1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "logging/log.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "mutex_windows.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "os_share_windows.hpp"
  44 #include "os_windows.inline.hpp"
  45 #include "prims/jniFastGetField.hpp"
  46 #include "prims/jvm.h"
  47 #include "prims/jvm_misc.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.inline.hpp"
  50 #include "runtime/extendedPC.hpp"
  51 #include "runtime/globals.hpp"
  52 #include "runtime/interfaceSupport.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/javaCalls.hpp"
  55 #include "runtime/mutexLocker.hpp"
  56 #include "runtime/objectMonitor.hpp"
  57 #include "runtime/orderAccess.inline.hpp"
  58 #include "runtime/osThread.hpp"
  59 #include "runtime/perfMemory.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/statSampler.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/thread.inline.hpp"
  64 #include "runtime/threadCritical.hpp"
  65 #include "runtime/timer.hpp"
  66 #include "runtime/vm_version.hpp"
  67 #include "semaphore_windows.hpp"
  68 #include "services/attachListener.hpp"
  69 #include "services/memTracker.hpp"
  70 #include "services/runtimeService.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/growableArray.hpp"
  75 #include "utilities/macros.hpp"
  76 #include "utilities/vmError.hpp"
  77 
  78 #ifdef _DEBUG
  79 #include <crtdbg.h>
  80 #endif
  81 
  82 
  83 #include <windows.h>
  84 #include <sys/types.h>
  85 #include <sys/stat.h>
  86 #include <sys/timeb.h>
  87 #include <objidl.h>
  88 #include <shlobj.h>
  89 
  90 #include <malloc.h>
  91 #include <signal.h>
  92 #include <direct.h>
  93 #include <errno.h>
  94 #include <fcntl.h>
  95 #include <io.h>
  96 #include <process.h>              // For _beginthreadex(), _endthreadex()
  97 #include <imagehlp.h>             // For os::dll_address_to_function_name
  98 // for enumerating dll libraries
  99 #include <vdmdbg.h>
 100 
 101 // for timer info max values which include all bits
 102 #define ALL_64_BITS CONST64(-1)
 103 
 104 // For DLL loading/load error detection
 105 // Values of PE COFF
 106 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 107 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 108 
 109 static HANDLE main_process;
 110 static HANDLE main_thread;
 111 static int    main_thread_id;
 112 
 113 static FILETIME process_creation_time;
 114 static FILETIME process_exit_time;
 115 static FILETIME process_user_time;
 116 static FILETIME process_kernel_time;
 117 
 118 #ifdef _M_IA64
 119   #define __CPU__ ia64
 120 #else
 121   #ifdef _M_AMD64
 122     #define __CPU__ amd64
 123   #else
 124     #define __CPU__ i486
 125   #endif
 126 #endif
 127 
 128 // save DLL module handle, used by GetModuleFileName
 129 
 130 HINSTANCE vm_lib_handle;
 131 
 132 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 133   switch (reason) {
 134   case DLL_PROCESS_ATTACH:
 135     vm_lib_handle = hinst;
 136     if (ForceTimeHighResolution) {
 137       timeBeginPeriod(1L);
 138     }
 139     break;
 140   case DLL_PROCESS_DETACH:
 141     if (ForceTimeHighResolution) {
 142       timeEndPeriod(1L);
 143     }
 144     break;
 145   default:
 146     break;
 147   }
 148   return true;
 149 }
 150 
 151 static inline double fileTimeAsDouble(FILETIME* time) {
 152   const double high  = (double) ((unsigned int) ~0);
 153   const double split = 10000000.0;
 154   double result = (time->dwLowDateTime / split) +
 155                    time->dwHighDateTime * (high/split);
 156   return result;
 157 }
 158 
 159 // Implementation of os
 160 
 161 bool os::unsetenv(const char* name) {
 162   assert(name != NULL, "Null pointer");
 163   return (SetEnvironmentVariable(name, NULL) == TRUE);
 164 }
 165 
 166 // No setuid programs under Windows.
 167 bool os::have_special_privileges() {
 168   return false;
 169 }
 170 
 171 
 172 // This method is  a periodic task to check for misbehaving JNI applications
 173 // under CheckJNI, we can add any periodic checks here.
 174 // For Windows at the moment does nothing
 175 void os::run_periodic_checks() {
 176   return;
 177 }
 178 
 179 // previous UnhandledExceptionFilter, if there is one
 180 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 181 
 182 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 183 
 184 void os::init_system_properties_values() {
 185   // sysclasspath, java_home, dll_dir
 186   {
 187     char *home_path;
 188     char *dll_path;
 189     char *pslash;
 190     char *bin = "\\bin";
 191     char home_dir[MAX_PATH + 1];
 192     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 193 
 194     if (alt_home_dir != NULL)  {
 195       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 196       home_dir[MAX_PATH] = '\0';
 197     } else {
 198       os::jvm_path(home_dir, sizeof(home_dir));
 199       // Found the full path to jvm.dll.
 200       // Now cut the path to <java_home>/jre if we can.
 201       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 202       pslash = strrchr(home_dir, '\\');
 203       if (pslash != NULL) {
 204         *pslash = '\0';                   // get rid of \{client|server}
 205         pslash = strrchr(home_dir, '\\');
 206         if (pslash != NULL) {
 207           *pslash = '\0';                 // get rid of \bin
 208         }
 209       }
 210     }
 211 
 212     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 213     if (home_path == NULL) {
 214       return;
 215     }
 216     strcpy(home_path, home_dir);
 217     Arguments::set_java_home(home_path);
 218     FREE_C_HEAP_ARRAY(char, home_path);
 219 
 220     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 221                                 mtInternal);
 222     if (dll_path == NULL) {
 223       return;
 224     }
 225     strcpy(dll_path, home_dir);
 226     strcat(dll_path, bin);
 227     Arguments::set_dll_dir(dll_path);
 228     FREE_C_HEAP_ARRAY(char, dll_path);
 229 
 230     if (!set_boot_path('\\', ';')) {
 231       return;
 232     }
 233   }
 234 
 235 // library_path
 236 #define EXT_DIR "\\lib\\ext"
 237 #define BIN_DIR "\\bin"
 238 #define PACKAGE_DIR "\\Sun\\Java"
 239   {
 240     // Win32 library search order (See the documentation for LoadLibrary):
 241     //
 242     // 1. The directory from which application is loaded.
 243     // 2. The system wide Java Extensions directory (Java only)
 244     // 3. System directory (GetSystemDirectory)
 245     // 4. Windows directory (GetWindowsDirectory)
 246     // 5. The PATH environment variable
 247     // 6. The current directory
 248 
 249     char *library_path;
 250     char tmp[MAX_PATH];
 251     char *path_str = ::getenv("PATH");
 252 
 253     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 254                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 255 
 256     library_path[0] = '\0';
 257 
 258     GetModuleFileName(NULL, tmp, sizeof(tmp));
 259     *(strrchr(tmp, '\\')) = '\0';
 260     strcat(library_path, tmp);
 261 
 262     GetWindowsDirectory(tmp, sizeof(tmp));
 263     strcat(library_path, ";");
 264     strcat(library_path, tmp);
 265     strcat(library_path, PACKAGE_DIR BIN_DIR);
 266 
 267     GetSystemDirectory(tmp, sizeof(tmp));
 268     strcat(library_path, ";");
 269     strcat(library_path, tmp);
 270 
 271     GetWindowsDirectory(tmp, sizeof(tmp));
 272     strcat(library_path, ";");
 273     strcat(library_path, tmp);
 274 
 275     if (path_str) {
 276       strcat(library_path, ";");
 277       strcat(library_path, path_str);
 278     }
 279 
 280     strcat(library_path, ";.");
 281 
 282     Arguments::set_library_path(library_path);
 283     FREE_C_HEAP_ARRAY(char, library_path);
 284   }
 285 
 286   // Default extensions directory
 287   {
 288     char path[MAX_PATH];
 289     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 290     GetWindowsDirectory(path, MAX_PATH);
 291     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 292             path, PACKAGE_DIR, EXT_DIR);
 293     Arguments::set_ext_dirs(buf);
 294   }
 295   #undef EXT_DIR
 296   #undef BIN_DIR
 297   #undef PACKAGE_DIR
 298 
 299 #ifndef _WIN64
 300   // set our UnhandledExceptionFilter and save any previous one
 301   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 302 #endif
 303 
 304   // Done
 305   return;
 306 }
 307 
 308 void os::breakpoint() {
 309   DebugBreak();
 310 }
 311 
 312 // Invoked from the BREAKPOINT Macro
 313 extern "C" void breakpoint() {
 314   os::breakpoint();
 315 }
 316 
 317 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 318 // So far, this method is only used by Native Memory Tracking, which is
 319 // only supported on Windows XP or later.
 320 //
 321 int os::get_native_stack(address* stack, int frames, int toSkip) {
 322 #ifdef _NMT_NOINLINE_
 323   toSkip++;
 324 #endif
 325   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 326   for (int index = captured; index < frames; index ++) {
 327     stack[index] = NULL;
 328   }
 329   return captured;
 330 }
 331 
 332 
 333 // os::current_stack_base()
 334 //
 335 //   Returns the base of the stack, which is the stack's
 336 //   starting address.  This function must be called
 337 //   while running on the stack of the thread being queried.
 338 
 339 address os::current_stack_base() {
 340   MEMORY_BASIC_INFORMATION minfo;
 341   address stack_bottom;
 342   size_t stack_size;
 343 
 344   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 345   stack_bottom =  (address)minfo.AllocationBase;
 346   stack_size = minfo.RegionSize;
 347 
 348   // Add up the sizes of all the regions with the same
 349   // AllocationBase.
 350   while (1) {
 351     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 352     if (stack_bottom == (address)minfo.AllocationBase) {
 353       stack_size += minfo.RegionSize;
 354     } else {
 355       break;
 356     }
 357   }
 358 
 359 #ifdef _M_IA64
 360   // IA64 has memory and register stacks
 361   //
 362   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 363   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 364   // growing downwards, 2MB summed up)
 365   //
 366   // ...
 367   // ------- top of stack (high address) -----
 368   // |
 369   // |      1MB
 370   // |      Backing Store (Register Stack)
 371   // |
 372   // |         / \
 373   // |          |
 374   // |          |
 375   // |          |
 376   // ------------------------ stack base -----
 377   // |      1MB
 378   // |      Memory Stack
 379   // |
 380   // |          |
 381   // |          |
 382   // |          |
 383   // |         \ /
 384   // |
 385   // ----- bottom of stack (low address) -----
 386   // ...
 387 
 388   stack_size = stack_size / 2;
 389 #endif
 390   return stack_bottom + stack_size;
 391 }
 392 
 393 size_t os::current_stack_size() {
 394   size_t sz;
 395   MEMORY_BASIC_INFORMATION minfo;
 396   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 397   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 398   return sz;
 399 }
 400 
 401 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 402   const struct tm* time_struct_ptr = localtime(clock);
 403   if (time_struct_ptr != NULL) {
 404     *res = *time_struct_ptr;
 405     return res;
 406   }
 407   return NULL;
 408 }
 409 
 410 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 411 
 412 // Thread start routine for all newly created threads
 413 static unsigned __stdcall thread_native_entry(Thread* thread) {
 414   // Try to randomize the cache line index of hot stack frames.
 415   // This helps when threads of the same stack traces evict each other's
 416   // cache lines. The threads can be either from the same JVM instance, or
 417   // from different JVM instances. The benefit is especially true for
 418   // processors with hyperthreading technology.
 419   static int counter = 0;
 420   int pid = os::current_process_id();
 421   _alloca(((pid ^ counter++) & 7) * 128);
 422 
 423   thread->initialize_thread_current();
 424 
 425   OSThread* osthr = thread->osthread();
 426   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 427 
 428   if (UseNUMA) {
 429     int lgrp_id = os::numa_get_group_id();
 430     if (lgrp_id != -1) {
 431       thread->set_lgrp_id(lgrp_id);
 432     }
 433   }
 434 
 435   // Diagnostic code to investigate JDK-6573254
 436   int res = 30115;  // non-java thread
 437   if (thread->is_Java_thread()) {
 438     res = 20115;    // java thread
 439   }
 440 
 441   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 442 
 443   // Install a win32 structured exception handler around every thread created
 444   // by VM, so VM can generate error dump when an exception occurred in non-
 445   // Java thread (e.g. VM thread).
 446   __try {
 447     thread->run();
 448   } __except(topLevelExceptionFilter(
 449                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 450     // Nothing to do.
 451   }
 452 
 453   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 454 
 455   // One less thread is executing
 456   // When the VMThread gets here, the main thread may have already exited
 457   // which frees the CodeHeap containing the Atomic::add code
 458   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 459     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 460   }
 461 
 462   // If a thread has not deleted itself ("delete this") as part of its
 463   // termination sequence, we have to ensure thread-local-storage is
 464   // cleared before we actually terminate. No threads should ever be
 465   // deleted asynchronously with respect to their termination.
 466   if (Thread::current_or_null_safe() != NULL) {
 467     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 468     thread->clear_thread_current();
 469   }
 470 
 471   // Thread must not return from exit_process_or_thread(), but if it does,
 472   // let it proceed to exit normally
 473   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 474 }
 475 
 476 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 477                                   int thread_id) {
 478   // Allocate the OSThread object
 479   OSThread* osthread = new OSThread(NULL, NULL);
 480   if (osthread == NULL) return NULL;
 481 
 482   // Initialize support for Java interrupts
 483   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 484   if (interrupt_event == NULL) {
 485     delete osthread;
 486     return NULL;
 487   }
 488   osthread->set_interrupt_event(interrupt_event);
 489 
 490   // Store info on the Win32 thread into the OSThread
 491   osthread->set_thread_handle(thread_handle);
 492   osthread->set_thread_id(thread_id);
 493 
 494   if (UseNUMA) {
 495     int lgrp_id = os::numa_get_group_id();
 496     if (lgrp_id != -1) {
 497       thread->set_lgrp_id(lgrp_id);
 498     }
 499   }
 500 
 501   // Initial thread state is INITIALIZED, not SUSPENDED
 502   osthread->set_state(INITIALIZED);
 503 
 504   return osthread;
 505 }
 506 
 507 
 508 bool os::create_attached_thread(JavaThread* thread) {
 509 #ifdef ASSERT
 510   thread->verify_not_published();
 511 #endif
 512   HANDLE thread_h;
 513   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 514                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 515     fatal("DuplicateHandle failed\n");
 516   }
 517   OSThread* osthread = create_os_thread(thread, thread_h,
 518                                         (int)current_thread_id());
 519   if (osthread == NULL) {
 520     return false;
 521   }
 522 
 523   // Initial thread state is RUNNABLE
 524   osthread->set_state(RUNNABLE);
 525 
 526   thread->set_osthread(osthread);
 527 
 528   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 529     os::current_thread_id());
 530 
 531   return true;
 532 }
 533 
 534 bool os::create_main_thread(JavaThread* thread) {
 535 #ifdef ASSERT
 536   thread->verify_not_published();
 537 #endif
 538   if (_starting_thread == NULL) {
 539     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 540     if (_starting_thread == NULL) {
 541       return false;
 542     }
 543   }
 544 
 545   // The primordial thread is runnable from the start)
 546   _starting_thread->set_state(RUNNABLE);
 547 
 548   thread->set_osthread(_starting_thread);
 549   return true;
 550 }
 551 
 552 // Helper function to trace _beginthreadex attributes,
 553 //  similar to os::Posix::describe_pthread_attr()
 554 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 555                                                size_t stacksize, unsigned initflag) {
 556   stringStream ss(buf, buflen);
 557   if (stacksize == 0) {
 558     ss.print("stacksize: default, ");
 559   } else {
 560     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 561   }
 562   ss.print("flags: ");
 563   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 564   #define ALL(X) \
 565     X(CREATE_SUSPENDED) \
 566     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 567   ALL(PRINT_FLAG)
 568   #undef ALL
 569   #undef PRINT_FLAG
 570   return buf;
 571 }
 572 
 573 // Allocate and initialize a new OSThread
 574 bool os::create_thread(Thread* thread, ThreadType thr_type,
 575                        size_t stack_size) {
 576   unsigned thread_id;
 577 
 578   // Allocate the OSThread object
 579   OSThread* osthread = new OSThread(NULL, NULL);
 580   if (osthread == NULL) {
 581     return false;
 582   }
 583 
 584   // Initialize support for Java interrupts
 585   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 586   if (interrupt_event == NULL) {
 587     delete osthread;
 588     return NULL;
 589   }
 590   osthread->set_interrupt_event(interrupt_event);
 591   osthread->set_interrupted(false);
 592 
 593   thread->set_osthread(osthread);
 594 
 595   if (stack_size == 0) {
 596     switch (thr_type) {
 597     case os::java_thread:
 598       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 599       if (JavaThread::stack_size_at_create() > 0) {
 600         stack_size = JavaThread::stack_size_at_create();
 601       }
 602       break;
 603     case os::compiler_thread:
 604       if (CompilerThreadStackSize > 0) {
 605         stack_size = (size_t)(CompilerThreadStackSize * K);
 606         break;
 607       } // else fall through:
 608         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 609     case os::vm_thread:
 610     case os::pgc_thread:
 611     case os::cgc_thread:
 612     case os::watcher_thread:
 613       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 614       break;
 615     }
 616   }
 617 
 618   // Create the Win32 thread
 619   //
 620   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 621   // does not specify stack size. Instead, it specifies the size of
 622   // initially committed space. The stack size is determined by
 623   // PE header in the executable. If the committed "stack_size" is larger
 624   // than default value in the PE header, the stack is rounded up to the
 625   // nearest multiple of 1MB. For example if the launcher has default
 626   // stack size of 320k, specifying any size less than 320k does not
 627   // affect the actual stack size at all, it only affects the initial
 628   // commitment. On the other hand, specifying 'stack_size' larger than
 629   // default value may cause significant increase in memory usage, because
 630   // not only the stack space will be rounded up to MB, but also the
 631   // entire space is committed upfront.
 632   //
 633   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 634   // for CreateThread() that can treat 'stack_size' as stack size. However we
 635   // are not supposed to call CreateThread() directly according to MSDN
 636   // document because JVM uses C runtime library. The good news is that the
 637   // flag appears to work with _beginthredex() as well.
 638 
 639   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 640   HANDLE thread_handle =
 641     (HANDLE)_beginthreadex(NULL,
 642                            (unsigned)stack_size,
 643                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 644                            thread,
 645                            initflag,
 646                            &thread_id);
 647 
 648   char buf[64];
 649   if (thread_handle != NULL) {
 650     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 651       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 652   } else {
 653     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 654       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 655   }
 656 
 657   if (thread_handle == NULL) {
 658     // Need to clean up stuff we've allocated so far
 659     CloseHandle(osthread->interrupt_event());
 660     thread->set_osthread(NULL);
 661     delete osthread;
 662     return NULL;
 663   }
 664 
 665   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 666 
 667   // Store info on the Win32 thread into the OSThread
 668   osthread->set_thread_handle(thread_handle);
 669   osthread->set_thread_id(thread_id);
 670 
 671   // Initial thread state is INITIALIZED, not SUSPENDED
 672   osthread->set_state(INITIALIZED);
 673 
 674   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 675   return true;
 676 }
 677 
 678 
 679 // Free Win32 resources related to the OSThread
 680 void os::free_thread(OSThread* osthread) {
 681   assert(osthread != NULL, "osthread not set");
 682 
 683   // We are told to free resources of the argument thread,
 684   // but we can only really operate on the current thread.
 685   assert(Thread::current()->osthread() == osthread,
 686          "os::free_thread but not current thread");
 687 
 688   CloseHandle(osthread->thread_handle());
 689   CloseHandle(osthread->interrupt_event());
 690   delete osthread;
 691 }
 692 
 693 static jlong first_filetime;
 694 static jlong initial_performance_count;
 695 static jlong performance_frequency;
 696 
 697 
 698 jlong as_long(LARGE_INTEGER x) {
 699   jlong result = 0; // initialization to avoid warning
 700   set_high(&result, x.HighPart);
 701   set_low(&result, x.LowPart);
 702   return result;
 703 }
 704 
 705 
 706 jlong os::elapsed_counter() {
 707   LARGE_INTEGER count;
 708   QueryPerformanceCounter(&count);
 709   return as_long(count) - initial_performance_count;
 710 }
 711 
 712 
 713 jlong os::elapsed_frequency() {
 714   return performance_frequency;
 715 }
 716 
 717 
 718 julong os::available_memory() {
 719   return win32::available_memory();
 720 }
 721 
 722 julong os::win32::available_memory() {
 723   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 724   // value if total memory is larger than 4GB
 725   MEMORYSTATUSEX ms;
 726   ms.dwLength = sizeof(ms);
 727   GlobalMemoryStatusEx(&ms);
 728 
 729   return (julong)ms.ullAvailPhys;
 730 }
 731 
 732 julong os::physical_memory() {
 733   return win32::physical_memory();
 734 }
 735 
 736 bool os::has_allocatable_memory_limit(julong* limit) {
 737   MEMORYSTATUSEX ms;
 738   ms.dwLength = sizeof(ms);
 739   GlobalMemoryStatusEx(&ms);
 740 #ifdef _LP64
 741   *limit = (julong)ms.ullAvailVirtual;
 742   return true;
 743 #else
 744   // Limit to 1400m because of the 2gb address space wall
 745   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 746   return true;
 747 #endif
 748 }
 749 
 750 int os::active_processor_count() {
 751   DWORD_PTR lpProcessAffinityMask = 0;
 752   DWORD_PTR lpSystemAffinityMask = 0;
 753   int proc_count = processor_count();
 754   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 755       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 756     // Nof active processors is number of bits in process affinity mask
 757     int bitcount = 0;
 758     while (lpProcessAffinityMask != 0) {
 759       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 760       bitcount++;
 761     }
 762     return bitcount;
 763   } else {
 764     return proc_count;
 765   }
 766 }
 767 
 768 void os::set_native_thread_name(const char *name) {
 769 
 770   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 771   //
 772   // Note that unfortunately this only works if the process
 773   // is already attached to a debugger; debugger must observe
 774   // the exception below to show the correct name.
 775 
 776   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 777   struct {
 778     DWORD dwType;     // must be 0x1000
 779     LPCSTR szName;    // pointer to name (in user addr space)
 780     DWORD dwThreadID; // thread ID (-1=caller thread)
 781     DWORD dwFlags;    // reserved for future use, must be zero
 782   } info;
 783 
 784   info.dwType = 0x1000;
 785   info.szName = name;
 786   info.dwThreadID = -1;
 787   info.dwFlags = 0;
 788 
 789   __try {
 790     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 791   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 792 }
 793 
 794 bool os::distribute_processes(uint length, uint* distribution) {
 795   // Not yet implemented.
 796   return false;
 797 }
 798 
 799 bool os::bind_to_processor(uint processor_id) {
 800   // Not yet implemented.
 801   return false;
 802 }
 803 
 804 void os::win32::initialize_performance_counter() {
 805   LARGE_INTEGER count;
 806   QueryPerformanceFrequency(&count);
 807   performance_frequency = as_long(count);
 808   QueryPerformanceCounter(&count);
 809   initial_performance_count = as_long(count);
 810 }
 811 
 812 
 813 double os::elapsedTime() {
 814   return (double) elapsed_counter() / (double) elapsed_frequency();
 815 }
 816 
 817 
 818 // Windows format:
 819 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 820 // Java format:
 821 //   Java standards require the number of milliseconds since 1/1/1970
 822 
 823 // Constant offset - calculated using offset()
 824 static jlong  _offset   = 116444736000000000;
 825 // Fake time counter for reproducible results when debugging
 826 static jlong  fake_time = 0;
 827 
 828 #ifdef ASSERT
 829 // Just to be safe, recalculate the offset in debug mode
 830 static jlong _calculated_offset = 0;
 831 static int   _has_calculated_offset = 0;
 832 
 833 jlong offset() {
 834   if (_has_calculated_offset) return _calculated_offset;
 835   SYSTEMTIME java_origin;
 836   java_origin.wYear          = 1970;
 837   java_origin.wMonth         = 1;
 838   java_origin.wDayOfWeek     = 0; // ignored
 839   java_origin.wDay           = 1;
 840   java_origin.wHour          = 0;
 841   java_origin.wMinute        = 0;
 842   java_origin.wSecond        = 0;
 843   java_origin.wMilliseconds  = 0;
 844   FILETIME jot;
 845   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 846     fatal("Error = %d\nWindows error", GetLastError());
 847   }
 848   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 849   _has_calculated_offset = 1;
 850   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 851   return _calculated_offset;
 852 }
 853 #else
 854 jlong offset() {
 855   return _offset;
 856 }
 857 #endif
 858 
 859 jlong windows_to_java_time(FILETIME wt) {
 860   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 861   return (a - offset()) / 10000;
 862 }
 863 
 864 // Returns time ticks in (10th of micro seconds)
 865 jlong windows_to_time_ticks(FILETIME wt) {
 866   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 867   return (a - offset());
 868 }
 869 
 870 FILETIME java_to_windows_time(jlong l) {
 871   jlong a = (l * 10000) + offset();
 872   FILETIME result;
 873   result.dwHighDateTime = high(a);
 874   result.dwLowDateTime  = low(a);
 875   return result;
 876 }
 877 
 878 bool os::supports_vtime() { return true; }
 879 bool os::enable_vtime() { return false; }
 880 bool os::vtime_enabled() { return false; }
 881 
 882 double os::elapsedVTime() {
 883   FILETIME created;
 884   FILETIME exited;
 885   FILETIME kernel;
 886   FILETIME user;
 887   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 888     // the resolution of windows_to_java_time() should be sufficient (ms)
 889     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 890   } else {
 891     return elapsedTime();
 892   }
 893 }
 894 
 895 jlong os::javaTimeMillis() {
 896   if (UseFakeTimers) {
 897     return fake_time++;
 898   } else {
 899     FILETIME wt;
 900     GetSystemTimeAsFileTime(&wt);
 901     return windows_to_java_time(wt);
 902   }
 903 }
 904 
 905 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 906   FILETIME wt;
 907   GetSystemTimeAsFileTime(&wt);
 908   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 909   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 910   seconds = secs;
 911   nanos = jlong(ticks - (secs*10000000)) * 100;
 912 }
 913 
 914 jlong os::javaTimeNanos() {
 915     LARGE_INTEGER current_count;
 916     QueryPerformanceCounter(&current_count);
 917     double current = as_long(current_count);
 918     double freq = performance_frequency;
 919     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 920     return time;
 921 }
 922 
 923 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 924   jlong freq = performance_frequency;
 925   if (freq < NANOSECS_PER_SEC) {
 926     // the performance counter is 64 bits and we will
 927     // be multiplying it -- so no wrap in 64 bits
 928     info_ptr->max_value = ALL_64_BITS;
 929   } else if (freq > NANOSECS_PER_SEC) {
 930     // use the max value the counter can reach to
 931     // determine the max value which could be returned
 932     julong max_counter = (julong)ALL_64_BITS;
 933     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 934   } else {
 935     // the performance counter is 64 bits and we will
 936     // be using it directly -- so no wrap in 64 bits
 937     info_ptr->max_value = ALL_64_BITS;
 938   }
 939 
 940   // using a counter, so no skipping
 941   info_ptr->may_skip_backward = false;
 942   info_ptr->may_skip_forward = false;
 943 
 944   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 945 }
 946 
 947 char* os::local_time_string(char *buf, size_t buflen) {
 948   SYSTEMTIME st;
 949   GetLocalTime(&st);
 950   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 951                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 952   return buf;
 953 }
 954 
 955 bool os::getTimesSecs(double* process_real_time,
 956                       double* process_user_time,
 957                       double* process_system_time) {
 958   HANDLE h_process = GetCurrentProcess();
 959   FILETIME create_time, exit_time, kernel_time, user_time;
 960   BOOL result = GetProcessTimes(h_process,
 961                                 &create_time,
 962                                 &exit_time,
 963                                 &kernel_time,
 964                                 &user_time);
 965   if (result != 0) {
 966     FILETIME wt;
 967     GetSystemTimeAsFileTime(&wt);
 968     jlong rtc_millis = windows_to_java_time(wt);
 969     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 970     *process_user_time =
 971       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
 972     *process_system_time =
 973       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
 974     return true;
 975   } else {
 976     return false;
 977   }
 978 }
 979 
 980 void os::shutdown() {
 981   // allow PerfMemory to attempt cleanup of any persistent resources
 982   perfMemory_exit();
 983 
 984   // flush buffered output, finish log files
 985   ostream_abort();
 986 
 987   // Check for abort hook
 988   abort_hook_t abort_hook = Arguments::abort_hook();
 989   if (abort_hook != NULL) {
 990     abort_hook();
 991   }
 992 }
 993 
 994 
 995 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 996                                          PMINIDUMP_EXCEPTION_INFORMATION,
 997                                          PMINIDUMP_USER_STREAM_INFORMATION,
 998                                          PMINIDUMP_CALLBACK_INFORMATION);
 999 
1000 static HANDLE dumpFile = NULL;
1001 
1002 // Check if dump file can be created.
1003 void os::check_dump_limit(char* buffer, size_t buffsz) {
1004   bool status = true;
1005   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1006     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1007     status = false;
1008   }
1009 
1010 #ifndef ASSERT
1011   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1012     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1013     status = false;
1014   }
1015 #endif
1016 
1017   if (status) {
1018     const char* cwd = get_current_directory(NULL, 0);
1019     int pid = current_process_id();
1020     if (cwd != NULL) {
1021       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1022     } else {
1023       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1024     }
1025 
1026     if (dumpFile == NULL &&
1027        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1028                  == INVALID_HANDLE_VALUE) {
1029       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1030       status = false;
1031     }
1032   }
1033   VMError::record_coredump_status(buffer, status);
1034 }
1035 
1036 void os::abort(bool dump_core, void* siginfo, const void* context) {
1037   HINSTANCE dbghelp;
1038   EXCEPTION_POINTERS ep;
1039   MINIDUMP_EXCEPTION_INFORMATION mei;
1040   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1041 
1042   HANDLE hProcess = GetCurrentProcess();
1043   DWORD processId = GetCurrentProcessId();
1044   MINIDUMP_TYPE dumpType;
1045 
1046   shutdown();
1047   if (!dump_core || dumpFile == NULL) {
1048     if (dumpFile != NULL) {
1049       CloseHandle(dumpFile);
1050     }
1051     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1052   }
1053 
1054   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1055 
1056   if (dbghelp == NULL) {
1057     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1058     CloseHandle(dumpFile);
1059     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1060   }
1061 
1062   _MiniDumpWriteDump =
1063       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1064                                     PMINIDUMP_EXCEPTION_INFORMATION,
1065                                     PMINIDUMP_USER_STREAM_INFORMATION,
1066                                     PMINIDUMP_CALLBACK_INFORMATION),
1067                                     GetProcAddress(dbghelp,
1068                                     "MiniDumpWriteDump"));
1069 
1070   if (_MiniDumpWriteDump == NULL) {
1071     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1072     CloseHandle(dumpFile);
1073     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1074   }
1075 
1076   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1077     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1078 
1079   if (siginfo != NULL && context != NULL) {
1080     ep.ContextRecord = (PCONTEXT) context;
1081     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1082 
1083     mei.ThreadId = GetCurrentThreadId();
1084     mei.ExceptionPointers = &ep;
1085     pmei = &mei;
1086   } else {
1087     pmei = NULL;
1088   }
1089 
1090   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1091   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1092   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1093       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1094     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1095   }
1096   CloseHandle(dumpFile);
1097   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1098 }
1099 
1100 // Die immediately, no exit hook, no abort hook, no cleanup.
1101 void os::die() {
1102   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1103 }
1104 
1105 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1106 //  * dirent_md.c       1.15 00/02/02
1107 //
1108 // The declarations for DIR and struct dirent are in jvm_win32.h.
1109 
1110 // Caller must have already run dirname through JVM_NativePath, which removes
1111 // duplicate slashes and converts all instances of '/' into '\\'.
1112 
1113 DIR * os::opendir(const char *dirname) {
1114   assert(dirname != NULL, "just checking");   // hotspot change
1115   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1116   DWORD fattr;                                // hotspot change
1117   char alt_dirname[4] = { 0, 0, 0, 0 };
1118 
1119   if (dirp == 0) {
1120     errno = ENOMEM;
1121     return 0;
1122   }
1123 
1124   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1125   // as a directory in FindFirstFile().  We detect this case here and
1126   // prepend the current drive name.
1127   //
1128   if (dirname[1] == '\0' && dirname[0] == '\\') {
1129     alt_dirname[0] = _getdrive() + 'A' - 1;
1130     alt_dirname[1] = ':';
1131     alt_dirname[2] = '\\';
1132     alt_dirname[3] = '\0';
1133     dirname = alt_dirname;
1134   }
1135 
1136   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1137   if (dirp->path == 0) {
1138     free(dirp);
1139     errno = ENOMEM;
1140     return 0;
1141   }
1142   strcpy(dirp->path, dirname);
1143 
1144   fattr = GetFileAttributes(dirp->path);
1145   if (fattr == 0xffffffff) {
1146     free(dirp->path);
1147     free(dirp);
1148     errno = ENOENT;
1149     return 0;
1150   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1151     free(dirp->path);
1152     free(dirp);
1153     errno = ENOTDIR;
1154     return 0;
1155   }
1156 
1157   // Append "*.*", or possibly "\\*.*", to path
1158   if (dirp->path[1] == ':' &&
1159       (dirp->path[2] == '\0' ||
1160       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1161     // No '\\' needed for cases like "Z:" or "Z:\"
1162     strcat(dirp->path, "*.*");
1163   } else {
1164     strcat(dirp->path, "\\*.*");
1165   }
1166 
1167   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1168   if (dirp->handle == INVALID_HANDLE_VALUE) {
1169     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1170       free(dirp->path);
1171       free(dirp);
1172       errno = EACCES;
1173       return 0;
1174     }
1175   }
1176   return dirp;
1177 }
1178 
1179 // parameter dbuf unused on Windows
1180 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1181   assert(dirp != NULL, "just checking");      // hotspot change
1182   if (dirp->handle == INVALID_HANDLE_VALUE) {
1183     return 0;
1184   }
1185 
1186   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1187 
1188   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1189     if (GetLastError() == ERROR_INVALID_HANDLE) {
1190       errno = EBADF;
1191       return 0;
1192     }
1193     FindClose(dirp->handle);
1194     dirp->handle = INVALID_HANDLE_VALUE;
1195   }
1196 
1197   return &dirp->dirent;
1198 }
1199 
1200 int os::closedir(DIR *dirp) {
1201   assert(dirp != NULL, "just checking");      // hotspot change
1202   if (dirp->handle != INVALID_HANDLE_VALUE) {
1203     if (!FindClose(dirp->handle)) {
1204       errno = EBADF;
1205       return -1;
1206     }
1207     dirp->handle = INVALID_HANDLE_VALUE;
1208   }
1209   free(dirp->path);
1210   free(dirp);
1211   return 0;
1212 }
1213 
1214 // This must be hard coded because it's the system's temporary
1215 // directory not the java application's temp directory, ala java.io.tmpdir.
1216 const char* os::get_temp_directory() {
1217   static char path_buf[MAX_PATH];
1218   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1219     return path_buf;
1220   } else {
1221     path_buf[0] = '\0';
1222     return path_buf;
1223   }
1224 }
1225 
1226 static bool file_exists(const char* filename) {
1227   if (filename == NULL || strlen(filename) == 0) {
1228     return false;
1229   }
1230   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1231 }
1232 
1233 bool os::dll_build_name(char *buffer, size_t buflen,
1234                         const char* pname, const char* fname) {
1235   bool retval = false;
1236   const size_t pnamelen = pname ? strlen(pname) : 0;
1237   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1238 
1239   // Return error on buffer overflow.
1240   if (pnamelen + strlen(fname) + 10 > buflen) {
1241     return retval;
1242   }
1243 
1244   if (pnamelen == 0) {
1245     jio_snprintf(buffer, buflen, "%s.dll", fname);
1246     retval = true;
1247   } else if (c == ':' || c == '\\') {
1248     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1249     retval = true;
1250   } else if (strchr(pname, *os::path_separator()) != NULL) {
1251     int n;
1252     char** pelements = split_path(pname, &n);
1253     if (pelements == NULL) {
1254       return false;
1255     }
1256     for (int i = 0; i < n; i++) {
1257       char* path = pelements[i];
1258       // Really shouldn't be NULL, but check can't hurt
1259       size_t plen = (path == NULL) ? 0 : strlen(path);
1260       if (plen == 0) {
1261         continue; // skip the empty path values
1262       }
1263       const char lastchar = path[plen - 1];
1264       if (lastchar == ':' || lastchar == '\\') {
1265         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1266       } else {
1267         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1268       }
1269       if (file_exists(buffer)) {
1270         retval = true;
1271         break;
1272       }
1273     }
1274     // release the storage
1275     for (int i = 0; i < n; i++) {
1276       if (pelements[i] != NULL) {
1277         FREE_C_HEAP_ARRAY(char, pelements[i]);
1278       }
1279     }
1280     if (pelements != NULL) {
1281       FREE_C_HEAP_ARRAY(char*, pelements);
1282     }
1283   } else {
1284     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1285     retval = true;
1286   }
1287   return retval;
1288 }
1289 
1290 // Needs to be in os specific directory because windows requires another
1291 // header file <direct.h>
1292 const char* os::get_current_directory(char *buf, size_t buflen) {
1293   int n = static_cast<int>(buflen);
1294   if (buflen > INT_MAX)  n = INT_MAX;
1295   return _getcwd(buf, n);
1296 }
1297 
1298 //-----------------------------------------------------------
1299 // Helper functions for fatal error handler
1300 #ifdef _WIN64
1301 // Helper routine which returns true if address in
1302 // within the NTDLL address space.
1303 //
1304 static bool _addr_in_ntdll(address addr) {
1305   HMODULE hmod;
1306   MODULEINFO minfo;
1307 
1308   hmod = GetModuleHandle("NTDLL.DLL");
1309   if (hmod == NULL) return false;
1310   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1311                                           &minfo, sizeof(MODULEINFO))) {
1312     return false;
1313   }
1314 
1315   if ((addr >= minfo.lpBaseOfDll) &&
1316       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1317     return true;
1318   } else {
1319     return false;
1320   }
1321 }
1322 #endif
1323 
1324 struct _modinfo {
1325   address addr;
1326   char*   full_path;   // point to a char buffer
1327   int     buflen;      // size of the buffer
1328   address base_addr;
1329 };
1330 
1331 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1332                                   address top_address, void * param) {
1333   struct _modinfo *pmod = (struct _modinfo *)param;
1334   if (!pmod) return -1;
1335 
1336   if (base_addr   <= pmod->addr &&
1337       top_address > pmod->addr) {
1338     // if a buffer is provided, copy path name to the buffer
1339     if (pmod->full_path) {
1340       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1341     }
1342     pmod->base_addr = base_addr;
1343     return 1;
1344   }
1345   return 0;
1346 }
1347 
1348 bool os::dll_address_to_library_name(address addr, char* buf,
1349                                      int buflen, int* offset) {
1350   // buf is not optional, but offset is optional
1351   assert(buf != NULL, "sanity check");
1352 
1353 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1354 //       return the full path to the DLL file, sometimes it returns path
1355 //       to the corresponding PDB file (debug info); sometimes it only
1356 //       returns partial path, which makes life painful.
1357 
1358   struct _modinfo mi;
1359   mi.addr      = addr;
1360   mi.full_path = buf;
1361   mi.buflen    = buflen;
1362   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1363     // buf already contains path name
1364     if (offset) *offset = addr - mi.base_addr;
1365     return true;
1366   }
1367 
1368   buf[0] = '\0';
1369   if (offset) *offset = -1;
1370   return false;
1371 }
1372 
1373 bool os::dll_address_to_function_name(address addr, char *buf,
1374                                       int buflen, int *offset,
1375                                       bool demangle) {
1376   // buf is not optional, but offset is optional
1377   assert(buf != NULL, "sanity check");
1378 
1379   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1380     return true;
1381   }
1382   if (offset != NULL)  *offset  = -1;
1383   buf[0] = '\0';
1384   return false;
1385 }
1386 
1387 // save the start and end address of jvm.dll into param[0] and param[1]
1388 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1389                            address top_address, void * param) {
1390   if (!param) return -1;
1391 
1392   if (base_addr   <= (address)_locate_jvm_dll &&
1393       top_address > (address)_locate_jvm_dll) {
1394     ((address*)param)[0] = base_addr;
1395     ((address*)param)[1] = top_address;
1396     return 1;
1397   }
1398   return 0;
1399 }
1400 
1401 address vm_lib_location[2];    // start and end address of jvm.dll
1402 
1403 // check if addr is inside jvm.dll
1404 bool os::address_is_in_vm(address addr) {
1405   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1406     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1407       assert(false, "Can't find jvm module.");
1408       return false;
1409     }
1410   }
1411 
1412   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1413 }
1414 
1415 // print module info; param is outputStream*
1416 static int _print_module(const char* fname, address base_address,
1417                          address top_address, void* param) {
1418   if (!param) return -1;
1419 
1420   outputStream* st = (outputStream*)param;
1421 
1422   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1423   return 0;
1424 }
1425 
1426 // Loads .dll/.so and
1427 // in case of error it checks if .dll/.so was built for the
1428 // same architecture as Hotspot is running on
1429 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1430   void * result = LoadLibrary(name);
1431   if (result != NULL) {
1432     return result;
1433   }
1434 
1435   DWORD errcode = GetLastError();
1436   if (errcode == ERROR_MOD_NOT_FOUND) {
1437     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1438     ebuf[ebuflen - 1] = '\0';
1439     return NULL;
1440   }
1441 
1442   // Parsing dll below
1443   // If we can read dll-info and find that dll was built
1444   // for an architecture other than Hotspot is running in
1445   // - then print to buffer "DLL was built for a different architecture"
1446   // else call os::lasterror to obtain system error message
1447 
1448   // Read system error message into ebuf
1449   // It may or may not be overwritten below (in the for loop and just above)
1450   lasterror(ebuf, (size_t) ebuflen);
1451   ebuf[ebuflen - 1] = '\0';
1452   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1453   if (fd < 0) {
1454     return NULL;
1455   }
1456 
1457   uint32_t signature_offset;
1458   uint16_t lib_arch = 0;
1459   bool failed_to_get_lib_arch =
1460     ( // Go to position 3c in the dll
1461      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1462      ||
1463      // Read location of signature
1464      (sizeof(signature_offset) !=
1465      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1466      ||
1467      // Go to COFF File Header in dll
1468      // that is located after "signature" (4 bytes long)
1469      (os::seek_to_file_offset(fd,
1470      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1471      ||
1472      // Read field that contains code of architecture
1473      // that dll was built for
1474      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1475     );
1476 
1477   ::close(fd);
1478   if (failed_to_get_lib_arch) {
1479     // file i/o error - report os::lasterror(...) msg
1480     return NULL;
1481   }
1482 
1483   typedef struct {
1484     uint16_t arch_code;
1485     char* arch_name;
1486   } arch_t;
1487 
1488   static const arch_t arch_array[] = {
1489     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1490     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1491     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1492   };
1493 #if   (defined _M_IA64)
1494   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1495 #elif (defined _M_AMD64)
1496   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1497 #elif (defined _M_IX86)
1498   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1499 #else
1500   #error Method os::dll_load requires that one of following \
1501          is defined :_M_IA64,_M_AMD64 or _M_IX86
1502 #endif
1503 
1504 
1505   // Obtain a string for printf operation
1506   // lib_arch_str shall contain string what platform this .dll was built for
1507   // running_arch_str shall string contain what platform Hotspot was built for
1508   char *running_arch_str = NULL, *lib_arch_str = NULL;
1509   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1510     if (lib_arch == arch_array[i].arch_code) {
1511       lib_arch_str = arch_array[i].arch_name;
1512     }
1513     if (running_arch == arch_array[i].arch_code) {
1514       running_arch_str = arch_array[i].arch_name;
1515     }
1516   }
1517 
1518   assert(running_arch_str,
1519          "Didn't find running architecture code in arch_array");
1520 
1521   // If the architecture is right
1522   // but some other error took place - report os::lasterror(...) msg
1523   if (lib_arch == running_arch) {
1524     return NULL;
1525   }
1526 
1527   if (lib_arch_str != NULL) {
1528     ::_snprintf(ebuf, ebuflen - 1,
1529                 "Can't load %s-bit .dll on a %s-bit platform",
1530                 lib_arch_str, running_arch_str);
1531   } else {
1532     // don't know what architecture this dll was build for
1533     ::_snprintf(ebuf, ebuflen - 1,
1534                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1535                 lib_arch, running_arch_str);
1536   }
1537 
1538   return NULL;
1539 }
1540 
1541 void os::print_dll_info(outputStream *st) {
1542   st->print_cr("Dynamic libraries:");
1543   get_loaded_modules_info(_print_module, (void *)st);
1544 }
1545 
1546 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1547   HANDLE   hProcess;
1548 
1549 # define MAX_NUM_MODULES 128
1550   HMODULE     modules[MAX_NUM_MODULES];
1551   static char filename[MAX_PATH];
1552   int         result = 0;
1553 
1554   int pid = os::current_process_id();
1555   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1556                          FALSE, pid);
1557   if (hProcess == NULL) return 0;
1558 
1559   DWORD size_needed;
1560   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1561     CloseHandle(hProcess);
1562     return 0;
1563   }
1564 
1565   // number of modules that are currently loaded
1566   int num_modules = size_needed / sizeof(HMODULE);
1567 
1568   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1569     // Get Full pathname:
1570     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1571       filename[0] = '\0';
1572     }
1573 
1574     MODULEINFO modinfo;
1575     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1576       modinfo.lpBaseOfDll = NULL;
1577       modinfo.SizeOfImage = 0;
1578     }
1579 
1580     // Invoke callback function
1581     result = callback(filename, (address)modinfo.lpBaseOfDll,
1582                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1583     if (result) break;
1584   }
1585 
1586   CloseHandle(hProcess);
1587   return result;
1588 }
1589 
1590 bool os::get_host_name(char* buf, size_t buflen) {
1591   DWORD size = (DWORD)buflen;
1592   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1593 }
1594 
1595 void os::get_summary_os_info(char* buf, size_t buflen) {
1596   stringStream sst(buf, buflen);
1597   os::win32::print_windows_version(&sst);
1598   // chop off newline character
1599   char* nl = strchr(buf, '\n');
1600   if (nl != NULL) *nl = '\0';
1601 }
1602 
1603 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1604   int ret = vsnprintf(buf, len, fmt, args);
1605   // Get the correct buffer size if buf is too small
1606   if (ret < 0) {
1607     return _vscprintf(fmt, args);
1608   }
1609   return ret;
1610 }
1611 
1612 static inline time_t get_mtime(const char* filename) {
1613   struct stat st;
1614   int ret = os::stat(filename, &st);
1615   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1616   return st.st_mtime;
1617 }
1618 
1619 int os::compare_file_modified_times(const char* file1, const char* file2) {
1620   time_t t1 = get_mtime(file1);
1621   time_t t2 = get_mtime(file2);
1622   return t1 - t2;
1623 }
1624 
1625 void os::print_os_info_brief(outputStream* st) {
1626   os::print_os_info(st);
1627 }
1628 
1629 void os::print_os_info(outputStream* st) {
1630 #ifdef ASSERT
1631   char buffer[1024];
1632   st->print("HostName: ");
1633   if (get_host_name(buffer, sizeof(buffer))) {
1634     st->print("%s ", buffer);
1635   } else {
1636     st->print("N/A ");
1637   }
1638 #endif
1639   st->print("OS:");
1640   os::win32::print_windows_version(st);
1641 }
1642 
1643 void os::win32::print_windows_version(outputStream* st) {
1644   OSVERSIONINFOEX osvi;
1645   VS_FIXEDFILEINFO *file_info;
1646   TCHAR kernel32_path[MAX_PATH];
1647   UINT len, ret;
1648 
1649   // Use the GetVersionEx information to see if we're on a server or
1650   // workstation edition of Windows. Starting with Windows 8.1 we can't
1651   // trust the OS version information returned by this API.
1652   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1653   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1654   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1655     st->print_cr("Call to GetVersionEx failed");
1656     return;
1657   }
1658   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1659 
1660   // Get the full path to \Windows\System32\kernel32.dll and use that for
1661   // determining what version of Windows we're running on.
1662   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1663   ret = GetSystemDirectory(kernel32_path, len);
1664   if (ret == 0 || ret > len) {
1665     st->print_cr("Call to GetSystemDirectory failed");
1666     return;
1667   }
1668   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1669 
1670   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1671   if (version_size == 0) {
1672     st->print_cr("Call to GetFileVersionInfoSize failed");
1673     return;
1674   }
1675 
1676   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1677   if (version_info == NULL) {
1678     st->print_cr("Failed to allocate version_info");
1679     return;
1680   }
1681 
1682   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1683     os::free(version_info);
1684     st->print_cr("Call to GetFileVersionInfo failed");
1685     return;
1686   }
1687 
1688   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1689     os::free(version_info);
1690     st->print_cr("Call to VerQueryValue failed");
1691     return;
1692   }
1693 
1694   int major_version = HIWORD(file_info->dwProductVersionMS);
1695   int minor_version = LOWORD(file_info->dwProductVersionMS);
1696   int build_number = HIWORD(file_info->dwProductVersionLS);
1697   int build_minor = LOWORD(file_info->dwProductVersionLS);
1698   int os_vers = major_version * 1000 + minor_version;
1699   os::free(version_info);
1700 
1701   st->print(" Windows ");
1702   switch (os_vers) {
1703 
1704   case 6000:
1705     if (is_workstation) {
1706       st->print("Vista");
1707     } else {
1708       st->print("Server 2008");
1709     }
1710     break;
1711 
1712   case 6001:
1713     if (is_workstation) {
1714       st->print("7");
1715     } else {
1716       st->print("Server 2008 R2");
1717     }
1718     break;
1719 
1720   case 6002:
1721     if (is_workstation) {
1722       st->print("8");
1723     } else {
1724       st->print("Server 2012");
1725     }
1726     break;
1727 
1728   case 6003:
1729     if (is_workstation) {
1730       st->print("8.1");
1731     } else {
1732       st->print("Server 2012 R2");
1733     }
1734     break;
1735 
1736   case 10000:
1737     if (is_workstation) {
1738       st->print("10");
1739     } else {
1740       st->print("Server 2016");
1741     }
1742     break;
1743 
1744   default:
1745     // Unrecognized windows, print out its major and minor versions
1746     st->print("%d.%d", major_version, minor_version);
1747     break;
1748   }
1749 
1750   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1751   // find out whether we are running on 64 bit processor or not
1752   SYSTEM_INFO si;
1753   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1754   GetNativeSystemInfo(&si);
1755   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1756     st->print(" , 64 bit");
1757   }
1758 
1759   st->print(" Build %d", build_number);
1760   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1761   st->cr();
1762 }
1763 
1764 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1765   // Nothing to do for now.
1766 }
1767 
1768 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1769   HKEY key;
1770   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1771                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1772   if (status == ERROR_SUCCESS) {
1773     DWORD size = (DWORD)buflen;
1774     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1775     if (status != ERROR_SUCCESS) {
1776         strncpy(buf, "## __CPU__", buflen);
1777     }
1778     RegCloseKey(key);
1779   } else {
1780     // Put generic cpu info to return
1781     strncpy(buf, "## __CPU__", buflen);
1782   }
1783 }
1784 
1785 void os::print_memory_info(outputStream* st) {
1786   st->print("Memory:");
1787   st->print(" %dk page", os::vm_page_size()>>10);
1788 
1789   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1790   // value if total memory is larger than 4GB
1791   MEMORYSTATUSEX ms;
1792   ms.dwLength = sizeof(ms);
1793   GlobalMemoryStatusEx(&ms);
1794 
1795   st->print(", physical %uk", os::physical_memory() >> 10);
1796   st->print("(%uk free)", os::available_memory() >> 10);
1797 
1798   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1799   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1800   st->cr();
1801 }
1802 
1803 void os::print_siginfo(outputStream *st, const void* siginfo) {
1804   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1805   st->print("siginfo:");
1806 
1807   char tmp[64];
1808   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1809     strcpy(tmp, "EXCEPTION_??");
1810   }
1811   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1812 
1813   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1814        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1815        er->NumberParameters >= 2) {
1816     switch (er->ExceptionInformation[0]) {
1817     case 0: st->print(", reading address"); break;
1818     case 1: st->print(", writing address"); break;
1819     case 8: st->print(", data execution prevention violation at address"); break;
1820     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1821                        er->ExceptionInformation[0]);
1822     }
1823     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1824   } else {
1825     int num = er->NumberParameters;
1826     if (num > 0) {
1827       st->print(", ExceptionInformation=");
1828       for (int i = 0; i < num; i++) {
1829         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1830       }
1831     }
1832   }
1833   st->cr();
1834 }
1835 
1836 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1837   // do nothing
1838 }
1839 
1840 static char saved_jvm_path[MAX_PATH] = {0};
1841 
1842 // Find the full path to the current module, jvm.dll
1843 void os::jvm_path(char *buf, jint buflen) {
1844   // Error checking.
1845   if (buflen < MAX_PATH) {
1846     assert(false, "must use a large-enough buffer");
1847     buf[0] = '\0';
1848     return;
1849   }
1850   // Lazy resolve the path to current module.
1851   if (saved_jvm_path[0] != 0) {
1852     strcpy(buf, saved_jvm_path);
1853     return;
1854   }
1855 
1856   buf[0] = '\0';
1857   if (Arguments::sun_java_launcher_is_altjvm()) {
1858     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1859     // for a JAVA_HOME environment variable and fix up the path so it
1860     // looks like jvm.dll is installed there (append a fake suffix
1861     // hotspot/jvm.dll).
1862     char* java_home_var = ::getenv("JAVA_HOME");
1863     if (java_home_var != NULL && java_home_var[0] != 0 &&
1864         strlen(java_home_var) < (size_t)buflen) {
1865       strncpy(buf, java_home_var, buflen);
1866 
1867       // determine if this is a legacy image or modules image
1868       // modules image doesn't have "jre" subdirectory
1869       size_t len = strlen(buf);
1870       char* jrebin_p = buf + len;
1871       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1872       if (0 != _access(buf, 0)) {
1873         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1874       }
1875       len = strlen(buf);
1876       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1877     }
1878   }
1879 
1880   if (buf[0] == '\0') {
1881     GetModuleFileName(vm_lib_handle, buf, buflen);
1882   }
1883   strncpy(saved_jvm_path, buf, MAX_PATH);
1884   saved_jvm_path[MAX_PATH - 1] = '\0';
1885 }
1886 
1887 
1888 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1889 #ifndef _WIN64
1890   st->print("_");
1891 #endif
1892 }
1893 
1894 
1895 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1896 #ifndef _WIN64
1897   st->print("@%d", args_size  * sizeof(int));
1898 #endif
1899 }
1900 
1901 // This method is a copy of JDK's sysGetLastErrorString
1902 // from src/windows/hpi/src/system_md.c
1903 
1904 size_t os::lasterror(char* buf, size_t len) {
1905   DWORD errval;
1906 
1907   if ((errval = GetLastError()) != 0) {
1908     // DOS error
1909     size_t n = (size_t)FormatMessage(
1910                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1911                                      NULL,
1912                                      errval,
1913                                      0,
1914                                      buf,
1915                                      (DWORD)len,
1916                                      NULL);
1917     if (n > 3) {
1918       // Drop final '.', CR, LF
1919       if (buf[n - 1] == '\n') n--;
1920       if (buf[n - 1] == '\r') n--;
1921       if (buf[n - 1] == '.') n--;
1922       buf[n] = '\0';
1923     }
1924     return n;
1925   }
1926 
1927   if (errno != 0) {
1928     // C runtime error that has no corresponding DOS error code
1929     const char* s = os::strerror(errno);
1930     size_t n = strlen(s);
1931     if (n >= len) n = len - 1;
1932     strncpy(buf, s, n);
1933     buf[n] = '\0';
1934     return n;
1935   }
1936 
1937   return 0;
1938 }
1939 
1940 int os::get_last_error() {
1941   DWORD error = GetLastError();
1942   if (error == 0) {
1943     error = errno;
1944   }
1945   return (int)error;
1946 }
1947 
1948 WindowsSemaphore::WindowsSemaphore(uint value) {
1949   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1950 
1951   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1952 }
1953 
1954 WindowsSemaphore::~WindowsSemaphore() {
1955   ::CloseHandle(_semaphore);
1956 }
1957 
1958 void WindowsSemaphore::signal(uint count) {
1959   if (count > 0) {
1960     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1961 
1962     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1963   }
1964 }
1965 
1966 void WindowsSemaphore::wait() {
1967   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1968   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1969   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1970 }
1971 
1972 // sun.misc.Signal
1973 // NOTE that this is a workaround for an apparent kernel bug where if
1974 // a signal handler for SIGBREAK is installed then that signal handler
1975 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1976 // See bug 4416763.
1977 static void (*sigbreakHandler)(int) = NULL;
1978 
1979 static void UserHandler(int sig, void *siginfo, void *context) {
1980   os::signal_notify(sig);
1981   // We need to reinstate the signal handler each time...
1982   os::signal(sig, (void*)UserHandler);
1983 }
1984 
1985 void* os::user_handler() {
1986   return (void*) UserHandler;
1987 }
1988 
1989 void* os::signal(int signal_number, void* handler) {
1990   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1991     void (*oldHandler)(int) = sigbreakHandler;
1992     sigbreakHandler = (void (*)(int)) handler;
1993     return (void*) oldHandler;
1994   } else {
1995     return (void*)::signal(signal_number, (void (*)(int))handler);
1996   }
1997 }
1998 
1999 void os::signal_raise(int signal_number) {
2000   raise(signal_number);
2001 }
2002 
2003 // The Win32 C runtime library maps all console control events other than ^C
2004 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2005 // logoff, and shutdown events.  We therefore install our own console handler
2006 // that raises SIGTERM for the latter cases.
2007 //
2008 static BOOL WINAPI consoleHandler(DWORD event) {
2009   switch (event) {
2010   case CTRL_C_EVENT:
2011     if (is_error_reported()) {
2012       // Ctrl-C is pressed during error reporting, likely because the error
2013       // handler fails to abort. Let VM die immediately.
2014       os::die();
2015     }
2016 
2017     os::signal_raise(SIGINT);
2018     return TRUE;
2019     break;
2020   case CTRL_BREAK_EVENT:
2021     if (sigbreakHandler != NULL) {
2022       (*sigbreakHandler)(SIGBREAK);
2023     }
2024     return TRUE;
2025     break;
2026   case CTRL_LOGOFF_EVENT: {
2027     // Don't terminate JVM if it is running in a non-interactive session,
2028     // such as a service process.
2029     USEROBJECTFLAGS flags;
2030     HANDLE handle = GetProcessWindowStation();
2031     if (handle != NULL &&
2032         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2033         sizeof(USEROBJECTFLAGS), NULL)) {
2034       // If it is a non-interactive session, let next handler to deal
2035       // with it.
2036       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2037         return FALSE;
2038       }
2039     }
2040   }
2041   case CTRL_CLOSE_EVENT:
2042   case CTRL_SHUTDOWN_EVENT:
2043     os::signal_raise(SIGTERM);
2044     return TRUE;
2045     break;
2046   default:
2047     break;
2048   }
2049   return FALSE;
2050 }
2051 
2052 // The following code is moved from os.cpp for making this
2053 // code platform specific, which it is by its very nature.
2054 
2055 // Return maximum OS signal used + 1 for internal use only
2056 // Used as exit signal for signal_thread
2057 int os::sigexitnum_pd() {
2058   return NSIG;
2059 }
2060 
2061 // a counter for each possible signal value, including signal_thread exit signal
2062 static volatile jint pending_signals[NSIG+1] = { 0 };
2063 static HANDLE sig_sem = NULL;
2064 
2065 void os::signal_init_pd() {
2066   // Initialize signal structures
2067   memset((void*)pending_signals, 0, sizeof(pending_signals));
2068 
2069   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2070 
2071   // Programs embedding the VM do not want it to attempt to receive
2072   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2073   // shutdown hooks mechanism introduced in 1.3.  For example, when
2074   // the VM is run as part of a Windows NT service (i.e., a servlet
2075   // engine in a web server), the correct behavior is for any console
2076   // control handler to return FALSE, not TRUE, because the OS's
2077   // "final" handler for such events allows the process to continue if
2078   // it is a service (while terminating it if it is not a service).
2079   // To make this behavior uniform and the mechanism simpler, we
2080   // completely disable the VM's usage of these console events if -Xrs
2081   // (=ReduceSignalUsage) is specified.  This means, for example, that
2082   // the CTRL-BREAK thread dump mechanism is also disabled in this
2083   // case.  See bugs 4323062, 4345157, and related bugs.
2084 
2085   if (!ReduceSignalUsage) {
2086     // Add a CTRL-C handler
2087     SetConsoleCtrlHandler(consoleHandler, TRUE);
2088   }
2089 }
2090 
2091 void os::signal_notify(int signal_number) {
2092   BOOL ret;
2093   if (sig_sem != NULL) {
2094     Atomic::inc(&pending_signals[signal_number]);
2095     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2096     assert(ret != 0, "ReleaseSemaphore() failed");
2097   }
2098 }
2099 
2100 static int check_pending_signals(bool wait_for_signal) {
2101   DWORD ret;
2102   while (true) {
2103     for (int i = 0; i < NSIG + 1; i++) {
2104       jint n = pending_signals[i];
2105       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2106         return i;
2107       }
2108     }
2109     if (!wait_for_signal) {
2110       return -1;
2111     }
2112 
2113     JavaThread *thread = JavaThread::current();
2114 
2115     ThreadBlockInVM tbivm(thread);
2116 
2117     bool threadIsSuspended;
2118     do {
2119       thread->set_suspend_equivalent();
2120       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2121       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2122       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2123 
2124       // were we externally suspended while we were waiting?
2125       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2126       if (threadIsSuspended) {
2127         // The semaphore has been incremented, but while we were waiting
2128         // another thread suspended us. We don't want to continue running
2129         // while suspended because that would surprise the thread that
2130         // suspended us.
2131         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2132         assert(ret != 0, "ReleaseSemaphore() failed");
2133 
2134         thread->java_suspend_self();
2135       }
2136     } while (threadIsSuspended);
2137   }
2138 }
2139 
2140 int os::signal_lookup() {
2141   return check_pending_signals(false);
2142 }
2143 
2144 int os::signal_wait() {
2145   return check_pending_signals(true);
2146 }
2147 
2148 // Implicit OS exception handling
2149 
2150 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2151                       address handler) {
2152     JavaThread* thread = (JavaThread*) Thread::current_or_null();
2153   // Save pc in thread
2154 #ifdef _M_IA64
2155   // Do not blow up if no thread info available.
2156   if (thread) {
2157     // Saving PRECISE pc (with slot information) in thread.
2158     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2159     // Convert precise PC into "Unix" format
2160     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2161     thread->set_saved_exception_pc((address)precise_pc);
2162   }
2163   // Set pc to handler
2164   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2165   // Clear out psr.ri (= Restart Instruction) in order to continue
2166   // at the beginning of the target bundle.
2167   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2168   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2169 #else
2170   #ifdef _M_AMD64
2171   // Do not blow up if no thread info available.
2172   if (thread) {
2173     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2174   }
2175   // Set pc to handler
2176   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2177   #else
2178   // Do not blow up if no thread info available.
2179   if (thread) {
2180     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2181   }
2182   // Set pc to handler
2183   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2184   #endif
2185 #endif
2186 
2187   // Continue the execution
2188   return EXCEPTION_CONTINUE_EXECUTION;
2189 }
2190 
2191 
2192 // Used for PostMortemDump
2193 extern "C" void safepoints();
2194 extern "C" void find(int x);
2195 extern "C" void events();
2196 
2197 // According to Windows API documentation, an illegal instruction sequence should generate
2198 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2199 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2200 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2201 
2202 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2203 
2204 // From "Execution Protection in the Windows Operating System" draft 0.35
2205 // Once a system header becomes available, the "real" define should be
2206 // included or copied here.
2207 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2208 
2209 // Handle NAT Bit consumption on IA64.
2210 #ifdef _M_IA64
2211   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2212 #endif
2213 
2214 // Windows Vista/2008 heap corruption check
2215 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2216 
2217 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2218 // C++ compiler contain this error code. Because this is a compiler-generated
2219 // error, the code is not listed in the Win32 API header files.
2220 // The code is actually a cryptic mnemonic device, with the initial "E"
2221 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2222 // ASCII values of "msc".
2223 
2224 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2225 
2226 #define def_excpt(val) { #val, (val) }
2227 
2228 static const struct { char* name; uint number; } exceptlabels[] = {
2229     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2230     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2231     def_excpt(EXCEPTION_BREAKPOINT),
2232     def_excpt(EXCEPTION_SINGLE_STEP),
2233     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2234     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2235     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2236     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2237     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2238     def_excpt(EXCEPTION_FLT_OVERFLOW),
2239     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2240     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2241     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2242     def_excpt(EXCEPTION_INT_OVERFLOW),
2243     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2244     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2245     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2246     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2247     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2248     def_excpt(EXCEPTION_STACK_OVERFLOW),
2249     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2250     def_excpt(EXCEPTION_GUARD_PAGE),
2251     def_excpt(EXCEPTION_INVALID_HANDLE),
2252     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2253     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2254 #ifdef _M_IA64
2255     , def_excpt(EXCEPTION_REG_NAT_CONSUMPTION)
2256 #endif
2257 };
2258 
2259 #undef def_excpt
2260 
2261 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2262   uint code = static_cast<uint>(exception_code);
2263   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2264     if (exceptlabels[i].number == code) {
2265       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2266       return buf;
2267     }
2268   }
2269 
2270   return NULL;
2271 }
2272 
2273 //-----------------------------------------------------------------------------
2274 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2275   // handle exception caused by idiv; should only happen for -MinInt/-1
2276   // (division by zero is handled explicitly)
2277 #ifdef _M_IA64
2278   assert(0, "Fix Handle_IDiv_Exception");
2279 #else
2280   #ifdef  _M_AMD64
2281   PCONTEXT ctx = exceptionInfo->ContextRecord;
2282   address pc = (address)ctx->Rip;
2283   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2284   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2285   if (pc[0] == 0xF7) {
2286     // set correct result values and continue after idiv instruction
2287     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2288   } else {
2289     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2290   }
2291   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2292   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2293   // idiv opcode (0xF7).
2294   ctx->Rdx = (DWORD)0;             // remainder
2295   // Continue the execution
2296   #else
2297   PCONTEXT ctx = exceptionInfo->ContextRecord;
2298   address pc = (address)ctx->Eip;
2299   assert(pc[0] == 0xF7, "not an idiv opcode");
2300   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2301   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2302   // set correct result values and continue after idiv instruction
2303   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2304   ctx->Eax = (DWORD)min_jint;      // result
2305   ctx->Edx = (DWORD)0;             // remainder
2306   // Continue the execution
2307   #endif
2308 #endif
2309   return EXCEPTION_CONTINUE_EXECUTION;
2310 }
2311 
2312 //-----------------------------------------------------------------------------
2313 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2314   PCONTEXT ctx = exceptionInfo->ContextRecord;
2315 #ifndef  _WIN64
2316   // handle exception caused by native method modifying control word
2317   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2318 
2319   switch (exception_code) {
2320   case EXCEPTION_FLT_DENORMAL_OPERAND:
2321   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2322   case EXCEPTION_FLT_INEXACT_RESULT:
2323   case EXCEPTION_FLT_INVALID_OPERATION:
2324   case EXCEPTION_FLT_OVERFLOW:
2325   case EXCEPTION_FLT_STACK_CHECK:
2326   case EXCEPTION_FLT_UNDERFLOW:
2327     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2328     if (fp_control_word != ctx->FloatSave.ControlWord) {
2329       // Restore FPCW and mask out FLT exceptions
2330       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2331       // Mask out pending FLT exceptions
2332       ctx->FloatSave.StatusWord &=  0xffffff00;
2333       return EXCEPTION_CONTINUE_EXECUTION;
2334     }
2335   }
2336 
2337   if (prev_uef_handler != NULL) {
2338     // We didn't handle this exception so pass it to the previous
2339     // UnhandledExceptionFilter.
2340     return (prev_uef_handler)(exceptionInfo);
2341   }
2342 #else // !_WIN64
2343   // On Windows, the mxcsr control bits are non-volatile across calls
2344   // See also CR 6192333
2345   //
2346   jint MxCsr = INITIAL_MXCSR;
2347   // we can't use StubRoutines::addr_mxcsr_std()
2348   // because in Win64 mxcsr is not saved there
2349   if (MxCsr != ctx->MxCsr) {
2350     ctx->MxCsr = MxCsr;
2351     return EXCEPTION_CONTINUE_EXECUTION;
2352   }
2353 #endif // !_WIN64
2354 
2355   return EXCEPTION_CONTINUE_SEARCH;
2356 }
2357 
2358 static inline void report_error(Thread* t, DWORD exception_code,
2359                                 address addr, void* siginfo, void* context) {
2360   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2361 
2362   // If UseOsErrorReporting, this will return here and save the error file
2363   // somewhere where we can find it in the minidump.
2364 }
2365 
2366 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2367         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2368   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2369   address addr = (address) exceptionRecord->ExceptionInformation[1];
2370   if (Interpreter::contains(pc)) {
2371     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2372     if (!fr->is_first_java_frame()) {
2373       assert(fr->safe_for_sender(thread), "Safety check");
2374       *fr = fr->java_sender();
2375     }
2376   } else {
2377     // more complex code with compiled code
2378     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2379     CodeBlob* cb = CodeCache::find_blob(pc);
2380     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2381       // Not sure where the pc points to, fallback to default
2382       // stack overflow handling
2383       return false;
2384     } else {
2385       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2386       // in compiled code, the stack banging is performed just after the return pc
2387       // has been pushed on the stack
2388       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2389       if (!fr->is_java_frame()) {
2390         assert(fr->safe_for_sender(thread), "Safety check");
2391         *fr = fr->java_sender();
2392       }
2393     }
2394   }
2395   assert(fr->is_java_frame(), "Safety check");
2396   return true;
2397 }
2398 
2399 //-----------------------------------------------------------------------------
2400 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2401   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2402   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2403 #ifdef _M_IA64
2404   // On Itanium, we need the "precise pc", which has the slot number coded
2405   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2406   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2407   // Convert the pc to "Unix format", which has the slot number coded
2408   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2409   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2410   // information is saved in the Unix format.
2411   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2412 #else
2413   #ifdef _M_AMD64
2414   address pc = (address) exceptionInfo->ContextRecord->Rip;
2415   #else
2416   address pc = (address) exceptionInfo->ContextRecord->Eip;
2417   #endif
2418 #endif
2419   Thread* t = Thread::current_or_null_safe();
2420 
2421   // Handle SafeFetch32 and SafeFetchN exceptions.
2422   if (StubRoutines::is_safefetch_fault(pc)) {
2423     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2424   }
2425 
2426 #ifndef _WIN64
2427   // Execution protection violation - win32 running on AMD64 only
2428   // Handled first to avoid misdiagnosis as a "normal" access violation;
2429   // This is safe to do because we have a new/unique ExceptionInformation
2430   // code for this condition.
2431   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2432     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2433     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2434     address addr = (address) exceptionRecord->ExceptionInformation[1];
2435 
2436     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2437       int page_size = os::vm_page_size();
2438 
2439       // Make sure the pc and the faulting address are sane.
2440       //
2441       // If an instruction spans a page boundary, and the page containing
2442       // the beginning of the instruction is executable but the following
2443       // page is not, the pc and the faulting address might be slightly
2444       // different - we still want to unguard the 2nd page in this case.
2445       //
2446       // 15 bytes seems to be a (very) safe value for max instruction size.
2447       bool pc_is_near_addr =
2448         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2449       bool instr_spans_page_boundary =
2450         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2451                          (intptr_t) page_size) > 0);
2452 
2453       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2454         static volatile address last_addr =
2455           (address) os::non_memory_address_word();
2456 
2457         // In conservative mode, don't unguard unless the address is in the VM
2458         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2459             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2460 
2461           // Set memory to RWX and retry
2462           address page_start =
2463             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2464           bool res = os::protect_memory((char*) page_start, page_size,
2465                                         os::MEM_PROT_RWX);
2466 
2467           log_debug(os)("Execution protection violation "
2468                         "at " INTPTR_FORMAT
2469                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2470                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2471 
2472           // Set last_addr so if we fault again at the same address, we don't
2473           // end up in an endless loop.
2474           //
2475           // There are two potential complications here.  Two threads trapping
2476           // at the same address at the same time could cause one of the
2477           // threads to think it already unguarded, and abort the VM.  Likely
2478           // very rare.
2479           //
2480           // The other race involves two threads alternately trapping at
2481           // different addresses and failing to unguard the page, resulting in
2482           // an endless loop.  This condition is probably even more unlikely
2483           // than the first.
2484           //
2485           // Although both cases could be avoided by using locks or thread
2486           // local last_addr, these solutions are unnecessary complication:
2487           // this handler is a best-effort safety net, not a complete solution.
2488           // It is disabled by default and should only be used as a workaround
2489           // in case we missed any no-execute-unsafe VM code.
2490 
2491           last_addr = addr;
2492 
2493           return EXCEPTION_CONTINUE_EXECUTION;
2494         }
2495       }
2496 
2497       // Last unguard failed or not unguarding
2498       tty->print_raw_cr("Execution protection violation");
2499       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2500                    exceptionInfo->ContextRecord);
2501       return EXCEPTION_CONTINUE_SEARCH;
2502     }
2503   }
2504 #endif // _WIN64
2505 
2506   // Check to see if we caught the safepoint code in the
2507   // process of write protecting the memory serialization page.
2508   // It write enables the page immediately after protecting it
2509   // so just return.
2510   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2511     JavaThread* thread = (JavaThread*) t;
2512     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2513     address addr = (address) exceptionRecord->ExceptionInformation[1];
2514     if (os::is_memory_serialize_page(thread, addr)) {
2515       // Block current thread until the memory serialize page permission restored.
2516       os::block_on_serialize_page_trap();
2517       return EXCEPTION_CONTINUE_EXECUTION;
2518     }
2519   }
2520 
2521   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2522       VM_Version::is_cpuinfo_segv_addr(pc)) {
2523     // Verify that OS save/restore AVX registers.
2524     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2525   }
2526 
2527   if (t != NULL && t->is_Java_thread()) {
2528     JavaThread* thread = (JavaThread*) t;
2529     bool in_java = thread->thread_state() == _thread_in_Java;
2530 
2531     // Handle potential stack overflows up front.
2532     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2533 #ifdef _M_IA64
2534       // Use guard page for register stack.
2535       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2536       address addr = (address) exceptionRecord->ExceptionInformation[1];
2537       // Check for a register stack overflow on Itanium
2538       if (thread->addr_inside_register_stack_red_zone(addr)) {
2539         // Fatal red zone violation happens if the Java program
2540         // catches a StackOverflow error and does so much processing
2541         // that it runs beyond the unprotected yellow guard zone. As
2542         // a result, we are out of here.
2543         fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2544       } else if(thread->addr_inside_register_stack(addr)) {
2545         // Disable the yellow zone which sets the state that
2546         // we've got a stack overflow problem.
2547         if (thread->stack_yellow_reserved_zone_enabled()) {
2548           thread->disable_stack_yellow_reserved_zone();
2549         }
2550         // Give us some room to process the exception.
2551         thread->disable_register_stack_guard();
2552         // Tracing with +Verbose.
2553         if (Verbose) {
2554           tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2555           tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2556           tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2557           tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2558                         thread->register_stack_base(),
2559                         thread->register_stack_base() + thread->stack_size());
2560         }
2561 
2562         // Reguard the permanent register stack red zone just to be sure.
2563         // We saw Windows silently disabling this without telling us.
2564         thread->enable_register_stack_red_zone();
2565 
2566         return Handle_Exception(exceptionInfo,
2567                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2568       }
2569 #endif
2570       if (thread->stack_guards_enabled()) {
2571         if (_thread_in_Java) {
2572           frame fr;
2573           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2574           address addr = (address) exceptionRecord->ExceptionInformation[1];
2575           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2576             assert(fr.is_java_frame(), "Must be a Java frame");
2577             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2578           }
2579         }
2580         // Yellow zone violation.  The o/s has unprotected the first yellow
2581         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2582         // update the enabled status, even if the zone contains only one page.
2583         thread->disable_stack_yellow_reserved_zone();
2584         // If not in java code, return and hope for the best.
2585         return in_java
2586             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2587             :  EXCEPTION_CONTINUE_EXECUTION;
2588       } else {
2589         // Fatal red zone violation.
2590         thread->disable_stack_red_zone();
2591         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2592         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2593                       exceptionInfo->ContextRecord);
2594         return EXCEPTION_CONTINUE_SEARCH;
2595       }
2596     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2597       // Either stack overflow or null pointer exception.
2598       if (in_java) {
2599         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2600         address addr = (address) exceptionRecord->ExceptionInformation[1];
2601         address stack_end = thread->stack_end();
2602         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2603           // Stack overflow.
2604           assert(!os::uses_stack_guard_pages(),
2605                  "should be caught by red zone code above.");
2606           return Handle_Exception(exceptionInfo,
2607                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2608         }
2609         // Check for safepoint polling and implicit null
2610         // We only expect null pointers in the stubs (vtable)
2611         // the rest are checked explicitly now.
2612         CodeBlob* cb = CodeCache::find_blob(pc);
2613         if (cb != NULL) {
2614           if (os::is_poll_address(addr)) {
2615             address stub = SharedRuntime::get_poll_stub(pc);
2616             return Handle_Exception(exceptionInfo, stub);
2617           }
2618         }
2619         {
2620 #ifdef _WIN64
2621           // If it's a legal stack address map the entire region in
2622           //
2623           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2624           address addr = (address) exceptionRecord->ExceptionInformation[1];
2625           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2626             addr = (address)((uintptr_t)addr &
2627                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2628             os::commit_memory((char *)addr, thread->stack_base() - addr,
2629                               !ExecMem);
2630             return EXCEPTION_CONTINUE_EXECUTION;
2631           } else
2632 #endif
2633           {
2634             // Null pointer exception.
2635 #ifdef _M_IA64
2636             // Process implicit null checks in compiled code. Note: Implicit null checks
2637             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2638             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2639               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2640               // Handle implicit null check in UEP method entry
2641               if (cb && (cb->is_frame_complete_at(pc) ||
2642                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2643                 if (Verbose) {
2644                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2645                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2646                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2647                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2648                                 *(bundle_start + 1), *bundle_start);
2649                 }
2650                 return Handle_Exception(exceptionInfo,
2651                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2652               }
2653             }
2654 
2655             // Implicit null checks were processed above.  Hence, we should not reach
2656             // here in the usual case => die!
2657             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2658             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2659                          exceptionInfo->ContextRecord);
2660             return EXCEPTION_CONTINUE_SEARCH;
2661 
2662 #else // !IA64
2663 
2664             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
2665               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2666               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2667             }
2668             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2669                          exceptionInfo->ContextRecord);
2670             return EXCEPTION_CONTINUE_SEARCH;
2671 #endif
2672           }
2673         }
2674       }
2675 
2676 #ifdef _WIN64
2677       // Special care for fast JNI field accessors.
2678       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2679       // in and the heap gets shrunk before the field access.
2680       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2681         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2682         if (addr != (address)-1) {
2683           return Handle_Exception(exceptionInfo, addr);
2684         }
2685       }
2686 #endif
2687 
2688       // Stack overflow or null pointer exception in native code.
2689       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2690                    exceptionInfo->ContextRecord);
2691       return EXCEPTION_CONTINUE_SEARCH;
2692     } // /EXCEPTION_ACCESS_VIOLATION
2693     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2694 #if defined _M_IA64
2695     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2696               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2697       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2698 
2699       // Compiled method patched to be non entrant? Following conditions must apply:
2700       // 1. must be first instruction in bundle
2701       // 2. must be a break instruction with appropriate code
2702       if ((((uint64_t) pc & 0x0F) == 0) &&
2703           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2704         return Handle_Exception(exceptionInfo,
2705                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2706       }
2707     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2708 #endif
2709 
2710 
2711     if (in_java) {
2712       switch (exception_code) {
2713       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2714         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2715 
2716       case EXCEPTION_INT_OVERFLOW:
2717         return Handle_IDiv_Exception(exceptionInfo);
2718 
2719       } // switch
2720     }
2721     if (((thread->thread_state() == _thread_in_Java) ||
2722          (thread->thread_state() == _thread_in_native)) &&
2723          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2724       LONG result=Handle_FLT_Exception(exceptionInfo);
2725       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2726     }
2727   }
2728 
2729   if (exception_code != EXCEPTION_BREAKPOINT) {
2730     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2731                  exceptionInfo->ContextRecord);
2732   }
2733   return EXCEPTION_CONTINUE_SEARCH;
2734 }
2735 
2736 #ifndef _WIN64
2737 // Special care for fast JNI accessors.
2738 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2739 // the heap gets shrunk before the field access.
2740 // Need to install our own structured exception handler since native code may
2741 // install its own.
2742 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2743   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2744   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2745     address pc = (address) exceptionInfo->ContextRecord->Eip;
2746     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2747     if (addr != (address)-1) {
2748       return Handle_Exception(exceptionInfo, addr);
2749     }
2750   }
2751   return EXCEPTION_CONTINUE_SEARCH;
2752 }
2753 
2754 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2755   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2756                                                      jobject obj,           \
2757                                                      jfieldID fieldID) {    \
2758     __try {                                                                 \
2759       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2760                                                                  obj,       \
2761                                                                  fieldID);  \
2762     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2763                                               _exception_info())) {         \
2764     }                                                                       \
2765     return 0;                                                               \
2766   }
2767 
2768 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2769 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2770 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2771 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2772 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2773 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2774 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2775 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2776 
2777 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2778   switch (type) {
2779   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2780   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2781   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2782   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2783   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2784   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2785   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2786   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2787   default:        ShouldNotReachHere();
2788   }
2789   return (address)-1;
2790 }
2791 #endif
2792 
2793 // Virtual Memory
2794 
2795 int os::vm_page_size() { return os::win32::vm_page_size(); }
2796 int os::vm_allocation_granularity() {
2797   return os::win32::vm_allocation_granularity();
2798 }
2799 
2800 // Windows large page support is available on Windows 2003. In order to use
2801 // large page memory, the administrator must first assign additional privilege
2802 // to the user:
2803 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2804 //   + select Local Policies -> User Rights Assignment
2805 //   + double click "Lock pages in memory", add users and/or groups
2806 //   + reboot
2807 // Note the above steps are needed for administrator as well, as administrators
2808 // by default do not have the privilege to lock pages in memory.
2809 //
2810 // Note about Windows 2003: although the API supports committing large page
2811 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2812 // scenario, I found through experiment it only uses large page if the entire
2813 // memory region is reserved and committed in a single VirtualAlloc() call.
2814 // This makes Windows large page support more or less like Solaris ISM, in
2815 // that the entire heap must be committed upfront. This probably will change
2816 // in the future, if so the code below needs to be revisited.
2817 
2818 #ifndef MEM_LARGE_PAGES
2819   #define MEM_LARGE_PAGES 0x20000000
2820 #endif
2821 
2822 static HANDLE    _hProcess;
2823 static HANDLE    _hToken;
2824 
2825 // Container for NUMA node list info
2826 class NUMANodeListHolder {
2827  private:
2828   int *_numa_used_node_list;  // allocated below
2829   int _numa_used_node_count;
2830 
2831   void free_node_list() {
2832     if (_numa_used_node_list != NULL) {
2833       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2834     }
2835   }
2836 
2837  public:
2838   NUMANodeListHolder() {
2839     _numa_used_node_count = 0;
2840     _numa_used_node_list = NULL;
2841     // do rest of initialization in build routine (after function pointers are set up)
2842   }
2843 
2844   ~NUMANodeListHolder() {
2845     free_node_list();
2846   }
2847 
2848   bool build() {
2849     DWORD_PTR proc_aff_mask;
2850     DWORD_PTR sys_aff_mask;
2851     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2852     ULONG highest_node_number;
2853     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2854     free_node_list();
2855     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2856     for (unsigned int i = 0; i <= highest_node_number; i++) {
2857       ULONGLONG proc_mask_numa_node;
2858       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2859       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2860         _numa_used_node_list[_numa_used_node_count++] = i;
2861       }
2862     }
2863     return (_numa_used_node_count > 1);
2864   }
2865 
2866   int get_count() { return _numa_used_node_count; }
2867   int get_node_list_entry(int n) {
2868     // for indexes out of range, returns -1
2869     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2870   }
2871 
2872 } numa_node_list_holder;
2873 
2874 
2875 
2876 static size_t _large_page_size = 0;
2877 
2878 static bool request_lock_memory_privilege() {
2879   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2880                           os::current_process_id());
2881 
2882   LUID luid;
2883   if (_hProcess != NULL &&
2884       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2885       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2886 
2887     TOKEN_PRIVILEGES tp;
2888     tp.PrivilegeCount = 1;
2889     tp.Privileges[0].Luid = luid;
2890     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2891 
2892     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2893     // privilege. Check GetLastError() too. See MSDN document.
2894     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2895         (GetLastError() == ERROR_SUCCESS)) {
2896       return true;
2897     }
2898   }
2899 
2900   return false;
2901 }
2902 
2903 static void cleanup_after_large_page_init() {
2904   if (_hProcess) CloseHandle(_hProcess);
2905   _hProcess = NULL;
2906   if (_hToken) CloseHandle(_hToken);
2907   _hToken = NULL;
2908 }
2909 
2910 static bool numa_interleaving_init() {
2911   bool success = false;
2912   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2913 
2914   // print a warning if UseNUMAInterleaving flag is specified on command line
2915   bool warn_on_failure = use_numa_interleaving_specified;
2916 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2917 
2918   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2919   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2920   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2921 
2922   if (numa_node_list_holder.build()) {
2923     if (log_is_enabled(Debug, os, cpu)) {
2924       Log(os, cpu) log;
2925       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2926       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2927         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2928       }
2929     }
2930     success = true;
2931   } else {
2932     WARN("Process does not cover multiple NUMA nodes.");
2933   }
2934   if (!success) {
2935     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2936   }
2937   return success;
2938 #undef WARN
2939 }
2940 
2941 // this routine is used whenever we need to reserve a contiguous VA range
2942 // but we need to make separate VirtualAlloc calls for each piece of the range
2943 // Reasons for doing this:
2944 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2945 //  * UseNUMAInterleaving requires a separate node for each piece
2946 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2947                                          DWORD prot,
2948                                          bool should_inject_error = false) {
2949   char * p_buf;
2950   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2951   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2952   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2953 
2954   // first reserve enough address space in advance since we want to be
2955   // able to break a single contiguous virtual address range into multiple
2956   // large page commits but WS2003 does not allow reserving large page space
2957   // so we just use 4K pages for reserve, this gives us a legal contiguous
2958   // address space. then we will deallocate that reservation, and re alloc
2959   // using large pages
2960   const size_t size_of_reserve = bytes + chunk_size;
2961   if (bytes > size_of_reserve) {
2962     // Overflowed.
2963     return NULL;
2964   }
2965   p_buf = (char *) VirtualAlloc(addr,
2966                                 size_of_reserve,  // size of Reserve
2967                                 MEM_RESERVE,
2968                                 PAGE_READWRITE);
2969   // If reservation failed, return NULL
2970   if (p_buf == NULL) return NULL;
2971   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2972   os::release_memory(p_buf, bytes + chunk_size);
2973 
2974   // we still need to round up to a page boundary (in case we are using large pages)
2975   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2976   // instead we handle this in the bytes_to_rq computation below
2977   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2978 
2979   // now go through and allocate one chunk at a time until all bytes are
2980   // allocated
2981   size_t  bytes_remaining = bytes;
2982   // An overflow of align_size_up() would have been caught above
2983   // in the calculation of size_of_reserve.
2984   char * next_alloc_addr = p_buf;
2985   HANDLE hProc = GetCurrentProcess();
2986 
2987 #ifdef ASSERT
2988   // Variable for the failure injection
2989   long ran_num = os::random();
2990   size_t fail_after = ran_num % bytes;
2991 #endif
2992 
2993   int count=0;
2994   while (bytes_remaining) {
2995     // select bytes_to_rq to get to the next chunk_size boundary
2996 
2997     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2998     // Note allocate and commit
2999     char * p_new;
3000 
3001 #ifdef ASSERT
3002     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
3003 #else
3004     const bool inject_error_now = false;
3005 #endif
3006 
3007     if (inject_error_now) {
3008       p_new = NULL;
3009     } else {
3010       if (!UseNUMAInterleaving) {
3011         p_new = (char *) VirtualAlloc(next_alloc_addr,
3012                                       bytes_to_rq,
3013                                       flags,
3014                                       prot);
3015       } else {
3016         // get the next node to use from the used_node_list
3017         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3018         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3019         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
3020       }
3021     }
3022 
3023     if (p_new == NULL) {
3024       // Free any allocated pages
3025       if (next_alloc_addr > p_buf) {
3026         // Some memory was committed so release it.
3027         size_t bytes_to_release = bytes - bytes_remaining;
3028         // NMT has yet to record any individual blocks, so it
3029         // need to create a dummy 'reserve' record to match
3030         // the release.
3031         MemTracker::record_virtual_memory_reserve((address)p_buf,
3032                                                   bytes_to_release, CALLER_PC);
3033         os::release_memory(p_buf, bytes_to_release);
3034       }
3035 #ifdef ASSERT
3036       if (should_inject_error) {
3037         log_develop_debug(pagesize)("Reserving pages individually failed.");
3038       }
3039 #endif
3040       return NULL;
3041     }
3042 
3043     bytes_remaining -= bytes_to_rq;
3044     next_alloc_addr += bytes_to_rq;
3045     count++;
3046   }
3047   // Although the memory is allocated individually, it is returned as one.
3048   // NMT records it as one block.
3049   if ((flags & MEM_COMMIT) != 0) {
3050     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3051   } else {
3052     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3053   }
3054 
3055   // made it this far, success
3056   return p_buf;
3057 }
3058 
3059 
3060 
3061 void os::large_page_init() {
3062   if (!UseLargePages) return;
3063 
3064   // print a warning if any large page related flag is specified on command line
3065   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3066                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3067   bool success = false;
3068 
3069 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3070   if (request_lock_memory_privilege()) {
3071     size_t s = GetLargePageMinimum();
3072     if (s) {
3073 #if defined(IA32) || defined(AMD64)
3074       if (s > 4*M || LargePageSizeInBytes > 4*M) {
3075         WARN("JVM cannot use large pages bigger than 4mb.");
3076       } else {
3077 #endif
3078         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3079           _large_page_size = LargePageSizeInBytes;
3080         } else {
3081           _large_page_size = s;
3082         }
3083         success = true;
3084 #if defined(IA32) || defined(AMD64)
3085       }
3086 #endif
3087     } else {
3088       WARN("Large page is not supported by the processor.");
3089     }
3090   } else {
3091     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3092   }
3093 #undef WARN
3094 
3095   const size_t default_page_size = (size_t) vm_page_size();
3096   if (success && _large_page_size > default_page_size) {
3097     _page_sizes[0] = _large_page_size;
3098     _page_sizes[1] = default_page_size;
3099     _page_sizes[2] = 0;
3100   }
3101 
3102   cleanup_after_large_page_init();
3103   UseLargePages = success;
3104 }
3105 
3106 // Helper function to create a temp file in the given directory
3107 int os::create_tmpfile(const char* dir, size_t size, bool exec) {
3108 
3109   char name_template[] = "/jvmheap.XXXXXX";
3110 
3111   char *fullname = (char*)alloca(strlen(dir) + sizeof(name_template));
3112   (void)strcpy(fullname, dir);
3113   (void)strcat(fullname, name_template);
3114   os::native_path(fullname);
3115 
3116   char *path = _mktemp(fullname);
3117   if (path == NULL)
3118     return -1;
3119 
3120   int fd = _open(path, O_RDWR | O_CREAT | O_EXCL, S_IWRITE | S_IREAD);
3121 
3122   if (fd < 0) {
3123     warning("Could not create file for heap");
3124     return -1;
3125   }
3126 
3127   // delete the name from the filesystem. When 'fd' is closed, the file (and space) will be deleted
3128   _unlink(fullname);
3129 
3130   // allocate space for the file
3131   if (_chsize(fd, (long)size) != 0) {
3132     warning("Could not allocate sufficient disk space for heap");
3133     return -1;
3134   }
3135 
3136   return fd;
3137 }
3138 
3139 // Map the given address range to a temporary file created at the specified directory.
3140 // The address range must already be reserved for guaranteed success. If it not reserved, their could be an error while mapping leading to JVM shutdown
3141 bool os::map_memory_to_file(char* base, size_t size, const char* backingFileDir) {
3142 
3143   int fd = os::create_tmpfile(backingFileDir, size, false);
3144   if (fd == -1) {
3145     vm_exit_during_initialization(err_msg("Could not create temporary file in %s for object heap", backingFileDir));
3146     return false;
3147   }
3148 
3149   HANDLE fh = (HANDLE)_get_osfhandle(fd);
3150   HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
3151                                          (DWORD)(size >> 32), (DWORD)(size & 0xFFFFFFFF), NULL);
3152   if (fileMapping == NULL)
3153     return false;
3154 
3155   // release the memory address range and map again at the same address 
3156   pd_release_memory(base, size);
3157   LPVOID addr = MapViewOfFileEx(fileMapping, FILE_MAP_WRITE, 0, 0, size, base);
3158 
3159   if (addr == NULL || addr != base) {
3160     CloseHandle(fileMapping);
3161     return false;
3162   }
3163 
3164   return true;
3165 }
3166 
3167 // On win32, one cannot release just a part of reserved memory, it's an
3168 // all or nothing deal.  When we split a reservation, we must break the
3169 // reservation into two reservations.
3170 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3171                                   bool realloc) {
3172   if (size > 0) {
3173     release_memory(base, size);
3174     if (realloc) {
3175       reserve_memory(split, base);
3176     }
3177     if (size != split) {
3178       reserve_memory(size - split, base + split);
3179     }
3180   }
3181 }
3182 
3183 // Multiple threads can race in this code but it's not possible to unmap small sections of
3184 // virtual space to get requested alignment, like posix-like os's.
3185 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3186 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3187   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3188          "Alignment must be a multiple of allocation granularity (page size)");
3189   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3190 
3191   size_t extra_size = size + alignment;
3192   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3193 
3194   char* aligned_base = NULL;
3195 
3196   do {
3197     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3198     if (extra_base == NULL) {
3199       return NULL;
3200     }
3201     // Do manual alignment
3202     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3203 
3204     os::release_memory(extra_base, extra_size);
3205 
3206     aligned_base = os::reserve_memory(size, aligned_base);
3207 
3208   } while (aligned_base == NULL);
3209 
3210   return aligned_base;
3211 }
3212 
3213 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3214   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3215          "reserve alignment");
3216   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3217   char* res;
3218   // note that if UseLargePages is on, all the areas that require interleaving
3219   // will go thru reserve_memory_special rather than thru here.
3220   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3221   if (!use_individual) {
3222     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3223   } else {
3224     elapsedTimer reserveTimer;
3225     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3226     // in numa interleaving, we have to allocate pages individually
3227     // (well really chunks of NUMAInterleaveGranularity size)
3228     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3229     if (res == NULL) {
3230       warning("NUMA page allocation failed");
3231     }
3232     if (Verbose && PrintMiscellaneous) {
3233       reserveTimer.stop();
3234       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3235                     reserveTimer.milliseconds(), reserveTimer.ticks());
3236     }
3237   }
3238   assert(res == NULL || addr == NULL || addr == res,
3239          "Unexpected address from reserve.");
3240 
3241   return res;
3242 }
3243 
3244 // Reserve memory at an arbitrary address, only if that area is
3245 // available (and not reserved for something else).
3246 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3247   // Windows os::reserve_memory() fails of the requested address range is
3248   // not avilable.
3249   return reserve_memory(bytes, requested_addr);
3250 }
3251 
3252 size_t os::large_page_size() {
3253   return _large_page_size;
3254 }
3255 
3256 bool os::can_commit_large_page_memory() {
3257   // Windows only uses large page memory when the entire region is reserved
3258   // and committed in a single VirtualAlloc() call. This may change in the
3259   // future, but with Windows 2003 it's not possible to commit on demand.
3260   return false;
3261 }
3262 
3263 bool os::can_execute_large_page_memory() {
3264   return true;
3265 }
3266 
3267 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3268                                  bool exec) {
3269   assert(UseLargePages, "only for large pages");
3270 
3271   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3272     return NULL; // Fallback to small pages.
3273   }
3274 
3275   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3276   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3277 
3278   // with large pages, there are two cases where we need to use Individual Allocation
3279   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3280   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3281   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3282     log_debug(pagesize)("Reserving large pages individually.");
3283 
3284     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3285     if (p_buf == NULL) {
3286       // give an appropriate warning message
3287       if (UseNUMAInterleaving) {
3288         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3289       }
3290       if (UseLargePagesIndividualAllocation) {
3291         warning("Individually allocated large pages failed, "
3292                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3293       }
3294       return NULL;
3295     }
3296 
3297     return p_buf;
3298 
3299   } else {
3300     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3301 
3302     // normal policy just allocate it all at once
3303     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3304     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3305     if (res != NULL) {
3306       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3307     }
3308 
3309     return res;
3310   }
3311 }
3312 
3313 bool os::release_memory_special(char* base, size_t bytes) {
3314   assert(base != NULL, "Sanity check");
3315   return release_memory(base, bytes);
3316 }
3317 
3318 void os::print_statistics() {
3319 }
3320 
3321 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3322   int err = os::get_last_error();
3323   char buf[256];
3324   size_t buf_len = os::lasterror(buf, sizeof(buf));
3325   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3326           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3327           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3328 }
3329 
3330 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3331   if (bytes == 0) {
3332     // Don't bother the OS with noops.
3333     return true;
3334   }
3335   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3336   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3337   // Don't attempt to print anything if the OS call fails. We're
3338   // probably low on resources, so the print itself may cause crashes.
3339 
3340   // unless we have NUMAInterleaving enabled, the range of a commit
3341   // is always within a reserve covered by a single VirtualAlloc
3342   // in that case we can just do a single commit for the requested size
3343   if (!UseNUMAInterleaving) {
3344     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3345       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3346       return false;
3347     }
3348     if (exec) {
3349       DWORD oldprot;
3350       // Windows doc says to use VirtualProtect to get execute permissions
3351       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3352         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3353         return false;
3354       }
3355     }
3356     return true;
3357   } else {
3358 
3359     // when NUMAInterleaving is enabled, the commit might cover a range that
3360     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3361     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3362     // returns represents the number of bytes that can be committed in one step.
3363     size_t bytes_remaining = bytes;
3364     char * next_alloc_addr = addr;
3365     while (bytes_remaining > 0) {
3366       MEMORY_BASIC_INFORMATION alloc_info;
3367       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3368       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3369       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3370                        PAGE_READWRITE) == NULL) {
3371         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3372                                             exec);)
3373         return false;
3374       }
3375       if (exec) {
3376         DWORD oldprot;
3377         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3378                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3379           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3380                                               exec);)
3381           return false;
3382         }
3383       }
3384       bytes_remaining -= bytes_to_rq;
3385       next_alloc_addr += bytes_to_rq;
3386     }
3387   }
3388   // if we made it this far, return true
3389   return true;
3390 }
3391 
3392 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3393                           bool exec) {
3394   // alignment_hint is ignored on this OS
3395   return pd_commit_memory(addr, size, exec);
3396 }
3397 
3398 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3399                                   const char* mesg) {
3400   assert(mesg != NULL, "mesg must be specified");
3401   if (!pd_commit_memory(addr, size, exec)) {
3402     warn_fail_commit_memory(addr, size, exec);
3403     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3404   }
3405 }
3406 
3407 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3408                                   size_t alignment_hint, bool exec,
3409                                   const char* mesg) {
3410   // alignment_hint is ignored on this OS
3411   pd_commit_memory_or_exit(addr, size, exec, mesg);
3412 }
3413 
3414 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3415   if (bytes == 0) {
3416     // Don't bother the OS with noops.
3417     return true;
3418   }
3419   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3420   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3421   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3422 }
3423 
3424 bool os::pd_release_memory(char* addr, size_t bytes) {
3425   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3426 }
3427 
3428 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3429   return os::commit_memory(addr, size, !ExecMem);
3430 }
3431 
3432 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3433   return os::uncommit_memory(addr, size);
3434 }
3435 
3436 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3437   uint count = 0;
3438   bool ret = false;
3439   size_t bytes_remaining = bytes;
3440   char * next_protect_addr = addr;
3441 
3442   // Use VirtualQuery() to get the chunk size.
3443   while (bytes_remaining) {
3444     MEMORY_BASIC_INFORMATION alloc_info;
3445     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3446       return false;
3447     }
3448 
3449     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3450     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3451     // but we don't distinguish here as both cases are protected by same API.
3452     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3453     warning("Failed protecting pages individually for chunk #%u", count);
3454     if (!ret) {
3455       return false;
3456     }
3457 
3458     bytes_remaining -= bytes_to_protect;
3459     next_protect_addr += bytes_to_protect;
3460     count++;
3461   }
3462   return ret;
3463 }
3464 
3465 // Set protections specified
3466 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3467                         bool is_committed) {
3468   unsigned int p = 0;
3469   switch (prot) {
3470   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3471   case MEM_PROT_READ: p = PAGE_READONLY; break;
3472   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3473   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3474   default:
3475     ShouldNotReachHere();
3476   }
3477 
3478   DWORD old_status;
3479 
3480   // Strange enough, but on Win32 one can change protection only for committed
3481   // memory, not a big deal anyway, as bytes less or equal than 64K
3482   if (!is_committed) {
3483     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3484                           "cannot commit protection page");
3485   }
3486   // One cannot use os::guard_memory() here, as on Win32 guard page
3487   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3488   //
3489   // Pages in the region become guard pages. Any attempt to access a guard page
3490   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3491   // the guard page status. Guard pages thus act as a one-time access alarm.
3492   bool ret;
3493   if (UseNUMAInterleaving) {
3494     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3495     // so we must protect the chunks individually.
3496     ret = protect_pages_individually(addr, bytes, p, &old_status);
3497   } else {
3498     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3499   }
3500 #ifdef ASSERT
3501   if (!ret) {
3502     int err = os::get_last_error();
3503     char buf[256];
3504     size_t buf_len = os::lasterror(buf, sizeof(buf));
3505     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3506           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3507           buf_len != 0 ? buf : "<no_error_string>", err);
3508   }
3509 #endif
3510   return ret;
3511 }
3512 
3513 bool os::guard_memory(char* addr, size_t bytes) {
3514   DWORD old_status;
3515   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3516 }
3517 
3518 bool os::unguard_memory(char* addr, size_t bytes) {
3519   DWORD old_status;
3520   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3521 }
3522 
3523 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3524 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3525 void os::numa_make_global(char *addr, size_t bytes)    { }
3526 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3527 bool os::numa_topology_changed()                       { return false; }
3528 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3529 int os::numa_get_group_id()                            { return 0; }
3530 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3531   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3532     // Provide an answer for UMA systems
3533     ids[0] = 0;
3534     return 1;
3535   } else {
3536     // check for size bigger than actual groups_num
3537     size = MIN2(size, numa_get_groups_num());
3538     for (int i = 0; i < (int)size; i++) {
3539       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3540     }
3541     return size;
3542   }
3543 }
3544 
3545 bool os::get_page_info(char *start, page_info* info) {
3546   return false;
3547 }
3548 
3549 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3550                      page_info* page_found) {
3551   return end;
3552 }
3553 
3554 char* os::non_memory_address_word() {
3555   // Must never look like an address returned by reserve_memory,
3556   // even in its subfields (as defined by the CPU immediate fields,
3557   // if the CPU splits constants across multiple instructions).
3558   return (char*)-1;
3559 }
3560 
3561 #define MAX_ERROR_COUNT 100
3562 #define SYS_THREAD_ERROR 0xffffffffUL
3563 
3564 void os::pd_start_thread(Thread* thread) {
3565   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3566   // Returns previous suspend state:
3567   // 0:  Thread was not suspended
3568   // 1:  Thread is running now
3569   // >1: Thread is still suspended.
3570   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3571 }
3572 
3573 class HighResolutionInterval : public CHeapObj<mtThread> {
3574   // The default timer resolution seems to be 10 milliseconds.
3575   // (Where is this written down?)
3576   // If someone wants to sleep for only a fraction of the default,
3577   // then we set the timer resolution down to 1 millisecond for
3578   // the duration of their interval.
3579   // We carefully set the resolution back, since otherwise we
3580   // seem to incur an overhead (3%?) that we don't need.
3581   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3582   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3583   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3584   // timeBeginPeriod() if the relative error exceeded some threshold.
3585   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3586   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3587   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3588   // resolution timers running.
3589  private:
3590   jlong resolution;
3591  public:
3592   HighResolutionInterval(jlong ms) {
3593     resolution = ms % 10L;
3594     if (resolution != 0) {
3595       MMRESULT result = timeBeginPeriod(1L);
3596     }
3597   }
3598   ~HighResolutionInterval() {
3599     if (resolution != 0) {
3600       MMRESULT result = timeEndPeriod(1L);
3601     }
3602     resolution = 0L;
3603   }
3604 };
3605 
3606 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3607   jlong limit = (jlong) MAXDWORD;
3608 
3609   while (ms > limit) {
3610     int res;
3611     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3612       return res;
3613     }
3614     ms -= limit;
3615   }
3616 
3617   assert(thread == Thread::current(), "thread consistency check");
3618   OSThread* osthread = thread->osthread();
3619   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3620   int result;
3621   if (interruptable) {
3622     assert(thread->is_Java_thread(), "must be java thread");
3623     JavaThread *jt = (JavaThread *) thread;
3624     ThreadBlockInVM tbivm(jt);
3625 
3626     jt->set_suspend_equivalent();
3627     // cleared by handle_special_suspend_equivalent_condition() or
3628     // java_suspend_self() via check_and_wait_while_suspended()
3629 
3630     HANDLE events[1];
3631     events[0] = osthread->interrupt_event();
3632     HighResolutionInterval *phri=NULL;
3633     if (!ForceTimeHighResolution) {
3634       phri = new HighResolutionInterval(ms);
3635     }
3636     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3637       result = OS_TIMEOUT;
3638     } else {
3639       ResetEvent(osthread->interrupt_event());
3640       osthread->set_interrupted(false);
3641       result = OS_INTRPT;
3642     }
3643     delete phri; //if it is NULL, harmless
3644 
3645     // were we externally suspended while we were waiting?
3646     jt->check_and_wait_while_suspended();
3647   } else {
3648     assert(!thread->is_Java_thread(), "must not be java thread");
3649     Sleep((long) ms);
3650     result = OS_TIMEOUT;
3651   }
3652   return result;
3653 }
3654 
3655 // Short sleep, direct OS call.
3656 //
3657 // ms = 0, means allow others (if any) to run.
3658 //
3659 void os::naked_short_sleep(jlong ms) {
3660   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3661   Sleep(ms);
3662 }
3663 
3664 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3665 void os::infinite_sleep() {
3666   while (true) {    // sleep forever ...
3667     Sleep(100000);  // ... 100 seconds at a time
3668   }
3669 }
3670 
3671 typedef BOOL (WINAPI * STTSignature)(void);
3672 
3673 void os::naked_yield() {
3674   // Consider passing back the return value from SwitchToThread().
3675   SwitchToThread();
3676 }
3677 
3678 // Win32 only gives you access to seven real priorities at a time,
3679 // so we compress Java's ten down to seven.  It would be better
3680 // if we dynamically adjusted relative priorities.
3681 
3682 int os::java_to_os_priority[CriticalPriority + 1] = {
3683   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3684   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3685   THREAD_PRIORITY_LOWEST,                       // 2
3686   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3687   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3688   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3689   THREAD_PRIORITY_NORMAL,                       // 6
3690   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3691   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3692   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3693   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3694   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3695 };
3696 
3697 int prio_policy1[CriticalPriority + 1] = {
3698   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3699   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3700   THREAD_PRIORITY_LOWEST,                       // 2
3701   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3702   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3703   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3704   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3705   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3706   THREAD_PRIORITY_HIGHEST,                      // 8
3707   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3708   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3709   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3710 };
3711 
3712 static int prio_init() {
3713   // If ThreadPriorityPolicy is 1, switch tables
3714   if (ThreadPriorityPolicy == 1) {
3715     int i;
3716     for (i = 0; i < CriticalPriority + 1; i++) {
3717       os::java_to_os_priority[i] = prio_policy1[i];
3718     }
3719   }
3720   if (UseCriticalJavaThreadPriority) {
3721     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3722   }
3723   return 0;
3724 }
3725 
3726 OSReturn os::set_native_priority(Thread* thread, int priority) {
3727   if (!UseThreadPriorities) return OS_OK;
3728   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3729   return ret ? OS_OK : OS_ERR;
3730 }
3731 
3732 OSReturn os::get_native_priority(const Thread* const thread,
3733                                  int* priority_ptr) {
3734   if (!UseThreadPriorities) {
3735     *priority_ptr = java_to_os_priority[NormPriority];
3736     return OS_OK;
3737   }
3738   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3739   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3740     assert(false, "GetThreadPriority failed");
3741     return OS_ERR;
3742   }
3743   *priority_ptr = os_prio;
3744   return OS_OK;
3745 }
3746 
3747 
3748 // Hint to the underlying OS that a task switch would not be good.
3749 // Void return because it's a hint and can fail.
3750 void os::hint_no_preempt() {}
3751 
3752 void os::interrupt(Thread* thread) {
3753   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3754          Threads_lock->owned_by_self(),
3755          "possibility of dangling Thread pointer");
3756 
3757   OSThread* osthread = thread->osthread();
3758   osthread->set_interrupted(true);
3759   // More than one thread can get here with the same value of osthread,
3760   // resulting in multiple notifications.  We do, however, want the store
3761   // to interrupted() to be visible to other threads before we post
3762   // the interrupt event.
3763   OrderAccess::release();
3764   SetEvent(osthread->interrupt_event());
3765   // For JSR166:  unpark after setting status
3766   if (thread->is_Java_thread()) {
3767     ((JavaThread*)thread)->parker()->unpark();
3768   }
3769 
3770   ParkEvent * ev = thread->_ParkEvent;
3771   if (ev != NULL) ev->unpark();
3772 }
3773 
3774 
3775 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3776   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3777          "possibility of dangling Thread pointer");
3778 
3779   OSThread* osthread = thread->osthread();
3780   // There is no synchronization between the setting of the interrupt
3781   // and it being cleared here. It is critical - see 6535709 - that
3782   // we only clear the interrupt state, and reset the interrupt event,
3783   // if we are going to report that we were indeed interrupted - else
3784   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3785   // depending on the timing. By checking thread interrupt event to see
3786   // if the thread gets real interrupt thus prevent spurious wakeup.
3787   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3788   if (interrupted && clear_interrupted) {
3789     osthread->set_interrupted(false);
3790     ResetEvent(osthread->interrupt_event());
3791   } // Otherwise leave the interrupted state alone
3792 
3793   return interrupted;
3794 }
3795 
3796 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3797 ExtendedPC os::get_thread_pc(Thread* thread) {
3798   CONTEXT context;
3799   context.ContextFlags = CONTEXT_CONTROL;
3800   HANDLE handle = thread->osthread()->thread_handle();
3801 #ifdef _M_IA64
3802   assert(0, "Fix get_thread_pc");
3803   return ExtendedPC(NULL);
3804 #else
3805   if (GetThreadContext(handle, &context)) {
3806 #ifdef _M_AMD64
3807     return ExtendedPC((address) context.Rip);
3808 #else
3809     return ExtendedPC((address) context.Eip);
3810 #endif
3811   } else {
3812     return ExtendedPC(NULL);
3813   }
3814 #endif
3815 }
3816 
3817 // GetCurrentThreadId() returns DWORD
3818 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3819 
3820 static int _initial_pid = 0;
3821 
3822 int os::current_process_id() {
3823   return (_initial_pid ? _initial_pid : _getpid());
3824 }
3825 
3826 int    os::win32::_vm_page_size              = 0;
3827 int    os::win32::_vm_allocation_granularity = 0;
3828 int    os::win32::_processor_type            = 0;
3829 // Processor level is not available on non-NT systems, use vm_version instead
3830 int    os::win32::_processor_level           = 0;
3831 julong os::win32::_physical_memory           = 0;
3832 size_t os::win32::_default_stack_size        = 0;
3833 
3834 intx          os::win32::_os_thread_limit    = 0;
3835 volatile intx os::win32::_os_thread_count    = 0;
3836 
3837 bool   os::win32::_is_windows_server         = false;
3838 
3839 // 6573254
3840 // Currently, the bug is observed across all the supported Windows releases,
3841 // including the latest one (as of this writing - Windows Server 2012 R2)
3842 bool   os::win32::_has_exit_bug              = true;
3843 
3844 void os::win32::initialize_system_info() {
3845   SYSTEM_INFO si;
3846   GetSystemInfo(&si);
3847   _vm_page_size    = si.dwPageSize;
3848   _vm_allocation_granularity = si.dwAllocationGranularity;
3849   _processor_type  = si.dwProcessorType;
3850   _processor_level = si.wProcessorLevel;
3851   set_processor_count(si.dwNumberOfProcessors);
3852 
3853   MEMORYSTATUSEX ms;
3854   ms.dwLength = sizeof(ms);
3855 
3856   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3857   // dwMemoryLoad (% of memory in use)
3858   GlobalMemoryStatusEx(&ms);
3859   _physical_memory = ms.ullTotalPhys;
3860 
3861   OSVERSIONINFOEX oi;
3862   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3863   GetVersionEx((OSVERSIONINFO*)&oi);
3864   switch (oi.dwPlatformId) {
3865   case VER_PLATFORM_WIN32_NT:
3866     {
3867       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3868       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3869           oi.wProductType == VER_NT_SERVER) {
3870         _is_windows_server = true;
3871       }
3872     }
3873     break;
3874   default: fatal("Unknown platform");
3875   }
3876 
3877   _default_stack_size = os::current_stack_size();
3878   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3879   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3880          "stack size not a multiple of page size");
3881 
3882   initialize_performance_counter();
3883 }
3884 
3885 
3886 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3887                                       int ebuflen) {
3888   char path[MAX_PATH];
3889   DWORD size;
3890   DWORD pathLen = (DWORD)sizeof(path);
3891   HINSTANCE result = NULL;
3892 
3893   // only allow library name without path component
3894   assert(strchr(name, '\\') == NULL, "path not allowed");
3895   assert(strchr(name, ':') == NULL, "path not allowed");
3896   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3897     jio_snprintf(ebuf, ebuflen,
3898                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3899     return NULL;
3900   }
3901 
3902   // search system directory
3903   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3904     if (size >= pathLen) {
3905       return NULL; // truncated
3906     }
3907     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3908       return NULL; // truncated
3909     }
3910     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3911       return result;
3912     }
3913   }
3914 
3915   // try Windows directory
3916   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3917     if (size >= pathLen) {
3918       return NULL; // truncated
3919     }
3920     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3921       return NULL; // truncated
3922     }
3923     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3924       return result;
3925     }
3926   }
3927 
3928   jio_snprintf(ebuf, ebuflen,
3929                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3930   return NULL;
3931 }
3932 
3933 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3934 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3935 
3936 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3937   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3938   return TRUE;
3939 }
3940 
3941 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3942   // Basic approach:
3943   //  - Each exiting thread registers its intent to exit and then does so.
3944   //  - A thread trying to terminate the process must wait for all
3945   //    threads currently exiting to complete their exit.
3946 
3947   if (os::win32::has_exit_bug()) {
3948     // The array holds handles of the threads that have started exiting by calling
3949     // _endthreadex().
3950     // Should be large enough to avoid blocking the exiting thread due to lack of
3951     // a free slot.
3952     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3953     static int handle_count = 0;
3954 
3955     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3956     static CRITICAL_SECTION crit_sect;
3957     static volatile jint process_exiting = 0;
3958     int i, j;
3959     DWORD res;
3960     HANDLE hproc, hthr;
3961 
3962     // The first thread that reached this point, initializes the critical section.
3963     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3964       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3965     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3966       if (what != EPT_THREAD) {
3967         // Atomically set process_exiting before the critical section
3968         // to increase the visibility between racing threads.
3969         Atomic::cmpxchg((jint)GetCurrentThreadId(), &process_exiting, 0);
3970       }
3971       EnterCriticalSection(&crit_sect);
3972 
3973       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3974         // Remove from the array those handles of the threads that have completed exiting.
3975         for (i = 0, j = 0; i < handle_count; ++i) {
3976           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3977           if (res == WAIT_TIMEOUT) {
3978             handles[j++] = handles[i];
3979           } else {
3980             if (res == WAIT_FAILED) {
3981               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3982                       GetLastError(), __FILE__, __LINE__);
3983             }
3984             // Don't keep the handle, if we failed waiting for it.
3985             CloseHandle(handles[i]);
3986           }
3987         }
3988 
3989         // If there's no free slot in the array of the kept handles, we'll have to
3990         // wait until at least one thread completes exiting.
3991         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3992           // Raise the priority of the oldest exiting thread to increase its chances
3993           // to complete sooner.
3994           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3995           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3996           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3997             i = (res - WAIT_OBJECT_0);
3998             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3999             for (; i < handle_count; ++i) {
4000               handles[i] = handles[i + 1];
4001             }
4002           } else {
4003             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
4004                     (res == WAIT_FAILED ? "failed" : "timed out"),
4005                     GetLastError(), __FILE__, __LINE__);
4006             // Don't keep handles, if we failed waiting for them.
4007             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
4008               CloseHandle(handles[i]);
4009             }
4010             handle_count = 0;
4011           }
4012         }
4013 
4014         // Store a duplicate of the current thread handle in the array of handles.
4015         hproc = GetCurrentProcess();
4016         hthr = GetCurrentThread();
4017         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
4018                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
4019           warning("DuplicateHandle failed (%u) in %s: %d\n",
4020                   GetLastError(), __FILE__, __LINE__);
4021         } else {
4022           ++handle_count;
4023         }
4024 
4025         // The current exiting thread has stored its handle in the array, and now
4026         // should leave the critical section before calling _endthreadex().
4027 
4028       } else if (what != EPT_THREAD && handle_count > 0) {
4029         jlong start_time, finish_time, timeout_left;
4030         // Before ending the process, make sure all the threads that had called
4031         // _endthreadex() completed.
4032 
4033         // Set the priority level of the current thread to the same value as
4034         // the priority level of exiting threads.
4035         // This is to ensure it will be given a fair chance to execute if
4036         // the timeout expires.
4037         hthr = GetCurrentThread();
4038         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
4039         start_time = os::javaTimeNanos();
4040         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
4041         for (i = 0; ; ) {
4042           int portion_count = handle_count - i;
4043           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
4044             portion_count = MAXIMUM_WAIT_OBJECTS;
4045           }
4046           for (j = 0; j < portion_count; ++j) {
4047             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
4048           }
4049           timeout_left = (finish_time - start_time) / 1000000L;
4050           if (timeout_left < 0) {
4051             timeout_left = 0;
4052           }
4053           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
4054           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
4055             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
4056                     (res == WAIT_FAILED ? "failed" : "timed out"),
4057                     GetLastError(), __FILE__, __LINE__);
4058             // Reset portion_count so we close the remaining
4059             // handles due to this error.
4060             portion_count = handle_count - i;
4061           }
4062           for (j = 0; j < portion_count; ++j) {
4063             CloseHandle(handles[i + j]);
4064           }
4065           if ((i += portion_count) >= handle_count) {
4066             break;
4067           }
4068           start_time = os::javaTimeNanos();
4069         }
4070         handle_count = 0;
4071       }
4072 
4073       LeaveCriticalSection(&crit_sect);
4074     }
4075 
4076     if (OrderAccess::load_acquire(&process_exiting) != 0 &&
4077         process_exiting != (jint)GetCurrentThreadId()) {
4078       // Some other thread is about to call exit(), so we
4079       // don't let the current thread proceed to exit() or _endthreadex()
4080       while (true) {
4081         SuspendThread(GetCurrentThread());
4082         // Avoid busy-wait loop, if SuspendThread() failed.
4083         Sleep(EXIT_TIMEOUT);
4084       }
4085     }
4086   }
4087 
4088   // We are here if either
4089   // - there's no 'race at exit' bug on this OS release;
4090   // - initialization of the critical section failed (unlikely);
4091   // - the current thread has stored its handle and left the critical section;
4092   // - the process-exiting thread has raised the flag and left the critical section.
4093   if (what == EPT_THREAD) {
4094     _endthreadex((unsigned)exit_code);
4095   } else if (what == EPT_PROCESS) {
4096     ::exit(exit_code);
4097   } else {
4098     _exit(exit_code);
4099   }
4100 
4101   // Should not reach here
4102   return exit_code;
4103 }
4104 
4105 #undef EXIT_TIMEOUT
4106 
4107 void os::win32::setmode_streams() {
4108   _setmode(_fileno(stdin), _O_BINARY);
4109   _setmode(_fileno(stdout), _O_BINARY);
4110   _setmode(_fileno(stderr), _O_BINARY);
4111 }
4112 
4113 
4114 bool os::is_debugger_attached() {
4115   return IsDebuggerPresent() ? true : false;
4116 }
4117 
4118 
4119 void os::wait_for_keypress_at_exit(void) {
4120   if (PauseAtExit) {
4121     fprintf(stderr, "Press any key to continue...\n");
4122     fgetc(stdin);
4123   }
4124 }
4125 
4126 
4127 bool os::message_box(const char* title, const char* message) {
4128   int result = MessageBox(NULL, message, title,
4129                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4130   return result == IDYES;
4131 }
4132 
4133 #ifndef PRODUCT
4134 #ifndef _WIN64
4135 // Helpers to check whether NX protection is enabled
4136 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4137   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4138       pex->ExceptionRecord->NumberParameters > 0 &&
4139       pex->ExceptionRecord->ExceptionInformation[0] ==
4140       EXCEPTION_INFO_EXEC_VIOLATION) {
4141     return EXCEPTION_EXECUTE_HANDLER;
4142   }
4143   return EXCEPTION_CONTINUE_SEARCH;
4144 }
4145 
4146 void nx_check_protection() {
4147   // If NX is enabled we'll get an exception calling into code on the stack
4148   char code[] = { (char)0xC3 }; // ret
4149   void *code_ptr = (void *)code;
4150   __try {
4151     __asm call code_ptr
4152   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4153     tty->print_raw_cr("NX protection detected.");
4154   }
4155 }
4156 #endif // _WIN64
4157 #endif // PRODUCT
4158 
4159 // This is called _before_ the global arguments have been parsed
4160 void os::init(void) {
4161   _initial_pid = _getpid();
4162 
4163   init_random(1234567);
4164 
4165   win32::initialize_system_info();
4166   win32::setmode_streams();
4167   init_page_sizes((size_t) win32::vm_page_size());
4168 
4169   // This may be overridden later when argument processing is done.
4170   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
4171 
4172   // Initialize main_process and main_thread
4173   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4174   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4175                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4176     fatal("DuplicateHandle failed\n");
4177   }
4178   main_thread_id = (int) GetCurrentThreadId();
4179 
4180   // initialize fast thread access - only used for 32-bit
4181   win32::initialize_thread_ptr_offset();
4182 }
4183 
4184 // To install functions for atexit processing
4185 extern "C" {
4186   static void perfMemory_exit_helper() {
4187     perfMemory_exit();
4188   }
4189 }
4190 
4191 static jint initSock();
4192 
4193 // this is called _after_ the global arguments have been parsed
4194 jint os::init_2(void) {
4195   // Allocate a single page and mark it as readable for safepoint polling
4196   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4197   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4198 
4199   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4200   guarantee(return_page != NULL, "Commit Failed for polling page");
4201 
4202   os::set_polling_page(polling_page);
4203   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4204 
4205   if (!UseMembar) {
4206     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4207     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4208 
4209     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4210     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4211 
4212     os::set_memory_serialize_page(mem_serialize_page);
4213     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4214   }
4215 
4216   // Setup Windows Exceptions
4217 
4218   // for debugging float code generation bugs
4219   if (ForceFloatExceptions) {
4220 #ifndef  _WIN64
4221     static long fp_control_word = 0;
4222     __asm { fstcw fp_control_word }
4223     // see Intel PPro Manual, Vol. 2, p 7-16
4224     const long precision = 0x20;
4225     const long underflow = 0x10;
4226     const long overflow  = 0x08;
4227     const long zero_div  = 0x04;
4228     const long denorm    = 0x02;
4229     const long invalid   = 0x01;
4230     fp_control_word |= invalid;
4231     __asm { fldcw fp_control_word }
4232 #endif
4233   }
4234 
4235   // If stack_commit_size is 0, windows will reserve the default size,
4236   // but only commit a small portion of it.
4237   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4238   size_t default_reserve_size = os::win32::default_stack_size();
4239   size_t actual_reserve_size = stack_commit_size;
4240   if (stack_commit_size < default_reserve_size) {
4241     // If stack_commit_size == 0, we want this too
4242     actual_reserve_size = default_reserve_size;
4243   }
4244 
4245   // Check minimum allowable stack size for thread creation and to initialize
4246   // the java system classes, including StackOverflowError - depends on page
4247   // size.  Add a page for compiler2 recursion in main thread.
4248   // Add in 2*BytesPerWord times page size to account for VM stack during
4249   // class initialization depending on 32 or 64 bit VM.
4250   size_t min_stack_allowed =
4251             (size_t)(JavaThread::stack_yellow_zone_size() + JavaThread::stack_red_zone_size() +
4252                      JavaThread::stack_shadow_zone_size() +
4253                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size());
4254   if (actual_reserve_size < min_stack_allowed) {
4255     tty->print_cr("\nThe stack size specified is too small, "
4256                   "Specify at least %dk",
4257                   min_stack_allowed / K);
4258     return JNI_ERR;
4259   }
4260 
4261   JavaThread::set_stack_size_at_create(stack_commit_size);
4262 
4263   // Calculate theoretical max. size of Threads to guard gainst artifical
4264   // out-of-memory situations, where all available address-space has been
4265   // reserved by thread stacks.
4266   assert(actual_reserve_size != 0, "Must have a stack");
4267 
4268   // Calculate the thread limit when we should start doing Virtual Memory
4269   // banging. Currently when the threads will have used all but 200Mb of space.
4270   //
4271   // TODO: consider performing a similar calculation for commit size instead
4272   // as reserve size, since on a 64-bit platform we'll run into that more
4273   // often than running out of virtual memory space.  We can use the
4274   // lower value of the two calculations as the os_thread_limit.
4275   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4276   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4277 
4278   // at exit methods are called in the reverse order of their registration.
4279   // there is no limit to the number of functions registered. atexit does
4280   // not set errno.
4281 
4282   if (PerfAllowAtExitRegistration) {
4283     // only register atexit functions if PerfAllowAtExitRegistration is set.
4284     // atexit functions can be delayed until process exit time, which
4285     // can be problematic for embedded VM situations. Embedded VMs should
4286     // call DestroyJavaVM() to assure that VM resources are released.
4287 
4288     // note: perfMemory_exit_helper atexit function may be removed in
4289     // the future if the appropriate cleanup code can be added to the
4290     // VM_Exit VMOperation's doit method.
4291     if (atexit(perfMemory_exit_helper) != 0) {
4292       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4293     }
4294   }
4295 
4296 #ifndef _WIN64
4297   // Print something if NX is enabled (win32 on AMD64)
4298   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4299 #endif
4300 
4301   // initialize thread priority policy
4302   prio_init();
4303 
4304   if (UseNUMA && !ForceNUMA) {
4305     UseNUMA = false; // We don't fully support this yet
4306   }
4307 
4308   if (UseNUMAInterleaving) {
4309     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4310     bool success = numa_interleaving_init();
4311     if (!success) UseNUMAInterleaving = false;
4312   }
4313 
4314   if (initSock() != JNI_OK) {
4315     return JNI_ERR;
4316   }
4317 
4318   return JNI_OK;
4319 }
4320 
4321 // Mark the polling page as unreadable
4322 void os::make_polling_page_unreadable(void) {
4323   DWORD old_status;
4324   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4325                       PAGE_NOACCESS, &old_status)) {
4326     fatal("Could not disable polling page");
4327   }
4328 }
4329 
4330 // Mark the polling page as readable
4331 void os::make_polling_page_readable(void) {
4332   DWORD old_status;
4333   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4334                       PAGE_READONLY, &old_status)) {
4335     fatal("Could not enable polling page");
4336   }
4337 }
4338 
4339 
4340 int os::stat(const char *path, struct stat *sbuf) {
4341   char pathbuf[MAX_PATH];
4342   if (strlen(path) > MAX_PATH - 1) {
4343     errno = ENAMETOOLONG;
4344     return -1;
4345   }
4346   os::native_path(strcpy(pathbuf, path));
4347   int ret = ::stat(pathbuf, sbuf);
4348   if (sbuf != NULL && UseUTCFileTimestamp) {
4349     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4350     // the system timezone and so can return different values for the
4351     // same file if/when daylight savings time changes.  This adjustment
4352     // makes sure the same timestamp is returned regardless of the TZ.
4353     //
4354     // See:
4355     // http://msdn.microsoft.com/library/
4356     //   default.asp?url=/library/en-us/sysinfo/base/
4357     //   time_zone_information_str.asp
4358     // and
4359     // http://msdn.microsoft.com/library/default.asp?url=
4360     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4361     //
4362     // NOTE: there is a insidious bug here:  If the timezone is changed
4363     // after the call to stat() but before 'GetTimeZoneInformation()', then
4364     // the adjustment we do here will be wrong and we'll return the wrong
4365     // value (which will likely end up creating an invalid class data
4366     // archive).  Absent a better API for this, or some time zone locking
4367     // mechanism, we'll have to live with this risk.
4368     TIME_ZONE_INFORMATION tz;
4369     DWORD tzid = GetTimeZoneInformation(&tz);
4370     int daylightBias =
4371       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4372     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4373   }
4374   return ret;
4375 }
4376 
4377 
4378 #define FT2INT64(ft) \
4379   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4380 
4381 
4382 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4383 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4384 // of a thread.
4385 //
4386 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4387 // the fast estimate available on the platform.
4388 
4389 // current_thread_cpu_time() is not optimized for Windows yet
4390 jlong os::current_thread_cpu_time() {
4391   // return user + sys since the cost is the same
4392   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4393 }
4394 
4395 jlong os::thread_cpu_time(Thread* thread) {
4396   // consistent with what current_thread_cpu_time() returns.
4397   return os::thread_cpu_time(thread, true /* user+sys */);
4398 }
4399 
4400 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4401   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4402 }
4403 
4404 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4405   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4406   // If this function changes, os::is_thread_cpu_time_supported() should too
4407   FILETIME CreationTime;
4408   FILETIME ExitTime;
4409   FILETIME KernelTime;
4410   FILETIME UserTime;
4411 
4412   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4413                       &ExitTime, &KernelTime, &UserTime) == 0) {
4414     return -1;
4415   } else if (user_sys_cpu_time) {
4416     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4417   } else {
4418     return FT2INT64(UserTime) * 100;
4419   }
4420 }
4421 
4422 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4423   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4424   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4425   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4426   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4427 }
4428 
4429 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4430   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4431   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4432   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4433   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4434 }
4435 
4436 bool os::is_thread_cpu_time_supported() {
4437   // see os::thread_cpu_time
4438   FILETIME CreationTime;
4439   FILETIME ExitTime;
4440   FILETIME KernelTime;
4441   FILETIME UserTime;
4442 
4443   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4444                       &KernelTime, &UserTime) == 0) {
4445     return false;
4446   } else {
4447     return true;
4448   }
4449 }
4450 
4451 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4452 // It does have primitives (PDH API) to get CPU usage and run queue length.
4453 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4454 // If we wanted to implement loadavg on Windows, we have a few options:
4455 //
4456 // a) Query CPU usage and run queue length and "fake" an answer by
4457 //    returning the CPU usage if it's under 100%, and the run queue
4458 //    length otherwise.  It turns out that querying is pretty slow
4459 //    on Windows, on the order of 200 microseconds on a fast machine.
4460 //    Note that on the Windows the CPU usage value is the % usage
4461 //    since the last time the API was called (and the first call
4462 //    returns 100%), so we'd have to deal with that as well.
4463 //
4464 // b) Sample the "fake" answer using a sampling thread and store
4465 //    the answer in a global variable.  The call to loadavg would
4466 //    just return the value of the global, avoiding the slow query.
4467 //
4468 // c) Sample a better answer using exponential decay to smooth the
4469 //    value.  This is basically the algorithm used by UNIX kernels.
4470 //
4471 // Note that sampling thread starvation could affect both (b) and (c).
4472 int os::loadavg(double loadavg[], int nelem) {
4473   return -1;
4474 }
4475 
4476 
4477 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4478 bool os::dont_yield() {
4479   return DontYieldALot;
4480 }
4481 
4482 // This method is a slightly reworked copy of JDK's sysOpen
4483 // from src/windows/hpi/src/sys_api_md.c
4484 
4485 int os::open(const char *path, int oflag, int mode) {
4486   char pathbuf[MAX_PATH];
4487 
4488   if (strlen(path) > MAX_PATH - 1) {
4489     errno = ENAMETOOLONG;
4490     return -1;
4491   }
4492   os::native_path(strcpy(pathbuf, path));
4493   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4494 }
4495 
4496 FILE* os::open(int fd, const char* mode) {
4497   return ::_fdopen(fd, mode);
4498 }
4499 
4500 // Is a (classpath) directory empty?
4501 bool os::dir_is_empty(const char* path) {
4502   WIN32_FIND_DATA fd;
4503   HANDLE f = FindFirstFile(path, &fd);
4504   if (f == INVALID_HANDLE_VALUE) {
4505     return true;
4506   }
4507   FindClose(f);
4508   return false;
4509 }
4510 
4511 // create binary file, rewriting existing file if required
4512 int os::create_binary_file(const char* path, bool rewrite_existing) {
4513   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4514   if (!rewrite_existing) {
4515     oflags |= _O_EXCL;
4516   }
4517   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4518 }
4519 
4520 // return current position of file pointer
4521 jlong os::current_file_offset(int fd) {
4522   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4523 }
4524 
4525 // move file pointer to the specified offset
4526 jlong os::seek_to_file_offset(int fd, jlong offset) {
4527   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4528 }
4529 
4530 
4531 jlong os::lseek(int fd, jlong offset, int whence) {
4532   return (jlong) ::_lseeki64(fd, offset, whence);
4533 }
4534 
4535 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4536   OVERLAPPED ov;
4537   DWORD nread;
4538   BOOL result;
4539 
4540   ZeroMemory(&ov, sizeof(ov));
4541   ov.Offset = (DWORD)offset;
4542   ov.OffsetHigh = (DWORD)(offset >> 32);
4543 
4544   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4545 
4546   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4547 
4548   return result ? nread : 0;
4549 }
4550 
4551 
4552 // This method is a slightly reworked copy of JDK's sysNativePath
4553 // from src/windows/hpi/src/path_md.c
4554 
4555 // Convert a pathname to native format.  On win32, this involves forcing all
4556 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4557 // sometimes rejects '/') and removing redundant separators.  The input path is
4558 // assumed to have been converted into the character encoding used by the local
4559 // system.  Because this might be a double-byte encoding, care is taken to
4560 // treat double-byte lead characters correctly.
4561 //
4562 // This procedure modifies the given path in place, as the result is never
4563 // longer than the original.  There is no error return; this operation always
4564 // succeeds.
4565 char * os::native_path(char *path) {
4566   char *src = path, *dst = path, *end = path;
4567   char *colon = NULL;  // If a drive specifier is found, this will
4568                        // point to the colon following the drive letter
4569 
4570   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4571   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4572           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4573 
4574   // Check for leading separators
4575 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4576   while (isfilesep(*src)) {
4577     src++;
4578   }
4579 
4580   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4581     // Remove leading separators if followed by drive specifier.  This
4582     // hack is necessary to support file URLs containing drive
4583     // specifiers (e.g., "file://c:/path").  As a side effect,
4584     // "/c:/path" can be used as an alternative to "c:/path".
4585     *dst++ = *src++;
4586     colon = dst;
4587     *dst++ = ':';
4588     src++;
4589   } else {
4590     src = path;
4591     if (isfilesep(src[0]) && isfilesep(src[1])) {
4592       // UNC pathname: Retain first separator; leave src pointed at
4593       // second separator so that further separators will be collapsed
4594       // into the second separator.  The result will be a pathname
4595       // beginning with "\\\\" followed (most likely) by a host name.
4596       src = dst = path + 1;
4597       path[0] = '\\';     // Force first separator to '\\'
4598     }
4599   }
4600 
4601   end = dst;
4602 
4603   // Remove redundant separators from remainder of path, forcing all
4604   // separators to be '\\' rather than '/'. Also, single byte space
4605   // characters are removed from the end of the path because those
4606   // are not legal ending characters on this operating system.
4607   //
4608   while (*src != '\0') {
4609     if (isfilesep(*src)) {
4610       *dst++ = '\\'; src++;
4611       while (isfilesep(*src)) src++;
4612       if (*src == '\0') {
4613         // Check for trailing separator
4614         end = dst;
4615         if (colon == dst - 2) break;  // "z:\\"
4616         if (dst == path + 1) break;   // "\\"
4617         if (dst == path + 2 && isfilesep(path[0])) {
4618           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4619           // beginning of a UNC pathname.  Even though it is not, by
4620           // itself, a valid UNC pathname, we leave it as is in order
4621           // to be consistent with the path canonicalizer as well
4622           // as the win32 APIs, which treat this case as an invalid
4623           // UNC pathname rather than as an alias for the root
4624           // directory of the current drive.
4625           break;
4626         }
4627         end = --dst;  // Path does not denote a root directory, so
4628                       // remove trailing separator
4629         break;
4630       }
4631       end = dst;
4632     } else {
4633       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4634         *dst++ = *src++;
4635         if (*src) *dst++ = *src++;
4636         end = dst;
4637       } else {  // Copy a single-byte character
4638         char c = *src++;
4639         *dst++ = c;
4640         // Space is not a legal ending character
4641         if (c != ' ') end = dst;
4642       }
4643     }
4644   }
4645 
4646   *end = '\0';
4647 
4648   // For "z:", add "." to work around a bug in the C runtime library
4649   if (colon == dst - 1) {
4650     path[2] = '.';
4651     path[3] = '\0';
4652   }
4653 
4654   return path;
4655 }
4656 
4657 // This code is a copy of JDK's sysSetLength
4658 // from src/windows/hpi/src/sys_api_md.c
4659 
4660 int os::ftruncate(int fd, jlong length) {
4661   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4662   long high = (long)(length >> 32);
4663   DWORD ret;
4664 
4665   if (h == (HANDLE)(-1)) {
4666     return -1;
4667   }
4668 
4669   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4670   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4671     return -1;
4672   }
4673 
4674   if (::SetEndOfFile(h) == FALSE) {
4675     return -1;
4676   }
4677 
4678   return 0;
4679 }
4680 
4681 int os::get_fileno(FILE* fp) {
4682   return _fileno(fp);
4683 }
4684 
4685 // This code is a copy of JDK's sysSync
4686 // from src/windows/hpi/src/sys_api_md.c
4687 // except for the legacy workaround for a bug in Win 98
4688 
4689 int os::fsync(int fd) {
4690   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4691 
4692   if ((!::FlushFileBuffers(handle)) &&
4693       (GetLastError() != ERROR_ACCESS_DENIED)) {
4694     // from winerror.h
4695     return -1;
4696   }
4697   return 0;
4698 }
4699 
4700 static int nonSeekAvailable(int, long *);
4701 static int stdinAvailable(int, long *);
4702 
4703 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4704 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4705 
4706 // This code is a copy of JDK's sysAvailable
4707 // from src/windows/hpi/src/sys_api_md.c
4708 
4709 int os::available(int fd, jlong *bytes) {
4710   jlong cur, end;
4711   struct _stati64 stbuf64;
4712 
4713   if (::_fstati64(fd, &stbuf64) >= 0) {
4714     int mode = stbuf64.st_mode;
4715     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4716       int ret;
4717       long lpbytes;
4718       if (fd == 0) {
4719         ret = stdinAvailable(fd, &lpbytes);
4720       } else {
4721         ret = nonSeekAvailable(fd, &lpbytes);
4722       }
4723       (*bytes) = (jlong)(lpbytes);
4724       return ret;
4725     }
4726     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4727       return FALSE;
4728     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4729       return FALSE;
4730     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4731       return FALSE;
4732     }
4733     *bytes = end - cur;
4734     return TRUE;
4735   } else {
4736     return FALSE;
4737   }
4738 }
4739 
4740 void os::flockfile(FILE* fp) {
4741   _lock_file(fp);
4742 }
4743 
4744 void os::funlockfile(FILE* fp) {
4745   _unlock_file(fp);
4746 }
4747 
4748 // This code is a copy of JDK's nonSeekAvailable
4749 // from src/windows/hpi/src/sys_api_md.c
4750 
4751 static int nonSeekAvailable(int fd, long *pbytes) {
4752   // This is used for available on non-seekable devices
4753   // (like both named and anonymous pipes, such as pipes
4754   //  connected to an exec'd process).
4755   // Standard Input is a special case.
4756   HANDLE han;
4757 
4758   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4759     return FALSE;
4760   }
4761 
4762   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4763     // PeekNamedPipe fails when at EOF.  In that case we
4764     // simply make *pbytes = 0 which is consistent with the
4765     // behavior we get on Solaris when an fd is at EOF.
4766     // The only alternative is to raise an Exception,
4767     // which isn't really warranted.
4768     //
4769     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4770       return FALSE;
4771     }
4772     *pbytes = 0;
4773   }
4774   return TRUE;
4775 }
4776 
4777 #define MAX_INPUT_EVENTS 2000
4778 
4779 // This code is a copy of JDK's stdinAvailable
4780 // from src/windows/hpi/src/sys_api_md.c
4781 
4782 static int stdinAvailable(int fd, long *pbytes) {
4783   HANDLE han;
4784   DWORD numEventsRead = 0;  // Number of events read from buffer
4785   DWORD numEvents = 0;      // Number of events in buffer
4786   DWORD i = 0;              // Loop index
4787   DWORD curLength = 0;      // Position marker
4788   DWORD actualLength = 0;   // Number of bytes readable
4789   BOOL error = FALSE;       // Error holder
4790   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4791 
4792   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4793     return FALSE;
4794   }
4795 
4796   // Construct an array of input records in the console buffer
4797   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4798   if (error == 0) {
4799     return nonSeekAvailable(fd, pbytes);
4800   }
4801 
4802   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4803   if (numEvents > MAX_INPUT_EVENTS) {
4804     numEvents = MAX_INPUT_EVENTS;
4805   }
4806 
4807   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4808   if (lpBuffer == NULL) {
4809     return FALSE;
4810   }
4811 
4812   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4813   if (error == 0) {
4814     os::free(lpBuffer);
4815     return FALSE;
4816   }
4817 
4818   // Examine input records for the number of bytes available
4819   for (i=0; i<numEvents; i++) {
4820     if (lpBuffer[i].EventType == KEY_EVENT) {
4821 
4822       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4823                                       &(lpBuffer[i].Event);
4824       if (keyRecord->bKeyDown == TRUE) {
4825         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4826         curLength++;
4827         if (*keyPressed == '\r') {
4828           actualLength = curLength;
4829         }
4830       }
4831     }
4832   }
4833 
4834   if (lpBuffer != NULL) {
4835     os::free(lpBuffer);
4836   }
4837 
4838   *pbytes = (long) actualLength;
4839   return TRUE;
4840 }
4841 
4842 // Map a block of memory.
4843 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4844                         char *addr, size_t bytes, bool read_only,
4845                         bool allow_exec) {
4846   HANDLE hFile;
4847   char* base;
4848 
4849   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4850                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4851   if (hFile == NULL) {
4852     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4853     return NULL;
4854   }
4855 
4856   if (allow_exec) {
4857     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4858     // unless it comes from a PE image (which the shared archive is not.)
4859     // Even VirtualProtect refuses to give execute access to mapped memory
4860     // that was not previously executable.
4861     //
4862     // Instead, stick the executable region in anonymous memory.  Yuck.
4863     // Penalty is that ~4 pages will not be shareable - in the future
4864     // we might consider DLLizing the shared archive with a proper PE
4865     // header so that mapping executable + sharing is possible.
4866 
4867     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4868                                 PAGE_READWRITE);
4869     if (base == NULL) {
4870       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4871       CloseHandle(hFile);
4872       return NULL;
4873     }
4874 
4875     DWORD bytes_read;
4876     OVERLAPPED overlapped;
4877     overlapped.Offset = (DWORD)file_offset;
4878     overlapped.OffsetHigh = 0;
4879     overlapped.hEvent = NULL;
4880     // ReadFile guarantees that if the return value is true, the requested
4881     // number of bytes were read before returning.
4882     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4883     if (!res) {
4884       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4885       release_memory(base, bytes);
4886       CloseHandle(hFile);
4887       return NULL;
4888     }
4889   } else {
4890     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4891                                     NULL /* file_name */);
4892     if (hMap == NULL) {
4893       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4894       CloseHandle(hFile);
4895       return NULL;
4896     }
4897 
4898     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4899     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4900                                   (DWORD)bytes, addr);
4901     if (base == NULL) {
4902       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4903       CloseHandle(hMap);
4904       CloseHandle(hFile);
4905       return NULL;
4906     }
4907 
4908     if (CloseHandle(hMap) == 0) {
4909       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4910       CloseHandle(hFile);
4911       return base;
4912     }
4913   }
4914 
4915   if (allow_exec) {
4916     DWORD old_protect;
4917     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4918     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4919 
4920     if (!res) {
4921       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4922       // Don't consider this a hard error, on IA32 even if the
4923       // VirtualProtect fails, we should still be able to execute
4924       CloseHandle(hFile);
4925       return base;
4926     }
4927   }
4928 
4929   if (CloseHandle(hFile) == 0) {
4930     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4931     return base;
4932   }
4933 
4934   return base;
4935 }
4936 
4937 
4938 // Remap a block of memory.
4939 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4940                           char *addr, size_t bytes, bool read_only,
4941                           bool allow_exec) {
4942   // This OS does not allow existing memory maps to be remapped so we
4943   // have to unmap the memory before we remap it.
4944   if (!os::unmap_memory(addr, bytes)) {
4945     return NULL;
4946   }
4947 
4948   // There is a very small theoretical window between the unmap_memory()
4949   // call above and the map_memory() call below where a thread in native
4950   // code may be able to access an address that is no longer mapped.
4951 
4952   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4953                         read_only, allow_exec);
4954 }
4955 
4956 
4957 // Unmap a block of memory.
4958 // Returns true=success, otherwise false.
4959 
4960 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4961   MEMORY_BASIC_INFORMATION mem_info;
4962   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4963     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4964     return false;
4965   }
4966 
4967   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4968   // Instead, executable region was allocated using VirtualAlloc(). See
4969   // pd_map_memory() above.
4970   //
4971   // The following flags should match the 'exec_access' flages used for
4972   // VirtualProtect() in pd_map_memory().
4973   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4974       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4975     return pd_release_memory(addr, bytes);
4976   }
4977 
4978   BOOL result = UnmapViewOfFile(addr);
4979   if (result == 0) {
4980     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4981     return false;
4982   }
4983   return true;
4984 }
4985 
4986 void os::pause() {
4987   char filename[MAX_PATH];
4988   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4989     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4990   } else {
4991     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4992   }
4993 
4994   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4995   if (fd != -1) {
4996     struct stat buf;
4997     ::close(fd);
4998     while (::stat(filename, &buf) == 0) {
4999       Sleep(100);
5000     }
5001   } else {
5002     jio_fprintf(stderr,
5003                 "Could not open pause file '%s', continuing immediately.\n", filename);
5004   }
5005 }
5006 
5007 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
5008   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
5009 }
5010 
5011 // See the caveats for this class in os_windows.hpp
5012 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
5013 // into this method and returns false. If no OS EXCEPTION was raised, returns
5014 // true.
5015 // The callback is supposed to provide the method that should be protected.
5016 //
5017 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
5018   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
5019   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
5020          "crash_protection already set?");
5021 
5022   bool success = true;
5023   __try {
5024     WatcherThread::watcher_thread()->set_crash_protection(this);
5025     cb.call();
5026   } __except(EXCEPTION_EXECUTE_HANDLER) {
5027     // only for protection, nothing to do
5028     success = false;
5029   }
5030   WatcherThread::watcher_thread()->set_crash_protection(NULL);
5031   return success;
5032 }
5033 
5034 // An Event wraps a win32 "CreateEvent" kernel handle.
5035 //
5036 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
5037 //
5038 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
5039 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
5040 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
5041 //     In addition, an unpark() operation might fetch the handle field, but the
5042 //     event could recycle between the fetch and the SetEvent() operation.
5043 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5044 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5045 //     on an stale but recycled handle would be harmless, but in practice this might
5046 //     confuse other non-Sun code, so it's not a viable approach.
5047 //
5048 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5049 //     with the Event.  The event handle is never closed.  This could be construed
5050 //     as handle leakage, but only up to the maximum # of threads that have been extant
5051 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5052 //     permit a process to have hundreds of thousands of open handles.
5053 //
5054 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5055 //     and release unused handles.
5056 //
5057 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5058 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5059 //
5060 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5061 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5062 //
5063 // We use (2).
5064 //
5065 // TODO-FIXME:
5066 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5067 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5068 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5069 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5070 //     into a single win32 CreateEvent() handle.
5071 //
5072 // Assumption:
5073 //    Only one parker can exist on an event, which is why we allocate
5074 //    them per-thread. Multiple unparkers can coexist.
5075 //
5076 // _Event transitions in park()
5077 //   -1 => -1 : illegal
5078 //    1 =>  0 : pass - return immediately
5079 //    0 => -1 : block; then set _Event to 0 before returning
5080 //
5081 // _Event transitions in unpark()
5082 //    0 => 1 : just return
5083 //    1 => 1 : just return
5084 //   -1 => either 0 or 1; must signal target thread
5085 //         That is, we can safely transition _Event from -1 to either
5086 //         0 or 1.
5087 //
5088 // _Event serves as a restricted-range semaphore.
5089 //   -1 : thread is blocked, i.e. there is a waiter
5090 //    0 : neutral: thread is running or ready,
5091 //        could have been signaled after a wait started
5092 //    1 : signaled - thread is running or ready
5093 //
5094 // Another possible encoding of _Event would be with
5095 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5096 //
5097 
5098 int os::PlatformEvent::park(jlong Millis) {
5099   // Transitions for _Event:
5100   //   -1 => -1 : illegal
5101   //    1 =>  0 : pass - return immediately
5102   //    0 => -1 : block; then set _Event to 0 before returning
5103 
5104   guarantee(_ParkHandle != NULL , "Invariant");
5105   guarantee(Millis > 0          , "Invariant");
5106 
5107   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5108   // the initial park() operation.
5109   // Consider: use atomic decrement instead of CAS-loop
5110 
5111   int v;
5112   for (;;) {
5113     v = _Event;
5114     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5115   }
5116   guarantee((v == 0) || (v == 1), "invariant");
5117   if (v != 0) return OS_OK;
5118 
5119   // Do this the hard way by blocking ...
5120   // TODO: consider a brief spin here, gated on the success of recent
5121   // spin attempts by this thread.
5122   //
5123   // We decompose long timeouts into series of shorter timed waits.
5124   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5125   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5126   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5127   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5128   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5129   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5130   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5131   // for the already waited time.  This policy does not admit any new outcomes.
5132   // In the future, however, we might want to track the accumulated wait time and
5133   // adjust Millis accordingly if we encounter a spurious wakeup.
5134 
5135   const int MAXTIMEOUT = 0x10000000;
5136   DWORD rv = WAIT_TIMEOUT;
5137   while (_Event < 0 && Millis > 0) {
5138     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5139     if (Millis > MAXTIMEOUT) {
5140       prd = MAXTIMEOUT;
5141     }
5142     rv = ::WaitForSingleObject(_ParkHandle, prd);
5143     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5144     if (rv == WAIT_TIMEOUT) {
5145       Millis -= prd;
5146     }
5147   }
5148   v = _Event;
5149   _Event = 0;
5150   // see comment at end of os::PlatformEvent::park() below:
5151   OrderAccess::fence();
5152   // If we encounter a nearly simultanous timeout expiry and unpark()
5153   // we return OS_OK indicating we awoke via unpark().
5154   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5155   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5156 }
5157 
5158 void os::PlatformEvent::park() {
5159   // Transitions for _Event:
5160   //   -1 => -1 : illegal
5161   //    1 =>  0 : pass - return immediately
5162   //    0 => -1 : block; then set _Event to 0 before returning
5163 
5164   guarantee(_ParkHandle != NULL, "Invariant");
5165   // Invariant: Only the thread associated with the Event/PlatformEvent
5166   // may call park().
5167   // Consider: use atomic decrement instead of CAS-loop
5168   int v;
5169   for (;;) {
5170     v = _Event;
5171     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5172   }
5173   guarantee((v == 0) || (v == 1), "invariant");
5174   if (v != 0) return;
5175 
5176   // Do this the hard way by blocking ...
5177   // TODO: consider a brief spin here, gated on the success of recent
5178   // spin attempts by this thread.
5179   while (_Event < 0) {
5180     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5181     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5182   }
5183 
5184   // Usually we'll find _Event == 0 at this point, but as
5185   // an optional optimization we clear it, just in case can
5186   // multiple unpark() operations drove _Event up to 1.
5187   _Event = 0;
5188   OrderAccess::fence();
5189   guarantee(_Event >= 0, "invariant");
5190 }
5191 
5192 void os::PlatformEvent::unpark() {
5193   guarantee(_ParkHandle != NULL, "Invariant");
5194 
5195   // Transitions for _Event:
5196   //    0 => 1 : just return
5197   //    1 => 1 : just return
5198   //   -1 => either 0 or 1; must signal target thread
5199   //         That is, we can safely transition _Event from -1 to either
5200   //         0 or 1.
5201   // See also: "Semaphores in Plan 9" by Mullender & Cox
5202   //
5203   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5204   // that it will take two back-to-back park() calls for the owning
5205   // thread to block. This has the benefit of forcing a spurious return
5206   // from the first park() call after an unpark() call which will help
5207   // shake out uses of park() and unpark() without condition variables.
5208 
5209   if (Atomic::xchg(1, &_Event) >= 0) return;
5210 
5211   ::SetEvent(_ParkHandle);
5212 }
5213 
5214 
5215 // JSR166
5216 // -------------------------------------------------------
5217 
5218 // The Windows implementation of Park is very straightforward: Basic
5219 // operations on Win32 Events turn out to have the right semantics to
5220 // use them directly. We opportunistically resuse the event inherited
5221 // from Monitor.
5222 
5223 void Parker::park(bool isAbsolute, jlong time) {
5224   guarantee(_ParkEvent != NULL, "invariant");
5225   // First, demultiplex/decode time arguments
5226   if (time < 0) { // don't wait
5227     return;
5228   } else if (time == 0 && !isAbsolute) {
5229     time = INFINITE;
5230   } else if (isAbsolute) {
5231     time -= os::javaTimeMillis(); // convert to relative time
5232     if (time <= 0) {  // already elapsed
5233       return;
5234     }
5235   } else { // relative
5236     time /= 1000000;  // Must coarsen from nanos to millis
5237     if (time == 0) {  // Wait for the minimal time unit if zero
5238       time = 1;
5239     }
5240   }
5241 
5242   JavaThread* thread = JavaThread::current();
5243 
5244   // Don't wait if interrupted or already triggered
5245   if (Thread::is_interrupted(thread, false) ||
5246       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5247     ResetEvent(_ParkEvent);
5248     return;
5249   } else {
5250     ThreadBlockInVM tbivm(thread);
5251     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5252     thread->set_suspend_equivalent();
5253 
5254     WaitForSingleObject(_ParkEvent, time);
5255     ResetEvent(_ParkEvent);
5256 
5257     // If externally suspended while waiting, re-suspend
5258     if (thread->handle_special_suspend_equivalent_condition()) {
5259       thread->java_suspend_self();
5260     }
5261   }
5262 }
5263 
5264 void Parker::unpark() {
5265   guarantee(_ParkEvent != NULL, "invariant");
5266   SetEvent(_ParkEvent);
5267 }
5268 
5269 // Run the specified command in a separate process. Return its exit value,
5270 // or -1 on failure (e.g. can't create a new process).
5271 int os::fork_and_exec(char* cmd) {
5272   STARTUPINFO si;
5273   PROCESS_INFORMATION pi;
5274 
5275   memset(&si, 0, sizeof(si));
5276   si.cb = sizeof(si);
5277   memset(&pi, 0, sizeof(pi));
5278   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5279                             cmd,    // command line
5280                             NULL,   // process security attribute
5281                             NULL,   // thread security attribute
5282                             TRUE,   // inherits system handles
5283                             0,      // no creation flags
5284                             NULL,   // use parent's environment block
5285                             NULL,   // use parent's starting directory
5286                             &si,    // (in) startup information
5287                             &pi);   // (out) process information
5288 
5289   if (rslt) {
5290     // Wait until child process exits.
5291     WaitForSingleObject(pi.hProcess, INFINITE);
5292 
5293     DWORD exit_code;
5294     GetExitCodeProcess(pi.hProcess, &exit_code);
5295 
5296     // Close process and thread handles.
5297     CloseHandle(pi.hProcess);
5298     CloseHandle(pi.hThread);
5299 
5300     return (int)exit_code;
5301   } else {
5302     return -1;
5303   }
5304 }
5305 
5306 //--------------------------------------------------------------------------------------------------
5307 // Non-product code
5308 
5309 static int mallocDebugIntervalCounter = 0;
5310 static int mallocDebugCounter = 0;
5311 bool os::check_heap(bool force) {
5312   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5313   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5314     // Note: HeapValidate executes two hardware breakpoints when it finds something
5315     // wrong; at these points, eax contains the address of the offending block (I think).
5316     // To get to the exlicit error message(s) below, just continue twice.
5317     //
5318     // Note:  we want to check the CRT heap, which is not necessarily located in the
5319     // process default heap.
5320     HANDLE heap = (HANDLE) _get_heap_handle();
5321     if (!heap) {
5322       return true;
5323     }
5324 
5325     // If we fail to lock the heap, then gflags.exe has been used
5326     // or some other special heap flag has been set that prevents
5327     // locking. We don't try to walk a heap we can't lock.
5328     if (HeapLock(heap) != 0) {
5329       PROCESS_HEAP_ENTRY phe;
5330       phe.lpData = NULL;
5331       while (HeapWalk(heap, &phe) != 0) {
5332         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5333             !HeapValidate(heap, 0, phe.lpData)) {
5334           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5335           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5336           HeapUnlock(heap);
5337           fatal("corrupted C heap");
5338         }
5339       }
5340       DWORD err = GetLastError();
5341       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5342         HeapUnlock(heap);
5343         fatal("heap walk aborted with error %d", err);
5344       }
5345       HeapUnlock(heap);
5346     }
5347     mallocDebugIntervalCounter = 0;
5348   }
5349   return true;
5350 }
5351 
5352 
5353 bool os::find(address addr, outputStream* st) {
5354   int offset = -1;
5355   bool result = false;
5356   char buf[256];
5357   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5358     st->print(PTR_FORMAT " ", addr);
5359     if (strlen(buf) < sizeof(buf) - 1) {
5360       char* p = strrchr(buf, '\\');
5361       if (p) {
5362         st->print("%s", p + 1);
5363       } else {
5364         st->print("%s", buf);
5365       }
5366     } else {
5367         // The library name is probably truncated. Let's omit the library name.
5368         // See also JDK-8147512.
5369     }
5370     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5371       st->print("::%s + 0x%x", buf, offset);
5372     }
5373     st->cr();
5374     result = true;
5375   }
5376   return result;
5377 }
5378 
5379 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5380   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5381 
5382   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5383     JavaThread* thread = JavaThread::current();
5384     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5385     address addr = (address) exceptionRecord->ExceptionInformation[1];
5386 
5387     if (os::is_memory_serialize_page(thread, addr)) {
5388       return EXCEPTION_CONTINUE_EXECUTION;
5389     }
5390   }
5391 
5392   return EXCEPTION_CONTINUE_SEARCH;
5393 }
5394 
5395 // We don't build a headless jre for Windows
5396 bool os::is_headless_jre() { return false; }
5397 
5398 static jint initSock() {
5399   WSADATA wsadata;
5400 
5401   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5402     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5403                 ::GetLastError());
5404     return JNI_ERR;
5405   }
5406   return JNI_OK;
5407 }
5408 
5409 struct hostent* os::get_host_by_name(char* name) {
5410   return (struct hostent*)gethostbyname(name);
5411 }
5412 
5413 int os::socket_close(int fd) {
5414   return ::closesocket(fd);
5415 }
5416 
5417 int os::socket(int domain, int type, int protocol) {
5418   return ::socket(domain, type, protocol);
5419 }
5420 
5421 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5422   return ::connect(fd, him, len);
5423 }
5424 
5425 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5426   return ::recv(fd, buf, (int)nBytes, flags);
5427 }
5428 
5429 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5430   return ::send(fd, buf, (int)nBytes, flags);
5431 }
5432 
5433 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5434   return ::send(fd, buf, (int)nBytes, flags);
5435 }
5436 
5437 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5438 #if defined(IA32)
5439   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5440 #elif defined (AMD64)
5441   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5442 #endif
5443 
5444 // returns true if thread could be suspended,
5445 // false otherwise
5446 static bool do_suspend(HANDLE* h) {
5447   if (h != NULL) {
5448     if (SuspendThread(*h) != ~0) {
5449       return true;
5450     }
5451   }
5452   return false;
5453 }
5454 
5455 // resume the thread
5456 // calling resume on an active thread is a no-op
5457 static void do_resume(HANDLE* h) {
5458   if (h != NULL) {
5459     ResumeThread(*h);
5460   }
5461 }
5462 
5463 // retrieve a suspend/resume context capable handle
5464 // from the tid. Caller validates handle return value.
5465 void get_thread_handle_for_extended_context(HANDLE* h,
5466                                             OSThread::thread_id_t tid) {
5467   if (h != NULL) {
5468     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5469   }
5470 }
5471 
5472 // Thread sampling implementation
5473 //
5474 void os::SuspendedThreadTask::internal_do_task() {
5475   CONTEXT    ctxt;
5476   HANDLE     h = NULL;
5477 
5478   // get context capable handle for thread
5479   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5480 
5481   // sanity
5482   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5483     return;
5484   }
5485 
5486   // suspend the thread
5487   if (do_suspend(&h)) {
5488     ctxt.ContextFlags = sampling_context_flags;
5489     // get thread context
5490     GetThreadContext(h, &ctxt);
5491     SuspendedThreadTaskContext context(_thread, &ctxt);
5492     // pass context to Thread Sampling impl
5493     do_task(context);
5494     // resume thread
5495     do_resume(&h);
5496   }
5497 
5498   // close handle
5499   CloseHandle(h);
5500 }
5501 
5502 bool os::start_debugging(char *buf, int buflen) {
5503   int len = (int)strlen(buf);
5504   char *p = &buf[len];
5505 
5506   jio_snprintf(p, buflen-len,
5507              "\n\n"
5508              "Do you want to debug the problem?\n\n"
5509              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5510              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5511              "Otherwise, select 'No' to abort...",
5512              os::current_process_id(), os::current_thread_id());
5513 
5514   bool yes = os::message_box("Unexpected Error", buf);
5515 
5516   if (yes) {
5517     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5518     // exception. If VM is running inside a debugger, the debugger will
5519     // catch the exception. Otherwise, the breakpoint exception will reach
5520     // the default windows exception handler, which can spawn a debugger and
5521     // automatically attach to the dying VM.
5522     os::breakpoint();
5523     yes = false;
5524   }
5525   return yes;
5526 }
5527 
5528 void* os::get_default_process_handle() {
5529   return (void*)GetModuleHandle(NULL);
5530 }
5531 
5532 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5533 // which is used to find statically linked in agents.
5534 // Additionally for windows, takes into account __stdcall names.
5535 // Parameters:
5536 //            sym_name: Symbol in library we are looking for
5537 //            lib_name: Name of library to look in, NULL for shared libs.
5538 //            is_absolute_path == true if lib_name is absolute path to agent
5539 //                                     such as "C:/a/b/L.dll"
5540 //            == false if only the base name of the library is passed in
5541 //               such as "L"
5542 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5543                                     bool is_absolute_path) {
5544   char *agent_entry_name;
5545   size_t len;
5546   size_t name_len;
5547   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5548   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5549   const char *start;
5550 
5551   if (lib_name != NULL) {
5552     len = name_len = strlen(lib_name);
5553     if (is_absolute_path) {
5554       // Need to strip path, prefix and suffix
5555       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5556         lib_name = ++start;
5557       } else {
5558         // Need to check for drive prefix
5559         if ((start = strchr(lib_name, ':')) != NULL) {
5560           lib_name = ++start;
5561         }
5562       }
5563       if (len <= (prefix_len + suffix_len)) {
5564         return NULL;
5565       }
5566       lib_name += prefix_len;
5567       name_len = strlen(lib_name) - suffix_len;
5568     }
5569   }
5570   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5571   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5572   if (agent_entry_name == NULL) {
5573     return NULL;
5574   }
5575   if (lib_name != NULL) {
5576     const char *p = strrchr(sym_name, '@');
5577     if (p != NULL && p != sym_name) {
5578       // sym_name == _Agent_OnLoad@XX
5579       strncpy(agent_entry_name, sym_name, (p - sym_name));
5580       agent_entry_name[(p-sym_name)] = '\0';
5581       // agent_entry_name == _Agent_OnLoad
5582       strcat(agent_entry_name, "_");
5583       strncat(agent_entry_name, lib_name, name_len);
5584       strcat(agent_entry_name, p);
5585       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5586     } else {
5587       strcpy(agent_entry_name, sym_name);
5588       strcat(agent_entry_name, "_");
5589       strncat(agent_entry_name, lib_name, name_len);
5590     }
5591   } else {
5592     strcpy(agent_entry_name, sym_name);
5593   }
5594   return agent_entry_name;
5595 }
5596 
5597 #ifndef PRODUCT
5598 
5599 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5600 // contiguous memory block at a particular address.
5601 // The test first tries to find a good approximate address to allocate at by using the same
5602 // method to allocate some memory at any address. The test then tries to allocate memory in
5603 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5604 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5605 // the previously allocated memory is available for allocation. The only actual failure
5606 // that is reported is when the test tries to allocate at a particular location but gets a
5607 // different valid one. A NULL return value at this point is not considered an error but may
5608 // be legitimate.
5609 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5610 void TestReserveMemorySpecial_test() {
5611   if (!UseLargePages) {
5612     if (VerboseInternalVMTests) {
5613       tty->print("Skipping test because large pages are disabled");
5614     }
5615     return;
5616   }
5617   // save current value of globals
5618   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5619   bool old_use_numa_interleaving = UseNUMAInterleaving;
5620 
5621   // set globals to make sure we hit the correct code path
5622   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5623 
5624   // do an allocation at an address selected by the OS to get a good one.
5625   const size_t large_allocation_size = os::large_page_size() * 4;
5626   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5627   if (result == NULL) {
5628     if (VerboseInternalVMTests) {
5629       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5630                           large_allocation_size);
5631     }
5632   } else {
5633     os::release_memory_special(result, large_allocation_size);
5634 
5635     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5636     // we managed to get it once.
5637     const size_t expected_allocation_size = os::large_page_size();
5638     char* expected_location = result + os::large_page_size();
5639     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5640     if (actual_location == NULL) {
5641       if (VerboseInternalVMTests) {
5642         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5643                             expected_location, large_allocation_size);
5644       }
5645     } else {
5646       // release memory
5647       os::release_memory_special(actual_location, expected_allocation_size);
5648       // only now check, after releasing any memory to avoid any leaks.
5649       assert(actual_location == expected_location,
5650              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5651              expected_location, expected_allocation_size, actual_location);
5652     }
5653   }
5654 
5655   // restore globals
5656   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5657   UseNUMAInterleaving = old_use_numa_interleaving;
5658 }
5659 #endif // PRODUCT
5660 
5661 /*
5662   All the defined signal names for Windows.
5663 
5664   NOTE that not all of these names are accepted by FindSignal!
5665 
5666   For various reasons some of these may be rejected at runtime.
5667 
5668   Here are the names currently accepted by a user of sun.misc.Signal with
5669   1.4.1 (ignoring potential interaction with use of chaining, etc):
5670 
5671      (LIST TBD)
5672 
5673 */
5674 int os::get_signal_number(const char* name) {
5675   static const struct {
5676     char* name;
5677     int   number;
5678   } siglabels [] =
5679     // derived from version 6.0 VC98/include/signal.h
5680   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5681   "FPE",        SIGFPE,         // floating point exception
5682   "SEGV",       SIGSEGV,        // segment violation
5683   "INT",        SIGINT,         // interrupt
5684   "TERM",       SIGTERM,        // software term signal from kill
5685   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5686   "ILL",        SIGILL};        // illegal instruction
5687   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5688     if (strcmp(name, siglabels[i].name) == 0) {
5689       return siglabels[i].number;
5690     }
5691   }
5692   return -1;
5693 }
5694 
5695 // Fast current thread access
5696 
5697 int os::win32::_thread_ptr_offset = 0;
5698 
5699 static void call_wrapper_dummy() {}
5700 
5701 // We need to call the os_exception_wrapper once so that it sets
5702 // up the offset from FS of the thread pointer.
5703 void os::win32::initialize_thread_ptr_offset() {
5704   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5705                            NULL, NULL, NULL, NULL);
5706 }