1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_linux.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_share_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/init.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/objectMonitor.hpp"
  55 #include "runtime/orderAccess.inline.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/elfFile.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <sys/types.h>
  78 # include <sys/mman.h>
  79 # include <sys/stat.h>
  80 # include <sys/select.h>
  81 # include <pthread.h>
  82 # include <signal.h>
  83 # include <errno.h>
  84 # include <dlfcn.h>
  85 # include <stdio.h>
  86 # include <unistd.h>
  87 # include <sys/resource.h>
  88 # include <pthread.h>
  89 # include <sys/stat.h>
  90 # include <sys/time.h>
  91 # include <sys/times.h>
  92 # include <sys/utsname.h>
  93 # include <sys/socket.h>
  94 # include <sys/wait.h>
  95 # include <pwd.h>
  96 # include <poll.h>
  97 # include <semaphore.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 ////////////////////////////////////////////////////////////////////////////////
 133 // global variables
 134 julong os::Linux::_physical_memory = 0;
 135 
 136 address   os::Linux::_initial_thread_stack_bottom = NULL;
 137 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 138 
 139 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 140 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 141 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 142 Mutex* os::Linux::_createThread_lock = NULL;
 143 pthread_t os::Linux::_main_thread;
 144 int os::Linux::_page_size = -1;
 145 const int os::Linux::_vm_default_page_size = (8 * K);
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 pthread_condattr_t os::Linux::_condattr[1];
 151 
 152 static jlong initial_time_count=0;
 153 
 154 static int clock_tics_per_sec = 100;
 155 
 156 // For diagnostics to print a message once. see run_periodic_checks
 157 static sigset_t check_signal_done;
 158 static bool check_signals = true;
 159 
 160 // Signal number used to suspend/resume a thread
 161 
 162 // do not use any signal number less than SIGSEGV, see 4355769
 163 static int SR_signum = SIGUSR2;
 164 sigset_t SR_sigset;
 165 
 166 // Declarations
 167 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 168 
 169 // utility functions
 170 
 171 static int SR_initialize();
 172 
 173 julong os::available_memory() {
 174   return Linux::available_memory();
 175 }
 176 
 177 julong os::Linux::available_memory() {
 178   // values in struct sysinfo are "unsigned long"
 179   struct sysinfo si;
 180   sysinfo(&si);
 181 
 182   return (julong)si.freeram * si.mem_unit;
 183 }
 184 
 185 julong os::physical_memory() {
 186   return Linux::physical_memory();
 187 }
 188 
 189 // Return true if user is running as root.
 190 
 191 bool os::have_special_privileges() {
 192   static bool init = false;
 193   static bool privileges = false;
 194   if (!init) {
 195     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 196     init = true;
 197   }
 198   return privileges;
 199 }
 200 
 201 
 202 #ifndef SYS_gettid
 203 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 204   #ifdef __ia64__
 205     #define SYS_gettid 1105
 206   #else
 207     #ifdef __i386__
 208       #define SYS_gettid 224
 209     #else
 210       #ifdef __amd64__
 211         #define SYS_gettid 186
 212       #else
 213         #ifdef __sparc__
 214           #define SYS_gettid 143
 215         #else
 216           #error define gettid for the arch
 217         #endif
 218       #endif
 219     #endif
 220   #endif
 221 #endif
 222 
 223 // Cpu architecture string
 224 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 225 
 226 
 227 // pid_t gettid()
 228 //
 229 // Returns the kernel thread id of the currently running thread. Kernel
 230 // thread id is used to access /proc.
 231 pid_t os::Linux::gettid() {
 232   int rslt = syscall(SYS_gettid);
 233   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 234   return (pid_t)rslt;
 235 }
 236 
 237 // Most versions of linux have a bug where the number of processors are
 238 // determined by looking at the /proc file system.  In a chroot environment,
 239 // the system call returns 1.  This causes the VM to act as if it is
 240 // a single processor and elide locking (see is_MP() call).
 241 static bool unsafe_chroot_detected = false;
 242 static const char *unstable_chroot_error = "/proc file system not found.\n"
 243                      "Java may be unstable running multithreaded in a chroot "
 244                      "environment on Linux when /proc filesystem is not mounted.";
 245 
 246 void os::Linux::initialize_system_info() {
 247   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 248   if (processor_count() == 1) {
 249     pid_t pid = os::Linux::gettid();
 250     char fname[32];
 251     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 252     FILE *fp = fopen(fname, "r");
 253     if (fp == NULL) {
 254       unsafe_chroot_detected = true;
 255     } else {
 256       fclose(fp);
 257     }
 258   }
 259   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 260   assert(processor_count() > 0, "linux error");
 261 }
 262 
 263 void os::init_system_properties_values() {
 264   // The next steps are taken in the product version:
 265   //
 266   // Obtain the JAVA_HOME value from the location of libjvm.so.
 267   // This library should be located at:
 268   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 269   //
 270   // If "/jre/lib/" appears at the right place in the path, then we
 271   // assume libjvm.so is installed in a JDK and we use this path.
 272   //
 273   // Otherwise exit with message: "Could not create the Java virtual machine."
 274   //
 275   // The following extra steps are taken in the debugging version:
 276   //
 277   // If "/jre/lib/" does NOT appear at the right place in the path
 278   // instead of exit check for $JAVA_HOME environment variable.
 279   //
 280   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 281   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 282   // it looks like libjvm.so is installed there
 283   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 284   //
 285   // Otherwise exit.
 286   //
 287   // Important note: if the location of libjvm.so changes this
 288   // code needs to be changed accordingly.
 289 
 290   // See ld(1):
 291   //      The linker uses the following search paths to locate required
 292   //      shared libraries:
 293   //        1: ...
 294   //        ...
 295   //        7: The default directories, normally /lib and /usr/lib.
 296 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 297   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 298 #else
 299   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 300 #endif
 301 
 302 // Base path of extensions installed on the system.
 303 #define SYS_EXT_DIR     "/usr/java/packages"
 304 #define EXTENSIONS_DIR  "/lib/ext"
 305 
 306   // Buffer that fits several sprintfs.
 307   // Note that the space for the colon and the trailing null are provided
 308   // by the nulls included by the sizeof operator.
 309   const size_t bufsize =
 310     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 311          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 312   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 313 
 314   // sysclasspath, java_home, dll_dir
 315   {
 316     char *pslash;
 317     os::jvm_path(buf, bufsize);
 318 
 319     // Found the full path to libjvm.so.
 320     // Now cut the path to <java_home>/jre if we can.
 321     pslash = strrchr(buf, '/');
 322     if (pslash != NULL) {
 323       *pslash = '\0';            // Get rid of /libjvm.so.
 324     }
 325     pslash = strrchr(buf, '/');
 326     if (pslash != NULL) {
 327       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 328     }
 329     Arguments::set_dll_dir(buf);
 330 
 331     if (pslash != NULL) {
 332       pslash = strrchr(buf, '/');
 333       if (pslash != NULL) {
 334         *pslash = '\0';          // Get rid of /<arch>.
 335         pslash = strrchr(buf, '/');
 336         if (pslash != NULL) {
 337           *pslash = '\0';        // Get rid of /lib.
 338         }
 339       }
 340     }
 341     Arguments::set_java_home(buf);
 342     set_boot_path('/', ':');
 343   }
 344 
 345   // Where to look for native libraries.
 346   //
 347   // Note: Due to a legacy implementation, most of the library path
 348   // is set in the launcher. This was to accomodate linking restrictions
 349   // on legacy Linux implementations (which are no longer supported).
 350   // Eventually, all the library path setting will be done here.
 351   //
 352   // However, to prevent the proliferation of improperly built native
 353   // libraries, the new path component /usr/java/packages is added here.
 354   // Eventually, all the library path setting will be done here.
 355   {
 356     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 357     // should always exist (until the legacy problem cited above is
 358     // addressed).
 359     const char *v = ::getenv("LD_LIBRARY_PATH");
 360     const char *v_colon = ":";
 361     if (v == NULL) { v = ""; v_colon = ""; }
 362     // That's +1 for the colon and +1 for the trailing '\0'.
 363     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 364                                                      strlen(v) + 1 +
 365                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 366                                                      mtInternal);
 367     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 368     Arguments::set_library_path(ld_library_path);
 369     FREE_C_HEAP_ARRAY(char, ld_library_path);
 370   }
 371 
 372   // Extensions directories.
 373   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 374   Arguments::set_ext_dirs(buf);
 375 
 376   FREE_C_HEAP_ARRAY(char, buf);
 377 
 378 #undef DEFAULT_LIBPATH
 379 #undef SYS_EXT_DIR
 380 #undef EXTENSIONS_DIR
 381 }
 382 
 383 ////////////////////////////////////////////////////////////////////////////////
 384 // breakpoint support
 385 
 386 void os::breakpoint() {
 387   BREAKPOINT;
 388 }
 389 
 390 extern "C" void breakpoint() {
 391   // use debugger to set breakpoint here
 392 }
 393 
 394 ////////////////////////////////////////////////////////////////////////////////
 395 // signal support
 396 
 397 debug_only(static bool signal_sets_initialized = false);
 398 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 399 
 400 bool os::Linux::is_sig_ignored(int sig) {
 401   struct sigaction oact;
 402   sigaction(sig, (struct sigaction*)NULL, &oact);
 403   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 404                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 405   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 406     return true;
 407   } else {
 408     return false;
 409   }
 410 }
 411 
 412 void os::Linux::signal_sets_init() {
 413   // Should also have an assertion stating we are still single-threaded.
 414   assert(!signal_sets_initialized, "Already initialized");
 415   // Fill in signals that are necessarily unblocked for all threads in
 416   // the VM. Currently, we unblock the following signals:
 417   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 418   //                         by -Xrs (=ReduceSignalUsage));
 419   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 420   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 421   // the dispositions or masks wrt these signals.
 422   // Programs embedding the VM that want to use the above signals for their
 423   // own purposes must, at this time, use the "-Xrs" option to prevent
 424   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 425   // (See bug 4345157, and other related bugs).
 426   // In reality, though, unblocking these signals is really a nop, since
 427   // these signals are not blocked by default.
 428   sigemptyset(&unblocked_sigs);
 429   sigemptyset(&allowdebug_blocked_sigs);
 430   sigaddset(&unblocked_sigs, SIGILL);
 431   sigaddset(&unblocked_sigs, SIGSEGV);
 432   sigaddset(&unblocked_sigs, SIGBUS);
 433   sigaddset(&unblocked_sigs, SIGFPE);
 434 #if defined(PPC64)
 435   sigaddset(&unblocked_sigs, SIGTRAP);
 436 #endif
 437   sigaddset(&unblocked_sigs, SR_signum);
 438 
 439   if (!ReduceSignalUsage) {
 440     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 441       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 442       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 443     }
 444     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 445       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 446       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 447     }
 448     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 449       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 450       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 451     }
 452   }
 453   // Fill in signals that are blocked by all but the VM thread.
 454   sigemptyset(&vm_sigs);
 455   if (!ReduceSignalUsage) {
 456     sigaddset(&vm_sigs, BREAK_SIGNAL);
 457   }
 458   debug_only(signal_sets_initialized = true);
 459 
 460 }
 461 
 462 // These are signals that are unblocked while a thread is running Java.
 463 // (For some reason, they get blocked by default.)
 464 sigset_t* os::Linux::unblocked_signals() {
 465   assert(signal_sets_initialized, "Not initialized");
 466   return &unblocked_sigs;
 467 }
 468 
 469 // These are the signals that are blocked while a (non-VM) thread is
 470 // running Java. Only the VM thread handles these signals.
 471 sigset_t* os::Linux::vm_signals() {
 472   assert(signal_sets_initialized, "Not initialized");
 473   return &vm_sigs;
 474 }
 475 
 476 // These are signals that are blocked during cond_wait to allow debugger in
 477 sigset_t* os::Linux::allowdebug_blocked_signals() {
 478   assert(signal_sets_initialized, "Not initialized");
 479   return &allowdebug_blocked_sigs;
 480 }
 481 
 482 void os::Linux::hotspot_sigmask(Thread* thread) {
 483 
 484   //Save caller's signal mask before setting VM signal mask
 485   sigset_t caller_sigmask;
 486   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 487 
 488   OSThread* osthread = thread->osthread();
 489   osthread->set_caller_sigmask(caller_sigmask);
 490 
 491   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 492 
 493   if (!ReduceSignalUsage) {
 494     if (thread->is_VM_thread()) {
 495       // Only the VM thread handles BREAK_SIGNAL ...
 496       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 497     } else {
 498       // ... all other threads block BREAK_SIGNAL
 499       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 500     }
 501   }
 502 }
 503 
 504 //////////////////////////////////////////////////////////////////////////////
 505 // detecting pthread library
 506 
 507 void os::Linux::libpthread_init() {
 508   // Save glibc and pthread version strings.
 509 #if !defined(_CS_GNU_LIBC_VERSION) || \
 510     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 511   #error "glibc too old (< 2.3.2)"
 512 #endif
 513 
 514   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 515   assert(n > 0, "cannot retrieve glibc version");
 516   char *str = (char *)malloc(n, mtInternal);
 517   confstr(_CS_GNU_LIBC_VERSION, str, n);
 518   os::Linux::set_glibc_version(str);
 519 
 520   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 521   assert(n > 0, "cannot retrieve pthread version");
 522   str = (char *)malloc(n, mtInternal);
 523   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 524   os::Linux::set_libpthread_version(str);
 525 }
 526 
 527 /////////////////////////////////////////////////////////////////////////////
 528 // thread stack expansion
 529 
 530 // os::Linux::manually_expand_stack() takes care of expanding the thread
 531 // stack. Note that this is normally not needed: pthread stacks allocate
 532 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 533 // committed. Therefore it is not necessary to expand the stack manually.
 534 //
 535 // Manually expanding the stack was historically needed on LinuxThreads
 536 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 537 // it is kept to deal with very rare corner cases:
 538 //
 539 // For one, user may run the VM on an own implementation of threads
 540 // whose stacks are - like the old LinuxThreads - implemented using
 541 // mmap(MAP_GROWSDOWN).
 542 //
 543 // Also, this coding may be needed if the VM is running on the primordial
 544 // thread. Normally we avoid running on the primordial thread; however,
 545 // user may still invoke the VM on the primordial thread.
 546 //
 547 // The following historical comment describes the details about running
 548 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 549 
 550 
 551 // Force Linux kernel to expand current thread stack. If "bottom" is close
 552 // to the stack guard, caller should block all signals.
 553 //
 554 // MAP_GROWSDOWN:
 555 //   A special mmap() flag that is used to implement thread stacks. It tells
 556 //   kernel that the memory region should extend downwards when needed. This
 557 //   allows early versions of LinuxThreads to only mmap the first few pages
 558 //   when creating a new thread. Linux kernel will automatically expand thread
 559 //   stack as needed (on page faults).
 560 //
 561 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 562 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 563 //   region, it's hard to tell if the fault is due to a legitimate stack
 564 //   access or because of reading/writing non-exist memory (e.g. buffer
 565 //   overrun). As a rule, if the fault happens below current stack pointer,
 566 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 567 //   application (see Linux kernel fault.c).
 568 //
 569 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 570 //   stack overflow detection.
 571 //
 572 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 573 //   not use MAP_GROWSDOWN.
 574 //
 575 // To get around the problem and allow stack banging on Linux, we need to
 576 // manually expand thread stack after receiving the SIGSEGV.
 577 //
 578 // There are two ways to expand thread stack to address "bottom", we used
 579 // both of them in JVM before 1.5:
 580 //   1. adjust stack pointer first so that it is below "bottom", and then
 581 //      touch "bottom"
 582 //   2. mmap() the page in question
 583 //
 584 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 585 // if current sp is already near the lower end of page 101, and we need to
 586 // call mmap() to map page 100, it is possible that part of the mmap() frame
 587 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 588 // That will destroy the mmap() frame and cause VM to crash.
 589 //
 590 // The following code works by adjusting sp first, then accessing the "bottom"
 591 // page to force a page fault. Linux kernel will then automatically expand the
 592 // stack mapping.
 593 //
 594 // _expand_stack_to() assumes its frame size is less than page size, which
 595 // should always be true if the function is not inlined.
 596 
 597 static void NOINLINE _expand_stack_to(address bottom) {
 598   address sp;
 599   size_t size;
 600   volatile char *p;
 601 
 602   // Adjust bottom to point to the largest address within the same page, it
 603   // gives us a one-page buffer if alloca() allocates slightly more memory.
 604   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 605   bottom += os::Linux::page_size() - 1;
 606 
 607   // sp might be slightly above current stack pointer; if that's the case, we
 608   // will alloca() a little more space than necessary, which is OK. Don't use
 609   // os::current_stack_pointer(), as its result can be slightly below current
 610   // stack pointer, causing us to not alloca enough to reach "bottom".
 611   sp = (address)&sp;
 612 
 613   if (sp > bottom) {
 614     size = sp - bottom;
 615     p = (volatile char *)alloca(size);
 616     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 617     p[0] = '\0';
 618   }
 619 }
 620 
 621 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 622   assert(t!=NULL, "just checking");
 623   assert(t->osthread()->expanding_stack(), "expand should be set");
 624   assert(t->stack_base() != NULL, "stack_base was not initialized");
 625 
 626   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 627     sigset_t mask_all, old_sigset;
 628     sigfillset(&mask_all);
 629     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 630     _expand_stack_to(addr);
 631     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 632     return true;
 633   }
 634   return false;
 635 }
 636 
 637 //////////////////////////////////////////////////////////////////////////////
 638 // create new thread
 639 
 640 // Thread start routine for all newly created threads
 641 static void *java_start(Thread *thread) {
 642   // Try to randomize the cache line index of hot stack frames.
 643   // This helps when threads of the same stack traces evict each other's
 644   // cache lines. The threads can be either from the same JVM instance, or
 645   // from different JVM instances. The benefit is especially true for
 646   // processors with hyperthreading technology.
 647   static int counter = 0;
 648   int pid = os::current_process_id();
 649   alloca(((pid ^ counter++) & 7) * 128);
 650 
 651   thread->initialize_thread_current();
 652 
 653   OSThread* osthread = thread->osthread();
 654   Monitor* sync = osthread->startThread_lock();
 655 
 656   osthread->set_thread_id(os::current_thread_id());
 657 
 658   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 659     os::current_thread_id(), (uintx) pthread_self());
 660 
 661   if (UseNUMA) {
 662     int lgrp_id = os::numa_get_group_id();
 663     if (lgrp_id != -1) {
 664       thread->set_lgrp_id(lgrp_id);
 665     }
 666   }
 667   // initialize signal mask for this thread
 668   os::Linux::hotspot_sigmask(thread);
 669 
 670   // initialize floating point control register
 671   os::Linux::init_thread_fpu_state();
 672 
 673   // handshaking with parent thread
 674   {
 675     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 676 
 677     // notify parent thread
 678     osthread->set_state(INITIALIZED);
 679     sync->notify_all();
 680 
 681     // wait until os::start_thread()
 682     while (osthread->get_state() == INITIALIZED) {
 683       sync->wait(Mutex::_no_safepoint_check_flag);
 684     }
 685   }
 686 
 687   // call one more level start routine
 688   thread->run();
 689 
 690   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 691     os::current_thread_id(), (uintx) pthread_self());
 692 
 693   return 0;
 694 }
 695 
 696 bool os::create_thread(Thread* thread, ThreadType thr_type,
 697                        size_t stack_size) {
 698   assert(thread->osthread() == NULL, "caller responsible");
 699 
 700   // Allocate the OSThread object
 701   OSThread* osthread = new OSThread(NULL, NULL);
 702   if (osthread == NULL) {
 703     return false;
 704   }
 705 
 706   // set the correct thread state
 707   osthread->set_thread_type(thr_type);
 708 
 709   // Initial state is ALLOCATED but not INITIALIZED
 710   osthread->set_state(ALLOCATED);
 711 
 712   thread->set_osthread(osthread);
 713 
 714   // init thread attributes
 715   pthread_attr_t attr;
 716   pthread_attr_init(&attr);
 717   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 718 
 719   // stack size
 720   // calculate stack size if it's not specified by caller
 721   if (stack_size == 0) {
 722     stack_size = os::Linux::default_stack_size(thr_type);
 723 
 724     switch (thr_type) {
 725     case os::java_thread:
 726       // Java threads use ThreadStackSize which default value can be
 727       // changed with the flag -Xss
 728       assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 729       stack_size = JavaThread::stack_size_at_create();
 730       break;
 731     case os::compiler_thread:
 732       if (CompilerThreadStackSize > 0) {
 733         stack_size = (size_t)(CompilerThreadStackSize * K);
 734         break;
 735       } // else fall through:
 736         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 737     case os::vm_thread:
 738     case os::pgc_thread:
 739     case os::cgc_thread:
 740     case os::watcher_thread:
 741       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 742       break;
 743     }
 744   }
 745 
 746   stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 747   pthread_attr_setstacksize(&attr, stack_size);
 748 
 749   // glibc guard page
 750   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 751 
 752   ThreadState state;
 753 
 754   {
 755     pthread_t tid;
 756     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 757 
 758     char buf[64];
 759     if (ret == 0) {
 760       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 761         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 762     } else {
 763       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 764         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 765     }
 766 
 767     pthread_attr_destroy(&attr);
 768 
 769     if (ret != 0) {
 770       // Need to clean up stuff we've allocated so far
 771       thread->set_osthread(NULL);
 772       delete osthread;
 773       return false;
 774     }
 775 
 776     // Store pthread info into the OSThread
 777     osthread->set_pthread_id(tid);
 778 
 779     // Wait until child thread is either initialized or aborted
 780     {
 781       Monitor* sync_with_child = osthread->startThread_lock();
 782       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 783       while ((state = osthread->get_state()) == ALLOCATED) {
 784         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 785       }
 786     }
 787   }
 788 
 789   // Aborted due to thread limit being reached
 790   if (state == ZOMBIE) {
 791     thread->set_osthread(NULL);
 792     delete osthread;
 793     return false;
 794   }
 795 
 796   // The thread is returned suspended (in state INITIALIZED),
 797   // and is started higher up in the call chain
 798   assert(state == INITIALIZED, "race condition");
 799   return true;
 800 }
 801 
 802 /////////////////////////////////////////////////////////////////////////////
 803 // attach existing thread
 804 
 805 // bootstrap the main thread
 806 bool os::create_main_thread(JavaThread* thread) {
 807   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 808   return create_attached_thread(thread);
 809 }
 810 
 811 bool os::create_attached_thread(JavaThread* thread) {
 812 #ifdef ASSERT
 813   thread->verify_not_published();
 814 #endif
 815 
 816   // Allocate the OSThread object
 817   OSThread* osthread = new OSThread(NULL, NULL);
 818 
 819   if (osthread == NULL) {
 820     return false;
 821   }
 822 
 823   // Store pthread info into the OSThread
 824   osthread->set_thread_id(os::Linux::gettid());
 825   osthread->set_pthread_id(::pthread_self());
 826 
 827   // initialize floating point control register
 828   os::Linux::init_thread_fpu_state();
 829 
 830   // Initial thread state is RUNNABLE
 831   osthread->set_state(RUNNABLE);
 832 
 833   thread->set_osthread(osthread);
 834 
 835   if (UseNUMA) {
 836     int lgrp_id = os::numa_get_group_id();
 837     if (lgrp_id != -1) {
 838       thread->set_lgrp_id(lgrp_id);
 839     }
 840   }
 841 
 842   if (os::Linux::is_initial_thread()) {
 843     // If current thread is initial thread, its stack is mapped on demand,
 844     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 845     // the entire stack region to avoid SEGV in stack banging.
 846     // It is also useful to get around the heap-stack-gap problem on SuSE
 847     // kernel (see 4821821 for details). We first expand stack to the top
 848     // of yellow zone, then enable stack yellow zone (order is significant,
 849     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 850     // is no gap between the last two virtual memory regions.
 851 
 852     JavaThread *jt = (JavaThread *)thread;
 853     address addr = jt->stack_reserved_zone_base();
 854     assert(addr != NULL, "initialization problem?");
 855     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 856 
 857     osthread->set_expanding_stack();
 858     os::Linux::manually_expand_stack(jt, addr);
 859     osthread->clear_expanding_stack();
 860   }
 861 
 862   // initialize signal mask for this thread
 863   // and save the caller's signal mask
 864   os::Linux::hotspot_sigmask(thread);
 865 
 866   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 867     os::current_thread_id(), (uintx) pthread_self());
 868 
 869   return true;
 870 }
 871 
 872 void os::pd_start_thread(Thread* thread) {
 873   OSThread * osthread = thread->osthread();
 874   assert(osthread->get_state() != INITIALIZED, "just checking");
 875   Monitor* sync_with_child = osthread->startThread_lock();
 876   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 877   sync_with_child->notify();
 878 }
 879 
 880 // Free Linux resources related to the OSThread
 881 void os::free_thread(OSThread* osthread) {
 882   assert(osthread != NULL, "osthread not set");
 883 
 884   if (Thread::current()->osthread() == osthread) {
 885 #ifdef ASSERT
 886     sigset_t current;
 887     sigemptyset(&current);
 888     pthread_sigmask(SIG_SETMASK, NULL, &current);
 889     assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 890 #endif
 891 
 892     // Restore caller's signal mask
 893     sigset_t sigmask = osthread->caller_sigmask();
 894     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 895   }
 896 
 897   delete osthread;
 898 }
 899 
 900 //////////////////////////////////////////////////////////////////////////////
 901 // initial thread
 902 
 903 // Check if current thread is the initial thread, similar to Solaris thr_main.
 904 bool os::Linux::is_initial_thread(void) {
 905   char dummy;
 906   // If called before init complete, thread stack bottom will be null.
 907   // Can be called if fatal error occurs before initialization.
 908   if (initial_thread_stack_bottom() == NULL) return false;
 909   assert(initial_thread_stack_bottom() != NULL &&
 910          initial_thread_stack_size()   != 0,
 911          "os::init did not locate initial thread's stack region");
 912   if ((address)&dummy >= initial_thread_stack_bottom() &&
 913       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 914     return true;
 915   } else {
 916     return false;
 917   }
 918 }
 919 
 920 // Find the virtual memory area that contains addr
 921 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 922   FILE *fp = fopen("/proc/self/maps", "r");
 923   if (fp) {
 924     address low, high;
 925     while (!feof(fp)) {
 926       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 927         if (low <= addr && addr < high) {
 928           if (vma_low)  *vma_low  = low;
 929           if (vma_high) *vma_high = high;
 930           fclose(fp);
 931           return true;
 932         }
 933       }
 934       for (;;) {
 935         int ch = fgetc(fp);
 936         if (ch == EOF || ch == (int)'\n') break;
 937       }
 938     }
 939     fclose(fp);
 940   }
 941   return false;
 942 }
 943 
 944 // Locate initial thread stack. This special handling of initial thread stack
 945 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 946 // bogus value for initial thread.
 947 void os::Linux::capture_initial_stack(size_t max_size) {
 948   // stack size is the easy part, get it from RLIMIT_STACK
 949   size_t stack_size;
 950   struct rlimit rlim;
 951   getrlimit(RLIMIT_STACK, &rlim);
 952   stack_size = rlim.rlim_cur;
 953 
 954   // 6308388: a bug in ld.so will relocate its own .data section to the
 955   //   lower end of primordial stack; reduce ulimit -s value a little bit
 956   //   so we won't install guard page on ld.so's data section.
 957   stack_size -= 2 * page_size();
 958 
 959   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
 960   //   7.1, in both cases we will get 2G in return value.
 961   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
 962   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
 963   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
 964   //   in case other parts in glibc still assumes 2M max stack size.
 965   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
 966   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
 967   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
 968     stack_size = 2 * K * K IA64_ONLY(*2);
 969   }
 970   // Try to figure out where the stack base (top) is. This is harder.
 971   //
 972   // When an application is started, glibc saves the initial stack pointer in
 973   // a global variable "__libc_stack_end", which is then used by system
 974   // libraries. __libc_stack_end should be pretty close to stack top. The
 975   // variable is available since the very early days. However, because it is
 976   // a private interface, it could disappear in the future.
 977   //
 978   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 979   // to __libc_stack_end, it is very close to stack top, but isn't the real
 980   // stack top. Note that /proc may not exist if VM is running as a chroot
 981   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 982   // /proc/<pid>/stat could change in the future (though unlikely).
 983   //
 984   // We try __libc_stack_end first. If that doesn't work, look for
 985   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 986   // as a hint, which should work well in most cases.
 987 
 988   uintptr_t stack_start;
 989 
 990   // try __libc_stack_end first
 991   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 992   if (p && *p) {
 993     stack_start = *p;
 994   } else {
 995     // see if we can get the start_stack field from /proc/self/stat
 996     FILE *fp;
 997     int pid;
 998     char state;
 999     int ppid;
1000     int pgrp;
1001     int session;
1002     int nr;
1003     int tpgrp;
1004     unsigned long flags;
1005     unsigned long minflt;
1006     unsigned long cminflt;
1007     unsigned long majflt;
1008     unsigned long cmajflt;
1009     unsigned long utime;
1010     unsigned long stime;
1011     long cutime;
1012     long cstime;
1013     long prio;
1014     long nice;
1015     long junk;
1016     long it_real;
1017     uintptr_t start;
1018     uintptr_t vsize;
1019     intptr_t rss;
1020     uintptr_t rsslim;
1021     uintptr_t scodes;
1022     uintptr_t ecode;
1023     int i;
1024 
1025     // Figure what the primordial thread stack base is. Code is inspired
1026     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1027     // followed by command name surrounded by parentheses, state, etc.
1028     char stat[2048];
1029     int statlen;
1030 
1031     fp = fopen("/proc/self/stat", "r");
1032     if (fp) {
1033       statlen = fread(stat, 1, 2047, fp);
1034       stat[statlen] = '\0';
1035       fclose(fp);
1036 
1037       // Skip pid and the command string. Note that we could be dealing with
1038       // weird command names, e.g. user could decide to rename java launcher
1039       // to "java 1.4.2 :)", then the stat file would look like
1040       //                1234 (java 1.4.2 :)) R ... ...
1041       // We don't really need to know the command string, just find the last
1042       // occurrence of ")" and then start parsing from there. See bug 4726580.
1043       char * s = strrchr(stat, ')');
1044 
1045       i = 0;
1046       if (s) {
1047         // Skip blank chars
1048         do { s++; } while (s && isspace(*s));
1049 
1050 #define _UFM UINTX_FORMAT
1051 #define _DFM INTX_FORMAT
1052 
1053         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1054         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1055         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1056                    &state,          // 3  %c
1057                    &ppid,           // 4  %d
1058                    &pgrp,           // 5  %d
1059                    &session,        // 6  %d
1060                    &nr,             // 7  %d
1061                    &tpgrp,          // 8  %d
1062                    &flags,          // 9  %lu
1063                    &minflt,         // 10 %lu
1064                    &cminflt,        // 11 %lu
1065                    &majflt,         // 12 %lu
1066                    &cmajflt,        // 13 %lu
1067                    &utime,          // 14 %lu
1068                    &stime,          // 15 %lu
1069                    &cutime,         // 16 %ld
1070                    &cstime,         // 17 %ld
1071                    &prio,           // 18 %ld
1072                    &nice,           // 19 %ld
1073                    &junk,           // 20 %ld
1074                    &it_real,        // 21 %ld
1075                    &start,          // 22 UINTX_FORMAT
1076                    &vsize,          // 23 UINTX_FORMAT
1077                    &rss,            // 24 INTX_FORMAT
1078                    &rsslim,         // 25 UINTX_FORMAT
1079                    &scodes,         // 26 UINTX_FORMAT
1080                    &ecode,          // 27 UINTX_FORMAT
1081                    &stack_start);   // 28 UINTX_FORMAT
1082       }
1083 
1084 #undef _UFM
1085 #undef _DFM
1086 
1087       if (i != 28 - 2) {
1088         assert(false, "Bad conversion from /proc/self/stat");
1089         // product mode - assume we are the initial thread, good luck in the
1090         // embedded case.
1091         warning("Can't detect initial thread stack location - bad conversion");
1092         stack_start = (uintptr_t) &rlim;
1093       }
1094     } else {
1095       // For some reason we can't open /proc/self/stat (for example, running on
1096       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1097       // most cases, so don't abort:
1098       warning("Can't detect initial thread stack location - no /proc/self/stat");
1099       stack_start = (uintptr_t) &rlim;
1100     }
1101   }
1102 
1103   // Now we have a pointer (stack_start) very close to the stack top, the
1104   // next thing to do is to figure out the exact location of stack top. We
1105   // can find out the virtual memory area that contains stack_start by
1106   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1107   // and its upper limit is the real stack top. (again, this would fail if
1108   // running inside chroot, because /proc may not exist.)
1109 
1110   uintptr_t stack_top;
1111   address low, high;
1112   if (find_vma((address)stack_start, &low, &high)) {
1113     // success, "high" is the true stack top. (ignore "low", because initial
1114     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1115     stack_top = (uintptr_t)high;
1116   } else {
1117     // failed, likely because /proc/self/maps does not exist
1118     warning("Can't detect initial thread stack location - find_vma failed");
1119     // best effort: stack_start is normally within a few pages below the real
1120     // stack top, use it as stack top, and reduce stack size so we won't put
1121     // guard page outside stack.
1122     stack_top = stack_start;
1123     stack_size -= 16 * page_size();
1124   }
1125 
1126   // stack_top could be partially down the page so align it
1127   stack_top = align_size_up(stack_top, page_size());
1128 
1129   if (max_size && stack_size > max_size) {
1130     _initial_thread_stack_size = max_size;
1131   } else {
1132     _initial_thread_stack_size = stack_size;
1133   }
1134 
1135   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1136   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1137 }
1138 
1139 ////////////////////////////////////////////////////////////////////////////////
1140 // time support
1141 
1142 // Time since start-up in seconds to a fine granularity.
1143 // Used by VMSelfDestructTimer and the MemProfiler.
1144 double os::elapsedTime() {
1145 
1146   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1147 }
1148 
1149 jlong os::elapsed_counter() {
1150   return javaTimeNanos() - initial_time_count;
1151 }
1152 
1153 jlong os::elapsed_frequency() {
1154   return NANOSECS_PER_SEC; // nanosecond resolution
1155 }
1156 
1157 bool os::supports_vtime() { return true; }
1158 bool os::enable_vtime()   { return false; }
1159 bool os::vtime_enabled()  { return false; }
1160 
1161 double os::elapsedVTime() {
1162   struct rusage usage;
1163   int retval = getrusage(RUSAGE_THREAD, &usage);
1164   if (retval == 0) {
1165     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1166   } else {
1167     // better than nothing, but not much
1168     return elapsedTime();
1169   }
1170 }
1171 
1172 jlong os::javaTimeMillis() {
1173   timeval time;
1174   int status = gettimeofday(&time, NULL);
1175   assert(status != -1, "linux error");
1176   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1177 }
1178 
1179 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1180   timeval time;
1181   int status = gettimeofday(&time, NULL);
1182   assert(status != -1, "linux error");
1183   seconds = jlong(time.tv_sec);
1184   nanos = jlong(time.tv_usec) * 1000;
1185 }
1186 
1187 
1188 #ifndef CLOCK_MONOTONIC
1189   #define CLOCK_MONOTONIC (1)
1190 #endif
1191 
1192 void os::Linux::clock_init() {
1193   // we do dlopen's in this particular order due to bug in linux
1194   // dynamical loader (see 6348968) leading to crash on exit
1195   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1196   if (handle == NULL) {
1197     handle = dlopen("librt.so", RTLD_LAZY);
1198   }
1199 
1200   if (handle) {
1201     int (*clock_getres_func)(clockid_t, struct timespec*) =
1202            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1203     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1204            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1205     if (clock_getres_func && clock_gettime_func) {
1206       // See if monotonic clock is supported by the kernel. Note that some
1207       // early implementations simply return kernel jiffies (updated every
1208       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1209       // for nano time (though the monotonic property is still nice to have).
1210       // It's fixed in newer kernels, however clock_getres() still returns
1211       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1212       // resolution for now. Hopefully as people move to new kernels, this
1213       // won't be a problem.
1214       struct timespec res;
1215       struct timespec tp;
1216       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1217           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1218         // yes, monotonic clock is supported
1219         _clock_gettime = clock_gettime_func;
1220         return;
1221       } else {
1222         // close librt if there is no monotonic clock
1223         dlclose(handle);
1224       }
1225     }
1226   }
1227   warning("No monotonic clock was available - timed services may " \
1228           "be adversely affected if the time-of-day clock changes");
1229 }
1230 
1231 #ifndef SYS_clock_getres
1232   #if defined(IA32) || defined(AMD64)
1233     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1234     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1235   #else
1236     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1237     #define sys_clock_getres(x,y)  -1
1238   #endif
1239 #else
1240   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1241 #endif
1242 
1243 void os::Linux::fast_thread_clock_init() {
1244   if (!UseLinuxPosixThreadCPUClocks) {
1245     return;
1246   }
1247   clockid_t clockid;
1248   struct timespec tp;
1249   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1250       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1251 
1252   // Switch to using fast clocks for thread cpu time if
1253   // the sys_clock_getres() returns 0 error code.
1254   // Note, that some kernels may support the current thread
1255   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1256   // returned by the pthread_getcpuclockid().
1257   // If the fast Posix clocks are supported then the sys_clock_getres()
1258   // must return at least tp.tv_sec == 0 which means a resolution
1259   // better than 1 sec. This is extra check for reliability.
1260 
1261   if (pthread_getcpuclockid_func &&
1262       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1263       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1264     _supports_fast_thread_cpu_time = true;
1265     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1266   }
1267 }
1268 
1269 jlong os::javaTimeNanos() {
1270   if (os::supports_monotonic_clock()) {
1271     struct timespec tp;
1272     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1273     assert(status == 0, "gettime error");
1274     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1275     return result;
1276   } else {
1277     timeval time;
1278     int status = gettimeofday(&time, NULL);
1279     assert(status != -1, "linux error");
1280     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1281     return 1000 * usecs;
1282   }
1283 }
1284 
1285 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1286   if (os::supports_monotonic_clock()) {
1287     info_ptr->max_value = ALL_64_BITS;
1288 
1289     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1290     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1291     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1292   } else {
1293     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1294     info_ptr->max_value = ALL_64_BITS;
1295 
1296     // gettimeofday is a real time clock so it skips
1297     info_ptr->may_skip_backward = true;
1298     info_ptr->may_skip_forward = true;
1299   }
1300 
1301   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1302 }
1303 
1304 // Return the real, user, and system times in seconds from an
1305 // arbitrary fixed point in the past.
1306 bool os::getTimesSecs(double* process_real_time,
1307                       double* process_user_time,
1308                       double* process_system_time) {
1309   struct tms ticks;
1310   clock_t real_ticks = times(&ticks);
1311 
1312   if (real_ticks == (clock_t) (-1)) {
1313     return false;
1314   } else {
1315     double ticks_per_second = (double) clock_tics_per_sec;
1316     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1317     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1318     *process_real_time = ((double) real_ticks) / ticks_per_second;
1319 
1320     return true;
1321   }
1322 }
1323 
1324 
1325 char * os::local_time_string(char *buf, size_t buflen) {
1326   struct tm t;
1327   time_t long_time;
1328   time(&long_time);
1329   localtime_r(&long_time, &t);
1330   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1331                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1332                t.tm_hour, t.tm_min, t.tm_sec);
1333   return buf;
1334 }
1335 
1336 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1337   return localtime_r(clock, res);
1338 }
1339 
1340 ////////////////////////////////////////////////////////////////////////////////
1341 // runtime exit support
1342 
1343 // Note: os::shutdown() might be called very early during initialization, or
1344 // called from signal handler. Before adding something to os::shutdown(), make
1345 // sure it is async-safe and can handle partially initialized VM.
1346 void os::shutdown() {
1347 
1348   // allow PerfMemory to attempt cleanup of any persistent resources
1349   perfMemory_exit();
1350 
1351   // needs to remove object in file system
1352   AttachListener::abort();
1353 
1354   // flush buffered output, finish log files
1355   ostream_abort();
1356 
1357   // Check for abort hook
1358   abort_hook_t abort_hook = Arguments::abort_hook();
1359   if (abort_hook != NULL) {
1360     abort_hook();
1361   }
1362 
1363 }
1364 
1365 // Note: os::abort() might be called very early during initialization, or
1366 // called from signal handler. Before adding something to os::abort(), make
1367 // sure it is async-safe and can handle partially initialized VM.
1368 void os::abort(bool dump_core, void* siginfo, const void* context) {
1369   os::shutdown();
1370   if (dump_core) {
1371 #ifndef PRODUCT
1372     fdStream out(defaultStream::output_fd());
1373     out.print_raw("Current thread is ");
1374     char buf[16];
1375     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1376     out.print_raw_cr(buf);
1377     out.print_raw_cr("Dumping core ...");
1378 #endif
1379     ::abort(); // dump core
1380   }
1381 
1382   ::exit(1);
1383 }
1384 
1385 // Die immediately, no exit hook, no abort hook, no cleanup.
1386 void os::die() {
1387   ::abort();
1388 }
1389 
1390 
1391 // This method is a copy of JDK's sysGetLastErrorString
1392 // from src/solaris/hpi/src/system_md.c
1393 
1394 size_t os::lasterror(char *buf, size_t len) {
1395   if (errno == 0)  return 0;
1396 
1397   const char *s = os::strerror(errno);
1398   size_t n = ::strlen(s);
1399   if (n >= len) {
1400     n = len - 1;
1401   }
1402   ::strncpy(buf, s, n);
1403   buf[n] = '\0';
1404   return n;
1405 }
1406 
1407 // thread_id is kernel thread id (similar to Solaris LWP id)
1408 intx os::current_thread_id() { return os::Linux::gettid(); }
1409 int os::current_process_id() {
1410   return ::getpid();
1411 }
1412 
1413 // DLL functions
1414 
1415 const char* os::dll_file_extension() { return ".so"; }
1416 
1417 // This must be hard coded because it's the system's temporary
1418 // directory not the java application's temp directory, ala java.io.tmpdir.
1419 const char* os::get_temp_directory() { return "/tmp"; }
1420 
1421 static bool file_exists(const char* filename) {
1422   struct stat statbuf;
1423   if (filename == NULL || strlen(filename) == 0) {
1424     return false;
1425   }
1426   return os::stat(filename, &statbuf) == 0;
1427 }
1428 
1429 bool os::dll_build_name(char* buffer, size_t buflen,
1430                         const char* pname, const char* fname) {
1431   bool retval = false;
1432   // Copied from libhpi
1433   const size_t pnamelen = pname ? strlen(pname) : 0;
1434 
1435   // Return error on buffer overflow.
1436   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1437     return retval;
1438   }
1439 
1440   if (pnamelen == 0) {
1441     snprintf(buffer, buflen, "lib%s.so", fname);
1442     retval = true;
1443   } else if (strchr(pname, *os::path_separator()) != NULL) {
1444     int n;
1445     char** pelements = split_path(pname, &n);
1446     if (pelements == NULL) {
1447       return false;
1448     }
1449     for (int i = 0; i < n; i++) {
1450       // Really shouldn't be NULL, but check can't hurt
1451       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1452         continue; // skip the empty path values
1453       }
1454       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1455       if (file_exists(buffer)) {
1456         retval = true;
1457         break;
1458       }
1459     }
1460     // release the storage
1461     for (int i = 0; i < n; i++) {
1462       if (pelements[i] != NULL) {
1463         FREE_C_HEAP_ARRAY(char, pelements[i]);
1464       }
1465     }
1466     if (pelements != NULL) {
1467       FREE_C_HEAP_ARRAY(char*, pelements);
1468     }
1469   } else {
1470     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1471     retval = true;
1472   }
1473   return retval;
1474 }
1475 
1476 // check if addr is inside libjvm.so
1477 bool os::address_is_in_vm(address addr) {
1478   static address libjvm_base_addr;
1479   Dl_info dlinfo;
1480 
1481   if (libjvm_base_addr == NULL) {
1482     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1483       libjvm_base_addr = (address)dlinfo.dli_fbase;
1484     }
1485     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1486   }
1487 
1488   if (dladdr((void *)addr, &dlinfo) != 0) {
1489     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1490   }
1491 
1492   return false;
1493 }
1494 
1495 bool os::dll_address_to_function_name(address addr, char *buf,
1496                                       int buflen, int *offset,
1497                                       bool demangle) {
1498   // buf is not optional, but offset is optional
1499   assert(buf != NULL, "sanity check");
1500 
1501   Dl_info dlinfo;
1502 
1503   if (dladdr((void*)addr, &dlinfo) != 0) {
1504     // see if we have a matching symbol
1505     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1506       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1507         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1508       }
1509       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1510       return true;
1511     }
1512     // no matching symbol so try for just file info
1513     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1514       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1515                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1516         return true;
1517       }
1518     }
1519   }
1520 
1521   buf[0] = '\0';
1522   if (offset != NULL) *offset = -1;
1523   return false;
1524 }
1525 
1526 struct _address_to_library_name {
1527   address addr;          // input : memory address
1528   size_t  buflen;        //         size of fname
1529   char*   fname;         // output: library name
1530   address base;          //         library base addr
1531 };
1532 
1533 static int address_to_library_name_callback(struct dl_phdr_info *info,
1534                                             size_t size, void *data) {
1535   int i;
1536   bool found = false;
1537   address libbase = NULL;
1538   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1539 
1540   // iterate through all loadable segments
1541   for (i = 0; i < info->dlpi_phnum; i++) {
1542     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1543     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1544       // base address of a library is the lowest address of its loaded
1545       // segments.
1546       if (libbase == NULL || libbase > segbase) {
1547         libbase = segbase;
1548       }
1549       // see if 'addr' is within current segment
1550       if (segbase <= d->addr &&
1551           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1552         found = true;
1553       }
1554     }
1555   }
1556 
1557   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1558   // so dll_address_to_library_name() can fall through to use dladdr() which
1559   // can figure out executable name from argv[0].
1560   if (found && info->dlpi_name && info->dlpi_name[0]) {
1561     d->base = libbase;
1562     if (d->fname) {
1563       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1564     }
1565     return 1;
1566   }
1567   return 0;
1568 }
1569 
1570 bool os::dll_address_to_library_name(address addr, char* buf,
1571                                      int buflen, int* offset) {
1572   // buf is not optional, but offset is optional
1573   assert(buf != NULL, "sanity check");
1574 
1575   Dl_info dlinfo;
1576   struct _address_to_library_name data;
1577 
1578   // There is a bug in old glibc dladdr() implementation that it could resolve
1579   // to wrong library name if the .so file has a base address != NULL. Here
1580   // we iterate through the program headers of all loaded libraries to find
1581   // out which library 'addr' really belongs to. This workaround can be
1582   // removed once the minimum requirement for glibc is moved to 2.3.x.
1583   data.addr = addr;
1584   data.fname = buf;
1585   data.buflen = buflen;
1586   data.base = NULL;
1587   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1588 
1589   if (rslt) {
1590     // buf already contains library name
1591     if (offset) *offset = addr - data.base;
1592     return true;
1593   }
1594   if (dladdr((void*)addr, &dlinfo) != 0) {
1595     if (dlinfo.dli_fname != NULL) {
1596       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1597     }
1598     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1599       *offset = addr - (address)dlinfo.dli_fbase;
1600     }
1601     return true;
1602   }
1603 
1604   buf[0] = '\0';
1605   if (offset) *offset = -1;
1606   return false;
1607 }
1608 
1609 // Loads .dll/.so and
1610 // in case of error it checks if .dll/.so was built for the
1611 // same architecture as Hotspot is running on
1612 
1613 
1614 // Remember the stack's state. The Linux dynamic linker will change
1615 // the stack to 'executable' at most once, so we must safepoint only once.
1616 bool os::Linux::_stack_is_executable = false;
1617 
1618 // VM operation that loads a library.  This is necessary if stack protection
1619 // of the Java stacks can be lost during loading the library.  If we
1620 // do not stop the Java threads, they can stack overflow before the stacks
1621 // are protected again.
1622 class VM_LinuxDllLoad: public VM_Operation {
1623  private:
1624   const char *_filename;
1625   char *_ebuf;
1626   int _ebuflen;
1627   void *_lib;
1628  public:
1629   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1630     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1631   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1632   void doit() {
1633     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1634     os::Linux::_stack_is_executable = true;
1635   }
1636   void* loaded_library() { return _lib; }
1637 };
1638 
1639 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1640   void * result = NULL;
1641   bool load_attempted = false;
1642 
1643   // Check whether the library to load might change execution rights
1644   // of the stack. If they are changed, the protection of the stack
1645   // guard pages will be lost. We need a safepoint to fix this.
1646   //
1647   // See Linux man page execstack(8) for more info.
1648   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1649     ElfFile ef(filename);
1650     if (!ef.specifies_noexecstack()) {
1651       if (!is_init_completed()) {
1652         os::Linux::_stack_is_executable = true;
1653         // This is OK - No Java threads have been created yet, and hence no
1654         // stack guard pages to fix.
1655         //
1656         // This should happen only when you are building JDK7 using a very
1657         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1658         //
1659         // Dynamic loader will make all stacks executable after
1660         // this function returns, and will not do that again.
1661         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1662       } else {
1663         warning("You have loaded library %s which might have disabled stack guard. "
1664                 "The VM will try to fix the stack guard now.\n"
1665                 "It's highly recommended that you fix the library with "
1666                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1667                 filename);
1668 
1669         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1670         JavaThread *jt = JavaThread::current();
1671         if (jt->thread_state() != _thread_in_native) {
1672           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1673           // that requires ExecStack. Cannot enter safe point. Let's give up.
1674           warning("Unable to fix stack guard. Giving up.");
1675         } else {
1676           if (!LoadExecStackDllInVMThread) {
1677             // This is for the case where the DLL has an static
1678             // constructor function that executes JNI code. We cannot
1679             // load such DLLs in the VMThread.
1680             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1681           }
1682 
1683           ThreadInVMfromNative tiv(jt);
1684           debug_only(VMNativeEntryWrapper vew;)
1685 
1686           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1687           VMThread::execute(&op);
1688           if (LoadExecStackDllInVMThread) {
1689             result = op.loaded_library();
1690           }
1691           load_attempted = true;
1692         }
1693       }
1694     }
1695   }
1696 
1697   if (!load_attempted) {
1698     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1699   }
1700 
1701   if (result != NULL) {
1702     // Successful loading
1703     return result;
1704   }
1705 
1706   Elf32_Ehdr elf_head;
1707   int diag_msg_max_length=ebuflen-strlen(ebuf);
1708   char* diag_msg_buf=ebuf+strlen(ebuf);
1709 
1710   if (diag_msg_max_length==0) {
1711     // No more space in ebuf for additional diagnostics message
1712     return NULL;
1713   }
1714 
1715 
1716   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1717 
1718   if (file_descriptor < 0) {
1719     // Can't open library, report dlerror() message
1720     return NULL;
1721   }
1722 
1723   bool failed_to_read_elf_head=
1724     (sizeof(elf_head)!=
1725      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1726 
1727   ::close(file_descriptor);
1728   if (failed_to_read_elf_head) {
1729     // file i/o error - report dlerror() msg
1730     return NULL;
1731   }
1732 
1733   typedef struct {
1734     Elf32_Half  code;         // Actual value as defined in elf.h
1735     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1736     char        elf_class;    // 32 or 64 bit
1737     char        endianess;    // MSB or LSB
1738     char*       name;         // String representation
1739   } arch_t;
1740 
1741 #ifndef EM_486
1742   #define EM_486          6               /* Intel 80486 */
1743 #endif
1744 #ifndef EM_AARCH64
1745   #define EM_AARCH64    183               /* ARM AARCH64 */
1746 #endif
1747 
1748   static const arch_t arch_array[]={
1749     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1750     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1751     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1752     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1753     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1754     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1755     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1756     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1757 #if defined(VM_LITTLE_ENDIAN)
1758     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1759 #else
1760     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1761 #endif
1762     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1763     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1764     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1765     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1766     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1767     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1768     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1769     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1770   };
1771 
1772 #if  (defined IA32)
1773   static  Elf32_Half running_arch_code=EM_386;
1774 #elif   (defined AMD64)
1775   static  Elf32_Half running_arch_code=EM_X86_64;
1776 #elif  (defined IA64)
1777   static  Elf32_Half running_arch_code=EM_IA_64;
1778 #elif  (defined __sparc) && (defined _LP64)
1779   static  Elf32_Half running_arch_code=EM_SPARCV9;
1780 #elif  (defined __sparc) && (!defined _LP64)
1781   static  Elf32_Half running_arch_code=EM_SPARC;
1782 #elif  (defined __powerpc64__)
1783   static  Elf32_Half running_arch_code=EM_PPC64;
1784 #elif  (defined __powerpc__)
1785   static  Elf32_Half running_arch_code=EM_PPC;
1786 #elif  (defined ARM)
1787   static  Elf32_Half running_arch_code=EM_ARM;
1788 #elif  (defined S390)
1789   static  Elf32_Half running_arch_code=EM_S390;
1790 #elif  (defined ALPHA)
1791   static  Elf32_Half running_arch_code=EM_ALPHA;
1792 #elif  (defined MIPSEL)
1793   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1794 #elif  (defined PARISC)
1795   static  Elf32_Half running_arch_code=EM_PARISC;
1796 #elif  (defined MIPS)
1797   static  Elf32_Half running_arch_code=EM_MIPS;
1798 #elif  (defined M68K)
1799   static  Elf32_Half running_arch_code=EM_68K;
1800 #elif  (defined AARCH64)
1801   static  Elf32_Half running_arch_code=EM_AARCH64;
1802 #else
1803     #error Method os::dll_load requires that one of following is defined:\
1804          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1805 #endif
1806 
1807   // Identify compatability class for VM's architecture and library's architecture
1808   // Obtain string descriptions for architectures
1809 
1810   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1811   int running_arch_index=-1;
1812 
1813   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1814     if (running_arch_code == arch_array[i].code) {
1815       running_arch_index    = i;
1816     }
1817     if (lib_arch.code == arch_array[i].code) {
1818       lib_arch.compat_class = arch_array[i].compat_class;
1819       lib_arch.name         = arch_array[i].name;
1820     }
1821   }
1822 
1823   assert(running_arch_index != -1,
1824          "Didn't find running architecture code (running_arch_code) in arch_array");
1825   if (running_arch_index == -1) {
1826     // Even though running architecture detection failed
1827     // we may still continue with reporting dlerror() message
1828     return NULL;
1829   }
1830 
1831   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1832     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1833     return NULL;
1834   }
1835 
1836 #ifndef S390
1837   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1838     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1839     return NULL;
1840   }
1841 #endif // !S390
1842 
1843   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1844     if (lib_arch.name!=NULL) {
1845       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1846                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1847                  lib_arch.name, arch_array[running_arch_index].name);
1848     } else {
1849       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1850                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1851                  lib_arch.code,
1852                  arch_array[running_arch_index].name);
1853     }
1854   }
1855 
1856   return NULL;
1857 }
1858 
1859 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1860                                 int ebuflen) {
1861   void * result = ::dlopen(filename, RTLD_LAZY);
1862   if (result == NULL) {
1863     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1864     ebuf[ebuflen-1] = '\0';
1865   }
1866   return result;
1867 }
1868 
1869 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1870                                        int ebuflen) {
1871   void * result = NULL;
1872   if (LoadExecStackDllInVMThread) {
1873     result = dlopen_helper(filename, ebuf, ebuflen);
1874   }
1875 
1876   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1877   // library that requires an executable stack, or which does not have this
1878   // stack attribute set, dlopen changes the stack attribute to executable. The
1879   // read protection of the guard pages gets lost.
1880   //
1881   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1882   // may have been queued at the same time.
1883 
1884   if (!_stack_is_executable) {
1885     JavaThread *jt = Threads::first();
1886 
1887     while (jt) {
1888       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1889           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1890         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1891           warning("Attempt to reguard stack yellow zone failed.");
1892         }
1893       }
1894       jt = jt->next();
1895     }
1896   }
1897 
1898   return result;
1899 }
1900 
1901 void* os::dll_lookup(void* handle, const char* name) {
1902   void* res = dlsym(handle, name);
1903   return res;
1904 }
1905 
1906 void* os::get_default_process_handle() {
1907   return (void*)::dlopen(NULL, RTLD_LAZY);
1908 }
1909 
1910 static bool _print_ascii_file(const char* filename, outputStream* st) {
1911   int fd = ::open(filename, O_RDONLY);
1912   if (fd == -1) {
1913     return false;
1914   }
1915 
1916   char buf[32];
1917   int bytes;
1918   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1919     st->print_raw(buf, bytes);
1920   }
1921 
1922   ::close(fd);
1923 
1924   return true;
1925 }
1926 
1927 void os::print_dll_info(outputStream *st) {
1928   st->print_cr("Dynamic libraries:");
1929 
1930   char fname[32];
1931   pid_t pid = os::Linux::gettid();
1932 
1933   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1934 
1935   if (!_print_ascii_file(fname, st)) {
1936     st->print("Can not get library information for pid = %d\n", pid);
1937   }
1938 }
1939 
1940 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1941   FILE *procmapsFile = NULL;
1942 
1943   // Open the procfs maps file for the current process
1944   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1945     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1946     char line[PATH_MAX + 100];
1947 
1948     // Read line by line from 'file'
1949     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1950       u8 base, top, offset, inode;
1951       char permissions[5];
1952       char device[6];
1953       char name[PATH_MAX + 1];
1954 
1955       // Parse fields from line
1956       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1957              &base, &top, permissions, &offset, device, &inode, name);
1958 
1959       // Filter by device id '00:00' so that we only get file system mapped files.
1960       if (strcmp(device, "00:00") != 0) {
1961 
1962         // Call callback with the fields of interest
1963         if(callback(name, (address)base, (address)top, param)) {
1964           // Oops abort, callback aborted
1965           fclose(procmapsFile);
1966           return 1;
1967         }
1968       }
1969     }
1970     fclose(procmapsFile);
1971   }
1972   return 0;
1973 }
1974 
1975 void os::print_os_info_brief(outputStream* st) {
1976   os::Linux::print_distro_info(st);
1977 
1978   os::Posix::print_uname_info(st);
1979 
1980   os::Linux::print_libversion_info(st);
1981 
1982 }
1983 
1984 void os::print_os_info(outputStream* st) {
1985   st->print("OS:");
1986 
1987   os::Linux::print_distro_info(st);
1988 
1989   os::Posix::print_uname_info(st);
1990 
1991   // Print warning if unsafe chroot environment detected
1992   if (unsafe_chroot_detected) {
1993     st->print("WARNING!! ");
1994     st->print_cr("%s", unstable_chroot_error);
1995   }
1996 
1997   os::Linux::print_libversion_info(st);
1998 
1999   os::Posix::print_rlimit_info(st);
2000 
2001   os::Posix::print_load_average(st);
2002 
2003   os::Linux::print_full_memory_info(st);
2004 }
2005 
2006 // Try to identify popular distros.
2007 // Most Linux distributions have a /etc/XXX-release file, which contains
2008 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2009 // file that also contains the OS version string. Some have more than one
2010 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2011 // /etc/redhat-release.), so the order is important.
2012 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2013 // their own specific XXX-release file as well as a redhat-release file.
2014 // Because of this the XXX-release file needs to be searched for before the
2015 // redhat-release file.
2016 // Since Red Hat has a lsb-release file that is not very descriptive the
2017 // search for redhat-release needs to be before lsb-release.
2018 // Since the lsb-release file is the new standard it needs to be searched
2019 // before the older style release files.
2020 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2021 // next to last resort.  The os-release file is a new standard that contains
2022 // distribution information and the system-release file seems to be an old
2023 // standard that has been replaced by the lsb-release and os-release files.
2024 // Searching for the debian_version file is the last resort.  It contains
2025 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2026 // "Debian " is printed before the contents of the debian_version file.
2027 
2028 const char* distro_files[] = {
2029   "/etc/oracle-release",
2030   "/etc/mandriva-release",
2031   "/etc/mandrake-release",
2032   "/etc/sun-release",
2033   "/etc/redhat-release",
2034   "/etc/lsb-release",
2035   "/etc/SuSE-release",
2036   "/etc/turbolinux-release",
2037   "/etc/gentoo-release",
2038   "/etc/ltib-release",
2039   "/etc/angstrom-version",
2040   "/etc/system-release",
2041   "/etc/os-release",
2042   NULL };
2043 
2044 void os::Linux::print_distro_info(outputStream* st) {
2045   for (int i = 0;; i++) {
2046     const char* file = distro_files[i];
2047     if (file == NULL) {
2048       break;  // done
2049     }
2050     // If file prints, we found it.
2051     if (_print_ascii_file(file, st)) {
2052       return;
2053     }
2054   }
2055 
2056   if (file_exists("/etc/debian_version")) {
2057     st->print("Debian ");
2058     _print_ascii_file("/etc/debian_version", st);
2059   } else {
2060     st->print("Linux");
2061   }
2062   st->cr();
2063 }
2064 
2065 static void parse_os_info(char* distro, size_t length, const char* file) {
2066   FILE* fp = fopen(file, "r");
2067   if (fp != NULL) {
2068     char buf[256];
2069     // get last line of the file.
2070     while (fgets(buf, sizeof(buf), fp)) { }
2071     // Edit out extra stuff in expected ubuntu format
2072     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2073       char* ptr = strstr(buf, "\"");  // the name is in quotes
2074       if (ptr != NULL) {
2075         ptr++; // go beyond first quote
2076         char* nl = strchr(ptr, '\"');
2077         if (nl != NULL) *nl = '\0';
2078         strncpy(distro, ptr, length);
2079       } else {
2080         ptr = strstr(buf, "=");
2081         ptr++; // go beyond equals then
2082         char* nl = strchr(ptr, '\n');
2083         if (nl != NULL) *nl = '\0';
2084         strncpy(distro, ptr, length);
2085       }
2086     } else {
2087       // if not in expected Ubuntu format, print out whole line minus \n
2088       char* nl = strchr(buf, '\n');
2089       if (nl != NULL) *nl = '\0';
2090       strncpy(distro, buf, length);
2091     }
2092     // close distro file
2093     fclose(fp);
2094   }
2095 }
2096 
2097 void os::get_summary_os_info(char* buf, size_t buflen) {
2098   for (int i = 0;; i++) {
2099     const char* file = distro_files[i];
2100     if (file == NULL) {
2101       break; // ran out of distro_files
2102     }
2103     if (file_exists(file)) {
2104       parse_os_info(buf, buflen, file);
2105       return;
2106     }
2107   }
2108   // special case for debian
2109   if (file_exists("/etc/debian_version")) {
2110     strncpy(buf, "Debian ", buflen);
2111     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2112   } else {
2113     strncpy(buf, "Linux", buflen);
2114   }
2115 }
2116 
2117 void os::Linux::print_libversion_info(outputStream* st) {
2118   // libc, pthread
2119   st->print("libc:");
2120   st->print("%s ", os::Linux::glibc_version());
2121   st->print("%s ", os::Linux::libpthread_version());
2122   st->cr();
2123 }
2124 
2125 void os::Linux::print_full_memory_info(outputStream* st) {
2126   st->print("\n/proc/meminfo:\n");
2127   _print_ascii_file("/proc/meminfo", st);
2128   st->cr();
2129 }
2130 
2131 void os::print_memory_info(outputStream* st) {
2132 
2133   st->print("Memory:");
2134   st->print(" %dk page", os::vm_page_size()>>10);
2135 
2136   // values in struct sysinfo are "unsigned long"
2137   struct sysinfo si;
2138   sysinfo(&si);
2139 
2140   st->print(", physical " UINT64_FORMAT "k",
2141             os::physical_memory() >> 10);
2142   st->print("(" UINT64_FORMAT "k free)",
2143             os::available_memory() >> 10);
2144   st->print(", swap " UINT64_FORMAT "k",
2145             ((jlong)si.totalswap * si.mem_unit) >> 10);
2146   st->print("(" UINT64_FORMAT "k free)",
2147             ((jlong)si.freeswap * si.mem_unit) >> 10);
2148   st->cr();
2149 }
2150 
2151 // Print the first "model name" line and the first "flags" line
2152 // that we find and nothing more. We assume "model name" comes
2153 // before "flags" so if we find a second "model name", then the
2154 // "flags" field is considered missing.
2155 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2156 #if defined(IA32) || defined(AMD64)
2157   // Other platforms have less repetitive cpuinfo files
2158   FILE *fp = fopen("/proc/cpuinfo", "r");
2159   if (fp) {
2160     while (!feof(fp)) {
2161       if (fgets(buf, buflen, fp)) {
2162         // Assume model name comes before flags
2163         bool model_name_printed = false;
2164         if (strstr(buf, "model name") != NULL) {
2165           if (!model_name_printed) {
2166             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2167             st->print_raw(buf);
2168             model_name_printed = true;
2169           } else {
2170             // model name printed but not flags?  Odd, just return
2171             fclose(fp);
2172             return true;
2173           }
2174         }
2175         // print the flags line too
2176         if (strstr(buf, "flags") != NULL) {
2177           st->print_raw(buf);
2178           fclose(fp);
2179           return true;
2180         }
2181       }
2182     }
2183     fclose(fp);
2184   }
2185 #endif // x86 platforms
2186   return false;
2187 }
2188 
2189 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2190   // Only print the model name if the platform provides this as a summary
2191   if (!print_model_name_and_flags(st, buf, buflen)) {
2192     st->print("\n/proc/cpuinfo:\n");
2193     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2194       st->print_cr("  <Not Available>");
2195     }
2196   }
2197 }
2198 
2199 #if defined(AMD64) || defined(IA32) || defined(X32)
2200 const char* search_string = "model name";
2201 #elif defined(SPARC)
2202 const char* search_string = "cpu";
2203 #elif defined(PPC64)
2204 const char* search_string = "cpu";
2205 #else
2206 const char* search_string = "Processor";
2207 #endif
2208 
2209 // Parses the cpuinfo file for string representing the model name.
2210 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2211   FILE* fp = fopen("/proc/cpuinfo", "r");
2212   if (fp != NULL) {
2213     while (!feof(fp)) {
2214       char buf[256];
2215       if (fgets(buf, sizeof(buf), fp)) {
2216         char* start = strstr(buf, search_string);
2217         if (start != NULL) {
2218           char *ptr = start + strlen(search_string);
2219           char *end = buf + strlen(buf);
2220           while (ptr != end) {
2221              // skip whitespace and colon for the rest of the name.
2222              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2223                break;
2224              }
2225              ptr++;
2226           }
2227           if (ptr != end) {
2228             // reasonable string, get rid of newline and keep the rest
2229             char* nl = strchr(buf, '\n');
2230             if (nl != NULL) *nl = '\0';
2231             strncpy(cpuinfo, ptr, length);
2232             fclose(fp);
2233             return;
2234           }
2235         }
2236       }
2237     }
2238     fclose(fp);
2239   }
2240   // cpuinfo not found or parsing failed, just print generic string.  The entire
2241   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2242 #if defined(AMD64)
2243   strncpy(cpuinfo, "x86_64", length);
2244 #elif defined(IA32)
2245   strncpy(cpuinfo, "x86_32", length);
2246 #elif defined(IA64)
2247   strncpy(cpuinfo, "IA64", length);
2248 #elif defined(SPARC)
2249   strncpy(cpuinfo, "sparcv9", length);
2250 #elif defined(AARCH64)
2251   strncpy(cpuinfo, "AArch64", length);
2252 #elif defined(ARM)
2253   strncpy(cpuinfo, "ARM", length);
2254 #elif defined(PPC)
2255   strncpy(cpuinfo, "PPC64", length);
2256 #elif defined(ZERO_LIBARCH)
2257   strncpy(cpuinfo, ZERO_LIBARCH, length);
2258 #else
2259   strncpy(cpuinfo, "unknown", length);
2260 #endif
2261 }
2262 
2263 static void print_signal_handler(outputStream* st, int sig,
2264                                  char* buf, size_t buflen);
2265 
2266 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2267   st->print_cr("Signal Handlers:");
2268   print_signal_handler(st, SIGSEGV, buf, buflen);
2269   print_signal_handler(st, SIGBUS , buf, buflen);
2270   print_signal_handler(st, SIGFPE , buf, buflen);
2271   print_signal_handler(st, SIGPIPE, buf, buflen);
2272   print_signal_handler(st, SIGXFSZ, buf, buflen);
2273   print_signal_handler(st, SIGILL , buf, buflen);
2274   print_signal_handler(st, SR_signum, buf, buflen);
2275   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2276   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2277   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2278   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2279 #if defined(PPC64)
2280   print_signal_handler(st, SIGTRAP, buf, buflen);
2281 #endif
2282 }
2283 
2284 static char saved_jvm_path[MAXPATHLEN] = {0};
2285 
2286 // Find the full path to the current module, libjvm.so
2287 void os::jvm_path(char *buf, jint buflen) {
2288   // Error checking.
2289   if (buflen < MAXPATHLEN) {
2290     assert(false, "must use a large-enough buffer");
2291     buf[0] = '\0';
2292     return;
2293   }
2294   // Lazy resolve the path to current module.
2295   if (saved_jvm_path[0] != 0) {
2296     strcpy(buf, saved_jvm_path);
2297     return;
2298   }
2299 
2300   char dli_fname[MAXPATHLEN];
2301   bool ret = dll_address_to_library_name(
2302                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2303                                          dli_fname, sizeof(dli_fname), NULL);
2304   assert(ret, "cannot locate libjvm");
2305   char *rp = NULL;
2306   if (ret && dli_fname[0] != '\0') {
2307     rp = realpath(dli_fname, buf);
2308   }
2309   if (rp == NULL) {
2310     return;
2311   }
2312 
2313   if (Arguments::sun_java_launcher_is_altjvm()) {
2314     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2315     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2316     // If "/jre/lib/" appears at the right place in the string, then
2317     // assume we are installed in a JDK and we're done. Otherwise, check
2318     // for a JAVA_HOME environment variable and fix up the path so it
2319     // looks like libjvm.so is installed there (append a fake suffix
2320     // hotspot/libjvm.so).
2321     const char *p = buf + strlen(buf) - 1;
2322     for (int count = 0; p > buf && count < 5; ++count) {
2323       for (--p; p > buf && *p != '/'; --p)
2324         /* empty */ ;
2325     }
2326 
2327     if (strncmp(p, "/jre/lib/", 9) != 0) {
2328       // Look for JAVA_HOME in the environment.
2329       char* java_home_var = ::getenv("JAVA_HOME");
2330       if (java_home_var != NULL && java_home_var[0] != 0) {
2331         char* jrelib_p;
2332         int len;
2333 
2334         // Check the current module name "libjvm.so".
2335         p = strrchr(buf, '/');
2336         if (p == NULL) {
2337           return;
2338         }
2339         assert(strstr(p, "/libjvm") == p, "invalid library name");
2340 
2341         rp = realpath(java_home_var, buf);
2342         if (rp == NULL) {
2343           return;
2344         }
2345 
2346         // determine if this is a legacy image or modules image
2347         // modules image doesn't have "jre" subdirectory
2348         len = strlen(buf);
2349         assert(len < buflen, "Ran out of buffer room");
2350         jrelib_p = buf + len;
2351         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2352         if (0 != access(buf, F_OK)) {
2353           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2354         }
2355 
2356         if (0 == access(buf, F_OK)) {
2357           // Use current module name "libjvm.so"
2358           len = strlen(buf);
2359           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2360         } else {
2361           // Go back to path of .so
2362           rp = realpath(dli_fname, buf);
2363           if (rp == NULL) {
2364             return;
2365           }
2366         }
2367       }
2368     }
2369   }
2370 
2371   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2372   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2373 }
2374 
2375 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2376   // no prefix required, not even "_"
2377 }
2378 
2379 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2380   // no suffix required
2381 }
2382 
2383 ////////////////////////////////////////////////////////////////////////////////
2384 // sun.misc.Signal support
2385 
2386 static volatile jint sigint_count = 0;
2387 
2388 static void UserHandler(int sig, void *siginfo, void *context) {
2389   // 4511530 - sem_post is serialized and handled by the manager thread. When
2390   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2391   // don't want to flood the manager thread with sem_post requests.
2392   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2393     return;
2394   }
2395 
2396   // Ctrl-C is pressed during error reporting, likely because the error
2397   // handler fails to abort. Let VM die immediately.
2398   if (sig == SIGINT && is_error_reported()) {
2399     os::die();
2400   }
2401 
2402   os::signal_notify(sig);
2403 }
2404 
2405 void* os::user_handler() {
2406   return CAST_FROM_FN_PTR(void*, UserHandler);
2407 }
2408 
2409 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2410   struct timespec ts;
2411   // Semaphore's are always associated with CLOCK_REALTIME
2412   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2413   // see unpackTime for discussion on overflow checking
2414   if (sec >= MAX_SECS) {
2415     ts.tv_sec += MAX_SECS;
2416     ts.tv_nsec = 0;
2417   } else {
2418     ts.tv_sec += sec;
2419     ts.tv_nsec += nsec;
2420     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2421       ts.tv_nsec -= NANOSECS_PER_SEC;
2422       ++ts.tv_sec; // note: this must be <= max_secs
2423     }
2424   }
2425 
2426   return ts;
2427 }
2428 
2429 extern "C" {
2430   typedef void (*sa_handler_t)(int);
2431   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2432 }
2433 
2434 void* os::signal(int signal_number, void* handler) {
2435   struct sigaction sigAct, oldSigAct;
2436 
2437   sigfillset(&(sigAct.sa_mask));
2438   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2439   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2440 
2441   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2442     // -1 means registration failed
2443     return (void *)-1;
2444   }
2445 
2446   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2447 }
2448 
2449 void os::signal_raise(int signal_number) {
2450   ::raise(signal_number);
2451 }
2452 
2453 // The following code is moved from os.cpp for making this
2454 // code platform specific, which it is by its very nature.
2455 
2456 // Will be modified when max signal is changed to be dynamic
2457 int os::sigexitnum_pd() {
2458   return NSIG;
2459 }
2460 
2461 // a counter for each possible signal value
2462 static volatile jint pending_signals[NSIG+1] = { 0 };
2463 
2464 // Linux(POSIX) specific hand shaking semaphore.
2465 static sem_t sig_sem;
2466 static PosixSemaphore sr_semaphore;
2467 
2468 void os::signal_init_pd() {
2469   // Initialize signal structures
2470   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2471 
2472   // Initialize signal semaphore
2473   ::sem_init(&sig_sem, 0, 0);
2474 }
2475 
2476 void os::signal_notify(int sig) {
2477   Atomic::inc(&pending_signals[sig]);
2478   ::sem_post(&sig_sem);
2479 }
2480 
2481 static int check_pending_signals(bool wait) {
2482   Atomic::store(0, &sigint_count);
2483   for (;;) {
2484     for (int i = 0; i < NSIG + 1; i++) {
2485       jint n = pending_signals[i];
2486       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2487         return i;
2488       }
2489     }
2490     if (!wait) {
2491       return -1;
2492     }
2493     JavaThread *thread = JavaThread::current();
2494     ThreadBlockInVM tbivm(thread);
2495 
2496     bool threadIsSuspended;
2497     do {
2498       thread->set_suspend_equivalent();
2499       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2500       ::sem_wait(&sig_sem);
2501 
2502       // were we externally suspended while we were waiting?
2503       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2504       if (threadIsSuspended) {
2505         // The semaphore has been incremented, but while we were waiting
2506         // another thread suspended us. We don't want to continue running
2507         // while suspended because that would surprise the thread that
2508         // suspended us.
2509         ::sem_post(&sig_sem);
2510 
2511         thread->java_suspend_self();
2512       }
2513     } while (threadIsSuspended);
2514   }
2515 }
2516 
2517 int os::signal_lookup() {
2518   return check_pending_signals(false);
2519 }
2520 
2521 int os::signal_wait() {
2522   return check_pending_signals(true);
2523 }
2524 
2525 ////////////////////////////////////////////////////////////////////////////////
2526 // Virtual Memory
2527 
2528 int os::vm_page_size() {
2529   // Seems redundant as all get out
2530   assert(os::Linux::page_size() != -1, "must call os::init");
2531   return os::Linux::page_size();
2532 }
2533 
2534 // Solaris allocates memory by pages.
2535 int os::vm_allocation_granularity() {
2536   assert(os::Linux::page_size() != -1, "must call os::init");
2537   return os::Linux::page_size();
2538 }
2539 
2540 // Rationale behind this function:
2541 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2542 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2543 //  samples for JITted code. Here we create private executable mapping over the code cache
2544 //  and then we can use standard (well, almost, as mapping can change) way to provide
2545 //  info for the reporting script by storing timestamp and location of symbol
2546 void linux_wrap_code(char* base, size_t size) {
2547   static volatile jint cnt = 0;
2548 
2549   if (!UseOprofile) {
2550     return;
2551   }
2552 
2553   char buf[PATH_MAX+1];
2554   int num = Atomic::add(1, &cnt);
2555 
2556   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2557            os::get_temp_directory(), os::current_process_id(), num);
2558   unlink(buf);
2559 
2560   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2561 
2562   if (fd != -1) {
2563     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2564     if (rv != (off_t)-1) {
2565       if (::write(fd, "", 1) == 1) {
2566         mmap(base, size,
2567              PROT_READ|PROT_WRITE|PROT_EXEC,
2568              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2569       }
2570     }
2571     ::close(fd);
2572     unlink(buf);
2573   }
2574 }
2575 
2576 static bool recoverable_mmap_error(int err) {
2577   // See if the error is one we can let the caller handle. This
2578   // list of errno values comes from JBS-6843484. I can't find a
2579   // Linux man page that documents this specific set of errno
2580   // values so while this list currently matches Solaris, it may
2581   // change as we gain experience with this failure mode.
2582   switch (err) {
2583   case EBADF:
2584   case EINVAL:
2585   case ENOTSUP:
2586     // let the caller deal with these errors
2587     return true;
2588 
2589   default:
2590     // Any remaining errors on this OS can cause our reserved mapping
2591     // to be lost. That can cause confusion where different data
2592     // structures think they have the same memory mapped. The worst
2593     // scenario is if both the VM and a library think they have the
2594     // same memory mapped.
2595     return false;
2596   }
2597 }
2598 
2599 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2600                                     int err) {
2601   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2602           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2603           os::strerror(err), err);
2604 }
2605 
2606 static void warn_fail_commit_memory(char* addr, size_t size,
2607                                     size_t alignment_hint, bool exec,
2608                                     int err) {
2609   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2610           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2611           alignment_hint, exec, os::strerror(err), err);
2612 }
2613 
2614 // NOTE: Linux kernel does not really reserve the pages for us.
2615 //       All it does is to check if there are enough free pages
2616 //       left at the time of mmap(). This could be a potential
2617 //       problem.
2618 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2619   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2620   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2621                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2622   if (res != (uintptr_t) MAP_FAILED) {
2623     if (UseNUMAInterleaving) {
2624       numa_make_global(addr, size);
2625     }
2626     return 0;
2627   }
2628 
2629   int err = errno;  // save errno from mmap() call above
2630 
2631   if (!recoverable_mmap_error(err)) {
2632     warn_fail_commit_memory(addr, size, exec, err);
2633     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2634   }
2635 
2636   return err;
2637 }
2638 
2639 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2640   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2641 }
2642 
2643 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2644                                   const char* mesg) {
2645   assert(mesg != NULL, "mesg must be specified");
2646   int err = os::Linux::commit_memory_impl(addr, size, exec);
2647   if (err != 0) {
2648     // the caller wants all commit errors to exit with the specified mesg:
2649     warn_fail_commit_memory(addr, size, exec, err);
2650     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2651   }
2652 }
2653 
2654 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2655 #ifndef MAP_HUGETLB
2656   #define MAP_HUGETLB 0x40000
2657 #endif
2658 
2659 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2660 #ifndef MADV_HUGEPAGE
2661   #define MADV_HUGEPAGE 14
2662 #endif
2663 
2664 int os::Linux::commit_memory_impl(char* addr, size_t size,
2665                                   size_t alignment_hint, bool exec) {
2666   int err = os::Linux::commit_memory_impl(addr, size, exec);
2667   if (err == 0) {
2668     realign_memory(addr, size, alignment_hint);
2669   }
2670   return err;
2671 }
2672 
2673 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2674                           bool exec) {
2675   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2676 }
2677 
2678 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2679                                   size_t alignment_hint, bool exec,
2680                                   const char* mesg) {
2681   assert(mesg != NULL, "mesg must be specified");
2682   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2683   if (err != 0) {
2684     // the caller wants all commit errors to exit with the specified mesg:
2685     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2686     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2687   }
2688 }
2689 
2690 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2691   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2692     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2693     // be supported or the memory may already be backed by huge pages.
2694     ::madvise(addr, bytes, MADV_HUGEPAGE);
2695   }
2696 }
2697 
2698 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2699   // This method works by doing an mmap over an existing mmaping and effectively discarding
2700   // the existing pages. However it won't work for SHM-based large pages that cannot be
2701   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2702   // small pages on top of the SHM segment. This method always works for small pages, so we
2703   // allow that in any case.
2704   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2705     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2706   }
2707 }
2708 
2709 void os::numa_make_global(char *addr, size_t bytes) {
2710   Linux::numa_interleave_memory(addr, bytes);
2711 }
2712 
2713 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2714 // bind policy to MPOL_PREFERRED for the current thread.
2715 #define USE_MPOL_PREFERRED 0
2716 
2717 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2718   // To make NUMA and large pages more robust when both enabled, we need to ease
2719   // the requirements on where the memory should be allocated. MPOL_BIND is the
2720   // default policy and it will force memory to be allocated on the specified
2721   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2722   // the specified node, but will not force it. Using this policy will prevent
2723   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2724   // free large pages.
2725   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2726   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2727 }
2728 
2729 bool os::numa_topology_changed() { return false; }
2730 
2731 size_t os::numa_get_groups_num() {
2732   int max_node = Linux::numa_max_node();
2733   return max_node > 0 ? max_node + 1 : 1;
2734 }
2735 
2736 int os::numa_get_group_id() {
2737   int cpu_id = Linux::sched_getcpu();
2738   if (cpu_id != -1) {
2739     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2740     if (lgrp_id != -1) {
2741       return lgrp_id;
2742     }
2743   }
2744   return 0;
2745 }
2746 
2747 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2748   for (size_t i = 0; i < size; i++) {
2749     ids[i] = i;
2750   }
2751   return size;
2752 }
2753 
2754 bool os::get_page_info(char *start, page_info* info) {
2755   return false;
2756 }
2757 
2758 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2759                      page_info* page_found) {
2760   return end;
2761 }
2762 
2763 
2764 int os::Linux::sched_getcpu_syscall(void) {
2765   unsigned int cpu = 0;
2766   int retval = -1;
2767 
2768 #if defined(IA32)
2769   #ifndef SYS_getcpu
2770     #define SYS_getcpu 318
2771   #endif
2772   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2773 #elif defined(AMD64)
2774 // Unfortunately we have to bring all these macros here from vsyscall.h
2775 // to be able to compile on old linuxes.
2776   #define __NR_vgetcpu 2
2777   #define VSYSCALL_START (-10UL << 20)
2778   #define VSYSCALL_SIZE 1024
2779   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2780   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2781   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2782   retval = vgetcpu(&cpu, NULL, NULL);
2783 #endif
2784 
2785   return (retval == -1) ? retval : cpu;
2786 }
2787 
2788 // Something to do with the numa-aware allocator needs these symbols
2789 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2790 extern "C" JNIEXPORT void numa_error(char *where) { }
2791 
2792 
2793 // If we are running with libnuma version > 2, then we should
2794 // be trying to use symbols with versions 1.1
2795 // If we are running with earlier version, which did not have symbol versions,
2796 // we should use the base version.
2797 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2798   void *f = dlvsym(handle, name, "libnuma_1.1");
2799   if (f == NULL) {
2800     f = dlsym(handle, name);
2801   }
2802   return f;
2803 }
2804 
2805 bool os::Linux::libnuma_init() {
2806   // sched_getcpu() should be in libc.
2807   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2808                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2809 
2810   // If it's not, try a direct syscall.
2811   if (sched_getcpu() == -1) {
2812     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2813                                     (void*)&sched_getcpu_syscall));
2814   }
2815 
2816   if (sched_getcpu() != -1) { // Does it work?
2817     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2818     if (handle != NULL) {
2819       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2820                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2821       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2822                                        libnuma_dlsym(handle, "numa_max_node")));
2823       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2824                                         libnuma_dlsym(handle, "numa_available")));
2825       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2826                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2827       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2828                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2829       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2830                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2831 
2832 
2833       if (numa_available() != -1) {
2834         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2835         // Create a cpu -> node mapping
2836         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2837         rebuild_cpu_to_node_map();
2838         return true;
2839       }
2840     }
2841   }
2842   return false;
2843 }
2844 
2845 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2846 // The table is later used in get_node_by_cpu().
2847 void os::Linux::rebuild_cpu_to_node_map() {
2848   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2849                               // in libnuma (possible values are starting from 16,
2850                               // and continuing up with every other power of 2, but less
2851                               // than the maximum number of CPUs supported by kernel), and
2852                               // is a subject to change (in libnuma version 2 the requirements
2853                               // are more reasonable) we'll just hardcode the number they use
2854                               // in the library.
2855   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2856 
2857   size_t cpu_num = os::active_processor_count();
2858   size_t cpu_map_size = NCPUS / BitsPerCLong;
2859   size_t cpu_map_valid_size =
2860     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2861 
2862   cpu_to_node()->clear();
2863   cpu_to_node()->at_grow(cpu_num - 1);
2864   size_t node_num = numa_get_groups_num();
2865 
2866   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2867   for (size_t i = 0; i < node_num; i++) {
2868     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2869       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2870         if (cpu_map[j] != 0) {
2871           for (size_t k = 0; k < BitsPerCLong; k++) {
2872             if (cpu_map[j] & (1UL << k)) {
2873               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2874             }
2875           }
2876         }
2877       }
2878     }
2879   }
2880   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2881 }
2882 
2883 int os::Linux::get_node_by_cpu(int cpu_id) {
2884   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2885     return cpu_to_node()->at(cpu_id);
2886   }
2887   return -1;
2888 }
2889 
2890 GrowableArray<int>* os::Linux::_cpu_to_node;
2891 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2892 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2893 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2894 os::Linux::numa_available_func_t os::Linux::_numa_available;
2895 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2896 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2897 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2898 unsigned long* os::Linux::_numa_all_nodes;
2899 
2900 bool os::pd_uncommit_memory(char* addr, size_t size) {
2901   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2902                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2903   return res  != (uintptr_t) MAP_FAILED;
2904 }
2905 
2906 static address get_stack_commited_bottom(address bottom, size_t size) {
2907   address nbot = bottom;
2908   address ntop = bottom + size;
2909 
2910   size_t page_sz = os::vm_page_size();
2911   unsigned pages = size / page_sz;
2912 
2913   unsigned char vec[1];
2914   unsigned imin = 1, imax = pages + 1, imid;
2915   int mincore_return_value = 0;
2916 
2917   assert(imin <= imax, "Unexpected page size");
2918 
2919   while (imin < imax) {
2920     imid = (imax + imin) / 2;
2921     nbot = ntop - (imid * page_sz);
2922 
2923     // Use a trick with mincore to check whether the page is mapped or not.
2924     // mincore sets vec to 1 if page resides in memory and to 0 if page
2925     // is swapped output but if page we are asking for is unmapped
2926     // it returns -1,ENOMEM
2927     mincore_return_value = mincore(nbot, page_sz, vec);
2928 
2929     if (mincore_return_value == -1) {
2930       // Page is not mapped go up
2931       // to find first mapped page
2932       if (errno != EAGAIN) {
2933         assert(errno == ENOMEM, "Unexpected mincore errno");
2934         imax = imid;
2935       }
2936     } else {
2937       // Page is mapped go down
2938       // to find first not mapped page
2939       imin = imid + 1;
2940     }
2941   }
2942 
2943   nbot = nbot + page_sz;
2944 
2945   // Adjust stack bottom one page up if last checked page is not mapped
2946   if (mincore_return_value == -1) {
2947     nbot = nbot + page_sz;
2948   }
2949 
2950   return nbot;
2951 }
2952 
2953 
2954 // Linux uses a growable mapping for the stack, and if the mapping for
2955 // the stack guard pages is not removed when we detach a thread the
2956 // stack cannot grow beyond the pages where the stack guard was
2957 // mapped.  If at some point later in the process the stack expands to
2958 // that point, the Linux kernel cannot expand the stack any further
2959 // because the guard pages are in the way, and a segfault occurs.
2960 //
2961 // However, it's essential not to split the stack region by unmapping
2962 // a region (leaving a hole) that's already part of the stack mapping,
2963 // so if the stack mapping has already grown beyond the guard pages at
2964 // the time we create them, we have to truncate the stack mapping.
2965 // So, we need to know the extent of the stack mapping when
2966 // create_stack_guard_pages() is called.
2967 
2968 // We only need this for stacks that are growable: at the time of
2969 // writing thread stacks don't use growable mappings (i.e. those
2970 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2971 // only applies to the main thread.
2972 
2973 // If the (growable) stack mapping already extends beyond the point
2974 // where we're going to put our guard pages, truncate the mapping at
2975 // that point by munmap()ping it.  This ensures that when we later
2976 // munmap() the guard pages we don't leave a hole in the stack
2977 // mapping. This only affects the main/initial thread
2978 
2979 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2980   if (os::Linux::is_initial_thread()) {
2981     // As we manually grow stack up to bottom inside create_attached_thread(),
2982     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2983     // we don't need to do anything special.
2984     // Check it first, before calling heavy function.
2985     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2986     unsigned char vec[1];
2987 
2988     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2989       // Fallback to slow path on all errors, including EAGAIN
2990       stack_extent = (uintptr_t) get_stack_commited_bottom(
2991                                                            os::Linux::initial_thread_stack_bottom(),
2992                                                            (size_t)addr - stack_extent);
2993     }
2994 
2995     if (stack_extent < (uintptr_t)addr) {
2996       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2997     }
2998   }
2999 
3000   return os::commit_memory(addr, size, !ExecMem);
3001 }
3002 
3003 // If this is a growable mapping, remove the guard pages entirely by
3004 // munmap()ping them.  If not, just call uncommit_memory(). This only
3005 // affects the main/initial thread, but guard against future OS changes
3006 // It's safe to always unmap guard pages for initial thread because we
3007 // always place it right after end of the mapped region
3008 
3009 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3010   uintptr_t stack_extent, stack_base;
3011 
3012   if (os::Linux::is_initial_thread()) {
3013     return ::munmap(addr, size) == 0;
3014   }
3015 
3016   return os::uncommit_memory(addr, size);
3017 }
3018 
3019 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3020 // at 'requested_addr'. If there are existing memory mappings at the same
3021 // location, however, they will be overwritten. If 'fixed' is false,
3022 // 'requested_addr' is only treated as a hint, the return value may or
3023 // may not start from the requested address. Unlike Linux mmap(), this
3024 // function returns NULL to indicate failure.
3025 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3026   char * addr;
3027   int flags;
3028 
3029   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3030   if (fixed) {
3031     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3032     flags |= MAP_FIXED;
3033   }
3034 
3035   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3036   // touch an uncommitted page. Otherwise, the read/write might
3037   // succeed if we have enough swap space to back the physical page.
3038   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3039                        flags, -1, 0);
3040 
3041   return addr == MAP_FAILED ? NULL : addr;
3042 }
3043 
3044 static int anon_munmap(char * addr, size_t size) {
3045   return ::munmap(addr, size) == 0;
3046 }
3047 
3048 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3049                             size_t alignment_hint) {
3050   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3051 }
3052 
3053 bool os::pd_release_memory(char* addr, size_t size) {
3054   return anon_munmap(addr, size);
3055 }
3056 
3057 static bool linux_mprotect(char* addr, size_t size, int prot) {
3058   // Linux wants the mprotect address argument to be page aligned.
3059   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3060 
3061   // According to SUSv3, mprotect() should only be used with mappings
3062   // established by mmap(), and mmap() always maps whole pages. Unaligned
3063   // 'addr' likely indicates problem in the VM (e.g. trying to change
3064   // protection of malloc'ed or statically allocated memory). Check the
3065   // caller if you hit this assert.
3066   assert(addr == bottom, "sanity check");
3067 
3068   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3069   return ::mprotect(bottom, size, prot) == 0;
3070 }
3071 
3072 // Set protections specified
3073 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3074                         bool is_committed) {
3075   unsigned int p = 0;
3076   switch (prot) {
3077   case MEM_PROT_NONE: p = PROT_NONE; break;
3078   case MEM_PROT_READ: p = PROT_READ; break;
3079   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3080   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3081   default:
3082     ShouldNotReachHere();
3083   }
3084   // is_committed is unused.
3085   return linux_mprotect(addr, bytes, p);
3086 }
3087 
3088 bool os::guard_memory(char* addr, size_t size) {
3089   return linux_mprotect(addr, size, PROT_NONE);
3090 }
3091 
3092 bool os::unguard_memory(char* addr, size_t size) {
3093   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3094 }
3095 
3096 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3097                                                     size_t page_size) {
3098   bool result = false;
3099   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3100                  MAP_ANONYMOUS|MAP_PRIVATE,
3101                  -1, 0);
3102   if (p != MAP_FAILED) {
3103     void *aligned_p = align_ptr_up(p, page_size);
3104 
3105     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3106 
3107     munmap(p, page_size * 2);
3108   }
3109 
3110   if (warn && !result) {
3111     warning("TransparentHugePages is not supported by the operating system.");
3112   }
3113 
3114   return result;
3115 }
3116 
3117 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3118   bool result = false;
3119   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3120                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3121                  -1, 0);
3122 
3123   if (p != MAP_FAILED) {
3124     // We don't know if this really is a huge page or not.
3125     FILE *fp = fopen("/proc/self/maps", "r");
3126     if (fp) {
3127       while (!feof(fp)) {
3128         char chars[257];
3129         long x = 0;
3130         if (fgets(chars, sizeof(chars), fp)) {
3131           if (sscanf(chars, "%lx-%*x", &x) == 1
3132               && x == (long)p) {
3133             if (strstr (chars, "hugepage")) {
3134               result = true;
3135               break;
3136             }
3137           }
3138         }
3139       }
3140       fclose(fp);
3141     }
3142     munmap(p, page_size);
3143   }
3144 
3145   if (warn && !result) {
3146     warning("HugeTLBFS is not supported by the operating system.");
3147   }
3148 
3149   return result;
3150 }
3151 
3152 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3153 //
3154 // From the coredump_filter documentation:
3155 //
3156 // - (bit 0) anonymous private memory
3157 // - (bit 1) anonymous shared memory
3158 // - (bit 2) file-backed private memory
3159 // - (bit 3) file-backed shared memory
3160 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3161 //           effective only if the bit 2 is cleared)
3162 // - (bit 5) hugetlb private memory
3163 // - (bit 6) hugetlb shared memory
3164 //
3165 static void set_coredump_filter(void) {
3166   FILE *f;
3167   long cdm;
3168 
3169   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3170     return;
3171   }
3172 
3173   if (fscanf(f, "%lx", &cdm) != 1) {
3174     fclose(f);
3175     return;
3176   }
3177 
3178   rewind(f);
3179 
3180   if ((cdm & LARGEPAGES_BIT) == 0) {
3181     cdm |= LARGEPAGES_BIT;
3182     fprintf(f, "%#lx", cdm);
3183   }
3184 
3185   fclose(f);
3186 }
3187 
3188 // Large page support
3189 
3190 static size_t _large_page_size = 0;
3191 
3192 size_t os::Linux::find_large_page_size() {
3193   size_t large_page_size = 0;
3194 
3195   // large_page_size on Linux is used to round up heap size. x86 uses either
3196   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3197   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3198   // page as large as 256M.
3199   //
3200   // Here we try to figure out page size by parsing /proc/meminfo and looking
3201   // for a line with the following format:
3202   //    Hugepagesize:     2048 kB
3203   //
3204   // If we can't determine the value (e.g. /proc is not mounted, or the text
3205   // format has been changed), we'll use the largest page size supported by
3206   // the processor.
3207 
3208 #ifndef ZERO
3209   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3210                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3211 #endif // ZERO
3212 
3213   FILE *fp = fopen("/proc/meminfo", "r");
3214   if (fp) {
3215     while (!feof(fp)) {
3216       int x = 0;
3217       char buf[16];
3218       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3219         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3220           large_page_size = x * K;
3221           break;
3222         }
3223       } else {
3224         // skip to next line
3225         for (;;) {
3226           int ch = fgetc(fp);
3227           if (ch == EOF || ch == (int)'\n') break;
3228         }
3229       }
3230     }
3231     fclose(fp);
3232   }
3233 
3234   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3235     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3236             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3237             proper_unit_for_byte_size(large_page_size));
3238   }
3239 
3240   return large_page_size;
3241 }
3242 
3243 size_t os::Linux::setup_large_page_size() {
3244   _large_page_size = Linux::find_large_page_size();
3245   const size_t default_page_size = (size_t)Linux::page_size();
3246   if (_large_page_size > default_page_size) {
3247     _page_sizes[0] = _large_page_size;
3248     _page_sizes[1] = default_page_size;
3249     _page_sizes[2] = 0;
3250   }
3251 
3252   return _large_page_size;
3253 }
3254 
3255 bool os::Linux::setup_large_page_type(size_t page_size) {
3256   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3257       FLAG_IS_DEFAULT(UseSHM) &&
3258       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3259 
3260     // The type of large pages has not been specified by the user.
3261 
3262     // Try UseHugeTLBFS and then UseSHM.
3263     UseHugeTLBFS = UseSHM = true;
3264 
3265     // Don't try UseTransparentHugePages since there are known
3266     // performance issues with it turned on. This might change in the future.
3267     UseTransparentHugePages = false;
3268   }
3269 
3270   if (UseTransparentHugePages) {
3271     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3272     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3273       UseHugeTLBFS = false;
3274       UseSHM = false;
3275       return true;
3276     }
3277     UseTransparentHugePages = false;
3278   }
3279 
3280   if (UseHugeTLBFS) {
3281     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3282     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3283       UseSHM = false;
3284       return true;
3285     }
3286     UseHugeTLBFS = false;
3287   }
3288 
3289   return UseSHM;
3290 }
3291 
3292 void os::large_page_init() {
3293   if (!UseLargePages &&
3294       !UseTransparentHugePages &&
3295       !UseHugeTLBFS &&
3296       !UseSHM) {
3297     // Not using large pages.
3298     return;
3299   }
3300 
3301   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3302     // The user explicitly turned off large pages.
3303     // Ignore the rest of the large pages flags.
3304     UseTransparentHugePages = false;
3305     UseHugeTLBFS = false;
3306     UseSHM = false;
3307     return;
3308   }
3309 
3310   size_t large_page_size = Linux::setup_large_page_size();
3311   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3312 
3313   set_coredump_filter();
3314 }
3315 
3316 #ifndef SHM_HUGETLB
3317   #define SHM_HUGETLB 04000
3318 #endif
3319 
3320 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3321                                             char* req_addr, bool exec) {
3322   // "exec" is passed in but not used.  Creating the shared image for
3323   // the code cache doesn't have an SHM_X executable permission to check.
3324   assert(UseLargePages && UseSHM, "only for SHM large pages");
3325   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3326 
3327   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3328     return NULL; // Fallback to small pages.
3329   }
3330 
3331   key_t key = IPC_PRIVATE;
3332   char *addr;
3333 
3334   bool warn_on_failure = UseLargePages &&
3335                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3336                          !FLAG_IS_DEFAULT(UseSHM) ||
3337                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3338   char msg[128];
3339 
3340   // Create a large shared memory region to attach to based on size.
3341   // Currently, size is the total size of the heap
3342   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3343   if (shmid == -1) {
3344     // Possible reasons for shmget failure:
3345     // 1. shmmax is too small for Java heap.
3346     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3347     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3348     // 2. not enough large page memory.
3349     //    > check available large pages: cat /proc/meminfo
3350     //    > increase amount of large pages:
3351     //          echo new_value > /proc/sys/vm/nr_hugepages
3352     //      Note 1: different Linux may use different name for this property,
3353     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3354     //      Note 2: it's possible there's enough physical memory available but
3355     //            they are so fragmented after a long run that they can't
3356     //            coalesce into large pages. Try to reserve large pages when
3357     //            the system is still "fresh".
3358     if (warn_on_failure) {
3359       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3360       warning("%s", msg);
3361     }
3362     return NULL;
3363   }
3364 
3365   // attach to the region
3366   addr = (char*)shmat(shmid, req_addr, 0);
3367   int err = errno;
3368 
3369   // Remove shmid. If shmat() is successful, the actual shared memory segment
3370   // will be deleted when it's detached by shmdt() or when the process
3371   // terminates. If shmat() is not successful this will remove the shared
3372   // segment immediately.
3373   shmctl(shmid, IPC_RMID, NULL);
3374 
3375   if ((intptr_t)addr == -1) {
3376     if (warn_on_failure) {
3377       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3378       warning("%s", msg);
3379     }
3380     return NULL;
3381   }
3382 
3383   return addr;
3384 }
3385 
3386 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3387                                         int error) {
3388   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3389 
3390   bool warn_on_failure = UseLargePages &&
3391       (!FLAG_IS_DEFAULT(UseLargePages) ||
3392        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3393        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3394 
3395   if (warn_on_failure) {
3396     char msg[128];
3397     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3398                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3399     warning("%s", msg);
3400   }
3401 }
3402 
3403 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3404                                                         char* req_addr,
3405                                                         bool exec) {
3406   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3407   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3408   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3409 
3410   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3411   char* addr = (char*)::mmap(req_addr, bytes, prot,
3412                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3413                              -1, 0);
3414 
3415   if (addr == MAP_FAILED) {
3416     warn_on_large_pages_failure(req_addr, bytes, errno);
3417     return NULL;
3418   }
3419 
3420   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3421 
3422   return addr;
3423 }
3424 
3425 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3426 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3427 //   (req_addr != NULL) or with a given alignment.
3428 //  - bytes shall be a multiple of alignment.
3429 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3430 //  - alignment sets the alignment at which memory shall be allocated.
3431 //     It must be a multiple of allocation granularity.
3432 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3433 //  req_addr or NULL.
3434 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3435 
3436   size_t extra_size = bytes;
3437   if (req_addr == NULL && alignment > 0) {
3438     extra_size += alignment;
3439   }
3440 
3441   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3442     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3443     -1, 0);
3444   if (start == MAP_FAILED) {
3445     start = NULL;
3446   } else {
3447     if (req_addr != NULL) {
3448       if (start != req_addr) {
3449         ::munmap(start, extra_size);
3450         start = NULL;
3451       }
3452     } else {
3453       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3454       char* const end_aligned = start_aligned + bytes;
3455       char* const end = start + extra_size;
3456       if (start_aligned > start) {
3457         ::munmap(start, start_aligned - start);
3458       }
3459       if (end_aligned < end) {
3460         ::munmap(end_aligned, end - end_aligned);
3461       }
3462       start = start_aligned;
3463     }
3464   }
3465   return start;
3466 
3467 }
3468 
3469 // Helper function to create a temp file in the given directory
3470 int os::Linux::create_tmpfile(const char* dir, size_t size, bool exec) {
3471 
3472   static char name_template[] = "/jvmheap.XXXXXX";
3473 
3474   char fullname[strlen(dir) + sizeof(name_template)];
3475   (void)strcpy(fullname, dir);
3476   (void)strcat(fullname, name_template);
3477 
3478   sigset_t set, oldset;
3479   sigfillset(&set);
3480 
3481   // block all signals while we do the file operation
3482   (void)sigprocmask(SIG_BLOCK, &set, &oldset);
3483 
3484   // set the file creation mask
3485   mode_t new_mask = exec ? (S_IRUSR | S_IWUSR | S_IXUSR) : (S_IRUSR | S_IWUSR);
3486   mode_t prev_umask = umask(new_mask);
3487 
3488   // create a new file
3489   int fd = mkstemp(fullname);
3490 
3491   // reset the file creation mask
3492   umask(prev_umask);
3493 
3494   if (fd < 0) {
3495     warning("Could not create file for heap");
3496     return -1;
3497   }
3498 
3499   // delete the name from the filesystem. When 'fd' is closed, the file (and space) will be deleted
3500   (void)unlink(fullname);
3501 
3502   // reset the signal mask
3503   (void)sigprocmask(SIG_SETMASK, &oldset, NULL);
3504 
3505   // allocate space for the file
3506   if ((errno = posix_fallocate(fd, 0, (off_t)size)) != 0) {
3507     warning("Could not allocate sufficient disk space for heap");
3508     return -1;
3509   }
3510 
3511   return fd;
3512 }
3513 
3514 // Map the given address range to a temporary file created at the specified directory.
3515 // The address range must already be reserved for guaranteed success. If it not reserved, their could be an error while mapping leading to JVM shutdown
3516 bool os::map_memory_to_file(char* base, size_t size, const char* backingFileDir) {
3517 
3518   int fd = os::Linux::create_tmpfile(backingFileDir, size, false);
3519   if (fd == -1) {
3520     vm_exit_during_initialization(err_msg("Could not create temporary file in %s for object heap", backingFileDir));
3521     return false;
3522   }
3523   int prot = PROT_READ | PROT_WRITE;
3524   char* addr = (char*)mmap(base, size, prot, MAP_SHARED | MAP_FIXED, fd, 0);
3525 
3526   if (addr == MAP_FAILED || addr != base) {
3527     close(fd);
3528     vm_exit_during_initialization(err_msg("Error in mapping object heap at the given filesystem dir %s", backingFileDir));
3529     return false;
3530   }
3531 
3532   return true;
3533 }
3534 
3535 // Reserve memory using mmap(MAP_HUGETLB).
3536 //  - bytes shall be a multiple of alignment.
3537 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3538 //  - alignment sets the alignment at which memory shall be allocated.
3539 //     It must be a multiple of allocation granularity.
3540 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3541 //  req_addr or NULL.
3542 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3543                                                          size_t alignment,
3544                                                          char* req_addr,
3545                                                          bool exec) {
3546   size_t large_page_size = os::large_page_size();
3547   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3548 
3549   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3550   assert(is_size_aligned(bytes, alignment), "Must be");
3551 
3552   // First reserve - but not commit - the address range in small pages.
3553   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3554 
3555   if (start == NULL) {
3556     return NULL;
3557   }
3558 
3559   assert(is_ptr_aligned(start, alignment), "Must be");
3560 
3561   char* end = start + bytes;
3562 
3563   // Find the regions of the allocated chunk that can be promoted to large pages.
3564   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3565   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3566 
3567   size_t lp_bytes = lp_end - lp_start;
3568 
3569   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3570 
3571   if (lp_bytes == 0) {
3572     // The mapped region doesn't even span the start and the end of a large page.
3573     // Fall back to allocate a non-special area.
3574     ::munmap(start, end - start);
3575     return NULL;
3576   }
3577 
3578   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3579 
3580   void* result;
3581 
3582   // Commit small-paged leading area.
3583   if (start != lp_start) {
3584     result = ::mmap(start, lp_start - start, prot,
3585                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3586                     -1, 0);
3587     if (result == MAP_FAILED) {
3588       ::munmap(lp_start, end - lp_start);
3589       return NULL;
3590     }
3591   }
3592 
3593   // Commit large-paged area.
3594   result = ::mmap(lp_start, lp_bytes, prot,
3595                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3596                   -1, 0);
3597   if (result == MAP_FAILED) {
3598     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3599     // If the mmap above fails, the large pages region will be unmapped and we
3600     // have regions before and after with small pages. Release these regions.
3601     //
3602     // |  mapped  |  unmapped  |  mapped  |
3603     // ^          ^            ^          ^
3604     // start      lp_start     lp_end     end
3605     //
3606     ::munmap(start, lp_start - start);
3607     ::munmap(lp_end, end - lp_end);
3608     return NULL;
3609   }
3610 
3611   // Commit small-paged trailing area.
3612   if (lp_end != end) {
3613     result = ::mmap(lp_end, end - lp_end, prot,
3614                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3615                     -1, 0);
3616     if (result == MAP_FAILED) {
3617       ::munmap(start, lp_end - start);
3618       return NULL;
3619     }
3620   }
3621 
3622   return start;
3623 }
3624 
3625 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3626                                                    size_t alignment,
3627                                                    char* req_addr,
3628                                                    bool exec) {
3629   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3630   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3631   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3632   assert(is_power_of_2(os::large_page_size()), "Must be");
3633   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3634 
3635   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3636     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3637   } else {
3638     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3639   }
3640 }
3641 
3642 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3643                                  char* req_addr, bool exec) {
3644   assert(UseLargePages, "only for large pages");
3645 
3646   char* addr;
3647   if (UseSHM) {
3648     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3649   } else {
3650     assert(UseHugeTLBFS, "must be");
3651     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3652   }
3653 
3654   if (addr != NULL) {
3655     if (UseNUMAInterleaving) {
3656       numa_make_global(addr, bytes);
3657     }
3658 
3659     // The memory is committed
3660     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3661   }
3662 
3663   return addr;
3664 }
3665 
3666 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3667   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3668   return shmdt(base) == 0;
3669 }
3670 
3671 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3672   return pd_release_memory(base, bytes);
3673 }
3674 
3675 bool os::release_memory_special(char* base, size_t bytes) {
3676   bool res;
3677   if (MemTracker::tracking_level() > NMT_minimal) {
3678     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3679     res = os::Linux::release_memory_special_impl(base, bytes);
3680     if (res) {
3681       tkr.record((address)base, bytes);
3682     }
3683 
3684   } else {
3685     res = os::Linux::release_memory_special_impl(base, bytes);
3686   }
3687   return res;
3688 }
3689 
3690 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3691   assert(UseLargePages, "only for large pages");
3692   bool res;
3693 
3694   if (UseSHM) {
3695     res = os::Linux::release_memory_special_shm(base, bytes);
3696   } else {
3697     assert(UseHugeTLBFS, "must be");
3698     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3699   }
3700   return res;
3701 }
3702 
3703 size_t os::large_page_size() {
3704   return _large_page_size;
3705 }
3706 
3707 // With SysV SHM the entire memory region must be allocated as shared
3708 // memory.
3709 // HugeTLBFS allows application to commit large page memory on demand.
3710 // However, when committing memory with HugeTLBFS fails, the region
3711 // that was supposed to be committed will lose the old reservation
3712 // and allow other threads to steal that memory region. Because of this
3713 // behavior we can't commit HugeTLBFS memory.
3714 bool os::can_commit_large_page_memory() {
3715   return UseTransparentHugePages;
3716 }
3717 
3718 bool os::can_execute_large_page_memory() {
3719   return UseTransparentHugePages || UseHugeTLBFS;
3720 }
3721 
3722 // Reserve memory at an arbitrary address, only if that area is
3723 // available (and not reserved for something else).
3724 
3725 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3726   const int max_tries = 10;
3727   char* base[max_tries];
3728   size_t size[max_tries];
3729   const size_t gap = 0x000000;
3730 
3731   // Assert only that the size is a multiple of the page size, since
3732   // that's all that mmap requires, and since that's all we really know
3733   // about at this low abstraction level.  If we need higher alignment,
3734   // we can either pass an alignment to this method or verify alignment
3735   // in one of the methods further up the call chain.  See bug 5044738.
3736   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3737 
3738   // Repeatedly allocate blocks until the block is allocated at the
3739   // right spot.
3740 
3741   // Linux mmap allows caller to pass an address as hint; give it a try first,
3742   // if kernel honors the hint then we can return immediately.
3743   char * addr = anon_mmap(requested_addr, bytes, false);
3744   if (addr == requested_addr) {
3745     return requested_addr;
3746   }
3747 
3748   if (addr != NULL) {
3749     // mmap() is successful but it fails to reserve at the requested address
3750     anon_munmap(addr, bytes);
3751   }
3752 
3753   int i;
3754   for (i = 0; i < max_tries; ++i) {
3755     base[i] = reserve_memory(bytes);
3756 
3757     if (base[i] != NULL) {
3758       // Is this the block we wanted?
3759       if (base[i] == requested_addr) {
3760         size[i] = bytes;
3761         break;
3762       }
3763 
3764       // Does this overlap the block we wanted? Give back the overlapped
3765       // parts and try again.
3766 
3767       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3768       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3769         unmap_memory(base[i], top_overlap);
3770         base[i] += top_overlap;
3771         size[i] = bytes - top_overlap;
3772       } else {
3773         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3774         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3775           unmap_memory(requested_addr, bottom_overlap);
3776           size[i] = bytes - bottom_overlap;
3777         } else {
3778           size[i] = bytes;
3779         }
3780       }
3781     }
3782   }
3783 
3784   // Give back the unused reserved pieces.
3785 
3786   for (int j = 0; j < i; ++j) {
3787     if (base[j] != NULL) {
3788       unmap_memory(base[j], size[j]);
3789     }
3790   }
3791 
3792   if (i < max_tries) {
3793     return requested_addr;
3794   } else {
3795     return NULL;
3796   }
3797 }
3798 
3799 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3800   return ::read(fd, buf, nBytes);
3801 }
3802 
3803 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3804   return ::pread(fd, buf, nBytes, offset);
3805 }
3806 
3807 // Short sleep, direct OS call.
3808 //
3809 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3810 // sched_yield(2) will actually give up the CPU:
3811 //
3812 //   * Alone on this pariticular CPU, keeps running.
3813 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3814 //     (pre 2.6.39).
3815 //
3816 // So calling this with 0 is an alternative.
3817 //
3818 void os::naked_short_sleep(jlong ms) {
3819   struct timespec req;
3820 
3821   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3822   req.tv_sec = 0;
3823   if (ms > 0) {
3824     req.tv_nsec = (ms % 1000) * 1000000;
3825   } else {
3826     req.tv_nsec = 1;
3827   }
3828 
3829   nanosleep(&req, NULL);
3830 
3831   return;
3832 }
3833 
3834 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3835 void os::infinite_sleep() {
3836   while (true) {    // sleep forever ...
3837     ::sleep(100);   // ... 100 seconds at a time
3838   }
3839 }
3840 
3841 // Used to convert frequent JVM_Yield() to nops
3842 bool os::dont_yield() {
3843   return DontYieldALot;
3844 }
3845 
3846 void os::naked_yield() {
3847   sched_yield();
3848 }
3849 
3850 ////////////////////////////////////////////////////////////////////////////////
3851 // thread priority support
3852 
3853 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3854 // only supports dynamic priority, static priority must be zero. For real-time
3855 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3856 // However, for large multi-threaded applications, SCHED_RR is not only slower
3857 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3858 // of 5 runs - Sep 2005).
3859 //
3860 // The following code actually changes the niceness of kernel-thread/LWP. It
3861 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3862 // not the entire user process, and user level threads are 1:1 mapped to kernel
3863 // threads. It has always been the case, but could change in the future. For
3864 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3865 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3866 
3867 int os::java_to_os_priority[CriticalPriority + 1] = {
3868   19,              // 0 Entry should never be used
3869 
3870    4,              // 1 MinPriority
3871    3,              // 2
3872    2,              // 3
3873 
3874    1,              // 4
3875    0,              // 5 NormPriority
3876   -1,              // 6
3877 
3878   -2,              // 7
3879   -3,              // 8
3880   -4,              // 9 NearMaxPriority
3881 
3882   -5,              // 10 MaxPriority
3883 
3884   -5               // 11 CriticalPriority
3885 };
3886 
3887 static int prio_init() {
3888   if (ThreadPriorityPolicy == 1) {
3889     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3890     // if effective uid is not root. Perhaps, a more elegant way of doing
3891     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3892     if (geteuid() != 0) {
3893       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3894         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3895       }
3896       ThreadPriorityPolicy = 0;
3897     }
3898   }
3899   if (UseCriticalJavaThreadPriority) {
3900     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3901   }
3902   return 0;
3903 }
3904 
3905 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3906   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3907 
3908   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3909   return (ret == 0) ? OS_OK : OS_ERR;
3910 }
3911 
3912 OSReturn os::get_native_priority(const Thread* const thread,
3913                                  int *priority_ptr) {
3914   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3915     *priority_ptr = java_to_os_priority[NormPriority];
3916     return OS_OK;
3917   }
3918 
3919   errno = 0;
3920   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3921   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3922 }
3923 
3924 // Hint to the underlying OS that a task switch would not be good.
3925 // Void return because it's a hint and can fail.
3926 void os::hint_no_preempt() {}
3927 
3928 ////////////////////////////////////////////////////////////////////////////////
3929 // suspend/resume support
3930 
3931 //  the low-level signal-based suspend/resume support is a remnant from the
3932 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3933 //  within hotspot. Now there is a single use-case for this:
3934 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3935 //      that runs in the watcher thread.
3936 //  The remaining code is greatly simplified from the more general suspension
3937 //  code that used to be used.
3938 //
3939 //  The protocol is quite simple:
3940 //  - suspend:
3941 //      - sends a signal to the target thread
3942 //      - polls the suspend state of the osthread using a yield loop
3943 //      - target thread signal handler (SR_handler) sets suspend state
3944 //        and blocks in sigsuspend until continued
3945 //  - resume:
3946 //      - sets target osthread state to continue
3947 //      - sends signal to end the sigsuspend loop in the SR_handler
3948 //
3949 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3950 
3951 static void resume_clear_context(OSThread *osthread) {
3952   osthread->set_ucontext(NULL);
3953   osthread->set_siginfo(NULL);
3954 }
3955 
3956 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3957                                  ucontext_t* context) {
3958   osthread->set_ucontext(context);
3959   osthread->set_siginfo(siginfo);
3960 }
3961 
3962 // Handler function invoked when a thread's execution is suspended or
3963 // resumed. We have to be careful that only async-safe functions are
3964 // called here (Note: most pthread functions are not async safe and
3965 // should be avoided.)
3966 //
3967 // Note: sigwait() is a more natural fit than sigsuspend() from an
3968 // interface point of view, but sigwait() prevents the signal hander
3969 // from being run. libpthread would get very confused by not having
3970 // its signal handlers run and prevents sigwait()'s use with the
3971 // mutex granting granting signal.
3972 //
3973 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3974 //
3975 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3976   // Save and restore errno to avoid confusing native code with EINTR
3977   // after sigsuspend.
3978   int old_errno = errno;
3979 
3980   Thread* thread = Thread::current_or_null_safe();
3981   assert(thread != NULL, "Missing current thread in SR_handler");
3982   OSThread* osthread = thread->osthread();
3983   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3984 
3985   os::SuspendResume::State current = osthread->sr.state();
3986   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3987     suspend_save_context(osthread, siginfo, context);
3988 
3989     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3990     os::SuspendResume::State state = osthread->sr.suspended();
3991     if (state == os::SuspendResume::SR_SUSPENDED) {
3992       sigset_t suspend_set;  // signals for sigsuspend()
3993       sigemptyset(&suspend_set);
3994       // get current set of blocked signals and unblock resume signal
3995       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3996       sigdelset(&suspend_set, SR_signum);
3997 
3998       sr_semaphore.signal();
3999       // wait here until we are resumed
4000       while (1) {
4001         sigsuspend(&suspend_set);
4002 
4003         os::SuspendResume::State result = osthread->sr.running();
4004         if (result == os::SuspendResume::SR_RUNNING) {
4005           sr_semaphore.signal();
4006           break;
4007         }
4008       }
4009 
4010     } else if (state == os::SuspendResume::SR_RUNNING) {
4011       // request was cancelled, continue
4012     } else {
4013       ShouldNotReachHere();
4014     }
4015 
4016     resume_clear_context(osthread);
4017   } else if (current == os::SuspendResume::SR_RUNNING) {
4018     // request was cancelled, continue
4019   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4020     // ignore
4021   } else {
4022     // ignore
4023   }
4024 
4025   errno = old_errno;
4026 }
4027 
4028 static int SR_initialize() {
4029   struct sigaction act;
4030   char *s;
4031 
4032   // Get signal number to use for suspend/resume
4033   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4034     int sig = ::strtol(s, 0, 10);
4035     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4036         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4037       SR_signum = sig;
4038     } else {
4039       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4040               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4041     }
4042   }
4043 
4044   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4045          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4046 
4047   sigemptyset(&SR_sigset);
4048   sigaddset(&SR_sigset, SR_signum);
4049 
4050   // Set up signal handler for suspend/resume
4051   act.sa_flags = SA_RESTART|SA_SIGINFO;
4052   act.sa_handler = (void (*)(int)) SR_handler;
4053 
4054   // SR_signum is blocked by default.
4055   // 4528190 - We also need to block pthread restart signal (32 on all
4056   // supported Linux platforms). Note that LinuxThreads need to block
4057   // this signal for all threads to work properly. So we don't have
4058   // to use hard-coded signal number when setting up the mask.
4059   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4060 
4061   if (sigaction(SR_signum, &act, 0) == -1) {
4062     return -1;
4063   }
4064 
4065   // Save signal flag
4066   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4067   return 0;
4068 }
4069 
4070 static int sr_notify(OSThread* osthread) {
4071   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4072   assert_status(status == 0, status, "pthread_kill");
4073   return status;
4074 }
4075 
4076 // "Randomly" selected value for how long we want to spin
4077 // before bailing out on suspending a thread, also how often
4078 // we send a signal to a thread we want to resume
4079 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4080 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4081 
4082 // returns true on success and false on error - really an error is fatal
4083 // but this seems the normal response to library errors
4084 static bool do_suspend(OSThread* osthread) {
4085   assert(osthread->sr.is_running(), "thread should be running");
4086   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4087 
4088   // mark as suspended and send signal
4089   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4090     // failed to switch, state wasn't running?
4091     ShouldNotReachHere();
4092     return false;
4093   }
4094 
4095   if (sr_notify(osthread) != 0) {
4096     ShouldNotReachHere();
4097   }
4098 
4099   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4100   while (true) {
4101     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4102       break;
4103     } else {
4104       // timeout
4105       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4106       if (cancelled == os::SuspendResume::SR_RUNNING) {
4107         return false;
4108       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4109         // make sure that we consume the signal on the semaphore as well
4110         sr_semaphore.wait();
4111         break;
4112       } else {
4113         ShouldNotReachHere();
4114         return false;
4115       }
4116     }
4117   }
4118 
4119   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4120   return true;
4121 }
4122 
4123 static void do_resume(OSThread* osthread) {
4124   assert(osthread->sr.is_suspended(), "thread should be suspended");
4125   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4126 
4127   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4128     // failed to switch to WAKEUP_REQUEST
4129     ShouldNotReachHere();
4130     return;
4131   }
4132 
4133   while (true) {
4134     if (sr_notify(osthread) == 0) {
4135       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4136         if (osthread->sr.is_running()) {
4137           return;
4138         }
4139       }
4140     } else {
4141       ShouldNotReachHere();
4142     }
4143   }
4144 
4145   guarantee(osthread->sr.is_running(), "Must be running!");
4146 }
4147 
4148 ///////////////////////////////////////////////////////////////////////////////////
4149 // signal handling (except suspend/resume)
4150 
4151 // This routine may be used by user applications as a "hook" to catch signals.
4152 // The user-defined signal handler must pass unrecognized signals to this
4153 // routine, and if it returns true (non-zero), then the signal handler must
4154 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4155 // routine will never retun false (zero), but instead will execute a VM panic
4156 // routine kill the process.
4157 //
4158 // If this routine returns false, it is OK to call it again.  This allows
4159 // the user-defined signal handler to perform checks either before or after
4160 // the VM performs its own checks.  Naturally, the user code would be making
4161 // a serious error if it tried to handle an exception (such as a null check
4162 // or breakpoint) that the VM was generating for its own correct operation.
4163 //
4164 // This routine may recognize any of the following kinds of signals:
4165 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4166 // It should be consulted by handlers for any of those signals.
4167 //
4168 // The caller of this routine must pass in the three arguments supplied
4169 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4170 // field of the structure passed to sigaction().  This routine assumes that
4171 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4172 //
4173 // Note that the VM will print warnings if it detects conflicting signal
4174 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4175 //
4176 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4177                                                  siginfo_t* siginfo,
4178                                                  void* ucontext,
4179                                                  int abort_if_unrecognized);
4180 
4181 void signalHandler(int sig, siginfo_t* info, void* uc) {
4182   assert(info != NULL && uc != NULL, "it must be old kernel");
4183   int orig_errno = errno;  // Preserve errno value over signal handler.
4184   JVM_handle_linux_signal(sig, info, uc, true);
4185   errno = orig_errno;
4186 }
4187 
4188 
4189 // This boolean allows users to forward their own non-matching signals
4190 // to JVM_handle_linux_signal, harmlessly.
4191 bool os::Linux::signal_handlers_are_installed = false;
4192 
4193 // For signal-chaining
4194 struct sigaction sigact[NSIG];
4195 uint64_t sigs = 0;
4196 #if (64 < NSIG-1)
4197 #error "Not all signals can be encoded in sigs. Adapt its type!"
4198 #endif
4199 bool os::Linux::libjsig_is_loaded = false;
4200 typedef struct sigaction *(*get_signal_t)(int);
4201 get_signal_t os::Linux::get_signal_action = NULL;
4202 
4203 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4204   struct sigaction *actp = NULL;
4205 
4206   if (libjsig_is_loaded) {
4207     // Retrieve the old signal handler from libjsig
4208     actp = (*get_signal_action)(sig);
4209   }
4210   if (actp == NULL) {
4211     // Retrieve the preinstalled signal handler from jvm
4212     actp = get_preinstalled_handler(sig);
4213   }
4214 
4215   return actp;
4216 }
4217 
4218 static bool call_chained_handler(struct sigaction *actp, int sig,
4219                                  siginfo_t *siginfo, void *context) {
4220   // Call the old signal handler
4221   if (actp->sa_handler == SIG_DFL) {
4222     // It's more reasonable to let jvm treat it as an unexpected exception
4223     // instead of taking the default action.
4224     return false;
4225   } else if (actp->sa_handler != SIG_IGN) {
4226     if ((actp->sa_flags & SA_NODEFER) == 0) {
4227       // automaticlly block the signal
4228       sigaddset(&(actp->sa_mask), sig);
4229     }
4230 
4231     sa_handler_t hand = NULL;
4232     sa_sigaction_t sa = NULL;
4233     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4234     // retrieve the chained handler
4235     if (siginfo_flag_set) {
4236       sa = actp->sa_sigaction;
4237     } else {
4238       hand = actp->sa_handler;
4239     }
4240 
4241     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4242       actp->sa_handler = SIG_DFL;
4243     }
4244 
4245     // try to honor the signal mask
4246     sigset_t oset;
4247     sigemptyset(&oset);
4248     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4249 
4250     // call into the chained handler
4251     if (siginfo_flag_set) {
4252       (*sa)(sig, siginfo, context);
4253     } else {
4254       (*hand)(sig);
4255     }
4256 
4257     // restore the signal mask
4258     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4259   }
4260   // Tell jvm's signal handler the signal is taken care of.
4261   return true;
4262 }
4263 
4264 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4265   bool chained = false;
4266   // signal-chaining
4267   if (UseSignalChaining) {
4268     struct sigaction *actp = get_chained_signal_action(sig);
4269     if (actp != NULL) {
4270       chained = call_chained_handler(actp, sig, siginfo, context);
4271     }
4272   }
4273   return chained;
4274 }
4275 
4276 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4277   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4278     return &sigact[sig];
4279   }
4280   return NULL;
4281 }
4282 
4283 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4284   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4285   sigact[sig] = oldAct;
4286   sigs |= (uint64_t)1 << (sig-1);
4287 }
4288 
4289 // for diagnostic
4290 int sigflags[NSIG];
4291 
4292 int os::Linux::get_our_sigflags(int sig) {
4293   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4294   return sigflags[sig];
4295 }
4296 
4297 void os::Linux::set_our_sigflags(int sig, int flags) {
4298   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4299   if (sig > 0 && sig < NSIG) {
4300     sigflags[sig] = flags;
4301   }
4302 }
4303 
4304 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4305   // Check for overwrite.
4306   struct sigaction oldAct;
4307   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4308 
4309   void* oldhand = oldAct.sa_sigaction
4310                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4311                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4312   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4313       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4314       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4315     if (AllowUserSignalHandlers || !set_installed) {
4316       // Do not overwrite; user takes responsibility to forward to us.
4317       return;
4318     } else if (UseSignalChaining) {
4319       // save the old handler in jvm
4320       save_preinstalled_handler(sig, oldAct);
4321       // libjsig also interposes the sigaction() call below and saves the
4322       // old sigaction on it own.
4323     } else {
4324       fatal("Encountered unexpected pre-existing sigaction handler "
4325             "%#lx for signal %d.", (long)oldhand, sig);
4326     }
4327   }
4328 
4329   struct sigaction sigAct;
4330   sigfillset(&(sigAct.sa_mask));
4331   sigAct.sa_handler = SIG_DFL;
4332   if (!set_installed) {
4333     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4334   } else {
4335     sigAct.sa_sigaction = signalHandler;
4336     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4337   }
4338   // Save flags, which are set by ours
4339   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4340   sigflags[sig] = sigAct.sa_flags;
4341 
4342   int ret = sigaction(sig, &sigAct, &oldAct);
4343   assert(ret == 0, "check");
4344 
4345   void* oldhand2  = oldAct.sa_sigaction
4346                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4347                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4348   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4349 }
4350 
4351 // install signal handlers for signals that HotSpot needs to
4352 // handle in order to support Java-level exception handling.
4353 
4354 void os::Linux::install_signal_handlers() {
4355   if (!signal_handlers_are_installed) {
4356     signal_handlers_are_installed = true;
4357 
4358     // signal-chaining
4359     typedef void (*signal_setting_t)();
4360     signal_setting_t begin_signal_setting = NULL;
4361     signal_setting_t end_signal_setting = NULL;
4362     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4363                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4364     if (begin_signal_setting != NULL) {
4365       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4366                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4367       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4368                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4369       libjsig_is_loaded = true;
4370       assert(UseSignalChaining, "should enable signal-chaining");
4371     }
4372     if (libjsig_is_loaded) {
4373       // Tell libjsig jvm is setting signal handlers
4374       (*begin_signal_setting)();
4375     }
4376 
4377     set_signal_handler(SIGSEGV, true);
4378     set_signal_handler(SIGPIPE, true);
4379     set_signal_handler(SIGBUS, true);
4380     set_signal_handler(SIGILL, true);
4381     set_signal_handler(SIGFPE, true);
4382 #if defined(PPC64)
4383     set_signal_handler(SIGTRAP, true);
4384 #endif
4385     set_signal_handler(SIGXFSZ, true);
4386 
4387     if (libjsig_is_loaded) {
4388       // Tell libjsig jvm finishes setting signal handlers
4389       (*end_signal_setting)();
4390     }
4391 
4392     // We don't activate signal checker if libjsig is in place, we trust ourselves
4393     // and if UserSignalHandler is installed all bets are off.
4394     // Log that signal checking is off only if -verbose:jni is specified.
4395     if (CheckJNICalls) {
4396       if (libjsig_is_loaded) {
4397         if (PrintJNIResolving) {
4398           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4399         }
4400         check_signals = false;
4401       }
4402       if (AllowUserSignalHandlers) {
4403         if (PrintJNIResolving) {
4404           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4405         }
4406         check_signals = false;
4407       }
4408     }
4409   }
4410 }
4411 
4412 // This is the fastest way to get thread cpu time on Linux.
4413 // Returns cpu time (user+sys) for any thread, not only for current.
4414 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4415 // It might work on 2.6.10+ with a special kernel/glibc patch.
4416 // For reference, please, see IEEE Std 1003.1-2004:
4417 //   http://www.unix.org/single_unix_specification
4418 
4419 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4420   struct timespec tp;
4421   int rc = os::Linux::clock_gettime(clockid, &tp);
4422   assert(rc == 0, "clock_gettime is expected to return 0 code");
4423 
4424   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4425 }
4426 
4427 void os::Linux::initialize_os_info() {
4428   assert(_os_version == 0, "OS info already initialized");
4429 
4430   struct utsname _uname;
4431 
4432   uint32_t major;
4433   uint32_t minor;
4434   uint32_t fix;
4435 
4436   int rc;
4437 
4438   // Kernel version is unknown if
4439   // verification below fails.
4440   _os_version = 0x01000000;
4441 
4442   rc = uname(&_uname);
4443   if (rc != -1) {
4444 
4445     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4446     if (rc == 3) {
4447 
4448       if (major < 256 && minor < 256 && fix < 256) {
4449         // Kernel version format is as expected,
4450         // set it overriding unknown state.
4451         _os_version = (major << 16) |
4452                       (minor << 8 ) |
4453                       (fix   << 0 ) ;
4454       }
4455     }
4456   }
4457 }
4458 
4459 uint32_t os::Linux::os_version() {
4460   assert(_os_version != 0, "not initialized");
4461   return _os_version & 0x00FFFFFF;
4462 }
4463 
4464 bool os::Linux::os_version_is_known() {
4465   assert(_os_version != 0, "not initialized");
4466   return _os_version & 0x01000000 ? false : true;
4467 }
4468 
4469 /////
4470 // glibc on Linux platform uses non-documented flag
4471 // to indicate, that some special sort of signal
4472 // trampoline is used.
4473 // We will never set this flag, and we should
4474 // ignore this flag in our diagnostic
4475 #ifdef SIGNIFICANT_SIGNAL_MASK
4476   #undef SIGNIFICANT_SIGNAL_MASK
4477 #endif
4478 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4479 
4480 static const char* get_signal_handler_name(address handler,
4481                                            char* buf, int buflen) {
4482   int offset = 0;
4483   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4484   if (found) {
4485     // skip directory names
4486     const char *p1, *p2;
4487     p1 = buf;
4488     size_t len = strlen(os::file_separator());
4489     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4490     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4491   } else {
4492     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4493   }
4494   return buf;
4495 }
4496 
4497 static void print_signal_handler(outputStream* st, int sig,
4498                                  char* buf, size_t buflen) {
4499   struct sigaction sa;
4500 
4501   sigaction(sig, NULL, &sa);
4502 
4503   // See comment for SIGNIFICANT_SIGNAL_MASK define
4504   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4505 
4506   st->print("%s: ", os::exception_name(sig, buf, buflen));
4507 
4508   address handler = (sa.sa_flags & SA_SIGINFO)
4509     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4510     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4511 
4512   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4513     st->print("SIG_DFL");
4514   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4515     st->print("SIG_IGN");
4516   } else {
4517     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4518   }
4519 
4520   st->print(", sa_mask[0]=");
4521   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4522 
4523   address rh = VMError::get_resetted_sighandler(sig);
4524   // May be, handler was resetted by VMError?
4525   if (rh != NULL) {
4526     handler = rh;
4527     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4528   }
4529 
4530   st->print(", sa_flags=");
4531   os::Posix::print_sa_flags(st, sa.sa_flags);
4532 
4533   // Check: is it our handler?
4534   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4535       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4536     // It is our signal handler
4537     // check for flags, reset system-used one!
4538     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4539       st->print(
4540                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4541                 os::Linux::get_our_sigflags(sig));
4542     }
4543   }
4544   st->cr();
4545 }
4546 
4547 
4548 #define DO_SIGNAL_CHECK(sig)                      \
4549   do {                                            \
4550     if (!sigismember(&check_signal_done, sig)) {  \
4551       os::Linux::check_signal_handler(sig);       \
4552     }                                             \
4553   } while (0)
4554 
4555 // This method is a periodic task to check for misbehaving JNI applications
4556 // under CheckJNI, we can add any periodic checks here
4557 
4558 void os::run_periodic_checks() {
4559   if (check_signals == false) return;
4560 
4561   // SEGV and BUS if overridden could potentially prevent
4562   // generation of hs*.log in the event of a crash, debugging
4563   // such a case can be very challenging, so we absolutely
4564   // check the following for a good measure:
4565   DO_SIGNAL_CHECK(SIGSEGV);
4566   DO_SIGNAL_CHECK(SIGILL);
4567   DO_SIGNAL_CHECK(SIGFPE);
4568   DO_SIGNAL_CHECK(SIGBUS);
4569   DO_SIGNAL_CHECK(SIGPIPE);
4570   DO_SIGNAL_CHECK(SIGXFSZ);
4571 #if defined(PPC64)
4572   DO_SIGNAL_CHECK(SIGTRAP);
4573 #endif
4574 
4575   // ReduceSignalUsage allows the user to override these handlers
4576   // see comments at the very top and jvm_solaris.h
4577   if (!ReduceSignalUsage) {
4578     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4579     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4580     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4581     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4582   }
4583 
4584   DO_SIGNAL_CHECK(SR_signum);
4585 }
4586 
4587 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4588 
4589 static os_sigaction_t os_sigaction = NULL;
4590 
4591 void os::Linux::check_signal_handler(int sig) {
4592   char buf[O_BUFLEN];
4593   address jvmHandler = NULL;
4594 
4595 
4596   struct sigaction act;
4597   if (os_sigaction == NULL) {
4598     // only trust the default sigaction, in case it has been interposed
4599     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4600     if (os_sigaction == NULL) return;
4601   }
4602 
4603   os_sigaction(sig, (struct sigaction*)NULL, &act);
4604 
4605 
4606   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4607 
4608   address thisHandler = (act.sa_flags & SA_SIGINFO)
4609     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4610     : CAST_FROM_FN_PTR(address, act.sa_handler);
4611 
4612 
4613   switch (sig) {
4614   case SIGSEGV:
4615   case SIGBUS:
4616   case SIGFPE:
4617   case SIGPIPE:
4618   case SIGILL:
4619   case SIGXFSZ:
4620     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4621     break;
4622 
4623   case SHUTDOWN1_SIGNAL:
4624   case SHUTDOWN2_SIGNAL:
4625   case SHUTDOWN3_SIGNAL:
4626   case BREAK_SIGNAL:
4627     jvmHandler = (address)user_handler();
4628     break;
4629 
4630   default:
4631     if (sig == SR_signum) {
4632       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4633     } else {
4634       return;
4635     }
4636     break;
4637   }
4638 
4639   if (thisHandler != jvmHandler) {
4640     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4641     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4642     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4643     // No need to check this sig any longer
4644     sigaddset(&check_signal_done, sig);
4645     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4646     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4647       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4648                     exception_name(sig, buf, O_BUFLEN));
4649     }
4650   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4651     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4652     tty->print("expected:");
4653     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4654     tty->cr();
4655     tty->print("  found:");
4656     os::Posix::print_sa_flags(tty, act.sa_flags);
4657     tty->cr();
4658     // No need to check this sig any longer
4659     sigaddset(&check_signal_done, sig);
4660   }
4661 
4662   // Dump all the signal
4663   if (sigismember(&check_signal_done, sig)) {
4664     print_signal_handlers(tty, buf, O_BUFLEN);
4665   }
4666 }
4667 
4668 extern void report_error(char* file_name, int line_no, char* title,
4669                          char* format, ...);
4670 
4671 // this is called _before_ the most of global arguments have been parsed
4672 void os::init(void) {
4673   char dummy;   // used to get a guess on initial stack address
4674 //  first_hrtime = gethrtime();
4675 
4676   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4677 
4678   init_random(1234567);
4679 
4680   ThreadCritical::initialize();
4681 
4682   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4683   if (Linux::page_size() == -1) {
4684     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4685           os::strerror(errno));
4686   }
4687   init_page_sizes((size_t) Linux::page_size());
4688 
4689   Linux::initialize_system_info();
4690 
4691   Linux::initialize_os_info();
4692 
4693   // main_thread points to the aboriginal thread
4694   Linux::_main_thread = pthread_self();
4695 
4696   Linux::clock_init();
4697   initial_time_count = javaTimeNanos();
4698 
4699   // pthread_condattr initialization for monotonic clock
4700   int status;
4701   pthread_condattr_t* _condattr = os::Linux::condAttr();
4702   if ((status = pthread_condattr_init(_condattr)) != 0) {
4703     fatal("pthread_condattr_init: %s", os::strerror(status));
4704   }
4705   // Only set the clock if CLOCK_MONOTONIC is available
4706   if (os::supports_monotonic_clock()) {
4707     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4708       if (status == EINVAL) {
4709         warning("Unable to use monotonic clock with relative timed-waits" \
4710                 " - changes to the time-of-day clock may have adverse affects");
4711       } else {
4712         fatal("pthread_condattr_setclock: %s", os::strerror(status));
4713       }
4714     }
4715   }
4716   // else it defaults to CLOCK_REALTIME
4717 
4718   // retrieve entry point for pthread_setname_np
4719   Linux::_pthread_setname_np =
4720     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4721 
4722 }
4723 
4724 // To install functions for atexit system call
4725 extern "C" {
4726   static void perfMemory_exit_helper() {
4727     perfMemory_exit();
4728   }
4729 }
4730 
4731 // this is called _after_ the global arguments have been parsed
4732 jint os::init_2(void) {
4733   Linux::fast_thread_clock_init();
4734 
4735   // Allocate a single page and mark it as readable for safepoint polling
4736   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4737   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4738 
4739   os::set_polling_page(polling_page);
4740   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4741 
4742   if (!UseMembar) {
4743     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4744     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4745     os::set_memory_serialize_page(mem_serialize_page);
4746     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4747   }
4748 
4749   // initialize suspend/resume support - must do this before signal_sets_init()
4750   if (SR_initialize() != 0) {
4751     perror("SR_initialize failed");
4752     return JNI_ERR;
4753   }
4754 
4755   Linux::signal_sets_init();
4756   Linux::install_signal_handlers();
4757 
4758   // Check minimum allowable stack size for thread creation and to initialize
4759   // the java system classes, including StackOverflowError - depends on page
4760   // size.  Add a page for compiler2 recursion in main thread.
4761   // Add in 2*BytesPerWord times page size to account for VM stack during
4762   // class initialization depending on 32 or 64 bit VM.
4763   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4764                                       JavaThread::stack_guard_zone_size() +
4765                                       JavaThread::stack_shadow_zone_size() +
4766                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4767 
4768   size_t threadStackSizeInBytes = ThreadStackSize * K;
4769   if (threadStackSizeInBytes != 0 &&
4770       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4771     tty->print_cr("\nThe stack size specified is too small, "
4772                   "Specify at least " SIZE_FORMAT "k",
4773                   os::Linux::min_stack_allowed/ K);
4774     return JNI_ERR;
4775   }
4776 
4777   // Make the stack size a multiple of the page size so that
4778   // the yellow/red zones can be guarded.
4779   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4780                                                 vm_page_size()));
4781 
4782   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4783 
4784 #if defined(IA32)
4785   workaround_expand_exec_shield_cs_limit();
4786 #endif
4787 
4788   Linux::libpthread_init();
4789   log_info(os)("HotSpot is running with %s, %s",
4790                Linux::glibc_version(), Linux::libpthread_version());
4791 
4792   if (UseNUMA) {
4793     if (!Linux::libnuma_init()) {
4794       UseNUMA = false;
4795     } else {
4796       if ((Linux::numa_max_node() < 1)) {
4797         // There's only one node(they start from 0), disable NUMA.
4798         UseNUMA = false;
4799       }
4800     }
4801     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4802     // we can make the adaptive lgrp chunk resizing work. If the user specified
4803     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4804     // disable adaptive resizing.
4805     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4806       if (FLAG_IS_DEFAULT(UseNUMA)) {
4807         UseNUMA = false;
4808       } else {
4809         if (FLAG_IS_DEFAULT(UseLargePages) &&
4810             FLAG_IS_DEFAULT(UseSHM) &&
4811             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4812           UseLargePages = false;
4813         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4814           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4815           UseAdaptiveSizePolicy = false;
4816           UseAdaptiveNUMAChunkSizing = false;
4817         }
4818       }
4819     }
4820     if (!UseNUMA && ForceNUMA) {
4821       UseNUMA = true;
4822     }
4823   }
4824 
4825   if (MaxFDLimit) {
4826     // set the number of file descriptors to max. print out error
4827     // if getrlimit/setrlimit fails but continue regardless.
4828     struct rlimit nbr_files;
4829     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4830     if (status != 0) {
4831       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4832     } else {
4833       nbr_files.rlim_cur = nbr_files.rlim_max;
4834       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4835       if (status != 0) {
4836         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4837       }
4838     }
4839   }
4840 
4841   // Initialize lock used to serialize thread creation (see os::create_thread)
4842   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4843 
4844   // at-exit methods are called in the reverse order of their registration.
4845   // atexit functions are called on return from main or as a result of a
4846   // call to exit(3C). There can be only 32 of these functions registered
4847   // and atexit() does not set errno.
4848 
4849   if (PerfAllowAtExitRegistration) {
4850     // only register atexit functions if PerfAllowAtExitRegistration is set.
4851     // atexit functions can be delayed until process exit time, which
4852     // can be problematic for embedded VM situations. Embedded VMs should
4853     // call DestroyJavaVM() to assure that VM resources are released.
4854 
4855     // note: perfMemory_exit_helper atexit function may be removed in
4856     // the future if the appropriate cleanup code can be added to the
4857     // VM_Exit VMOperation's doit method.
4858     if (atexit(perfMemory_exit_helper) != 0) {
4859       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4860     }
4861   }
4862 
4863   // initialize thread priority policy
4864   prio_init();
4865 
4866   return JNI_OK;
4867 }
4868 
4869 // Mark the polling page as unreadable
4870 void os::make_polling_page_unreadable(void) {
4871   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4872     fatal("Could not disable polling page");
4873   }
4874 }
4875 
4876 // Mark the polling page as readable
4877 void os::make_polling_page_readable(void) {
4878   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4879     fatal("Could not enable polling page");
4880   }
4881 }
4882 
4883 // older glibc versions don't have this macro (which expands to
4884 // an optimized bit-counting function) so we have to roll our own
4885 #ifndef CPU_COUNT
4886 
4887 static int _cpu_count(const cpu_set_t* cpus) {
4888   int count = 0;
4889   // only look up to the number of configured processors
4890   for (int i = 0; i < os::processor_count(); i++) {
4891     if (CPU_ISSET(i, cpus)) {
4892       count++;
4893     }
4894   }
4895   return count;
4896 }
4897 
4898 #define CPU_COUNT(cpus) _cpu_count(cpus)
4899 
4900 #endif // CPU_COUNT
4901 
4902 // Get the current number of available processors for this process.
4903 // This value can change at any time during a process's lifetime.
4904 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4905 // If it appears there may be more than 1024 processors then we do a
4906 // dynamic check - see 6515172 for details.
4907 // If anything goes wrong we fallback to returning the number of online
4908 // processors - which can be greater than the number available to the process.
4909 int os::active_processor_count() {
4910   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4911   cpu_set_t* cpus_p = &cpus;
4912   int cpus_size = sizeof(cpu_set_t);
4913 
4914   int configured_cpus = processor_count();  // upper bound on available cpus
4915   int cpu_count = 0;
4916 
4917 // old build platforms may not support dynamic cpu sets
4918 #ifdef CPU_ALLOC
4919 
4920   // To enable easy testing of the dynamic path on different platforms we
4921   // introduce a diagnostic flag: UseCpuAllocPath
4922   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4923     // kernel may use a mask bigger than cpu_set_t
4924     log_trace(os)("active_processor_count: using dynamic path %s"
4925                   "- configured processors: %d",
4926                   UseCpuAllocPath ? "(forced) " : "",
4927                   configured_cpus);
4928     cpus_p = CPU_ALLOC(configured_cpus);
4929     if (cpus_p != NULL) {
4930       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4931       // zero it just to be safe
4932       CPU_ZERO_S(cpus_size, cpus_p);
4933     }
4934     else {
4935        // failed to allocate so fallback to online cpus
4936        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4937        log_trace(os)("active_processor_count: "
4938                      "CPU_ALLOC failed (%s) - using "
4939                      "online processor count: %d",
4940                      os::strerror(errno), online_cpus);
4941        return online_cpus;
4942     }
4943   }
4944   else {
4945     log_trace(os)("active_processor_count: using static path - configured processors: %d",
4946                   configured_cpus);
4947   }
4948 #else // CPU_ALLOC
4949 // these stubs won't be executed
4950 #define CPU_COUNT_S(size, cpus) -1
4951 #define CPU_FREE(cpus)
4952 
4953   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4954                 configured_cpus);
4955 #endif // CPU_ALLOC
4956 
4957   // pid 0 means the current thread - which we have to assume represents the process
4958   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4959     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4960       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4961     }
4962     else {
4963       cpu_count = CPU_COUNT(cpus_p);
4964     }
4965     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4966   }
4967   else {
4968     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4969     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4970             "which may exceed available processors", os::strerror(errno), cpu_count);
4971   }
4972 
4973   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4974     CPU_FREE(cpus_p);
4975   }
4976 
4977   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
4978   return cpu_count;
4979 }
4980 
4981 void os::set_native_thread_name(const char *name) {
4982   if (Linux::_pthread_setname_np) {
4983     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4984     snprintf(buf, sizeof(buf), "%s", name);
4985     buf[sizeof(buf) - 1] = '\0';
4986     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4987     // ERANGE should not happen; all other errors should just be ignored.
4988     assert(rc != ERANGE, "pthread_setname_np failed");
4989   }
4990 }
4991 
4992 bool os::distribute_processes(uint length, uint* distribution) {
4993   // Not yet implemented.
4994   return false;
4995 }
4996 
4997 bool os::bind_to_processor(uint processor_id) {
4998   // Not yet implemented.
4999   return false;
5000 }
5001 
5002 ///
5003 
5004 void os::SuspendedThreadTask::internal_do_task() {
5005   if (do_suspend(_thread->osthread())) {
5006     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5007     do_task(context);
5008     do_resume(_thread->osthread());
5009   }
5010 }
5011 
5012 class PcFetcher : public os::SuspendedThreadTask {
5013  public:
5014   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5015   ExtendedPC result();
5016  protected:
5017   void do_task(const os::SuspendedThreadTaskContext& context);
5018  private:
5019   ExtendedPC _epc;
5020 };
5021 
5022 ExtendedPC PcFetcher::result() {
5023   guarantee(is_done(), "task is not done yet.");
5024   return _epc;
5025 }
5026 
5027 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5028   Thread* thread = context.thread();
5029   OSThread* osthread = thread->osthread();
5030   if (osthread->ucontext() != NULL) {
5031     _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5032   } else {
5033     // NULL context is unexpected, double-check this is the VMThread
5034     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5035   }
5036 }
5037 
5038 // Suspends the target using the signal mechanism and then grabs the PC before
5039 // resuming the target. Used by the flat-profiler only
5040 ExtendedPC os::get_thread_pc(Thread* thread) {
5041   // Make sure that it is called by the watcher for the VMThread
5042   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5043   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5044 
5045   PcFetcher fetcher(thread);
5046   fetcher.run();
5047   return fetcher.result();
5048 }
5049 
5050 ////////////////////////////////////////////////////////////////////////////////
5051 // debug support
5052 
5053 bool os::find(address addr, outputStream* st) {
5054   Dl_info dlinfo;
5055   memset(&dlinfo, 0, sizeof(dlinfo));
5056   if (dladdr(addr, &dlinfo) != 0) {
5057     st->print(PTR_FORMAT ": ", p2i(addr));
5058     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5059       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5060                 p2i(addr) - p2i(dlinfo.dli_saddr));
5061     } else if (dlinfo.dli_fbase != NULL) {
5062       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5063     } else {
5064       st->print("<absolute address>");
5065     }
5066     if (dlinfo.dli_fname != NULL) {
5067       st->print(" in %s", dlinfo.dli_fname);
5068     }
5069     if (dlinfo.dli_fbase != NULL) {
5070       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5071     }
5072     st->cr();
5073 
5074     if (Verbose) {
5075       // decode some bytes around the PC
5076       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5077       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5078       address       lowest = (address) dlinfo.dli_sname;
5079       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5080       if (begin < lowest)  begin = lowest;
5081       Dl_info dlinfo2;
5082       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5083           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5084         end = (address) dlinfo2.dli_saddr;
5085       }
5086       Disassembler::decode(begin, end, st);
5087     }
5088     return true;
5089   }
5090   return false;
5091 }
5092 
5093 ////////////////////////////////////////////////////////////////////////////////
5094 // misc
5095 
5096 // This does not do anything on Linux. This is basically a hook for being
5097 // able to use structured exception handling (thread-local exception filters)
5098 // on, e.g., Win32.
5099 void
5100 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5101                          JavaCallArguments* args, Thread* thread) {
5102   f(value, method, args, thread);
5103 }
5104 
5105 void os::print_statistics() {
5106 }
5107 
5108 bool os::message_box(const char* title, const char* message) {
5109   int i;
5110   fdStream err(defaultStream::error_fd());
5111   for (i = 0; i < 78; i++) err.print_raw("=");
5112   err.cr();
5113   err.print_raw_cr(title);
5114   for (i = 0; i < 78; i++) err.print_raw("-");
5115   err.cr();
5116   err.print_raw_cr(message);
5117   for (i = 0; i < 78; i++) err.print_raw("=");
5118   err.cr();
5119 
5120   char buf[16];
5121   // Prevent process from exiting upon "read error" without consuming all CPU
5122   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5123 
5124   return buf[0] == 'y' || buf[0] == 'Y';
5125 }
5126 
5127 int os::stat(const char *path, struct stat *sbuf) {
5128   char pathbuf[MAX_PATH];
5129   if (strlen(path) > MAX_PATH - 1) {
5130     errno = ENAMETOOLONG;
5131     return -1;
5132   }
5133   os::native_path(strcpy(pathbuf, path));
5134   return ::stat(pathbuf, sbuf);
5135 }
5136 
5137 bool os::check_heap(bool force) {
5138   return true;
5139 }
5140 
5141 // Is a (classpath) directory empty?
5142 bool os::dir_is_empty(const char* path) {
5143   DIR *dir = NULL;
5144   struct dirent *ptr;
5145 
5146   dir = opendir(path);
5147   if (dir == NULL) return true;
5148 
5149   // Scan the directory
5150   bool result = true;
5151   char buf[sizeof(struct dirent) + MAX_PATH];
5152   while (result && (ptr = ::readdir(dir)) != NULL) {
5153     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5154       result = false;
5155     }
5156   }
5157   closedir(dir);
5158   return result;
5159 }
5160 
5161 // This code originates from JDK's sysOpen and open64_w
5162 // from src/solaris/hpi/src/system_md.c
5163 
5164 int os::open(const char *path, int oflag, int mode) {
5165   if (strlen(path) > MAX_PATH - 1) {
5166     errno = ENAMETOOLONG;
5167     return -1;
5168   }
5169 
5170   // All file descriptors that are opened in the Java process and not
5171   // specifically destined for a subprocess should have the close-on-exec
5172   // flag set.  If we don't set it, then careless 3rd party native code
5173   // might fork and exec without closing all appropriate file descriptors
5174   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5175   // turn might:
5176   //
5177   // - cause end-of-file to fail to be detected on some file
5178   //   descriptors, resulting in mysterious hangs, or
5179   //
5180   // - might cause an fopen in the subprocess to fail on a system
5181   //   suffering from bug 1085341.
5182   //
5183   // (Yes, the default setting of the close-on-exec flag is a Unix
5184   // design flaw)
5185   //
5186   // See:
5187   // 1085341: 32-bit stdio routines should support file descriptors >255
5188   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5189   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5190   //
5191   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5192   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5193   // because it saves a system call and removes a small window where the flag
5194   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5195   // and we fall back to using FD_CLOEXEC (see below).
5196 #ifdef O_CLOEXEC
5197   oflag |= O_CLOEXEC;
5198 #endif
5199 
5200   int fd = ::open64(path, oflag, mode);
5201   if (fd == -1) return -1;
5202 
5203   //If the open succeeded, the file might still be a directory
5204   {
5205     struct stat64 buf64;
5206     int ret = ::fstat64(fd, &buf64);
5207     int st_mode = buf64.st_mode;
5208 
5209     if (ret != -1) {
5210       if ((st_mode & S_IFMT) == S_IFDIR) {
5211         errno = EISDIR;
5212         ::close(fd);
5213         return -1;
5214       }
5215     } else {
5216       ::close(fd);
5217       return -1;
5218     }
5219   }
5220 
5221 #ifdef FD_CLOEXEC
5222   // Validate that the use of the O_CLOEXEC flag on open above worked.
5223   // With recent kernels, we will perform this check exactly once.
5224   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5225   if (!O_CLOEXEC_is_known_to_work) {
5226     int flags = ::fcntl(fd, F_GETFD);
5227     if (flags != -1) {
5228       if ((flags & FD_CLOEXEC) != 0)
5229         O_CLOEXEC_is_known_to_work = 1;
5230       else
5231         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5232     }
5233   }
5234 #endif
5235 
5236   return fd;
5237 }
5238 
5239 
5240 // create binary file, rewriting existing file if required
5241 int os::create_binary_file(const char* path, bool rewrite_existing) {
5242   int oflags = O_WRONLY | O_CREAT;
5243   if (!rewrite_existing) {
5244     oflags |= O_EXCL;
5245   }
5246   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5247 }
5248 
5249 // return current position of file pointer
5250 jlong os::current_file_offset(int fd) {
5251   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5252 }
5253 
5254 // move file pointer to the specified offset
5255 jlong os::seek_to_file_offset(int fd, jlong offset) {
5256   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5257 }
5258 
5259 // This code originates from JDK's sysAvailable
5260 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5261 
5262 int os::available(int fd, jlong *bytes) {
5263   jlong cur, end;
5264   int mode;
5265   struct stat64 buf64;
5266 
5267   if (::fstat64(fd, &buf64) >= 0) {
5268     mode = buf64.st_mode;
5269     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5270       int n;
5271       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5272         *bytes = n;
5273         return 1;
5274       }
5275     }
5276   }
5277   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5278     return 0;
5279   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5280     return 0;
5281   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5282     return 0;
5283   }
5284   *bytes = end - cur;
5285   return 1;
5286 }
5287 
5288 // Map a block of memory.
5289 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5290                         char *addr, size_t bytes, bool read_only,
5291                         bool allow_exec) {
5292   int prot;
5293   int flags = MAP_PRIVATE;
5294 
5295   if (read_only) {
5296     prot = PROT_READ;
5297   } else {
5298     prot = PROT_READ | PROT_WRITE;
5299   }
5300 
5301   if (allow_exec) {
5302     prot |= PROT_EXEC;
5303   }
5304 
5305   if (addr != NULL) {
5306     flags |= MAP_FIXED;
5307   }
5308 
5309   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5310                                      fd, file_offset);
5311   if (mapped_address == MAP_FAILED) {
5312     return NULL;
5313   }
5314   return mapped_address;
5315 }
5316 
5317 
5318 // Remap a block of memory.
5319 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5320                           char *addr, size_t bytes, bool read_only,
5321                           bool allow_exec) {
5322   // same as map_memory() on this OS
5323   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5324                         allow_exec);
5325 }
5326 
5327 
5328 // Unmap a block of memory.
5329 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5330   return munmap(addr, bytes) == 0;
5331 }
5332 
5333 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5334 
5335 static clockid_t thread_cpu_clockid(Thread* thread) {
5336   pthread_t tid = thread->osthread()->pthread_id();
5337   clockid_t clockid;
5338 
5339   // Get thread clockid
5340   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5341   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5342   return clockid;
5343 }
5344 
5345 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5346 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5347 // of a thread.
5348 //
5349 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5350 // the fast estimate available on the platform.
5351 
5352 jlong os::current_thread_cpu_time() {
5353   if (os::Linux::supports_fast_thread_cpu_time()) {
5354     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5355   } else {
5356     // return user + sys since the cost is the same
5357     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5358   }
5359 }
5360 
5361 jlong os::thread_cpu_time(Thread* thread) {
5362   // consistent with what current_thread_cpu_time() returns
5363   if (os::Linux::supports_fast_thread_cpu_time()) {
5364     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5365   } else {
5366     return slow_thread_cpu_time(thread, true /* user + sys */);
5367   }
5368 }
5369 
5370 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5371   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5372     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5373   } else {
5374     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5375   }
5376 }
5377 
5378 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5379   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5380     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5381   } else {
5382     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5383   }
5384 }
5385 
5386 //  -1 on error.
5387 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5388   pid_t  tid = thread->osthread()->thread_id();
5389   char *s;
5390   char stat[2048];
5391   int statlen;
5392   char proc_name[64];
5393   int count;
5394   long sys_time, user_time;
5395   char cdummy;
5396   int idummy;
5397   long ldummy;
5398   FILE *fp;
5399 
5400   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5401   fp = fopen(proc_name, "r");
5402   if (fp == NULL) return -1;
5403   statlen = fread(stat, 1, 2047, fp);
5404   stat[statlen] = '\0';
5405   fclose(fp);
5406 
5407   // Skip pid and the command string. Note that we could be dealing with
5408   // weird command names, e.g. user could decide to rename java launcher
5409   // to "java 1.4.2 :)", then the stat file would look like
5410   //                1234 (java 1.4.2 :)) R ... ...
5411   // We don't really need to know the command string, just find the last
5412   // occurrence of ")" and then start parsing from there. See bug 4726580.
5413   s = strrchr(stat, ')');
5414   if (s == NULL) return -1;
5415 
5416   // Skip blank chars
5417   do { s++; } while (s && isspace(*s));
5418 
5419   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5420                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5421                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5422                  &user_time, &sys_time);
5423   if (count != 13) return -1;
5424   if (user_sys_cpu_time) {
5425     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5426   } else {
5427     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5428   }
5429 }
5430 
5431 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5432   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5433   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5434   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5435   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5436 }
5437 
5438 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5439   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5440   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5441   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5442   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5443 }
5444 
5445 bool os::is_thread_cpu_time_supported() {
5446   return true;
5447 }
5448 
5449 // System loadavg support.  Returns -1 if load average cannot be obtained.
5450 // Linux doesn't yet have a (official) notion of processor sets,
5451 // so just return the system wide load average.
5452 int os::loadavg(double loadavg[], int nelem) {
5453   return ::getloadavg(loadavg, nelem);
5454 }
5455 
5456 void os::pause() {
5457   char filename[MAX_PATH];
5458   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5459     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5460   } else {
5461     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5462   }
5463 
5464   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5465   if (fd != -1) {
5466     struct stat buf;
5467     ::close(fd);
5468     while (::stat(filename, &buf) == 0) {
5469       (void)::poll(NULL, 0, 100);
5470     }
5471   } else {
5472     jio_fprintf(stderr,
5473                 "Could not open pause file '%s', continuing immediately.\n", filename);
5474   }
5475 }
5476 
5477 
5478 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5479 // comment paragraphs are worth repeating here:
5480 //
5481 // Assumption:
5482 //    Only one parker can exist on an event, which is why we allocate
5483 //    them per-thread. Multiple unparkers can coexist.
5484 //
5485 // _Event serves as a restricted-range semaphore.
5486 //   -1 : thread is blocked, i.e. there is a waiter
5487 //    0 : neutral: thread is running or ready,
5488 //        could have been signaled after a wait started
5489 //    1 : signaled - thread is running or ready
5490 //
5491 
5492 // utility to compute the abstime argument to timedwait:
5493 // millis is the relative timeout time
5494 // abstime will be the absolute timeout time
5495 // TODO: replace compute_abstime() with unpackTime()
5496 
5497 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5498   if (millis < 0)  millis = 0;
5499 
5500   jlong seconds = millis / 1000;
5501   millis %= 1000;
5502   if (seconds > 50000000) { // see man cond_timedwait(3T)
5503     seconds = 50000000;
5504   }
5505 
5506   if (os::supports_monotonic_clock()) {
5507     struct timespec now;
5508     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5509     assert_status(status == 0, status, "clock_gettime");
5510     abstime->tv_sec = now.tv_sec  + seconds;
5511     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5512     if (nanos >= NANOSECS_PER_SEC) {
5513       abstime->tv_sec += 1;
5514       nanos -= NANOSECS_PER_SEC;
5515     }
5516     abstime->tv_nsec = nanos;
5517   } else {
5518     struct timeval now;
5519     int status = gettimeofday(&now, NULL);
5520     assert(status == 0, "gettimeofday");
5521     abstime->tv_sec = now.tv_sec  + seconds;
5522     long usec = now.tv_usec + millis * 1000;
5523     if (usec >= 1000000) {
5524       abstime->tv_sec += 1;
5525       usec -= 1000000;
5526     }
5527     abstime->tv_nsec = usec * 1000;
5528   }
5529   return abstime;
5530 }
5531 
5532 void os::PlatformEvent::park() {       // AKA "down()"
5533   // Transitions for _Event:
5534   //   -1 => -1 : illegal
5535   //    1 =>  0 : pass - return immediately
5536   //    0 => -1 : block; then set _Event to 0 before returning
5537 
5538   // Invariant: Only the thread associated with the Event/PlatformEvent
5539   // may call park().
5540   // TODO: assert that _Assoc != NULL or _Assoc == Self
5541   assert(_nParked == 0, "invariant");
5542 
5543   int v;
5544   for (;;) {
5545     v = _Event;
5546     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5547   }
5548   guarantee(v >= 0, "invariant");
5549   if (v == 0) {
5550     // Do this the hard way by blocking ...
5551     int status = pthread_mutex_lock(_mutex);
5552     assert_status(status == 0, status, "mutex_lock");
5553     guarantee(_nParked == 0, "invariant");
5554     ++_nParked;
5555     while (_Event < 0) {
5556       status = pthread_cond_wait(_cond, _mutex);
5557       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5558       // Treat this the same as if the wait was interrupted
5559       if (status == ETIME) { status = EINTR; }
5560       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5561     }
5562     --_nParked;
5563 
5564     _Event = 0;
5565     status = pthread_mutex_unlock(_mutex);
5566     assert_status(status == 0, status, "mutex_unlock");
5567     // Paranoia to ensure our locked and lock-free paths interact
5568     // correctly with each other.
5569     OrderAccess::fence();
5570   }
5571   guarantee(_Event >= 0, "invariant");
5572 }
5573 
5574 int os::PlatformEvent::park(jlong millis) {
5575   // Transitions for _Event:
5576   //   -1 => -1 : illegal
5577   //    1 =>  0 : pass - return immediately
5578   //    0 => -1 : block; then set _Event to 0 before returning
5579 
5580   guarantee(_nParked == 0, "invariant");
5581 
5582   int v;
5583   for (;;) {
5584     v = _Event;
5585     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5586   }
5587   guarantee(v >= 0, "invariant");
5588   if (v != 0) return OS_OK;
5589 
5590   // We do this the hard way, by blocking the thread.
5591   // Consider enforcing a minimum timeout value.
5592   struct timespec abst;
5593   compute_abstime(&abst, millis);
5594 
5595   int ret = OS_TIMEOUT;
5596   int status = pthread_mutex_lock(_mutex);
5597   assert_status(status == 0, status, "mutex_lock");
5598   guarantee(_nParked == 0, "invariant");
5599   ++_nParked;
5600 
5601   // Object.wait(timo) will return because of
5602   // (a) notification
5603   // (b) timeout
5604   // (c) thread.interrupt
5605   //
5606   // Thread.interrupt and object.notify{All} both call Event::set.
5607   // That is, we treat thread.interrupt as a special case of notification.
5608   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5609   // We assume all ETIME returns are valid.
5610   //
5611   // TODO: properly differentiate simultaneous notify+interrupt.
5612   // In that case, we should propagate the notify to another waiter.
5613 
5614   while (_Event < 0) {
5615     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5616     assert_status(status == 0 || status == EINTR ||
5617                   status == ETIME || status == ETIMEDOUT,
5618                   status, "cond_timedwait");
5619     if (!FilterSpuriousWakeups) break;                 // previous semantics
5620     if (status == ETIME || status == ETIMEDOUT) break;
5621     // We consume and ignore EINTR and spurious wakeups.
5622   }
5623   --_nParked;
5624   if (_Event >= 0) {
5625     ret = OS_OK;
5626   }
5627   _Event = 0;
5628   status = pthread_mutex_unlock(_mutex);
5629   assert_status(status == 0, status, "mutex_unlock");
5630   assert(_nParked == 0, "invariant");
5631   // Paranoia to ensure our locked and lock-free paths interact
5632   // correctly with each other.
5633   OrderAccess::fence();
5634   return ret;
5635 }
5636 
5637 void os::PlatformEvent::unpark() {
5638   // Transitions for _Event:
5639   //    0 => 1 : just return
5640   //    1 => 1 : just return
5641   //   -1 => either 0 or 1; must signal target thread
5642   //         That is, we can safely transition _Event from -1 to either
5643   //         0 or 1.
5644   // See also: "Semaphores in Plan 9" by Mullender & Cox
5645   //
5646   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5647   // that it will take two back-to-back park() calls for the owning
5648   // thread to block. This has the benefit of forcing a spurious return
5649   // from the first park() call after an unpark() call which will help
5650   // shake out uses of park() and unpark() without condition variables.
5651 
5652   if (Atomic::xchg(1, &_Event) >= 0) return;
5653 
5654   // Wait for the thread associated with the event to vacate
5655   int status = pthread_mutex_lock(_mutex);
5656   assert_status(status == 0, status, "mutex_lock");
5657   int AnyWaiters = _nParked;
5658   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5659   status = pthread_mutex_unlock(_mutex);
5660   assert_status(status == 0, status, "mutex_unlock");
5661   if (AnyWaiters != 0) {
5662     // Note that we signal() *after* dropping the lock for "immortal" Events.
5663     // This is safe and avoids a common class of  futile wakeups.  In rare
5664     // circumstances this can cause a thread to return prematurely from
5665     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5666     // will simply re-test the condition and re-park itself.
5667     // This provides particular benefit if the underlying platform does not
5668     // provide wait morphing.
5669     status = pthread_cond_signal(_cond);
5670     assert_status(status == 0, status, "cond_signal");
5671   }
5672 }
5673 
5674 
5675 // JSR166
5676 // -------------------------------------------------------
5677 
5678 // The solaris and linux implementations of park/unpark are fairly
5679 // conservative for now, but can be improved. They currently use a
5680 // mutex/condvar pair, plus a a count.
5681 // Park decrements count if > 0, else does a condvar wait.  Unpark
5682 // sets count to 1 and signals condvar.  Only one thread ever waits
5683 // on the condvar. Contention seen when trying to park implies that someone
5684 // is unparking you, so don't wait. And spurious returns are fine, so there
5685 // is no need to track notifications.
5686 
5687 // This code is common to linux and solaris and will be moved to a
5688 // common place in dolphin.
5689 //
5690 // The passed in time value is either a relative time in nanoseconds
5691 // or an absolute time in milliseconds. Either way it has to be unpacked
5692 // into suitable seconds and nanoseconds components and stored in the
5693 // given timespec structure.
5694 // Given time is a 64-bit value and the time_t used in the timespec is only
5695 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5696 // overflow if times way in the future are given. Further on Solaris versions
5697 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5698 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5699 // As it will be 28 years before "now + 100000000" will overflow we can
5700 // ignore overflow and just impose a hard-limit on seconds using the value
5701 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5702 // years from "now".
5703 
5704 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5705   assert(time > 0, "convertTime");
5706   time_t max_secs = 0;
5707 
5708   if (!os::supports_monotonic_clock() || isAbsolute) {
5709     struct timeval now;
5710     int status = gettimeofday(&now, NULL);
5711     assert(status == 0, "gettimeofday");
5712 
5713     max_secs = now.tv_sec + MAX_SECS;
5714 
5715     if (isAbsolute) {
5716       jlong secs = time / 1000;
5717       if (secs > max_secs) {
5718         absTime->tv_sec = max_secs;
5719       } else {
5720         absTime->tv_sec = secs;
5721       }
5722       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5723     } else {
5724       jlong secs = time / NANOSECS_PER_SEC;
5725       if (secs >= MAX_SECS) {
5726         absTime->tv_sec = max_secs;
5727         absTime->tv_nsec = 0;
5728       } else {
5729         absTime->tv_sec = now.tv_sec + secs;
5730         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5731         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5732           absTime->tv_nsec -= NANOSECS_PER_SEC;
5733           ++absTime->tv_sec; // note: this must be <= max_secs
5734         }
5735       }
5736     }
5737   } else {
5738     // must be relative using monotonic clock
5739     struct timespec now;
5740     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5741     assert_status(status == 0, status, "clock_gettime");
5742     max_secs = now.tv_sec + MAX_SECS;
5743     jlong secs = time / NANOSECS_PER_SEC;
5744     if (secs >= MAX_SECS) {
5745       absTime->tv_sec = max_secs;
5746       absTime->tv_nsec = 0;
5747     } else {
5748       absTime->tv_sec = now.tv_sec + secs;
5749       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5750       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5751         absTime->tv_nsec -= NANOSECS_PER_SEC;
5752         ++absTime->tv_sec; // note: this must be <= max_secs
5753       }
5754     }
5755   }
5756   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5757   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5758   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5759   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5760 }
5761 
5762 void Parker::park(bool isAbsolute, jlong time) {
5763   // Ideally we'd do something useful while spinning, such
5764   // as calling unpackTime().
5765 
5766   // Optional fast-path check:
5767   // Return immediately if a permit is available.
5768   // We depend on Atomic::xchg() having full barrier semantics
5769   // since we are doing a lock-free update to _counter.
5770   if (Atomic::xchg(0, &_counter) > 0) return;
5771 
5772   Thread* thread = Thread::current();
5773   assert(thread->is_Java_thread(), "Must be JavaThread");
5774   JavaThread *jt = (JavaThread *)thread;
5775 
5776   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5777   // Check interrupt before trying to wait
5778   if (Thread::is_interrupted(thread, false)) {
5779     return;
5780   }
5781 
5782   // Next, demultiplex/decode time arguments
5783   timespec absTime;
5784   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5785     return;
5786   }
5787   if (time > 0) {
5788     unpackTime(&absTime, isAbsolute, time);
5789   }
5790 
5791 
5792   // Enter safepoint region
5793   // Beware of deadlocks such as 6317397.
5794   // The per-thread Parker:: mutex is a classic leaf-lock.
5795   // In particular a thread must never block on the Threads_lock while
5796   // holding the Parker:: mutex.  If safepoints are pending both the
5797   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5798   ThreadBlockInVM tbivm(jt);
5799 
5800   // Don't wait if cannot get lock since interference arises from
5801   // unblocking.  Also. check interrupt before trying wait
5802   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5803     return;
5804   }
5805 
5806   int status;
5807   if (_counter > 0)  { // no wait needed
5808     _counter = 0;
5809     status = pthread_mutex_unlock(_mutex);
5810     assert_status(status == 0, status, "invariant");
5811     // Paranoia to ensure our locked and lock-free paths interact
5812     // correctly with each other and Java-level accesses.
5813     OrderAccess::fence();
5814     return;
5815   }
5816 
5817 #ifdef ASSERT
5818   // Don't catch signals while blocked; let the running threads have the signals.
5819   // (This allows a debugger to break into the running thread.)
5820   sigset_t oldsigs;
5821   sigemptyset(&oldsigs);
5822   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5823   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5824 #endif
5825 
5826   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5827   jt->set_suspend_equivalent();
5828   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5829 
5830   assert(_cur_index == -1, "invariant");
5831   if (time == 0) {
5832     _cur_index = REL_INDEX; // arbitrary choice when not timed
5833     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5834   } else {
5835     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5836     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5837   }
5838   _cur_index = -1;
5839   assert_status(status == 0 || status == EINTR ||
5840                 status == ETIME || status == ETIMEDOUT,
5841                 status, "cond_timedwait");
5842 
5843 #ifdef ASSERT
5844   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5845 #endif
5846 
5847   _counter = 0;
5848   status = pthread_mutex_unlock(_mutex);
5849   assert_status(status == 0, status, "invariant");
5850   // Paranoia to ensure our locked and lock-free paths interact
5851   // correctly with each other and Java-level accesses.
5852   OrderAccess::fence();
5853 
5854   // If externally suspended while waiting, re-suspend
5855   if (jt->handle_special_suspend_equivalent_condition()) {
5856     jt->java_suspend_self();
5857   }
5858 }
5859 
5860 void Parker::unpark() {
5861   int status = pthread_mutex_lock(_mutex);
5862   assert_status(status == 0, status, "invariant");
5863   const int s = _counter;
5864   _counter = 1;
5865   // must capture correct index before unlocking
5866   int index = _cur_index;
5867   status = pthread_mutex_unlock(_mutex);
5868   assert_status(status == 0, status, "invariant");
5869   if (s < 1 && index != -1) {
5870     // thread is definitely parked
5871     status = pthread_cond_signal(&_cond[index]);
5872     assert_status(status == 0, status, "invariant");
5873   }
5874 }
5875 
5876 
5877 extern char** environ;
5878 
5879 // Run the specified command in a separate process. Return its exit value,
5880 // or -1 on failure (e.g. can't fork a new process).
5881 // Unlike system(), this function can be called from signal handler. It
5882 // doesn't block SIGINT et al.
5883 int os::fork_and_exec(char* cmd) {
5884   const char * argv[4] = {"sh", "-c", cmd, NULL};
5885 
5886   pid_t pid = fork();
5887 
5888   if (pid < 0) {
5889     // fork failed
5890     return -1;
5891 
5892   } else if (pid == 0) {
5893     // child process
5894 
5895     execve("/bin/sh", (char* const*)argv, environ);
5896 
5897     // execve failed
5898     _exit(-1);
5899 
5900   } else  {
5901     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5902     // care about the actual exit code, for now.
5903 
5904     int status;
5905 
5906     // Wait for the child process to exit.  This returns immediately if
5907     // the child has already exited. */
5908     while (waitpid(pid, &status, 0) < 0) {
5909       switch (errno) {
5910       case ECHILD: return 0;
5911       case EINTR: break;
5912       default: return -1;
5913       }
5914     }
5915 
5916     if (WIFEXITED(status)) {
5917       // The child exited normally; get its exit code.
5918       return WEXITSTATUS(status);
5919     } else if (WIFSIGNALED(status)) {
5920       // The child exited because of a signal
5921       // The best value to return is 0x80 + signal number,
5922       // because that is what all Unix shells do, and because
5923       // it allows callers to distinguish between process exit and
5924       // process death by signal.
5925       return 0x80 + WTERMSIG(status);
5926     } else {
5927       // Unknown exit code; pass it through
5928       return status;
5929     }
5930   }
5931 }
5932 
5933 // is_headless_jre()
5934 //
5935 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5936 // in order to report if we are running in a headless jre
5937 //
5938 // Since JDK8 xawt/libmawt.so was moved into the same directory
5939 // as libawt.so, and renamed libawt_xawt.so
5940 //
5941 bool os::is_headless_jre() {
5942   struct stat statbuf;
5943   char buf[MAXPATHLEN];
5944   char libmawtpath[MAXPATHLEN];
5945   const char *xawtstr  = "/xawt/libmawt.so";
5946   const char *new_xawtstr = "/libawt_xawt.so";
5947   char *p;
5948 
5949   // Get path to libjvm.so
5950   os::jvm_path(buf, sizeof(buf));
5951 
5952   // Get rid of libjvm.so
5953   p = strrchr(buf, '/');
5954   if (p == NULL) {
5955     return false;
5956   } else {
5957     *p = '\0';
5958   }
5959 
5960   // Get rid of client or server
5961   p = strrchr(buf, '/');
5962   if (p == NULL) {
5963     return false;
5964   } else {
5965     *p = '\0';
5966   }
5967 
5968   // check xawt/libmawt.so
5969   strcpy(libmawtpath, buf);
5970   strcat(libmawtpath, xawtstr);
5971   if (::stat(libmawtpath, &statbuf) == 0) return false;
5972 
5973   // check libawt_xawt.so
5974   strcpy(libmawtpath, buf);
5975   strcat(libmawtpath, new_xawtstr);
5976   if (::stat(libmawtpath, &statbuf) == 0) return false;
5977 
5978   return true;
5979 }
5980 
5981 // Get the default path to the core file
5982 // Returns the length of the string
5983 int os::get_core_path(char* buffer, size_t bufferSize) {
5984   /*
5985    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5986    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5987    */
5988   const int core_pattern_len = 129;
5989   char core_pattern[core_pattern_len] = {0};
5990 
5991   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5992   if (core_pattern_file == -1) {
5993     return -1;
5994   }
5995 
5996   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5997   ::close(core_pattern_file);
5998   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5999     return -1;
6000   }
6001   if (core_pattern[ret-1] == '\n') {
6002     core_pattern[ret-1] = '\0';
6003   } else {
6004     core_pattern[ret] = '\0';
6005   }
6006 
6007   char *pid_pos = strstr(core_pattern, "%p");
6008   int written;
6009 
6010   if (core_pattern[0] == '/') {
6011     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6012   } else {
6013     char cwd[PATH_MAX];
6014 
6015     const char* p = get_current_directory(cwd, PATH_MAX);
6016     if (p == NULL) {
6017       return -1;
6018     }
6019 
6020     if (core_pattern[0] == '|') {
6021       written = jio_snprintf(buffer, bufferSize,
6022                         "\"%s\" (or dumping to %s/core.%d)",
6023                                      &core_pattern[1], p, current_process_id());
6024     } else {
6025       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6026     }
6027   }
6028 
6029   if (written < 0) {
6030     return -1;
6031   }
6032 
6033   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6034     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6035 
6036     if (core_uses_pid_file != -1) {
6037       char core_uses_pid = 0;
6038       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6039       ::close(core_uses_pid_file);
6040 
6041       if (core_uses_pid == '1') {
6042         jio_snprintf(buffer + written, bufferSize - written,
6043                                           ".%d", current_process_id());
6044       }
6045     }
6046   }
6047 
6048   return strlen(buffer);
6049 }
6050 
6051 bool os::start_debugging(char *buf, int buflen) {
6052   int len = (int)strlen(buf);
6053   char *p = &buf[len];
6054 
6055   jio_snprintf(p, buflen-len,
6056              "\n\n"
6057              "Do you want to debug the problem?\n\n"
6058              "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6059              "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6060              "Otherwise, press RETURN to abort...",
6061              os::current_process_id(), os::current_process_id(),
6062              os::current_thread_id(), os::current_thread_id());
6063 
6064   bool yes = os::message_box("Unexpected Error", buf);
6065 
6066   if (yes) {
6067     // yes, user asked VM to launch debugger
6068     jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
6069                      os::current_process_id(), os::current_process_id());
6070 
6071     os::fork_and_exec(buf);
6072     yes = false;
6073   }
6074   return yes;
6075 }
6076 
6077 static inline struct timespec get_mtime(const char* filename) {
6078   struct stat st;
6079   int ret = os::stat(filename, &st);
6080   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6081   return st.st_mtim;
6082 }
6083 
6084 int os::compare_file_modified_times(const char* file1, const char* file2) {
6085   struct timespec filetime1 = get_mtime(file1);
6086   struct timespec filetime2 = get_mtime(file2);
6087   int diff = filetime1.tv_sec - filetime2.tv_sec;
6088   if (diff == 0) {
6089     return filetime1.tv_nsec - filetime2.tv_nsec;
6090   }
6091   return diff;
6092 }
6093 
6094 /////////////// Unit tests ///////////////
6095 
6096 #ifndef PRODUCT
6097 
6098 #define test_log(...)              \
6099   do {                             \
6100     if (VerboseInternalVMTests) {  \
6101       tty->print_cr(__VA_ARGS__);  \
6102       tty->flush();                \
6103     }                              \
6104   } while (false)
6105 
6106 class TestReserveMemorySpecial : AllStatic {
6107  public:
6108   static void small_page_write(void* addr, size_t size) {
6109     size_t page_size = os::vm_page_size();
6110 
6111     char* end = (char*)addr + size;
6112     for (char* p = (char*)addr; p < end; p += page_size) {
6113       *p = 1;
6114     }
6115   }
6116 
6117   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6118     if (!UseHugeTLBFS) {
6119       return;
6120     }
6121 
6122     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6123 
6124     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6125 
6126     if (addr != NULL) {
6127       small_page_write(addr, size);
6128 
6129       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6130     }
6131   }
6132 
6133   static void test_reserve_memory_special_huge_tlbfs_only() {
6134     if (!UseHugeTLBFS) {
6135       return;
6136     }
6137 
6138     size_t lp = os::large_page_size();
6139 
6140     for (size_t size = lp; size <= lp * 10; size += lp) {
6141       test_reserve_memory_special_huge_tlbfs_only(size);
6142     }
6143   }
6144 
6145   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6146     size_t lp = os::large_page_size();
6147     size_t ag = os::vm_allocation_granularity();
6148 
6149     // sizes to test
6150     const size_t sizes[] = {
6151       lp, lp + ag, lp + lp / 2, lp * 2,
6152       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6153       lp * 10, lp * 10 + lp / 2
6154     };
6155     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6156 
6157     // For each size/alignment combination, we test three scenarios:
6158     // 1) with req_addr == NULL
6159     // 2) with a non-null req_addr at which we expect to successfully allocate
6160     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6161     //    expect the allocation to either fail or to ignore req_addr
6162 
6163     // Pre-allocate two areas; they shall be as large as the largest allocation
6164     //  and aligned to the largest alignment we will be testing.
6165     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6166     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6167       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6168       -1, 0);
6169     assert(mapping1 != MAP_FAILED, "should work");
6170 
6171     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6172       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6173       -1, 0);
6174     assert(mapping2 != MAP_FAILED, "should work");
6175 
6176     // Unmap the first mapping, but leave the second mapping intact: the first
6177     // mapping will serve as a value for a "good" req_addr (case 2). The second
6178     // mapping, still intact, as "bad" req_addr (case 3).
6179     ::munmap(mapping1, mapping_size);
6180 
6181     // Case 1
6182     test_log("%s, req_addr NULL:", __FUNCTION__);
6183     test_log("size            align           result");
6184 
6185     for (int i = 0; i < num_sizes; i++) {
6186       const size_t size = sizes[i];
6187       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6188         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6189         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6190                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6191         if (p != NULL) {
6192           assert(is_ptr_aligned(p, alignment), "must be");
6193           small_page_write(p, size);
6194           os::Linux::release_memory_special_huge_tlbfs(p, size);
6195         }
6196       }
6197     }
6198 
6199     // Case 2
6200     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6201     test_log("size            align           req_addr         result");
6202 
6203     for (int i = 0; i < num_sizes; i++) {
6204       const size_t size = sizes[i];
6205       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6206         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6207         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6208         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6209                  size, alignment, p2i(req_addr), p2i(p),
6210                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6211         if (p != NULL) {
6212           assert(p == req_addr, "must be");
6213           small_page_write(p, size);
6214           os::Linux::release_memory_special_huge_tlbfs(p, size);
6215         }
6216       }
6217     }
6218 
6219     // Case 3
6220     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6221     test_log("size            align           req_addr         result");
6222 
6223     for (int i = 0; i < num_sizes; i++) {
6224       const size_t size = sizes[i];
6225       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6226         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6227         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6228         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6229                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6230         // as the area around req_addr contains already existing mappings, the API should always
6231         // return NULL (as per contract, it cannot return another address)
6232         assert(p == NULL, "must be");
6233       }
6234     }
6235 
6236     ::munmap(mapping2, mapping_size);
6237 
6238   }
6239 
6240   static void test_reserve_memory_special_huge_tlbfs() {
6241     if (!UseHugeTLBFS) {
6242       return;
6243     }
6244 
6245     test_reserve_memory_special_huge_tlbfs_only();
6246     test_reserve_memory_special_huge_tlbfs_mixed();
6247   }
6248 
6249   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6250     if (!UseSHM) {
6251       return;
6252     }
6253 
6254     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6255 
6256     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6257 
6258     if (addr != NULL) {
6259       assert(is_ptr_aligned(addr, alignment), "Check");
6260       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6261 
6262       small_page_write(addr, size);
6263 
6264       os::Linux::release_memory_special_shm(addr, size);
6265     }
6266   }
6267 
6268   static void test_reserve_memory_special_shm() {
6269     size_t lp = os::large_page_size();
6270     size_t ag = os::vm_allocation_granularity();
6271 
6272     for (size_t size = ag; size < lp * 3; size += ag) {
6273       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6274         test_reserve_memory_special_shm(size, alignment);
6275       }
6276     }
6277   }
6278 
6279   static void test() {
6280     test_reserve_memory_special_huge_tlbfs();
6281     test_reserve_memory_special_shm();
6282   }
6283 };
6284 
6285 void TestReserveMemorySpecial_test() {
6286   TestReserveMemorySpecial::test();
6287 }
6288 
6289 #endif