1 /*
   2  * Copyright (c) 2008, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "c1/c1_Compilation.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/cardTableBarrierSet.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "memory/universe.hpp"
  38 #include "nativeInst_arm.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "vmreg_arm.inline.hpp"
  43 
  44 #define __ _masm->
  45 
  46 // Note: Rtemp usage is this file should not impact C2 and should be
  47 // correct as long as it is not implicitly used in lower layers (the
  48 // arm [macro]assembler) and used with care in the other C1 specific
  49 // files.
  50 
  51 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  52   ShouldNotCallThis(); // Not used on ARM
  53   return false;
  54 }
  55 
  56 
  57 LIR_Opr LIR_Assembler::receiverOpr() {
  58   // The first register in Java calling conventions
  59   return FrameMap::R0_oop_opr;
  60 }
  61 
  62 LIR_Opr LIR_Assembler::osrBufferPointer() {
  63   return FrameMap::as_pointer_opr(R0);
  64 }
  65 
  66 #ifndef PRODUCT
  67 void LIR_Assembler::verify_reserved_argument_area_size(int args_count) {
  68   assert(args_count * wordSize <= frame_map()->reserved_argument_area_size(), "not enough space for arguments");
  69 }
  70 #endif // !PRODUCT
  71 
  72 void LIR_Assembler::store_parameter(jint c, int offset_from_sp_in_words) {
  73   assert(offset_from_sp_in_words >= 0, "invalid offset from sp");
  74   int offset_from_sp_in_bytes = offset_from_sp_in_words * BytesPerWord;
  75   assert(offset_from_sp_in_bytes < frame_map()->reserved_argument_area_size(), "not enough space");
  76   __ mov_slow(Rtemp, c);
  77   __ str(Rtemp, Address(SP, offset_from_sp_in_bytes));
  78 }
  79 
  80 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_sp_in_words) {
  81   assert(offset_from_sp_in_words >= 0, "invalid offset from sp");
  82   int offset_from_sp_in_bytes = offset_from_sp_in_words * BytesPerWord;
  83   assert(offset_from_sp_in_bytes < frame_map()->reserved_argument_area_size(), "not enough space");
  84   __ mov_metadata(Rtemp, m);
  85   __ str(Rtemp, Address(SP, offset_from_sp_in_bytes));
  86 }
  87 
  88 //--------------fpu register translations-----------------------
  89 
  90 
  91 void LIR_Assembler::set_24bit_FPU() {
  92   ShouldNotReachHere();
  93 }
  94 
  95 void LIR_Assembler::reset_FPU() {
  96   ShouldNotReachHere();
  97 }
  98 
  99 void LIR_Assembler::fpop() {
 100   Unimplemented();
 101 }
 102 
 103 void LIR_Assembler::fxch(int i) {
 104   Unimplemented();
 105 }
 106 
 107 void LIR_Assembler::fld(int i) {
 108   Unimplemented();
 109 }
 110 
 111 void LIR_Assembler::ffree(int i) {
 112   Unimplemented();
 113 }
 114 
 115 void LIR_Assembler::breakpoint() {
 116   __ breakpoint();
 117 }
 118 
 119 void LIR_Assembler::push(LIR_Opr opr) {
 120   Unimplemented();
 121 }
 122 
 123 void LIR_Assembler::pop(LIR_Opr opr) {
 124   Unimplemented();
 125 }
 126 
 127 //-------------------------------------------
 128 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 129   Register base = addr->base()->as_pointer_register();
 130 
 131 
 132   if (addr->index()->is_illegal() || addr->index()->is_constant()) {
 133     int offset = addr->disp();
 134     if (addr->index()->is_constant()) {
 135       offset += addr->index()->as_constant_ptr()->as_jint() << addr->scale();
 136     }
 137 
 138     if ((offset <= -4096) || (offset >= 4096)) {
 139       BAILOUT_("offset not in range", Address(base));
 140     }
 141 
 142     return Address(base, offset);
 143 
 144   } else {
 145     assert(addr->disp() == 0, "can't have both");
 146     int scale = addr->scale();
 147 
 148     assert(addr->index()->is_single_cpu(), "should be");
 149     return scale >= 0 ? Address(base, addr->index()->as_register(), lsl, scale) :
 150                         Address(base, addr->index()->as_register(), lsr, -scale);
 151   }
 152 }
 153 
 154 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 155   Address base = as_Address(addr);
 156   assert(base.index() == noreg, "must be");
 157   if (base.disp() + BytesPerWord >= 4096) { BAILOUT_("offset not in range", Address(base.base(),0)); }
 158   return Address(base.base(), base.disp() + BytesPerWord);
 159 }
 160 
 161 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 162   return as_Address(addr);
 163 }
 164 
 165 
 166 void LIR_Assembler::osr_entry() {
 167   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 168   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 169   ValueStack* entry_state = osr_entry->end()->state();
 170   int number_of_locks = entry_state->locks_size();
 171 
 172   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 173   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 174 
 175   assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 176   int monitor_offset = (method()->max_locals() + 2 * (number_of_locks - 1)) * BytesPerWord;
 177   for (int i = 0; i < number_of_locks; i++) {
 178     int slot_offset = monitor_offset - (i * 2 * BytesPerWord);
 179     __ ldr(R1, Address(OSR_buf, slot_offset + 0*BytesPerWord));
 180     __ ldr(R2, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 181     __ str(R1, frame_map()->address_for_monitor_lock(i));
 182     __ str(R2, frame_map()->address_for_monitor_object(i));
 183   }
 184 }
 185 
 186 
 187 int LIR_Assembler::check_icache() {
 188   Register receiver = LIR_Assembler::receiverOpr()->as_register();
 189   int offset = __ offset();
 190   __ inline_cache_check(receiver, Ricklass);
 191   return offset;
 192 }
 193 
 194 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 195   ShouldNotReachHere(); // not implemented
 196 }
 197 
 198 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 199   jobject o = (jobject)Universe::non_oop_word();
 200   int index = __ oop_recorder()->allocate_oop_index(o);
 201 
 202   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), index);
 203 
 204   __ patchable_mov_oop(reg, o, index);
 205   patching_epilog(patch, lir_patch_normal, reg, info);
 206 }
 207 
 208 
 209 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 210   Metadata* o = (Metadata*)Universe::non_oop_word();
 211   int index = __ oop_recorder()->allocate_metadata_index(o);
 212   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
 213 
 214   __ patchable_mov_metadata(reg, o, index);
 215   patching_epilog(patch, lir_patch_normal, reg, info);
 216 }
 217 
 218 
 219 int LIR_Assembler::initial_frame_size_in_bytes() const {
 220   // Subtracts two words to account for return address and link
 221   return frame_map()->framesize()*VMRegImpl::stack_slot_size - 2*wordSize;
 222 }
 223 
 224 
 225 int LIR_Assembler::emit_exception_handler() {
 226   // TODO: ARM
 227   __ nop(); // See comments in other ports
 228 
 229   address handler_base = __ start_a_stub(exception_handler_size());
 230   if (handler_base == NULL) {
 231     bailout("exception handler overflow");
 232     return -1;
 233   }
 234 
 235   int offset = code_offset();
 236 
 237   // check that there is really an exception
 238   __ verify_not_null_oop(Rexception_obj);
 239 
 240   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
 241   __ should_not_reach_here();
 242 
 243   assert(code_offset() - offset <= exception_handler_size(), "overflow");
 244   __ end_a_stub();
 245 
 246   return offset;
 247 }
 248 
 249 // Emit the code to remove the frame from the stack in the exception
 250 // unwind path.
 251 int LIR_Assembler::emit_unwind_handler() {
 252 #ifndef PRODUCT
 253   if (CommentedAssembly) {
 254     _masm->block_comment("Unwind handler");
 255   }
 256 #endif
 257 
 258   int offset = code_offset();
 259 
 260   // Fetch the exception from TLS and clear out exception related thread state
 261   Register zero = __ zero_register(Rtemp);
 262   __ ldr(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset()));
 263   __ str(zero, Address(Rthread, JavaThread::exception_oop_offset()));
 264   __ str(zero, Address(Rthread, JavaThread::exception_pc_offset()));
 265 
 266   __ bind(_unwind_handler_entry);
 267   __ verify_not_null_oop(Rexception_obj);
 268 
 269   // Preform needed unlocking
 270   MonitorExitStub* stub = NULL;
 271   if (method()->is_synchronized()) {
 272     monitor_address(0, FrameMap::R0_opr);
 273     stub = new MonitorExitStub(FrameMap::R0_opr, true, 0);
 274     __ unlock_object(R2, R1, R0, Rtemp, *stub->entry());
 275     __ bind(*stub->continuation());
 276   }
 277 
 278   // remove the activation and dispatch to the unwind handler
 279   __ remove_frame(initial_frame_size_in_bytes()); // restores FP and LR
 280   __ jump(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type, Rtemp);
 281 
 282   // Emit the slow path assembly
 283   if (stub != NULL) {
 284     stub->emit_code(this);
 285   }
 286 
 287   return offset;
 288 }
 289 
 290 
 291 int LIR_Assembler::emit_deopt_handler() {
 292   address handler_base = __ start_a_stub(deopt_handler_size());
 293   if (handler_base == NULL) {
 294     bailout("deopt handler overflow");
 295     return -1;
 296   }
 297 
 298   int offset = code_offset();
 299 
 300   __ mov_relative_address(LR, __ pc());
 301   __ push(LR); // stub expects LR to be saved
 302   __ jump(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type, noreg);
 303 
 304   assert(code_offset() - offset <= deopt_handler_size(), "overflow");
 305   __ end_a_stub();
 306 
 307   return offset;
 308 }
 309 
 310 
 311 void LIR_Assembler::return_op(LIR_Opr result) {
 312   // Pop the frame before safepoint polling
 313   __ remove_frame(initial_frame_size_in_bytes());
 314 
 315   // mov_slow here is usually one or two instruction
 316   __ mov_address(Rtemp, os::get_polling_page());
 317   __ relocate(relocInfo::poll_return_type);
 318   __ ldr(Rtemp, Address(Rtemp));
 319   __ ret();
 320 }
 321 
 322 
 323 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 324   __ mov_address(Rtemp, os::get_polling_page());
 325   if (info != NULL) {
 326     add_debug_info_for_branch(info);
 327   }
 328   int offset = __ offset();
 329   __ relocate(relocInfo::poll_type);
 330   __ ldr(Rtemp, Address(Rtemp));
 331   return offset;
 332 }
 333 
 334 
 335 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 336   if (from_reg != to_reg) {
 337     __ mov(to_reg, from_reg);
 338   }
 339 }
 340 
 341 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 342   assert(src->is_constant() && dest->is_register(), "must be");
 343   LIR_Const* c = src->as_constant_ptr();
 344 
 345   switch (c->type()) {
 346     case T_ADDRESS:
 347     case T_INT:
 348       assert(patch_code == lir_patch_none, "no patching handled here");
 349       __ mov_slow(dest->as_register(), c->as_jint());
 350       break;
 351 
 352     case T_LONG:
 353       assert(patch_code == lir_patch_none, "no patching handled here");
 354       __ mov_slow(dest->as_register_lo(), c->as_jint_lo());
 355       __ mov_slow(dest->as_register_hi(), c->as_jint_hi());
 356       break;
 357 
 358     case T_OBJECT:
 359       if (patch_code == lir_patch_none) {
 360         __ mov_oop(dest->as_register(), c->as_jobject());
 361       } else {
 362         jobject2reg_with_patching(dest->as_register(), info);
 363       }
 364       break;
 365 
 366     case T_METADATA:
 367       if (patch_code == lir_patch_none) {
 368         __ mov_metadata(dest->as_register(), c->as_metadata());
 369       } else {
 370         klass2reg_with_patching(dest->as_register(), info);
 371       }
 372       break;
 373 
 374     case T_FLOAT:
 375       if (dest->is_single_fpu()) {
 376         __ mov_float(dest->as_float_reg(), c->as_jfloat());
 377       } else {
 378         // Simple getters can return float constant directly into r0
 379         __ mov_slow(dest->as_register(), c->as_jint_bits());
 380       }
 381       break;
 382 
 383     case T_DOUBLE:
 384       if (dest->is_double_fpu()) {
 385         __ mov_double(dest->as_double_reg(), c->as_jdouble());
 386       } else {
 387         // Simple getters can return double constant directly into r1r0
 388         __ mov_slow(dest->as_register_lo(), c->as_jint_lo_bits());
 389         __ mov_slow(dest->as_register_hi(), c->as_jint_hi_bits());
 390       }
 391       break;
 392 
 393     default:
 394       ShouldNotReachHere();
 395   }
 396 }
 397 
 398 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 399   assert(src->is_constant(), "must be");
 400   assert(dest->is_stack(), "must be");
 401   LIR_Const* c = src->as_constant_ptr();
 402 
 403   switch (c->type()) {
 404     case T_INT:  // fall through
 405     case T_FLOAT:
 406       __ mov_slow(Rtemp, c->as_jint_bits());
 407       __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 408       break;
 409 
 410     case T_ADDRESS:
 411       __ mov_slow(Rtemp, c->as_jint());
 412       __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 413       break;
 414 
 415     case T_OBJECT:
 416       __ mov_oop(Rtemp, c->as_jobject());
 417       __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 418       break;
 419 
 420     case T_LONG:  // fall through
 421     case T_DOUBLE:
 422       __ mov_slow(Rtemp, c->as_jint_lo_bits());
 423       __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes));
 424       if (c->as_jint_hi_bits() != c->as_jint_lo_bits()) {
 425         __ mov_slow(Rtemp, c->as_jint_hi_bits());
 426       }
 427       __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
 428       break;
 429 
 430     default:
 431       ShouldNotReachHere();
 432   }
 433 }
 434 
 435 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type,
 436                               CodeEmitInfo* info, bool wide) {
 437   assert((src->as_constant_ptr()->type() == T_OBJECT && src->as_constant_ptr()->as_jobject() == NULL),"cannot handle otherwise");
 438   __ mov(Rtemp, 0);
 439 
 440   int null_check_offset = code_offset();
 441   __ str(Rtemp, as_Address(dest->as_address_ptr()));
 442 
 443   if (info != NULL) {
 444     assert(false, "arm32 didn't support this before, investigate if bug");
 445     add_debug_info_for_null_check(null_check_offset, info);
 446   }
 447 }
 448 
 449 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 450   assert(src->is_register() && dest->is_register(), "must be");
 451 
 452   if (src->is_single_cpu()) {
 453     if (dest->is_single_cpu()) {
 454       move_regs(src->as_register(), dest->as_register());
 455     } else if (dest->is_single_fpu()) {
 456       __ fmsr(dest->as_float_reg(), src->as_register());
 457     } else {
 458       ShouldNotReachHere();
 459     }
 460   } else if (src->is_double_cpu()) {
 461     if (dest->is_double_cpu()) {
 462       __ long_move(dest->as_register_lo(), dest->as_register_hi(), src->as_register_lo(), src->as_register_hi());
 463     } else {
 464       __ fmdrr(dest->as_double_reg(), src->as_register_lo(), src->as_register_hi());
 465     }
 466   } else if (src->is_single_fpu()) {
 467     if (dest->is_single_fpu()) {
 468       __ mov_float(dest->as_float_reg(), src->as_float_reg());
 469     } else if (dest->is_single_cpu()) {
 470       __ mov_fpr2gpr_float(dest->as_register(), src->as_float_reg());
 471     } else {
 472       ShouldNotReachHere();
 473     }
 474   } else if (src->is_double_fpu()) {
 475     if (dest->is_double_fpu()) {
 476       __ mov_double(dest->as_double_reg(), src->as_double_reg());
 477     } else if (dest->is_double_cpu()) {
 478       __ fmrrd(dest->as_register_lo(), dest->as_register_hi(), src->as_double_reg());
 479     } else {
 480       ShouldNotReachHere();
 481     }
 482   } else {
 483     ShouldNotReachHere();
 484   }
 485 }
 486 
 487 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 488   assert(src->is_register(), "should not call otherwise");
 489   assert(dest->is_stack(), "should not call otherwise");
 490 
 491   Address addr = dest->is_single_word() ?
 492     frame_map()->address_for_slot(dest->single_stack_ix()) :
 493     frame_map()->address_for_slot(dest->double_stack_ix());
 494 
 495   assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending");
 496   if (src->is_single_fpu() || src->is_double_fpu()) {
 497     if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); }
 498   }
 499 
 500   if (src->is_single_cpu()) {
 501     switch (type) {
 502       case T_OBJECT:
 503       case T_ARRAY:    __ verify_oop(src->as_register());   // fall through
 504       case T_ADDRESS:
 505       case T_METADATA: __ str(src->as_register(), addr);    break;
 506       case T_FLOAT:    // used in intBitsToFloat intrinsic implementation, fall through
 507       case T_INT:      __ str_32(src->as_register(), addr); break;
 508       default:
 509         ShouldNotReachHere();
 510     }
 511   } else if (src->is_double_cpu()) {
 512     __ str(src->as_register_lo(), addr);
 513     __ str(src->as_register_hi(), frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
 514   } else if (src->is_single_fpu()) {
 515     __ str_float(src->as_float_reg(), addr);
 516   } else if (src->is_double_fpu()) {
 517     __ str_double(src->as_double_reg(), addr);
 518   } else {
 519     ShouldNotReachHere();
 520   }
 521 }
 522 
 523 
 524 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type,
 525                             LIR_PatchCode patch_code, CodeEmitInfo* info,
 526                             bool pop_fpu_stack, bool wide,
 527                             bool unaligned) {
 528   LIR_Address* to_addr = dest->as_address_ptr();
 529   Register base_reg = to_addr->base()->as_pointer_register();
 530   const bool needs_patching = (patch_code != lir_patch_none);
 531 
 532   PatchingStub* patch = NULL;
 533   if (needs_patching) {
 534     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 535   }
 536 
 537   int null_check_offset = code_offset();
 538 
 539   switch (type) {
 540     case T_ARRAY:
 541     case T_OBJECT:
 542       if (UseCompressedOops && !wide) {
 543         ShouldNotReachHere();
 544       } else {
 545         __ str(src->as_register(), as_Address(to_addr));
 546       }
 547       break;
 548 
 549     case T_ADDRESS:
 550       __ str(src->as_pointer_register(), as_Address(to_addr));
 551       break;
 552 
 553     case T_BYTE:
 554     case T_BOOLEAN:
 555       __ strb(src->as_register(), as_Address(to_addr));
 556       break;
 557 
 558     case T_CHAR:
 559     case T_SHORT:
 560       __ strh(src->as_register(), as_Address(to_addr));
 561       break;
 562 
 563     case T_INT:
 564 #ifdef __SOFTFP__
 565     case T_FLOAT:
 566 #endif // __SOFTFP__
 567       __ str_32(src->as_register(), as_Address(to_addr));
 568       break;
 569 
 570 
 571 #ifdef __SOFTFP__
 572     case T_DOUBLE:
 573 #endif // __SOFTFP__
 574     case T_LONG: {
 575       Register from_lo = src->as_register_lo();
 576       Register from_hi = src->as_register_hi();
 577       if (to_addr->index()->is_register()) {
 578         assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 579         assert(to_addr->disp() == 0, "Not yet supporting both");
 580         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 581         base_reg = Rtemp;
 582         __ str(from_lo, Address(Rtemp));
 583         if (patch != NULL) {
 584           __ nop(); // see comment before patching_epilog for 2nd str
 585           patching_epilog(patch, lir_patch_low, base_reg, info);
 586           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 587           patch_code = lir_patch_high;
 588         }
 589         __ str(from_hi, Address(Rtemp, BytesPerWord));
 590       } else if (base_reg == from_lo) {
 591         __ str(from_hi, as_Address_hi(to_addr));
 592         if (patch != NULL) {
 593           __ nop(); // see comment before patching_epilog for 2nd str
 594           patching_epilog(patch, lir_patch_high, base_reg, info);
 595           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 596           patch_code = lir_patch_low;
 597         }
 598         __ str(from_lo, as_Address_lo(to_addr));
 599       } else {
 600         __ str(from_lo, as_Address_lo(to_addr));
 601         if (patch != NULL) {
 602           __ nop(); // see comment before patching_epilog for 2nd str
 603           patching_epilog(patch, lir_patch_low, base_reg, info);
 604           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 605           patch_code = lir_patch_high;
 606         }
 607         __ str(from_hi, as_Address_hi(to_addr));
 608       }
 609       break;
 610     }
 611 
 612 #ifndef __SOFTFP__
 613     case T_FLOAT:
 614       if (to_addr->index()->is_register()) {
 615         assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 616         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 617         if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 618         __ fsts(src->as_float_reg(), Address(Rtemp, to_addr->disp()));
 619       } else {
 620         __ fsts(src->as_float_reg(), as_Address(to_addr));
 621       }
 622       break;
 623 
 624     case T_DOUBLE:
 625       if (to_addr->index()->is_register()) {
 626         assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 627         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 628         if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 629         __ fstd(src->as_double_reg(), Address(Rtemp, to_addr->disp()));
 630       } else {
 631         __ fstd(src->as_double_reg(), as_Address(to_addr));
 632       }
 633       break;
 634 #endif // __SOFTFP__
 635 
 636 
 637     default:
 638       ShouldNotReachHere();
 639   }
 640 
 641   if (info != NULL) {
 642     add_debug_info_for_null_check(null_check_offset, info);
 643   }
 644 
 645   if (patch != NULL) {
 646     // Offset embedded into LDR/STR instruction may appear not enough
 647     // to address a field. So, provide a space for one more instruction
 648     // that will deal with larger offsets.
 649     __ nop();
 650     patching_epilog(patch, patch_code, base_reg, info);
 651   }
 652 }
 653 
 654 
 655 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 656   assert(src->is_stack(), "should not call otherwise");
 657   assert(dest->is_register(), "should not call otherwise");
 658 
 659   Address addr = src->is_single_word() ?
 660     frame_map()->address_for_slot(src->single_stack_ix()) :
 661     frame_map()->address_for_slot(src->double_stack_ix());
 662 
 663   assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending");
 664   if (dest->is_single_fpu() || dest->is_double_fpu()) {
 665     if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); }
 666   }
 667 
 668   if (dest->is_single_cpu()) {
 669     switch (type) {
 670       case T_OBJECT:
 671       case T_ARRAY:
 672       case T_ADDRESS:
 673       case T_METADATA: __ ldr(dest->as_register(), addr); break;
 674       case T_FLOAT:    // used in floatToRawIntBits intrinsic implemenation
 675       case T_INT:      __ ldr_u32(dest->as_register(), addr); break;
 676       default:
 677         ShouldNotReachHere();
 678     }
 679     if ((type == T_OBJECT) || (type == T_ARRAY)) {
 680       __ verify_oop(dest->as_register());
 681     }
 682   } else if (dest->is_double_cpu()) {
 683     __ ldr(dest->as_register_lo(), addr);
 684     __ ldr(dest->as_register_hi(), frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes));
 685   } else if (dest->is_single_fpu()) {
 686     __ ldr_float(dest->as_float_reg(), addr);
 687   } else if (dest->is_double_fpu()) {
 688     __ ldr_double(dest->as_double_reg(), addr);
 689   } else {
 690     ShouldNotReachHere();
 691   }
 692 }
 693 
 694 
 695 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 696   if (src->is_single_stack()) {
 697     switch (src->type()) {
 698       case T_OBJECT:
 699       case T_ARRAY:
 700       case T_ADDRESS:
 701       case T_METADATA:
 702         __ ldr(Rtemp, frame_map()->address_for_slot(src->single_stack_ix()));
 703         __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 704         break;
 705 
 706       case T_INT:
 707       case T_FLOAT:
 708         __ ldr_u32(Rtemp, frame_map()->address_for_slot(src->single_stack_ix()));
 709         __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 710         break;
 711 
 712       default:
 713         ShouldNotReachHere();
 714     }
 715   } else {
 716     assert(src->is_double_stack(), "must be");
 717     __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes));
 718     __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes));
 719     __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes));
 720     __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
 721   }
 722 }
 723 
 724 
 725 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type,
 726                             LIR_PatchCode patch_code, CodeEmitInfo* info,
 727                             bool wide, bool unaligned) {
 728   assert(src->is_address(), "should not call otherwise");
 729   assert(dest->is_register(), "should not call otherwise");
 730   LIR_Address* addr = src->as_address_ptr();
 731 
 732   Register base_reg = addr->base()->as_pointer_register();
 733 
 734   PatchingStub* patch = NULL;
 735   if (patch_code != lir_patch_none) {
 736     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 737   }
 738   if (info != NULL) {
 739     add_debug_info_for_null_check_here(info);
 740   }
 741 
 742   switch (type) {
 743     case T_OBJECT:  // fall through
 744     case T_ARRAY:
 745       if (UseCompressedOops && !wide) {
 746         __ ldr_u32(dest->as_register(), as_Address(addr));
 747       } else {
 748         __ ldr(dest->as_register(), as_Address(addr));
 749       }
 750       break;
 751 
 752     case T_ADDRESS:
 753       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
 754         __ ldr_u32(dest->as_pointer_register(), as_Address(addr));
 755       } else {
 756         __ ldr(dest->as_pointer_register(), as_Address(addr));
 757       }
 758       break;
 759 
 760     case T_INT:
 761 #ifdef __SOFTFP__
 762     case T_FLOAT:
 763 #endif // __SOFTFP__
 764       __ ldr(dest->as_pointer_register(), as_Address(addr));
 765       break;
 766 
 767     case T_BOOLEAN:
 768       __ ldrb(dest->as_register(), as_Address(addr));
 769       break;
 770 
 771     case T_BYTE:
 772       __ ldrsb(dest->as_register(), as_Address(addr));
 773       break;
 774 
 775     case T_CHAR:
 776       __ ldrh(dest->as_register(), as_Address(addr));
 777       break;
 778 
 779     case T_SHORT:
 780       __ ldrsh(dest->as_register(), as_Address(addr));
 781       break;
 782 
 783 
 784 #ifdef __SOFTFP__
 785     case T_DOUBLE:
 786 #endif // __SOFTFP__
 787     case T_LONG: {
 788       Register to_lo = dest->as_register_lo();
 789       Register to_hi = dest->as_register_hi();
 790       if (addr->index()->is_register()) {
 791         assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 792         assert(addr->disp() == 0, "Not yet supporting both");
 793         __ add(Rtemp, base_reg, addr->index()->as_register());
 794         base_reg = Rtemp;
 795         __ ldr(to_lo, Address(Rtemp));
 796         if (patch != NULL) {
 797           __ nop(); // see comment before patching_epilog for 2nd ldr
 798           patching_epilog(patch, lir_patch_low, base_reg, info);
 799           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 800           patch_code = lir_patch_high;
 801         }
 802         __ ldr(to_hi, Address(Rtemp, BytesPerWord));
 803       } else if (base_reg == to_lo) {
 804         __ ldr(to_hi, as_Address_hi(addr));
 805         if (patch != NULL) {
 806           __ nop(); // see comment before patching_epilog for 2nd ldr
 807           patching_epilog(patch, lir_patch_high, base_reg, info);
 808           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 809           patch_code = lir_patch_low;
 810         }
 811         __ ldr(to_lo, as_Address_lo(addr));
 812       } else {
 813         __ ldr(to_lo, as_Address_lo(addr));
 814         if (patch != NULL) {
 815           __ nop(); // see comment before patching_epilog for 2nd ldr
 816           patching_epilog(patch, lir_patch_low, base_reg, info);
 817           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 818           patch_code = lir_patch_high;
 819         }
 820         __ ldr(to_hi, as_Address_hi(addr));
 821       }
 822       break;
 823     }
 824 
 825 #ifndef __SOFTFP__
 826     case T_FLOAT:
 827       if (addr->index()->is_register()) {
 828         assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 829         __ add(Rtemp, base_reg, addr->index()->as_register());
 830         if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 831         __ flds(dest->as_float_reg(), Address(Rtemp, addr->disp()));
 832       } else {
 833         __ flds(dest->as_float_reg(), as_Address(addr));
 834       }
 835       break;
 836 
 837     case T_DOUBLE:
 838       if (addr->index()->is_register()) {
 839         assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 840         __ add(Rtemp, base_reg, addr->index()->as_register());
 841         if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 842         __ fldd(dest->as_double_reg(), Address(Rtemp, addr->disp()));
 843       } else {
 844         __ fldd(dest->as_double_reg(), as_Address(addr));
 845       }
 846       break;
 847 #endif // __SOFTFP__
 848 
 849 
 850     default:
 851       ShouldNotReachHere();
 852   }
 853 
 854   if (patch != NULL) {
 855     // Offset embedded into LDR/STR instruction may appear not enough
 856     // to address a field. So, provide a space for one more instruction
 857     // that will deal with larger offsets.
 858     __ nop();
 859     patching_epilog(patch, patch_code, base_reg, info);
 860   }
 861 
 862 }
 863 
 864 
 865 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 866   bool is_32 = op->result_opr()->is_single_cpu();
 867 
 868   if (op->code() == lir_idiv && op->in_opr2()->is_constant() && is_32) {
 869     int c = op->in_opr2()->as_constant_ptr()->as_jint();
 870     assert(is_power_of_2(c), "non power-of-2 constant should be put in a register");
 871 
 872     Register left = op->in_opr1()->as_register();
 873     Register dest = op->result_opr()->as_register();
 874     if (c == 1) {
 875       __ mov(dest, left);
 876     } else if (c == 2) {
 877       __ add_32(dest, left, AsmOperand(left, lsr, 31));
 878       __ asr_32(dest, dest, 1);
 879     } else if (c != (int) 0x80000000) {
 880       int power = log2_intptr(c);
 881       __ asr_32(Rtemp, left, 31);
 882       __ add_32(dest, left, AsmOperand(Rtemp, lsr, 32-power)); // dest = left + (left < 0 ? 2^power - 1 : 0);
 883       __ asr_32(dest, dest, power);                            // dest = dest >>> power;
 884     } else {
 885       // x/0x80000000 is a special case, since dividend is a power of two, but is negative.
 886       // The only possible result values are 0 and 1, with 1 only for dividend == divisor == 0x80000000.
 887       __ cmp_32(left, c);
 888       __ mov(dest, 0, ne);
 889       __ mov(dest, 1, eq);
 890     }
 891   } else {
 892     assert(op->code() == lir_idiv || op->code() == lir_irem, "unexpected op3");
 893     __ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::runtime_call_type);
 894     add_debug_info_for_div0_here(op->info());
 895   }
 896 }
 897 
 898 
 899 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 900 #ifdef ASSERT
 901   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 902   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 903   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 904   assert(op->info() == NULL, "CodeEmitInfo?");
 905 #endif // ASSERT
 906 
 907 #ifdef __SOFTFP__
 908   assert (op->code() != lir_cond_float_branch, "this should be impossible");
 909 #else
 910   if (op->code() == lir_cond_float_branch) {
 911     __ fmstat();
 912     __ b(*(op->ublock()->label()), vs);
 913   }
 914 #endif // __SOFTFP__
 915 
 916   AsmCondition acond = al;
 917   switch (op->cond()) {
 918     case lir_cond_equal:        acond = eq; break;
 919     case lir_cond_notEqual:     acond = ne; break;
 920     case lir_cond_less:         acond = lt; break;
 921     case lir_cond_lessEqual:    acond = le; break;
 922     case lir_cond_greaterEqual: acond = ge; break;
 923     case lir_cond_greater:      acond = gt; break;
 924     case lir_cond_aboveEqual:   acond = hs; break;
 925     case lir_cond_belowEqual:   acond = ls; break;
 926     default: assert(op->cond() == lir_cond_always, "must be");
 927   }
 928   __ b(*(op->label()), acond);
 929 }
 930 
 931 
 932 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 933   LIR_Opr src  = op->in_opr();
 934   LIR_Opr dest = op->result_opr();
 935 
 936   switch (op->bytecode()) {
 937     case Bytecodes::_i2l:
 938       move_regs(src->as_register(), dest->as_register_lo());
 939       __ mov(dest->as_register_hi(), AsmOperand(src->as_register(), asr, 31));
 940       break;
 941     case Bytecodes::_l2i:
 942       move_regs(src->as_register_lo(), dest->as_register());
 943       break;
 944     case Bytecodes::_i2b:
 945       __ sign_extend(dest->as_register(), src->as_register(), 8);
 946       break;
 947     case Bytecodes::_i2s:
 948       __ sign_extend(dest->as_register(), src->as_register(), 16);
 949       break;
 950     case Bytecodes::_i2c:
 951       __ zero_extend(dest->as_register(), src->as_register(), 16);
 952       break;
 953     case Bytecodes::_f2d:
 954       __ convert_f2d(dest->as_double_reg(), src->as_float_reg());
 955       break;
 956     case Bytecodes::_d2f:
 957       __ convert_d2f(dest->as_float_reg(), src->as_double_reg());
 958       break;
 959     case Bytecodes::_i2f:
 960       __ fmsr(Stemp, src->as_register());
 961       __ fsitos(dest->as_float_reg(), Stemp);
 962       break;
 963     case Bytecodes::_i2d:
 964       __ fmsr(Stemp, src->as_register());
 965       __ fsitod(dest->as_double_reg(), Stemp);
 966       break;
 967     case Bytecodes::_f2i:
 968       __ ftosizs(Stemp, src->as_float_reg());
 969       __ fmrs(dest->as_register(), Stemp);
 970       break;
 971     case Bytecodes::_d2i:
 972       __ ftosizd(Stemp, src->as_double_reg());
 973       __ fmrs(dest->as_register(), Stemp);
 974       break;
 975     default:
 976       ShouldNotReachHere();
 977   }
 978 }
 979 
 980 
 981 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
 982   if (op->init_check()) {
 983     Register tmp = op->tmp1()->as_register();
 984     __ ldrb(tmp, Address(op->klass()->as_register(), InstanceKlass::init_state_offset()));
 985     add_debug_info_for_null_check_here(op->stub()->info());
 986     __ cmp(tmp, InstanceKlass::fully_initialized);
 987     __ b(*op->stub()->entry(), ne);
 988   }
 989   __ allocate_object(op->obj()->as_register(),
 990                      op->tmp1()->as_register(),
 991                      op->tmp2()->as_register(),
 992                      op->tmp3()->as_register(),
 993                      op->header_size(),
 994                      op->object_size(),
 995                      op->klass()->as_register(),
 996                      *op->stub()->entry());
 997   __ bind(*op->stub()->continuation());
 998 }
 999 
1000 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1001   if (UseSlowPath ||
1002       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1003       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1004     __ b(*op->stub()->entry());
1005   } else {
1006     __ allocate_array(op->obj()->as_register(),
1007                       op->len()->as_register(),
1008                       op->tmp1()->as_register(),
1009                       op->tmp2()->as_register(),
1010                       op->tmp3()->as_register(),
1011                       arrayOopDesc::header_size(op->type()),
1012                       type2aelembytes(op->type()),
1013                       op->klass()->as_register(),
1014                       *op->stub()->entry());
1015   }
1016   __ bind(*op->stub()->continuation());
1017 }
1018 
1019 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
1020                                         ciMethodData *md, ciProfileData *data,
1021                                         Register recv, Register tmp1, Label* update_done) {
1022   assert_different_registers(mdo, recv, tmp1);
1023   uint i;
1024   for (i = 0; i < VirtualCallData::row_limit(); i++) {
1025     Label next_test;
1026     // See if the receiver is receiver[n].
1027     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
1028                           mdo_offset_bias);
1029     __ ldr(tmp1, receiver_addr);
1030     __ verify_klass_ptr(tmp1);
1031     __ cmp(recv, tmp1);
1032     __ b(next_test, ne);
1033     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
1034                       mdo_offset_bias);
1035     __ ldr(tmp1, data_addr);
1036     __ add(tmp1, tmp1, DataLayout::counter_increment);
1037     __ str(tmp1, data_addr);
1038     __ b(*update_done);
1039     __ bind(next_test);
1040   }
1041 
1042   // Didn't find receiver; find next empty slot and fill it in
1043   for (i = 0; i < VirtualCallData::row_limit(); i++) {
1044     Label next_test;
1045     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
1046                       mdo_offset_bias);
1047     __ ldr(tmp1, recv_addr);
1048     __ cbnz(tmp1, next_test);
1049     __ str(recv, recv_addr);
1050     __ mov(tmp1, DataLayout::counter_increment);
1051     __ str(tmp1, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
1052                          mdo_offset_bias));
1053     __ b(*update_done);
1054     __ bind(next_test);
1055   }
1056 }
1057 
1058 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
1059                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
1060   md = method->method_data_or_null();
1061   assert(md != NULL, "Sanity");
1062   data = md->bci_to_data(bci);
1063   assert(data != NULL,       "need data for checkcast");
1064   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1065   if (md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes() >= 4096) {
1066     // The offset is large so bias the mdo by the base of the slot so
1067     // that the ldr can use an immediate offset to reference the slots of the data
1068     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
1069   }
1070 }
1071 
1072 // On 32-bit ARM, code before this helper should test obj for null (ZF should be set if obj is null).
1073 void LIR_Assembler::typecheck_profile_helper1(ciMethod* method, int bci,
1074                                               ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias,
1075                                               Register obj, Register mdo, Register data_val, Label* obj_is_null) {
1076   assert(method != NULL, "Should have method");
1077   assert_different_registers(obj, mdo, data_val);
1078   setup_md_access(method, bci, md, data, mdo_offset_bias);
1079   Label not_null;
1080   __ b(not_null, ne);
1081   __ mov_metadata(mdo, md->constant_encoding());
1082   if (mdo_offset_bias > 0) {
1083     __ mov_slow(data_val, mdo_offset_bias);
1084     __ add(mdo, mdo, data_val);
1085   }
1086   Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
1087   __ ldrb(data_val, flags_addr);
1088   __ orr(data_val, data_val, (uint)BitData::null_seen_byte_constant());
1089   __ strb(data_val, flags_addr);
1090   __ b(*obj_is_null);
1091   __ bind(not_null);
1092 }
1093 
1094 void LIR_Assembler::typecheck_profile_helper2(ciMethodData* md, ciProfileData* data, int mdo_offset_bias,
1095                                               Register mdo, Register recv, Register value, Register tmp1,
1096                                               Label* profile_cast_success, Label* profile_cast_failure,
1097                                               Label* success, Label* failure) {
1098   assert_different_registers(mdo, value, tmp1);
1099   __ bind(*profile_cast_success);
1100   __ mov_metadata(mdo, md->constant_encoding());
1101   if (mdo_offset_bias > 0) {
1102     __ mov_slow(tmp1, mdo_offset_bias);
1103     __ add(mdo, mdo, tmp1);
1104   }
1105   __ load_klass(recv, value);
1106   type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
1107   __ b(*success);
1108   // Cast failure case
1109   __ bind(*profile_cast_failure);
1110   __ mov_metadata(mdo, md->constant_encoding());
1111   if (mdo_offset_bias > 0) {
1112     __ mov_slow(tmp1, mdo_offset_bias);
1113     __ add(mdo, mdo, tmp1);
1114   }
1115   Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
1116   __ ldr(tmp1, data_addr);
1117   __ sub(tmp1, tmp1, DataLayout::counter_increment);
1118   __ str(tmp1, data_addr);
1119   __ b(*failure);
1120 }
1121 
1122 // Sets `res` to true, if `cond` holds.
1123 static void set_instanceof_result(MacroAssembler* _masm, Register res, AsmCondition cond) {
1124   __ mov(res, 1, cond);
1125 }
1126 
1127 
1128 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1129   // TODO: ARM - can be more effective with one more register
1130   switch (op->code()) {
1131     case lir_store_check: {
1132       CodeStub* stub = op->stub();
1133       Register value = op->object()->as_register();
1134       Register array = op->array()->as_register();
1135       Register klass_RInfo = op->tmp1()->as_register();
1136       Register k_RInfo = op->tmp2()->as_register();
1137       assert_different_registers(klass_RInfo, k_RInfo, Rtemp);
1138       if (op->should_profile()) {
1139         assert_different_registers(value, klass_RInfo, k_RInfo, Rtemp);
1140       }
1141 
1142       // check if it needs to be profiled
1143       ciMethodData* md;
1144       ciProfileData* data;
1145       int mdo_offset_bias = 0;
1146       Label profile_cast_success, profile_cast_failure, done;
1147       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1148       Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1149 
1150       if (op->should_profile()) {
1151         __ cmp(value, 0);
1152         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, value, k_RInfo, Rtemp, &done);
1153       } else {
1154         __ cbz(value, done);
1155       }
1156       assert_different_registers(k_RInfo, value);
1157       add_debug_info_for_null_check_here(op->info_for_exception());
1158       __ load_klass(k_RInfo, array);
1159       __ load_klass(klass_RInfo, value);
1160       __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1161       __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1162       // check for immediate positive hit
1163       __ ldr(Rtemp, Address(klass_RInfo, Rtemp));
1164       __ cmp(klass_RInfo, k_RInfo);
1165       __ cond_cmp(Rtemp, k_RInfo, ne);
1166       __ b(*success_target, eq);
1167       // check for immediate negative hit
1168       __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1169       __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1170       __ b(*failure_target, ne);
1171       // slow case
1172       assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1173       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1174       __ cbz(R0, *failure_target);
1175       if (op->should_profile()) {
1176         Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
1177         if (mdo == value) {
1178           mdo = k_RInfo;
1179           recv = klass_RInfo;
1180         }
1181         typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, value, tmp1,
1182                                   &profile_cast_success, &profile_cast_failure,
1183                                   &done, stub->entry());
1184       }
1185       __ bind(done);
1186       break;
1187     }
1188 
1189     case lir_checkcast: {
1190       CodeStub* stub = op->stub();
1191       Register obj = op->object()->as_register();
1192       Register res = op->result_opr()->as_register();
1193       Register klass_RInfo = op->tmp1()->as_register();
1194       Register k_RInfo = op->tmp2()->as_register();
1195       ciKlass* k = op->klass();
1196       assert_different_registers(res, k_RInfo, klass_RInfo, Rtemp);
1197 
1198       if (stub->is_simple_exception_stub()) {
1199       // TODO: ARM - Late binding is used to prevent confusion of register allocator
1200       assert(stub->is_exception_throw_stub(), "must be");
1201       ((SimpleExceptionStub*)stub)->set_obj(op->result_opr());
1202       }
1203       ciMethodData* md;
1204       ciProfileData* data;
1205       int mdo_offset_bias = 0;
1206 
1207       Label done;
1208 
1209       Label profile_cast_failure, profile_cast_success;
1210       Label *failure_target = op->should_profile() ? &profile_cast_failure : op->stub()->entry();
1211       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1212 
1213 
1214       __ movs(res, obj);
1215       if (op->should_profile()) {
1216         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done);
1217       } else {
1218         __ b(done, eq);
1219       }
1220       if (k->is_loaded()) {
1221         __ mov_metadata(k_RInfo, k->constant_encoding());
1222       } else if (k_RInfo != obj) {
1223         klass2reg_with_patching(k_RInfo, op->info_for_patch());
1224         __ movs(res, obj);
1225       } else {
1226         // Patching doesn't update "res" register after GC, so do patching first
1227         klass2reg_with_patching(Rtemp, op->info_for_patch());
1228         __ movs(res, obj);
1229         __ mov(k_RInfo, Rtemp);
1230       }
1231       __ load_klass(klass_RInfo, res, ne);
1232 
1233       if (op->fast_check()) {
1234         __ cmp(klass_RInfo, k_RInfo, ne);
1235         __ b(*failure_target, ne);
1236       } else if (k->is_loaded()) {
1237         __ b(*success_target, eq);
1238         __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset()));
1239         if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) {
1240           __ cmp(Rtemp, k_RInfo);
1241           __ b(*failure_target, ne);
1242         } else {
1243           __ cmp(klass_RInfo, k_RInfo);
1244           __ cmp(Rtemp, k_RInfo, ne);
1245           __ b(*success_target, eq);
1246           assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1247           __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1248           __ cbz(R0, *failure_target);
1249         }
1250       } else {
1251         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1252         __ b(*success_target, eq);
1253         // check for immediate positive hit
1254         __ ldr(Rtemp, Address(klass_RInfo, Rtemp));
1255         __ cmp(klass_RInfo, k_RInfo);
1256         __ cmp(Rtemp, k_RInfo, ne);
1257         __ b(*success_target, eq);
1258         // check for immediate negative hit
1259         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1260         __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1261         __ b(*failure_target, ne);
1262         // slow case
1263         assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1264         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1265         __ cbz(R0, *failure_target);
1266       }
1267 
1268       if (op->should_profile()) {
1269         Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
1270         typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1,
1271                                   &profile_cast_success, &profile_cast_failure,
1272                                   &done, stub->entry());
1273       }
1274       __ bind(done);
1275       break;
1276     }
1277 
1278     case lir_instanceof: {
1279       Register obj = op->object()->as_register();
1280       Register res = op->result_opr()->as_register();
1281       Register klass_RInfo = op->tmp1()->as_register();
1282       Register k_RInfo = op->tmp2()->as_register();
1283       ciKlass* k = op->klass();
1284       assert_different_registers(res, klass_RInfo, k_RInfo, Rtemp);
1285 
1286       ciMethodData* md;
1287       ciProfileData* data;
1288       int mdo_offset_bias = 0;
1289 
1290       Label done;
1291 
1292       Label profile_cast_failure, profile_cast_success;
1293       Label *failure_target = op->should_profile() ? &profile_cast_failure : &done;
1294       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1295 
1296       __ movs(res, obj);
1297 
1298       if (op->should_profile()) {
1299         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done);
1300       } else {
1301         __ b(done, eq);
1302       }
1303 
1304       if (k->is_loaded()) {
1305         __ mov_metadata(k_RInfo, k->constant_encoding());
1306       } else {
1307         op->info_for_patch()->add_register_oop(FrameMap::as_oop_opr(res));
1308         klass2reg_with_patching(k_RInfo, op->info_for_patch());
1309       }
1310       __ load_klass(klass_RInfo, res);
1311 
1312       if (!op->should_profile()) {
1313         __ mov(res, 0);
1314       }
1315 
1316       if (op->fast_check()) {
1317         __ cmp(klass_RInfo, k_RInfo);
1318         if (!op->should_profile()) {
1319           set_instanceof_result(_masm, res, eq);
1320         } else {
1321           __ b(profile_cast_failure, ne);
1322         }
1323       } else if (k->is_loaded()) {
1324         __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset()));
1325         if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) {
1326           __ cmp(Rtemp, k_RInfo);
1327           if (!op->should_profile()) {
1328             set_instanceof_result(_masm, res, eq);
1329           } else {
1330             __ b(profile_cast_failure, ne);
1331           }
1332         } else {
1333           __ cmp(klass_RInfo, k_RInfo);
1334           __ cond_cmp(Rtemp, k_RInfo, ne);
1335           if (!op->should_profile()) {
1336             set_instanceof_result(_masm, res, eq);
1337           }
1338           __ b(*success_target, eq);
1339           assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1340           __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1341           if (!op->should_profile()) {
1342             move_regs(R0, res);
1343           } else {
1344             __ cbz(R0, *failure_target);
1345           }
1346         }
1347       } else {
1348         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1349         // check for immediate positive hit
1350         __ cmp(klass_RInfo, k_RInfo);
1351         if (!op->should_profile()) {
1352           __ ldr(res, Address(klass_RInfo, Rtemp), ne);
1353           __ cond_cmp(res, k_RInfo, ne);
1354           set_instanceof_result(_masm, res, eq);
1355         } else {
1356           __ ldr(Rtemp, Address(klass_RInfo, Rtemp), ne);
1357           __ cond_cmp(Rtemp, k_RInfo, ne);
1358         }
1359         __ b(*success_target, eq);
1360         // check for immediate negative hit
1361         if (op->should_profile()) {
1362           __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1363         }
1364         __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1365         if (!op->should_profile()) {
1366           __ mov(res, 0, ne);
1367         }
1368         __ b(*failure_target, ne);
1369         // slow case
1370         assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1371         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1372         if (!op->should_profile()) {
1373           move_regs(R0, res);
1374         }
1375         if (op->should_profile()) {
1376           __ cbz(R0, *failure_target);
1377         }
1378       }
1379 
1380       if (op->should_profile()) {
1381         Label done_ok, done_failure;
1382         Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
1383         typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1,
1384                                   &profile_cast_success, &profile_cast_failure,
1385                                   &done_ok, &done_failure);
1386         __ bind(done_failure);
1387         __ mov(res, 0);
1388         __ b(done);
1389         __ bind(done_ok);
1390         __ mov(res, 1);
1391       }
1392       __ bind(done);
1393       break;
1394     }
1395     default:
1396       ShouldNotReachHere();
1397   }
1398 }
1399 
1400 
1401 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1402   //   if (*addr == cmpval) {
1403   //     *addr = newval;
1404   //     dest = 1;
1405   //   } else {
1406   //     dest = 0;
1407   //   }
1408   // FIXME: membar_release
1409   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
1410   Register addr = op->addr()->is_register() ?
1411     op->addr()->as_pointer_register() :
1412     op->addr()->as_address_ptr()->base()->as_pointer_register();
1413   assert(op->addr()->is_register() || op->addr()->as_address_ptr()->disp() == 0, "unexpected disp");
1414   assert(op->addr()->is_register() || op->addr()->as_address_ptr()->index() == LIR_OprDesc::illegalOpr(), "unexpected index");
1415   if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
1416     Register cmpval = op->cmp_value()->as_register();
1417     Register newval = op->new_value()->as_register();
1418     Register dest = op->result_opr()->as_register();
1419     assert_different_registers(dest, addr, cmpval, newval, Rtemp);
1420 
1421     __ atomic_cas_bool(cmpval, newval, addr, 0, Rtemp); // Rtemp free by default at C1 LIR layer
1422     __ mov(dest, 1, eq);
1423     __ mov(dest, 0, ne);
1424   } else if (op->code() == lir_cas_long) {
1425     assert(VM_Version::supports_cx8(), "wrong machine");
1426     Register cmp_value_lo = op->cmp_value()->as_register_lo();
1427     Register cmp_value_hi = op->cmp_value()->as_register_hi();
1428     Register new_value_lo = op->new_value()->as_register_lo();
1429     Register new_value_hi = op->new_value()->as_register_hi();
1430     Register dest = op->result_opr()->as_register();
1431     Register tmp_lo = op->tmp1()->as_register_lo();
1432     Register tmp_hi = op->tmp1()->as_register_hi();
1433 
1434     assert_different_registers(tmp_lo, tmp_hi, cmp_value_lo, cmp_value_hi, dest, new_value_lo, new_value_hi, addr);
1435     assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair");
1436     assert(new_value_hi->encoding() == new_value_lo->encoding() + 1, "non aligned register pair");
1437     assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair");
1438     assert((new_value_lo->encoding() & 0x1) == 0, "misaligned register pair");
1439     __ atomic_cas64(tmp_lo, tmp_hi, dest, cmp_value_lo, cmp_value_hi,
1440                     new_value_lo, new_value_hi, addr, 0);
1441   } else {
1442     Unimplemented();
1443   }
1444   // FIXME: is full membar really needed instead of just membar_acquire?
1445   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
1446 }
1447 
1448 
1449 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1450   AsmCondition acond = al;
1451   AsmCondition ncond = nv;
1452   if (opr1 != opr2) {
1453     switch (condition) {
1454       case lir_cond_equal:        acond = eq; ncond = ne; break;
1455       case lir_cond_notEqual:     acond = ne; ncond = eq; break;
1456       case lir_cond_less:         acond = lt; ncond = ge; break;
1457       case lir_cond_lessEqual:    acond = le; ncond = gt; break;
1458       case lir_cond_greaterEqual: acond = ge; ncond = lt; break;
1459       case lir_cond_greater:      acond = gt; ncond = le; break;
1460       case lir_cond_aboveEqual:   acond = hs; ncond = lo; break;
1461       case lir_cond_belowEqual:   acond = ls; ncond = hi; break;
1462       default: ShouldNotReachHere();
1463     }
1464   }
1465 
1466   for (;;) {                         // two iterations only
1467     if (opr1 == result) {
1468       // do nothing
1469     } else if (opr1->is_single_cpu()) {
1470       __ mov(result->as_register(), opr1->as_register(), acond);
1471     } else if (opr1->is_double_cpu()) {
1472       __ long_move(result->as_register_lo(), result->as_register_hi(),
1473                    opr1->as_register_lo(), opr1->as_register_hi(), acond);
1474     } else if (opr1->is_single_stack()) {
1475       __ ldr(result->as_register(), frame_map()->address_for_slot(opr1->single_stack_ix()), acond);
1476     } else if (opr1->is_double_stack()) {
1477       __ ldr(result->as_register_lo(),
1478              frame_map()->address_for_slot(opr1->double_stack_ix(), lo_word_offset_in_bytes), acond);
1479       __ ldr(result->as_register_hi(),
1480              frame_map()->address_for_slot(opr1->double_stack_ix(), hi_word_offset_in_bytes), acond);
1481     } else if (opr1->is_illegal()) {
1482       // do nothing: this part of the cmove has been optimized away in the peephole optimizer
1483     } else {
1484       assert(opr1->is_constant(), "must be");
1485       LIR_Const* c = opr1->as_constant_ptr();
1486 
1487       switch (c->type()) {
1488         case T_INT:
1489           __ mov_slow(result->as_register(), c->as_jint(), acond);
1490           break;
1491         case T_LONG:
1492           __ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond);
1493           __ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond);
1494           break;
1495         case T_OBJECT:
1496           __ mov_oop(result->as_register(), c->as_jobject(), 0, acond);
1497           break;
1498         case T_FLOAT:
1499 #ifdef __SOFTFP__
1500           // not generated now.
1501           __ mov_slow(result->as_register(), c->as_jint(), acond);
1502 #else
1503           __ mov_float(result->as_float_reg(), c->as_jfloat(), acond);
1504 #endif // __SOFTFP__
1505           break;
1506         case T_DOUBLE:
1507 #ifdef __SOFTFP__
1508           // not generated now.
1509           __ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond);
1510           __ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond);
1511 #else
1512           __ mov_double(result->as_double_reg(), c->as_jdouble(), acond);
1513 #endif // __SOFTFP__
1514           break;
1515         default:
1516           ShouldNotReachHere();
1517       }
1518     }
1519 
1520     // Negate the condition and repeat the algorithm with the second operand
1521     if (opr1 == opr2) { break; }
1522     opr1 = opr2;
1523     acond = ncond;
1524   }
1525 }
1526 
1527 #ifdef ASSERT
1528 static int reg_size(LIR_Opr op) {
1529   switch (op->type()) {
1530   case T_FLOAT:
1531   case T_INT:      return BytesPerInt;
1532   case T_LONG:
1533   case T_DOUBLE:   return BytesPerLong;
1534   case T_OBJECT:
1535   case T_ARRAY:
1536   case T_METADATA: return BytesPerWord;
1537   case T_ADDRESS:
1538   case T_ILLEGAL:  // fall through
1539   default: ShouldNotReachHere(); return -1;
1540   }
1541 }
1542 #endif
1543 
1544 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1545   assert(info == NULL, "unused on this code path");
1546   assert(dest->is_register(), "wrong items state");
1547 
1548   if (right->is_address()) {
1549     // special case for adding shifted/extended register
1550     const Register res = dest->as_pointer_register();
1551     const Register lreg = left->as_pointer_register();
1552     const LIR_Address* addr = right->as_address_ptr();
1553 
1554     assert(addr->base()->as_pointer_register() == lreg && addr->index()->is_register() && addr->disp() == 0, "must be");
1555 
1556     int scale = addr->scale();
1557     AsmShift shift = lsl;
1558 
1559 
1560     assert(reg_size(addr->base()) == reg_size(addr->index()), "should be");
1561     assert(reg_size(addr->base()) == reg_size(dest), "should be");
1562     assert(reg_size(dest) == wordSize, "should be");
1563 
1564     AsmOperand operand(addr->index()->as_pointer_register(), shift, scale);
1565     switch (code) {
1566       case lir_add: __ add(res, lreg, operand); break;
1567       case lir_sub: __ sub(res, lreg, operand); break;
1568       default: ShouldNotReachHere();
1569     }
1570 
1571   } else if (left->is_address()) {
1572     assert(code == lir_sub && right->is_single_cpu(), "special case used by strength_reduce_multiply()");
1573     const LIR_Address* addr = left->as_address_ptr();
1574     const Register res = dest->as_register();
1575     const Register rreg = right->as_register();
1576     assert(addr->base()->as_register() == rreg && addr->index()->is_register() && addr->disp() == 0, "must be");
1577     __ rsb(res, rreg, AsmOperand(addr->index()->as_register(), lsl, addr->scale()));
1578 
1579   } else if (dest->is_single_cpu()) {
1580     assert(left->is_single_cpu(), "unexpected left operand");
1581 
1582     const Register res = dest->as_register();
1583     const Register lreg = left->as_register();
1584 
1585     if (right->is_single_cpu()) {
1586       const Register rreg = right->as_register();
1587       switch (code) {
1588         case lir_add: __ add_32(res, lreg, rreg); break;
1589         case lir_sub: __ sub_32(res, lreg, rreg); break;
1590         case lir_mul: __ mul_32(res, lreg, rreg); break;
1591         default: ShouldNotReachHere();
1592       }
1593     } else {
1594       assert(right->is_constant(), "must be");
1595       const jint c = right->as_constant_ptr()->as_jint();
1596       if (!Assembler::is_arith_imm_in_range(c)) {
1597         BAILOUT("illegal arithmetic operand");
1598       }
1599       switch (code) {
1600         case lir_add: __ add_32(res, lreg, c); break;
1601         case lir_sub: __ sub_32(res, lreg, c); break;
1602         default: ShouldNotReachHere();
1603       }
1604     }
1605 
1606   } else if (dest->is_double_cpu()) {
1607     Register res_lo = dest->as_register_lo();
1608     Register res_hi = dest->as_register_hi();
1609     Register lreg_lo = left->as_register_lo();
1610     Register lreg_hi = left->as_register_hi();
1611     if (right->is_double_cpu()) {
1612       Register rreg_lo = right->as_register_lo();
1613       Register rreg_hi = right->as_register_hi();
1614       if (res_lo == lreg_hi || res_lo == rreg_hi) {
1615         res_lo = Rtemp;
1616       }
1617       switch (code) {
1618         case lir_add:
1619           __ adds(res_lo, lreg_lo, rreg_lo);
1620           __ adc(res_hi, lreg_hi, rreg_hi);
1621           break;
1622         case lir_sub:
1623           __ subs(res_lo, lreg_lo, rreg_lo);
1624           __ sbc(res_hi, lreg_hi, rreg_hi);
1625           break;
1626         default:
1627           ShouldNotReachHere();
1628       }
1629     } else {
1630       assert(right->is_constant(), "must be");
1631       assert((right->as_constant_ptr()->as_jlong() >> 32) == 0, "out of range");
1632       const jint c = (jint) right->as_constant_ptr()->as_jlong();
1633       if (res_lo == lreg_hi) {
1634         res_lo = Rtemp;
1635       }
1636       switch (code) {
1637         case lir_add:
1638           __ adds(res_lo, lreg_lo, c);
1639           __ adc(res_hi, lreg_hi, 0);
1640           break;
1641         case lir_sub:
1642           __ subs(res_lo, lreg_lo, c);
1643           __ sbc(res_hi, lreg_hi, 0);
1644           break;
1645         default:
1646           ShouldNotReachHere();
1647       }
1648     }
1649     move_regs(res_lo, dest->as_register_lo());
1650 
1651   } else if (dest->is_single_fpu()) {
1652     assert(left->is_single_fpu(), "must be");
1653     assert(right->is_single_fpu(), "must be");
1654     const FloatRegister res = dest->as_float_reg();
1655     const FloatRegister lreg = left->as_float_reg();
1656     const FloatRegister rreg = right->as_float_reg();
1657     switch (code) {
1658       case lir_add: __ add_float(res, lreg, rreg); break;
1659       case lir_sub: __ sub_float(res, lreg, rreg); break;
1660       case lir_mul_strictfp: // fall through
1661       case lir_mul: __ mul_float(res, lreg, rreg); break;
1662       case lir_div_strictfp: // fall through
1663       case lir_div: __ div_float(res, lreg, rreg); break;
1664       default: ShouldNotReachHere();
1665     }
1666   } else if (dest->is_double_fpu()) {
1667     assert(left->is_double_fpu(), "must be");
1668     assert(right->is_double_fpu(), "must be");
1669     const FloatRegister res = dest->as_double_reg();
1670     const FloatRegister lreg = left->as_double_reg();
1671     const FloatRegister rreg = right->as_double_reg();
1672     switch (code) {
1673       case lir_add: __ add_double(res, lreg, rreg); break;
1674       case lir_sub: __ sub_double(res, lreg, rreg); break;
1675       case lir_mul_strictfp: // fall through
1676       case lir_mul: __ mul_double(res, lreg, rreg); break;
1677       case lir_div_strictfp: // fall through
1678       case lir_div: __ div_double(res, lreg, rreg); break;
1679       default: ShouldNotReachHere();
1680     }
1681   } else {
1682     ShouldNotReachHere();
1683   }
1684 }
1685 
1686 
1687 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
1688   switch (code) {
1689     case lir_abs:
1690       __ abs_double(dest->as_double_reg(), value->as_double_reg());
1691       break;
1692     case lir_sqrt:
1693       __ sqrt_double(dest->as_double_reg(), value->as_double_reg());
1694       break;
1695     default:
1696       ShouldNotReachHere();
1697   }
1698 }
1699 
1700 
1701 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1702   assert(dest->is_register(), "wrong items state");
1703   assert(left->is_register(), "wrong items state");
1704 
1705   if (dest->is_single_cpu()) {
1706 
1707     const Register res = dest->as_register();
1708     const Register lreg = left->as_register();
1709 
1710     if (right->is_single_cpu()) {
1711       const Register rreg = right->as_register();
1712       switch (code) {
1713         case lir_logic_and: __ and_32(res, lreg, rreg); break;
1714         case lir_logic_or:  __ orr_32(res, lreg, rreg); break;
1715         case lir_logic_xor: __ eor_32(res, lreg, rreg); break;
1716         default: ShouldNotReachHere();
1717       }
1718     } else {
1719       assert(right->is_constant(), "must be");
1720       const uint c = (uint)right->as_constant_ptr()->as_jint();
1721       switch (code) {
1722         case lir_logic_and: __ and_32(res, lreg, c); break;
1723         case lir_logic_or:  __ orr_32(res, lreg, c); break;
1724         case lir_logic_xor: __ eor_32(res, lreg, c); break;
1725         default: ShouldNotReachHere();
1726       }
1727     }
1728   } else {
1729     assert(dest->is_double_cpu(), "should be");
1730     Register res_lo = dest->as_register_lo();
1731 
1732     assert (dest->type() == T_LONG, "unexpected result type");
1733     assert (left->type() == T_LONG, "unexpected left type");
1734     assert (right->type() == T_LONG, "unexpected right type");
1735 
1736     const Register res_hi = dest->as_register_hi();
1737     const Register lreg_lo = left->as_register_lo();
1738     const Register lreg_hi = left->as_register_hi();
1739 
1740     if (right->is_register()) {
1741       const Register rreg_lo = right->as_register_lo();
1742       const Register rreg_hi = right->as_register_hi();
1743       if (res_lo == lreg_hi || res_lo == rreg_hi) {
1744         res_lo = Rtemp; // Temp register helps to avoid overlap between result and input
1745       }
1746       switch (code) {
1747         case lir_logic_and:
1748           __ andr(res_lo, lreg_lo, rreg_lo);
1749           __ andr(res_hi, lreg_hi, rreg_hi);
1750           break;
1751         case lir_logic_or:
1752           __ orr(res_lo, lreg_lo, rreg_lo);
1753           __ orr(res_hi, lreg_hi, rreg_hi);
1754           break;
1755         case lir_logic_xor:
1756           __ eor(res_lo, lreg_lo, rreg_lo);
1757           __ eor(res_hi, lreg_hi, rreg_hi);
1758           break;
1759         default:
1760           ShouldNotReachHere();
1761       }
1762       move_regs(res_lo, dest->as_register_lo());
1763     } else {
1764       assert(right->is_constant(), "must be");
1765       const jint c_lo = (jint) right->as_constant_ptr()->as_jlong();
1766       const jint c_hi = (jint) (right->as_constant_ptr()->as_jlong() >> 32);
1767       // Case for logic_or from do_ClassIDIntrinsic()
1768       if (c_hi == 0 && AsmOperand::is_rotated_imm(c_lo)) {
1769         switch (code) {
1770           case lir_logic_and:
1771             __ andr(res_lo, lreg_lo, c_lo);
1772             __ mov(res_hi, 0);
1773             break;
1774           case lir_logic_or:
1775             __ orr(res_lo, lreg_lo, c_lo);
1776             break;
1777           case lir_logic_xor:
1778             __ eor(res_lo, lreg_lo, c_lo);
1779             break;
1780         default:
1781           ShouldNotReachHere();
1782         }
1783       } else if (code == lir_logic_and &&
1784                  c_hi == -1 &&
1785                  (AsmOperand::is_rotated_imm(c_lo) ||
1786                   AsmOperand::is_rotated_imm(~c_lo))) {
1787         // Another case which handles logic_and from do_ClassIDIntrinsic()
1788         if (AsmOperand::is_rotated_imm(c_lo)) {
1789           __ andr(res_lo, lreg_lo, c_lo);
1790         } else {
1791           __ bic(res_lo, lreg_lo, ~c_lo);
1792         }
1793         if (res_hi != lreg_hi) {
1794           __ mov(res_hi, lreg_hi);
1795         }
1796       } else {
1797         BAILOUT("64 bit constant cannot be inlined");
1798       }
1799     }
1800   }
1801 }
1802 
1803 
1804 
1805 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1806   if (opr1->is_single_cpu()) {
1807     if (opr2->is_constant()) {
1808       switch (opr2->as_constant_ptr()->type()) {
1809         case T_INT: {
1810           const jint c = opr2->as_constant_ptr()->as_jint();
1811           if (Assembler::is_arith_imm_in_range(c)) {
1812             __ cmp_32(opr1->as_register(), c);
1813           } else if (Assembler::is_arith_imm_in_range(-c)) {
1814             __ cmn_32(opr1->as_register(), -c);
1815           } else {
1816             // This can happen when compiling lookupswitch
1817             __ mov_slow(Rtemp, c);
1818             __ cmp_32(opr1->as_register(), Rtemp);
1819           }
1820           break;
1821         }
1822         case T_OBJECT:
1823           assert(opr2->as_constant_ptr()->as_jobject() == NULL, "cannot handle otherwise");
1824           __ cmp(opr1->as_register(), 0);
1825           break;
1826         case T_METADATA:
1827           assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "Only equality tests");
1828           assert(opr2->as_constant_ptr()->as_metadata() == NULL, "cannot handle otherwise");
1829           __ cmp(opr1->as_register(), 0);
1830           break;
1831         default:
1832           ShouldNotReachHere();
1833       }
1834     } else if (opr2->is_single_cpu()) {
1835       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
1836         assert(opr2->type() == T_OBJECT || opr2->type() == T_ARRAY, "incompatibe type");
1837         __ cmpoop(opr1->as_register(), opr2->as_register());
1838       } else if (opr1->type() == T_METADATA || opr1->type() == T_ADDRESS) {
1839         assert(opr2->type() == T_METADATA || opr2->type() == T_ADDRESS, "incompatibe type");
1840         __ cmp(opr1->as_register(), opr2->as_register());
1841       } else {
1842         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY && opr2->type() != T_METADATA && opr2->type() != T_ADDRESS, "incompatibe type");
1843         __ cmp_32(opr1->as_register(), opr2->as_register());
1844       }
1845     } else {
1846       ShouldNotReachHere();
1847     }
1848   } else if (opr1->is_double_cpu()) {
1849     Register xlo = opr1->as_register_lo();
1850     Register xhi = opr1->as_register_hi();
1851     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1852       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "cannot handle otherwise");
1853       __ orrs(Rtemp, xlo, xhi);
1854     } else if (opr2->is_register()) {
1855       Register ylo = opr2->as_register_lo();
1856       Register yhi = opr2->as_register_hi();
1857       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1858         __ teq(xhi, yhi);
1859         __ teq(xlo, ylo, eq);
1860       } else {
1861         __ subs(xlo, xlo, ylo);
1862         __ sbcs(xhi, xhi, yhi);
1863       }
1864     } else {
1865       ShouldNotReachHere();
1866     }
1867   } else if (opr1->is_single_fpu()) {
1868     if (opr2->is_constant()) {
1869       assert(opr2->as_jfloat() == 0.0f, "cannot handle otherwise");
1870       __ cmp_zero_float(opr1->as_float_reg());
1871     } else {
1872       __ cmp_float(opr1->as_float_reg(), opr2->as_float_reg());
1873     }
1874   } else if (opr1->is_double_fpu()) {
1875     if (opr2->is_constant()) {
1876       assert(opr2->as_jdouble() == 0.0, "cannot handle otherwise");
1877       __ cmp_zero_double(opr1->as_double_reg());
1878     } else {
1879       __ cmp_double(opr1->as_double_reg(), opr2->as_double_reg());
1880     }
1881   } else {
1882     ShouldNotReachHere();
1883   }
1884 }
1885 
1886 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
1887   const Register res = dst->as_register();
1888   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1889     comp_op(lir_cond_unknown, left, right, op);
1890     __ fmstat();
1891     if (code == lir_ucmp_fd2i) {  // unordered is less
1892       __ mvn(res, 0, lt);
1893       __ mov(res, 1, ge);
1894     } else {                      // unordered is greater
1895       __ mov(res, 1, cs);
1896       __ mvn(res, 0, cc);
1897     }
1898     __ mov(res, 0, eq);
1899 
1900   } else {
1901     assert(code == lir_cmp_l2i, "must be");
1902 
1903     Label done;
1904     const Register xlo = left->as_register_lo();
1905     const Register xhi = left->as_register_hi();
1906     const Register ylo = right->as_register_lo();
1907     const Register yhi = right->as_register_hi();
1908     __ cmp(xhi, yhi);
1909     __ mov(res, 1, gt);
1910     __ mvn(res, 0, lt);
1911     __ b(done, ne);
1912     __ subs(res, xlo, ylo);
1913     __ mov(res, 1, hi);
1914     __ mvn(res, 0, lo);
1915     __ bind(done);
1916   }
1917 }
1918 
1919 
1920 void LIR_Assembler::align_call(LIR_Code code) {
1921   // Not needed
1922 }
1923 
1924 
1925 void LIR_Assembler::call(LIR_OpJavaCall *op, relocInfo::relocType rtype) {
1926   int ret_addr_offset = __ patchable_call(op->addr(), rtype);
1927   assert(ret_addr_offset == __ offset(), "embedded return address not allowed");
1928   add_call_info_here(op->info());
1929 }
1930 
1931 
1932 void LIR_Assembler::ic_call(LIR_OpJavaCall *op) {
1933   bool near_range = __ cache_fully_reachable();
1934   address oop_address = pc();
1935 
1936   bool use_movw = VM_Version::supports_movw();
1937 
1938   // Ricklass may contain something that is not a metadata pointer so
1939   // mov_metadata can't be used
1940   InlinedAddress value((address)Universe::non_oop_word());
1941   InlinedAddress addr(op->addr());
1942   if (use_movw) {
1943     __ movw(Ricklass, ((unsigned int)Universe::non_oop_word()) & 0xffff);
1944     __ movt(Ricklass, ((unsigned int)Universe::non_oop_word()) >> 16);
1945   } else {
1946     // No movw/movt, must be load a pc relative value but no
1947     // relocation so no metadata table to load from.
1948     // Use a b instruction rather than a bl, inline constant after the
1949     // branch, use a PC relative ldr to load the constant, arrange for
1950     // the call to return after the constant(s).
1951     __ ldr_literal(Ricklass, value);
1952   }
1953   __ relocate(virtual_call_Relocation::spec(oop_address));
1954   if (near_range && use_movw) {
1955     __ bl(op->addr());
1956   } else {
1957     Label call_return;
1958     __ adr(LR, call_return);
1959     if (near_range) {
1960       __ b(op->addr());
1961     } else {
1962       __ indirect_jump(addr, Rtemp);
1963       __ bind_literal(addr);
1964     }
1965     if (!use_movw) {
1966       __ bind_literal(value);
1967     }
1968     __ bind(call_return);
1969   }
1970   add_call_info(code_offset(), op->info());
1971 }
1972 
1973 
1974 /* Currently, vtable-dispatch is only enabled for sparc platforms */
1975 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
1976   ShouldNotReachHere();
1977 }
1978 
1979 void LIR_Assembler::emit_static_call_stub() {
1980   address call_pc = __ pc();
1981   address stub = __ start_a_stub(call_stub_size());
1982   if (stub == NULL) {
1983     BAILOUT("static call stub overflow");
1984   }
1985 
1986   DEBUG_ONLY(int offset = code_offset();)
1987 
1988   InlinedMetadata metadata_literal(NULL);
1989   __ relocate(static_stub_Relocation::spec(call_pc));
1990   // If not a single instruction, NativeMovConstReg::next_instruction_address()
1991   // must jump over the whole following ldr_literal.
1992   // (See CompiledStaticCall::set_to_interpreted())
1993 #ifdef ASSERT
1994   address ldr_site = __ pc();
1995 #endif
1996   __ ldr_literal(Rmethod, metadata_literal);
1997   assert(nativeMovConstReg_at(ldr_site)->next_instruction_address() == __ pc(), "Fix ldr_literal or its parsing");
1998   bool near_range = __ cache_fully_reachable();
1999   InlinedAddress dest((address)-1);
2000   if (near_range) {
2001     address branch_site = __ pc();
2002     __ b(branch_site); // b to self maps to special NativeJump -1 destination
2003   } else {
2004     __ indirect_jump(dest, Rtemp);
2005   }
2006   __ bind_literal(metadata_literal); // includes spec_for_immediate reloc
2007   if (!near_range) {
2008     __ bind_literal(dest); // special NativeJump -1 destination
2009   }
2010 
2011   assert(code_offset() - offset <= call_stub_size(), "overflow");
2012   __ end_a_stub();
2013 }
2014 
2015 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2016   assert(exceptionOop->as_register() == Rexception_obj, "must match");
2017   assert(exceptionPC->as_register()  == Rexception_pc, "must match");
2018   info->add_register_oop(exceptionOop);
2019 
2020   Runtime1::StubID handle_id = compilation()->has_fpu_code() ?
2021                                Runtime1::handle_exception_id :
2022                                Runtime1::handle_exception_nofpu_id;
2023   Label return_address;
2024   __ adr(Rexception_pc, return_address);
2025   __ call(Runtime1::entry_for(handle_id), relocInfo::runtime_call_type);
2026   __ bind(return_address);
2027   add_call_info_here(info);  // for exception handler
2028 }
2029 
2030 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2031   assert(exceptionOop->as_register() == Rexception_obj, "must match");
2032   __ b(_unwind_handler_entry);
2033 }
2034 
2035 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2036   AsmShift shift = lsl;
2037   switch (code) {
2038     case lir_shl:  shift = lsl; break;
2039     case lir_shr:  shift = asr; break;
2040     case lir_ushr: shift = lsr; break;
2041     default: ShouldNotReachHere();
2042   }
2043 
2044   if (dest->is_single_cpu()) {
2045     __ andr(Rtemp, count->as_register(), 31);
2046     __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, Rtemp));
2047   } else if (dest->is_double_cpu()) {
2048     Register dest_lo = dest->as_register_lo();
2049     Register dest_hi = dest->as_register_hi();
2050     Register src_lo  = left->as_register_lo();
2051     Register src_hi  = left->as_register_hi();
2052     Register Rcount  = count->as_register();
2053     // Resolve possible register conflicts
2054     if (shift == lsl && dest_hi == src_lo) {
2055       dest_hi = Rtemp;
2056     } else if (shift != lsl && dest_lo == src_hi) {
2057       dest_lo = Rtemp;
2058     } else if (dest_lo == src_lo && dest_hi == src_hi) {
2059       dest_lo = Rtemp;
2060     } else if (dest_lo == Rcount || dest_hi == Rcount) {
2061       Rcount = Rtemp;
2062     }
2063     __ andr(Rcount, count->as_register(), 63);
2064     __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, Rcount);
2065     move_regs(dest_lo, dest->as_register_lo());
2066     move_regs(dest_hi, dest->as_register_hi());
2067   } else {
2068     ShouldNotReachHere();
2069   }
2070 }
2071 
2072 
2073 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2074   AsmShift shift = lsl;
2075   switch (code) {
2076     case lir_shl:  shift = lsl; break;
2077     case lir_shr:  shift = asr; break;
2078     case lir_ushr: shift = lsr; break;
2079     default: ShouldNotReachHere();
2080   }
2081 
2082   if (dest->is_single_cpu()) {
2083     count &= 31;
2084     if (count != 0) {
2085       __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, count));
2086     } else {
2087       move_regs(left->as_register(), dest->as_register());
2088     }
2089   } else if (dest->is_double_cpu()) {
2090     count &= 63;
2091     if (count != 0) {
2092       Register dest_lo = dest->as_register_lo();
2093       Register dest_hi = dest->as_register_hi();
2094       Register src_lo  = left->as_register_lo();
2095       Register src_hi  = left->as_register_hi();
2096       // Resolve possible register conflicts
2097       if (shift == lsl && dest_hi == src_lo) {
2098         dest_hi = Rtemp;
2099       } else if (shift != lsl && dest_lo == src_hi) {
2100         dest_lo = Rtemp;
2101       }
2102       __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, count);
2103       move_regs(dest_lo, dest->as_register_lo());
2104       move_regs(dest_hi, dest->as_register_hi());
2105     } else {
2106       __ long_move(dest->as_register_lo(), dest->as_register_hi(),
2107                    left->as_register_lo(), left->as_register_hi());
2108     }
2109   } else {
2110     ShouldNotReachHere();
2111   }
2112 }
2113 
2114 
2115 // Saves 4 given registers in reserved argument area.
2116 void LIR_Assembler::save_in_reserved_area(Register r1, Register r2, Register r3, Register r4) {
2117   verify_reserved_argument_area_size(4);
2118   __ stmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4));
2119 }
2120 
2121 // Restores 4 given registers from reserved argument area.
2122 void LIR_Assembler::restore_from_reserved_area(Register r1, Register r2, Register r3, Register r4) {
2123   __ ldmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4), no_writeback);
2124 }
2125 
2126 
2127 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2128   ciArrayKlass* default_type = op->expected_type();
2129   Register src = op->src()->as_register();
2130   Register src_pos = op->src_pos()->as_register();
2131   Register dst = op->dst()->as_register();
2132   Register dst_pos = op->dst_pos()->as_register();
2133   Register length  = op->length()->as_register();
2134   Register tmp = op->tmp()->as_register();
2135   Register tmp2 = Rtemp;
2136 
2137   assert(src == R0 && src_pos == R1 && dst == R2 && dst_pos == R3, "code assumption");
2138 
2139   __ resolve(ACCESS_READ, src);
2140   __ resolve(ACCESS_WRITE, dst);
2141 
2142   CodeStub* stub = op->stub();
2143 
2144   int flags = op->flags();
2145   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2146   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2147 
2148   // If we don't know anything or it's an object array, just go through the generic arraycopy
2149   if (default_type == NULL) {
2150 
2151     // save arguments, because they will be killed by a runtime call
2152     save_in_reserved_area(R0, R1, R2, R3);
2153 
2154     // pass length argument on SP[0]
2155     __ str(length, Address(SP, -2*wordSize, pre_indexed));  // 2 words for a proper stack alignment
2156 
2157     address copyfunc_addr = StubRoutines::generic_arraycopy();
2158     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
2159 #ifndef PRODUCT
2160     if (PrintC1Statistics) {
2161       __ inc_counter((address)&Runtime1::_generic_arraycopystub_cnt, tmp, tmp2);
2162     }
2163 #endif // !PRODUCT
2164     // the stub is in the code cache so close enough
2165     __ call(copyfunc_addr, relocInfo::runtime_call_type);
2166 
2167     __ add(SP, SP, 2*wordSize);
2168 
2169     __ cbz_32(R0, *stub->continuation());
2170 
2171     __ mvn_32(tmp, R0);
2172     restore_from_reserved_area(R0, R1, R2, R3);  // load saved arguments in slow case only
2173     __ sub_32(length, length, tmp);
2174     __ add_32(src_pos, src_pos, tmp);
2175     __ add_32(dst_pos, dst_pos, tmp);
2176 
2177     __ b(*stub->entry());
2178 
2179     __ bind(*stub->continuation());
2180     return;
2181   }
2182 
2183   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(),
2184          "must be true at this point");
2185   int elem_size = type2aelembytes(basic_type);
2186   int shift = exact_log2(elem_size);
2187 
2188   // Check for NULL
2189   if (flags & LIR_OpArrayCopy::src_null_check) {
2190     if (flags & LIR_OpArrayCopy::dst_null_check) {
2191       __ cmp(src, 0);
2192       __ cond_cmp(dst, 0, ne);  // make one instruction shorter if both checks are needed
2193       __ b(*stub->entry(), eq);
2194     } else {
2195       __ cbz(src, *stub->entry());
2196     }
2197   } else if (flags & LIR_OpArrayCopy::dst_null_check) {
2198     __ cbz(dst, *stub->entry());
2199   }
2200 
2201   // If the compiler was not able to prove that exact type of the source or the destination
2202   // of the arraycopy is an array type, check at runtime if the source or the destination is
2203   // an instance type.
2204   if (flags & LIR_OpArrayCopy::type_check) {
2205     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2206       __ load_klass(tmp, dst);
2207       __ ldr_u32(tmp2, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2208       __ mov_slow(tmp, Klass::_lh_neutral_value);
2209       __ cmp_32(tmp2, tmp);
2210       __ b(*stub->entry(), ge);
2211     }
2212 
2213     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2214       __ load_klass(tmp, src);
2215       __ ldr_u32(tmp2, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2216       __ mov_slow(tmp, Klass::_lh_neutral_value);
2217       __ cmp_32(tmp2, tmp);
2218       __ b(*stub->entry(), ge);
2219     }
2220   }
2221 
2222   // Check if negative
2223   const int all_positive_checks = LIR_OpArrayCopy::src_pos_positive_check |
2224                                   LIR_OpArrayCopy::dst_pos_positive_check |
2225                                   LIR_OpArrayCopy::length_positive_check;
2226   switch (flags & all_positive_checks) {
2227     case LIR_OpArrayCopy::src_pos_positive_check:
2228       __ branch_if_negative_32(src_pos, *stub->entry());
2229       break;
2230     case LIR_OpArrayCopy::dst_pos_positive_check:
2231       __ branch_if_negative_32(dst_pos, *stub->entry());
2232       break;
2233     case LIR_OpArrayCopy::length_positive_check:
2234       __ branch_if_negative_32(length, *stub->entry());
2235       break;
2236     case LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::dst_pos_positive_check:
2237       __ branch_if_any_negative_32(src_pos, dst_pos, tmp, *stub->entry());
2238       break;
2239     case LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::length_positive_check:
2240       __ branch_if_any_negative_32(src_pos, length, tmp, *stub->entry());
2241       break;
2242     case LIR_OpArrayCopy::dst_pos_positive_check | LIR_OpArrayCopy::length_positive_check:
2243       __ branch_if_any_negative_32(dst_pos, length, tmp, *stub->entry());
2244       break;
2245     case all_positive_checks:
2246       __ branch_if_any_negative_32(src_pos, dst_pos, length, tmp, *stub->entry());
2247       break;
2248     default:
2249       assert((flags & all_positive_checks) == 0, "the last option");
2250   }
2251 
2252   // Range checks
2253   if (flags & LIR_OpArrayCopy::src_range_check) {
2254     __ ldr_s32(tmp2, Address(src, arrayOopDesc::length_offset_in_bytes()));
2255     __ add_32(tmp, src_pos, length);
2256     __ cmp_32(tmp, tmp2);
2257     __ b(*stub->entry(), hi);
2258   }
2259   if (flags & LIR_OpArrayCopy::dst_range_check) {
2260     __ ldr_s32(tmp2, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2261     __ add_32(tmp, dst_pos, length);
2262     __ cmp_32(tmp, tmp2);
2263     __ b(*stub->entry(), hi);
2264   }
2265 
2266   // Check if src and dst are of the same type
2267   if (flags & LIR_OpArrayCopy::type_check) {
2268     // We don't know the array types are compatible
2269     if (basic_type != T_OBJECT) {
2270       // Simple test for basic type arrays
2271       if (UseCompressedClassPointers) {
2272         // We don't need decode because we just need to compare
2273         __ ldr_u32(tmp, Address(src, oopDesc::klass_offset_in_bytes()));
2274         __ ldr_u32(tmp2, Address(dst, oopDesc::klass_offset_in_bytes()));
2275         __ cmp_32(tmp, tmp2);
2276       } else {
2277         __ load_klass(tmp, src);
2278         __ load_klass(tmp2, dst);
2279         __ cmp(tmp, tmp2);
2280       }
2281       __ b(*stub->entry(), ne);
2282     } else {
2283       // For object arrays, if src is a sub class of dst then we can
2284       // safely do the copy.
2285       Label cont, slow;
2286 
2287       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2288 
2289       __ load_klass(tmp, src);
2290       __ load_klass(tmp2, dst);
2291 
2292       // We are at a call so all live registers are saved before we
2293       // get here
2294       assert_different_registers(tmp, tmp2, R6, altFP_7_11);
2295 
2296       __ check_klass_subtype_fast_path(tmp, tmp2, R6, altFP_7_11, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2297 
2298       __ mov(R6, R0);
2299       __ mov(altFP_7_11, R1);
2300       __ mov(R0, tmp);
2301       __ mov(R1, tmp2);
2302       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); // does not blow any registers except R0, LR and Rtemp
2303       __ cmp_32(R0, 0);
2304       __ mov(R0, R6);
2305       __ mov(R1, altFP_7_11);
2306 
2307       if (copyfunc_addr != NULL) { // use stub if available
2308         // src is not a sub class of dst so we have to do a
2309         // per-element check.
2310 
2311         __ b(cont, ne);
2312 
2313         __ bind(slow);
2314 
2315         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2316         if ((flags & mask) != mask) {
2317           // Check that at least both of them object arrays.
2318           assert(flags & mask, "one of the two should be known to be an object array");
2319 
2320           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2321             __ load_klass(tmp, src);
2322           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2323             __ load_klass(tmp, dst);
2324           }
2325           int lh_offset = in_bytes(Klass::layout_helper_offset());
2326 
2327           __ ldr_u32(tmp2, Address(tmp, lh_offset));
2328 
2329           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2330           __ mov_slow(tmp, objArray_lh);
2331           __ cmp_32(tmp, tmp2);
2332           __ b(*stub->entry(), ne);
2333         }
2334 
2335         save_in_reserved_area(R0, R1, R2, R3);
2336 
2337         Register src_ptr = R0;
2338         Register dst_ptr = R1;
2339         Register len     = R2;
2340         Register chk_off = R3;
2341         Register super_k = tmp;
2342 
2343         __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2344         __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift);
2345 
2346         __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2347         __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift);
2348         __ load_klass(tmp, dst);
2349 
2350         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2351         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2352 
2353         __ ldr(super_k, Address(tmp, ek_offset));
2354 
2355         __ mov(len, length);
2356         __ ldr_u32(chk_off, Address(super_k, sco_offset));
2357         __ push(super_k);
2358 
2359         __ call(copyfunc_addr, relocInfo::runtime_call_type);
2360 
2361 #ifndef PRODUCT
2362         if (PrintC1Statistics) {
2363           Label failed;
2364           __ cbnz_32(R0, failed);
2365           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, tmp, tmp2);
2366           __ bind(failed);
2367         }
2368 #endif // PRODUCT
2369 
2370         __ add(SP, SP, wordSize);  // Drop super_k argument
2371 
2372         __ cbz_32(R0, *stub->continuation());
2373         __ mvn_32(tmp, R0);
2374 
2375         // load saved arguments in slow case only
2376         restore_from_reserved_area(R0, R1, R2, R3);
2377 
2378         __ sub_32(length, length, tmp);
2379         __ add_32(src_pos, src_pos, tmp);
2380         __ add_32(dst_pos, dst_pos, tmp);
2381 
2382 #ifndef PRODUCT
2383         if (PrintC1Statistics) {
2384           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, tmp, tmp2);
2385         }
2386 #endif
2387 
2388         __ b(*stub->entry());
2389 
2390         __ bind(cont);
2391       } else {
2392         __ b(*stub->entry(), eq);
2393         __ bind(cont);
2394       }
2395     }
2396   }
2397 
2398 #ifndef PRODUCT
2399   if (PrintC1Statistics) {
2400     address counter = Runtime1::arraycopy_count_address(basic_type);
2401     __ inc_counter(counter, tmp, tmp2);
2402   }
2403 #endif // !PRODUCT
2404 
2405   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2406   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2407   const char *name;
2408   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2409 
2410   Register src_ptr = R0;
2411   Register dst_ptr = R1;
2412   Register len     = R2;
2413 
2414   __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2415   __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift);
2416 
2417   __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2418   __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift);
2419 
2420   __ mov(len, length);
2421 
2422   __ call(entry, relocInfo::runtime_call_type);
2423 
2424   __ bind(*stub->continuation());
2425 }
2426 
2427 #ifdef ASSERT
2428  // emit run-time assertion
2429 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2430   assert(op->code() == lir_assert, "must be");
2431 
2432   if (op->in_opr1()->is_valid()) {
2433     assert(op->in_opr2()->is_valid(), "both operands must be valid");
2434     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2435   } else {
2436     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2437     assert(op->condition() == lir_cond_always, "no other conditions allowed");
2438   }
2439 
2440   Label ok;
2441   if (op->condition() != lir_cond_always) {
2442     AsmCondition acond = al;
2443     switch (op->condition()) {
2444       case lir_cond_equal:        acond = eq; break;
2445       case lir_cond_notEqual:     acond = ne; break;
2446       case lir_cond_less:         acond = lt; break;
2447       case lir_cond_lessEqual:    acond = le; break;
2448       case lir_cond_greaterEqual: acond = ge; break;
2449       case lir_cond_greater:      acond = gt; break;
2450       case lir_cond_aboveEqual:   acond = hs; break;
2451       case lir_cond_belowEqual:   acond = ls; break;
2452       default:                    ShouldNotReachHere();
2453     }
2454     __ b(ok, acond);
2455   }
2456   if (op->halt()) {
2457     const char* str = __ code_string(op->msg());
2458     __ stop(str);
2459   } else {
2460     breakpoint();
2461   }
2462   __ bind(ok);
2463 }
2464 #endif // ASSERT
2465 
2466 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2467   fatal("CRC32 intrinsic is not implemented on this platform");
2468 }
2469 
2470 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2471   Register obj = op->obj_opr()->as_pointer_register();
2472   Register hdr = op->hdr_opr()->as_pointer_register();
2473   Register lock = op->lock_opr()->as_pointer_register();
2474   Register tmp = op->scratch_opr()->is_illegal() ? noreg :
2475                  op->scratch_opr()->as_pointer_register();
2476 
2477   if (!UseFastLocking) {
2478     __ b(*op->stub()->entry());
2479   } else if (op->code() == lir_lock) {
2480     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2481     __ resolve(ACCESS_READ | ACCESS_WRITE, obj);
2482     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
2483     if (op->info() != NULL) {
2484       add_debug_info_for_null_check(null_check_offset, op->info());
2485     }
2486   } else if (op->code() == lir_unlock) {
2487     __ unlock_object(hdr, obj, lock, tmp, *op->stub()->entry());
2488   } else {
2489     ShouldNotReachHere();
2490   }
2491   __ bind(*op->stub()->continuation());
2492 }
2493 
2494 
2495 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2496   ciMethod* method = op->profiled_method();
2497   int bci          = op->profiled_bci();
2498   ciMethod* callee = op->profiled_callee();
2499 
2500   // Update counter for all call types
2501   ciMethodData* md = method->method_data_or_null();
2502   assert(md != NULL, "Sanity");
2503   ciProfileData* data = md->bci_to_data(bci);
2504   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2505   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2506   Register mdo  = op->mdo()->as_register();
2507   assert(op->tmp1()->is_register(), "tmp1 must be allocated");
2508   Register tmp1 = op->tmp1()->as_pointer_register();
2509   assert_different_registers(mdo, tmp1);
2510   __ mov_metadata(mdo, md->constant_encoding());
2511   int mdo_offset_bias = 0;
2512   int max_offset = 4096;
2513   if (md->byte_offset_of_slot(data, CounterData::count_offset()) + data->size_in_bytes() >= max_offset) {
2514     // The offset is large so bias the mdo by the base of the slot so
2515     // that the ldr can use an immediate offset to reference the slots of the data
2516     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2517     __ mov_slow(tmp1, mdo_offset_bias);
2518     __ add(mdo, mdo, tmp1);
2519   }
2520 
2521   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2522   // Perform additional virtual call profiling for invokevirtual and
2523   // invokeinterface bytecodes
2524   if (op->should_profile_receiver_type()) {
2525     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2526     Register recv = op->recv()->as_register();
2527     assert_different_registers(mdo, tmp1, recv);
2528     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2529     ciKlass* known_klass = op->known_holder();
2530     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2531       // We know the type that will be seen at this call site; we can
2532       // statically update the MethodData* rather than needing to do
2533       // dynamic tests on the receiver type
2534 
2535       // NOTE: we should probably put a lock around this search to
2536       // avoid collisions by concurrent compilations
2537       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2538       uint i;
2539       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2540         ciKlass* receiver = vc_data->receiver(i);
2541         if (known_klass->equals(receiver)) {
2542           Address data_addr(mdo, md->byte_offset_of_slot(data,
2543                                                          VirtualCallData::receiver_count_offset(i)) -
2544                             mdo_offset_bias);
2545           __ ldr(tmp1, data_addr);
2546           __ add(tmp1, tmp1, DataLayout::counter_increment);
2547           __ str(tmp1, data_addr);
2548           return;
2549         }
2550       }
2551 
2552       // Receiver type not found in profile data; select an empty slot
2553 
2554       // Note that this is less efficient than it should be because it
2555       // always does a write to the receiver part of the
2556       // VirtualCallData rather than just the first time
2557       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2558         ciKlass* receiver = vc_data->receiver(i);
2559         if (receiver == NULL) {
2560           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2561                             mdo_offset_bias);
2562           __ mov_metadata(tmp1, known_klass->constant_encoding());
2563           __ str(tmp1, recv_addr);
2564           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2565                             mdo_offset_bias);
2566           __ ldr(tmp1, data_addr);
2567           __ add(tmp1, tmp1, DataLayout::counter_increment);
2568           __ str(tmp1, data_addr);
2569           return;
2570         }
2571       }
2572     } else {
2573       __ load_klass(recv, recv);
2574       Label update_done;
2575       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2576       // Receiver did not match any saved receiver and there is no empty row for it.
2577       // Increment total counter to indicate polymorphic case.
2578       __ ldr(tmp1, counter_addr);
2579       __ add(tmp1, tmp1, DataLayout::counter_increment);
2580       __ str(tmp1, counter_addr);
2581 
2582       __ bind(update_done);
2583     }
2584   } else {
2585     // Static call
2586     __ ldr(tmp1, counter_addr);
2587     __ add(tmp1, tmp1, DataLayout::counter_increment);
2588     __ str(tmp1, counter_addr);
2589   }
2590 }
2591 
2592 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2593   fatal("Type profiling not implemented on this platform");
2594 }
2595 
2596 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2597   Unimplemented();
2598 }
2599 
2600 
2601 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2602   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2603   __ add_slow(dst->as_pointer_register(), mon_addr.base(), mon_addr.disp());
2604 }
2605 
2606 
2607 void LIR_Assembler::align_backward_branch_target() {
2608   // Some ARM processors do better with 8-byte branch target alignment
2609   __ align(8);
2610 }
2611 
2612 
2613 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2614   // tmp must be unused
2615   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2616 
2617   if (left->is_single_cpu()) {
2618     assert (dest->type() == T_INT, "unexpected result type");
2619     assert (left->type() == T_INT, "unexpected left type");
2620     __ neg_32(dest->as_register(), left->as_register());
2621   } else if (left->is_double_cpu()) {
2622     Register dest_lo = dest->as_register_lo();
2623     Register dest_hi = dest->as_register_hi();
2624     Register src_lo = left->as_register_lo();
2625     Register src_hi = left->as_register_hi();
2626     if (dest_lo == src_hi) {
2627       dest_lo = Rtemp;
2628     }
2629     __ rsbs(dest_lo, src_lo, 0);
2630     __ rsc(dest_hi, src_hi, 0);
2631     move_regs(dest_lo, dest->as_register_lo());
2632   } else if (left->is_single_fpu()) {
2633     __ neg_float(dest->as_float_reg(), left->as_float_reg());
2634   } else if (left->is_double_fpu()) {
2635     __ neg_double(dest->as_double_reg(), left->as_double_reg());
2636   } else {
2637     ShouldNotReachHere();
2638   }
2639 }
2640 
2641 
2642 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2643   assert(patch_code == lir_patch_none, "Patch code not supported");
2644   LIR_Address* addr = addr_opr->as_address_ptr();
2645   if (addr->index()->is_illegal()) {
2646     jint c = addr->disp();
2647     if (!Assembler::is_arith_imm_in_range(c)) {
2648       BAILOUT("illegal arithmetic operand");
2649     }
2650     __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), c);
2651   } else {
2652     assert(addr->disp() == 0, "cannot handle otherwise");
2653     __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(),
2654            AsmOperand(addr->index()->as_pointer_register(), lsl, addr->scale()));
2655   }
2656 }
2657 
2658 
2659 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2660   assert(!tmp->is_valid(), "don't need temporary");
2661   __ call(dest);
2662   if (info != NULL) {
2663     add_call_info_here(info);
2664   }
2665 }
2666 
2667 
2668 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2669   assert(src->is_double_cpu() && dest->is_address() ||
2670          src->is_address() && dest->is_double_cpu(),
2671          "Simple move_op is called for all other cases");
2672 
2673   int null_check_offset;
2674   if (dest->is_address()) {
2675     // Store
2676     const LIR_Address* addr = dest->as_address_ptr();
2677     const Register src_lo = src->as_register_lo();
2678     const Register src_hi = src->as_register_hi();
2679     assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already");
2680 
2681     if (src_lo < src_hi) {
2682       null_check_offset = __ offset();
2683       __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(src_hi));
2684     } else {
2685       assert(src_lo < Rtemp, "Rtemp is higher than any allocatable register");
2686       __ mov(Rtemp, src_hi);
2687       null_check_offset = __ offset();
2688       __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(Rtemp));
2689     }
2690   } else {
2691     // Load
2692     const LIR_Address* addr = src->as_address_ptr();
2693     const Register dest_lo = dest->as_register_lo();
2694     const Register dest_hi = dest->as_register_hi();
2695     assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already");
2696 
2697     null_check_offset = __ offset();
2698     if (dest_lo < dest_hi) {
2699       __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(dest_hi));
2700     } else {
2701       assert(dest_lo < Rtemp, "Rtemp is higher than any allocatable register");
2702       __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(Rtemp));
2703       __ mov(dest_hi, Rtemp);
2704     }
2705   }
2706 
2707   if (info != NULL) {
2708     add_debug_info_for_null_check(null_check_offset, info);
2709   }
2710 }
2711 
2712 
2713 void LIR_Assembler::membar() {
2714   __ membar(MacroAssembler::StoreLoad, Rtemp);
2715 }
2716 
2717 void LIR_Assembler::membar_acquire() {
2718   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp);
2719 }
2720 
2721 void LIR_Assembler::membar_release() {
2722   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
2723 }
2724 
2725 void LIR_Assembler::membar_loadload() {
2726   __ membar(MacroAssembler::LoadLoad, Rtemp);
2727 }
2728 
2729 void LIR_Assembler::membar_storestore() {
2730   __ membar(MacroAssembler::StoreStore, Rtemp);
2731 }
2732 
2733 void LIR_Assembler::membar_loadstore() {
2734   __ membar(MacroAssembler::LoadStore, Rtemp);
2735 }
2736 
2737 void LIR_Assembler::membar_storeload() {
2738   __ membar(MacroAssembler::StoreLoad, Rtemp);
2739 }
2740 
2741 void LIR_Assembler::on_spin_wait() {
2742   Unimplemented();
2743 }
2744 
2745 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2746   // Not used on ARM
2747   Unimplemented();
2748 }
2749 
2750 void LIR_Assembler::peephole(LIR_List* lir) {
2751   LIR_OpList* inst = lir->instructions_list();
2752   const int inst_length = inst->length();
2753   for (int i = 0; i < inst_length; i++) {
2754     LIR_Op* op = inst->at(i);
2755     switch (op->code()) {
2756       case lir_cmp: {
2757         // Replace:
2758         //   cmp rX, y
2759         //   cmove [EQ] y, z, rX
2760         // with
2761         //   cmp rX, y
2762         //   cmove [EQ] illegalOpr, z, rX
2763         //
2764         // or
2765         //   cmp rX, y
2766         //   cmove [NE] z, y, rX
2767         // with
2768         //   cmp rX, y
2769         //   cmove [NE] z, illegalOpr, rX
2770         //
2771         // moves from illegalOpr should be removed when converting LIR to native assembly
2772 
2773         LIR_Op2* cmp = op->as_Op2();
2774         assert(cmp != NULL, "cmp LIR instruction is not an op2");
2775 
2776         if (i + 1 < inst_length) {
2777           LIR_Op2* cmove = inst->at(i + 1)->as_Op2();
2778           if (cmove != NULL && cmove->code() == lir_cmove) {
2779             LIR_Opr cmove_res = cmove->result_opr();
2780             bool res_is_op1 = cmove_res == cmp->in_opr1();
2781             bool res_is_op2 = cmove_res == cmp->in_opr2();
2782             LIR_Opr cmp_res, cmp_arg;
2783             if (res_is_op1) {
2784               cmp_res = cmp->in_opr1();
2785               cmp_arg = cmp->in_opr2();
2786             } else if (res_is_op2) {
2787               cmp_res = cmp->in_opr2();
2788               cmp_arg = cmp->in_opr1();
2789             } else {
2790               cmp_res = LIR_OprFact::illegalOpr;
2791               cmp_arg = LIR_OprFact::illegalOpr;
2792             }
2793 
2794             if (cmp_res != LIR_OprFact::illegalOpr) {
2795               LIR_Condition cond = cmove->condition();
2796               if (cond == lir_cond_equal && cmove->in_opr1() == cmp_arg) {
2797                 cmove->set_in_opr1(LIR_OprFact::illegalOpr);
2798               } else if (cond == lir_cond_notEqual && cmove->in_opr2() == cmp_arg) {
2799                 cmove->set_in_opr2(LIR_OprFact::illegalOpr);
2800               }
2801             }
2802           }
2803         }
2804         break;
2805       }
2806 
2807       default:
2808         break;
2809     }
2810   }
2811 }
2812 
2813 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
2814   assert(src->is_address(), "sanity");
2815   Address addr = as_Address(src->as_address_ptr());
2816 
2817   if (code == lir_xchg) {
2818   } else {
2819     assert (!data->is_oop(), "xadd for oops");
2820   }
2821 
2822   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
2823 
2824   Label retry;
2825   __ bind(retry);
2826 
2827   if (data->type() == T_INT || data->is_oop()) {
2828     Register dst = dest->as_register();
2829     Register new_val = noreg;
2830     __ ldrex(dst, addr);
2831     if (code == lir_xadd) {
2832       Register tmp_reg = tmp->as_register();
2833       if (data->is_constant()) {
2834         assert_different_registers(dst, tmp_reg);
2835         __ add_32(tmp_reg, dst, data->as_constant_ptr()->as_jint());
2836       } else {
2837         assert_different_registers(dst, tmp_reg, data->as_register());
2838         __ add_32(tmp_reg, dst, data->as_register());
2839       }
2840       new_val = tmp_reg;
2841     } else {
2842       if (UseCompressedOops && data->is_oop()) {
2843         new_val = tmp->as_pointer_register();
2844       } else {
2845         new_val = data->as_register();
2846       }
2847       assert_different_registers(dst, new_val);
2848     }
2849     __ strex(Rtemp, new_val, addr);
2850 
2851   } else if (data->type() == T_LONG) {
2852     Register dst_lo = dest->as_register_lo();
2853     Register new_val_lo = noreg;
2854     Register dst_hi = dest->as_register_hi();
2855 
2856     assert(dst_hi->encoding() == dst_lo->encoding() + 1, "non aligned register pair");
2857     assert((dst_lo->encoding() & 0x1) == 0, "misaligned register pair");
2858 
2859     __ bind(retry);
2860     __ ldrexd(dst_lo, addr);
2861     if (code == lir_xadd) {
2862       Register tmp_lo = tmp->as_register_lo();
2863       Register tmp_hi = tmp->as_register_hi();
2864 
2865       assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair");
2866       assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair");
2867 
2868       if (data->is_constant()) {
2869         jlong c = data->as_constant_ptr()->as_jlong();
2870         assert((jlong)((jint)c) == c, "overflow");
2871         assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi);
2872         __ adds(tmp_lo, dst_lo, (jint)c);
2873         __ adc(tmp_hi, dst_hi, 0);
2874       } else {
2875         Register new_val_lo = data->as_register_lo();
2876         Register new_val_hi = data->as_register_hi();
2877         __ adds(tmp_lo, dst_lo, new_val_lo);
2878         __ adc(tmp_hi, dst_hi, new_val_hi);
2879         assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi, new_val_lo, new_val_hi);
2880       }
2881       new_val_lo = tmp_lo;
2882     } else {
2883       new_val_lo = data->as_register_lo();
2884       Register new_val_hi = data->as_register_hi();
2885 
2886       assert_different_registers(dst_lo, dst_hi, new_val_lo, new_val_hi);
2887       assert(new_val_hi->encoding() == new_val_lo->encoding() + 1, "non aligned register pair");
2888       assert((new_val_lo->encoding() & 0x1) == 0, "misaligned register pair");
2889     }
2890     __ strexd(Rtemp, new_val_lo, addr);
2891   } else {
2892     ShouldNotReachHere();
2893   }
2894 
2895   __ cbnz_32(Rtemp, retry);
2896   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
2897 
2898 }
2899 
2900 #undef __