1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_solaris.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_share_solaris.hpp"
  41 #include "os_solaris.inline.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "runtime/vm_version.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <dlfcn.h>
  77 # include <errno.h>
  78 # include <exception>
  79 # include <link.h>
  80 # include <poll.h>
  81 # include <pthread.h>
  82 # include <pwd.h>
  83 # include <schedctl.h>
  84 # include <setjmp.h>
  85 # include <signal.h>
  86 # include <stdio.h>
  87 # include <alloca.h>
  88 # include <sys/filio.h>
  89 # include <sys/ipc.h>
  90 # include <sys/lwp.h>
  91 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  92 # include <sys/mman.h>
  93 # include <sys/processor.h>
  94 # include <sys/procset.h>
  95 # include <sys/pset.h>
  96 # include <sys/resource.h>
  97 # include <sys/shm.h>
  98 # include <sys/socket.h>
  99 # include <sys/stat.h>
 100 # include <sys/systeminfo.h>
 101 # include <sys/time.h>
 102 # include <sys/times.h>
 103 # include <sys/types.h>
 104 # include <sys/wait.h>
 105 # include <sys/utsname.h>
 106 # include <thread.h>
 107 # include <unistd.h>
 108 # include <sys/priocntl.h>
 109 # include <sys/rtpriocntl.h>
 110 # include <sys/tspriocntl.h>
 111 # include <sys/iapriocntl.h>
 112 # include <sys/fxpriocntl.h>
 113 # include <sys/loadavg.h>
 114 # include <string.h>
 115 # include <stdio.h>
 116 
 117 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 118 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 119 
 120 #define MAX_PATH (2 * K)
 121 
 122 // for timer info max values which include all bits
 123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 124 
 125 
 126 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 127 // compile on older systems without this header file.
 128 
 129 #ifndef MADV_ACCESS_LWP
 130   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 131 #endif
 132 #ifndef MADV_ACCESS_MANY
 133   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 134 #endif
 135 
 136 #ifndef LGRP_RSRC_CPU
 137   #define LGRP_RSRC_CPU      0       /* CPU resources */
 138 #endif
 139 #ifndef LGRP_RSRC_MEM
 140   #define LGRP_RSRC_MEM      1       /* memory resources */
 141 #endif
 142 
 143 // Values for ThreadPriorityPolicy == 1
 144 int prio_policy1[CriticalPriority+1] = {
 145   -99999,  0, 16,  32,  48,  64,
 146           80, 96, 112, 124, 127, 127 };
 147 
 148 // System parameters used internally
 149 static clock_t clock_tics_per_sec = 100;
 150 
 151 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 152 static bool enabled_extended_FILE_stdio = false;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static bool check_addr0_done = false;
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 160 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 161 
 162 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 163 
 164 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 165 
 166 // "default" initializers for missing libc APIs
 167 extern "C" {
 168   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 169   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 170 
 171   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 172   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 173 }
 174 
 175 // "default" initializers for pthread-based synchronization
 176 extern "C" {
 177   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 178   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 179 }
 180 
 181 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 182 
 183 static inline size_t adjust_stack_size(address base, size_t size) {
 184   if ((ssize_t)size < 0) {
 185     // 4759953: Compensate for ridiculous stack size.
 186     size = max_intx;
 187   }
 188   if (size > (size_t)base) {
 189     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 190     size = (size_t)base;
 191   }
 192   return size;
 193 }
 194 
 195 static inline stack_t get_stack_info() {
 196   stack_t st;
 197   int retval = thr_stksegment(&st);
 198   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 199   assert(retval == 0, "incorrect return value from thr_stksegment");
 200   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 201   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 202   return st;
 203 }
 204 
 205 address os::current_stack_base() {
 206   int r = thr_main();
 207   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 208   bool is_primordial_thread = r;
 209 
 210   // Workaround 4352906, avoid calls to thr_stksegment by
 211   // thr_main after the first one (it looks like we trash
 212   // some data, causing the value for ss_sp to be incorrect).
 213   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 214     stack_t st = get_stack_info();
 215     if (is_primordial_thread) {
 216       // cache initial value of stack base
 217       os::Solaris::_main_stack_base = (address)st.ss_sp;
 218     }
 219     return (address)st.ss_sp;
 220   } else {
 221     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 222     return os::Solaris::_main_stack_base;
 223   }
 224 }
 225 
 226 size_t os::current_stack_size() {
 227   size_t size;
 228 
 229   int r = thr_main();
 230   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 231   if (!r) {
 232     size = get_stack_info().ss_size;
 233   } else {
 234     struct rlimit limits;
 235     getrlimit(RLIMIT_STACK, &limits);
 236     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 237   }
 238   // base may not be page aligned
 239   address base = current_stack_base();
 240   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
 241   return (size_t)(base - bottom);
 242 }
 243 
 244 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 245   return localtime_r(clock, res);
 246 }
 247 
 248 void os::Solaris::try_enable_extended_io() {
 249   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 250 
 251   if (!UseExtendedFileIO) {
 252     return;
 253   }
 254 
 255   enable_extended_FILE_stdio_t enabler =
 256     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 257                                          "enable_extended_FILE_stdio");
 258   if (enabler) {
 259     enabler(-1, -1);
 260   }
 261 }
 262 
 263 static int _processors_online = 0;
 264 
 265 jint os::Solaris::_os_thread_limit = 0;
 266 volatile jint os::Solaris::_os_thread_count = 0;
 267 
 268 julong os::available_memory() {
 269   return Solaris::available_memory();
 270 }
 271 
 272 julong os::Solaris::available_memory() {
 273   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 274 }
 275 
 276 julong os::Solaris::_physical_memory = 0;
 277 
 278 julong os::physical_memory() {
 279   return Solaris::physical_memory();
 280 }
 281 
 282 static hrtime_t first_hrtime = 0;
 283 static const hrtime_t hrtime_hz = 1000*1000*1000;
 284 static volatile hrtime_t max_hrtime = 0;
 285 
 286 
 287 void os::Solaris::initialize_system_info() {
 288   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 289   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 290   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 291                                      (julong)sysconf(_SC_PAGESIZE);
 292 }
 293 
 294 int os::active_processor_count() {
 295   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 296   pid_t pid = getpid();
 297   psetid_t pset = PS_NONE;
 298   // Are we running in a processor set or is there any processor set around?
 299   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 300     uint_t pset_cpus;
 301     // Query the number of cpus available to us.
 302     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 303       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 304       _processors_online = pset_cpus;
 305       return pset_cpus;
 306     }
 307   }
 308   // Otherwise return number of online cpus
 309   return online_cpus;
 310 }
 311 
 312 static bool find_processors_in_pset(psetid_t        pset,
 313                                     processorid_t** id_array,
 314                                     uint_t*         id_length) {
 315   bool result = false;
 316   // Find the number of processors in the processor set.
 317   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 318     // Make up an array to hold their ids.
 319     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 320     // Fill in the array with their processor ids.
 321     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 322       result = true;
 323     }
 324   }
 325   return result;
 326 }
 327 
 328 // Callers of find_processors_online() must tolerate imprecise results --
 329 // the system configuration can change asynchronously because of DR
 330 // or explicit psradm operations.
 331 //
 332 // We also need to take care that the loop (below) terminates as the
 333 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 334 // request and the loop that builds the list of processor ids.   Unfortunately
 335 // there's no reliable way to determine the maximum valid processor id,
 336 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 337 // man pages, which claim the processor id set is "sparse, but
 338 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 339 // exit the loop.
 340 //
 341 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 342 // not available on S8.0.
 343 
 344 static bool find_processors_online(processorid_t** id_array,
 345                                    uint*           id_length) {
 346   const processorid_t MAX_PROCESSOR_ID = 100000;
 347   // Find the number of processors online.
 348   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 349   // Make up an array to hold their ids.
 350   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 351   // Processors need not be numbered consecutively.
 352   long found = 0;
 353   processorid_t next = 0;
 354   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 355     processor_info_t info;
 356     if (processor_info(next, &info) == 0) {
 357       // NB, PI_NOINTR processors are effectively online ...
 358       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 359         (*id_array)[found] = next;
 360         found += 1;
 361       }
 362     }
 363     next += 1;
 364   }
 365   if (found < *id_length) {
 366     // The loop above didn't identify the expected number of processors.
 367     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 368     // and re-running the loop, above, but there's no guarantee of progress
 369     // if the system configuration is in flux.  Instead, we just return what
 370     // we've got.  Note that in the worst case find_processors_online() could
 371     // return an empty set.  (As a fall-back in the case of the empty set we
 372     // could just return the ID of the current processor).
 373     *id_length = found;
 374   }
 375 
 376   return true;
 377 }
 378 
 379 static bool assign_distribution(processorid_t* id_array,
 380                                 uint           id_length,
 381                                 uint*          distribution,
 382                                 uint           distribution_length) {
 383   // We assume we can assign processorid_t's to uint's.
 384   assert(sizeof(processorid_t) == sizeof(uint),
 385          "can't convert processorid_t to uint");
 386   // Quick check to see if we won't succeed.
 387   if (id_length < distribution_length) {
 388     return false;
 389   }
 390   // Assign processor ids to the distribution.
 391   // Try to shuffle processors to distribute work across boards,
 392   // assuming 4 processors per board.
 393   const uint processors_per_board = ProcessDistributionStride;
 394   // Find the maximum processor id.
 395   processorid_t max_id = 0;
 396   for (uint m = 0; m < id_length; m += 1) {
 397     max_id = MAX2(max_id, id_array[m]);
 398   }
 399   // The next id, to limit loops.
 400   const processorid_t limit_id = max_id + 1;
 401   // Make up markers for available processors.
 402   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 403   for (uint c = 0; c < limit_id; c += 1) {
 404     available_id[c] = false;
 405   }
 406   for (uint a = 0; a < id_length; a += 1) {
 407     available_id[id_array[a]] = true;
 408   }
 409   // Step by "boards", then by "slot", copying to "assigned".
 410   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 411   //                remembering which processors have been assigned by
 412   //                previous calls, etc., so as to distribute several
 413   //                independent calls of this method.  What we'd like is
 414   //                It would be nice to have an API that let us ask
 415   //                how many processes are bound to a processor,
 416   //                but we don't have that, either.
 417   //                In the short term, "board" is static so that
 418   //                subsequent distributions don't all start at board 0.
 419   static uint board = 0;
 420   uint assigned = 0;
 421   // Until we've found enough processors ....
 422   while (assigned < distribution_length) {
 423     // ... find the next available processor in the board.
 424     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 425       uint try_id = board * processors_per_board + slot;
 426       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 427         distribution[assigned] = try_id;
 428         available_id[try_id] = false;
 429         assigned += 1;
 430         break;
 431       }
 432     }
 433     board += 1;
 434     if (board * processors_per_board + 0 >= limit_id) {
 435       board = 0;
 436     }
 437   }
 438   if (available_id != NULL) {
 439     FREE_C_HEAP_ARRAY(bool, available_id);
 440   }
 441   return true;
 442 }
 443 
 444 void os::set_native_thread_name(const char *name) {
 445   if (Solaris::_pthread_setname_np != NULL) {
 446     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 447     // but we explicitly copy into a size-limited buffer to avoid any
 448     // possible overflow.
 449     char buf[32];
 450     snprintf(buf, sizeof(buf), "%s", name);
 451     buf[sizeof(buf) - 1] = '\0';
 452     Solaris::_pthread_setname_np(pthread_self(), buf);
 453   }
 454 }
 455 
 456 bool os::distribute_processes(uint length, uint* distribution) {
 457   bool result = false;
 458   // Find the processor id's of all the available CPUs.
 459   processorid_t* id_array  = NULL;
 460   uint           id_length = 0;
 461   // There are some races between querying information and using it,
 462   // since processor sets can change dynamically.
 463   psetid_t pset = PS_NONE;
 464   // Are we running in a processor set?
 465   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 466     result = find_processors_in_pset(pset, &id_array, &id_length);
 467   } else {
 468     result = find_processors_online(&id_array, &id_length);
 469   }
 470   if (result == true) {
 471     if (id_length >= length) {
 472       result = assign_distribution(id_array, id_length, distribution, length);
 473     } else {
 474       result = false;
 475     }
 476   }
 477   if (id_array != NULL) {
 478     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 479   }
 480   return result;
 481 }
 482 
 483 bool os::bind_to_processor(uint processor_id) {
 484   // We assume that a processorid_t can be stored in a uint.
 485   assert(sizeof(uint) == sizeof(processorid_t),
 486          "can't convert uint to processorid_t");
 487   int bind_result =
 488     processor_bind(P_LWPID,                       // bind LWP.
 489                    P_MYID,                        // bind current LWP.
 490                    (processorid_t) processor_id,  // id.
 491                    NULL);                         // don't return old binding.
 492   return (bind_result == 0);
 493 }
 494 
 495 // Return true if user is running as root.
 496 
 497 bool os::have_special_privileges() {
 498   static bool init = false;
 499   static bool privileges = false;
 500   if (!init) {
 501     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 502     init = true;
 503   }
 504   return privileges;
 505 }
 506 
 507 
 508 void os::init_system_properties_values() {
 509   // The next steps are taken in the product version:
 510   //
 511   // Obtain the JAVA_HOME value from the location of libjvm.so.
 512   // This library should be located at:
 513   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 514   //
 515   // If "/jre/lib/" appears at the right place in the path, then we
 516   // assume libjvm.so is installed in a JDK and we use this path.
 517   //
 518   // Otherwise exit with message: "Could not create the Java virtual machine."
 519   //
 520   // The following extra steps are taken in the debugging version:
 521   //
 522   // If "/jre/lib/" does NOT appear at the right place in the path
 523   // instead of exit check for $JAVA_HOME environment variable.
 524   //
 525   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 526   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 527   // it looks like libjvm.so is installed there
 528   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 529   //
 530   // Otherwise exit.
 531   //
 532   // Important note: if the location of libjvm.so changes this
 533   // code needs to be changed accordingly.
 534 
 535 // Base path of extensions installed on the system.
 536 #define SYS_EXT_DIR     "/usr/jdk/packages"
 537 #define EXTENSIONS_DIR  "/lib/ext"
 538 
 539   char cpu_arch[12];
 540   // Buffer that fits several sprintfs.
 541   // Note that the space for the colon and the trailing null are provided
 542   // by the nulls included by the sizeof operator.
 543   const size_t bufsize =
 544     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 545          sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
 546          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 547   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 548 
 549   // sysclasspath, java_home, dll_dir
 550   {
 551     char *pslash;
 552     os::jvm_path(buf, bufsize);
 553 
 554     // Found the full path to libjvm.so.
 555     // Now cut the path to <java_home>/jre if we can.
 556     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 557     pslash = strrchr(buf, '/');
 558     if (pslash != NULL) {
 559       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 560     }
 561     Arguments::set_dll_dir(buf);
 562 
 563     if (pslash != NULL) {
 564       pslash = strrchr(buf, '/');
 565       if (pslash != NULL) {
 566         *pslash = '\0';          // Get rid of /<arch>.
 567         pslash = strrchr(buf, '/');
 568         if (pslash != NULL) {
 569           *pslash = '\0';        // Get rid of /lib.
 570         }
 571       }
 572     }
 573     Arguments::set_java_home(buf);
 574     set_boot_path('/', ':');
 575   }
 576 
 577   // Where to look for native libraries.
 578   {
 579     // Use dlinfo() to determine the correct java.library.path.
 580     //
 581     // If we're launched by the Java launcher, and the user
 582     // does not set java.library.path explicitly on the commandline,
 583     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 584     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 585     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 586     // /usr/lib), which is exactly what we want.
 587     //
 588     // If the user does set java.library.path, it completely
 589     // overwrites this setting, and always has.
 590     //
 591     // If we're not launched by the Java launcher, we may
 592     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 593     // settings.  Again, dlinfo does exactly what we want.
 594 
 595     Dl_serinfo     info_sz, *info = &info_sz;
 596     Dl_serpath     *path;
 597     char           *library_path;
 598     char           *common_path = buf;
 599 
 600     // Determine search path count and required buffer size.
 601     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 602       FREE_C_HEAP_ARRAY(char, buf);
 603       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 604     }
 605 
 606     // Allocate new buffer and initialize.
 607     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 608     info->dls_size = info_sz.dls_size;
 609     info->dls_cnt = info_sz.dls_cnt;
 610 
 611     // Obtain search path information.
 612     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 613       FREE_C_HEAP_ARRAY(char, buf);
 614       FREE_C_HEAP_ARRAY(char, info);
 615       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 616     }
 617 
 618     path = &info->dls_serpath[0];
 619 
 620     // Note: Due to a legacy implementation, most of the library path
 621     // is set in the launcher. This was to accomodate linking restrictions
 622     // on legacy Solaris implementations (which are no longer supported).
 623     // Eventually, all the library path setting will be done here.
 624     //
 625     // However, to prevent the proliferation of improperly built native
 626     // libraries, the new path component /usr/jdk/packages is added here.
 627 
 628     // Determine the actual CPU architecture.
 629     sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
 630 #ifdef _LP64
 631     // If we are a 64-bit vm, perform the following translations:
 632     //   sparc   -> sparcv9
 633     //   i386    -> amd64
 634     if (strcmp(cpu_arch, "sparc") == 0) {
 635       strcat(cpu_arch, "v9");
 636     } else if (strcmp(cpu_arch, "i386") == 0) {
 637       strcpy(cpu_arch, "amd64");
 638     }
 639 #endif
 640 
 641     // Construct the invariant part of ld_library_path.
 642     sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
 643 
 644     // Struct size is more than sufficient for the path components obtained
 645     // through the dlinfo() call, so only add additional space for the path
 646     // components explicitly added here.
 647     size_t library_path_size = info->dls_size + strlen(common_path);
 648     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 649     library_path[0] = '\0';
 650 
 651     // Construct the desired Java library path from the linker's library
 652     // search path.
 653     //
 654     // For compatibility, it is optimal that we insert the additional path
 655     // components specific to the Java VM after those components specified
 656     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 657     // infrastructure.
 658     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 659       strcpy(library_path, common_path);
 660     } else {
 661       int inserted = 0;
 662       int i;
 663       for (i = 0; i < info->dls_cnt; i++, path++) {
 664         uint_t flags = path->dls_flags & LA_SER_MASK;
 665         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 666           strcat(library_path, common_path);
 667           strcat(library_path, os::path_separator());
 668           inserted = 1;
 669         }
 670         strcat(library_path, path->dls_name);
 671         strcat(library_path, os::path_separator());
 672       }
 673       // Eliminate trailing path separator.
 674       library_path[strlen(library_path)-1] = '\0';
 675     }
 676 
 677     // happens before argument parsing - can't use a trace flag
 678     // tty->print_raw("init_system_properties_values: native lib path: ");
 679     // tty->print_raw_cr(library_path);
 680 
 681     // Callee copies into its own buffer.
 682     Arguments::set_library_path(library_path);
 683 
 684     FREE_C_HEAP_ARRAY(char, library_path);
 685     FREE_C_HEAP_ARRAY(char, info);
 686   }
 687 
 688   // Extensions directories.
 689   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 690   Arguments::set_ext_dirs(buf);
 691 
 692   FREE_C_HEAP_ARRAY(char, buf);
 693 
 694 #undef SYS_EXT_DIR
 695 #undef EXTENSIONS_DIR
 696 }
 697 
 698 void os::breakpoint() {
 699   BREAKPOINT;
 700 }
 701 
 702 bool os::obsolete_option(const JavaVMOption *option) {
 703   if (!strncmp(option->optionString, "-Xt", 3)) {
 704     return true;
 705   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
 706     return true;
 707   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
 708     return true;
 709   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
 710     return true;
 711   }
 712   return false;
 713 }
 714 
 715 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 716   address  stackStart  = (address)thread->stack_base();
 717   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 718   if (sp < stackStart && sp >= stackEnd) return true;
 719   return false;
 720 }
 721 
 722 extern "C" void breakpoint() {
 723   // use debugger to set breakpoint here
 724 }
 725 
 726 static thread_t main_thread;
 727 
 728 // Thread start routine for all new Java threads
 729 extern "C" void* java_start(void* thread_addr) {
 730   // Try to randomize the cache line index of hot stack frames.
 731   // This helps when threads of the same stack traces evict each other's
 732   // cache lines. The threads can be either from the same JVM instance, or
 733   // from different JVM instances. The benefit is especially true for
 734   // processors with hyperthreading technology.
 735   static int counter = 0;
 736   int pid = os::current_process_id();
 737   alloca(((pid ^ counter++) & 7) * 128);
 738 
 739   int prio;
 740   Thread* thread = (Thread*)thread_addr;
 741 
 742   thread->initialize_thread_current();
 743 
 744   OSThread* osthr = thread->osthread();
 745 
 746   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 747   thread->_schedctl = (void *) schedctl_init();
 748 
 749   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 750     os::current_thread_id());
 751 
 752   if (UseNUMA) {
 753     int lgrp_id = os::numa_get_group_id();
 754     if (lgrp_id != -1) {
 755       thread->set_lgrp_id(lgrp_id);
 756     }
 757   }
 758 
 759   // If the creator called set priority before we started,
 760   // we need to call set_native_priority now that we have an lwp.
 761   // We used to get the priority from thr_getprio (we called
 762   // thr_setprio way back in create_thread) and pass it to
 763   // set_native_priority, but Solaris scales the priority
 764   // in java_to_os_priority, so when we read it back here,
 765   // we pass trash to set_native_priority instead of what's
 766   // in java_to_os_priority. So we save the native priority
 767   // in the osThread and recall it here.
 768 
 769   if (osthr->thread_id() != -1) {
 770     if (UseThreadPriorities) {
 771       int prio = osthr->native_priority();
 772       if (ThreadPriorityVerbose) {
 773         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 774                       INTPTR_FORMAT ", setting priority: %d\n",
 775                       osthr->thread_id(), osthr->lwp_id(), prio);
 776       }
 777       os::set_native_priority(thread, prio);
 778     }
 779   } else if (ThreadPriorityVerbose) {
 780     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 781   }
 782 
 783   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 784 
 785   // initialize signal mask for this thread
 786   os::Solaris::hotspot_sigmask(thread);
 787 
 788   thread->run();
 789 
 790   // One less thread is executing
 791   // When the VMThread gets here, the main thread may have already exited
 792   // which frees the CodeHeap containing the Atomic::dec code
 793   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 794     Atomic::dec(&os::Solaris::_os_thread_count);
 795   }
 796 
 797   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 798 
 799   if (UseDetachedThreads) {
 800     thr_exit(NULL);
 801     ShouldNotReachHere();
 802   }
 803   return NULL;
 804 }
 805 
 806 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 807   // Allocate the OSThread object
 808   OSThread* osthread = new OSThread(NULL, NULL);
 809   if (osthread == NULL) return NULL;
 810 
 811   // Store info on the Solaris thread into the OSThread
 812   osthread->set_thread_id(thread_id);
 813   osthread->set_lwp_id(_lwp_self());
 814   thread->_schedctl = (void *) schedctl_init();
 815 
 816   if (UseNUMA) {
 817     int lgrp_id = os::numa_get_group_id();
 818     if (lgrp_id != -1) {
 819       thread->set_lgrp_id(lgrp_id);
 820     }
 821   }
 822 
 823   if (ThreadPriorityVerbose) {
 824     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 825                   osthread->thread_id(), osthread->lwp_id());
 826   }
 827 
 828   // Initial thread state is INITIALIZED, not SUSPENDED
 829   osthread->set_state(INITIALIZED);
 830 
 831   return osthread;
 832 }
 833 
 834 void os::Solaris::hotspot_sigmask(Thread* thread) {
 835   //Save caller's signal mask
 836   sigset_t sigmask;
 837   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 838   OSThread *osthread = thread->osthread();
 839   osthread->set_caller_sigmask(sigmask);
 840 
 841   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 842   if (!ReduceSignalUsage) {
 843     if (thread->is_VM_thread()) {
 844       // Only the VM thread handles BREAK_SIGNAL ...
 845       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 846     } else {
 847       // ... all other threads block BREAK_SIGNAL
 848       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 849       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 850     }
 851   }
 852 }
 853 
 854 bool os::create_attached_thread(JavaThread* thread) {
 855 #ifdef ASSERT
 856   thread->verify_not_published();
 857 #endif
 858   OSThread* osthread = create_os_thread(thread, thr_self());
 859   if (osthread == NULL) {
 860     return false;
 861   }
 862 
 863   // Initial thread state is RUNNABLE
 864   osthread->set_state(RUNNABLE);
 865   thread->set_osthread(osthread);
 866 
 867   // initialize signal mask for this thread
 868   // and save the caller's signal mask
 869   os::Solaris::hotspot_sigmask(thread);
 870 
 871   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 872     os::current_thread_id());
 873 
 874   return true;
 875 }
 876 
 877 bool os::create_main_thread(JavaThread* thread) {
 878 #ifdef ASSERT
 879   thread->verify_not_published();
 880 #endif
 881   if (_starting_thread == NULL) {
 882     _starting_thread = create_os_thread(thread, main_thread);
 883     if (_starting_thread == NULL) {
 884       return false;
 885     }
 886   }
 887 
 888   // The primodial thread is runnable from the start
 889   _starting_thread->set_state(RUNNABLE);
 890 
 891   thread->set_osthread(_starting_thread);
 892 
 893   // initialize signal mask for this thread
 894   // and save the caller's signal mask
 895   os::Solaris::hotspot_sigmask(thread);
 896 
 897   return true;
 898 }
 899 
 900 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 901 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 902                                             size_t stacksize, long flags) {
 903   stringStream ss(buf, buflen);
 904   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 905   ss.print("flags: ");
 906   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 907   #define ALL(X) \
 908     X(THR_SUSPENDED) \
 909     X(THR_DETACHED) \
 910     X(THR_BOUND) \
 911     X(THR_NEW_LWP) \
 912     X(THR_DAEMON)
 913   ALL(PRINT_FLAG)
 914   #undef ALL
 915   #undef PRINT_FLAG
 916   return buf;
 917 }
 918 
 919 bool os::create_thread(Thread* thread, ThreadType thr_type,
 920                        size_t stack_size) {
 921   // Allocate the OSThread object
 922   OSThread* osthread = new OSThread(NULL, NULL);
 923   if (osthread == NULL) {
 924     return false;
 925   }
 926 
 927   if (ThreadPriorityVerbose) {
 928     char *thrtyp;
 929     switch (thr_type) {
 930     case vm_thread:
 931       thrtyp = (char *)"vm";
 932       break;
 933     case cgc_thread:
 934       thrtyp = (char *)"cgc";
 935       break;
 936     case pgc_thread:
 937       thrtyp = (char *)"pgc";
 938       break;
 939     case java_thread:
 940       thrtyp = (char *)"java";
 941       break;
 942     case compiler_thread:
 943       thrtyp = (char *)"compiler";
 944       break;
 945     case watcher_thread:
 946       thrtyp = (char *)"watcher";
 947       break;
 948     default:
 949       thrtyp = (char *)"unknown";
 950       break;
 951     }
 952     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 953   }
 954 
 955   // Calculate stack size if it's not specified by caller.
 956   if (stack_size == 0) {
 957     // The default stack size 1M (2M for LP64).
 958     stack_size = (BytesPerWord >> 2) * K * K;
 959 
 960     switch (thr_type) {
 961     case os::java_thread:
 962       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 963       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
 964       break;
 965     case os::compiler_thread:
 966       if (CompilerThreadStackSize > 0) {
 967         stack_size = (size_t)(CompilerThreadStackSize * K);
 968         break;
 969       } // else fall through:
 970         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 971     case os::vm_thread:
 972     case os::pgc_thread:
 973     case os::cgc_thread:
 974     case os::watcher_thread:
 975       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 976       break;
 977     }
 978   }
 979   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
 980 
 981   // Initial state is ALLOCATED but not INITIALIZED
 982   osthread->set_state(ALLOCATED);
 983 
 984   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 985     // We got lots of threads. Check if we still have some address space left.
 986     // Need to be at least 5Mb of unreserved address space. We do check by
 987     // trying to reserve some.
 988     const size_t VirtualMemoryBangSize = 20*K*K;
 989     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 990     if (mem == NULL) {
 991       delete osthread;
 992       return false;
 993     } else {
 994       // Release the memory again
 995       os::release_memory(mem, VirtualMemoryBangSize);
 996     }
 997   }
 998 
 999   // Setup osthread because the child thread may need it.
1000   thread->set_osthread(osthread);
1001 
1002   // Create the Solaris thread
1003   thread_t tid = 0;
1004   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
1005   int      status;
1006 
1007   // Mark that we don't have an lwp or thread id yet.
1008   // In case we attempt to set the priority before the thread starts.
1009   osthread->set_lwp_id(-1);
1010   osthread->set_thread_id(-1);
1011 
1012   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1013 
1014   char buf[64];
1015   if (status == 0) {
1016     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
1017       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1018   } else {
1019     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
1020       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1021   }
1022 
1023   if (status != 0) {
1024     thread->set_osthread(NULL);
1025     // Need to clean up stuff we've allocated so far
1026     delete osthread;
1027     return false;
1028   }
1029 
1030   Atomic::inc(&os::Solaris::_os_thread_count);
1031 
1032   // Store info on the Solaris thread into the OSThread
1033   osthread->set_thread_id(tid);
1034 
1035   // Remember that we created this thread so we can set priority on it
1036   osthread->set_vm_created();
1037 
1038   // Initial thread state is INITIALIZED, not SUSPENDED
1039   osthread->set_state(INITIALIZED);
1040 
1041   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1042   return true;
1043 }
1044 
1045 // defined for >= Solaris 10. This allows builds on earlier versions
1046 // of Solaris to take advantage of the newly reserved Solaris JVM signals.
1047 // With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1048 // was SIGJVM1.
1049 //
1050 #if !defined(SIGJVM1)
1051   #define SIGJVM1 39
1052   #define SIGJVM2 40
1053 #endif
1054 
1055 debug_only(static bool signal_sets_initialized = false);
1056 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1057 
1058 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1059 
1060 bool os::Solaris::is_sig_ignored(int sig) {
1061   struct sigaction oact;
1062   sigaction(sig, (struct sigaction*)NULL, &oact);
1063   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1064                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1065   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1066     return true;
1067   } else {
1068     return false;
1069   }
1070 }
1071 
1072 // Note: SIGRTMIN is a macro that calls sysconf() so it will
1073 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1074 static bool isJVM1available() {
1075   return SIGJVM1 < SIGRTMIN;
1076 }
1077 
1078 void os::Solaris::signal_sets_init() {
1079   // Should also have an assertion stating we are still single-threaded.
1080   assert(!signal_sets_initialized, "Already initialized");
1081   // Fill in signals that are necessarily unblocked for all threads in
1082   // the VM. Currently, we unblock the following signals:
1083   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1084   //                         by -Xrs (=ReduceSignalUsage));
1085   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1086   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1087   // the dispositions or masks wrt these signals.
1088   // Programs embedding the VM that want to use the above signals for their
1089   // own purposes must, at this time, use the "-Xrs" option to prevent
1090   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1091   // (See bug 4345157, and other related bugs).
1092   // In reality, though, unblocking these signals is really a nop, since
1093   // these signals are not blocked by default.
1094   sigemptyset(&unblocked_sigs);
1095   sigemptyset(&allowdebug_blocked_sigs);
1096   sigaddset(&unblocked_sigs, SIGILL);
1097   sigaddset(&unblocked_sigs, SIGSEGV);
1098   sigaddset(&unblocked_sigs, SIGBUS);
1099   sigaddset(&unblocked_sigs, SIGFPE);
1100 
1101   // Always true on Solaris 10+
1102   guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1103   os::Solaris::set_SIGasync(SIGJVM2);
1104 
1105   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1106 
1107   if (!ReduceSignalUsage) {
1108     if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1109       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1110       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1111     }
1112     if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1113       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1114       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1115     }
1116     if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1117       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1118       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1119     }
1120   }
1121   // Fill in signals that are blocked by all but the VM thread.
1122   sigemptyset(&vm_sigs);
1123   if (!ReduceSignalUsage) {
1124     sigaddset(&vm_sigs, BREAK_SIGNAL);
1125   }
1126   debug_only(signal_sets_initialized = true);
1127 
1128   // For diagnostics only used in run_periodic_checks
1129   sigemptyset(&check_signal_done);
1130 }
1131 
1132 // These are signals that are unblocked while a thread is running Java.
1133 // (For some reason, they get blocked by default.)
1134 sigset_t* os::Solaris::unblocked_signals() {
1135   assert(signal_sets_initialized, "Not initialized");
1136   return &unblocked_sigs;
1137 }
1138 
1139 // These are the signals that are blocked while a (non-VM) thread is
1140 // running Java. Only the VM thread handles these signals.
1141 sigset_t* os::Solaris::vm_signals() {
1142   assert(signal_sets_initialized, "Not initialized");
1143   return &vm_sigs;
1144 }
1145 
1146 // These are signals that are blocked during cond_wait to allow debugger in
1147 sigset_t* os::Solaris::allowdebug_blocked_signals() {
1148   assert(signal_sets_initialized, "Not initialized");
1149   return &allowdebug_blocked_sigs;
1150 }
1151 
1152 
1153 void _handle_uncaught_cxx_exception() {
1154   VMError::report_and_die("An uncaught C++ exception");
1155 }
1156 
1157 
1158 // First crack at OS-specific initialization, from inside the new thread.
1159 void os::initialize_thread(Thread* thr) {
1160   int r = thr_main();
1161   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1162   if (r) {
1163     JavaThread* jt = (JavaThread *)thr;
1164     assert(jt != NULL, "Sanity check");
1165     size_t stack_size;
1166     address base = jt->stack_base();
1167     if (Arguments::created_by_java_launcher()) {
1168       // Use 2MB to allow for Solaris 7 64 bit mode.
1169       stack_size = JavaThread::stack_size_at_create() == 0
1170         ? 2048*K : JavaThread::stack_size_at_create();
1171 
1172       // There are rare cases when we may have already used more than
1173       // the basic stack size allotment before this method is invoked.
1174       // Attempt to allow for a normally sized java_stack.
1175       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1176       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1177     } else {
1178       // 6269555: If we were not created by a Java launcher, i.e. if we are
1179       // running embedded in a native application, treat the primordial thread
1180       // as much like a native attached thread as possible.  This means using
1181       // the current stack size from thr_stksegment(), unless it is too large
1182       // to reliably setup guard pages.  A reasonable max size is 8MB.
1183       size_t current_size = current_stack_size();
1184       // This should never happen, but just in case....
1185       if (current_size == 0) current_size = 2 * K * K;
1186       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1187     }
1188     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1189     stack_size = (size_t)(base - bottom);
1190 
1191     assert(stack_size > 0, "Stack size calculation problem");
1192 
1193     if (stack_size > jt->stack_size()) {
1194 #ifndef PRODUCT
1195       struct rlimit limits;
1196       getrlimit(RLIMIT_STACK, &limits);
1197       size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1198       assert(size >= jt->stack_size(), "Stack size problem in main thread");
1199 #endif
1200       tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1201                     "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1202                     "See limit(1) to increase the stack size limit.",
1203                     stack_size / K, jt->stack_size() / K);
1204       vm_exit(1);
1205     }
1206     assert(jt->stack_size() >= stack_size,
1207            "Attempt to map more stack than was allocated");
1208     jt->set_stack_size(stack_size);
1209   }
1210 
1211   // With the T2 libthread (T1 is no longer supported) threads are always bound
1212   // and we use stackbanging in all cases.
1213 
1214   os::Solaris::init_thread_fpu_state();
1215   std::set_terminate(_handle_uncaught_cxx_exception);
1216 }
1217 
1218 
1219 
1220 // Free Solaris resources related to the OSThread
1221 void os::free_thread(OSThread* osthread) {
1222   assert(osthread != NULL, "os::free_thread but osthread not set");
1223 
1224 
1225   // We are told to free resources of the argument thread,
1226   // but we can only really operate on the current thread.
1227   // The main thread must take the VMThread down synchronously
1228   // before the main thread exits and frees up CodeHeap
1229   guarantee((Thread::current()->osthread() == osthread
1230              || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1231   if (Thread::current()->osthread() == osthread) {
1232     // Restore caller's signal mask
1233     sigset_t sigmask = osthread->caller_sigmask();
1234     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1235   }
1236   delete osthread;
1237 }
1238 
1239 void os::pd_start_thread(Thread* thread) {
1240   int status = thr_continue(thread->osthread()->thread_id());
1241   assert_status(status == 0, status, "thr_continue failed");
1242 }
1243 
1244 
1245 intx os::current_thread_id() {
1246   return (intx)thr_self();
1247 }
1248 
1249 static pid_t _initial_pid = 0;
1250 
1251 int os::current_process_id() {
1252   return (int)(_initial_pid ? _initial_pid : getpid());
1253 }
1254 
1255 // gethrtime() should be monotonic according to the documentation,
1256 // but some virtualized platforms are known to break this guarantee.
1257 // getTimeNanos() must be guaranteed not to move backwards, so we
1258 // are forced to add a check here.
1259 inline hrtime_t getTimeNanos() {
1260   const hrtime_t now = gethrtime();
1261   const hrtime_t prev = max_hrtime;
1262   if (now <= prev) {
1263     return prev;   // same or retrograde time;
1264   }
1265   const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1266   assert(obsv >= prev, "invariant");   // Monotonicity
1267   // If the CAS succeeded then we're done and return "now".
1268   // If the CAS failed and the observed value "obsv" is >= now then
1269   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1270   // some other thread raced this thread and installed a new value, in which case
1271   // we could either (a) retry the entire operation, (b) retry trying to install now
1272   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1273   // we might discard a higher "now" value in deference to a slightly lower but freshly
1274   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1275   // to (a) or (b) -- and greatly reduces coherence traffic.
1276   // We might also condition (c) on the magnitude of the delta between obsv and now.
1277   // Avoiding excessive CAS operations to hot RW locations is critical.
1278   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1279   return (prev == obsv) ? now : obsv;
1280 }
1281 
1282 // Time since start-up in seconds to a fine granularity.
1283 // Used by VMSelfDestructTimer and the MemProfiler.
1284 double os::elapsedTime() {
1285   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1286 }
1287 
1288 jlong os::elapsed_counter() {
1289   return (jlong)(getTimeNanos() - first_hrtime);
1290 }
1291 
1292 jlong os::elapsed_frequency() {
1293   return hrtime_hz;
1294 }
1295 
1296 // Return the real, user, and system times in seconds from an
1297 // arbitrary fixed point in the past.
1298 bool os::getTimesSecs(double* process_real_time,
1299                       double* process_user_time,
1300                       double* process_system_time) {
1301   struct tms ticks;
1302   clock_t real_ticks = times(&ticks);
1303 
1304   if (real_ticks == (clock_t) (-1)) {
1305     return false;
1306   } else {
1307     double ticks_per_second = (double) clock_tics_per_sec;
1308     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1309     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1310     // For consistency return the real time from getTimeNanos()
1311     // converted to seconds.
1312     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1313 
1314     return true;
1315   }
1316 }
1317 
1318 bool os::supports_vtime() { return true; }
1319 
1320 bool os::enable_vtime() {
1321   int fd = ::open("/proc/self/ctl", O_WRONLY);
1322   if (fd == -1) {
1323     return false;
1324   }
1325 
1326   long cmd[] = { PCSET, PR_MSACCT };
1327   int res = ::write(fd, cmd, sizeof(long) * 2);
1328   ::close(fd);
1329   if (res != sizeof(long) * 2) {
1330     return false;
1331   }
1332   return true;
1333 }
1334 
1335 bool os::vtime_enabled() {
1336   int fd = ::open("/proc/self/status", O_RDONLY);
1337   if (fd == -1) {
1338     return false;
1339   }
1340 
1341   pstatus_t status;
1342   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1343   ::close(fd);
1344   if (res != sizeof(pstatus_t)) {
1345     return false;
1346   }
1347   return status.pr_flags & PR_MSACCT;
1348 }
1349 
1350 double os::elapsedVTime() {
1351   return (double)gethrvtime() / (double)hrtime_hz;
1352 }
1353 
1354 // Used internally for comparisons only
1355 // getTimeMillis guaranteed to not move backwards on Solaris
1356 jlong getTimeMillis() {
1357   jlong nanotime = getTimeNanos();
1358   return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1359 }
1360 
1361 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1362 jlong os::javaTimeMillis() {
1363   timeval t;
1364   if (gettimeofday(&t, NULL) == -1) {
1365     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1366   }
1367   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1368 }
1369 
1370 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1371   timeval t;
1372   if (gettimeofday(&t, NULL) == -1) {
1373     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1374   }
1375   seconds = jlong(t.tv_sec);
1376   nanos = jlong(t.tv_usec) * 1000;
1377 }
1378 
1379 
1380 jlong os::javaTimeNanos() {
1381   return (jlong)getTimeNanos();
1382 }
1383 
1384 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1385   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1386   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1387   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1388   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1389 }
1390 
1391 char * os::local_time_string(char *buf, size_t buflen) {
1392   struct tm t;
1393   time_t long_time;
1394   time(&long_time);
1395   localtime_r(&long_time, &t);
1396   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1397                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1398                t.tm_hour, t.tm_min, t.tm_sec);
1399   return buf;
1400 }
1401 
1402 // Note: os::shutdown() might be called very early during initialization, or
1403 // called from signal handler. Before adding something to os::shutdown(), make
1404 // sure it is async-safe and can handle partially initialized VM.
1405 void os::shutdown() {
1406 
1407   // allow PerfMemory to attempt cleanup of any persistent resources
1408   perfMemory_exit();
1409 
1410   // needs to remove object in file system
1411   AttachListener::abort();
1412 
1413   // flush buffered output, finish log files
1414   ostream_abort();
1415 
1416   // Check for abort hook
1417   abort_hook_t abort_hook = Arguments::abort_hook();
1418   if (abort_hook != NULL) {
1419     abort_hook();
1420   }
1421 }
1422 
1423 // Note: os::abort() might be called very early during initialization, or
1424 // called from signal handler. Before adding something to os::abort(), make
1425 // sure it is async-safe and can handle partially initialized VM.
1426 void os::abort(bool dump_core, void* siginfo, const void* context) {
1427   os::shutdown();
1428   if (dump_core) {
1429 #ifndef PRODUCT
1430     fdStream out(defaultStream::output_fd());
1431     out.print_raw("Current thread is ");
1432     char buf[16];
1433     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1434     out.print_raw_cr(buf);
1435     out.print_raw_cr("Dumping core ...");
1436 #endif
1437     ::abort(); // dump core (for debugging)
1438   }
1439 
1440   ::exit(1);
1441 }
1442 
1443 // Die immediately, no exit hook, no abort hook, no cleanup.
1444 void os::die() {
1445   ::abort(); // dump core (for debugging)
1446 }
1447 
1448 // DLL functions
1449 
1450 const char* os::dll_file_extension() { return ".so"; }
1451 
1452 // This must be hard coded because it's the system's temporary
1453 // directory not the java application's temp directory, ala java.io.tmpdir.
1454 const char* os::get_temp_directory() { return "/tmp"; }
1455 
1456 static bool file_exists(const char* filename) {
1457   struct stat statbuf;
1458   if (filename == NULL || strlen(filename) == 0) {
1459     return false;
1460   }
1461   return os::stat(filename, &statbuf) == 0;
1462 }
1463 
1464 bool os::dll_build_name(char* buffer, size_t buflen,
1465                         const char* pname, const char* fname) {
1466   bool retval = false;
1467   const size_t pnamelen = pname ? strlen(pname) : 0;
1468 
1469   // Return error on buffer overflow.
1470   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1471     return retval;
1472   }
1473 
1474   if (pnamelen == 0) {
1475     snprintf(buffer, buflen, "lib%s.so", fname);
1476     retval = true;
1477   } else if (strchr(pname, *os::path_separator()) != NULL) {
1478     int n;
1479     char** pelements = split_path(pname, &n);
1480     if (pelements == NULL) {
1481       return false;
1482     }
1483     for (int i = 0; i < n; i++) {
1484       // really shouldn't be NULL but what the heck, check can't hurt
1485       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1486         continue; // skip the empty path values
1487       }
1488       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1489       if (file_exists(buffer)) {
1490         retval = true;
1491         break;
1492       }
1493     }
1494     // release the storage
1495     for (int i = 0; i < n; i++) {
1496       if (pelements[i] != NULL) {
1497         FREE_C_HEAP_ARRAY(char, pelements[i]);
1498       }
1499     }
1500     if (pelements != NULL) {
1501       FREE_C_HEAP_ARRAY(char*, pelements);
1502     }
1503   } else {
1504     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1505     retval = true;
1506   }
1507   return retval;
1508 }
1509 
1510 // check if addr is inside libjvm.so
1511 bool os::address_is_in_vm(address addr) {
1512   static address libjvm_base_addr;
1513   Dl_info dlinfo;
1514 
1515   if (libjvm_base_addr == NULL) {
1516     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1517       libjvm_base_addr = (address)dlinfo.dli_fbase;
1518     }
1519     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1520   }
1521 
1522   if (dladdr((void *)addr, &dlinfo) != 0) {
1523     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1524   }
1525 
1526   return false;
1527 }
1528 
1529 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1530 static dladdr1_func_type dladdr1_func = NULL;
1531 
1532 bool os::dll_address_to_function_name(address addr, char *buf,
1533                                       int buflen, int * offset,
1534                                       bool demangle) {
1535   // buf is not optional, but offset is optional
1536   assert(buf != NULL, "sanity check");
1537 
1538   Dl_info dlinfo;
1539 
1540   // dladdr1_func was initialized in os::init()
1541   if (dladdr1_func != NULL) {
1542     // yes, we have dladdr1
1543 
1544     // Support for dladdr1 is checked at runtime; it may be
1545     // available even if the vm is built on a machine that does
1546     // not have dladdr1 support.  Make sure there is a value for
1547     // RTLD_DL_SYMENT.
1548 #ifndef RTLD_DL_SYMENT
1549   #define RTLD_DL_SYMENT 1
1550 #endif
1551 #ifdef _LP64
1552     Elf64_Sym * info;
1553 #else
1554     Elf32_Sym * info;
1555 #endif
1556     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1557                      RTLD_DL_SYMENT) != 0) {
1558       // see if we have a matching symbol that covers our address
1559       if (dlinfo.dli_saddr != NULL &&
1560           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1561         if (dlinfo.dli_sname != NULL) {
1562           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1563             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1564           }
1565           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1566           return true;
1567         }
1568       }
1569       // no matching symbol so try for just file info
1570       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1571         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1572                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1573           return true;
1574         }
1575       }
1576     }
1577     buf[0] = '\0';
1578     if (offset != NULL) *offset  = -1;
1579     return false;
1580   }
1581 
1582   // no, only dladdr is available
1583   if (dladdr((void *)addr, &dlinfo) != 0) {
1584     // see if we have a matching symbol
1585     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1586       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1587         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1588       }
1589       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1590       return true;
1591     }
1592     // no matching symbol so try for just file info
1593     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1594       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1595                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1596         return true;
1597       }
1598     }
1599   }
1600   buf[0] = '\0';
1601   if (offset != NULL) *offset  = -1;
1602   return false;
1603 }
1604 
1605 bool os::dll_address_to_library_name(address addr, char* buf,
1606                                      int buflen, int* offset) {
1607   // buf is not optional, but offset is optional
1608   assert(buf != NULL, "sanity check");
1609 
1610   Dl_info dlinfo;
1611 
1612   if (dladdr((void*)addr, &dlinfo) != 0) {
1613     if (dlinfo.dli_fname != NULL) {
1614       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1615     }
1616     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1617       *offset = addr - (address)dlinfo.dli_fbase;
1618     }
1619     return true;
1620   }
1621 
1622   buf[0] = '\0';
1623   if (offset) *offset = -1;
1624   return false;
1625 }
1626 
1627 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1628   Dl_info dli;
1629   // Sanity check?
1630   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1631       dli.dli_fname == NULL) {
1632     return 1;
1633   }
1634 
1635   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1636   if (handle == NULL) {
1637     return 1;
1638   }
1639 
1640   Link_map *map;
1641   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1642   if (map == NULL) {
1643     dlclose(handle);
1644     return 1;
1645   }
1646 
1647   while (map->l_prev != NULL) {
1648     map = map->l_prev;
1649   }
1650 
1651   while (map != NULL) {
1652     // Iterate through all map entries and call callback with fields of interest
1653     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1654       dlclose(handle);
1655       return 1;
1656     }
1657     map = map->l_next;
1658   }
1659 
1660   dlclose(handle);
1661   return 0;
1662 }
1663 
1664 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1665   outputStream * out = (outputStream *) param;
1666   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1667   return 0;
1668 }
1669 
1670 void os::print_dll_info(outputStream * st) {
1671   st->print_cr("Dynamic libraries:"); st->flush();
1672   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1673     st->print_cr("Error: Cannot print dynamic libraries.");
1674   }
1675 }
1676 
1677 // Loads .dll/.so and
1678 // in case of error it checks if .dll/.so was built for the
1679 // same architecture as Hotspot is running on
1680 
1681 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1682   void * result= ::dlopen(filename, RTLD_LAZY);
1683   if (result != NULL) {
1684     // Successful loading
1685     return result;
1686   }
1687 
1688   Elf32_Ehdr elf_head;
1689 
1690   // Read system error message into ebuf
1691   // It may or may not be overwritten below
1692   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1693   ebuf[ebuflen-1]='\0';
1694   int diag_msg_max_length=ebuflen-strlen(ebuf);
1695   char* diag_msg_buf=ebuf+strlen(ebuf);
1696 
1697   if (diag_msg_max_length==0) {
1698     // No more space in ebuf for additional diagnostics message
1699     return NULL;
1700   }
1701 
1702 
1703   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1704 
1705   if (file_descriptor < 0) {
1706     // Can't open library, report dlerror() message
1707     return NULL;
1708   }
1709 
1710   bool failed_to_read_elf_head=
1711     (sizeof(elf_head)!=
1712      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1713 
1714   ::close(file_descriptor);
1715   if (failed_to_read_elf_head) {
1716     // file i/o error - report dlerror() msg
1717     return NULL;
1718   }
1719 
1720   typedef struct {
1721     Elf32_Half  code;         // Actual value as defined in elf.h
1722     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1723     char        elf_class;    // 32 or 64 bit
1724     char        endianess;    // MSB or LSB
1725     char*       name;         // String representation
1726   } arch_t;
1727 
1728   static const arch_t arch_array[]={
1729     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1730     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1731     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1732     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1733     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1734     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1735     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1736     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1737     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1738     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1739   };
1740 
1741 #if  (defined IA32)
1742   static  Elf32_Half running_arch_code=EM_386;
1743 #elif   (defined AMD64)
1744   static  Elf32_Half running_arch_code=EM_X86_64;
1745 #elif  (defined IA64)
1746   static  Elf32_Half running_arch_code=EM_IA_64;
1747 #elif  (defined __sparc) && (defined _LP64)
1748   static  Elf32_Half running_arch_code=EM_SPARCV9;
1749 #elif  (defined __sparc) && (!defined _LP64)
1750   static  Elf32_Half running_arch_code=EM_SPARC;
1751 #elif  (defined __powerpc64__)
1752   static  Elf32_Half running_arch_code=EM_PPC64;
1753 #elif  (defined __powerpc__)
1754   static  Elf32_Half running_arch_code=EM_PPC;
1755 #elif (defined ARM)
1756   static  Elf32_Half running_arch_code=EM_ARM;
1757 #else
1758   #error Method os::dll_load requires that one of following is defined:\
1759        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1760 #endif
1761 
1762   // Identify compatability class for VM's architecture and library's architecture
1763   // Obtain string descriptions for architectures
1764 
1765   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1766   int running_arch_index=-1;
1767 
1768   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1769     if (running_arch_code == arch_array[i].code) {
1770       running_arch_index    = i;
1771     }
1772     if (lib_arch.code == arch_array[i].code) {
1773       lib_arch.compat_class = arch_array[i].compat_class;
1774       lib_arch.name         = arch_array[i].name;
1775     }
1776   }
1777 
1778   assert(running_arch_index != -1,
1779          "Didn't find running architecture code (running_arch_code) in arch_array");
1780   if (running_arch_index == -1) {
1781     // Even though running architecture detection failed
1782     // we may still continue with reporting dlerror() message
1783     return NULL;
1784   }
1785 
1786   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1787     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1788     return NULL;
1789   }
1790 
1791   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1792     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1793     return NULL;
1794   }
1795 
1796   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1797     if (lib_arch.name!=NULL) {
1798       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1799                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1800                  lib_arch.name, arch_array[running_arch_index].name);
1801     } else {
1802       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1803                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1804                  lib_arch.code,
1805                  arch_array[running_arch_index].name);
1806     }
1807   }
1808 
1809   return NULL;
1810 }
1811 
1812 void* os::dll_lookup(void* handle, const char* name) {
1813   return dlsym(handle, name);
1814 }
1815 
1816 void* os::get_default_process_handle() {
1817   return (void*)::dlopen(NULL, RTLD_LAZY);
1818 }
1819 
1820 int os::stat(const char *path, struct stat *sbuf) {
1821   char pathbuf[MAX_PATH];
1822   if (strlen(path) > MAX_PATH - 1) {
1823     errno = ENAMETOOLONG;
1824     return -1;
1825   }
1826   os::native_path(strcpy(pathbuf, path));
1827   return ::stat(pathbuf, sbuf);
1828 }
1829 
1830 static inline time_t get_mtime(const char* filename) {
1831   struct stat st;
1832   int ret = os::stat(filename, &st);
1833   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1834   return st.st_mtime;
1835 }
1836 
1837 int os::compare_file_modified_times(const char* file1, const char* file2) {
1838   time_t t1 = get_mtime(file1);
1839   time_t t2 = get_mtime(file2);
1840   return t1 - t2;
1841 }
1842 
1843 static bool _print_ascii_file(const char* filename, outputStream* st) {
1844   int fd = ::open(filename, O_RDONLY);
1845   if (fd == -1) {
1846     return false;
1847   }
1848 
1849   char buf[32];
1850   int bytes;
1851   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1852     st->print_raw(buf, bytes);
1853   }
1854 
1855   ::close(fd);
1856 
1857   return true;
1858 }
1859 
1860 void os::print_os_info_brief(outputStream* st) {
1861   os::Solaris::print_distro_info(st);
1862 
1863   os::Posix::print_uname_info(st);
1864 
1865   os::Solaris::print_libversion_info(st);
1866 }
1867 
1868 void os::print_os_info(outputStream* st) {
1869   st->print("OS:");
1870 
1871   os::Solaris::print_distro_info(st);
1872 
1873   os::Posix::print_uname_info(st);
1874 
1875   os::Solaris::print_libversion_info(st);
1876 
1877   os::Posix::print_rlimit_info(st);
1878 
1879   os::Posix::print_load_average(st);
1880 }
1881 
1882 void os::Solaris::print_distro_info(outputStream* st) {
1883   if (!_print_ascii_file("/etc/release", st)) {
1884     st->print("Solaris");
1885   }
1886   st->cr();
1887 }
1888 
1889 void os::get_summary_os_info(char* buf, size_t buflen) {
1890   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1891   FILE* fp = fopen("/etc/release", "r");
1892   if (fp != NULL) {
1893     char tmp[256];
1894     // Only get the first line and chop out everything but the os name.
1895     if (fgets(tmp, sizeof(tmp), fp)) {
1896       char* ptr = tmp;
1897       // skip past whitespace characters
1898       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1899       if (*ptr != '\0') {
1900         char* nl = strchr(ptr, '\n');
1901         if (nl != NULL) *nl = '\0';
1902         strncpy(buf, ptr, buflen);
1903       }
1904     }
1905     fclose(fp);
1906   }
1907 }
1908 
1909 void os::Solaris::print_libversion_info(outputStream* st) {
1910   st->print("  (T2 libthread)");
1911   st->cr();
1912 }
1913 
1914 static bool check_addr0(outputStream* st) {
1915   jboolean status = false;
1916   const int read_chunk = 200;
1917   int ret = 0;
1918   int nmap = 0;
1919   int fd = ::open("/proc/self/map",O_RDONLY);
1920   if (fd >= 0) {
1921     prmap_t *p = NULL;
1922     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1923     if (NULL == mbuff) {
1924       ::close(fd);
1925       return status;
1926     }
1927     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1928       //check if read() has not read partial data
1929       if( 0 != ret % sizeof(prmap_t)){
1930         break;
1931       }
1932       nmap = ret / sizeof(prmap_t);
1933       p = (prmap_t *)mbuff;
1934       for(int i = 0; i < nmap; i++){
1935         if (p->pr_vaddr == 0x0) {
1936           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1937           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1938           st->print("Access: ");
1939           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1940           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1941           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1942           st->cr();
1943           status = true;
1944         }
1945         p++;
1946       }
1947     }
1948     free(mbuff);
1949     ::close(fd);
1950   }
1951   return status;
1952 }
1953 
1954 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1955   // Get MHz with system call. We don't seem to already have this.
1956   processor_info_t stats;
1957   processorid_t id = getcpuid();
1958   int clock = 0;
1959   if (processor_info(id, &stats) != -1) {
1960     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1961   }
1962 #ifdef AMD64
1963   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1964 #else
1965   // must be sparc
1966   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1967 #endif
1968 }
1969 
1970 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1971   // Nothing to do for now.
1972 }
1973 
1974 void os::print_memory_info(outputStream* st) {
1975   st->print("Memory:");
1976   st->print(" %dk page", os::vm_page_size()>>10);
1977   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1978   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1979   st->cr();
1980   (void) check_addr0(st);
1981 }
1982 
1983 // Moved from whole group, because we need them here for diagnostic
1984 // prints.
1985 #define OLDMAXSIGNUM 32
1986 static int Maxsignum = 0;
1987 static int *ourSigFlags = NULL;
1988 
1989 int os::Solaris::get_our_sigflags(int sig) {
1990   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1991   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1992   return ourSigFlags[sig];
1993 }
1994 
1995 void os::Solaris::set_our_sigflags(int sig, int flags) {
1996   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1997   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1998   ourSigFlags[sig] = flags;
1999 }
2000 
2001 
2002 static const char* get_signal_handler_name(address handler,
2003                                            char* buf, int buflen) {
2004   int offset;
2005   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2006   if (found) {
2007     // skip directory names
2008     const char *p1, *p2;
2009     p1 = buf;
2010     size_t len = strlen(os::file_separator());
2011     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2012     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2013   } else {
2014     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2015   }
2016   return buf;
2017 }
2018 
2019 static void print_signal_handler(outputStream* st, int sig,
2020                                  char* buf, size_t buflen) {
2021   struct sigaction sa;
2022 
2023   sigaction(sig, NULL, &sa);
2024 
2025   st->print("%s: ", os::exception_name(sig, buf, buflen));
2026 
2027   address handler = (sa.sa_flags & SA_SIGINFO)
2028                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2029                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
2030 
2031   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2032     st->print("SIG_DFL");
2033   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2034     st->print("SIG_IGN");
2035   } else {
2036     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2037   }
2038 
2039   st->print(", sa_mask[0]=");
2040   os::Posix::print_signal_set_short(st, &sa.sa_mask);
2041 
2042   address rh = VMError::get_resetted_sighandler(sig);
2043   // May be, handler was resetted by VMError?
2044   if (rh != NULL) {
2045     handler = rh;
2046     sa.sa_flags = VMError::get_resetted_sigflags(sig);
2047   }
2048 
2049   st->print(", sa_flags=");
2050   os::Posix::print_sa_flags(st, sa.sa_flags);
2051 
2052   // Check: is it our handler?
2053   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
2054     // It is our signal handler
2055     // check for flags
2056     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2057       st->print(
2058                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2059                 os::Solaris::get_our_sigflags(sig));
2060     }
2061   }
2062   st->cr();
2063 }
2064 
2065 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2066   st->print_cr("Signal Handlers:");
2067   print_signal_handler(st, SIGSEGV, buf, buflen);
2068   print_signal_handler(st, SIGBUS , buf, buflen);
2069   print_signal_handler(st, SIGFPE , buf, buflen);
2070   print_signal_handler(st, SIGPIPE, buf, buflen);
2071   print_signal_handler(st, SIGXFSZ, buf, buflen);
2072   print_signal_handler(st, SIGILL , buf, buflen);
2073   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2074   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2075   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2076   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2077   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2078   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2079 }
2080 
2081 static char saved_jvm_path[MAXPATHLEN] = { 0 };
2082 
2083 // Find the full path to the current module, libjvm.so
2084 void os::jvm_path(char *buf, jint buflen) {
2085   // Error checking.
2086   if (buflen < MAXPATHLEN) {
2087     assert(false, "must use a large-enough buffer");
2088     buf[0] = '\0';
2089     return;
2090   }
2091   // Lazy resolve the path to current module.
2092   if (saved_jvm_path[0] != 0) {
2093     strcpy(buf, saved_jvm_path);
2094     return;
2095   }
2096 
2097   Dl_info dlinfo;
2098   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2099   assert(ret != 0, "cannot locate libjvm");
2100   if (ret != 0 && dlinfo.dli_fname != NULL) {
2101     realpath((char *)dlinfo.dli_fname, buf);
2102   } else {
2103     buf[0] = '\0';
2104     return;
2105   }
2106 
2107   if (Arguments::sun_java_launcher_is_altjvm()) {
2108     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2109     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2110     // If "/jre/lib/" appears at the right place in the string, then
2111     // assume we are installed in a JDK and we're done.  Otherwise, check
2112     // for a JAVA_HOME environment variable and fix up the path so it
2113     // looks like libjvm.so is installed there (append a fake suffix
2114     // hotspot/libjvm.so).
2115     const char *p = buf + strlen(buf) - 1;
2116     for (int count = 0; p > buf && count < 5; ++count) {
2117       for (--p; p > buf && *p != '/'; --p)
2118         /* empty */ ;
2119     }
2120 
2121     if (strncmp(p, "/jre/lib/", 9) != 0) {
2122       // Look for JAVA_HOME in the environment.
2123       char* java_home_var = ::getenv("JAVA_HOME");
2124       if (java_home_var != NULL && java_home_var[0] != 0) {
2125         char cpu_arch[12];
2126         char* jrelib_p;
2127         int   len;
2128         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2129 #ifdef _LP64
2130         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2131         if (strcmp(cpu_arch, "sparc") == 0) {
2132           strcat(cpu_arch, "v9");
2133         } else if (strcmp(cpu_arch, "i386") == 0) {
2134           strcpy(cpu_arch, "amd64");
2135         }
2136 #endif
2137         // Check the current module name "libjvm.so".
2138         p = strrchr(buf, '/');
2139         assert(strstr(p, "/libjvm") == p, "invalid library name");
2140 
2141         realpath(java_home_var, buf);
2142         // determine if this is a legacy image or modules image
2143         // modules image doesn't have "jre" subdirectory
2144         len = strlen(buf);
2145         assert(len < buflen, "Ran out of buffer space");
2146         jrelib_p = buf + len;
2147         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2148         if (0 != access(buf, F_OK)) {
2149           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2150         }
2151 
2152         if (0 == access(buf, F_OK)) {
2153           // Use current module name "libjvm.so"
2154           len = strlen(buf);
2155           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2156         } else {
2157           // Go back to path of .so
2158           realpath((char *)dlinfo.dli_fname, buf);
2159         }
2160       }
2161     }
2162   }
2163 
2164   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2165   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2166 }
2167 
2168 
2169 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2170   // no prefix required, not even "_"
2171 }
2172 
2173 
2174 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2175   // no suffix required
2176 }
2177 
2178 // This method is a copy of JDK's sysGetLastErrorString
2179 // from src/solaris/hpi/src/system_md.c
2180 
2181 size_t os::lasterror(char *buf, size_t len) {
2182   if (errno == 0)  return 0;
2183 
2184   const char *s = os::strerror(errno);
2185   size_t n = ::strlen(s);
2186   if (n >= len) {
2187     n = len - 1;
2188   }
2189   ::strncpy(buf, s, n);
2190   buf[n] = '\0';
2191   return n;
2192 }
2193 
2194 
2195 // sun.misc.Signal
2196 
2197 extern "C" {
2198   static void UserHandler(int sig, void *siginfo, void *context) {
2199     // Ctrl-C is pressed during error reporting, likely because the error
2200     // handler fails to abort. Let VM die immediately.
2201     if (sig == SIGINT && is_error_reported()) {
2202       os::die();
2203     }
2204 
2205     os::signal_notify(sig);
2206     // We do not need to reinstate the signal handler each time...
2207   }
2208 }
2209 
2210 void* os::user_handler() {
2211   return CAST_FROM_FN_PTR(void*, UserHandler);
2212 }
2213 
2214 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2215   struct timespec ts;
2216   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2217 
2218   return ts;
2219 }
2220 
2221 extern "C" {
2222   typedef void (*sa_handler_t)(int);
2223   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2224 }
2225 
2226 void* os::signal(int signal_number, void* handler) {
2227   struct sigaction sigAct, oldSigAct;
2228   sigfillset(&(sigAct.sa_mask));
2229   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2230   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2231 
2232   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2233     // -1 means registration failed
2234     return (void *)-1;
2235   }
2236 
2237   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2238 }
2239 
2240 void os::signal_raise(int signal_number) {
2241   raise(signal_number);
2242 }
2243 
2244 // The following code is moved from os.cpp for making this
2245 // code platform specific, which it is by its very nature.
2246 
2247 // a counter for each possible signal value
2248 static int Sigexit = 0;
2249 static int Maxlibjsigsigs;
2250 static jint *pending_signals = NULL;
2251 static int *preinstalled_sigs = NULL;
2252 static struct sigaction *chainedsigactions = NULL;
2253 static sema_t sig_sem;
2254 typedef int (*version_getting_t)();
2255 version_getting_t os::Solaris::get_libjsig_version = NULL;
2256 static int libjsigversion = NULL;
2257 
2258 int os::sigexitnum_pd() {
2259   assert(Sigexit > 0, "signal memory not yet initialized");
2260   return Sigexit;
2261 }
2262 
2263 void os::Solaris::init_signal_mem() {
2264   // Initialize signal structures
2265   Maxsignum = SIGRTMAX;
2266   Sigexit = Maxsignum+1;
2267   assert(Maxsignum >0, "Unable to obtain max signal number");
2268 
2269   Maxlibjsigsigs = Maxsignum;
2270 
2271   // pending_signals has one int per signal
2272   // The additional signal is for SIGEXIT - exit signal to signal_thread
2273   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2274   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2275 
2276   if (UseSignalChaining) {
2277     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2278                                                    * (Maxsignum + 1), mtInternal);
2279     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2280     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2281     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2282   }
2283   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2284   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2285 }
2286 
2287 void os::signal_init_pd() {
2288   int ret;
2289 
2290   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2291   assert(ret == 0, "sema_init() failed");
2292 }
2293 
2294 void os::signal_notify(int signal_number) {
2295   int ret;
2296 
2297   Atomic::inc(&pending_signals[signal_number]);
2298   ret = ::sema_post(&sig_sem);
2299   assert(ret == 0, "sema_post() failed");
2300 }
2301 
2302 static int check_pending_signals(bool wait_for_signal) {
2303   int ret;
2304   while (true) {
2305     for (int i = 0; i < Sigexit + 1; i++) {
2306       jint n = pending_signals[i];
2307       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2308         return i;
2309       }
2310     }
2311     if (!wait_for_signal) {
2312       return -1;
2313     }
2314     JavaThread *thread = JavaThread::current();
2315     ThreadBlockInVM tbivm(thread);
2316 
2317     bool threadIsSuspended;
2318     do {
2319       thread->set_suspend_equivalent();
2320       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2321       while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2322         ;
2323       assert(ret == 0, "sema_wait() failed");
2324 
2325       // were we externally suspended while we were waiting?
2326       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2327       if (threadIsSuspended) {
2328         // The semaphore has been incremented, but while we were waiting
2329         // another thread suspended us. We don't want to continue running
2330         // while suspended because that would surprise the thread that
2331         // suspended us.
2332         ret = ::sema_post(&sig_sem);
2333         assert(ret == 0, "sema_post() failed");
2334 
2335         thread->java_suspend_self();
2336       }
2337     } while (threadIsSuspended);
2338   }
2339 }
2340 
2341 int os::signal_lookup() {
2342   return check_pending_signals(false);
2343 }
2344 
2345 int os::signal_wait() {
2346   return check_pending_signals(true);
2347 }
2348 
2349 ////////////////////////////////////////////////////////////////////////////////
2350 // Virtual Memory
2351 
2352 static int page_size = -1;
2353 
2354 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2355 // clear this var if support is not available.
2356 static bool has_map_align = true;
2357 
2358 int os::vm_page_size() {
2359   assert(page_size != -1, "must call os::init");
2360   return page_size;
2361 }
2362 
2363 // Solaris allocates memory by pages.
2364 int os::vm_allocation_granularity() {
2365   assert(page_size != -1, "must call os::init");
2366   return page_size;
2367 }
2368 
2369 static bool recoverable_mmap_error(int err) {
2370   // See if the error is one we can let the caller handle. This
2371   // list of errno values comes from the Solaris mmap(2) man page.
2372   switch (err) {
2373   case EBADF:
2374   case EINVAL:
2375   case ENOTSUP:
2376     // let the caller deal with these errors
2377     return true;
2378 
2379   default:
2380     // Any remaining errors on this OS can cause our reserved mapping
2381     // to be lost. That can cause confusion where different data
2382     // structures think they have the same memory mapped. The worst
2383     // scenario is if both the VM and a library think they have the
2384     // same memory mapped.
2385     return false;
2386   }
2387 }
2388 
2389 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2390                                     int err) {
2391   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2392           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2393           os::strerror(err), err);
2394 }
2395 
2396 static void warn_fail_commit_memory(char* addr, size_t bytes,
2397                                     size_t alignment_hint, bool exec,
2398                                     int err) {
2399   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2400           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2401           alignment_hint, exec, os::strerror(err), err);
2402 }
2403 
2404 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2405   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2406   size_t size = bytes;
2407   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2408   if (res != NULL) {
2409     if (UseNUMAInterleaving) {
2410       numa_make_global(addr, bytes);
2411     }
2412     return 0;
2413   }
2414 
2415   int err = errno;  // save errno from mmap() call in mmap_chunk()
2416 
2417   if (!recoverable_mmap_error(err)) {
2418     warn_fail_commit_memory(addr, bytes, exec, err);
2419     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2420   }
2421 
2422   return err;
2423 }
2424 
2425 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2426   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2427 }
2428 
2429 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2430                                   const char* mesg) {
2431   assert(mesg != NULL, "mesg must be specified");
2432   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2433   if (err != 0) {
2434     // the caller wants all commit errors to exit with the specified mesg:
2435     warn_fail_commit_memory(addr, bytes, exec, err);
2436     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2437   }
2438 }
2439 
2440 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2441   assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2442          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2443          alignment, (size_t) vm_page_size());
2444 
2445   for (int i = 0; _page_sizes[i] != 0; i++) {
2446     if (is_size_aligned(alignment, _page_sizes[i])) {
2447       return _page_sizes[i];
2448     }
2449   }
2450 
2451   return (size_t) vm_page_size();
2452 }
2453 
2454 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2455                                     size_t alignment_hint, bool exec) {
2456   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2457   if (err == 0 && UseLargePages && alignment_hint > 0) {
2458     assert(is_size_aligned(bytes, alignment_hint),
2459            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2460 
2461     // The syscall memcntl requires an exact page size (see man memcntl for details).
2462     size_t page_size = page_size_for_alignment(alignment_hint);
2463     if (page_size > (size_t) vm_page_size()) {
2464       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2465     }
2466   }
2467   return err;
2468 }
2469 
2470 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2471                           bool exec) {
2472   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2473 }
2474 
2475 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2476                                   size_t alignment_hint, bool exec,
2477                                   const char* mesg) {
2478   assert(mesg != NULL, "mesg must be specified");
2479   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2480   if (err != 0) {
2481     // the caller wants all commit errors to exit with the specified mesg:
2482     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2483     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2484   }
2485 }
2486 
2487 // Uncommit the pages in a specified region.
2488 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2489   if (madvise(addr, bytes, MADV_FREE) < 0) {
2490     debug_only(warning("MADV_FREE failed."));
2491     return;
2492   }
2493 }
2494 
2495 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2496   return os::commit_memory(addr, size, !ExecMem);
2497 }
2498 
2499 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2500   return os::uncommit_memory(addr, size);
2501 }
2502 
2503 // Change the page size in a given range.
2504 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2505   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2506   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2507   if (UseLargePages) {
2508     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2509     if (page_size > (size_t) vm_page_size()) {
2510       Solaris::setup_large_pages(addr, bytes, page_size);
2511     }
2512   }
2513 }
2514 
2515 // Tell the OS to make the range local to the first-touching LWP
2516 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2517   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2518   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2519     debug_only(warning("MADV_ACCESS_LWP failed."));
2520   }
2521 }
2522 
2523 // Tell the OS that this range would be accessed from different LWPs.
2524 void os::numa_make_global(char *addr, size_t bytes) {
2525   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2526   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2527     debug_only(warning("MADV_ACCESS_MANY failed."));
2528   }
2529 }
2530 
2531 // Get the number of the locality groups.
2532 size_t os::numa_get_groups_num() {
2533   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2534   return n != -1 ? n : 1;
2535 }
2536 
2537 // Get a list of leaf locality groups. A leaf lgroup is group that
2538 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2539 // board. An LWP is assigned to one of these groups upon creation.
2540 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2541   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2542     ids[0] = 0;
2543     return 1;
2544   }
2545   int result_size = 0, top = 1, bottom = 0, cur = 0;
2546   for (int k = 0; k < size; k++) {
2547     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2548                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2549     if (r == -1) {
2550       ids[0] = 0;
2551       return 1;
2552     }
2553     if (!r) {
2554       // That's a leaf node.
2555       assert(bottom <= cur, "Sanity check");
2556       // Check if the node has memory
2557       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2558                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2559         ids[bottom++] = ids[cur];
2560       }
2561     }
2562     top += r;
2563     cur++;
2564   }
2565   if (bottom == 0) {
2566     // Handle a situation, when the OS reports no memory available.
2567     // Assume UMA architecture.
2568     ids[0] = 0;
2569     return 1;
2570   }
2571   return bottom;
2572 }
2573 
2574 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2575 bool os::numa_topology_changed() {
2576   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2577   if (is_stale != -1 && is_stale) {
2578     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2579     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2580     assert(c != 0, "Failure to initialize LGRP API");
2581     Solaris::set_lgrp_cookie(c);
2582     return true;
2583   }
2584   return false;
2585 }
2586 
2587 // Get the group id of the current LWP.
2588 int os::numa_get_group_id() {
2589   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2590   if (lgrp_id == -1) {
2591     return 0;
2592   }
2593   const int size = os::numa_get_groups_num();
2594   int *ids = (int*)alloca(size * sizeof(int));
2595 
2596   // Get the ids of all lgroups with memory; r is the count.
2597   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2598                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2599   if (r <= 0) {
2600     return 0;
2601   }
2602   return ids[os::random() % r];
2603 }
2604 
2605 // Request information about the page.
2606 bool os::get_page_info(char *start, page_info* info) {
2607   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2608   uint64_t addr = (uintptr_t)start;
2609   uint64_t outdata[2];
2610   uint_t validity = 0;
2611 
2612   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2613     return false;
2614   }
2615 
2616   info->size = 0;
2617   info->lgrp_id = -1;
2618 
2619   if ((validity & 1) != 0) {
2620     if ((validity & 2) != 0) {
2621       info->lgrp_id = outdata[0];
2622     }
2623     if ((validity & 4) != 0) {
2624       info->size = outdata[1];
2625     }
2626     return true;
2627   }
2628   return false;
2629 }
2630 
2631 // Scan the pages from start to end until a page different than
2632 // the one described in the info parameter is encountered.
2633 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2634                      page_info* page_found) {
2635   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2636   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2637   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2638   uint_t validity[MAX_MEMINFO_CNT];
2639 
2640   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2641   uint64_t p = (uint64_t)start;
2642   while (p < (uint64_t)end) {
2643     addrs[0] = p;
2644     size_t addrs_count = 1;
2645     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2646       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2647       addrs_count++;
2648     }
2649 
2650     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2651       return NULL;
2652     }
2653 
2654     size_t i = 0;
2655     for (; i < addrs_count; i++) {
2656       if ((validity[i] & 1) != 0) {
2657         if ((validity[i] & 4) != 0) {
2658           if (outdata[types * i + 1] != page_expected->size) {
2659             break;
2660           }
2661         } else if (page_expected->size != 0) {
2662           break;
2663         }
2664 
2665         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2666           if (outdata[types * i] != page_expected->lgrp_id) {
2667             break;
2668           }
2669         }
2670       } else {
2671         return NULL;
2672       }
2673     }
2674 
2675     if (i < addrs_count) {
2676       if ((validity[i] & 2) != 0) {
2677         page_found->lgrp_id = outdata[types * i];
2678       } else {
2679         page_found->lgrp_id = -1;
2680       }
2681       if ((validity[i] & 4) != 0) {
2682         page_found->size = outdata[types * i + 1];
2683       } else {
2684         page_found->size = 0;
2685       }
2686       return (char*)addrs[i];
2687     }
2688 
2689     p = addrs[addrs_count - 1] + page_size;
2690   }
2691   return end;
2692 }
2693 
2694 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2695   size_t size = bytes;
2696   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2697   // uncommitted page. Otherwise, the read/write might succeed if we
2698   // have enough swap space to back the physical page.
2699   return
2700     NULL != Solaris::mmap_chunk(addr, size,
2701                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2702                                 PROT_NONE);
2703 }
2704 
2705 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2706   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2707 
2708   if (b == MAP_FAILED) {
2709     return NULL;
2710   }
2711   return b;
2712 }
2713 
2714 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2715                              size_t alignment_hint, bool fixed) {
2716   char* addr = requested_addr;
2717   int flags = MAP_PRIVATE | MAP_NORESERVE;
2718 
2719   assert(!(fixed && (alignment_hint > 0)),
2720          "alignment hint meaningless with fixed mmap");
2721 
2722   if (fixed) {
2723     flags |= MAP_FIXED;
2724   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2725     flags |= MAP_ALIGN;
2726     addr = (char*) alignment_hint;
2727   }
2728 
2729   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2730   // uncommitted page. Otherwise, the read/write might succeed if we
2731   // have enough swap space to back the physical page.
2732   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2733 }
2734 
2735 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2736                             size_t alignment_hint) {
2737   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2738                                   (requested_addr != NULL));
2739 
2740   guarantee(requested_addr == NULL || requested_addr == addr,
2741             "OS failed to return requested mmap address.");
2742   return addr;
2743 }
2744 
2745 // Reserve memory at an arbitrary address, only if that area is
2746 // available (and not reserved for something else).
2747 
2748 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2749   const int max_tries = 10;
2750   char* base[max_tries];
2751   size_t size[max_tries];
2752 
2753   // Solaris adds a gap between mmap'ed regions.  The size of the gap
2754   // is dependent on the requested size and the MMU.  Our initial gap
2755   // value here is just a guess and will be corrected later.
2756   bool had_top_overlap = false;
2757   bool have_adjusted_gap = false;
2758   size_t gap = 0x400000;
2759 
2760   // Assert only that the size is a multiple of the page size, since
2761   // that's all that mmap requires, and since that's all we really know
2762   // about at this low abstraction level.  If we need higher alignment,
2763   // we can either pass an alignment to this method or verify alignment
2764   // in one of the methods further up the call chain.  See bug 5044738.
2765   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2766 
2767   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2768   // Give it a try, if the kernel honors the hint we can return immediately.
2769   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2770 
2771   volatile int err = errno;
2772   if (addr == requested_addr) {
2773     return addr;
2774   } else if (addr != NULL) {
2775     pd_unmap_memory(addr, bytes);
2776   }
2777 
2778   if (log_is_enabled(Warning, os)) {
2779     char buf[256];
2780     buf[0] = '\0';
2781     if (addr == NULL) {
2782       jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2783     }
2784     log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2785             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2786             "%s", bytes, requested_addr, addr, buf);
2787   }
2788 
2789   // Address hint method didn't work.  Fall back to the old method.
2790   // In theory, once SNV becomes our oldest supported platform, this
2791   // code will no longer be needed.
2792   //
2793   // Repeatedly allocate blocks until the block is allocated at the
2794   // right spot. Give up after max_tries.
2795   int i;
2796   for (i = 0; i < max_tries; ++i) {
2797     base[i] = reserve_memory(bytes);
2798 
2799     if (base[i] != NULL) {
2800       // Is this the block we wanted?
2801       if (base[i] == requested_addr) {
2802         size[i] = bytes;
2803         break;
2804       }
2805 
2806       // check that the gap value is right
2807       if (had_top_overlap && !have_adjusted_gap) {
2808         size_t actual_gap = base[i-1] - base[i] - bytes;
2809         if (gap != actual_gap) {
2810           // adjust the gap value and retry the last 2 allocations
2811           assert(i > 0, "gap adjustment code problem");
2812           have_adjusted_gap = true;  // adjust the gap only once, just in case
2813           gap = actual_gap;
2814           log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2815           unmap_memory(base[i], bytes);
2816           unmap_memory(base[i-1], size[i-1]);
2817           i-=2;
2818           continue;
2819         }
2820       }
2821 
2822       // Does this overlap the block we wanted? Give back the overlapped
2823       // parts and try again.
2824       //
2825       // There is still a bug in this code: if top_overlap == bytes,
2826       // the overlap is offset from requested region by the value of gap.
2827       // In this case giving back the overlapped part will not work,
2828       // because we'll give back the entire block at base[i] and
2829       // therefore the subsequent allocation will not generate a new gap.
2830       // This could be fixed with a new algorithm that used larger
2831       // or variable size chunks to find the requested region -
2832       // but such a change would introduce additional complications.
2833       // It's rare enough that the planets align for this bug,
2834       // so we'll just wait for a fix for 6204603/5003415 which
2835       // will provide a mmap flag to allow us to avoid this business.
2836 
2837       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2838       if (top_overlap >= 0 && top_overlap < bytes) {
2839         had_top_overlap = true;
2840         unmap_memory(base[i], top_overlap);
2841         base[i] += top_overlap;
2842         size[i] = bytes - top_overlap;
2843       } else {
2844         size_t bottom_overlap = base[i] + bytes - requested_addr;
2845         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2846           if (bottom_overlap == 0) {
2847             log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2848           }
2849           unmap_memory(requested_addr, bottom_overlap);
2850           size[i] = bytes - bottom_overlap;
2851         } else {
2852           size[i] = bytes;
2853         }
2854       }
2855     }
2856   }
2857 
2858   // Give back the unused reserved pieces.
2859 
2860   for (int j = 0; j < i; ++j) {
2861     if (base[j] != NULL) {
2862       unmap_memory(base[j], size[j]);
2863     }
2864   }
2865 
2866   return (i < max_tries) ? requested_addr : NULL;
2867 }
2868 
2869 bool os::pd_release_memory(char* addr, size_t bytes) {
2870   size_t size = bytes;
2871   return munmap(addr, size) == 0;
2872 }
2873 
2874 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2875   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2876          "addr must be page aligned");
2877   int retVal = mprotect(addr, bytes, prot);
2878   return retVal == 0;
2879 }
2880 
2881 // Protect memory (Used to pass readonly pages through
2882 // JNI GetArray<type>Elements with empty arrays.)
2883 // Also, used for serialization page and for compressed oops null pointer
2884 // checking.
2885 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2886                         bool is_committed) {
2887   unsigned int p = 0;
2888   switch (prot) {
2889   case MEM_PROT_NONE: p = PROT_NONE; break;
2890   case MEM_PROT_READ: p = PROT_READ; break;
2891   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2892   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2893   default:
2894     ShouldNotReachHere();
2895   }
2896   // is_committed is unused.
2897   return solaris_mprotect(addr, bytes, p);
2898 }
2899 
2900 // guard_memory and unguard_memory only happens within stack guard pages.
2901 // Since ISM pertains only to the heap, guard and unguard memory should not
2902 /// happen with an ISM region.
2903 bool os::guard_memory(char* addr, size_t bytes) {
2904   return solaris_mprotect(addr, bytes, PROT_NONE);
2905 }
2906 
2907 bool os::unguard_memory(char* addr, size_t bytes) {
2908   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2909 }
2910 
2911 // Large page support
2912 static size_t _large_page_size = 0;
2913 
2914 // Insertion sort for small arrays (descending order).
2915 static void insertion_sort_descending(size_t* array, int len) {
2916   for (int i = 0; i < len; i++) {
2917     size_t val = array[i];
2918     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2919       size_t tmp = array[key];
2920       array[key] = array[key - 1];
2921       array[key - 1] = tmp;
2922     }
2923   }
2924 }
2925 
2926 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2927   const unsigned int usable_count = VM_Version::page_size_count();
2928   if (usable_count == 1) {
2929     return false;
2930   }
2931 
2932   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2933   // build platform, getpagesizes() (without the '2') can be called directly.
2934   typedef int (*gps_t)(size_t[], int);
2935   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2936   if (gps_func == NULL) {
2937     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2938     if (gps_func == NULL) {
2939       if (warn) {
2940         warning("MPSS is not supported by the operating system.");
2941       }
2942       return false;
2943     }
2944   }
2945 
2946   // Fill the array of page sizes.
2947   int n = (*gps_func)(_page_sizes, page_sizes_max);
2948   assert(n > 0, "Solaris bug?");
2949 
2950   if (n == page_sizes_max) {
2951     // Add a sentinel value (necessary only if the array was completely filled
2952     // since it is static (zeroed at initialization)).
2953     _page_sizes[--n] = 0;
2954     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2955   }
2956   assert(_page_sizes[n] == 0, "missing sentinel");
2957   trace_page_sizes("available page sizes", _page_sizes, n);
2958 
2959   if (n == 1) return false;     // Only one page size available.
2960 
2961   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2962   // select up to usable_count elements.  First sort the array, find the first
2963   // acceptable value, then copy the usable sizes to the top of the array and
2964   // trim the rest.  Make sure to include the default page size :-).
2965   //
2966   // A better policy could get rid of the 4M limit by taking the sizes of the
2967   // important VM memory regions (java heap and possibly the code cache) into
2968   // account.
2969   insertion_sort_descending(_page_sizes, n);
2970   const size_t size_limit =
2971     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2972   int beg;
2973   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2974   const int end = MIN2((int)usable_count, n) - 1;
2975   for (int cur = 0; cur < end; ++cur, ++beg) {
2976     _page_sizes[cur] = _page_sizes[beg];
2977   }
2978   _page_sizes[end] = vm_page_size();
2979   _page_sizes[end + 1] = 0;
2980 
2981   if (_page_sizes[end] > _page_sizes[end - 1]) {
2982     // Default page size is not the smallest; sort again.
2983     insertion_sort_descending(_page_sizes, end + 1);
2984   }
2985   *page_size = _page_sizes[0];
2986 
2987   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2988   return true;
2989 }
2990 
2991 void os::large_page_init() {
2992   if (UseLargePages) {
2993     // print a warning if any large page related flag is specified on command line
2994     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2995                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2996 
2997     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2998   }
2999 }
3000 
3001 bool os::Solaris::is_valid_page_size(size_t bytes) {
3002   for (int i = 0; _page_sizes[i] != 0; i++) {
3003     if (_page_sizes[i] == bytes) {
3004       return true;
3005     }
3006   }
3007   return false;
3008 }
3009 
3010 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
3011   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
3012   assert(is_ptr_aligned((void*) start, align),
3013          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
3014   assert(is_size_aligned(bytes, align),
3015          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
3016 
3017   // Signal to OS that we want large pages for addresses
3018   // from addr, addr + bytes
3019   struct memcntl_mha mpss_struct;
3020   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3021   mpss_struct.mha_pagesize = align;
3022   mpss_struct.mha_flags = 0;
3023   // Upon successful completion, memcntl() returns 0
3024   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
3025     debug_only(warning("Attempt to use MPSS failed."));
3026     return false;
3027   }
3028   return true;
3029 }
3030 
3031 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
3032   fatal("os::reserve_memory_special should not be called on Solaris.");
3033   return NULL;
3034 }
3035 
3036 bool os::release_memory_special(char* base, size_t bytes) {
3037   fatal("os::release_memory_special should not be called on Solaris.");
3038   return false;
3039 }
3040 
3041 size_t os::large_page_size() {
3042   return _large_page_size;
3043 }
3044 
3045 // MPSS allows application to commit large page memory on demand; with ISM
3046 // the entire memory region must be allocated as shared memory.
3047 bool os::can_commit_large_page_memory() {
3048   return true;
3049 }
3050 
3051 bool os::can_execute_large_page_memory() {
3052   return true;
3053 }
3054 
3055 // Read calls from inside the vm need to perform state transitions
3056 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3057   size_t res;
3058   JavaThread* thread = (JavaThread*)Thread::current();
3059   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3060   ThreadBlockInVM tbiv(thread);
3061   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3062   return res;
3063 }
3064 
3065 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3066   size_t res;
3067   JavaThread* thread = (JavaThread*)Thread::current();
3068   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3069   ThreadBlockInVM tbiv(thread);
3070   RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
3071   return res;
3072 }
3073 
3074 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3075   size_t res;
3076   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3077          "Assumed _thread_in_native");
3078   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3079   return res;
3080 }
3081 
3082 void os::naked_short_sleep(jlong ms) {
3083   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3084 
3085   // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3086   // Solaris requires -lrt for this.
3087   usleep((ms * 1000));
3088 
3089   return;
3090 }
3091 
3092 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3093 void os::infinite_sleep() {
3094   while (true) {    // sleep forever ...
3095     ::sleep(100);   // ... 100 seconds at a time
3096   }
3097 }
3098 
3099 // Used to convert frequent JVM_Yield() to nops
3100 bool os::dont_yield() {
3101   if (DontYieldALot) {
3102     static hrtime_t last_time = 0;
3103     hrtime_t diff = getTimeNanos() - last_time;
3104 
3105     if (diff < DontYieldALotInterval * 1000000) {
3106       return true;
3107     }
3108 
3109     last_time += diff;
3110 
3111     return false;
3112   } else {
3113     return false;
3114   }
3115 }
3116 
3117 // Note that yield semantics are defined by the scheduling class to which
3118 // the thread currently belongs.  Typically, yield will _not yield to
3119 // other equal or higher priority threads that reside on the dispatch queues
3120 // of other CPUs.
3121 
3122 void os::naked_yield() {
3123   thr_yield();
3124 }
3125 
3126 // Interface for setting lwp priorities.  If we are using T2 libthread,
3127 // which forces the use of BoundThreads or we manually set UseBoundThreads,
3128 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
3129 // function is meaningless in this mode so we must adjust the real lwp's priority
3130 // The routines below implement the getting and setting of lwp priorities.
3131 //
3132 // Note: T2 is now the only supported libthread. UseBoundThreads flag is
3133 //       being deprecated and all threads are now BoundThreads
3134 //
3135 // Note: There are three priority scales used on Solaris.  Java priotities
3136 //       which range from 1 to 10, libthread "thr_setprio" scale which range
3137 //       from 0 to 127, and the current scheduling class of the process we
3138 //       are running in.  This is typically from -60 to +60.
3139 //       The setting of the lwp priorities in done after a call to thr_setprio
3140 //       so Java priorities are mapped to libthread priorities and we map from
3141 //       the latter to lwp priorities.  We don't keep priorities stored in
3142 //       Java priorities since some of our worker threads want to set priorities
3143 //       higher than all Java threads.
3144 //
3145 // For related information:
3146 // (1)  man -s 2 priocntl
3147 // (2)  man -s 4 priocntl
3148 // (3)  man dispadmin
3149 // =    librt.so
3150 // =    libthread/common/rtsched.c - thrp_setlwpprio().
3151 // =    ps -cL <pid> ... to validate priority.
3152 // =    sched_get_priority_min and _max
3153 //              pthread_create
3154 //              sched_setparam
3155 //              pthread_setschedparam
3156 //
3157 // Assumptions:
3158 // +    We assume that all threads in the process belong to the same
3159 //              scheduling class.   IE. an homogenous process.
3160 // +    Must be root or in IA group to change change "interactive" attribute.
3161 //              Priocntl() will fail silently.  The only indication of failure is when
3162 //              we read-back the value and notice that it hasn't changed.
3163 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
3164 // +    For RT, change timeslice as well.  Invariant:
3165 //              constant "priority integral"
3166 //              Konst == TimeSlice * (60-Priority)
3167 //              Given a priority, compute appropriate timeslice.
3168 // +    Higher numerical values have higher priority.
3169 
3170 // sched class attributes
3171 typedef struct {
3172   int   schedPolicy;              // classID
3173   int   maxPrio;
3174   int   minPrio;
3175 } SchedInfo;
3176 
3177 
3178 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3179 
3180 #ifdef ASSERT
3181 static int  ReadBackValidate = 1;
3182 #endif
3183 static int  myClass     = 0;
3184 static int  myMin       = 0;
3185 static int  myMax       = 0;
3186 static int  myCur       = 0;
3187 static bool priocntl_enable = false;
3188 
3189 static const int criticalPrio = FXCriticalPriority;
3190 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3191 
3192 
3193 // lwp_priocntl_init
3194 //
3195 // Try to determine the priority scale for our process.
3196 //
3197 // Return errno or 0 if OK.
3198 //
3199 static int lwp_priocntl_init() {
3200   int rslt;
3201   pcinfo_t ClassInfo;
3202   pcparms_t ParmInfo;
3203   int i;
3204 
3205   if (!UseThreadPriorities) return 0;
3206 
3207   // If ThreadPriorityPolicy is 1, switch tables
3208   if (ThreadPriorityPolicy == 1) {
3209     for (i = 0; i < CriticalPriority+1; i++)
3210       os::java_to_os_priority[i] = prio_policy1[i];
3211   }
3212   if (UseCriticalJavaThreadPriority) {
3213     // MaxPriority always maps to the FX scheduling class and criticalPrio.
3214     // See set_native_priority() and set_lwp_class_and_priority().
3215     // Save original MaxPriority mapping in case attempt to
3216     // use critical priority fails.
3217     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3218     // Set negative to distinguish from other priorities
3219     os::java_to_os_priority[MaxPriority] = -criticalPrio;
3220   }
3221 
3222   // Get IDs for a set of well-known scheduling classes.
3223   // TODO-FIXME: GETCLINFO returns the current # of classes in the
3224   // the system.  We should have a loop that iterates over the
3225   // classID values, which are known to be "small" integers.
3226 
3227   strcpy(ClassInfo.pc_clname, "TS");
3228   ClassInfo.pc_cid = -1;
3229   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3230   if (rslt < 0) return errno;
3231   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3232   tsLimits.schedPolicy = ClassInfo.pc_cid;
3233   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3234   tsLimits.minPrio = -tsLimits.maxPrio;
3235 
3236   strcpy(ClassInfo.pc_clname, "IA");
3237   ClassInfo.pc_cid = -1;
3238   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3239   if (rslt < 0) return errno;
3240   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3241   iaLimits.schedPolicy = ClassInfo.pc_cid;
3242   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3243   iaLimits.minPrio = -iaLimits.maxPrio;
3244 
3245   strcpy(ClassInfo.pc_clname, "RT");
3246   ClassInfo.pc_cid = -1;
3247   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3248   if (rslt < 0) return errno;
3249   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3250   rtLimits.schedPolicy = ClassInfo.pc_cid;
3251   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3252   rtLimits.minPrio = 0;
3253 
3254   strcpy(ClassInfo.pc_clname, "FX");
3255   ClassInfo.pc_cid = -1;
3256   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3257   if (rslt < 0) return errno;
3258   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3259   fxLimits.schedPolicy = ClassInfo.pc_cid;
3260   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3261   fxLimits.minPrio = 0;
3262 
3263   // Query our "current" scheduling class.
3264   // This will normally be IA, TS or, rarely, FX or RT.
3265   memset(&ParmInfo, 0, sizeof(ParmInfo));
3266   ParmInfo.pc_cid = PC_CLNULL;
3267   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3268   if (rslt < 0) return errno;
3269   myClass = ParmInfo.pc_cid;
3270 
3271   // We now know our scheduling classId, get specific information
3272   // about the class.
3273   ClassInfo.pc_cid = myClass;
3274   ClassInfo.pc_clname[0] = 0;
3275   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3276   if (rslt < 0) return errno;
3277 
3278   if (ThreadPriorityVerbose) {
3279     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3280   }
3281 
3282   memset(&ParmInfo, 0, sizeof(pcparms_t));
3283   ParmInfo.pc_cid = PC_CLNULL;
3284   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3285   if (rslt < 0) return errno;
3286 
3287   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3288     myMin = rtLimits.minPrio;
3289     myMax = rtLimits.maxPrio;
3290   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3291     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3292     myMin = iaLimits.minPrio;
3293     myMax = iaLimits.maxPrio;
3294     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3295   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3296     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3297     myMin = tsLimits.minPrio;
3298     myMax = tsLimits.maxPrio;
3299     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3300   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3301     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3302     myMin = fxLimits.minPrio;
3303     myMax = fxLimits.maxPrio;
3304     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3305   } else {
3306     // No clue - punt
3307     if (ThreadPriorityVerbose) {
3308       tty->print_cr("Unknown scheduling class: %s ... \n",
3309                     ClassInfo.pc_clname);
3310     }
3311     return EINVAL;      // no clue, punt
3312   }
3313 
3314   if (ThreadPriorityVerbose) {
3315     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3316   }
3317 
3318   priocntl_enable = true;  // Enable changing priorities
3319   return 0;
3320 }
3321 
3322 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3323 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3324 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3325 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3326 
3327 
3328 // scale_to_lwp_priority
3329 //
3330 // Convert from the libthread "thr_setprio" scale to our current
3331 // lwp scheduling class scale.
3332 //
3333 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3334   int v;
3335 
3336   if (x == 127) return rMax;            // avoid round-down
3337   v = (((x*(rMax-rMin)))/128)+rMin;
3338   return v;
3339 }
3340 
3341 
3342 // set_lwp_class_and_priority
3343 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3344                                int newPrio, int new_class, bool scale) {
3345   int rslt;
3346   int Actual, Expected, prv;
3347   pcparms_t ParmInfo;                   // for GET-SET
3348 #ifdef ASSERT
3349   pcparms_t ReadBack;                   // for readback
3350 #endif
3351 
3352   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3353   // Query current values.
3354   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3355   // Cache "pcparms_t" in global ParmCache.
3356   // TODO: elide set-to-same-value
3357 
3358   // If something went wrong on init, don't change priorities.
3359   if (!priocntl_enable) {
3360     if (ThreadPriorityVerbose) {
3361       tty->print_cr("Trying to set priority but init failed, ignoring");
3362     }
3363     return EINVAL;
3364   }
3365 
3366   // If lwp hasn't started yet, just return
3367   // the _start routine will call us again.
3368   if (lwpid <= 0) {
3369     if (ThreadPriorityVerbose) {
3370       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3371                     INTPTR_FORMAT " to %d, lwpid not set",
3372                     ThreadID, newPrio);
3373     }
3374     return 0;
3375   }
3376 
3377   if (ThreadPriorityVerbose) {
3378     tty->print_cr ("set_lwp_class_and_priority("
3379                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3380                    ThreadID, lwpid, newPrio);
3381   }
3382 
3383   memset(&ParmInfo, 0, sizeof(pcparms_t));
3384   ParmInfo.pc_cid = PC_CLNULL;
3385   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3386   if (rslt < 0) return errno;
3387 
3388   int cur_class = ParmInfo.pc_cid;
3389   ParmInfo.pc_cid = (id_t)new_class;
3390 
3391   if (new_class == rtLimits.schedPolicy) {
3392     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3393     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3394                                                        rtLimits.maxPrio, newPrio)
3395                                : newPrio;
3396     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3397     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3398     if (ThreadPriorityVerbose) {
3399       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3400     }
3401   } else if (new_class == iaLimits.schedPolicy) {
3402     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3403     int maxClamped     = MIN2(iaLimits.maxPrio,
3404                               cur_class == new_class
3405                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3406     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3407                                                        maxClamped, newPrio)
3408                                : newPrio;
3409     iaInfo->ia_uprilim = cur_class == new_class
3410                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3411     iaInfo->ia_mode    = IA_NOCHANGE;
3412     if (ThreadPriorityVerbose) {
3413       tty->print_cr("IA: [%d...%d] %d->%d\n",
3414                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3415     }
3416   } else if (new_class == tsLimits.schedPolicy) {
3417     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3418     int maxClamped     = MIN2(tsLimits.maxPrio,
3419                               cur_class == new_class
3420                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3421     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3422                                                        maxClamped, newPrio)
3423                                : newPrio;
3424     tsInfo->ts_uprilim = cur_class == new_class
3425                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3426     if (ThreadPriorityVerbose) {
3427       tty->print_cr("TS: [%d...%d] %d->%d\n",
3428                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3429     }
3430   } else if (new_class == fxLimits.schedPolicy) {
3431     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3432     int maxClamped     = MIN2(fxLimits.maxPrio,
3433                               cur_class == new_class
3434                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3435     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3436                                                        maxClamped, newPrio)
3437                                : newPrio;
3438     fxInfo->fx_uprilim = cur_class == new_class
3439                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3440     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3441     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3442     if (ThreadPriorityVerbose) {
3443       tty->print_cr("FX: [%d...%d] %d->%d\n",
3444                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3445     }
3446   } else {
3447     if (ThreadPriorityVerbose) {
3448       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3449     }
3450     return EINVAL;    // no clue, punt
3451   }
3452 
3453   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3454   if (ThreadPriorityVerbose && rslt) {
3455     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3456   }
3457   if (rslt < 0) return errno;
3458 
3459 #ifdef ASSERT
3460   // Sanity check: read back what we just attempted to set.
3461   // In theory it could have changed in the interim ...
3462   //
3463   // The priocntl system call is tricky.
3464   // Sometimes it'll validate the priority value argument and
3465   // return EINVAL if unhappy.  At other times it fails silently.
3466   // Readbacks are prudent.
3467 
3468   if (!ReadBackValidate) return 0;
3469 
3470   memset(&ReadBack, 0, sizeof(pcparms_t));
3471   ReadBack.pc_cid = PC_CLNULL;
3472   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3473   assert(rslt >= 0, "priocntl failed");
3474   Actual = Expected = 0xBAD;
3475   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3476   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3477     Actual   = RTPRI(ReadBack)->rt_pri;
3478     Expected = RTPRI(ParmInfo)->rt_pri;
3479   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3480     Actual   = IAPRI(ReadBack)->ia_upri;
3481     Expected = IAPRI(ParmInfo)->ia_upri;
3482   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3483     Actual   = TSPRI(ReadBack)->ts_upri;
3484     Expected = TSPRI(ParmInfo)->ts_upri;
3485   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3486     Actual   = FXPRI(ReadBack)->fx_upri;
3487     Expected = FXPRI(ParmInfo)->fx_upri;
3488   } else {
3489     if (ThreadPriorityVerbose) {
3490       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3491                     ParmInfo.pc_cid);
3492     }
3493   }
3494 
3495   if (Actual != Expected) {
3496     if (ThreadPriorityVerbose) {
3497       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3498                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3499     }
3500   }
3501 #endif
3502 
3503   return 0;
3504 }
3505 
3506 // Solaris only gives access to 128 real priorities at a time,
3507 // so we expand Java's ten to fill this range.  This would be better
3508 // if we dynamically adjusted relative priorities.
3509 //
3510 // The ThreadPriorityPolicy option allows us to select 2 different
3511 // priority scales.
3512 //
3513 // ThreadPriorityPolicy=0
3514 // Since the Solaris' default priority is MaximumPriority, we do not
3515 // set a priority lower than Max unless a priority lower than
3516 // NormPriority is requested.
3517 //
3518 // ThreadPriorityPolicy=1
3519 // This mode causes the priority table to get filled with
3520 // linear values.  NormPriority get's mapped to 50% of the
3521 // Maximum priority an so on.  This will cause VM threads
3522 // to get unfair treatment against other Solaris processes
3523 // which do not explicitly alter their thread priorities.
3524 
3525 int os::java_to_os_priority[CriticalPriority + 1] = {
3526   -99999,         // 0 Entry should never be used
3527 
3528   0,              // 1 MinPriority
3529   32,             // 2
3530   64,             // 3
3531 
3532   96,             // 4
3533   127,            // 5 NormPriority
3534   127,            // 6
3535 
3536   127,            // 7
3537   127,            // 8
3538   127,            // 9 NearMaxPriority
3539 
3540   127,            // 10 MaxPriority
3541 
3542   -criticalPrio   // 11 CriticalPriority
3543 };
3544 
3545 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3546   OSThread* osthread = thread->osthread();
3547 
3548   // Save requested priority in case the thread hasn't been started
3549   osthread->set_native_priority(newpri);
3550 
3551   // Check for critical priority request
3552   bool fxcritical = false;
3553   if (newpri == -criticalPrio) {
3554     fxcritical = true;
3555     newpri = criticalPrio;
3556   }
3557 
3558   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3559   if (!UseThreadPriorities) return OS_OK;
3560 
3561   int status = 0;
3562 
3563   if (!fxcritical) {
3564     // Use thr_setprio only if we have a priority that thr_setprio understands
3565     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3566   }
3567 
3568   int lwp_status =
3569           set_lwp_class_and_priority(osthread->thread_id(),
3570                                      osthread->lwp_id(),
3571                                      newpri,
3572                                      fxcritical ? fxLimits.schedPolicy : myClass,
3573                                      !fxcritical);
3574   if (lwp_status != 0 && fxcritical) {
3575     // Try again, this time without changing the scheduling class
3576     newpri = java_MaxPriority_to_os_priority;
3577     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3578                                             osthread->lwp_id(),
3579                                             newpri, myClass, false);
3580   }
3581   status |= lwp_status;
3582   return (status == 0) ? OS_OK : OS_ERR;
3583 }
3584 
3585 
3586 OSReturn os::get_native_priority(const Thread* const thread,
3587                                  int *priority_ptr) {
3588   int p;
3589   if (!UseThreadPriorities) {
3590     *priority_ptr = NormalPriority;
3591     return OS_OK;
3592   }
3593   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3594   if (status != 0) {
3595     return OS_ERR;
3596   }
3597   *priority_ptr = p;
3598   return OS_OK;
3599 }
3600 
3601 
3602 // Hint to the underlying OS that a task switch would not be good.
3603 // Void return because it's a hint and can fail.
3604 void os::hint_no_preempt() {
3605   schedctl_start(schedctl_init());
3606 }
3607 
3608 static void resume_clear_context(OSThread *osthread) {
3609   osthread->set_ucontext(NULL);
3610 }
3611 
3612 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3613   osthread->set_ucontext(context);
3614 }
3615 
3616 static PosixSemaphore sr_semaphore;
3617 
3618 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3619   // Save and restore errno to avoid confusing native code with EINTR
3620   // after sigsuspend.
3621   int old_errno = errno;
3622 
3623   OSThread* osthread = thread->osthread();
3624   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3625 
3626   os::SuspendResume::State current = osthread->sr.state();
3627   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3628     suspend_save_context(osthread, uc);
3629 
3630     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3631     os::SuspendResume::State state = osthread->sr.suspended();
3632     if (state == os::SuspendResume::SR_SUSPENDED) {
3633       sigset_t suspend_set;  // signals for sigsuspend()
3634 
3635       // get current set of blocked signals and unblock resume signal
3636       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3637       sigdelset(&suspend_set, os::Solaris::SIGasync());
3638 
3639       sr_semaphore.signal();
3640       // wait here until we are resumed
3641       while (1) {
3642         sigsuspend(&suspend_set);
3643 
3644         os::SuspendResume::State result = osthread->sr.running();
3645         if (result == os::SuspendResume::SR_RUNNING) {
3646           sr_semaphore.signal();
3647           break;
3648         }
3649       }
3650 
3651     } else if (state == os::SuspendResume::SR_RUNNING) {
3652       // request was cancelled, continue
3653     } else {
3654       ShouldNotReachHere();
3655     }
3656 
3657     resume_clear_context(osthread);
3658   } else if (current == os::SuspendResume::SR_RUNNING) {
3659     // request was cancelled, continue
3660   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3661     // ignore
3662   } else {
3663     // ignore
3664   }
3665 
3666   errno = old_errno;
3667 }
3668 
3669 void os::print_statistics() {
3670 }
3671 
3672 bool os::message_box(const char* title, const char* message) {
3673   int i;
3674   fdStream err(defaultStream::error_fd());
3675   for (i = 0; i < 78; i++) err.print_raw("=");
3676   err.cr();
3677   err.print_raw_cr(title);
3678   for (i = 0; i < 78; i++) err.print_raw("-");
3679   err.cr();
3680   err.print_raw_cr(message);
3681   for (i = 0; i < 78; i++) err.print_raw("=");
3682   err.cr();
3683 
3684   char buf[16];
3685   // Prevent process from exiting upon "read error" without consuming all CPU
3686   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3687 
3688   return buf[0] == 'y' || buf[0] == 'Y';
3689 }
3690 
3691 static int sr_notify(OSThread* osthread) {
3692   int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3693   assert_status(status == 0, status, "thr_kill");
3694   return status;
3695 }
3696 
3697 // "Randomly" selected value for how long we want to spin
3698 // before bailing out on suspending a thread, also how often
3699 // we send a signal to a thread we want to resume
3700 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3701 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3702 
3703 static bool do_suspend(OSThread* osthread) {
3704   assert(osthread->sr.is_running(), "thread should be running");
3705   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3706 
3707   // mark as suspended and send signal
3708   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3709     // failed to switch, state wasn't running?
3710     ShouldNotReachHere();
3711     return false;
3712   }
3713 
3714   if (sr_notify(osthread) != 0) {
3715     ShouldNotReachHere();
3716   }
3717 
3718   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3719   while (true) {
3720     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3721       break;
3722     } else {
3723       // timeout
3724       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3725       if (cancelled == os::SuspendResume::SR_RUNNING) {
3726         return false;
3727       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3728         // make sure that we consume the signal on the semaphore as well
3729         sr_semaphore.wait();
3730         break;
3731       } else {
3732         ShouldNotReachHere();
3733         return false;
3734       }
3735     }
3736   }
3737 
3738   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3739   return true;
3740 }
3741 
3742 static void do_resume(OSThread* osthread) {
3743   assert(osthread->sr.is_suspended(), "thread should be suspended");
3744   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3745 
3746   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3747     // failed to switch to WAKEUP_REQUEST
3748     ShouldNotReachHere();
3749     return;
3750   }
3751 
3752   while (true) {
3753     if (sr_notify(osthread) == 0) {
3754       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3755         if (osthread->sr.is_running()) {
3756           return;
3757         }
3758       }
3759     } else {
3760       ShouldNotReachHere();
3761     }
3762   }
3763 
3764   guarantee(osthread->sr.is_running(), "Must be running!");
3765 }
3766 
3767 void os::SuspendedThreadTask::internal_do_task() {
3768   if (do_suspend(_thread->osthread())) {
3769     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3770     do_task(context);
3771     do_resume(_thread->osthread());
3772   }
3773 }
3774 
3775 class PcFetcher : public os::SuspendedThreadTask {
3776  public:
3777   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3778   ExtendedPC result();
3779  protected:
3780   void do_task(const os::SuspendedThreadTaskContext& context);
3781  private:
3782   ExtendedPC _epc;
3783 };
3784 
3785 ExtendedPC PcFetcher::result() {
3786   guarantee(is_done(), "task is not done yet.");
3787   return _epc;
3788 }
3789 
3790 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3791   Thread* thread = context.thread();
3792   OSThread* osthread = thread->osthread();
3793   if (osthread->ucontext() != NULL) {
3794     _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3795   } else {
3796     // NULL context is unexpected, double-check this is the VMThread
3797     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3798   }
3799 }
3800 
3801 // A lightweight implementation that does not suspend the target thread and
3802 // thus returns only a hint. Used for profiling only!
3803 ExtendedPC os::get_thread_pc(Thread* thread) {
3804   // Make sure that it is called by the watcher and the Threads lock is owned.
3805   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3806   // For now, is only used to profile the VM Thread
3807   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3808   PcFetcher fetcher(thread);
3809   fetcher.run();
3810   return fetcher.result();
3811 }
3812 
3813 
3814 // This does not do anything on Solaris. This is basically a hook for being
3815 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3816 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3817                               const methodHandle& method, JavaCallArguments* args,
3818                               Thread* thread) {
3819   f(value, method, args, thread);
3820 }
3821 
3822 // This routine may be used by user applications as a "hook" to catch signals.
3823 // The user-defined signal handler must pass unrecognized signals to this
3824 // routine, and if it returns true (non-zero), then the signal handler must
3825 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3826 // routine will never retun false (zero), but instead will execute a VM panic
3827 // routine kill the process.
3828 //
3829 // If this routine returns false, it is OK to call it again.  This allows
3830 // the user-defined signal handler to perform checks either before or after
3831 // the VM performs its own checks.  Naturally, the user code would be making
3832 // a serious error if it tried to handle an exception (such as a null check
3833 // or breakpoint) that the VM was generating for its own correct operation.
3834 //
3835 // This routine may recognize any of the following kinds of signals:
3836 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3837 // os::Solaris::SIGasync
3838 // It should be consulted by handlers for any of those signals.
3839 //
3840 // The caller of this routine must pass in the three arguments supplied
3841 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3842 // field of the structure passed to sigaction().  This routine assumes that
3843 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3844 //
3845 // Note that the VM will print warnings if it detects conflicting signal
3846 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3847 //
3848 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3849                                                    siginfo_t* siginfo,
3850                                                    void* ucontext,
3851                                                    int abort_if_unrecognized);
3852 
3853 
3854 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3855   int orig_errno = errno;  // Preserve errno value over signal handler.
3856   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3857   errno = orig_errno;
3858 }
3859 
3860 // This boolean allows users to forward their own non-matching signals
3861 // to JVM_handle_solaris_signal, harmlessly.
3862 bool os::Solaris::signal_handlers_are_installed = false;
3863 
3864 // For signal-chaining
3865 bool os::Solaris::libjsig_is_loaded = false;
3866 typedef struct sigaction *(*get_signal_t)(int);
3867 get_signal_t os::Solaris::get_signal_action = NULL;
3868 
3869 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3870   struct sigaction *actp = NULL;
3871 
3872   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3873     // Retrieve the old signal handler from libjsig
3874     actp = (*get_signal_action)(sig);
3875   }
3876   if (actp == NULL) {
3877     // Retrieve the preinstalled signal handler from jvm
3878     actp = get_preinstalled_handler(sig);
3879   }
3880 
3881   return actp;
3882 }
3883 
3884 static bool call_chained_handler(struct sigaction *actp, int sig,
3885                                  siginfo_t *siginfo, void *context) {
3886   // Call the old signal handler
3887   if (actp->sa_handler == SIG_DFL) {
3888     // It's more reasonable to let jvm treat it as an unexpected exception
3889     // instead of taking the default action.
3890     return false;
3891   } else if (actp->sa_handler != SIG_IGN) {
3892     if ((actp->sa_flags & SA_NODEFER) == 0) {
3893       // automaticlly block the signal
3894       sigaddset(&(actp->sa_mask), sig);
3895     }
3896 
3897     sa_handler_t hand;
3898     sa_sigaction_t sa;
3899     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3900     // retrieve the chained handler
3901     if (siginfo_flag_set) {
3902       sa = actp->sa_sigaction;
3903     } else {
3904       hand = actp->sa_handler;
3905     }
3906 
3907     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3908       actp->sa_handler = SIG_DFL;
3909     }
3910 
3911     // try to honor the signal mask
3912     sigset_t oset;
3913     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3914 
3915     // call into the chained handler
3916     if (siginfo_flag_set) {
3917       (*sa)(sig, siginfo, context);
3918     } else {
3919       (*hand)(sig);
3920     }
3921 
3922     // restore the signal mask
3923     pthread_sigmask(SIG_SETMASK, &oset, 0);
3924   }
3925   // Tell jvm's signal handler the signal is taken care of.
3926   return true;
3927 }
3928 
3929 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3930   bool chained = false;
3931   // signal-chaining
3932   if (UseSignalChaining) {
3933     struct sigaction *actp = get_chained_signal_action(sig);
3934     if (actp != NULL) {
3935       chained = call_chained_handler(actp, sig, siginfo, context);
3936     }
3937   }
3938   return chained;
3939 }
3940 
3941 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3942   assert((chainedsigactions != (struct sigaction *)NULL) &&
3943          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3944   if (preinstalled_sigs[sig] != 0) {
3945     return &chainedsigactions[sig];
3946   }
3947   return NULL;
3948 }
3949 
3950 void os::Solaris::save_preinstalled_handler(int sig,
3951                                             struct sigaction& oldAct) {
3952   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3953   assert((chainedsigactions != (struct sigaction *)NULL) &&
3954          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3955   chainedsigactions[sig] = oldAct;
3956   preinstalled_sigs[sig] = 1;
3957 }
3958 
3959 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3960                                      bool oktochain) {
3961   // Check for overwrite.
3962   struct sigaction oldAct;
3963   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3964   void* oldhand =
3965       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3966                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3967   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3968       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3969       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3970     if (AllowUserSignalHandlers || !set_installed) {
3971       // Do not overwrite; user takes responsibility to forward to us.
3972       return;
3973     } else if (UseSignalChaining) {
3974       if (oktochain) {
3975         // save the old handler in jvm
3976         save_preinstalled_handler(sig, oldAct);
3977       } else {
3978         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3979       }
3980       // libjsig also interposes the sigaction() call below and saves the
3981       // old sigaction on it own.
3982     } else {
3983       fatal("Encountered unexpected pre-existing sigaction handler "
3984             "%#lx for signal %d.", (long)oldhand, sig);
3985     }
3986   }
3987 
3988   struct sigaction sigAct;
3989   sigfillset(&(sigAct.sa_mask));
3990   sigAct.sa_handler = SIG_DFL;
3991 
3992   sigAct.sa_sigaction = signalHandler;
3993   // Handle SIGSEGV on alternate signal stack if
3994   // not using stack banging
3995   if (!UseStackBanging && sig == SIGSEGV) {
3996     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3997   } else {
3998     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3999   }
4000   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
4001 
4002   sigaction(sig, &sigAct, &oldAct);
4003 
4004   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4005                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4006   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4007 }
4008 
4009 
4010 #define DO_SIGNAL_CHECK(sig)                      \
4011   do {                                            \
4012     if (!sigismember(&check_signal_done, sig)) {  \
4013       os::Solaris::check_signal_handler(sig);     \
4014     }                                             \
4015   } while (0)
4016 
4017 // This method is a periodic task to check for misbehaving JNI applications
4018 // under CheckJNI, we can add any periodic checks here
4019 
4020 void os::run_periodic_checks() {
4021   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4022   // thereby preventing a NULL checks.
4023   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
4024 
4025   if (check_signals == false) return;
4026 
4027   // SEGV and BUS if overridden could potentially prevent
4028   // generation of hs*.log in the event of a crash, debugging
4029   // such a case can be very challenging, so we absolutely
4030   // check for the following for a good measure:
4031   DO_SIGNAL_CHECK(SIGSEGV);
4032   DO_SIGNAL_CHECK(SIGILL);
4033   DO_SIGNAL_CHECK(SIGFPE);
4034   DO_SIGNAL_CHECK(SIGBUS);
4035   DO_SIGNAL_CHECK(SIGPIPE);
4036   DO_SIGNAL_CHECK(SIGXFSZ);
4037 
4038   // ReduceSignalUsage allows the user to override these handlers
4039   // see comments at the very top and jvm_solaris.h
4040   if (!ReduceSignalUsage) {
4041     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4042     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4043     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4044     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4045   }
4046 
4047   // See comments above for using JVM1/JVM2
4048   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4049 
4050 }
4051 
4052 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4053 
4054 static os_sigaction_t os_sigaction = NULL;
4055 
4056 void os::Solaris::check_signal_handler(int sig) {
4057   char buf[O_BUFLEN];
4058   address jvmHandler = NULL;
4059 
4060   struct sigaction act;
4061   if (os_sigaction == NULL) {
4062     // only trust the default sigaction, in case it has been interposed
4063     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4064     if (os_sigaction == NULL) return;
4065   }
4066 
4067   os_sigaction(sig, (struct sigaction*)NULL, &act);
4068 
4069   address thisHandler = (act.sa_flags & SA_SIGINFO)
4070     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4071     : CAST_FROM_FN_PTR(address, act.sa_handler);
4072 
4073 
4074   switch (sig) {
4075   case SIGSEGV:
4076   case SIGBUS:
4077   case SIGFPE:
4078   case SIGPIPE:
4079   case SIGXFSZ:
4080   case SIGILL:
4081     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4082     break;
4083 
4084   case SHUTDOWN1_SIGNAL:
4085   case SHUTDOWN2_SIGNAL:
4086   case SHUTDOWN3_SIGNAL:
4087   case BREAK_SIGNAL:
4088     jvmHandler = (address)user_handler();
4089     break;
4090 
4091   default:
4092     int asynsig = os::Solaris::SIGasync();
4093 
4094     if (sig == asynsig) {
4095       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4096     } else {
4097       return;
4098     }
4099     break;
4100   }
4101 
4102 
4103   if (thisHandler != jvmHandler) {
4104     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4105     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4106     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4107     // No need to check this sig any longer
4108     sigaddset(&check_signal_done, sig);
4109     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4110     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4111       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4112                     exception_name(sig, buf, O_BUFLEN));
4113     }
4114   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4115     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4116     tty->print("expected:");
4117     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4118     tty->cr();
4119     tty->print("  found:");
4120     os::Posix::print_sa_flags(tty, act.sa_flags);
4121     tty->cr();
4122     // No need to check this sig any longer
4123     sigaddset(&check_signal_done, sig);
4124   }
4125 
4126   // Print all the signal handler state
4127   if (sigismember(&check_signal_done, sig)) {
4128     print_signal_handlers(tty, buf, O_BUFLEN);
4129   }
4130 
4131 }
4132 
4133 void os::Solaris::install_signal_handlers() {
4134   bool libjsigdone = false;
4135   signal_handlers_are_installed = true;
4136 
4137   // signal-chaining
4138   typedef void (*signal_setting_t)();
4139   signal_setting_t begin_signal_setting = NULL;
4140   signal_setting_t end_signal_setting = NULL;
4141   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4142                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4143   if (begin_signal_setting != NULL) {
4144     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4145                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4146     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4147                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4148     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4149                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4150     libjsig_is_loaded = true;
4151     if (os::Solaris::get_libjsig_version != NULL) {
4152       libjsigversion =  (*os::Solaris::get_libjsig_version)();
4153     }
4154     assert(UseSignalChaining, "should enable signal-chaining");
4155   }
4156   if (libjsig_is_loaded) {
4157     // Tell libjsig jvm is setting signal handlers
4158     (*begin_signal_setting)();
4159   }
4160 
4161   set_signal_handler(SIGSEGV, true, true);
4162   set_signal_handler(SIGPIPE, true, true);
4163   set_signal_handler(SIGXFSZ, true, true);
4164   set_signal_handler(SIGBUS, true, true);
4165   set_signal_handler(SIGILL, true, true);
4166   set_signal_handler(SIGFPE, true, true);
4167 
4168 
4169   if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4170     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4171     // can not register overridable signals which might be > 32
4172     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4173       // Tell libjsig jvm has finished setting signal handlers
4174       (*end_signal_setting)();
4175       libjsigdone = true;
4176     }
4177   }
4178 
4179   set_signal_handler(os::Solaris::SIGasync(), true, true);
4180 
4181   if (libjsig_is_loaded && !libjsigdone) {
4182     // Tell libjsig jvm finishes setting signal handlers
4183     (*end_signal_setting)();
4184   }
4185 
4186   // We don't activate signal checker if libjsig is in place, we trust ourselves
4187   // and if UserSignalHandler is installed all bets are off.
4188   // Log that signal checking is off only if -verbose:jni is specified.
4189   if (CheckJNICalls) {
4190     if (libjsig_is_loaded) {
4191       if (PrintJNIResolving) {
4192         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4193       }
4194       check_signals = false;
4195     }
4196     if (AllowUserSignalHandlers) {
4197       if (PrintJNIResolving) {
4198         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4199       }
4200       check_signals = false;
4201     }
4202   }
4203 }
4204 
4205 
4206 void report_error(const char* file_name, int line_no, const char* title,
4207                   const char* format, ...);
4208 
4209 // (Static) wrapper for getisax(2) call.
4210 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4211 
4212 // (Static) wrappers for the liblgrp API
4213 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4214 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4215 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4216 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4217 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4218 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4219 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4220 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4221 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4222 
4223 // (Static) wrapper for meminfo() call.
4224 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4225 
4226 static address resolve_symbol_lazy(const char* name) {
4227   address addr = (address) dlsym(RTLD_DEFAULT, name);
4228   if (addr == NULL) {
4229     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4230     addr = (address) dlsym(RTLD_NEXT, name);
4231   }
4232   return addr;
4233 }
4234 
4235 static address resolve_symbol(const char* name) {
4236   address addr = resolve_symbol_lazy(name);
4237   if (addr == NULL) {
4238     fatal(dlerror());
4239   }
4240   return addr;
4241 }
4242 
4243 void os::Solaris::libthread_init() {
4244   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4245 
4246   lwp_priocntl_init();
4247 
4248   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4249   if (func == NULL) {
4250     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4251     // Guarantee that this VM is running on an new enough OS (5.6 or
4252     // later) that it will have a new enough libthread.so.
4253     guarantee(func != NULL, "libthread.so is too old.");
4254   }
4255 
4256   int size;
4257   void (*handler_info_func)(address *, int *);
4258   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4259   handler_info_func(&handler_start, &size);
4260   handler_end = handler_start + size;
4261 }
4262 
4263 
4264 int_fnP_mutex_tP os::Solaris::_mutex_lock;
4265 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4266 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4267 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4268 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4269 int os::Solaris::_mutex_scope = USYNC_THREAD;
4270 
4271 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4272 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4273 int_fnP_cond_tP os::Solaris::_cond_signal;
4274 int_fnP_cond_tP os::Solaris::_cond_broadcast;
4275 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4276 int_fnP_cond_tP os::Solaris::_cond_destroy;
4277 int os::Solaris::_cond_scope = USYNC_THREAD;
4278 
4279 void os::Solaris::synchronization_init() {
4280   if (UseLWPSynchronization) {
4281     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4282     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4283     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4284     os::Solaris::set_mutex_init(lwp_mutex_init);
4285     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4286     os::Solaris::set_mutex_scope(USYNC_THREAD);
4287 
4288     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4289     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4290     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4291     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4292     os::Solaris::set_cond_init(lwp_cond_init);
4293     os::Solaris::set_cond_destroy(lwp_cond_destroy);
4294     os::Solaris::set_cond_scope(USYNC_THREAD);
4295   } else {
4296     os::Solaris::set_mutex_scope(USYNC_THREAD);
4297     os::Solaris::set_cond_scope(USYNC_THREAD);
4298 
4299     if (UsePthreads) {
4300       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4301       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4302       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4303       os::Solaris::set_mutex_init(pthread_mutex_default_init);
4304       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4305 
4306       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4307       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4308       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4309       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4310       os::Solaris::set_cond_init(pthread_cond_default_init);
4311       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4312     } else {
4313       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4314       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4315       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4316       os::Solaris::set_mutex_init(::mutex_init);
4317       os::Solaris::set_mutex_destroy(::mutex_destroy);
4318 
4319       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4320       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4321       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4322       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4323       os::Solaris::set_cond_init(::cond_init);
4324       os::Solaris::set_cond_destroy(::cond_destroy);
4325     }
4326   }
4327 }
4328 
4329 bool os::Solaris::liblgrp_init() {
4330   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4331   if (handle != NULL) {
4332     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4333     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4334     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4335     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4336     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4337     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4338     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4339     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4340                                                       dlsym(handle, "lgrp_cookie_stale")));
4341 
4342     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4343     set_lgrp_cookie(c);
4344     return true;
4345   }
4346   return false;
4347 }
4348 
4349 void os::Solaris::misc_sym_init() {
4350   address func;
4351 
4352   // getisax
4353   func = resolve_symbol_lazy("getisax");
4354   if (func != NULL) {
4355     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4356   }
4357 
4358   // meminfo
4359   func = resolve_symbol_lazy("meminfo");
4360   if (func != NULL) {
4361     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4362   }
4363 }
4364 
4365 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4366   assert(_getisax != NULL, "_getisax not set");
4367   return _getisax(array, n);
4368 }
4369 
4370 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4371 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4372 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4373 
4374 void init_pset_getloadavg_ptr(void) {
4375   pset_getloadavg_ptr =
4376     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4377   if (pset_getloadavg_ptr == NULL) {
4378     log_warning(os)("pset_getloadavg function not found");
4379   }
4380 }
4381 
4382 int os::Solaris::_dev_zero_fd = -1;
4383 
4384 // this is called _before_ the global arguments have been parsed
4385 void os::init(void) {
4386   _initial_pid = getpid();
4387 
4388   max_hrtime = first_hrtime = gethrtime();
4389 
4390   init_random(1234567);
4391 
4392   page_size = sysconf(_SC_PAGESIZE);
4393   if (page_size == -1) {
4394     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4395   }
4396   init_page_sizes((size_t) page_size);
4397 
4398   Solaris::initialize_system_info();
4399 
4400   // Initialize misc. symbols as soon as possible, so we can use them
4401   // if we need them.
4402   Solaris::misc_sym_init();
4403 
4404   int fd = ::open("/dev/zero", O_RDWR);
4405   if (fd < 0) {
4406     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4407   } else {
4408     Solaris::set_dev_zero_fd(fd);
4409 
4410     // Close on exec, child won't inherit.
4411     fcntl(fd, F_SETFD, FD_CLOEXEC);
4412   }
4413 
4414   clock_tics_per_sec = CLK_TCK;
4415 
4416   // check if dladdr1() exists; dladdr1 can provide more information than
4417   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4418   // and is available on linker patches for 5.7 and 5.8.
4419   // libdl.so must have been loaded, this call is just an entry lookup
4420   void * hdl = dlopen("libdl.so", RTLD_NOW);
4421   if (hdl) {
4422     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4423   }
4424 
4425   // (Solaris only) this switches to calls that actually do locking.
4426   ThreadCritical::initialize();
4427 
4428   main_thread = thr_self();
4429 
4430   // Constant minimum stack size allowed. It must be at least
4431   // the minimum of what the OS supports (thr_min_stack()), and
4432   // enough to allow the thread to get to user bytecode execution.
4433   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4434 
4435   // retrieve entry point for pthread_setname_np
4436   void * handle = dlopen("libc.so.1", RTLD_LAZY);
4437   if (handle != NULL) {
4438     Solaris::_pthread_setname_np =
4439         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4440   }
4441 }
4442 
4443 // To install functions for atexit system call
4444 extern "C" {
4445   static void perfMemory_exit_helper() {
4446     perfMemory_exit();
4447   }
4448 }
4449 
4450 // this is called _after_ the global arguments have been parsed
4451 jint os::init_2(void) {
4452   // try to enable extended file IO ASAP, see 6431278
4453   os::Solaris::try_enable_extended_io();
4454 
4455   // Allocate a single page and mark it as readable for safepoint polling.  Also
4456   // use this first mmap call to check support for MAP_ALIGN.
4457   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4458                                                       page_size,
4459                                                       MAP_PRIVATE | MAP_ALIGN,
4460                                                       PROT_READ);
4461   if (polling_page == NULL) {
4462     has_map_align = false;
4463     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4464                                                 PROT_READ);
4465   }
4466 
4467   os::set_polling_page(polling_page);
4468   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4469 
4470   if (!UseMembar) {
4471     address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4472     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4473     os::set_memory_serialize_page(mem_serialize_page);
4474     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4475   }
4476 
4477   // Check minimum allowable stack size for thread creation and to initialize
4478   // the java system classes, including StackOverflowError - depends on page
4479   // size.  Add a page for compiler2 recursion in main thread.
4480   // Add in 2*BytesPerWord times page size to account for VM stack during
4481   // class initialization depending on 32 or 64 bit VM.
4482   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4483                                         JavaThread::stack_guard_zone_size() +
4484                                         JavaThread::stack_shadow_zone_size() +
4485                                         (2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4486 
4487   size_t threadStackSizeInBytes = ThreadStackSize * K;
4488   if (threadStackSizeInBytes != 0 &&
4489       threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4490     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4491                   os::Solaris::min_stack_allowed/K);
4492     return JNI_ERR;
4493   }
4494 
4495   // For 64kbps there will be a 64kb page size, which makes
4496   // the usable default stack size quite a bit less.  Increase the
4497   // stack for 64kb (or any > than 8kb) pages, this increases
4498   // virtual memory fragmentation (since we're not creating the
4499   // stack on a power of 2 boundary.  The real fix for this
4500   // should be to fix the guard page mechanism.
4501 
4502   if (vm_page_size() > 8*K) {
4503     threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4504        ? threadStackSizeInBytes +
4505          JavaThread::stack_red_zone_size() +
4506          JavaThread::stack_yellow_zone_size()
4507        : 0;
4508     ThreadStackSize = threadStackSizeInBytes/K;
4509   }
4510 
4511   // Make the stack size a multiple of the page size so that
4512   // the yellow/red zones can be guarded.
4513   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4514                                                 vm_page_size()));
4515 
4516   Solaris::libthread_init();
4517 
4518   if (UseNUMA) {
4519     if (!Solaris::liblgrp_init()) {
4520       UseNUMA = false;
4521     } else {
4522       size_t lgrp_limit = os::numa_get_groups_num();
4523       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4524       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4525       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4526       if (lgrp_num < 2) {
4527         // There's only one locality group, disable NUMA.
4528         UseNUMA = false;
4529       }
4530     }
4531     if (!UseNUMA && ForceNUMA) {
4532       UseNUMA = true;
4533     }
4534   }
4535 
4536   Solaris::signal_sets_init();
4537   Solaris::init_signal_mem();
4538   Solaris::install_signal_handlers();
4539 
4540   if (libjsigversion < JSIG_VERSION_1_4_1) {
4541     Maxlibjsigsigs = OLDMAXSIGNUM;
4542   }
4543 
4544   // initialize synchronization primitives to use either thread or
4545   // lwp synchronization (controlled by UseLWPSynchronization)
4546   Solaris::synchronization_init();
4547 
4548   if (MaxFDLimit) {
4549     // set the number of file descriptors to max. print out error
4550     // if getrlimit/setrlimit fails but continue regardless.
4551     struct rlimit nbr_files;
4552     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4553     if (status != 0) {
4554       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4555     } else {
4556       nbr_files.rlim_cur = nbr_files.rlim_max;
4557       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4558       if (status != 0) {
4559         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4560       }
4561     }
4562   }
4563 
4564   // Calculate theoretical max. size of Threads to guard gainst
4565   // artifical out-of-memory situations, where all available address-
4566   // space has been reserved by thread stacks. Default stack size is 1Mb.
4567   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4568     JavaThread::stack_size_at_create() : (1*K*K);
4569   assert(pre_thread_stack_size != 0, "Must have a stack");
4570   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4571   // we should start doing Virtual Memory banging. Currently when the threads will
4572   // have used all but 200Mb of space.
4573   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4574   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4575 
4576   // at-exit methods are called in the reverse order of their registration.
4577   // In Solaris 7 and earlier, atexit functions are called on return from
4578   // main or as a result of a call to exit(3C). There can be only 32 of
4579   // these functions registered and atexit() does not set errno. In Solaris
4580   // 8 and later, there is no limit to the number of functions registered
4581   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4582   // functions are called upon dlclose(3DL) in addition to return from main
4583   // and exit(3C).
4584 
4585   if (PerfAllowAtExitRegistration) {
4586     // only register atexit functions if PerfAllowAtExitRegistration is set.
4587     // atexit functions can be delayed until process exit time, which
4588     // can be problematic for embedded VM situations. Embedded VMs should
4589     // call DestroyJavaVM() to assure that VM resources are released.
4590 
4591     // note: perfMemory_exit_helper atexit function may be removed in
4592     // the future if the appropriate cleanup code can be added to the
4593     // VM_Exit VMOperation's doit method.
4594     if (atexit(perfMemory_exit_helper) != 0) {
4595       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4596     }
4597   }
4598 
4599   // Init pset_loadavg function pointer
4600   init_pset_getloadavg_ptr();
4601 
4602   return JNI_OK;
4603 }
4604 
4605 // Mark the polling page as unreadable
4606 void os::make_polling_page_unreadable(void) {
4607   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4608     fatal("Could not disable polling page");
4609   }
4610 }
4611 
4612 // Mark the polling page as readable
4613 void os::make_polling_page_readable(void) {
4614   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4615     fatal("Could not enable polling page");
4616   }
4617 }
4618 
4619 // OS interface.
4620 
4621 bool os::check_heap(bool force) { return true; }
4622 
4623 // Is a (classpath) directory empty?
4624 bool os::dir_is_empty(const char* path) {
4625   DIR *dir = NULL;
4626   struct dirent *ptr;
4627 
4628   dir = opendir(path);
4629   if (dir == NULL) return true;
4630 
4631   // Scan the directory
4632   bool result = true;
4633   char buf[sizeof(struct dirent) + MAX_PATH];
4634   struct dirent *dbuf = (struct dirent *) buf;
4635   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4636     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4637       result = false;
4638     }
4639   }
4640   closedir(dir);
4641   return result;
4642 }
4643 
4644 // This code originates from JDK's sysOpen and open64_w
4645 // from src/solaris/hpi/src/system_md.c
4646 
4647 int os::open(const char *path, int oflag, int mode) {
4648   if (strlen(path) > MAX_PATH - 1) {
4649     errno = ENAMETOOLONG;
4650     return -1;
4651   }
4652   int fd;
4653 
4654   fd = ::open64(path, oflag, mode);
4655   if (fd == -1) return -1;
4656 
4657   // If the open succeeded, the file might still be a directory
4658   {
4659     struct stat64 buf64;
4660     int ret = ::fstat64(fd, &buf64);
4661     int st_mode = buf64.st_mode;
4662 
4663     if (ret != -1) {
4664       if ((st_mode & S_IFMT) == S_IFDIR) {
4665         errno = EISDIR;
4666         ::close(fd);
4667         return -1;
4668       }
4669     } else {
4670       ::close(fd);
4671       return -1;
4672     }
4673   }
4674 
4675   // 32-bit Solaris systems suffer from:
4676   //
4677   // - an historical default soft limit of 256 per-process file
4678   //   descriptors that is too low for many Java programs.
4679   //
4680   // - a design flaw where file descriptors created using stdio
4681   //   fopen must be less than 256, _even_ when the first limit above
4682   //   has been raised.  This can cause calls to fopen (but not calls to
4683   //   open, for example) to fail mysteriously, perhaps in 3rd party
4684   //   native code (although the JDK itself uses fopen).  One can hardly
4685   //   criticize them for using this most standard of all functions.
4686   //
4687   // We attempt to make everything work anyways by:
4688   //
4689   // - raising the soft limit on per-process file descriptors beyond
4690   //   256
4691   //
4692   // - As of Solaris 10u4, we can request that Solaris raise the 256
4693   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4694   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4695   //
4696   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4697   //   workaround the bug by remapping non-stdio file descriptors below
4698   //   256 to ones beyond 256, which is done below.
4699   //
4700   // See:
4701   // 1085341: 32-bit stdio routines should support file descriptors >255
4702   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4703   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4704   //          enable_extended_FILE_stdio() in VM initialisation
4705   // Giri Mandalika's blog
4706   // http://technopark02.blogspot.com/2005_05_01_archive.html
4707   //
4708 #ifndef  _LP64
4709   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4710     int newfd = ::fcntl(fd, F_DUPFD, 256);
4711     if (newfd != -1) {
4712       ::close(fd);
4713       fd = newfd;
4714     }
4715   }
4716 #endif // 32-bit Solaris
4717 
4718   // All file descriptors that are opened in the JVM and not
4719   // specifically destined for a subprocess should have the
4720   // close-on-exec flag set.  If we don't set it, then careless 3rd
4721   // party native code might fork and exec without closing all
4722   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4723   // UNIXProcess.c), and this in turn might:
4724   //
4725   // - cause end-of-file to fail to be detected on some file
4726   //   descriptors, resulting in mysterious hangs, or
4727   //
4728   // - might cause an fopen in the subprocess to fail on a system
4729   //   suffering from bug 1085341.
4730   //
4731   // (Yes, the default setting of the close-on-exec flag is a Unix
4732   // design flaw)
4733   //
4734   // See:
4735   // 1085341: 32-bit stdio routines should support file descriptors >255
4736   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4737   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4738   //
4739 #ifdef FD_CLOEXEC
4740   {
4741     int flags = ::fcntl(fd, F_GETFD);
4742     if (flags != -1) {
4743       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4744     }
4745   }
4746 #endif
4747 
4748   return fd;
4749 }
4750 
4751 // create binary file, rewriting existing file if required
4752 int os::create_binary_file(const char* path, bool rewrite_existing) {
4753   int oflags = O_WRONLY | O_CREAT;
4754   if (!rewrite_existing) {
4755     oflags |= O_EXCL;
4756   }
4757   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4758 }
4759 
4760 // return current position of file pointer
4761 jlong os::current_file_offset(int fd) {
4762   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4763 }
4764 
4765 // move file pointer to the specified offset
4766 jlong os::seek_to_file_offset(int fd, jlong offset) {
4767   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4768 }
4769 
4770 jlong os::lseek(int fd, jlong offset, int whence) {
4771   return (jlong) ::lseek64(fd, offset, whence);
4772 }
4773 
4774 char * os::native_path(char *path) {
4775   return path;
4776 }
4777 
4778 int os::ftruncate(int fd, jlong length) {
4779   return ::ftruncate64(fd, length);
4780 }
4781 
4782 int os::fsync(int fd)  {
4783   RESTARTABLE_RETURN_INT(::fsync(fd));
4784 }
4785 
4786 int os::available(int fd, jlong *bytes) {
4787   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4788          "Assumed _thread_in_native");
4789   jlong cur, end;
4790   int mode;
4791   struct stat64 buf64;
4792 
4793   if (::fstat64(fd, &buf64) >= 0) {
4794     mode = buf64.st_mode;
4795     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4796       int n,ioctl_return;
4797 
4798       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4799       if (ioctl_return>= 0) {
4800         *bytes = n;
4801         return 1;
4802       }
4803     }
4804   }
4805   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4806     return 0;
4807   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4808     return 0;
4809   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4810     return 0;
4811   }
4812   *bytes = end - cur;
4813   return 1;
4814 }
4815 
4816 // Map a block of memory.
4817 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4818                         char *addr, size_t bytes, bool read_only,
4819                         bool allow_exec) {
4820   int prot;
4821   int flags;
4822 
4823   if (read_only) {
4824     prot = PROT_READ;
4825     flags = MAP_SHARED;
4826   } else {
4827     prot = PROT_READ | PROT_WRITE;
4828     flags = MAP_PRIVATE;
4829   }
4830 
4831   if (allow_exec) {
4832     prot |= PROT_EXEC;
4833   }
4834 
4835   if (addr != NULL) {
4836     flags |= MAP_FIXED;
4837   }
4838 
4839   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4840                                      fd, file_offset);
4841   if (mapped_address == MAP_FAILED) {
4842     return NULL;
4843   }
4844   return mapped_address;
4845 }
4846 
4847 
4848 // Remap a block of memory.
4849 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4850                           char *addr, size_t bytes, bool read_only,
4851                           bool allow_exec) {
4852   // same as map_memory() on this OS
4853   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4854                         allow_exec);
4855 }
4856 
4857 
4858 // Unmap a block of memory.
4859 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4860   return munmap(addr, bytes) == 0;
4861 }
4862 
4863 void os::pause() {
4864   char filename[MAX_PATH];
4865   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4866     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4867   } else {
4868     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4869   }
4870 
4871   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4872   if (fd != -1) {
4873     struct stat buf;
4874     ::close(fd);
4875     while (::stat(filename, &buf) == 0) {
4876       (void)::poll(NULL, 0, 100);
4877     }
4878   } else {
4879     jio_fprintf(stderr,
4880                 "Could not open pause file '%s', continuing immediately.\n", filename);
4881   }
4882 }
4883 
4884 #ifndef PRODUCT
4885 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4886 // Turn this on if you need to trace synch operations.
4887 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4888 // and call record_synch_enable and record_synch_disable
4889 // around the computation of interest.
4890 
4891 void record_synch(char* name, bool returning);  // defined below
4892 
4893 class RecordSynch {
4894   char* _name;
4895  public:
4896   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4897   ~RecordSynch()                       { record_synch(_name, true); }
4898 };
4899 
4900 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4901 extern "C" ret name params {                                    \
4902   typedef ret name##_t params;                                  \
4903   static name##_t* implem = NULL;                               \
4904   static int callcount = 0;                                     \
4905   if (implem == NULL) {                                         \
4906     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4907     if (implem == NULL)  fatal(dlerror());                      \
4908   }                                                             \
4909   ++callcount;                                                  \
4910   RecordSynch _rs(#name);                                       \
4911   inner;                                                        \
4912   return implem args;                                           \
4913 }
4914 // in dbx, examine callcounts this way:
4915 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4916 
4917 #define CHECK_POINTER_OK(p) \
4918   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4919 #define CHECK_MU \
4920   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4921 #define CHECK_CV \
4922   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4923 #define CHECK_P(p) \
4924   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4925 
4926 #define CHECK_MUTEX(mutex_op) \
4927   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4928 
4929 CHECK_MUTEX(   mutex_lock)
4930 CHECK_MUTEX(  _mutex_lock)
4931 CHECK_MUTEX( mutex_unlock)
4932 CHECK_MUTEX(_mutex_unlock)
4933 CHECK_MUTEX( mutex_trylock)
4934 CHECK_MUTEX(_mutex_trylock)
4935 
4936 #define CHECK_COND(cond_op) \
4937   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4938 
4939 CHECK_COND( cond_wait);
4940 CHECK_COND(_cond_wait);
4941 CHECK_COND(_cond_wait_cancel);
4942 
4943 #define CHECK_COND2(cond_op) \
4944   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4945 
4946 CHECK_COND2( cond_timedwait);
4947 CHECK_COND2(_cond_timedwait);
4948 CHECK_COND2(_cond_timedwait_cancel);
4949 
4950 // do the _lwp_* versions too
4951 #define mutex_t lwp_mutex_t
4952 #define cond_t  lwp_cond_t
4953 CHECK_MUTEX(  _lwp_mutex_lock)
4954 CHECK_MUTEX(  _lwp_mutex_unlock)
4955 CHECK_MUTEX(  _lwp_mutex_trylock)
4956 CHECK_MUTEX( __lwp_mutex_lock)
4957 CHECK_MUTEX( __lwp_mutex_unlock)
4958 CHECK_MUTEX( __lwp_mutex_trylock)
4959 CHECK_MUTEX(___lwp_mutex_lock)
4960 CHECK_MUTEX(___lwp_mutex_unlock)
4961 
4962 CHECK_COND(  _lwp_cond_wait);
4963 CHECK_COND( __lwp_cond_wait);
4964 CHECK_COND(___lwp_cond_wait);
4965 
4966 CHECK_COND2(  _lwp_cond_timedwait);
4967 CHECK_COND2( __lwp_cond_timedwait);
4968 #undef mutex_t
4969 #undef cond_t
4970 
4971 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4972 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4973 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4974 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4975 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4976 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4977 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4978 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4979 
4980 
4981 // recording machinery:
4982 
4983 enum { RECORD_SYNCH_LIMIT = 200 };
4984 char* record_synch_name[RECORD_SYNCH_LIMIT];
4985 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4986 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4987 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4988 int record_synch_count = 0;
4989 bool record_synch_enabled = false;
4990 
4991 // in dbx, examine recorded data this way:
4992 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4993 
4994 void record_synch(char* name, bool returning) {
4995   if (record_synch_enabled) {
4996     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4997       record_synch_name[record_synch_count] = name;
4998       record_synch_returning[record_synch_count] = returning;
4999       record_synch_thread[record_synch_count] = thr_self();
5000       record_synch_arg0ptr[record_synch_count] = &name;
5001       record_synch_count++;
5002     }
5003     // put more checking code here:
5004     // ...
5005   }
5006 }
5007 
5008 void record_synch_enable() {
5009   // start collecting trace data, if not already doing so
5010   if (!record_synch_enabled)  record_synch_count = 0;
5011   record_synch_enabled = true;
5012 }
5013 
5014 void record_synch_disable() {
5015   // stop collecting trace data
5016   record_synch_enabled = false;
5017 }
5018 
5019 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5020 #endif // PRODUCT
5021 
5022 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5023 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5024                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5025 
5026 
5027 // JVMTI & JVM monitoring and management support
5028 // The thread_cpu_time() and current_thread_cpu_time() are only
5029 // supported if is_thread_cpu_time_supported() returns true.
5030 // They are not supported on Solaris T1.
5031 
5032 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5033 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5034 // of a thread.
5035 //
5036 // current_thread_cpu_time() and thread_cpu_time(Thread *)
5037 // returns the fast estimate available on the platform.
5038 
5039 // hrtime_t gethrvtime() return value includes
5040 // user time but does not include system time
5041 jlong os::current_thread_cpu_time() {
5042   return (jlong) gethrvtime();
5043 }
5044 
5045 jlong os::thread_cpu_time(Thread *thread) {
5046   // return user level CPU time only to be consistent with
5047   // what current_thread_cpu_time returns.
5048   // thread_cpu_time_info() must be changed if this changes
5049   return os::thread_cpu_time(thread, false /* user time only */);
5050 }
5051 
5052 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5053   if (user_sys_cpu_time) {
5054     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5055   } else {
5056     return os::current_thread_cpu_time();
5057   }
5058 }
5059 
5060 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5061   char proc_name[64];
5062   int count;
5063   prusage_t prusage;
5064   jlong lwp_time;
5065   int fd;
5066 
5067   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5068           getpid(),
5069           thread->osthread()->lwp_id());
5070   fd = ::open(proc_name, O_RDONLY);
5071   if (fd == -1) return -1;
5072 
5073   do {
5074     count = ::pread(fd,
5075                     (void *)&prusage.pr_utime,
5076                     thr_time_size,
5077                     thr_time_off);
5078   } while (count < 0 && errno == EINTR);
5079   ::close(fd);
5080   if (count < 0) return -1;
5081 
5082   if (user_sys_cpu_time) {
5083     // user + system CPU time
5084     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5085                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5086                  (jlong)prusage.pr_stime.tv_nsec +
5087                  (jlong)prusage.pr_utime.tv_nsec;
5088   } else {
5089     // user level CPU time only
5090     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5091                 (jlong)prusage.pr_utime.tv_nsec;
5092   }
5093 
5094   return (lwp_time);
5095 }
5096 
5097 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5098   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5099   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5100   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5101   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5102 }
5103 
5104 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5105   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5106   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5107   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5108   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5109 }
5110 
5111 bool os::is_thread_cpu_time_supported() {
5112   return true;
5113 }
5114 
5115 // System loadavg support.  Returns -1 if load average cannot be obtained.
5116 // Return the load average for our processor set if the primitive exists
5117 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
5118 int os::loadavg(double loadavg[], int nelem) {
5119   if (pset_getloadavg_ptr != NULL) {
5120     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5121   } else {
5122     return ::getloadavg(loadavg, nelem);
5123   }
5124 }
5125 
5126 //---------------------------------------------------------------------------------
5127 
5128 bool os::find(address addr, outputStream* st) {
5129   Dl_info dlinfo;
5130   memset(&dlinfo, 0, sizeof(dlinfo));
5131   if (dladdr(addr, &dlinfo) != 0) {
5132     st->print(PTR_FORMAT ": ", addr);
5133     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5134       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5135     } else if (dlinfo.dli_fbase != NULL) {
5136       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5137     } else {
5138       st->print("<absolute address>");
5139     }
5140     if (dlinfo.dli_fname != NULL) {
5141       st->print(" in %s", dlinfo.dli_fname);
5142     }
5143     if (dlinfo.dli_fbase != NULL) {
5144       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5145     }
5146     st->cr();
5147 
5148     if (Verbose) {
5149       // decode some bytes around the PC
5150       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5151       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5152       address       lowest = (address) dlinfo.dli_sname;
5153       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5154       if (begin < lowest)  begin = lowest;
5155       Dl_info dlinfo2;
5156       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5157           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5158         end = (address) dlinfo2.dli_saddr;
5159       }
5160       Disassembler::decode(begin, end, st);
5161     }
5162     return true;
5163   }
5164   return false;
5165 }
5166 
5167 // Following function has been added to support HotSparc's libjvm.so running
5168 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5169 // src/solaris/hpi/native_threads in the EVM codebase.
5170 //
5171 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5172 // libraries and should thus be removed. We will leave it behind for a while
5173 // until we no longer want to able to run on top of 1.3.0 Solaris production
5174 // JDK. See 4341971.
5175 
5176 #define STACK_SLACK 0x800
5177 
5178 extern "C" {
5179   intptr_t sysThreadAvailableStackWithSlack() {
5180     stack_t st;
5181     intptr_t retval, stack_top;
5182     retval = thr_stksegment(&st);
5183     assert(retval == 0, "incorrect return value from thr_stksegment");
5184     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5185     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5186     stack_top=(intptr_t)st.ss_sp-st.ss_size;
5187     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5188   }
5189 }
5190 
5191 // ObjectMonitor park-unpark infrastructure ...
5192 //
5193 // We implement Solaris and Linux PlatformEvents with the
5194 // obvious condvar-mutex-flag triple.
5195 // Another alternative that works quite well is pipes:
5196 // Each PlatformEvent consists of a pipe-pair.
5197 // The thread associated with the PlatformEvent
5198 // calls park(), which reads from the input end of the pipe.
5199 // Unpark() writes into the other end of the pipe.
5200 // The write-side of the pipe must be set NDELAY.
5201 // Unfortunately pipes consume a large # of handles.
5202 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
5203 // Using pipes for the 1st few threads might be workable, however.
5204 //
5205 // park() is permitted to return spuriously.
5206 // Callers of park() should wrap the call to park() in
5207 // an appropriate loop.  A litmus test for the correct
5208 // usage of park is the following: if park() were modified
5209 // to immediately return 0 your code should still work,
5210 // albeit degenerating to a spin loop.
5211 //
5212 // In a sense, park()-unpark() just provides more polite spinning
5213 // and polling with the key difference over naive spinning being
5214 // that a parked thread needs to be explicitly unparked() in order
5215 // to wake up and to poll the underlying condition.
5216 //
5217 // Assumption:
5218 //    Only one parker can exist on an event, which is why we allocate
5219 //    them per-thread. Multiple unparkers can coexist.
5220 //
5221 // _Event transitions in park()
5222 //   -1 => -1 : illegal
5223 //    1 =>  0 : pass - return immediately
5224 //    0 => -1 : block; then set _Event to 0 before returning
5225 //
5226 // _Event transitions in unpark()
5227 //    0 => 1 : just return
5228 //    1 => 1 : just return
5229 //   -1 => either 0 or 1; must signal target thread
5230 //         That is, we can safely transition _Event from -1 to either
5231 //         0 or 1.
5232 //
5233 // _Event serves as a restricted-range semaphore.
5234 //   -1 : thread is blocked, i.e. there is a waiter
5235 //    0 : neutral: thread is running or ready,
5236 //        could have been signaled after a wait started
5237 //    1 : signaled - thread is running or ready
5238 //
5239 // Another possible encoding of _Event would be with
5240 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5241 //
5242 // TODO-FIXME: add DTRACE probes for:
5243 // 1.   Tx parks
5244 // 2.   Ty unparks Tx
5245 // 3.   Tx resumes from park
5246 
5247 
5248 // value determined through experimentation
5249 #define ROUNDINGFIX 11
5250 
5251 // utility to compute the abstime argument to timedwait.
5252 // TODO-FIXME: switch from compute_abstime() to unpackTime().
5253 
5254 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5255   // millis is the relative timeout time
5256   // abstime will be the absolute timeout time
5257   if (millis < 0)  millis = 0;
5258   struct timeval now;
5259   int status = gettimeofday(&now, NULL);
5260   assert(status == 0, "gettimeofday");
5261   jlong seconds = millis / 1000;
5262   jlong max_wait_period;
5263 
5264   if (UseLWPSynchronization) {
5265     // forward port of fix for 4275818 (not sleeping long enough)
5266     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5267     // _lwp_cond_timedwait() used a round_down algorithm rather
5268     // than a round_up. For millis less than our roundfactor
5269     // it rounded down to 0 which doesn't meet the spec.
5270     // For millis > roundfactor we may return a bit sooner, but
5271     // since we can not accurately identify the patch level and
5272     // this has already been fixed in Solaris 9 and 8 we will
5273     // leave it alone rather than always rounding down.
5274 
5275     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5276     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5277     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5278     max_wait_period = 21000000;
5279   } else {
5280     max_wait_period = 50000000;
5281   }
5282   millis %= 1000;
5283   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5284     seconds = max_wait_period;
5285   }
5286   abstime->tv_sec = now.tv_sec  + seconds;
5287   long       usec = now.tv_usec + millis * 1000;
5288   if (usec >= 1000000) {
5289     abstime->tv_sec += 1;
5290     usec -= 1000000;
5291   }
5292   abstime->tv_nsec = usec * 1000;
5293   return abstime;
5294 }
5295 
5296 void os::PlatformEvent::park() {           // AKA: down()
5297   // Transitions for _Event:
5298   //   -1 => -1 : illegal
5299   //    1 =>  0 : pass - return immediately
5300   //    0 => -1 : block; then set _Event to 0 before returning
5301 
5302   // Invariant: Only the thread associated with the Event/PlatformEvent
5303   // may call park().
5304   assert(_nParked == 0, "invariant");
5305 
5306   int v;
5307   for (;;) {
5308     v = _Event;
5309     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5310   }
5311   guarantee(v >= 0, "invariant");
5312   if (v == 0) {
5313     // Do this the hard way by blocking ...
5314     // See http://monaco.sfbay/detail.jsf?cr=5094058.
5315     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5316     // Only for SPARC >= V8PlusA
5317 #if defined(__sparc) && defined(COMPILER2)
5318     if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5319 #endif
5320     int status = os::Solaris::mutex_lock(_mutex);
5321     assert_status(status == 0, status, "mutex_lock");
5322     guarantee(_nParked == 0, "invariant");
5323     ++_nParked;
5324     while (_Event < 0) {
5325       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5326       // Treat this the same as if the wait was interrupted
5327       // With usr/lib/lwp going to kernel, always handle ETIME
5328       status = os::Solaris::cond_wait(_cond, _mutex);
5329       if (status == ETIME) status = EINTR;
5330       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5331     }
5332     --_nParked;
5333     _Event = 0;
5334     status = os::Solaris::mutex_unlock(_mutex);
5335     assert_status(status == 0, status, "mutex_unlock");
5336     // Paranoia to ensure our locked and lock-free paths interact
5337     // correctly with each other.
5338     OrderAccess::fence();
5339   }
5340 }
5341 
5342 int os::PlatformEvent::park(jlong millis) {
5343   // Transitions for _Event:
5344   //   -1 => -1 : illegal
5345   //    1 =>  0 : pass - return immediately
5346   //    0 => -1 : block; then set _Event to 0 before returning
5347 
5348   guarantee(_nParked == 0, "invariant");
5349   int v;
5350   for (;;) {
5351     v = _Event;
5352     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5353   }
5354   guarantee(v >= 0, "invariant");
5355   if (v != 0) return OS_OK;
5356 
5357   int ret = OS_TIMEOUT;
5358   timestruc_t abst;
5359   compute_abstime(&abst, millis);
5360 
5361   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5362   // For Solaris SPARC set fprs.FEF=0 prior to parking.
5363   // Only for SPARC >= V8PlusA
5364 #if defined(__sparc) && defined(COMPILER2)
5365   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5366 #endif
5367   int status = os::Solaris::mutex_lock(_mutex);
5368   assert_status(status == 0, status, "mutex_lock");
5369   guarantee(_nParked == 0, "invariant");
5370   ++_nParked;
5371   while (_Event < 0) {
5372     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5373     assert_status(status == 0 || status == EINTR ||
5374                   status == ETIME || status == ETIMEDOUT,
5375                   status, "cond_timedwait");
5376     if (!FilterSpuriousWakeups) break;                // previous semantics
5377     if (status == ETIME || status == ETIMEDOUT) break;
5378     // We consume and ignore EINTR and spurious wakeups.
5379   }
5380   --_nParked;
5381   if (_Event >= 0) ret = OS_OK;
5382   _Event = 0;
5383   status = os::Solaris::mutex_unlock(_mutex);
5384   assert_status(status == 0, status, "mutex_unlock");
5385   // Paranoia to ensure our locked and lock-free paths interact
5386   // correctly with each other.
5387   OrderAccess::fence();
5388   return ret;
5389 }
5390 
5391 void os::PlatformEvent::unpark() {
5392   // Transitions for _Event:
5393   //    0 => 1 : just return
5394   //    1 => 1 : just return
5395   //   -1 => either 0 or 1; must signal target thread
5396   //         That is, we can safely transition _Event from -1 to either
5397   //         0 or 1.
5398   // See also: "Semaphores in Plan 9" by Mullender & Cox
5399   //
5400   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5401   // that it will take two back-to-back park() calls for the owning
5402   // thread to block. This has the benefit of forcing a spurious return
5403   // from the first park() call after an unpark() call which will help
5404   // shake out uses of park() and unpark() without condition variables.
5405 
5406   if (Atomic::xchg(1, &_Event) >= 0) return;
5407 
5408   // If the thread associated with the event was parked, wake it.
5409   // Wait for the thread assoc with the PlatformEvent to vacate.
5410   int status = os::Solaris::mutex_lock(_mutex);
5411   assert_status(status == 0, status, "mutex_lock");
5412   int AnyWaiters = _nParked;
5413   status = os::Solaris::mutex_unlock(_mutex);
5414   assert_status(status == 0, status, "mutex_unlock");
5415   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5416   if (AnyWaiters != 0) {
5417     // Note that we signal() *after* dropping the lock for "immortal" Events.
5418     // This is safe and avoids a common class of  futile wakeups.  In rare
5419     // circumstances this can cause a thread to return prematurely from
5420     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5421     // will simply re-test the condition and re-park itself.
5422     // This provides particular benefit if the underlying platform does not
5423     // provide wait morphing.
5424     status = os::Solaris::cond_signal(_cond);
5425     assert_status(status == 0, status, "cond_signal");
5426   }
5427 }
5428 
5429 // JSR166
5430 // -------------------------------------------------------
5431 
5432 // The solaris and linux implementations of park/unpark are fairly
5433 // conservative for now, but can be improved. They currently use a
5434 // mutex/condvar pair, plus _counter.
5435 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
5436 // sets count to 1 and signals condvar.  Only one thread ever waits
5437 // on the condvar. Contention seen when trying to park implies that someone
5438 // is unparking you, so don't wait. And spurious returns are fine, so there
5439 // is no need to track notifications.
5440 
5441 #define MAX_SECS 100000000
5442 
5443 // This code is common to linux and solaris and will be moved to a
5444 // common place in dolphin.
5445 //
5446 // The passed in time value is either a relative time in nanoseconds
5447 // or an absolute time in milliseconds. Either way it has to be unpacked
5448 // into suitable seconds and nanoseconds components and stored in the
5449 // given timespec structure.
5450 // Given time is a 64-bit value and the time_t used in the timespec is only
5451 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5452 // overflow if times way in the future are given. Further on Solaris versions
5453 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5454 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5455 // As it will be 28 years before "now + 100000000" will overflow we can
5456 // ignore overflow and just impose a hard-limit on seconds using the value
5457 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5458 // years from "now".
5459 //
5460 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5461   assert(time > 0, "convertTime");
5462 
5463   struct timeval now;
5464   int status = gettimeofday(&now, NULL);
5465   assert(status == 0, "gettimeofday");
5466 
5467   time_t max_secs = now.tv_sec + MAX_SECS;
5468 
5469   if (isAbsolute) {
5470     jlong secs = time / 1000;
5471     if (secs > max_secs) {
5472       absTime->tv_sec = max_secs;
5473     } else {
5474       absTime->tv_sec = secs;
5475     }
5476     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5477   } else {
5478     jlong secs = time / NANOSECS_PER_SEC;
5479     if (secs >= MAX_SECS) {
5480       absTime->tv_sec = max_secs;
5481       absTime->tv_nsec = 0;
5482     } else {
5483       absTime->tv_sec = now.tv_sec + secs;
5484       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5485       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5486         absTime->tv_nsec -= NANOSECS_PER_SEC;
5487         ++absTime->tv_sec; // note: this must be <= max_secs
5488       }
5489     }
5490   }
5491   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5492   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5493   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5494   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5495 }
5496 
5497 void Parker::park(bool isAbsolute, jlong time) {
5498   // Ideally we'd do something useful while spinning, such
5499   // as calling unpackTime().
5500 
5501   // Optional fast-path check:
5502   // Return immediately if a permit is available.
5503   // We depend on Atomic::xchg() having full barrier semantics
5504   // since we are doing a lock-free update to _counter.
5505   if (Atomic::xchg(0, &_counter) > 0) return;
5506 
5507   // Optional fast-exit: Check interrupt before trying to wait
5508   Thread* thread = Thread::current();
5509   assert(thread->is_Java_thread(), "Must be JavaThread");
5510   JavaThread *jt = (JavaThread *)thread;
5511   if (Thread::is_interrupted(thread, false)) {
5512     return;
5513   }
5514 
5515   // First, demultiplex/decode time arguments
5516   timespec absTime;
5517   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5518     return;
5519   }
5520   if (time > 0) {
5521     // Warning: this code might be exposed to the old Solaris time
5522     // round-down bugs.  Grep "roundingFix" for details.
5523     unpackTime(&absTime, isAbsolute, time);
5524   }
5525 
5526   // Enter safepoint region
5527   // Beware of deadlocks such as 6317397.
5528   // The per-thread Parker:: _mutex is a classic leaf-lock.
5529   // In particular a thread must never block on the Threads_lock while
5530   // holding the Parker:: mutex.  If safepoints are pending both the
5531   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5532   ThreadBlockInVM tbivm(jt);
5533 
5534   // Don't wait if cannot get lock since interference arises from
5535   // unblocking.  Also. check interrupt before trying wait
5536   if (Thread::is_interrupted(thread, false) ||
5537       os::Solaris::mutex_trylock(_mutex) != 0) {
5538     return;
5539   }
5540 
5541   int status;
5542 
5543   if (_counter > 0)  { // no wait needed
5544     _counter = 0;
5545     status = os::Solaris::mutex_unlock(_mutex);
5546     assert(status == 0, "invariant");
5547     // Paranoia to ensure our locked and lock-free paths interact
5548     // correctly with each other and Java-level accesses.
5549     OrderAccess::fence();
5550     return;
5551   }
5552 
5553 #ifdef ASSERT
5554   // Don't catch signals while blocked; let the running threads have the signals.
5555   // (This allows a debugger to break into the running thread.)
5556   sigset_t oldsigs;
5557   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5558   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5559 #endif
5560 
5561   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5562   jt->set_suspend_equivalent();
5563   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5564 
5565   // Do this the hard way by blocking ...
5566   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5567   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5568   // Only for SPARC >= V8PlusA
5569 #if defined(__sparc) && defined(COMPILER2)
5570   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5571 #endif
5572 
5573   if (time == 0) {
5574     status = os::Solaris::cond_wait(_cond, _mutex);
5575   } else {
5576     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5577   }
5578   // Note that an untimed cond_wait() can sometimes return ETIME on older
5579   // versions of the Solaris.
5580   assert_status(status == 0 || status == EINTR ||
5581                 status == ETIME || status == ETIMEDOUT,
5582                 status, "cond_timedwait");
5583 
5584 #ifdef ASSERT
5585   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5586 #endif
5587   _counter = 0;
5588   status = os::Solaris::mutex_unlock(_mutex);
5589   assert_status(status == 0, status, "mutex_unlock");
5590   // Paranoia to ensure our locked and lock-free paths interact
5591   // correctly with each other and Java-level accesses.
5592   OrderAccess::fence();
5593 
5594   // If externally suspended while waiting, re-suspend
5595   if (jt->handle_special_suspend_equivalent_condition()) {
5596     jt->java_suspend_self();
5597   }
5598 }
5599 
5600 void Parker::unpark() {
5601   int status = os::Solaris::mutex_lock(_mutex);
5602   assert(status == 0, "invariant");
5603   const int s = _counter;
5604   _counter = 1;
5605   status = os::Solaris::mutex_unlock(_mutex);
5606   assert(status == 0, "invariant");
5607 
5608   if (s < 1) {
5609     status = os::Solaris::cond_signal(_cond);
5610     assert(status == 0, "invariant");
5611   }
5612 }
5613 
5614 extern char** environ;
5615 
5616 // Run the specified command in a separate process. Return its exit value,
5617 // or -1 on failure (e.g. can't fork a new process).
5618 // Unlike system(), this function can be called from signal handler. It
5619 // doesn't block SIGINT et al.
5620 int os::fork_and_exec(char* cmd) {
5621   char * argv[4];
5622   argv[0] = (char *)"sh";
5623   argv[1] = (char *)"-c";
5624   argv[2] = cmd;
5625   argv[3] = NULL;
5626 
5627   // fork is async-safe, fork1 is not so can't use in signal handler
5628   pid_t pid;
5629   Thread* t = Thread::current_or_null_safe();
5630   if (t != NULL && t->is_inside_signal_handler()) {
5631     pid = fork();
5632   } else {
5633     pid = fork1();
5634   }
5635 
5636   if (pid < 0) {
5637     // fork failed
5638     warning("fork failed: %s", os::strerror(errno));
5639     return -1;
5640 
5641   } else if (pid == 0) {
5642     // child process
5643 
5644     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5645     execve("/usr/bin/sh", argv, environ);
5646 
5647     // execve failed
5648     _exit(-1);
5649 
5650   } else  {
5651     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5652     // care about the actual exit code, for now.
5653 
5654     int status;
5655 
5656     // Wait for the child process to exit.  This returns immediately if
5657     // the child has already exited. */
5658     while (waitpid(pid, &status, 0) < 0) {
5659       switch (errno) {
5660       case ECHILD: return 0;
5661       case EINTR: break;
5662       default: return -1;
5663       }
5664     }
5665 
5666     if (WIFEXITED(status)) {
5667       // The child exited normally; get its exit code.
5668       return WEXITSTATUS(status);
5669     } else if (WIFSIGNALED(status)) {
5670       // The child exited because of a signal
5671       // The best value to return is 0x80 + signal number,
5672       // because that is what all Unix shells do, and because
5673       // it allows callers to distinguish between process exit and
5674       // process death by signal.
5675       return 0x80 + WTERMSIG(status);
5676     } else {
5677       // Unknown exit code; pass it through
5678       return status;
5679     }
5680   }
5681 }
5682 
5683 // is_headless_jre()
5684 //
5685 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5686 // in order to report if we are running in a headless jre
5687 //
5688 // Since JDK8 xawt/libmawt.so was moved into the same directory
5689 // as libawt.so, and renamed libawt_xawt.so
5690 //
5691 bool os::is_headless_jre() {
5692   struct stat statbuf;
5693   char buf[MAXPATHLEN];
5694   char libmawtpath[MAXPATHLEN];
5695   const char *xawtstr  = "/xawt/libmawt.so";
5696   const char *new_xawtstr = "/libawt_xawt.so";
5697   char *p;
5698 
5699   // Get path to libjvm.so
5700   os::jvm_path(buf, sizeof(buf));
5701 
5702   // Get rid of libjvm.so
5703   p = strrchr(buf, '/');
5704   if (p == NULL) {
5705     return false;
5706   } else {
5707     *p = '\0';
5708   }
5709 
5710   // Get rid of client or server
5711   p = strrchr(buf, '/');
5712   if (p == NULL) {
5713     return false;
5714   } else {
5715     *p = '\0';
5716   }
5717 
5718   // check xawt/libmawt.so
5719   strcpy(libmawtpath, buf);
5720   strcat(libmawtpath, xawtstr);
5721   if (::stat(libmawtpath, &statbuf) == 0) return false;
5722 
5723   // check libawt_xawt.so
5724   strcpy(libmawtpath, buf);
5725   strcat(libmawtpath, new_xawtstr);
5726   if (::stat(libmawtpath, &statbuf) == 0) return false;
5727 
5728   return true;
5729 }
5730 
5731 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5732   size_t res;
5733   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5734   return res;
5735 }
5736 
5737 int os::close(int fd) {
5738   return ::close(fd);
5739 }
5740 
5741 int os::socket_close(int fd) {
5742   return ::close(fd);
5743 }
5744 
5745 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5746   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5747          "Assumed _thread_in_native");
5748   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5749 }
5750 
5751 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5752   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5753          "Assumed _thread_in_native");
5754   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5755 }
5756 
5757 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5758   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5759 }
5760 
5761 // As both poll and select can be interrupted by signals, we have to be
5762 // prepared to restart the system call after updating the timeout, unless
5763 // a poll() is done with timeout == -1, in which case we repeat with this
5764 // "wait forever" value.
5765 
5766 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5767   int _result;
5768   _result = ::connect(fd, him, len);
5769 
5770   // On Solaris, when a connect() call is interrupted, the connection
5771   // can be established asynchronously (see 6343810). Subsequent calls
5772   // to connect() must check the errno value which has the semantic
5773   // described below (copied from the connect() man page). Handling
5774   // of asynchronously established connections is required for both
5775   // blocking and non-blocking sockets.
5776   //     EINTR            The  connection  attempt  was   interrupted
5777   //                      before  any data arrived by the delivery of
5778   //                      a signal. The connection, however, will  be
5779   //                      established asynchronously.
5780   //
5781   //     EINPROGRESS      The socket is non-blocking, and the connec-
5782   //                      tion  cannot  be completed immediately.
5783   //
5784   //     EALREADY         The socket is non-blocking,  and a previous
5785   //                      connection  attempt  has  not yet been com-
5786   //                      pleted.
5787   //
5788   //     EISCONN          The socket is already connected.
5789   if (_result == OS_ERR && errno == EINTR) {
5790     // restarting a connect() changes its errno semantics
5791     RESTARTABLE(::connect(fd, him, len), _result);
5792     // undo these changes
5793     if (_result == OS_ERR) {
5794       if (errno == EALREADY) {
5795         errno = EINPROGRESS; // fall through
5796       } else if (errno == EISCONN) {
5797         errno = 0;
5798         return OS_OK;
5799       }
5800     }
5801   }
5802   return _result;
5803 }
5804 
5805 // Get the default path to the core file
5806 // Returns the length of the string
5807 int os::get_core_path(char* buffer, size_t bufferSize) {
5808   const char* p = get_current_directory(buffer, bufferSize);
5809 
5810   if (p == NULL) {
5811     assert(p != NULL, "failed to get current directory");
5812     return 0;
5813   }
5814 
5815   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5816                                               p, current_process_id());
5817 
5818   return strlen(buffer);
5819 }
5820 
5821 #ifndef PRODUCT
5822 void TestReserveMemorySpecial_test() {
5823   // No tests available for this platform
5824 }
5825 #endif
5826 
5827 bool os::start_debugging(char *buf, int buflen) {
5828   int len = (int)strlen(buf);
5829   char *p = &buf[len];
5830 
5831   jio_snprintf(p, buflen-len,
5832                "\n\n"
5833                "Do you want to debug the problem?\n\n"
5834                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5835                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5836                "Otherwise, press RETURN to abort...",
5837                os::current_process_id(), os::current_thread_id());
5838 
5839   bool yes = os::message_box("Unexpected Error", buf);
5840 
5841   if (yes) {
5842     // yes, user asked VM to launch debugger
5843     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5844 
5845     os::fork_and_exec(buf);
5846     yes = false;
5847   }
5848   return yes;
5849 }