get_thread_name() const {
2724 #ifdef ASSERT
2725   // early safepoints can hit while current thread does not yet have TLS
2726   if (!SafepointSynchronize::is_at_safepoint()) {
2727     Thread *cur = Thread::current();
2728     if (!(cur->is_Java_thread() && cur == this)) {
2729       // Current JavaThreads are allowed to get their own name without
2730       // the Threads_lock.
2731       assert_locked_or_safepoint(Threads_lock);
2732     }
2733   }
2734 #endif // ASSERT
2735     return get_thread_name_string();
2736 }
2737 
2738 // Returns a non-NULL representation of this thread's name, or a suitable
2739 // descriptive string if there is no set name
2740 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2741   const char* name_str;
2742   oop thread_obj = threadObj();
2743   if (thread_obj != NULL) {
2744     typeArrayOop name = java_lang_Thread::name(thread_obj);
2745     if (name != NULL) {
2746       if (buf == NULL) {
2747         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2748       }
2749       else {
2750         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2751       }
2752     }
2753     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2754       name_str = "<no-name - thread is attaching>";
2755     }
2756     else {
2757       name_str = Thread::name();
2758     }
2759   }
2760   else {
2761     name_str = Thread::name();
2762   }
2763   assert(name_str != NULL, "unexpected NULL thread name");
2764   return name_str;
2765 }
2766 
2767 
2768 const char* JavaThread::get_threadgroup_name() const {
2769   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2770   oop thread_obj = threadObj();
2771   if (thread_obj != NULL) {
2772     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2773     if (thread_group != NULL) {
2774       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2775       // ThreadGroup.name can be null
2776       if (name != NULL) {
2777         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2778         return str;
2779       }
2780     }
2781   }
2782   return NULL;
2783 }
2784 
2785 const char* JavaThread::get_parent_name() const {
2786   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2787   oop thread_obj = threadObj();
2788   if (thread_obj != NULL) {
2789     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2790     if (thread_group != NULL) {
2791       oop parent = java_lang_ThreadGroup::parent(thread_group);
2792       if (parent != NULL) {
2793         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2794         // ThreadGroup.name can be null
2795         if (name != NULL) {
2796           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2797           return str;
2798         }
2799       }
2800     }
2801   }
2802   return NULL;
2803 }
2804 
2805 ThreadPriority JavaThread::java_priority() const {
2806   oop thr_oop = threadObj();
2807   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2808   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2809   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2810   return priority;
2811 }
2812 
2813 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2814 
2815   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2816   // Link Java Thread object <-> C++ Thread
2817 
2818   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2819   // and put it into a new Handle.  The Handle "thread_oop" can then
2820   // be used to pass the C++ thread object to other methods.
2821 
2822   // Set the Java level thread object (jthread) field of the
2823   // new thread (a JavaThread *) to C++ thread object using the
2824   // "thread_oop" handle.
2825 
2826   // Set the thread field (a JavaThread *) of the
2827   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2828 
2829   Handle thread_oop(Thread::current(),
2830                     JNIHandles::resolve_non_null(jni_thread));
2831   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2832     "must be initialized");
2833   set_threadObj(thread_oop());
2834   java_lang_Thread::set_thread(thread_oop(), this);
2835 
2836   if (prio == NoPriority) {
2837     prio = java_lang_Thread::priority(thread_oop());
2838     assert(prio != NoPriority, "A valid priority should be present");
2839   }
2840 
2841   // Push the Java priority down to the native thread; needs Threads_lock
2842   Thread::set_priority(this, prio);
2843 
2844   // Add the new thread to the Threads list and set it in motion.
2845   // We must have threads lock in order to call Threads::add.
2846   // It is crucial that we do not block before the thread is
2847   // added to the Threads list for if a GC happens, then the java_thread oop
2848   // will not be visited by GC.
2849   Threads::add(this);
2850 }
2851 
2852 oop JavaThread::current_park_blocker() {
2853   // Support for JSR-166 locks
2854   oop thread_oop = threadObj();
2855   if (thread_oop != NULL &&
2856       JDK_Version::current().supports_thread_park_blocker()) {
2857     return java_lang_Thread::park_blocker(thread_oop);
2858   }
2859   return NULL;
2860 }
2861 
2862 
2863 void JavaThread::print_stack_on(outputStream* st) {
2864   if (!has_last_Java_frame()) return;
2865   ResourceMark rm;
2866   HandleMark   hm;
2867 
2868   RegisterMap reg_map(this);
2869   vframe* start_vf = last_java_vframe(&reg_map);
2870   int count = 0;
2871   for (vframe* f = start_vf; f; f = f->sender() ) {
2872     if (f->is_java_frame()) {
2873       javaVFrame* jvf = javaVFrame::cast(f);
2874       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2875 
2876       // Print out lock information
2877       if (JavaMonitorsInStackTrace) {
2878         jvf->print_lock_info_on(st, count);
2879       }
2880     } else {
2881       // Ignore non-Java frames
2882     }
2883 
2884     // Bail-out case for too deep stacks
2885     count++;
2886     if (MaxJavaStackTraceDepth == count) return;
2887   }
2888 }
2889 
2890 
2891 // JVMTI PopFrame support
2892 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2893   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2894   if (in_bytes(size_in_bytes) != 0) {
2895     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2896     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2897     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2898   }
2899 }
2900 
2901 void* JavaThread::popframe_preserved_args() {
2902   return _popframe_preserved_args;
2903 }
2904 
2905 ByteSize JavaThread::popframe_preserved_args_size() {
2906   return in_ByteSize(_popframe_preserved_args_size);
2907 }
2908 
2909 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2910   int sz = in_bytes(popframe_preserved_args_size());
2911   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2912   return in_WordSize(sz / wordSize);
2913 }
2914 
2915 void JavaThread::popframe_free_preserved_args() {
2916   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2917   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2918   _popframe_preserved_args = NULL;
2919   _popframe_preserved_args_size = 0;
2920 }
2921 
2922 #ifndef PRODUCT
2923 
2924 void JavaThread::trace_frames() {
2925   tty->print_cr("[Describe stack]");
2926   int frame_no = 1;
2927   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2928     tty->print("  %d. ", frame_no++);
2929     fst.current()->print_value_on(tty,this);
2930     tty->cr();
2931   }
2932 }
2933 
2934 class PrintAndVerifyOopClosure: public OopClosure {
2935  protected:
2936   template <class T> inline void do_oop_work(T* p) {
2937     oop obj = oopDesc::load_decode_heap_oop(p);
2938     if (obj == NULL) return;
2939     tty->print(INTPTR_FORMAT ": ", p);
2940     if (obj->is_oop_or_null()) {
2941       if (obj->is_objArray()) {
2942         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
2943       } else {
2944         obj->print();
2945       }
2946     } else {
2947       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
2948     }
2949     tty->cr();
2950   }
2951  public:
2952   virtual void do_oop(oop* p) { do_oop_work(p); }
2953   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
2954 };
2955 
2956 
2957 static void oops_print(frame* f, const RegisterMap *map) {
2958   PrintAndVerifyOopClosure print;
2959   f->print_value();
2960   f->oops_do(&print, NULL, (RegisterMap*)map);
2961 }
2962 
2963 // Print our all the locations that contain oops and whether they are
2964 // valid or not.  This useful when trying to find the oldest frame
2965 // where an oop has gone bad since the frame walk is from youngest to
2966 // oldest.
2967 void JavaThread::trace_oops() {
2968   tty->print_cr("[Trace oops]");
2969   frames_do(oops_print);
2970 }
2971 
2972 
2973 #ifdef ASSERT
2974 // Print or validate the layout of stack frames
2975 void JavaThread::print_frame_layout(int depth, bool validate_only) {
2976   ResourceMark rm;
2977   PRESERVE_EXCEPTION_MARK;
2978   FrameValues values;
2979   int frame_no = 0;
2980   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
2981     fst.current()->describe(values, ++frame_no);
2982     if (depth == frame_no) break;
2983   }
2984   if (validate_only) {
2985     values.validate();
2986   } else {
2987     tty->print_cr("[Describe stack layout]");
2988     values.print(this);
2989   }
2990 }
2991 #endif
2992 
2993 void JavaThread::trace_stack_from(vframe* start_vf) {
2994   ResourceMark rm;
2995   int vframe_no = 1;
2996   for (vframe* f = start_vf; f; f = f->sender() ) {
2997     if (f->is_java_frame()) {
2998       javaVFrame::cast(f)->print_activation(vframe_no++);
2999     } else {
3000       f->print();
3001     }
3002     if (vframe_no > StackPrintLimit) {
3003       tty->print_cr("...<more frames>...");
3004       return;
3005     }
3006   }
3007 }
3008 
3009 
3010 void JavaThread::trace_stack() {
3011   if (!has_last_Java_frame()) return;
3012   ResourceMark rm;
3013   HandleMark   hm;
3014   RegisterMap reg_map(this);
3015   trace_stack_from(last_java_vframe(&reg_map));
3016 }
3017 
3018 
3019 #endif // PRODUCT
3020 
3021 
3022 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3023   assert(reg_map != NULL, "a map must be given");
3024   frame f = last_frame();
3025   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3026     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3027   }
3028   return NULL;
3029 }
3030 
3031 
3032 klassOop JavaThread::security_get_caller_class(int depth) {
3033   vframeStream vfst(this);
3034   vfst.security_get_caller_frame(depth);
3035   if (!vfst.at_end()) {
3036     return vfst.method()->method_holder();
3037   }
3038   return NULL;
3039 }
3040 
3041 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3042   assert(thread->is_Compiler_thread(), "must be compiler thread");
3043   CompileBroker::compiler_thread_loop();
3044 }
3045 
3046 // Create a CompilerThread
3047 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3048 : JavaThread(&compiler_thread_entry) {
3049   _env   = NULL;
3050   _log   = NULL;
3051   _task  = NULL;
3052   _queue = queue;
3053   _counters = counters;
3054   _buffer_blob = NULL;
3055   _scanned_nmethod = NULL;
3056 
3057 #ifndef PRODUCT
3058   _ideal_graph_printer = NULL;
3059 #endif
3060 }
3061 
3062 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3063   JavaThread::oops_do(f, cf);
3064   if (_scanned_nmethod != NULL && cf != NULL) {
3065     // Safepoints can occur when the sweeper is scanning an nmethod so
3066     // process it here to make sure it isn't unloaded in the middle of
3067     // a scan.
3068     cf->do_code_blob(_scanned_nmethod);
3069   }
3070 }
3071 
3072 // ======= Threads ========
3073 
3074 // The Threads class links together all active threads, and provides
3075 // operations over all threads.  It is protected by its own Mutex
3076 // lock, which is also used in other contexts to protect thread
3077 // operations from having the thread being operated on from exiting
3078 // and going away unexpectedly (e.g., safepoint synchronization)
3079 
3080 JavaThread* Threads::_thread_list = NULL;
3081 int         Threads::_number_of_threads = 0;
3082 int         Threads::_number_of_non_daemon_threads = 0;
3083 int         Threads::_return_code = 0;
3084 size_t      JavaThread::_stack_size_at_create = 0;
3085 
3086 // All JavaThreads
3087 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3088 
3089 void os_stream();
3090 
3091 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3092 void Threads::threads_do(ThreadClosure* tc) {
3093   assert_locked_or_safepoint(Threads_lock);
3094   // ALL_JAVA_THREADS iterates through all JavaThreads
3095   ALL_JAVA_THREADS(p) {
3096     tc->do_thread(p);
3097   }
3098   // Someday we could have a table or list of all non-JavaThreads.
3099   // For now, just manually iterate through them.
3100   tc->do_thread(VMThread::vm_thread());
3101   Universe::heap()->gc_threads_do(tc);
3102   WatcherThread *wt = WatcherThread::watcher_thread();
3103   // Strictly speaking, the following NULL check isn't sufficient to make sure
3104   // the data for WatcherThread is still valid upon being examined. However,
3105   // considering that WatchThread terminates when the VM is on the way to
3106   // exit at safepoint, the chance of the above is extremely small. The right
3107   // way to prevent termination of WatcherThread would be to acquire
3108   // Terminator_lock, but we can't do that without violating the lock rank
3109   // checking in some cases.
3110   if (wt != NULL)
3111     tc->do_thread(wt);
3112 
3113   // If CompilerThreads ever become non-JavaThreads, add them here
3114 }
3115 
3116 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3117 
3118   extern void JDK_Version_init();
3119 
3120   // Check version
3121   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3122 
3123   // Initialize the output stream module
3124   ostream_init();
3125 
3126   // Process java launcher properties.
3127   Arguments::process_sun_java_launcher_properties(args);
3128 
3129   // Initialize the os module before using TLS
3130   os::init();
3131 
3132   // Initialize system properties.
3133   Arguments::init_system_properties();
3134 
3135   // So that JDK version can be used as a discrimintor when parsing arguments
3136   JDK_Version_init();
3137 
3138   // Update/Initialize System properties after JDK version number is known
3139   Arguments::init_version_specific_system_properties();
3140 
3141   // Parse arguments
3142   jint parse_result = Arguments::parse(args);
3143   if (parse_result != JNI_OK) return parse_result;
3144 
3145   if (PauseAtStartup) {
3146     os::pause();
3147   }
3148 
3149 #ifndef USDT2
3150   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3151 #else /* USDT2 */
3152   HOTSPOT_VM_INIT_BEGIN();
3153 #endif /* USDT2 */
3154 
3155   // Record VM creation timing statistics
3156   TraceVmCreationTime create_vm_timer;
3157   create_vm_timer.start();
3158 
3159   // Timing (must come after argument parsing)
3160   TraceTime timer("Create VM", TraceStartupTime);
3161 
3162   // Initialize the os module after parsing the args
3163   jint os_init_2_result = os::init_2();
3164   if (os_init_2_result != JNI_OK) return os_init_2_result;
3165 
3166   // Initialize output stream logging
3167   ostream_init_log();
3168 
3169   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3170   // Must be before create_vm_init_agents()
3171   if (Arguments::init_libraries_at_startup()) {
3172     convert_vm_init_libraries_to_agents();
3173   }
3174 
3175   // Launch -agentlib/-agentpath and converted -Xrun agents
3176   if (Arguments::init_agents_at_startup()) {
3177     create_vm_init_agents();
3178   }
3179 
3180   // Initialize Threads state
3181   _thread_list = NULL;
3182   _number_of_threads = 0;
3183   _number_of_non_daemon_threads = 0;
3184 
3185   // Initialize TLS
3186   ThreadLocalStorage::init();
3187 
3188   // Initialize global data structures and create system classes in heap
3189   vm_init_globals();
3190 
3191   // Attach the main thread to this os thread
3192   JavaThread* main_thread = new JavaThread();
3193   main_thread->set_thread_state(_thread_in_vm);
3194   // must do this before set_active_handles and initialize_thread_local_storage
3195   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3196   // change the stack size recorded here to one based on the java thread
3197   // stacksize. This adjusted size is what is used to figure the placement
3198   // of the guard pages.
3199   main_thread->record_stack_base_and_size();
3200   main_thread->initialize_thread_local_storage();
3201 
3202   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3203 
3204   if (!main_thread->set_as_starting_thread()) {
3205     vm_shutdown_during_initialization(
3206       "Failed necessary internal allocation. Out of swap space");
3207     delete main_thread;
3208     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3209     return JNI_ENOMEM;
3210   }
3211 
3212   // Enable guard page *after* os::create_main_thread(), otherwise it would
3213   // crash Linux VM, see notes in os_linux.cpp.
3214   main_thread->create_stack_guard_pages();
3215 
3216   // Initialize Java-Level synchronization subsystem
3217   ObjectMonitor::Initialize() ;
3218 
3219   // Initialize global modules
3220   jint status = init_globals();
3221   if (status != JNI_OK) {
3222     delete main_thread;
3223     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3224     return status;
3225   }
3226 
3227   // Should be done after the heap is fully created
3228   main_thread->cache_global_variables();
3229 
3230   HandleMark hm;
3231 
3232   { MutexLocker mu(Threads_lock);
3233     Threads::add(main_thread);
3234   }
3235 
3236   // Any JVMTI raw monitors entered in onload will transition into
3237   // real raw monitor. VM is setup enough here for raw monitor enter.
3238   JvmtiExport::transition_pending_onload_raw_monitors();
3239 
3240   if (VerifyBeforeGC &&
3241       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3242     Universe::heap()->prepare_for_verify();
3243     Universe::verify();   // make sure we're starting with a clean slate
3244   }
3245 
3246   // Create the VMThread
3247   { TraceTime timer("Start VMThread", TraceStartupTime);
3248     VMThread::create();
3249     Thread* vmthread = VMThread::vm_thread();
3250 
3251     if (!os::create_thread(vmthread, os::vm_thread))
3252       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3253 
3254     // Wait for the VM thread to become ready, and VMThread::run to initialize
3255     // Monitors can have spurious returns, must always check another state flag
3256     {
3257       MutexLocker ml(Notify_lock);
3258       os::start_thread(vmthread);
3259       while (vmthread->active_handles() == NULL) {
3260         Notify_lock->wait();
3261       }
3262     }
3263   }
3264 
3265   assert (Universe::is_fully_initialized(), "not initialized");
3266   EXCEPTION_MARK;
3267 
3268   // At this point, the Universe is initialized, but we have not executed
3269   // any byte code.  Now is a good time (the only time) to dump out the
3270   // internal state of the JVM for sharing.
3271 
3272   if (DumpSharedSpaces) {
3273     Universe::heap()->preload_and_dump(CHECK_0);
3274     ShouldNotReachHere();
3275   }
3276 
3277   // Always call even when there are not JVMTI environments yet, since environments
3278   // may be attached late and JVMTI must track phases of VM execution
3279   JvmtiExport::enter_start_phase();
3280 
3281   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3282   JvmtiExport::post_vm_start();
3283 
3284   {
3285     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3286 
3287     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3288       create_vm_init_libraries();
3289     }
3290 
3291     if (InitializeJavaLangString) {
3292       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3293     } else {
3294       warning("java.lang.String not initialized");
3295     }
3296 
3297     if (AggressiveOpts) {
3298       {
3299         // Forcibly initialize java/util/HashMap and mutate the private
3300         // static final "frontCacheEnabled" field before we start creating instances
3301 #ifdef ASSERT
3302         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3303         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3304 #endif
3305         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3306         KlassHandle k = KlassHandle(THREAD, k_o);
3307         guarantee(k.not_null(), "Must find java/util/HashMap");
3308         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3309         ik->initialize(CHECK_0);
3310         fieldDescriptor fd;
3311         // Possible we might not find this field; if so, don't break
3312         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3313           k()->java_mirror()->bool_field_put(fd.offset(), true);
3314         }
3315       }
3316 
3317       if (UseStringCache) {
3318         // Forcibly initialize java/lang/StringValue and mutate the private
3319         // static final "stringCacheEnabled" field before we start creating instances
3320         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3321         // Possible that StringValue isn't present: if so, silently don't break
3322         if (k_o != NULL) {
3323           KlassHandle k = KlassHandle(THREAD, k_o);
3324           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3325           ik->initialize(CHECK_0);
3326           fieldDescriptor fd;
3327           // Possible we might not find this field: if so, silently don't break
3328           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3329             k()->java_mirror()->bool_field_put(fd.offset(), true);
3330           }
3331         }
3332       }
3333     }
3334 
3335     // Initialize java_lang.System (needed before creating the thread)
3336     if (InitializeJavaLangSystem) {
3337       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3338       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3339       Handle thread_group = create_initial_thread_group(CHECK_0);
3340       Universe::set_main_thread_group(thread_group());
3341       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3342       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3343       main_thread->set_threadObj(thread_object);
3344       // Set thread status to running since main thread has
3345       // been started and running.
3346       java_lang_Thread::set_thread_status(thread_object,
3347                                           java_lang_Thread::RUNNABLE);
3348 
3349       // The VM preresolve methods to these classes. Make sure that get initialized
3350       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3351       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3352       // The VM creates & returns objects of this class. Make sure it's initialized.
3353       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3354       call_initializeSystemClass(CHECK_0);
3355     } else {
3356       warning("java.lang.System not initialized");
3357     }
3358 
3359     // an instance of OutOfMemory exception has been allocated earlier
3360     if (InitializeJavaLangExceptionsErrors) {
3361       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3362       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3363       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3364       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3365       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3366       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3367       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3368       initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3369     } else {
3370       warning("java.lang.OutOfMemoryError has not been initialized");
3371       warning("java.lang.NullPointerException has not been initialized");
3372       warning("java.lang.ClassCastException has not been initialized");
3373       warning("java.lang.ArrayStoreException has not been initialized");
3374       warning("java.lang.ArithmeticException has not been initialized");
3375       warning("java.lang.StackOverflowError has not been initialized");
3376       warning("java.lang.IllegalArgumentException has not been initialized");
3377     }
3378   }
3379 
3380   // See        : bugid 4211085.
3381   // Background : the static initializer of java.lang.Compiler tries to read
3382   //              property"java.compiler" and read & write property "java.vm.info".
3383   //              When a security manager is installed through the command line
3384   //              option "-Djava.security.manager", the above properties are not
3385   //              readable and the static initializer for java.lang.Compiler fails
3386   //              resulting in a NoClassDefFoundError.  This can happen in any
3387   //              user code which calls methods in java.lang.Compiler.
3388   // Hack :       the hack is to pre-load and initialize this class, so that only
3389   //              system domains are on the stack when the properties are read.
3390   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3391   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3392   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3393   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3394   //              Once that is done, we should remove this hack.
3395   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3396 
3397   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3398   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3399   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3400   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3401   // This should also be taken out as soon as 4211383 gets fixed.
3402   reset_vm_info_property(CHECK_0);
3403 
3404   quicken_jni_functions();
3405 
3406   // Must be run after init_ft which initializes ft_enabled
3407   if (TRACE_INITIALIZE() != JNI_OK) {
3408     vm_exit_during_initialization("Failed to initialize tracing backend");
3409   }
3410 
3411   // Set flag that basic initialization has completed. Used by exceptions and various
3412   // debug stuff, that does not work until all basic classes have been initialized.
3413   set_init_completed();
3414 
3415 #ifndef USDT2
3416   HS_DTRACE_PROBE(hotspot, vm__init__end);
3417 #else /* USDT2 */
3418   HOTSPOT_VM_INIT_END();
3419 #endif /* USDT2 */
3420 
3421   // record VM initialization completion time
3422   Management::record_vm_init_completed();
3423 
3424   // Compute system loader. Note that this has to occur after set_init_completed, since
3425   // valid exceptions may be thrown in the process.
3426   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3427   // set_init_completed has just been called, causing exceptions not to be shortcut
3428   // anymore. We call vm_exit_during_initialization directly instead.
3429   SystemDictionary::compute_java_system_loader(THREAD);
3430   if (HAS_PENDING_EXCEPTION) {
3431     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3432   }
3433 
3434 #ifndef SERIALGC
3435   // Support for ConcurrentMarkSweep. This should be cleaned up
3436   // and better encapsulated. The ugly nested if test would go away
3437   // once things are properly refactored. XXX YSR
3438   if (UseConcMarkSweepGC || UseG1GC) {
3439     if (UseConcMarkSweepGC) {
3440       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3441     } else {
3442       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3443     }
3444     if (HAS_PENDING_EXCEPTION) {
3445       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3446     }
3447   }
3448 #endif // SERIALGC
3449 
3450   // Always call even when there are not JVMTI environments yet, since environments
3451   // may be attached late and JVMTI must track phases of VM execution
3452   JvmtiExport::enter_live_phase();
3453 
3454   // Signal Dispatcher needs to be started before VMInit event is posted
3455   os::signal_init();
3456 
3457   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3458   if (!DisableAttachMechanism) {
3459     if (StartAttachListener || AttachListener::init_at_startup()) {
3460       AttachListener::init();
3461     }
3462   }
3463 
3464   // Launch -Xrun agents
3465   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3466   // back-end can launch with -Xdebug -Xrunjdwp.
3467   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3468     create_vm_init_libraries();
3469   }
3470 
3471   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3472   JvmtiExport::post_vm_initialized();
3473 
3474   if (!TRACE_START()) {
3475     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3476   }
3477 
3478   if (CleanChunkPoolAsync) {
3479     Chunk::start_chunk_pool_cleaner_task();
3480   }
3481 
3482   // initialize compiler(s)
3483   CompileBroker::compilation_init();
3484 
3485   Management::initialize(THREAD);
3486   if (HAS_PENDING_EXCEPTION) {
3487     // management agent fails to start possibly due to
3488     // configuration problem and is responsible for printing
3489     // stack trace if appropriate. Simply exit VM.
3490     vm_exit(1);
3491   }
3492 
3493   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3494   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3495   if (MemProfiling)                   MemProfiler::engage();
3496   StatSampler::engage();
3497   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3498 
3499   BiasedLocking::init();
3500 
3501   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3502     call_postVMInitHook(THREAD);
3503     // The Java side of PostVMInitHook.run must deal with all
3504     // exceptions and provide means of diagnosis.
3505     if (HAS_PENDING_EXCEPTION) {
3506       CLEAR_PENDING_EXCEPTION;
3507     }
3508   }
3509 
3510   // Start up the WatcherThread if there are any periodic tasks
3511   // NOTE:  All PeriodicTasks should be registered by now. If they
3512   //   aren't, late joiners might appear to start slowly (we might
3513   //   take a while to process their first tick).
3514   if (PeriodicTask::num_tasks() > 0) {
3515     WatcherThread::start();
3516   }
3517 
3518   // Give os specific code one last chance to start
3519   os::init_3();
3520 
3521   create_vm_timer.end();
3522   return JNI_OK;
3523 }
3524 
3525 // type for the Agent_OnLoad and JVM_OnLoad entry points
3526 extern "C" {
3527   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3528 }
3529 // Find a command line agent library and return its entry point for
3530 //         -agentlib:  -agentpath:   -Xrun
3531 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3532 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3533   OnLoadEntry_t on_load_entry = NULL;
3534   void *library = agent->os_lib();  // check if we have looked it up before
3535 
3536   if (library == NULL) {
3537     char buffer[JVM_MAXPATHLEN];
3538     char ebuf[1024];
3539     const char *name = agent->name();
3540     const char *msg = "Could not find agent library ";
3541 
3542     if (agent->is_absolute_path()) {
3543       library = os::dll_load(name, ebuf, sizeof ebuf);
3544       if (library == NULL) {
3545         const char *sub_msg = " in absolute path, with error: ";
3546         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3547         char *buf = NEW_C_HEAP_ARRAY(char, len);
3548         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3549         // If we can't find the agent, exit.
3550         vm_exit_during_initialization(buf, NULL);
3551         FREE_C_HEAP_ARRAY(char, buf);
3552       }
3553     } else {
3554       // Try to load the agent from the standard dll directory
3555       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3556       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3557 #ifdef KERNEL
3558       // Download instrument dll
3559       if (library == NULL && strcmp(name, "instrument") == 0) {
3560         char *props = Arguments::get_kernel_properties();
3561         char *home  = Arguments::get_java_home();
3562         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3563                       " sun.jkernel.DownloadManager -download client_jvm";
3564         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3565         char *cmd = NEW_C_HEAP_ARRAY(char, length);
3566         jio_snprintf(cmd, length, fmt, home, props);
3567         int status = os::fork_and_exec(cmd);
3568         FreeHeap(props);
3569         if (status == -1) {
3570           warning(cmd);
3571           vm_exit_during_initialization("fork_and_exec failed: %s",
3572                                          strerror(errno));
3573         }
3574         FREE_C_HEAP_ARRAY(char, cmd);
3575         // when this comes back the instrument.dll should be where it belongs.
3576         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3577       }
3578 #endif // KERNEL
3579       if (library == NULL) { // Try the local directory
3580         char ns[1] = {0};
3581         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3582         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3583         if (library == NULL) {
3584           const char *sub_msg = " on the library path, with error: ";
3585           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3586           char *buf = NEW_C_HEAP_ARRAY(char, len);
3587           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3588           // If we can't find the agent, exit.
3589           vm_exit_during_initialization(buf, NULL);
3590           FREE_C_HEAP_ARRAY(char, buf);
3591         }
3592       }
3593     }
3594     agent->set_os_lib(library);
3595   }
3596 
3597   // Find the OnLoad function.
3598   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3599     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3600     if (on_load_entry != NULL) break;
3601   }
3602   return on_load_entry;
3603 }
3604 
3605 // Find the JVM_OnLoad entry point
3606 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3607   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3608   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3609 }
3610 
3611 // Find the Agent_OnLoad entry point
3612 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3613   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3614   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3615 }
3616 
3617 // For backwards compatibility with -Xrun
3618 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3619 // treated like -agentpath:
3620 // Must be called before agent libraries are created
3621 void Threads::convert_vm_init_libraries_to_agents() {
3622   AgentLibrary* agent;
3623   AgentLibrary* next;
3624 
3625   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3626     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3627     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3628 
3629     // If there is an JVM_OnLoad function it will get called later,
3630     // otherwise see if there is an Agent_OnLoad
3631     if (on_load_entry == NULL) {
3632       on_load_entry = lookup_agent_on_load(agent);
3633       if (on_load_entry != NULL) {
3634         // switch it to the agent list -- so that Agent_OnLoad will be called,
3635         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3636         Arguments::convert_library_to_agent(agent);
3637       } else {
3638         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3639       }
3640     }
3641   }
3642 }
3643 
3644 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3645 // Invokes Agent_OnLoad
3646 // Called very early -- before JavaThreads exist
3647 void Threads::create_vm_init_agents() {
3648   extern struct JavaVM_ main_vm;
3649   AgentLibrary* agent;
3650 
3651   JvmtiExport::enter_onload_phase();
3652   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3653     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3654 
3655     if (on_load_entry != NULL) {
3656       // Invoke the Agent_OnLoad function
3657       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3658       if (err != JNI_OK) {
3659         vm_exit_during_initialization("agent library failed to init", agent->name());
3660       }
3661     } else {
3662       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3663     }
3664   }
3665   JvmtiExport::enter_primordial_phase();
3666 }
3667 
3668 extern "C" {
3669   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3670 }
3671 
3672 void Threads::shutdown_vm_agents() {
3673   // Send any Agent_OnUnload notifications
3674   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3675   extern struct JavaVM_ main_vm;
3676   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3677 
3678     // Find the Agent_OnUnload function.
3679     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3680       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3681                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3682 
3683       // Invoke the Agent_OnUnload function
3684       if (unload_entry != NULL) {
3685         JavaThread* thread = JavaThread::current();
3686         ThreadToNativeFromVM ttn(thread);
3687         HandleMark hm(thread);
3688         (*unload_entry)(&main_vm);
3689         break;
3690       }
3691     }
3692   }
3693 }
3694 
3695 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3696 // Invokes JVM_OnLoad
3697 void Threads::create_vm_init_libraries() {
3698   extern struct JavaVM_ main_vm;
3699   AgentLibrary* agent;
3700 
3701   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3702     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3703 
3704     if (on_load_entry != NULL) {
3705       // Invoke the JVM_OnLoad function
3706       JavaThread* thread = JavaThread::current();
3707       ThreadToNativeFromVM ttn(thread);
3708       HandleMark hm(thread);
3709       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3710       if (err != JNI_OK) {
3711         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3712       }
3713     } else {
3714       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3715     }
3716   }
3717 }
3718 
3719 // Last thread running calls java.lang.Shutdown.shutdown()
3720 void JavaThread::invoke_shutdown_hooks() {
3721   HandleMark hm(this);
3722 
3723   // We could get here with a pending exception, if so clear it now.
3724   if (this->has_pending_exception()) {
3725     this->clear_pending_exception();
3726   }
3727 
3728   EXCEPTION_MARK;
3729   klassOop k =
3730     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3731                                       THREAD);
3732   if (k != NULL) {
3733     // SystemDictionary::resolve_or_null will return null if there was
3734     // an exception.  If we cannot load the Shutdown class, just don't
3735     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3736     // and finalizers (if runFinalizersOnExit is set) won't be run.
3737     // Note that if a shutdown hook was registered or runFinalizersOnExit
3738     // was called, the Shutdown class would have already been loaded
3739     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3740     instanceKlassHandle shutdown_klass (THREAD, k);
3741     JavaValue result(T_VOID);
3742     JavaCalls::call_static(&result,
3743                            shutdown_klass,
3744                            vmSymbols::shutdown_method_name(),
3745                            vmSymbols::void_method_signature(),
3746                            THREAD);
3747   }
3748   CLEAR_PENDING_EXCEPTION;
3749 }
3750 
3751 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3752 // the program falls off the end of main(). Another VM exit path is through
3753 // vm_exit() when the program calls System.exit() to return a value or when
3754 // there is a serious error in VM. The two shutdown paths are not exactly
3755 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3756 // and VM_Exit op at VM level.
3757 //
3758 // Shutdown sequence:
3759 //   + Wait until we are the last non-daemon thread to execute
3760 //     <-- every thing is still working at this moment -->
3761 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3762 //        shutdown hooks, run finalizers if finalization-on-exit
3763 //   + Call before_exit(), prepare for VM exit
3764 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3765 //        currently the only user of this mechanism is File.deleteOnExit())
3766 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3767 //        post thread end and vm death events to JVMTI,
3768 //        stop signal thread
3769 //   + Call JavaThread::exit(), it will:
3770 //      > release JNI handle blocks, remove stack guard pages
3771 //      > remove this thread from Threads list
3772 //     <-- no more Java code from this thread after this point -->
3773 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3774 //     the compiler threads at safepoint
3775 //     <-- do not use anything that could get blocked by Safepoint -->
3776 //   + Disable tracing at JNI/JVM barriers
3777 //   + Set _vm_exited flag for threads that are still running native code
3778 //   + Delete this thread
3779 //   + Call exit_globals()
3780 //      > deletes tty
3781 //      > deletes PerfMemory resources
3782 //   + Return to caller
3783 
3784 bool Threads::destroy_vm() {
3785   JavaThread* thread = JavaThread::current();
3786 
3787   // Wait until we are the last non-daemon thread to execute
3788   { MutexLocker nu(Threads_lock);
3789     while (Threads::number_of_non_daemon_threads() > 1 )
3790       // This wait should make safepoint checks, wait without a timeout,
3791       // and wait as a suspend-equivalent condition.
3792       //
3793       // Note: If the FlatProfiler is running and this thread is waiting
3794       // for another non-daemon thread to finish, then the FlatProfiler
3795       // is waiting for the external suspend request on this thread to
3796       // complete. wait_for_ext_suspend_completion() will eventually
3797       // timeout, but that takes time. Making this wait a suspend-
3798       // equivalent condition solves that timeout problem.
3799       //
3800       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3801                          Mutex::_as_suspend_equivalent_flag);
3802   }
3803 
3804   // Hang forever on exit if we are reporting an error.
3805   if (ShowMessageBoxOnError && is_error_reported()) {
3806     os::infinite_sleep();
3807   }
3808   os::wait_for_keypress_at_exit();
3809 
3810   if (JDK_Version::is_jdk12x_version()) {
3811     // We are the last thread running, so check if finalizers should be run.
3812     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3813     HandleMark rm(thread);
3814     Universe::run_finalizers_on_exit();
3815   } else {
3816     // run Java level shutdown hooks
3817     thread->invoke_shutdown_hooks();
3818   }
3819 
3820   before_exit(thread);
3821 
3822   thread->exit(true);
3823 
3824   // Stop VM thread.
3825   {
3826     // 4945125 The vm thread comes to a safepoint during exit.
3827     // GC vm_operations can get caught at the safepoint, and the
3828     // heap is unparseable if they are caught. Grab the Heap_lock
3829     // to prevent this. The GC vm_operations will not be able to
3830     // queue until after the vm thread is dead.
3831     // After this point, we'll never emerge out of the safepoint before
3832     // the VM exits, so concurrent GC threads do not need to be explicitly
3833     // stopped; they remain inactive until the process exits.
3834     // Note: some concurrent G1 threads may be running during a safepoint,
3835     // but these will not be accessing the heap, just some G1-specific side
3836     // data structures that are not accessed by any other threads but them
3837     // after this point in a terminal safepoint.
3838 
3839     MutexLocker ml(Heap_lock);
3840 
3841     VMThread::wait_for_vm_thread_exit();
3842     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3843     VMThread::destroy();
3844   }
3845 
3846   // clean up ideal graph printers
3847 #if defined(COMPILER2) && !defined(PRODUCT)
3848   IdealGraphPrinter::clean_up();
3849 #endif
3850 
3851   // Now, all Java threads are gone except daemon threads. Daemon threads
3852   // running Java code or in VM are stopped by the Safepoint. However,
3853   // daemon threads executing native code are still running.  But they
3854   // will be stopped at native=>Java/VM barriers. Note that we can't
3855   // simply kill or suspend them, as it is inherently deadlock-prone.
3856 
3857 #ifndef PRODUCT
3858   // disable function tracing at JNI/JVM barriers
3859   TraceJNICalls = false;
3860   TraceJVMCalls = false;
3861   TraceRuntimeCalls = false;
3862 #endif
3863 
3864   VM_Exit::set_vm_exited();
3865 
3866   notify_vm_shutdown();
3867 
3868   delete thread;
3869 
3870   // exit_globals() will delete tty
3871   exit_globals();
3872 
3873   return true;
3874 }
3875 
3876 
3877 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3878   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3879   return is_supported_jni_version(version);
3880 }
3881 
3882 
3883 jboolean Threads::is_supported_jni_version(jint version) {
3884   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3885   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3886   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3887   return JNI_FALSE;
3888 }
3889 
3890 
3891 void Threads::add(JavaThread* p, bool force_daemon) {
3892   // The threads lock must be owned at this point
3893   assert_locked_or_safepoint(Threads_lock);
3894 
3895   // See the comment for this method in thread.hpp for its purpose and
3896   // why it is called here.
3897   p->initialize_queues();
3898   p->set_next(_thread_list);
3899   _thread_list = p;
3900   _number_of_threads++;
3901   oop threadObj = p->threadObj();
3902   bool daemon = true;
3903   // Bootstrapping problem: threadObj can be null for initial
3904   // JavaThread (or for threads attached via JNI)
3905   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3906     _number_of_non_daemon_threads++;
3907     daemon = false;
3908   }
3909 
3910   ThreadService::add_thread(p, daemon);
3911 
3912   // Possible GC point.
3913   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
3914 }
3915 
3916 void Threads::remove(JavaThread* p) {
3917   // Extra scope needed for Thread_lock, so we can check
3918   // that we do not remove thread without safepoint code notice
3919   { MutexLocker ml(Threads_lock);
3920 
3921     assert(includes(p), "p must be present");
3922 
3923     JavaThread* current = _thread_list;
3924     JavaThread* prev    = NULL;
3925 
3926     while (current != p) {
3927       prev    = current;
3928       current = current->next();
3929     }
3930 
3931     if (prev) {
3932       prev->set_next(current->next());
3933     } else {
3934       _thread_list = p->next();
3935     }
3936     _number_of_threads--;
3937     oop threadObj = p->threadObj();
3938     bool daemon = true;
3939     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3940       _number_of_non_daemon_threads--;
3941       daemon = false;
3942 
3943       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3944       // on destroy_vm will wake up.
3945       if (number_of_non_daemon_threads() == 1)
3946         Threads_lock->notify_all();
3947     }
3948     ThreadService::remove_thread(p, daemon);
3949 
3950     // Make sure that safepoint code disregard this thread. This is needed since
3951     // the thread might mess around with locks after this point. This can cause it
3952     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3953     // of this thread since it is removed from the queue.
3954     p->set_terminated_value();
3955   } // unlock Threads_lock
3956 
3957   // Since Events::log uses a lock, we grab it outside the Threads_lock
3958   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
3959 }
3960 
3961 // Threads_lock must be held when this is called (or must be called during a safepoint)
3962 bool Threads::includes(JavaThread* p) {
3963   assert(Threads_lock->is_locked(), "sanity check");
3964   ALL_JAVA_THREADS(q) {
3965     if (q == p ) {
3966       return true;
3967     }
3968   }
3969   return false;
3970 }
3971 
3972 // Operations on the Threads list for GC.  These are not explicitly locked,
3973 // but the garbage collector must provide a safe context for them to run.
3974 // In particular, these things should never be called when the Threads_lock
3975 // is held by some other thread. (Note: the Safepoint abstraction also
3976 // uses the Threads_lock to gurantee this property. It also makes sure that
3977 // all threads gets blocked when exiting or starting).
3978 
3979 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3980   ALL_JAVA_THREADS(p) {
3981     p->oops_do(f, cf);
3982   }
3983   VMThread::vm_thread()->oops_do(f, cf);
3984 }
3985 
3986 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3987   // Introduce a mechanism allowing parallel threads to claim threads as
3988   // root groups.  Overhead should be small enough to use all the time,
3989   // even in sequential code.
3990   SharedHeap* sh = SharedHeap::heap();
3991   // Cannot yet substitute active_workers for n_par_threads
3992   // because of G1CollectedHeap::verify() use of
3993   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
3994   // turn off parallelism in process_strong_roots while active_workers
3995   // is being used for parallelism elsewhere.
3996   bool is_par = sh->n_par_threads() > 0;
3997   assert(!is_par ||
3998          (SharedHeap::heap()->n_par_threads() ==
3999           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4000   int cp = SharedHeap::heap()->strong_roots_parity();
4001   ALL_JAVA_THREADS(p) {
4002     if (p->claim_oops_do(is_par, cp)) {
4003       p->oops_do(f, cf);
4004     }
4005   }
4006   VMThread* vmt = VMThread::vm_thread();
4007   if (vmt->claim_oops_do(is_par, cp)) {
4008     vmt->oops_do(f, cf);
4009   }
4010 }
4011 
4012 #ifndef SERIALGC
4013 // Used by ParallelScavenge
4014 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4015   ALL_JAVA_THREADS(p) {
4016     q->enqueue(new ThreadRootsTask(p));
4017   }
4018   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4019 }
4020 
4021 // Used by Parallel Old
4022 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4023   ALL_JAVA_THREADS(p) {
4024     q->enqueue(new ThreadRootsMarkingTask(p));
4025   }
4026   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4027 }
4028 #endif // SERIALGC
4029 
4030 void Threads::nmethods_do(CodeBlobClosure* cf) {
4031   ALL_JAVA_THREADS(p) {
4032     p->nmethods_do(cf);
4033   }
4034   VMThread::vm_thread()->nmethods_do(cf);
4035 }
4036 
4037 void Threads::gc_epilogue() {
4038   ALL_JAVA_THREADS(p) {
4039     p->gc_epilogue();
4040   }
4041 }
4042 
4043 void Threads::gc_prologue() {
4044   ALL_JAVA_THREADS(p) {
4045     p->gc_prologue();
4046   }
4047 }
4048 
4049 void Threads::deoptimized_wrt_marked_nmethods() {
4050   ALL_JAVA_THREADS(p) {
4051     p->deoptimized_wrt_marked_nmethods();
4052   }
4053 }
4054 
4055 
4056 // Get count Java threads that are waiting to enter the specified monitor.
4057 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4058   address monitor, bool doLock) {
4059   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4060     "must grab Threads_lock or be at safepoint");
4061   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4062 
4063   int i = 0;
4064   {
4065     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4066     ALL_JAVA_THREADS(p) {
4067       if (p->is_Compiler_thread()) continue;
4068 
4069       address pending = (address)p->current_pending_monitor();
4070       if (pending == monitor) {             // found a match
4071         if (i < count) result->append(p);   // save the first count matches
4072         i++;
4073       }
4074     }
4075   }
4076   return result;
4077 }
4078 
4079 
4080 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4081   assert(doLock ||
4082          Threads_lock->owned_by_self() ||
4083          SafepointSynchronize::is_at_safepoint(),
4084          "must grab Threads_lock or be at safepoint");
4085 
4086   // NULL owner means not locked so we can skip the search
4087   if (owner == NULL) return NULL;
4088 
4089   {
4090     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4091     ALL_JAVA_THREADS(p) {
4092       // first, see if owner is the address of a Java thread
4093       if (owner == (address)p) return p;
4094     }
4095   }
4096   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
4097   if (UseHeavyMonitors) return NULL;
4098 
4099   //
4100   // If we didn't find a matching Java thread and we didn't force use of
4101   // heavyweight monitors, then the owner is the stack address of the
4102   // Lock Word in the owning Java thread's stack.
4103   //
4104   JavaThread* the_owner = NULL;
4105   {
4106     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4107     ALL_JAVA_THREADS(q) {
4108       if (q->is_lock_owned(owner)) {
4109         the_owner = q;
4110         break;
4111       }
4112     }
4113   }
4114   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4115   return the_owner;
4116 }
4117 
4118 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4119 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4120   char buf[32];
4121   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4122 
4123   st->print_cr("Full thread dump %s (%s %s):",
4124                 Abstract_VM_Version::vm_name(),
4125                 Abstract_VM_Version::vm_release(),
4126                 Abstract_VM_Version::vm_info_string()
4127                );
4128   st->cr();
4129 
4130 #ifndef SERIALGC
4131   // Dump concurrent locks
4132   ConcurrentLocksDump concurrent_locks;
4133   if (print_concurrent_locks) {
4134     concurrent_locks.dump_at_safepoint();
4135   }
4136 #endif // SERIALGC
4137 
4138   ALL_JAVA_THREADS(p) {
4139     ResourceMark rm;
4140     p->print_on(st);
4141     if (print_stacks) {
4142       if (internal_format) {
4143         p->trace_stack();
4144       } else {
4145         p->print_stack_on(st);
4146       }
4147     }
4148     st->cr();
4149 #ifndef SERIALGC
4150     if (print_concurrent_locks) {
4151       concurrent_locks.print_locks_on(p, st);
4152     }
4153 #endif // SERIALGC
4154   }
4155 
4156   VMThread::vm_thread()->print_on(st);
4157   st->cr();
4158   Universe::heap()->print_gc_threads_on(st);
4159   WatcherThread* wt = WatcherThread::watcher_thread();
4160   if (wt != NULL) wt->print_on(st);
4161   st->cr();
4162   CompileBroker::print_compiler_threads_on(st);
4163   st->flush();
4164 }
4165 
4166 // Threads::print_on_error() is called by fatal error handler. It's possible
4167 // that VM is not at safepoint and/or current thread is inside signal handler.
4168 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4169 // memory (even in resource area), it might deadlock the error handler.
4170 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4171   bool found_current = false;
4172   st->print_cr("Java Threads: ( => current thread )");
4173   ALL_JAVA_THREADS(thread) {
4174     bool is_current = (current == thread);
4175     found_current = found_current || is_current;
4176 
4177     st->print("%s", is_current ? "=>" : "  ");
4178 
4179     st->print(PTR_FORMAT, thread);
4180     st->print(" ");
4181     thread->print_on_error(st, buf, buflen);
4182     st->cr();
4183   }
4184   st->cr();
4185 
4186   st->print_cr("Other Threads:");
4187   if (VMThread::vm_thread()) {
4188     bool is_current = (current == VMThread::vm_thread());
4189     found_current = found_current || is_current;
4190     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4191 
4192     st->print(PTR_FORMAT, VMThread::vm_thread());
4193     st->print(" ");
4194     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4195     st->cr();
4196   }
4197   WatcherThread* wt = WatcherThread::watcher_thread();
4198   if (wt != NULL) {
4199     bool is_current = (current == wt);
4200     found_current = found_current || is_current;
4201     st->print("%s", is_current ? "=>" : "  ");
4202 
4203     st->print(PTR_FORMAT, wt);
4204     st->print(" ");
4205     wt->print_on_error(st, buf, buflen);
4206     st->cr();
4207   }
4208   if (!found_current) {
4209     st->cr();
4210     st->print("=>" PTR_FORMAT " (exited) ", current);
4211     current->print_on_error(st, buf, buflen);
4212     st->cr();
4213   }
4214 }
4215 
4216 // Internal SpinLock and Mutex
4217 // Based on ParkEvent
4218 
4219 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4220 //
4221 // We employ SpinLocks _only for low-contention, fixed-length
4222 // short-duration critical sections where we're concerned
4223 // about native mutex_t or HotSpot Mutex:: latency.
4224 // The mux construct provides a spin-then-block mutual exclusion
4225 // mechanism.
4226 //
4227 // Testing has shown that contention on the ListLock guarding gFreeList
4228 // is common.  If we implement ListLock as a simple SpinLock it's common
4229 // for the JVM to devolve to yielding with little progress.  This is true
4230 // despite the fact that the critical sections protected by ListLock are
4231 // extremely short.
4232 //
4233 // TODO-FIXME: ListLock should be of type SpinLock.
4234 // We should make this a 1st-class type, integrated into the lock
4235 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4236 // should have sufficient padding to avoid false-sharing and excessive
4237 // cache-coherency traffic.
4238 
4239 
4240 typedef volatile int SpinLockT ;
4241 
4242 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4243   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4244      return ;   // normal fast-path return
4245   }
4246 
4247   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4248   TEVENT (SpinAcquire - ctx) ;
4249   int ctr = 0 ;
4250   int Yields = 0 ;
4251   for (;;) {
4252      while (*adr != 0) {
4253         ++ctr ;
4254         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4255            if (Yields > 5) {
4256              // Consider using a simple NakedSleep() instead.
4257              // Then SpinAcquire could be called by non-JVM threads
4258              Thread::current()->_ParkEvent->park(1) ;
4259            } else {
4260              os::NakedYield() ;
4261              ++Yields ;
4262            }
4263         } else {
4264            SpinPause() ;
4265         }
4266      }
4267      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4268   }
4269 }
4270 
4271 void Thread::SpinRelease (volatile int * adr) {
4272   assert (*adr != 0, "invariant") ;
4273   OrderAccess::fence() ;      // guarantee at least release consistency.
4274   // Roach-motel semantics.
4275   // It's safe if subsequent LDs and STs float "up" into the critical section,
4276   // but prior LDs and STs within the critical section can't be allowed
4277   // to reorder or float past the ST that releases the lock.
4278   *adr = 0 ;
4279 }
4280 
4281 // muxAcquire and muxRelease:
4282 //
4283 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4284 //    The LSB of the word is set IFF the lock is held.
4285 //    The remainder of the word points to the head of a singly-linked list
4286 //    of threads blocked on the lock.
4287 //
4288 // *  The current implementation of muxAcquire-muxRelease uses its own
4289 //    dedicated Thread._MuxEvent instance.  If we're interested in
4290 //    minimizing the peak number of extant ParkEvent instances then
4291 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4292 //    as certain invariants were satisfied.  Specifically, care would need
4293 //    to be taken with regards to consuming unpark() "permits".
4294 //    A safe rule of thumb is that a thread would never call muxAcquire()
4295 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4296 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4297 //    consume an unpark() permit intended for monitorenter, for instance.
4298 //    One way around this would be to widen the restricted-range semaphore
4299 //    implemented in park().  Another alternative would be to provide
4300 //    multiple instances of the PlatformEvent() for each thread.  One
4301 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4302 //
4303 // *  Usage:
4304 //    -- Only as leaf locks
4305 //    -- for short-term locking only as muxAcquire does not perform
4306 //       thread state transitions.
4307 //
4308 // Alternatives:
4309 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4310 //    but with parking or spin-then-park instead of pure spinning.
4311 // *  Use Taura-Oyama-Yonenzawa locks.
4312 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4313 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4314 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4315 //    acquiring threads use timers (ParkTimed) to detect and recover from
4316 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4317 //    boundaries by using placement-new.
4318 // *  Augment MCS with advisory back-link fields maintained with CAS().
4319 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4320 //    The validity of the backlinks must be ratified before we trust the value.
4321 //    If the backlinks are invalid the exiting thread must back-track through the
4322 //    the forward links, which are always trustworthy.
4323 // *  Add a successor indication.  The LockWord is currently encoded as
4324 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4325 //    to provide the usual futile-wakeup optimization.
4326 //    See RTStt for details.
4327 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4328 //
4329 
4330 
4331 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4332 enum MuxBits { LOCKBIT = 1 } ;
4333 
4334 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4335   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4336   if (w == 0) return ;
4337   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4338      return ;
4339   }
4340 
4341   TEVENT (muxAcquire - Contention) ;
4342   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4343   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4344   for (;;) {
4345      int its = (os::is_MP() ? 100 : 0) + 1 ;
4346 
4347      // Optional spin phase: spin-then-park strategy
4348      while (--its >= 0) {
4349        w = *Lock ;
4350        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4351           return ;
4352        }
4353      }
4354 
4355      Self->reset() ;
4356      Self->OnList = intptr_t(Lock) ;
4357      // The following fence() isn't _strictly necessary as the subsequent
4358      // CAS() both serializes execution and ratifies the fetched *Lock value.
4359      OrderAccess::fence();
4360      for (;;) {
4361         w = *Lock ;
4362         if ((w & LOCKBIT) == 0) {
4363             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4364                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4365                 return ;
4366             }
4367             continue ;      // Interference -- *Lock changed -- Just retry
4368         }
4369         assert (w & LOCKBIT, "invariant") ;
4370         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4371         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4372      }
4373 
4374      while (Self->OnList != 0) {
4375         Self->park() ;
4376      }
4377   }
4378 }
4379 
4380 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4381   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4382   if (w == 0) return ;
4383   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4384     return ;
4385   }
4386 
4387   TEVENT (muxAcquire - Contention) ;
4388   ParkEvent * ReleaseAfter = NULL ;
4389   if (ev == NULL) {
4390     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4391   }
4392   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4393   for (;;) {
4394     guarantee (ev->OnList == 0, "invariant") ;
4395     int its = (os::is_MP() ? 100 : 0) + 1 ;
4396 
4397     // Optional spin phase: spin-then-park strategy
4398     while (--its >= 0) {
4399       w = *Lock ;
4400       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4401         if (ReleaseAfter != NULL) {
4402           ParkEvent::Release (ReleaseAfter) ;
4403         }
4404         return ;
4405       }
4406     }
4407 
4408     ev->reset() ;
4409     ev->OnList = intptr_t(Lock) ;
4410     // The following fence() isn't _strictly necessary as the subsequent
4411     // CAS() both serializes execution and ratifies the fetched *Lock value.
4412     OrderAccess::fence();
4413     for (;;) {
4414       w = *Lock ;
4415       if ((w & LOCKBIT) == 0) {
4416         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4417           ev->OnList = 0 ;
4418           // We call ::Release while holding the outer lock, thus
4419           // artificially lengthening the critical section.
4420           // Consider deferring the ::Release() until the subsequent unlock(),
4421           // after we've dropped the outer lock.
4422           if (ReleaseAfter != NULL) {
4423             ParkEvent::Release (ReleaseAfter) ;
4424           }
4425           return ;
4426         }
4427         continue ;      // Interference -- *Lock changed -- Just retry
4428       }
4429       assert (w & LOCKBIT, "invariant") ;
4430       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4431       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4432     }
4433 
4434     while (ev->OnList != 0) {
4435       ev->park() ;
4436     }
4437   }
4438 }
4439 
4440 // Release() must extract a successor from the list and then wake that thread.
4441 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4442 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4443 // Release() would :
4444 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4445 // (B) Extract a successor from the private list "in-hand"
4446 // (C) attempt to CAS() the residual back into *Lock over null.
4447 //     If there were any newly arrived threads and the CAS() would fail.
4448 //     In that case Release() would detach the RATs, re-merge the list in-hand
4449 //     with the RATs and repeat as needed.  Alternately, Release() might
4450 //     detach and extract a successor, but then pass the residual list to the wakee.
4451 //     The wakee would be responsible for reattaching and remerging before it
4452 //     competed for the lock.
4453 //
4454 // Both "pop" and DMR are immune from ABA corruption -- there can be
4455 // multiple concurrent pushers, but only one popper or detacher.
4456 // This implementation pops from the head of the list.  This is unfair,
4457 // but tends to provide excellent throughput as hot threads remain hot.
4458 // (We wake recently run threads first).
4459 
4460 void Thread::muxRelease (volatile intptr_t * Lock)  {
4461   for (;;) {
4462     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4463     assert (w & LOCKBIT, "invariant") ;
4464     if (w == LOCKBIT) return ;
4465     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4466     assert (List != NULL, "invariant") ;
4467     assert (List->OnList == intptr_t(Lock), "invariant") ;
4468     ParkEvent * nxt = List->ListNext ;
4469 
4470     // The following CAS() releases the lock and pops the head element.
4471     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4472       continue ;
4473     }
4474     List->OnList = 0 ;
4475     OrderAccess::fence() ;
4476     List->unpark () ;
4477     return ;
4478   }
4479 }
4480 
4481 
4482 void Threads::verify() {
4483   ALL_JAVA_THREADS(p) {
4484     p->verify();
4485   }
4486   VMThread* thread = VMThread::vm_thread();
4487   if (thread != NULL) thread->verify();
4488 }