/* * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * FUNCTION * mlib_ImageAffineEdgeZero - implementation of MLIB_EDGE_DST_FILL_ZERO * edge condition * mlib_ImageAffineEdgeNearest - implementation of MLIB_EDGE_OP_NEAREST * edge condition * void mlib_ImageAffineEdgeExtend_BL - implementation of MLIB_EDGE_SRC_EXTEND * edge condition for MLIB_BILINEAR filter * void mlib_ImageAffineEdgeExtend_BC - implementation of MLIB_EDGE_SRC_EXTEND * edge condition for MLIB_BICUBIC filter * void mlib_ImageAffineEdgeExtend_BC2 - implementation of MLIB_EDGE_SRC_EXTEND * edge condition for MLIB_BICUBIC2 filter * * DESCRIPTION * mlib_ImageAffineEdgeZero: * This function fills the edge pixels (i.e. thouse one which can not * be interpolated with given resampling filter because their prototypes * in the source image lie too close to the border) in the destination * image with zeroes. * * mlib_ImageAffineEdgeNearest: * This function fills the edge pixels (i.e. thouse one which can not * be interpolated with given resampling filter because their prototypes * in the source image lie too close to the border) in the destination * image according to the nearest neighbour interpolation. * * mlib_ImageAffineEdgeExtend_BL: * This function fills the edge pixels (i.e. thouse one which can not * be interpolated with given resampling filter because their prototypes * in the source image lie too close to the border) in the destination * image according to the bilinear interpolation with border pixels extend * of source image. * * mlib_ImageAffineEdgeExtend_BC: * This function fills the edge pixels (i.e. thouse one which can not * be interpolated with given resampling filter because their prototypes * in the source image lie too close to the border) in the destination * image according to the bicubic interpolation with border pixels extend * of source image. * * mlib_ImageAffineEdgeExtend_BC2: * This function fills the edge pixels (i.e. thouse one which can not * be interpolated with given resampling filter because their prototypes * in the source image lie too close to the border) in the destination * image according to the bicubic2 interpolation with border pixels extend * of source image. */ #include "mlib_image.h" #include "mlib_ImageAffine.h" /***************************************************************/ #define FLT_SHIFT_U8 4 #define FLT_MASK_U8 (((1 << 8) - 1) << 4) #define FLT_SHIFT_S16 3 #define FLT_MASK_S16 (((1 << 9) - 1) << 4) #define MLIB_SIGN_SHIFT 31 /***************************************************************/ #define D64mlib_u8(X) mlib_U82D64[X] #define D64mlib_s16(X) ((mlib_d64)(X)) #define D64mlib_u16(X) ((mlib_d64)(X)) #define D64mlib_s32(X) ((mlib_d64)(X)) #define D64mlib_f32(X) ((mlib_d64)(X)) #define D64mlib_d64(X) ((mlib_d64)(X)) /***************************************************************/ #ifdef MLIB_USE_FTOI_CLAMPING #define SATmlib_u8(DST, val0) \ DST = ((mlib_s32)(val0 - sat) >> 24) ^ 0x80 #define SATmlib_s16(DST, val0) \ DST = ((mlib_s32)val0) >> 16 #define SATmlib_u16(DST, val0) \ DST = ((mlib_s32)(val0 - sat) >> 16) ^ 0x8000 #define SATmlib_s32(DST, val0) \ DST = val0 #else #define SATmlib_u8(DST, val0) \ val0 -= sat; \ if (val0 >= MLIB_S32_MAX) \ val0 = MLIB_S32_MAX; \ if (val0 <= MLIB_S32_MIN) \ val0 = MLIB_S32_MIN; \ DST = ((mlib_s32) val0 >> 24) ^ 0x80 #define SATmlib_s16(DST, val0) \ if (val0 >= MLIB_S32_MAX) \ val0 = MLIB_S32_MAX; \ if (val0 <= MLIB_S32_MIN) \ val0 = MLIB_S32_MIN; \ DST = (mlib_s32)val0 >> 16 #define SATmlib_u16(DST, val0) \ val0 -= sat; \ if (val0 >= MLIB_S32_MAX) \ val0 = MLIB_S32_MAX; \ if (val0 <= MLIB_S32_MIN) \ val0 = MLIB_S32_MIN; \ DST = ((mlib_s32)val0 >> 16) ^ 0x8000 #define SATmlib_s32(DST, val0) \ if (val0 >= MLIB_S32_MAX) \ val0 = MLIB_S32_MAX; \ if (val0 <= MLIB_S32_MIN) \ val0 = MLIB_S32_MIN; \ DST = (mlib_s32)val0 #endif /***************************************************************/ #define SATmlib_f32(DST, val0) \ DST = (mlib_f32)val0 /***************************************************************/ #define SATmlib_d64(DST, val0) \ DST = val0 /***************************************************************/ #define MLIB_EDGE_ZERO_LINE(TYPE, Left, Right) \ dp = (TYPE*)data + channels * Left; \ dstLineEnd = (TYPE*)data + channels * Right; \ \ for (; dp < dstLineEnd; dp++) { \ *dp = zero; \ } /***************************************************************/ #define MLIB_EDGE_NEAREST_LINE(TYPE, Left, Right) \ dp = (TYPE*)data + channels * Left; \ size = Right - Left; \ \ for (j = 0; j < size; j++) { \ ySrc = Y >> MLIB_SHIFT; \ xSrc = X >> MLIB_SHIFT; \ sp = (TYPE*)lineAddr[ySrc] + xSrc * channels; \ \ for (k = 0; k < channels; k++) dp[k] = sp[k]; \ \ Y += dY; \ X += dX; \ dp += channels; \ } /***************************************************************/ #define MLIB_EDGE_BL(TYPE, Left, Right) \ dp = (TYPE*)data + channels * Left; \ size = Right - Left; \ \ for (j = 0; j < size; j++) { \ ySrc = ((Y - 32768) >> MLIB_SHIFT); \ xSrc = ((X - 32768) >> MLIB_SHIFT); \ \ t = ((X - 32768) & MLIB_MASK) * scale; \ u = ((Y - 32768) & MLIB_MASK) * scale; \ \ xDelta = (((xSrc + 1 - srcWidth )) >> MLIB_SIGN_SHIFT) & channels; \ yDelta = (((ySrc + 1 - srcHeight)) >> MLIB_SIGN_SHIFT) & srcStride; \ \ xFlag = (xSrc >> (MLIB_SIGN_SHIFT - MLIB_SHIFT)); \ xSrc = xSrc + (1 & xFlag); \ xDelta = xDelta &~ xFlag; \ \ yFlag = (ySrc >> (MLIB_SIGN_SHIFT - MLIB_SHIFT)); \ ySrc = ySrc + (1 & yFlag); \ yDelta = yDelta &~ yFlag; \ \ sp = (TYPE*)lineAddr[ySrc] + xSrc * channels; \ \ for (k = 0; k < channels; k++) { \ a00 = D64##TYPE(sp[0]); \ a01 = D64##TYPE(sp[xDelta]); \ a10 = D64##TYPE(sp[yDelta]); \ a11 = D64##TYPE(sp[yDelta + xDelta]); \ pix0 = (a00 * (1 - t) + a01 * t) * (1 - u) + \ (a10 * (1 - t) + a11 * t) * u; \ \ dp[k] = (TYPE)pix0; \ sp++; \ } \ \ X += dX; \ Y += dY; \ dp += channels; \ } /***************************************************************/ #define GET_FLT_TBL(X, xf0, xf1, xf2, xf3) \ filterpos = ((X - 32768) >> flt_shift) & flt_mask; \ fptr = (mlib_f32 *) ((mlib_u8 *)flt_tbl + filterpos); \ \ xf0 = fptr[0]; \ xf1 = fptr[1]; \ xf2 = fptr[2]; \ xf3 = fptr[3] /***************************************************************/ #define GET_FLT_BC(X, xf0, xf1, xf2, xf3) \ dx = ((X - 32768) & MLIB_MASK) * scale; \ dx_2 = 0.5 * dx; \ dx2 = dx * dx; \ dx3_2 = dx_2 * dx2; \ dx3_3 = 3.0 * dx3_2; \ \ xf0 = dx2 - dx3_2 - dx_2; \ xf1 = dx3_3 - 2.5 * dx2 + 1.0; \ xf2 = 2.0 * dx2 - dx3_3 + dx_2; \ xf3 = dx3_2 - 0.5 * dx2 /***************************************************************/ #define GET_FLT_BC2(X, xf0, xf1, xf2, xf3) \ dx = ((X - 32768) & MLIB_MASK) * scale; \ dx2 = dx * dx; \ dx3_2 = dx * dx2; \ dx3_3 = 2.0 * dx2; \ \ xf0 = - dx3_2 + dx3_3 - dx; \ xf1 = dx3_2 - dx3_3 + 1.0; \ xf2 = - dx3_2 + dx2 + dx; \ xf3 = dx3_2 - dx2 /***************************************************************/ #define CALC_SRC_POS(X, Y, channels, srcStride) \ xSrc = ((X - 32768) >> MLIB_SHIFT); \ ySrc = ((Y - 32768) >> MLIB_SHIFT); \ \ xDelta0 = ((~((xSrc - 1) >> MLIB_SIGN_SHIFT)) & (- channels)); \ yDelta0 = ((~((ySrc - 1) >> MLIB_SIGN_SHIFT)) & (- srcStride)); \ xDelta1 = ((xSrc + 1 - srcWidth) >> MLIB_SIGN_SHIFT) & (channels); \ yDelta1 = ((ySrc + 1 - srcHeight) >> MLIB_SIGN_SHIFT) & (srcStride); \ xDelta2 = xDelta1 + (((xSrc + 2 - srcWidth) >> MLIB_SIGN_SHIFT) & (channels)); \ yDelta2 = yDelta1 + (((ySrc + 2 - srcHeight) >> MLIB_SIGN_SHIFT) & (srcStride)); \ \ xFlag = (xSrc >> (MLIB_SIGN_SHIFT - MLIB_SHIFT)); \ xSrc = xSrc + (1 & xFlag); \ xDelta2 -= (xDelta1 & xFlag); \ xDelta1 = (xDelta1 &~ xFlag); \ \ yFlag = (ySrc >> (MLIB_SIGN_SHIFT - MLIB_SHIFT)); \ ySrc = ySrc + (1 & yFlag); \ yDelta2 -= (yDelta1 & yFlag); \ yDelta1 = yDelta1 &~ yFlag /***************************************************************/ #define MLIB_EDGE_BC_LINE(TYPE, Left, Right, GET_FILTER) \ dp = (TYPE*)data + channels * Left; \ size = Right - Left; \ \ for (j = 0; j < size; j++) { \ GET_FILTER(X, xf0, xf1, xf2, xf3); \ GET_FILTER(Y, yf0, yf1, yf2, yf3); \ \ CALC_SRC_POS(X, Y, channels, srcStride); \ \ sp = (TYPE*)lineAddr[ySrc] + channels*xSrc; \ \ for (k = 0; k < channels; k++) { \ c0 = D64##TYPE(sp[yDelta0 + xDelta0]) * xf0 + \ D64##TYPE(sp[yDelta0 ]) * xf1 + \ D64##TYPE(sp[yDelta0 + xDelta1]) * xf2 + \ D64##TYPE(sp[yDelta0 + xDelta2]) * xf3; \ \ c1 = D64##TYPE(sp[xDelta0]) * xf0 + \ D64##TYPE(sp[ 0]) * xf1 + \ D64##TYPE(sp[xDelta1]) * xf2 + \ D64##TYPE(sp[xDelta2]) * xf3; \ \ c2 = D64##TYPE(sp[yDelta1 + xDelta0]) * xf0 + \ D64##TYPE(sp[yDelta1 ]) * xf1 + \ D64##TYPE(sp[yDelta1 + xDelta1]) * xf2 + \ D64##TYPE(sp[yDelta1 + xDelta2]) * xf3; \ \ c3 = D64##TYPE(sp[yDelta2 + xDelta0]) * xf0 + \ D64##TYPE(sp[yDelta2 ]) * xf1 + \ D64##TYPE(sp[yDelta2 + xDelta1]) * xf2 + \ D64##TYPE(sp[yDelta2 + xDelta2]) * xf3; \ \ val0 = c0*yf0 + c1*yf1 + c2*yf2 + c3*yf3; \ \ SAT##TYPE(dp[k], val0); \ \ sp++; \ } \ \ X += dX; \ Y += dY; \ dp += channels; \ } /***************************************************************/ #define MLIB_EDGE_BC_TBL(TYPE, Left, Right) \ MLIB_EDGE_BC_LINE(TYPE, Left, Right, GET_FLT_TBL) /***************************************************************/ #define MLIB_EDGE_BC(TYPE, Left, Right) \ MLIB_EDGE_BC_LINE(TYPE, Left, Right, GET_FLT_BC) /***************************************************************/ #define MLIB_EDGE_BC2(TYPE, Left, Right) \ MLIB_EDGE_BC_LINE(TYPE, Left, Right, GET_FLT_BC2) /***************************************************************/ #define MLIB_PROCESS_EDGES_ZERO(TYPE) { \ TYPE *dp, *dstLineEnd; \ \ for (i = yStartE; i < yStart; i++) { \ xLeftE = leftEdgesE[i]; \ xRightE = rightEdgesE[i] + 1; \ data += dstStride; \ \ MLIB_EDGE_ZERO_LINE(TYPE, xLeftE, xRightE); \ } \ \ for (; i <= yFinish; i++) { \ xLeftE = leftEdgesE[i]; \ xRightE = rightEdgesE[i] + 1; \ xLeft = leftEdges[i]; \ xRight = rightEdges[i] + 1; \ data += dstStride; \ \ if (xLeft < xRight) { \ MLIB_EDGE_ZERO_LINE(TYPE, xLeftE, xLeft); \ } else { \ xRight = xLeftE; \ } \ \ MLIB_EDGE_ZERO_LINE(TYPE, xRight, xRightE); \ } \ \ for (; i <= yFinishE; i++) { \ xLeftE = leftEdgesE[i]; \ xRightE = rightEdgesE[i] + 1; \ data += dstStride; \ \ MLIB_EDGE_ZERO_LINE(TYPE, xLeftE, xRightE); \ } \ } /***************************************************************/ #define MLIB_PROCESS_EDGES(PROCESS_LINE, TYPE) { \ TYPE *sp, *dp; \ mlib_s32 k, size; \ \ for (i = yStartE; i < yStart; i++) { \ xLeftE = leftEdgesE[i]; \ xRightE = rightEdgesE[i] + 1; \ X = xStartsE[i]; \ Y = yStartsE[i]; \ data += dstStride; \ \ PROCESS_LINE(TYPE, xLeftE, xRightE); \ } \ \ for (; i <= yFinish; i++) { \ xLeftE = leftEdgesE[i]; \ xRightE = rightEdgesE[i] + 1; \ xLeft = leftEdges[i]; \ xRight = rightEdges[i] + 1; \ X = xStartsE[i]; \ Y = yStartsE[i]; \ data += dstStride; \ \ if (xLeft < xRight) { \ PROCESS_LINE(TYPE, xLeftE, xLeft); \ } else { \ xRight = xLeftE; \ } \ \ X = xStartsE[i] + dX * (xRight - xLeftE); \ Y = yStartsE[i] + dY * (xRight - xLeftE); \ PROCESS_LINE(TYPE, xRight, xRightE); \ } \ \ for (; i <= yFinishE; i++) { \ xLeftE = leftEdgesE[i]; \ xRightE = rightEdgesE[i] + 1; \ X = xStartsE[i]; \ Y = yStartsE[i]; \ data += dstStride; \ \ PROCESS_LINE(TYPE, xLeftE, xRightE); \ } \ } /***************************************************************/ #define GET_EDGE_PARAMS_ZERO() \ mlib_image *dst = param -> dst; \ mlib_s32 *leftEdges = param -> leftEdges; \ mlib_s32 *rightEdges = param -> rightEdges; \ mlib_s32 *leftEdgesE = param_e -> leftEdges; \ mlib_s32 *rightEdgesE = param_e -> rightEdges; \ mlib_type type = mlib_ImageGetType(dst); \ mlib_s32 channels = mlib_ImageGetChannels(dst); \ mlib_s32 dstStride = mlib_ImageGetStride(dst); \ mlib_s32 yStart = param -> yStart; \ mlib_s32 yFinish = param -> yFinish; \ mlib_s32 yStartE = param_e -> yStart; \ mlib_s32 yFinishE = param_e -> yFinish; \ mlib_u8 *data = param_e -> dstData; \ mlib_s32 xLeft, xRight, xLeftE, xRightE; \ mlib_s32 i /***************************************************************/ #define GET_EDGE_PARAMS_NN() \ GET_EDGE_PARAMS_ZERO(); \ mlib_s32 *xStartsE = param_e -> xStarts; \ mlib_s32 *yStartsE = param_e -> yStarts; \ mlib_u8 **lineAddr = param -> lineAddr; \ mlib_s32 dX = param_e -> dX; \ mlib_s32 dY = param_e -> dY; \ mlib_s32 xSrc, ySrc, X, Y; \ mlib_s32 j /***************************************************************/ #define GET_EDGE_PARAMS() \ GET_EDGE_PARAMS_NN(); \ mlib_image *src = param -> src; \ mlib_s32 srcWidth = mlib_ImageGetWidth(src); \ mlib_s32 srcHeight = mlib_ImageGetHeight(src); \ mlib_s32 srcStride = mlib_ImageGetStride(src) /***************************************************************/ void mlib_ImageAffineEdgeZero(mlib_affine_param *param, mlib_affine_param *param_e) { GET_EDGE_PARAMS_ZERO(); mlib_s32 zero = 0; switch (type) { case MLIB_BYTE: MLIB_PROCESS_EDGES_ZERO(mlib_u8); break; case MLIB_SHORT: case MLIB_USHORT: MLIB_PROCESS_EDGES_ZERO(mlib_s16); break; case MLIB_INT: case MLIB_FLOAT: MLIB_PROCESS_EDGES_ZERO(mlib_s32); break; case MLIB_DOUBLE:{ mlib_d64 zero = 0; MLIB_PROCESS_EDGES_ZERO(mlib_d64); break; } default: /* Image type MLIB_BIT is not used in java, so we can ignore it. */ break; } } /***************************************************************/ void mlib_ImageAffineEdgeNearest(mlib_affine_param *param, mlib_affine_param *param_e) { GET_EDGE_PARAMS_NN(); switch (type) { case MLIB_BYTE: MLIB_PROCESS_EDGES(MLIB_EDGE_NEAREST_LINE, mlib_u8); break; case MLIB_SHORT: case MLIB_USHORT: MLIB_PROCESS_EDGES(MLIB_EDGE_NEAREST_LINE, mlib_s16); break; case MLIB_INT: case MLIB_FLOAT: MLIB_PROCESS_EDGES(MLIB_EDGE_NEAREST_LINE, mlib_s32); break; case MLIB_DOUBLE: MLIB_PROCESS_EDGES(MLIB_EDGE_NEAREST_LINE, mlib_d64); break; default: /* Image type MLIB_BIT is not used in java, so we can ignore it. */ break; } } /***************************************************************/ mlib_status mlib_ImageAffineEdgeExtend_BL(mlib_affine_param *param, mlib_affine_param *param_e) { GET_EDGE_PARAMS(); mlib_d64 scale = 1.0 / (mlib_d64) MLIB_PREC; mlib_s32 xDelta, yDelta, xFlag, yFlag; mlib_d64 t, u, pix0; mlib_d64 a00, a01, a10, a11; switch (type) { case MLIB_BYTE: MLIB_PROCESS_EDGES(MLIB_EDGE_BL, mlib_u8); break; case MLIB_SHORT: srcStride >>= 1; MLIB_PROCESS_EDGES(MLIB_EDGE_BL, mlib_s16); break; case MLIB_USHORT: srcStride >>= 1; MLIB_PROCESS_EDGES(MLIB_EDGE_BL, mlib_u16); break; case MLIB_INT: srcStride >>= 2; MLIB_PROCESS_EDGES(MLIB_EDGE_BL, mlib_s32); break; case MLIB_FLOAT: srcStride >>= 2; MLIB_PROCESS_EDGES(MLIB_EDGE_BL, mlib_f32); break; case MLIB_DOUBLE: srcStride >>= 3; MLIB_PROCESS_EDGES(MLIB_EDGE_BL, mlib_d64); break; default: /* Image type MLIB_BIT is not supported, ignore it. */ break; } return MLIB_SUCCESS; } /***************************************************************/ mlib_status mlib_ImageAffineEdgeExtend_BC(mlib_affine_param *param, mlib_affine_param *param_e) { GET_EDGE_PARAMS(); mlib_d64 scale = 1.0 / (mlib_d64) MLIB_PREC; mlib_s32 xFlag, yFlag; mlib_d64 dx, dx_2, dx2, dx3_2, dx3_3; mlib_d64 xf0, xf1, xf2, xf3; mlib_d64 yf0, yf1, yf2, yf3; mlib_d64 c0, c1, c2, c3, val0; mlib_filter filter = param->filter; mlib_f32 *fptr; mlib_f32 const *flt_tbl; mlib_s32 filterpos, flt_shift, flt_mask; mlib_s32 xDelta0, xDelta1, xDelta2; mlib_s32 yDelta0, yDelta1, yDelta2; mlib_d64 sat; if (type == MLIB_BYTE) { flt_shift = FLT_SHIFT_U8; flt_mask = FLT_MASK_U8; flt_tbl = (filter == MLIB_BICUBIC) ? mlib_filters_u8f_bc : mlib_filters_u8f_bc2; sat = (mlib_d64) 0x7F800000; /* saturation for U8 */ } else { flt_shift = FLT_SHIFT_S16; flt_mask = FLT_MASK_S16; flt_tbl = (filter == MLIB_BICUBIC) ? mlib_filters_s16f_bc : mlib_filters_s16f_bc2; sat = (mlib_d64) 0x7FFF8000; /* saturation for U16 */ } switch (type) { case MLIB_BYTE: MLIB_PROCESS_EDGES(MLIB_EDGE_BC_TBL, mlib_u8); break; case MLIB_SHORT: srcStride >>= 1; MLIB_PROCESS_EDGES(MLIB_EDGE_BC_TBL, mlib_s16); break; case MLIB_USHORT: srcStride >>= 1; MLIB_PROCESS_EDGES(MLIB_EDGE_BC_TBL, mlib_u16); break; case MLIB_INT: srcStride >>= 2; if (filter == MLIB_BICUBIC) { MLIB_PROCESS_EDGES(MLIB_EDGE_BC, mlib_s32); } else { MLIB_PROCESS_EDGES(MLIB_EDGE_BC2, mlib_s32); } break; case MLIB_FLOAT: srcStride >>= 2; if (filter == MLIB_BICUBIC) { MLIB_PROCESS_EDGES(MLIB_EDGE_BC, mlib_f32); } else { MLIB_PROCESS_EDGES(MLIB_EDGE_BC2, mlib_f32); } break; case MLIB_DOUBLE: srcStride >>= 3; if (filter == MLIB_BICUBIC) { MLIB_PROCESS_EDGES(MLIB_EDGE_BC, mlib_d64); } else { MLIB_PROCESS_EDGES(MLIB_EDGE_BC2, mlib_d64); } break; default: /* Ignore unsupported image type MLIB_BIT */ break; } return MLIB_SUCCESS; } /***************************************************************/