1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include <jni.h>
  26 #include <unistd.h>
  27 #include <fcntl.h>
  28 #include <string.h>
  29 #include <stdlib.h>
  30 #include <stddef.h>
  31 #include <elf.h>
  32 #include <link.h>
  33 #include "libproc_impl.h"
  34 #include "salibelf.h"
  35 
  36 // This file has the libproc implementation to read core files.
  37 // For live processes, refer to ps_proc.c. Portions of this is adapted
  38 // /modelled after Solaris libproc.so (in particular Pcore.c)
  39 
  40 //----------------------------------------------------------------------
  41 // ps_prochandle cleanup helper functions
  42 
  43 // close all file descriptors
  44 static void close_elf_files(struct ps_prochandle* ph) {
  45    lib_info* lib = NULL;
  46 
  47    // close core file descriptor
  48    if (ph->core->core_fd >= 0)
  49      close(ph->core->core_fd);
  50 
  51    // close exec file descriptor
  52    if (ph->core->exec_fd >= 0)
  53      close(ph->core->exec_fd);
  54 
  55    // close interp file descriptor
  56    if (ph->core->interp_fd >= 0)
  57      close(ph->core->interp_fd);
  58 
  59    // close class share archive file
  60    if (ph->core->classes_jsa_fd >= 0)
  61      close(ph->core->classes_jsa_fd);
  62 
  63    // close all library file descriptors
  64    lib = ph->libs;
  65    while (lib) {
  66       int fd = lib->fd;
  67       if (fd >= 0 && fd != ph->core->exec_fd) close(fd);
  68       lib = lib->next;
  69    }
  70 }
  71 
  72 // clean all map_info stuff
  73 static void destroy_map_info(struct ps_prochandle* ph) {
  74   map_info* map = ph->core->maps;
  75   while (map) {
  76      map_info* next = map->next;
  77      free(map);
  78      map = next;
  79   }
  80 
  81   if (ph->core->map_array) {
  82      free(ph->core->map_array);
  83   }
  84 
  85   // Part of the class sharing workaround
  86   map = ph->core->class_share_maps;
  87   while (map) {
  88      map_info* next = map->next;
  89      free(map);
  90      map = next;
  91   }
  92 }
  93 
  94 // ps_prochandle operations
  95 static void core_release(struct ps_prochandle* ph) {
  96    if (ph->core) {
  97       close_elf_files(ph);
  98       destroy_map_info(ph);
  99       free(ph->core);
 100    }
 101 }
 102 
 103 static map_info* allocate_init_map(int fd, off_t offset, uintptr_t vaddr, size_t memsz) {
 104    map_info* map;
 105    if ( (map = (map_info*) calloc(1, sizeof(map_info))) == NULL) {
 106       print_debug("can't allocate memory for map_info\n");
 107       return NULL;
 108    }
 109 
 110    // initialize map
 111    map->fd     = fd;
 112    map->offset = offset;
 113    map->vaddr  = vaddr;
 114    map->memsz  = memsz;
 115    return map;
 116 }
 117 
 118 // add map info with given fd, offset, vaddr and memsz
 119 static map_info* add_map_info(struct ps_prochandle* ph, int fd, off_t offset,
 120                              uintptr_t vaddr, size_t memsz) {
 121    map_info* map;
 122    if ((map = allocate_init_map(fd, offset, vaddr, memsz)) == NULL) {
 123       return NULL;
 124    }
 125 
 126    // add this to map list
 127    map->next  = ph->core->maps;
 128    ph->core->maps   = map;
 129    ph->core->num_maps++;
 130 
 131    return map;
 132 }
 133 
 134 // Part of the class sharing workaround
 135 static map_info* add_class_share_map_info(struct ps_prochandle* ph, off_t offset,
 136                              uintptr_t vaddr, size_t memsz) {
 137    map_info* map;
 138    if ((map = allocate_init_map(ph->core->classes_jsa_fd,
 139                                 offset, vaddr, memsz)) == NULL) {
 140       return NULL;
 141    }
 142 
 143    map->next = ph->core->class_share_maps;
 144    ph->core->class_share_maps = map;
 145 }
 146 
 147 // Return the map_info for the given virtual address.  We keep a sorted
 148 // array of pointers in ph->map_array, so we can binary search.
 149 static map_info* core_lookup(struct ps_prochandle *ph, uintptr_t addr)
 150 {
 151    int mid, lo = 0, hi = ph->core->num_maps - 1;
 152    map_info *mp;
 153 
 154    while (hi - lo > 1) {
 155      mid = (lo + hi) / 2;
 156       if (addr >= ph->core->map_array[mid]->vaddr)
 157          lo = mid;
 158       else
 159          hi = mid;
 160    }
 161 
 162    if (addr < ph->core->map_array[hi]->vaddr)
 163       mp = ph->core->map_array[lo];
 164    else
 165       mp = ph->core->map_array[hi];
 166 
 167    if (addr >= mp->vaddr && addr < mp->vaddr + mp->memsz)
 168       return (mp);
 169 
 170 
 171    // Part of the class sharing workaround
 172    // Unfortunately, we have no way of detecting -Xshare state.
 173    // Check out the share maps atlast, if we don't find anywhere.
 174    // This is done this way so to avoid reading share pages
 175    // ahead of other normal maps. For eg. with -Xshare:off we don't
 176    // want to prefer class sharing data to data from core.
 177    mp = ph->core->class_share_maps;
 178    if (mp) {
 179       print_debug("can't locate map_info at 0x%lx, trying class share maps\n",
 180              addr);
 181    }
 182    while (mp) {
 183       if (addr >= mp->vaddr && addr < mp->vaddr + mp->memsz) {
 184          print_debug("located map_info at 0x%lx from class share maps\n",
 185                   addr);
 186          return (mp);
 187       }
 188       mp = mp->next;
 189    }
 190 
 191    print_debug("can't locate map_info at 0x%lx\n", addr);
 192    return (NULL);
 193 }
 194 
 195 //---------------------------------------------------------------
 196 // Part of the class sharing workaround:
 197 //
 198 // With class sharing, pages are mapped from classes[_g].jsa file.
 199 // The read-only class sharing pages are mapped as MAP_SHARED,
 200 // PROT_READ pages. These pages are not dumped into core dump.
 201 // With this workaround, these pages are read from classes[_g].jsa.
 202 
 203 // FIXME: !HACK ALERT!
 204 // The format of sharing achive file header is needed to read shared heap
 205 // file mappings. For now, I am hard coding portion of FileMapHeader here.
 206 // Refer to filemap.hpp.
 207 
 208 // FileMapHeader describes the shared space data in the file to be
 209 // mapped.  This structure gets written to a file.  It is not a class,
 210 // so that the compilers don't add any compiler-private data to it.
 211 
 212 // Refer to CompactingPermGenGen::n_regions in compactingPermGenGen.hpp
 213 #define NUM_SHARED_MAPS 4
 214 
 215 // Refer to FileMapInfo::_current_version in filemap.hpp
 216 #define CURRENT_ARCHIVE_VERSION 1
 217 
 218 struct FileMapHeader {
 219   int   _magic;              // identify file type.
 220   int   _version;            // (from enum, above.)
 221   size_t _alignment;         // how shared archive should be aligned
 222 
 223   struct space_info {
 224     int    _file_offset;     // sizeof(this) rounded to vm page size
 225     char*  _base;            // copy-on-write base address
 226     size_t _capacity;        // for validity checking
 227     size_t _used;            // for setting space top on read
 228 
 229     // 4991491 NOTICE These are C++ bool's in filemap.hpp and must match up with
 230     // the C type matching the C++ bool type on any given platform. For
 231     // Hotspot on Linux we assume the corresponding C type is char but
 232     // licensees on Linux versions may need to adjust the type of these fields.
 233     char   _read_only;       // read only space?
 234     char   _allow_exec;      // executable code in space?
 235 
 236   } _space[NUM_SHARED_MAPS]; // was _space[CompactingPermGenGen::n_regions];
 237 
 238   // Ignore the rest of the FileMapHeader. We don't need those fields here.
 239 };
 240 
 241 static bool read_jboolean(struct ps_prochandle* ph, uintptr_t addr, jboolean* pvalue) {
 242    jboolean i;
 243    if (ps_pdread(ph, (psaddr_t) addr, &i, sizeof(i)) == PS_OK) {
 244       *pvalue = i;
 245       return true;
 246    } else {
 247       return false;
 248    }
 249 }
 250 
 251 static bool read_pointer(struct ps_prochandle* ph, uintptr_t addr, uintptr_t* pvalue) {
 252    uintptr_t uip;
 253    if (ps_pdread(ph, (psaddr_t) addr, &uip, sizeof(uip)) == PS_OK) {
 254       *pvalue = uip;
 255       return true;
 256    } else {
 257       return false;
 258    }
 259 }
 260 
 261 // used to read strings from debuggee
 262 static bool read_string(struct ps_prochandle* ph, uintptr_t addr, char* buf, size_t size) {
 263    size_t i = 0;
 264    char  c = ' ';
 265 
 266    while (c != '\0') {
 267      if (ps_pdread(ph, (psaddr_t) addr, &c, sizeof(char)) != PS_OK)
 268          return false;
 269       if (i < size - 1)
 270          buf[i] = c;
 271       else // smaller buffer
 272          return false;
 273       i++; addr++;
 274    }
 275 
 276    buf[i] = '\0';
 277    return true;
 278 }
 279 
 280 #define USE_SHARED_SPACES_SYM "UseSharedSpaces"
 281 // mangled name of Arguments::SharedArchivePath
 282 #define SHARED_ARCHIVE_PATH_SYM "_ZN9Arguments17SharedArchivePathE"
 283 
 284 static bool init_classsharing_workaround(struct ps_prochandle* ph) {
 285    lib_info* lib = ph->libs;
 286    while (lib != NULL) {
 287       // we are iterating over shared objects from the core dump. look for
 288       // libjvm[_g].so.
 289       const char *jvm_name = 0;
 290       if ((jvm_name = strstr(lib->name, "/libjvm.so")) != 0 ||
 291           (jvm_name = strstr(lib->name, "/libjvm_g.so")) != 0) {
 292          char classes_jsa[PATH_MAX];
 293          struct FileMapHeader header;
 294          size_t n = 0;
 295          int fd = -1, m = 0;
 296          uintptr_t base = 0, useSharedSpacesAddr = 0;
 297          uintptr_t sharedArchivePathAddrAddr = 0, sharedArchivePathAddr = 0;
 298          jboolean useSharedSpaces = 0;
 299          map_info* mi = 0;
 300 
 301          memset(classes_jsa, 0, sizeof(classes_jsa));
 302          jvm_name = lib->name;
 303          useSharedSpacesAddr = lookup_symbol(ph, jvm_name, USE_SHARED_SPACES_SYM);
 304          if (useSharedSpacesAddr == 0) {
 305             print_debug("can't lookup 'UseSharedSpaces' flag\n");
 306             return false;
 307          }
 308 
 309          // Hotspot vm types are not exported to build this library. So
 310          // using equivalent type jboolean to read the value of
 311          // UseSharedSpaces which is same as hotspot type "bool".
 312          if (read_jboolean(ph, useSharedSpacesAddr, &useSharedSpaces) != true) {
 313             print_debug("can't read the value of 'UseSharedSpaces' flag\n");
 314             return false;
 315          }
 316 
 317          if ((int)useSharedSpaces == 0) {
 318             print_debug("UseSharedSpaces is false, assuming -Xshare:off!\n");
 319             return true;
 320          }
 321 
 322          sharedArchivePathAddrAddr = lookup_symbol(ph, jvm_name, SHARED_ARCHIVE_PATH_SYM);
 323          if (sharedArchivePathAddrAddr == 0) {
 324             print_debug("can't lookup shared archive path symbol\n");
 325             return false;
 326          }
 327 
 328          if (read_pointer(ph, sharedArchivePathAddrAddr, &sharedArchivePathAddr) != true) {
 329             print_debug("can't read shared archive path pointer\n");
 330             return false;
 331          }
 332 
 333          if (read_string(ph, sharedArchivePathAddr, classes_jsa, sizeof(classes_jsa)) != true) {
 334             print_debug("can't read shared archive path value\n");
 335             return false;
 336          }
 337 
 338          print_debug("looking for %s\n", classes_jsa);
 339          // open the class sharing archive file
 340          fd = pathmap_open(classes_jsa);
 341          if (fd < 0) {
 342             print_debug("can't open %s!\n", classes_jsa);
 343             ph->core->classes_jsa_fd = -1;
 344             return false;
 345          } else {
 346             print_debug("opened %s\n", classes_jsa);
 347          }
 348 
 349          // read FileMapHeader from the file
 350          memset(&header, 0, sizeof(struct FileMapHeader));
 351          if ((n = read(fd, &header, sizeof(struct FileMapHeader)))
 352               != sizeof(struct FileMapHeader)) {
 353             print_debug("can't read shared archive file map header from %s\n", classes_jsa);
 354             close(fd);
 355             return false;
 356          }
 357 
 358          // check file magic
 359          if (header._magic != 0xf00baba2) {
 360             print_debug("%s has bad shared archive file magic number 0x%x, expecing 0xf00baba2\n",
 361                         classes_jsa, header._magic);
 362             close(fd);
 363             return false;
 364          }
 365 
 366          // check version
 367          if (header._version != CURRENT_ARCHIVE_VERSION) {
 368             print_debug("%s has wrong shared archive file version %d, expecting %d\n",
 369                         classes_jsa, header._version, CURRENT_ARCHIVE_VERSION);
 370             close(fd);
 371             return false;
 372          }
 373 
 374          ph->core->classes_jsa_fd = fd;
 375          // add read-only maps from classes[_g].jsa to the list of maps
 376          for (m = 0; m < NUM_SHARED_MAPS; m++) {
 377             if (header._space[m]._read_only) {
 378                base = (uintptr_t) header._space[m]._base;
 379                // no need to worry about the fractional pages at-the-end.
 380                // possible fractional pages are handled by core_read_data.
 381                add_class_share_map_info(ph, (off_t) header._space[m]._file_offset,
 382                          base, (size_t) header._space[m]._used);
 383                print_debug("added a share archive map at 0x%lx\n", base);
 384             }
 385          }
 386          return true;
 387       }
 388       lib = lib->next;
 389    }
 390    return true;
 391 }
 392 
 393 
 394 //---------------------------------------------------------------------------
 395 // functions to handle map_info
 396 
 397 // Order mappings based on virtual address.  We use this function as the
 398 // callback for sorting the array of map_info pointers.
 399 static int core_cmp_mapping(const void *lhsp, const void *rhsp)
 400 {
 401    const map_info *lhs = *((const map_info **)lhsp);
 402    const map_info *rhs = *((const map_info **)rhsp);
 403 
 404    if (lhs->vaddr == rhs->vaddr)
 405       return (0);
 406 
 407    return (lhs->vaddr < rhs->vaddr ? -1 : 1);
 408 }
 409 
 410 // we sort map_info by starting virtual address so that we can do
 411 // binary search to read from an address.
 412 static bool sort_map_array(struct ps_prochandle* ph) {
 413    size_t num_maps = ph->core->num_maps;
 414    map_info* map = ph->core->maps;
 415    int i = 0;
 416 
 417    // allocate map_array
 418    map_info** array;
 419    if ( (array = (map_info**) malloc(sizeof(map_info*) * num_maps)) == NULL) {
 420       print_debug("can't allocate memory for map array\n");
 421       return false;
 422    }
 423 
 424    // add maps to array
 425    while (map) {
 426       array[i] = map;
 427       i++;
 428       map = map->next;
 429    }
 430 
 431    // sort is called twice. If this is second time, clear map array
 432    if (ph->core->map_array) free(ph->core->map_array);
 433    ph->core->map_array = array;
 434    // sort the map_info array by base virtual address.
 435    qsort(ph->core->map_array, ph->core->num_maps, sizeof (map_info*),
 436             core_cmp_mapping);
 437 
 438    // print map
 439    if (is_debug()) {
 440       int j = 0;
 441       print_debug("---- sorted virtual address map ----\n");
 442       for (j = 0; j < ph->core->num_maps; j++) {
 443         print_debug("base = 0x%lx\tsize = %zu\n", ph->core->map_array[j]->vaddr,
 444                                          ph->core->map_array[j]->memsz);
 445       }
 446    }
 447 
 448    return true;
 449 }
 450 
 451 #ifndef MIN
 452 #define MIN(x, y) (((x) < (y))? (x): (y))
 453 #endif
 454 
 455 static bool core_read_data(struct ps_prochandle* ph, uintptr_t addr, char *buf, size_t size) {
 456    ssize_t resid = size;
 457    int page_size=sysconf(_SC_PAGE_SIZE);
 458    while (resid != 0) {
 459       map_info *mp = core_lookup(ph, addr);
 460       uintptr_t mapoff;
 461       ssize_t len, rem;
 462       off_t off;
 463       int fd;
 464 
 465       if (mp == NULL)
 466          break;  /* No mapping for this address */
 467 
 468       fd = mp->fd;
 469       mapoff = addr - mp->vaddr;
 470       len = MIN(resid, mp->memsz - mapoff);
 471       off = mp->offset + mapoff;
 472 
 473       if ((len = pread(fd, buf, len, off)) <= 0)
 474          break;
 475 
 476       resid -= len;
 477       addr += len;
 478       buf = (char *)buf + len;
 479 
 480       // mappings always start at page boundary. But, may end in fractional
 481       // page. fill zeros for possible fractional page at the end of a mapping.
 482       rem = mp->memsz % page_size;
 483       if (rem > 0) {
 484          rem = page_size - rem;
 485          len = MIN(resid, rem);
 486          resid -= len;
 487          addr += len;
 488          // we are not assuming 'buf' to be zero initialized.
 489          memset(buf, 0, len);
 490          buf += len;
 491       }
 492    }
 493 
 494    if (resid) {
 495       print_debug("core read failed for %d byte(s) @ 0x%lx (%d more bytes)\n",
 496               size, addr, resid);
 497       return false;
 498    } else {
 499       return true;
 500    }
 501 }
 502 
 503 // null implementation for write
 504 static bool core_write_data(struct ps_prochandle* ph,
 505                              uintptr_t addr, const char *buf , size_t size) {
 506    return false;
 507 }
 508 
 509 static bool core_get_lwp_regs(struct ps_prochandle* ph, lwpid_t lwp_id,
 510                           struct user_regs_struct* regs) {
 511    // for core we have cached the lwp regs from NOTE section
 512    thread_info* thr = ph->threads;
 513    while (thr) {
 514      if (thr->lwp_id == lwp_id) {
 515        memcpy(regs, &thr->regs, sizeof(struct user_regs_struct));
 516        return true;
 517      }
 518      thr = thr->next;
 519    }
 520    return false;
 521 }
 522 
 523 static ps_prochandle_ops core_ops = {
 524    .release=  core_release,
 525    .p_pread=  core_read_data,
 526    .p_pwrite= core_write_data,
 527    .get_lwp_regs= core_get_lwp_regs
 528 };
 529 
 530 // read regs and create thread from NT_PRSTATUS entries from core file
 531 static bool core_handle_prstatus(struct ps_prochandle* ph, const char* buf, size_t nbytes) {
 532    // we have to read prstatus_t from buf
 533    // assert(nbytes == sizeof(prstaus_t), "size mismatch on prstatus_t");
 534    prstatus_t* prstat = (prstatus_t*) buf;
 535    thread_info* newthr;
 536    print_debug("got integer regset for lwp %d\n", prstat->pr_pid);
 537    // we set pthread_t to -1 for core dump
 538    if((newthr = add_thread_info(ph, (pthread_t) -1,  prstat->pr_pid)) == NULL)
 539       return false;
 540 
 541    // copy regs
 542    memcpy(&newthr->regs, prstat->pr_reg, sizeof(struct user_regs_struct));
 543 
 544    if (is_debug()) {
 545       print_debug("integer regset\n");
 546 #ifdef i386
 547       // print the regset
 548       print_debug("\teax = 0x%x\n", newthr->regs.eax);
 549       print_debug("\tebx = 0x%x\n", newthr->regs.ebx);
 550       print_debug("\tecx = 0x%x\n", newthr->regs.ecx);
 551       print_debug("\tedx = 0x%x\n", newthr->regs.edx);
 552       print_debug("\tesp = 0x%x\n", newthr->regs.esp);
 553       print_debug("\tebp = 0x%x\n", newthr->regs.ebp);
 554       print_debug("\tesi = 0x%x\n", newthr->regs.esi);
 555       print_debug("\tedi = 0x%x\n", newthr->regs.edi);
 556       print_debug("\teip = 0x%x\n", newthr->regs.eip);
 557 #endif
 558 
 559 #if defined(amd64) || defined(x86_64)
 560       // print the regset
 561       print_debug("\tr15 = 0x%lx\n", newthr->regs.r15);
 562       print_debug("\tr14 = 0x%lx\n", newthr->regs.r14);
 563       print_debug("\tr13 = 0x%lx\n", newthr->regs.r13);
 564       print_debug("\tr12 = 0x%lx\n", newthr->regs.r12);
 565       print_debug("\trbp = 0x%lx\n", newthr->regs.rbp);
 566       print_debug("\trbx = 0x%lx\n", newthr->regs.rbx);
 567       print_debug("\tr11 = 0x%lx\n", newthr->regs.r11);
 568       print_debug("\tr10 = 0x%lx\n", newthr->regs.r10);
 569       print_debug("\tr9 = 0x%lx\n", newthr->regs.r9);
 570       print_debug("\tr8 = 0x%lx\n", newthr->regs.r8);
 571       print_debug("\trax = 0x%lx\n", newthr->regs.rax);
 572       print_debug("\trcx = 0x%lx\n", newthr->regs.rcx);
 573       print_debug("\trdx = 0x%lx\n", newthr->regs.rdx);
 574       print_debug("\trsi = 0x%lx\n", newthr->regs.rsi);
 575       print_debug("\trdi = 0x%lx\n", newthr->regs.rdi);
 576       print_debug("\torig_rax = 0x%lx\n", newthr->regs.orig_rax);
 577       print_debug("\trip = 0x%lx\n", newthr->regs.rip);
 578       print_debug("\tcs = 0x%lx\n", newthr->regs.cs);
 579       print_debug("\teflags = 0x%lx\n", newthr->regs.eflags);
 580       print_debug("\trsp = 0x%lx\n", newthr->regs.rsp);
 581       print_debug("\tss = 0x%lx\n", newthr->regs.ss);
 582       print_debug("\tfs_base = 0x%lx\n", newthr->regs.fs_base);
 583       print_debug("\tgs_base = 0x%lx\n", newthr->regs.gs_base);
 584       print_debug("\tds = 0x%lx\n", newthr->regs.ds);
 585       print_debug("\tes = 0x%lx\n", newthr->regs.es);
 586       print_debug("\tfs = 0x%lx\n", newthr->regs.fs);
 587       print_debug("\tgs = 0x%lx\n", newthr->regs.gs);
 588 #endif
 589    }
 590 
 591    return true;
 592 }
 593 
 594 #define ROUNDUP(x, y)  ((((x)+((y)-1))/(y))*(y))
 595 
 596 // read NT_PRSTATUS entries from core NOTE segment
 597 static bool core_handle_note(struct ps_prochandle* ph, ELF_PHDR* note_phdr) {
 598    char* buf = NULL;
 599    char* p = NULL;
 600    size_t size = note_phdr->p_filesz;
 601 
 602    // we are interested in just prstatus entries. we will ignore the rest.
 603    // Advance the seek pointer to the start of the PT_NOTE data
 604    if (lseek(ph->core->core_fd, note_phdr->p_offset, SEEK_SET) == (off_t)-1) {
 605       print_debug("failed to lseek to PT_NOTE data\n");
 606       return false;
 607    }
 608 
 609    // Now process the PT_NOTE structures.  Each one is preceded by
 610    // an Elf{32/64}_Nhdr structure describing its type and size.
 611    if ( (buf = (char*) malloc(size)) == NULL) {
 612       print_debug("can't allocate memory for reading core notes\n");
 613       goto err;
 614    }
 615 
 616    // read notes into buffer
 617    if (read(ph->core->core_fd, buf, size) != size) {
 618       print_debug("failed to read notes, core file must have been truncated\n");
 619       goto err;
 620    }
 621 
 622    p = buf;
 623    while (p < buf + size) {
 624       ELF_NHDR* notep = (ELF_NHDR*) p;
 625       char* descdata  = p + sizeof(ELF_NHDR) + ROUNDUP(notep->n_namesz, 4);
 626       print_debug("Note header with n_type = %d and n_descsz = %u\n",
 627                                    notep->n_type, notep->n_descsz);
 628 
 629       if (notep->n_type == NT_PRSTATUS) {
 630          if (core_handle_prstatus(ph, descdata, notep->n_descsz) != true)
 631             return false;
 632       }
 633       p = descdata + ROUNDUP(notep->n_descsz, 4);
 634    }
 635 
 636    free(buf);
 637    return true;
 638 
 639 err:
 640    if (buf) free(buf);
 641    return false;
 642 }
 643 
 644 // read all segments from core file
 645 static bool read_core_segments(struct ps_prochandle* ph, ELF_EHDR* core_ehdr) {
 646    int i = 0;
 647    ELF_PHDR* phbuf = NULL;
 648    ELF_PHDR* core_php = NULL;
 649 
 650    if ((phbuf =  read_program_header_table(ph->core->core_fd, core_ehdr)) == NULL)
 651       return false;
 652 
 653    /*
 654     * Now iterate through the program headers in the core file.
 655     * We're interested in two types of Phdrs: PT_NOTE (which
 656     * contains a set of saved /proc structures), and PT_LOAD (which
 657     * represents a memory mapping from the process's address space).
 658     *
 659     * Difference b/w Solaris PT_NOTE and Linux PT_NOTE:
 660     *
 661     *     In Solaris there are two PT_NOTE segments the first PT_NOTE (if present)
 662     *     contains /proc structs in the pre-2.6 unstructured /proc format. the last
 663     *     PT_NOTE has data in new /proc format.
 664     *
 665     *     In Solaris, there is only one pstatus (process status). pstatus contains
 666     *     integer register set among other stuff. For each LWP, we have one lwpstatus
 667     *     entry that has integer regset for that LWP.
 668     *
 669     *     Linux threads are actually 'clone'd processes. To support core analysis
 670     *     of "multithreaded" process, Linux creates more than one pstatus (called
 671     *     "prstatus") entry in PT_NOTE. Each prstatus entry has integer regset for one
 672     *     "thread". Please refer to Linux kernel src file 'fs/binfmt_elf.c', in particular
 673     *     function "elf_core_dump".
 674     */
 675 
 676     for (core_php = phbuf, i = 0; i < core_ehdr->e_phnum; i++) {
 677       switch (core_php->p_type) {
 678          case PT_NOTE:
 679             if (core_handle_note(ph, core_php) != true) goto err;
 680             break;
 681 
 682          case PT_LOAD: {
 683             if (core_php->p_filesz != 0) {
 684                if (add_map_info(ph, ph->core->core_fd, core_php->p_offset,
 685                   core_php->p_vaddr, core_php->p_filesz) == NULL) goto err;
 686             }
 687             break;
 688          }
 689       }
 690 
 691       core_php++;
 692    }
 693 
 694    free(phbuf);
 695    return true;
 696 err:
 697    free(phbuf);
 698    return false;
 699 }
 700 
 701 // read segments of a shared object
 702 static bool read_lib_segments(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* lib_ehdr, uintptr_t lib_base) {
 703    int i = 0;
 704    ELF_PHDR* phbuf;
 705    ELF_PHDR* lib_php = NULL;
 706 
 707    int page_size=sysconf(_SC_PAGE_SIZE);
 708 
 709    if ((phbuf = read_program_header_table(lib_fd, lib_ehdr)) == NULL)
 710       return false;
 711 
 712    // we want to process only PT_LOAD segments that are not writable.
 713    // i.e., text segments. The read/write/exec (data) segments would
 714    // have been already added from core file segments.
 715    for (lib_php = phbuf, i = 0; i < lib_ehdr->e_phnum; i++) {
 716       if ((lib_php->p_type == PT_LOAD) && !(lib_php->p_flags & PF_W) && (lib_php->p_filesz != 0)) {
 717          uintptr_t target_vaddr = lib_php->p_vaddr + lib_base;
 718          map_info *existing_map = core_lookup(ph, target_vaddr);
 719          
 720          if (existing_map == NULL) {
 721             if (add_map_info(ph, lib_fd, lib_php->p_offset,
 722                             target_vaddr, lib_php->p_filesz) == NULL) {
 723                 goto err;
 724             }
 725          } else {
 726             if ((existing_map->memsz != page_size) &&
 727                 (existing_map->fd != lib_fd) &&
 728                 (existing_map->memsz != lib_php->p_filesz)) {
 729          
 730                 print_debug("address conflict @ 0x%lx (size = %ld, flags = %d\n)",
 731                             target_vaddr, lib_php->p_filesz, lib_php->p_flags);
 732                 goto err;
 733             }
 734          
 735             /* replace PT_LOAD segment with library segment */
 736             print_debug("overwrote with new address mapping (memsz %ld -> %ld)\n",
 737                             existing_map->memsz, lib_php->p_filesz);
 738          
 739             existing_map->fd = lib_fd;
 740             existing_map->offset = lib_php->p_offset;
 741             existing_map->memsz = lib_php->p_filesz;
 742          } 
 743       }
 744       lib_php++;
 745    }
 746 
 747    free(phbuf);
 748    return true;
 749 err:
 750    free(phbuf);
 751    return false;
 752 }
 753 
 754 // process segments from interpreter (ld.so or ld-linux.so)
 755 static bool read_interp_segments(struct ps_prochandle* ph) {
 756    ELF_EHDR interp_ehdr;
 757 
 758    if (read_elf_header(ph->core->interp_fd, &interp_ehdr) != true) {
 759        print_debug("interpreter is not a valid ELF file\n");
 760        return false;
 761    }
 762 
 763    if (read_lib_segments(ph, ph->core->interp_fd, &interp_ehdr, ph->core->ld_base_addr) != true) {
 764        print_debug("can't read segments of interpreter\n");
 765        return false;
 766    }
 767 
 768    return true;
 769 }
 770 
 771 // process segments of a a.out
 772 static bool read_exec_segments(struct ps_prochandle* ph, ELF_EHDR* exec_ehdr) {
 773    int i = 0;
 774    ELF_PHDR* phbuf = NULL;
 775    ELF_PHDR* exec_php = NULL;
 776 
 777    if ((phbuf = read_program_header_table(ph->core->exec_fd, exec_ehdr)) == NULL)
 778       return false;
 779 
 780    for (exec_php = phbuf, i = 0; i < exec_ehdr->e_phnum; i++) {
 781       switch (exec_php->p_type) {
 782 
 783          // add mappings for PT_LOAD segments
 784          case PT_LOAD: {
 785             // add only non-writable segments of non-zero filesz
 786             if (!(exec_php->p_flags & PF_W) && exec_php->p_filesz != 0) {
 787                if (add_map_info(ph, ph->core->exec_fd, exec_php->p_offset, exec_php->p_vaddr, exec_php->p_filesz) == NULL) goto err;
 788             }
 789             break;
 790          }
 791 
 792          // read the interpreter and it's segments
 793          case PT_INTERP: {
 794             char interp_name[BUF_SIZE];
 795 
 796             pread(ph->core->exec_fd, interp_name, MIN(exec_php->p_filesz, BUF_SIZE), exec_php->p_offset);
 797             print_debug("ELF interpreter %s\n", interp_name);
 798             // read interpreter segments as well
 799             if ((ph->core->interp_fd = pathmap_open(interp_name)) < 0) {
 800                print_debug("can't open runtime loader\n");
 801                goto err;
 802             }
 803             break;
 804          }
 805 
 806          // from PT_DYNAMIC we want to read address of first link_map addr
 807          case PT_DYNAMIC: {
 808             ph->core->dynamic_addr = exec_php->p_vaddr;
 809             print_debug("address of _DYNAMIC is 0x%lx\n", ph->core->dynamic_addr);
 810             break;
 811          }
 812 
 813       } // switch
 814       exec_php++;
 815    } // for
 816 
 817    free(phbuf);
 818    return true;
 819 err:
 820    free(phbuf);
 821    return false;
 822 }
 823 
 824 
 825 #define FIRST_LINK_MAP_OFFSET offsetof(struct r_debug,  r_map)
 826 #define LD_BASE_OFFSET        offsetof(struct r_debug,  r_ldbase)
 827 #define LINK_MAP_ADDR_OFFSET  offsetof(struct link_map, l_addr)
 828 #define LINK_MAP_NAME_OFFSET  offsetof(struct link_map, l_name)
 829 #define LINK_MAP_NEXT_OFFSET  offsetof(struct link_map, l_next)
 830 
 831 // read shared library info from runtime linker's data structures.
 832 // This work is done by librtlb_db in Solaris
 833 static bool read_shared_lib_info(struct ps_prochandle* ph) {
 834    uintptr_t addr = ph->core->dynamic_addr;
 835    uintptr_t debug_base;
 836    uintptr_t first_link_map_addr;
 837    uintptr_t ld_base_addr;
 838    uintptr_t link_map_addr;
 839    uintptr_t lib_base_diff;
 840    uintptr_t lib_base;
 841    uintptr_t lib_name_addr;
 842    char lib_name[BUF_SIZE];
 843    ELF_DYN dyn;
 844    ELF_EHDR elf_ehdr;
 845    int lib_fd;
 846 
 847    // _DYNAMIC has information of the form
 848    //         [tag] [data] [tag] [data] .....
 849    // Both tag and data are pointer sized.
 850    // We look for dynamic info with DT_DEBUG. This has shared object info.
 851    // refer to struct r_debug in link.h
 852 
 853    dyn.d_tag = DT_NULL;
 854    while (dyn.d_tag != DT_DEBUG) {
 855       if (ps_pdread(ph, (psaddr_t) addr, &dyn, sizeof(ELF_DYN)) != PS_OK) {
 856          print_debug("can't read debug info from _DYNAMIC\n");
 857          return false;
 858       }
 859       addr += sizeof(ELF_DYN);
 860    }
 861 
 862    // we have got Dyn entry with DT_DEBUG
 863    debug_base = dyn.d_un.d_ptr;
 864    // at debug_base we have struct r_debug. This has first link map in r_map field
 865    if (ps_pdread(ph, (psaddr_t) debug_base + FIRST_LINK_MAP_OFFSET,
 866                  &first_link_map_addr, sizeof(uintptr_t)) != PS_OK) {
 867       print_debug("can't read first link map address\n");
 868       return false;
 869    }
 870 
 871    // read ld_base address from struct r_debug
 872    if (ps_pdread(ph, (psaddr_t) debug_base + LD_BASE_OFFSET, &ld_base_addr,
 873                  sizeof(uintptr_t)) != PS_OK) {
 874       print_debug("can't read ld base address\n");
 875       return false;
 876    }
 877    ph->core->ld_base_addr = ld_base_addr;
 878 
 879    print_debug("interpreter base address is 0x%lx\n", ld_base_addr);
 880 
 881    // now read segments from interp (i.e ld.so or ld-linux.so)
 882    if (read_interp_segments(ph) != true)
 883       return false;
 884 
 885    // after adding interpreter (ld.so) mappings sort again
 886    if (sort_map_array(ph) != true)
 887       return false;
 888 
 889    print_debug("first link map is at 0x%lx\n", first_link_map_addr);
 890 
 891    link_map_addr = first_link_map_addr;
 892    while (link_map_addr != 0) {
 893       // read library base address of the .so. Note that even though <sys/link.h> calls
 894       // link_map->l_addr as "base address",  this is * not * really base virtual
 895       // address of the shared object. This is actually the difference b/w the virtual
 896       // address mentioned in shared object and the actual virtual base where runtime
 897       // linker loaded it. We use "base diff" in read_lib_segments call below.
 898 
 899       if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_ADDR_OFFSET,
 900                    &lib_base_diff, sizeof(uintptr_t)) != PS_OK) {
 901          print_debug("can't read shared object base address diff\n");
 902          return false;
 903       }
 904 
 905       // read address of the name
 906       if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NAME_OFFSET,
 907                     &lib_name_addr, sizeof(uintptr_t)) != PS_OK) {
 908          print_debug("can't read address of shared object name\n");
 909          return false;
 910       }
 911 
 912       // read name of the shared object
 913       lib_name[0] = '\0';
 914       if (lib_name_addr != 0 &&
 915           read_string(ph, (uintptr_t) lib_name_addr, lib_name, sizeof(lib_name)) != true) {
 916          print_debug("can't read shared object name\n");
 917          // don't let failure to read the name stop opening the file.  If something is really wrong
 918          // it will fail later.
 919       }
 920 
 921       if (lib_name[0] != '\0') {
 922          // ignore empty lib names
 923          lib_fd = pathmap_open(lib_name);
 924 
 925          if (lib_fd < 0) {
 926             print_debug("can't open shared object %s\n", lib_name);
 927             // continue with other libraries...
 928          } else {
 929             if (read_elf_header(lib_fd, &elf_ehdr)) {
 930                lib_base = lib_base_diff + find_base_address(lib_fd, &elf_ehdr);
 931                print_debug("reading library %s @ 0x%lx [ 0x%lx ]\n",
 932                            lib_name, lib_base, lib_base_diff);
 933                // while adding library mappings we need to use "base difference".
 934                if (! read_lib_segments(ph, lib_fd, &elf_ehdr, lib_base_diff)) {
 935                   print_debug("can't read shared object's segments\n");
 936                   close(lib_fd);
 937                   return false;
 938                }
 939                add_lib_info_fd(ph, lib_name, lib_fd, lib_base);
 940                // Map info is added for the library (lib_name) so
 941                // we need to re-sort it before calling the p_pdread.
 942                if (sort_map_array(ph) != true)
 943                   return false;
 944             } else {
 945                print_debug("can't read ELF header for shared object %s\n", lib_name);
 946                close(lib_fd);
 947                // continue with other libraries...
 948             }
 949          }
 950       }
 951 
 952       // read next link_map address
 953       if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NEXT_OFFSET,
 954                         &link_map_addr, sizeof(uintptr_t)) != PS_OK) {
 955          print_debug("can't read next link in link_map\n");
 956          return false;
 957       }
 958    }
 959 
 960    return true;
 961 }
 962 
 963 // the one and only one exposed stuff from this file
 964 struct ps_prochandle* Pgrab_core(const char* exec_file, const char* core_file) {
 965    ELF_EHDR core_ehdr;
 966    ELF_EHDR exec_ehdr;
 967    ELF_EHDR lib_ehdr;
 968 
 969    struct ps_prochandle* ph = (struct ps_prochandle*) calloc(1, sizeof(struct ps_prochandle));
 970    if (ph == NULL) {
 971       print_debug("can't allocate ps_prochandle\n");
 972       return NULL;
 973    }
 974 
 975    if ((ph->core = (struct core_data*) calloc(1, sizeof(struct core_data))) == NULL) {
 976       free(ph);
 977       print_debug("can't allocate ps_prochandle\n");
 978       return NULL;
 979    }
 980 
 981    // initialize ph
 982    ph->ops = &core_ops;
 983    ph->core->core_fd   = -1;
 984    ph->core->exec_fd   = -1;
 985    ph->core->interp_fd = -1;
 986 
 987    // open the core file
 988    if ((ph->core->core_fd = open(core_file, O_RDONLY)) < 0) {
 989       print_debug("can't open core file\n");
 990       goto err;
 991    }
 992 
 993    // read core file ELF header
 994    if (read_elf_header(ph->core->core_fd, &core_ehdr) != true || core_ehdr.e_type != ET_CORE) {
 995       print_debug("core file is not a valid ELF ET_CORE file\n");
 996       goto err;
 997    }
 998 
 999    if ((ph->core->exec_fd = open(exec_file, O_RDONLY)) < 0) {
1000       print_debug("can't open executable file\n");
1001       goto err;
1002    }
1003 
1004    if (read_elf_header(ph->core->exec_fd, &exec_ehdr) != true || exec_ehdr.e_type != ET_EXEC) {
1005       print_debug("executable file is not a valid ELF ET_EXEC file\n");
1006       goto err;
1007    }
1008 
1009    // process core file segments
1010    if (read_core_segments(ph, &core_ehdr) != true)
1011       goto err;
1012 
1013    // process exec file segments
1014    if (read_exec_segments(ph, &exec_ehdr) != true)
1015       goto err;
1016 
1017    // exec file is also treated like a shared object for symbol search
1018    if (add_lib_info_fd(ph, exec_file, ph->core->exec_fd,
1019                        (uintptr_t)0 + find_base_address(ph->core->exec_fd, &exec_ehdr)) == NULL)
1020       goto err;
1021 
1022    // allocate and sort maps into map_array, we need to do this
1023    // here because read_shared_lib_info needs to read from debuggee
1024    // address space
1025    if (sort_map_array(ph) != true)
1026       goto err;
1027 
1028    if (read_shared_lib_info(ph) != true)
1029       goto err;
1030 
1031    // sort again because we have added more mappings from shared objects
1032    if (sort_map_array(ph) != true)
1033       goto err;
1034 
1035    if (init_classsharing_workaround(ph) != true)
1036       goto err;
1037 
1038    return ph;
1039 
1040 err:
1041    Prelease(ph);
1042    return NULL;
1043 }