1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_ASSEMBLER_X86_HPP
  26 #define CPU_X86_ASSEMBLER_X86_HPP
  27 
  28 #include "asm/register.hpp"
  29 #include "runtime/vm_version.hpp"
  30 
  31 class BiasedLockingCounters;
  32 
  33 // Contains all the definitions needed for x86 assembly code generation.
  34 
  35 // Calling convention
  36 class Argument {
  37  public:
  38   enum {
  39 #ifdef _LP64
  40 #ifdef _WIN64
  41     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  42     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  43 #else
  44     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  45     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  46 #endif // _WIN64
  47     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  48     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  49 #else
  50     n_register_parameters = 0   // 0 registers used to pass arguments
  51 #endif // _LP64
  52   };
  53 };
  54 
  55 
  56 #ifdef _LP64
  57 // Symbolically name the register arguments used by the c calling convention.
  58 // Windows is different from linux/solaris. So much for standards...
  59 
  60 #ifdef _WIN64
  61 
  62 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  63 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  64 REGISTER_DECLARATION(Register, c_rarg2, r8);
  65 REGISTER_DECLARATION(Register, c_rarg3, r9);
  66 
  67 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  68 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  69 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  70 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  71 
  72 #else
  73 
  74 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  75 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  76 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  77 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  78 REGISTER_DECLARATION(Register, c_rarg4, r8);
  79 REGISTER_DECLARATION(Register, c_rarg5, r9);
  80 
  81 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  82 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  83 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  84 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  85 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  86 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  87 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  88 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  89 
  90 #endif // _WIN64
  91 
  92 // Symbolically name the register arguments used by the Java calling convention.
  93 // We have control over the convention for java so we can do what we please.
  94 // What pleases us is to offset the java calling convention so that when
  95 // we call a suitable jni method the arguments are lined up and we don't
  96 // have to do little shuffling. A suitable jni method is non-static and a
  97 // small number of arguments (two fewer args on windows)
  98 //
  99 //        |-------------------------------------------------------|
 100 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
 101 //        |-------------------------------------------------------|
 102 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
 103 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
 104 //        |-------------------------------------------------------|
 105 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 106 //        |-------------------------------------------------------|
 107 
 108 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 109 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 110 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 111 // Windows runs out of register args here
 112 #ifdef _WIN64
 113 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 114 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 115 #else
 116 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 117 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 118 #endif /* _WIN64 */
 119 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 120 
 121 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 122 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 123 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 124 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 125 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 126 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 127 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 128 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 129 
 130 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 131 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 132 
 133 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 134 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 135 
 136 #else
 137 // rscratch1 will apear in 32bit code that is dead but of course must compile
 138 // Using noreg ensures if the dead code is incorrectly live and executed it
 139 // will cause an assertion failure
 140 #define rscratch1 noreg
 141 #define rscratch2 noreg
 142 
 143 #endif // _LP64
 144 
 145 // JSR 292
 146 // On x86, the SP does not have to be saved when invoking method handle intrinsics
 147 // or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg.
 148 REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg);
 149 
 150 // Address is an abstraction used to represent a memory location
 151 // using any of the amd64 addressing modes with one object.
 152 //
 153 // Note: A register location is represented via a Register, not
 154 //       via an address for efficiency & simplicity reasons.
 155 
 156 class ArrayAddress;
 157 
 158 class Address {
 159  public:
 160   enum ScaleFactor {
 161     no_scale = -1,
 162     times_1  =  0,
 163     times_2  =  1,
 164     times_4  =  2,
 165     times_8  =  3,
 166     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 167   };
 168   static ScaleFactor times(int size) {
 169     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 170     if (size == 8)  return times_8;
 171     if (size == 4)  return times_4;
 172     if (size == 2)  return times_2;
 173     return times_1;
 174   }
 175   static int scale_size(ScaleFactor scale) {
 176     assert(scale != no_scale, "");
 177     assert(((1 << (int)times_1) == 1 &&
 178             (1 << (int)times_2) == 2 &&
 179             (1 << (int)times_4) == 4 &&
 180             (1 << (int)times_8) == 8), "");
 181     return (1 << (int)scale);
 182   }
 183 
 184  private:
 185   Register         _base;
 186   Register         _index;
 187   XMMRegister      _xmmindex;
 188   ScaleFactor      _scale;
 189   int              _disp;
 190   bool             _isxmmindex;
 191   RelocationHolder _rspec;
 192 
 193   // Easily misused constructors make them private
 194   // %%% can we make these go away?
 195   NOT_LP64(Address(address loc, RelocationHolder spec);)
 196   Address(int disp, address loc, relocInfo::relocType rtype);
 197   Address(int disp, address loc, RelocationHolder spec);
 198 
 199  public:
 200 
 201  int disp() { return _disp; }
 202   // creation
 203   Address()
 204     : _base(noreg),
 205       _index(noreg),
 206       _xmmindex(xnoreg),
 207       _scale(no_scale),
 208       _disp(0),
 209       _isxmmindex(false){
 210   }
 211 
 212   // No default displacement otherwise Register can be implicitly
 213   // converted to 0(Register) which is quite a different animal.
 214 
 215   Address(Register base, int disp)
 216     : _base(base),
 217       _index(noreg),
 218       _xmmindex(xnoreg),
 219       _scale(no_scale),
 220       _disp(disp),
 221       _isxmmindex(false){
 222   }
 223 
 224   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 225     : _base (base),
 226       _index(index),
 227       _xmmindex(xnoreg),
 228       _scale(scale),
 229       _disp (disp),
 230       _isxmmindex(false) {
 231     assert(!index->is_valid() == (scale == Address::no_scale),
 232            "inconsistent address");
 233   }
 234 
 235   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 236     : _base (base),
 237       _index(index.register_or_noreg()),
 238       _xmmindex(xnoreg),
 239       _scale(scale),
 240       _disp (disp + (index.constant_or_zero() * scale_size(scale))),
 241       _isxmmindex(false){
 242     if (!index.is_register())  scale = Address::no_scale;
 243     assert(!_index->is_valid() == (scale == Address::no_scale),
 244            "inconsistent address");
 245   }
 246 
 247   Address(Register base, XMMRegister index, ScaleFactor scale, int disp = 0)
 248     : _base (base),
 249       _index(noreg),
 250       _xmmindex(index),
 251       _scale(scale),
 252       _disp(disp),
 253       _isxmmindex(true) {
 254       assert(!index->is_valid() == (scale == Address::no_scale),
 255              "inconsistent address");
 256   }
 257 
 258   Address plus_disp(int disp) const {
 259     Address a = (*this);
 260     a._disp += disp;
 261     return a;
 262   }
 263   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
 264     Address a = (*this);
 265     a._disp += disp.constant_or_zero() * scale_size(scale);
 266     if (disp.is_register()) {
 267       assert(!a.index()->is_valid(), "competing indexes");
 268       a._index = disp.as_register();
 269       a._scale = scale;
 270     }
 271     return a;
 272   }
 273   bool is_same_address(Address a) const {
 274     // disregard _rspec
 275     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
 276   }
 277 
 278   // The following two overloads are used in connection with the
 279   // ByteSize type (see sizes.hpp).  They simplify the use of
 280   // ByteSize'd arguments in assembly code. Note that their equivalent
 281   // for the optimized build are the member functions with int disp
 282   // argument since ByteSize is mapped to an int type in that case.
 283   //
 284   // Note: DO NOT introduce similar overloaded functions for WordSize
 285   // arguments as in the optimized mode, both ByteSize and WordSize
 286   // are mapped to the same type and thus the compiler cannot make a
 287   // distinction anymore (=> compiler errors).
 288 
 289 #ifdef ASSERT
 290   Address(Register base, ByteSize disp)
 291     : _base(base),
 292       _index(noreg),
 293       _xmmindex(xnoreg),
 294       _scale(no_scale),
 295       _disp(in_bytes(disp)),
 296       _isxmmindex(false){
 297   }
 298 
 299   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 300     : _base(base),
 301       _index(index),
 302       _xmmindex(xnoreg),
 303       _scale(scale),
 304       _disp(in_bytes(disp)),
 305       _isxmmindex(false){
 306     assert(!index->is_valid() == (scale == Address::no_scale),
 307            "inconsistent address");
 308   }
 309   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 310     : _base (base),
 311       _index(index.register_or_noreg()),
 312       _xmmindex(xnoreg),
 313       _scale(scale),
 314       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))),
 315       _isxmmindex(false) {
 316     if (!index.is_register())  scale = Address::no_scale;
 317     assert(!_index->is_valid() == (scale == Address::no_scale),
 318            "inconsistent address");
 319   }
 320 
 321 #endif // ASSERT
 322 
 323   // accessors
 324   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 325   Register    base()             const { return _base;  }
 326   Register    index()            const { return _index; }
 327   XMMRegister xmmindex()         const { return _xmmindex; }
 328   ScaleFactor scale()            const { return _scale; }
 329   int         disp()             const { return _disp;  }
 330   bool        isxmmindex()       const { return _isxmmindex; }
 331 
 332   // Convert the raw encoding form into the form expected by the constructor for
 333   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 334   // that to noreg for the Address constructor.
 335   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
 336 
 337   static Address make_array(ArrayAddress);
 338 
 339  private:
 340   bool base_needs_rex() const {
 341     return _base != noreg && _base->encoding() >= 8;
 342   }
 343 
 344   bool index_needs_rex() const {
 345     return _index != noreg &&_index->encoding() >= 8;
 346   }
 347 
 348   bool xmmindex_needs_rex() const {
 349     return _xmmindex != xnoreg && _xmmindex->encoding() >= 8;
 350   }
 351 
 352   relocInfo::relocType reloc() const { return _rspec.type(); }
 353 
 354   friend class Assembler;
 355   friend class MacroAssembler;
 356   friend class LIR_Assembler; // base/index/scale/disp
 357 };
 358 
 359 //
 360 // AddressLiteral has been split out from Address because operands of this type
 361 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 362 // the few instructions that need to deal with address literals are unique and the
 363 // MacroAssembler does not have to implement every instruction in the Assembler
 364 // in order to search for address literals that may need special handling depending
 365 // on the instruction and the platform. As small step on the way to merging i486/amd64
 366 // directories.
 367 //
 368 class AddressLiteral {
 369   friend class ArrayAddress;
 370   RelocationHolder _rspec;
 371   // Typically we use AddressLiterals we want to use their rval
 372   // However in some situations we want the lval (effect address) of the item.
 373   // We provide a special factory for making those lvals.
 374   bool _is_lval;
 375 
 376   // If the target is far we'll need to load the ea of this to
 377   // a register to reach it. Otherwise if near we can do rip
 378   // relative addressing.
 379 
 380   address          _target;
 381 
 382  protected:
 383   // creation
 384   AddressLiteral()
 385     : _is_lval(false),
 386       _target(NULL)
 387   {}
 388 
 389   public:
 390 
 391 
 392   AddressLiteral(address target, relocInfo::relocType rtype);
 393 
 394   AddressLiteral(address target, RelocationHolder const& rspec)
 395     : _rspec(rspec),
 396       _is_lval(false),
 397       _target(target)
 398   {}
 399 
 400   AddressLiteral addr() {
 401     AddressLiteral ret = *this;
 402     ret._is_lval = true;
 403     return ret;
 404   }
 405 
 406 
 407  private:
 408 
 409   address target() { return _target; }
 410   bool is_lval() { return _is_lval; }
 411 
 412   relocInfo::relocType reloc() const { return _rspec.type(); }
 413   const RelocationHolder& rspec() const { return _rspec; }
 414 
 415   friend class Assembler;
 416   friend class MacroAssembler;
 417   friend class Address;
 418   friend class LIR_Assembler;
 419 };
 420 
 421 // Convience classes
 422 class RuntimeAddress: public AddressLiteral {
 423 
 424   public:
 425 
 426   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 427 
 428 };
 429 
 430 class ExternalAddress: public AddressLiteral {
 431  private:
 432   static relocInfo::relocType reloc_for_target(address target) {
 433     // Sometimes ExternalAddress is used for values which aren't
 434     // exactly addresses, like the card table base.
 435     // external_word_type can't be used for values in the first page
 436     // so just skip the reloc in that case.
 437     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 438   }
 439 
 440  public:
 441 
 442   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
 443 
 444 };
 445 
 446 class InternalAddress: public AddressLiteral {
 447 
 448   public:
 449 
 450   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 451 
 452 };
 453 
 454 // x86 can do array addressing as a single operation since disp can be an absolute
 455 // address amd64 can't. We create a class that expresses the concept but does extra
 456 // magic on amd64 to get the final result
 457 
 458 class ArrayAddress {
 459   private:
 460 
 461   AddressLiteral _base;
 462   Address        _index;
 463 
 464   public:
 465 
 466   ArrayAddress() {};
 467   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 468   AddressLiteral base() { return _base; }
 469   Address index() { return _index; }
 470 
 471 };
 472 
 473 class InstructionAttr;
 474 
 475 // 64-bit refect the fxsave size which is 512 bytes and the new xsave area on EVEX which is another 2176 bytes
 476 // See fxsave and xsave(EVEX enabled) documentation for layout
 477 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY(2688 / wordSize);
 478 
 479 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 480 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 481 // is what you get. The Assembler is generating code into a CodeBuffer.
 482 
 483 class Assembler : public AbstractAssembler  {
 484   friend class AbstractAssembler; // for the non-virtual hack
 485   friend class LIR_Assembler; // as_Address()
 486   friend class StubGenerator;
 487 
 488  public:
 489   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 490     zero          = 0x4,
 491     notZero       = 0x5,
 492     equal         = 0x4,
 493     notEqual      = 0x5,
 494     less          = 0xc,
 495     lessEqual     = 0xe,
 496     greater       = 0xf,
 497     greaterEqual  = 0xd,
 498     below         = 0x2,
 499     belowEqual    = 0x6,
 500     above         = 0x7,
 501     aboveEqual    = 0x3,
 502     overflow      = 0x0,
 503     noOverflow    = 0x1,
 504     carrySet      = 0x2,
 505     carryClear    = 0x3,
 506     negative      = 0x8,
 507     positive      = 0x9,
 508     parity        = 0xa,
 509     noParity      = 0xb
 510   };
 511 
 512   enum Prefix {
 513     // segment overrides
 514     CS_segment = 0x2e,
 515     SS_segment = 0x36,
 516     DS_segment = 0x3e,
 517     ES_segment = 0x26,
 518     FS_segment = 0x64,
 519     GS_segment = 0x65,
 520 
 521     REX        = 0x40,
 522 
 523     REX_B      = 0x41,
 524     REX_X      = 0x42,
 525     REX_XB     = 0x43,
 526     REX_R      = 0x44,
 527     REX_RB     = 0x45,
 528     REX_RX     = 0x46,
 529     REX_RXB    = 0x47,
 530 
 531     REX_W      = 0x48,
 532 
 533     REX_WB     = 0x49,
 534     REX_WX     = 0x4A,
 535     REX_WXB    = 0x4B,
 536     REX_WR     = 0x4C,
 537     REX_WRB    = 0x4D,
 538     REX_WRX    = 0x4E,
 539     REX_WRXB   = 0x4F,
 540 
 541     VEX_3bytes = 0xC4,
 542     VEX_2bytes = 0xC5,
 543     EVEX_4bytes = 0x62,
 544     Prefix_EMPTY = 0x0
 545   };
 546 
 547   enum VexPrefix {
 548     VEX_B = 0x20,
 549     VEX_X = 0x40,
 550     VEX_R = 0x80,
 551     VEX_W = 0x80
 552   };
 553 
 554   enum ExexPrefix {
 555     EVEX_F  = 0x04,
 556     EVEX_V  = 0x08,
 557     EVEX_Rb = 0x10,
 558     EVEX_X  = 0x40,
 559     EVEX_Z  = 0x80
 560   };
 561 
 562   enum VexSimdPrefix {
 563     VEX_SIMD_NONE = 0x0,
 564     VEX_SIMD_66   = 0x1,
 565     VEX_SIMD_F3   = 0x2,
 566     VEX_SIMD_F2   = 0x3
 567   };
 568 
 569   enum VexOpcode {
 570     VEX_OPCODE_NONE  = 0x0,
 571     VEX_OPCODE_0F    = 0x1,
 572     VEX_OPCODE_0F_38 = 0x2,
 573     VEX_OPCODE_0F_3A = 0x3,
 574     VEX_OPCODE_MASK  = 0x1F
 575   };
 576 
 577   enum AvxVectorLen {
 578     AVX_128bit = 0x0,
 579     AVX_256bit = 0x1,
 580     AVX_512bit = 0x2,
 581     AVX_NoVec  = 0x4
 582   };
 583 
 584   enum EvexTupleType {
 585     EVEX_FV   = 0,
 586     EVEX_HV   = 4,
 587     EVEX_FVM  = 6,
 588     EVEX_T1S  = 7,
 589     EVEX_T1F  = 11,
 590     EVEX_T2   = 13,
 591     EVEX_T4   = 15,
 592     EVEX_T8   = 17,
 593     EVEX_HVM  = 18,
 594     EVEX_QVM  = 19,
 595     EVEX_OVM  = 20,
 596     EVEX_M128 = 21,
 597     EVEX_DUP  = 22,
 598     EVEX_ETUP = 23
 599   };
 600 
 601   enum EvexInputSizeInBits {
 602     EVEX_8bit  = 0,
 603     EVEX_16bit = 1,
 604     EVEX_32bit = 2,
 605     EVEX_64bit = 3,
 606     EVEX_NObit = 4
 607   };
 608 
 609   enum WhichOperand {
 610     // input to locate_operand, and format code for relocations
 611     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 612     disp32_operand = 1,          // embedded 32-bit displacement or address
 613     call32_operand = 2,          // embedded 32-bit self-relative displacement
 614 #ifndef _LP64
 615     _WhichOperand_limit = 3
 616 #else
 617      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 618     _WhichOperand_limit = 4
 619 #endif
 620   };
 621 
 622   enum ComparisonPredicate {
 623     eq = 0,
 624     lt = 1,
 625     le = 2,
 626     _false = 3,
 627     neq = 4,
 628     nlt = 5,
 629     nle = 6,
 630     _true = 7
 631   };
 632 
 633   //---<  calculate length of instruction  >---
 634   // As instruction size can't be found out easily on x86/x64,
 635   // we just use '4' for len and maxlen.
 636   // instruction must start at passed address
 637   static unsigned int instr_len(unsigned char *instr) { return 4; }
 638 
 639   //---<  longest instructions  >---
 640   // Max instruction length is not specified in architecture documentation.
 641   // We could use a "safe enough" estimate (15), but just default to
 642   // instruction length guess from above.
 643   static unsigned int instr_maxlen() { return 4; }
 644 
 645   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 646   // of instructions are freely declared without the need for wrapping them an ifdef.
 647   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 648   // In the .cpp file the implementations are wrapped so that they are dropped out
 649   // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL
 650   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 651   //
 652   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 653   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 654 
 655 private:
 656 
 657   bool _legacy_mode_bw;
 658   bool _legacy_mode_dq;
 659   bool _legacy_mode_vl;
 660   bool _legacy_mode_vlbw;
 661   bool _is_managed;
 662   bool _vector_masking;    // For stub code use only
 663 
 664   class InstructionAttr *_attributes;
 665 
 666   // 64bit prefixes
 667   int prefix_and_encode(int reg_enc, bool byteinst = false);
 668   int prefixq_and_encode(int reg_enc);
 669 
 670   int prefix_and_encode(int dst_enc, int src_enc) {
 671     return prefix_and_encode(dst_enc, false, src_enc, false);
 672   }
 673   int prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte);
 674   int prefixq_and_encode(int dst_enc, int src_enc);
 675 
 676   void prefix(Register reg);
 677   void prefix(Register dst, Register src, Prefix p);
 678   void prefix(Register dst, Address adr, Prefix p);
 679   void prefix(Address adr);
 680   void prefixq(Address adr);
 681 
 682   void prefix(Address adr, Register reg,  bool byteinst = false);
 683   void prefix(Address adr, XMMRegister reg);
 684   void prefixq(Address adr, Register reg);
 685   void prefixq(Address adr, XMMRegister reg);
 686 
 687   void prefetch_prefix(Address src);
 688 
 689   void rex_prefix(Address adr, XMMRegister xreg,
 690                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 691   int  rex_prefix_and_encode(int dst_enc, int src_enc,
 692                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 693 
 694   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc);
 695 
 696   void evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v,
 697                    int nds_enc, VexSimdPrefix pre, VexOpcode opc);
 698 
 699   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
 700                   VexSimdPrefix pre, VexOpcode opc,
 701                   InstructionAttr *attributes);
 702 
 703   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
 704                              VexSimdPrefix pre, VexOpcode opc,
 705                              InstructionAttr *attributes);
 706 
 707   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
 708                    VexOpcode opc, InstructionAttr *attributes);
 709 
 710   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
 711                              VexOpcode opc, InstructionAttr *attributes);
 712 
 713   // Helper functions for groups of instructions
 714   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 715 
 716   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 717   // Force generation of a 4 byte immediate value even if it fits into 8bit
 718   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
 719   void emit_arith(int op1, int op2, Register dst, Register src);
 720 
 721   bool emit_compressed_disp_byte(int &disp);
 722 
 723   void emit_operand(Register reg,
 724                     Register base, Register index, Address::ScaleFactor scale,
 725                     int disp,
 726                     RelocationHolder const& rspec,
 727                     int rip_relative_correction = 0);
 728 
 729   void emit_operand(XMMRegister reg, Register base, XMMRegister index,
 730                     Address::ScaleFactor scale,
 731                     int disp, RelocationHolder const& rspec);
 732 
 733   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 734 
 735   // operands that only take the original 32bit registers
 736   void emit_operand32(Register reg, Address adr);
 737 
 738   void emit_operand(XMMRegister reg,
 739                     Register base, Register index, Address::ScaleFactor scale,
 740                     int disp,
 741                     RelocationHolder const& rspec);
 742 
 743   void emit_operand(XMMRegister reg, Address adr);
 744 
 745   void emit_operand(MMXRegister reg, Address adr);
 746 
 747   // workaround gcc (3.2.1-7) bug
 748   void emit_operand(Address adr, MMXRegister reg);
 749 
 750 
 751   // Immediate-to-memory forms
 752   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 753 
 754   void emit_farith(int b1, int b2, int i);
 755 
 756 
 757  protected:
 758   #ifdef ASSERT
 759   void check_relocation(RelocationHolder const& rspec, int format);
 760   #endif
 761 
 762   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 763   void emit_data(jint data, RelocationHolder const& rspec, int format);
 764   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 765   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 766 
 767   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 768 
 769   // These are all easily abused and hence protected
 770 
 771   // 32BIT ONLY SECTION
 772 #ifndef _LP64
 773   // Make these disappear in 64bit mode since they would never be correct
 774   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 775   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 776 
 777   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 778   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 779 
 780   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 781 #else
 782   // 64BIT ONLY SECTION
 783   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 784 
 785   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 786   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 787 
 788   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 789   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 790 #endif // _LP64
 791 
 792   // These are unique in that we are ensured by the caller that the 32bit
 793   // relative in these instructions will always be able to reach the potentially
 794   // 64bit address described by entry. Since they can take a 64bit address they
 795   // don't have the 32 suffix like the other instructions in this class.
 796 
 797   void call_literal(address entry, RelocationHolder const& rspec);
 798   void jmp_literal(address entry, RelocationHolder const& rspec);
 799 
 800   // Avoid using directly section
 801   // Instructions in this section are actually usable by anyone without danger
 802   // of failure but have performance issues that are addressed my enhanced
 803   // instructions which will do the proper thing base on the particular cpu.
 804   // We protect them because we don't trust you...
 805 
 806   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 807   // could cause a partial flag stall since they don't set CF flag.
 808   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 809   // which call inc() & dec() or add() & sub() in accordance with
 810   // the product flag UseIncDec value.
 811 
 812   void decl(Register dst);
 813   void decl(Address dst);
 814   void decq(Register dst);
 815   void decq(Address dst);
 816 
 817   void incl(Register dst);
 818   void incl(Address dst);
 819   void incq(Register dst);
 820   void incq(Address dst);
 821 
 822   // New cpus require use of movsd and movss to avoid partial register stall
 823   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 824   // The selection is done in MacroAssembler::movdbl() and movflt().
 825 
 826   // Move Scalar Single-Precision Floating-Point Values
 827   void movss(XMMRegister dst, Address src);
 828   void movss(XMMRegister dst, XMMRegister src);
 829   void movss(Address dst, XMMRegister src);
 830 
 831   // Move Scalar Double-Precision Floating-Point Values
 832   void movsd(XMMRegister dst, Address src);
 833   void movsd(XMMRegister dst, XMMRegister src);
 834   void movsd(Address dst, XMMRegister src);
 835   void movlpd(XMMRegister dst, Address src);
 836 
 837   // New cpus require use of movaps and movapd to avoid partial register stall
 838   // when moving between registers.
 839   void movaps(XMMRegister dst, XMMRegister src);
 840   void movapd(XMMRegister dst, XMMRegister src);
 841 
 842   // End avoid using directly
 843 
 844 
 845   // Instruction prefixes
 846   void prefix(Prefix p);
 847 
 848   public:
 849 
 850   // Creation
 851   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
 852     init_attributes();
 853   }
 854 
 855   // Decoding
 856   static address locate_operand(address inst, WhichOperand which);
 857   static address locate_next_instruction(address inst);
 858 
 859   // Utilities
 860   static bool is_polling_page_far() NOT_LP64({ return false;});
 861   static bool query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 862                                          int cur_tuple_type, int in_size_in_bits, int cur_encoding);
 863 
 864   // Generic instructions
 865   // Does 32bit or 64bit as needed for the platform. In some sense these
 866   // belong in macro assembler but there is no need for both varieties to exist
 867 
 868   void init_attributes(void) {
 869     _legacy_mode_bw = (VM_Version::supports_avx512bw() == false);
 870     _legacy_mode_dq = (VM_Version::supports_avx512dq() == false);
 871     _legacy_mode_vl = (VM_Version::supports_avx512vl() == false);
 872     _legacy_mode_vlbw = (VM_Version::supports_avx512vlbw() == false);
 873     _is_managed = false;
 874     _vector_masking = false;
 875     _attributes = NULL;
 876   }
 877 
 878   void set_attributes(InstructionAttr *attributes) { _attributes = attributes; }
 879   void clear_attributes(void) { _attributes = NULL; }
 880 
 881   void set_managed(void) { _is_managed = true; }
 882   void clear_managed(void) { _is_managed = false; }
 883   bool is_managed(void) { return _is_managed; }
 884 
 885   void lea(Register dst, Address src);
 886 
 887   void mov(Register dst, Register src);
 888 
 889   void pusha();
 890   void popa();
 891 
 892   void pushf();
 893   void popf();
 894 
 895   void push(int32_t imm32);
 896 
 897   void push(Register src);
 898 
 899   void pop(Register dst);
 900 
 901   // These are dummies to prevent surprise implicit conversions to Register
 902   void push(void* v);
 903   void pop(void* v);
 904 
 905   // These do register sized moves/scans
 906   void rep_mov();
 907   void rep_stos();
 908   void rep_stosb();
 909   void repne_scan();
 910 #ifdef _LP64
 911   void repne_scanl();
 912 #endif
 913 
 914   // Vanilla instructions in lexical order
 915 
 916   void adcl(Address dst, int32_t imm32);
 917   void adcl(Address dst, Register src);
 918   void adcl(Register dst, int32_t imm32);
 919   void adcl(Register dst, Address src);
 920   void adcl(Register dst, Register src);
 921 
 922   void adcq(Register dst, int32_t imm32);
 923   void adcq(Register dst, Address src);
 924   void adcq(Register dst, Register src);
 925 
 926   void addb(Address dst, int imm8);
 927   void addw(Address dst, int imm16);
 928 
 929   void addl(Address dst, int32_t imm32);
 930   void addl(Address dst, Register src);
 931   void addl(Register dst, int32_t imm32);
 932   void addl(Register dst, Address src);
 933   void addl(Register dst, Register src);
 934 
 935   void addq(Address dst, int32_t imm32);
 936   void addq(Address dst, Register src);
 937   void addq(Register dst, int32_t imm32);
 938   void addq(Register dst, Address src);
 939   void addq(Register dst, Register src);
 940 
 941 #ifdef _LP64
 942  //Add Unsigned Integers with Carry Flag
 943   void adcxq(Register dst, Register src);
 944 
 945  //Add Unsigned Integers with Overflow Flag
 946   void adoxq(Register dst, Register src);
 947 #endif
 948 
 949   void addr_nop_4();
 950   void addr_nop_5();
 951   void addr_nop_7();
 952   void addr_nop_8();
 953 
 954   // Add Scalar Double-Precision Floating-Point Values
 955   void addsd(XMMRegister dst, Address src);
 956   void addsd(XMMRegister dst, XMMRegister src);
 957 
 958   // Add Scalar Single-Precision Floating-Point Values
 959   void addss(XMMRegister dst, Address src);
 960   void addss(XMMRegister dst, XMMRegister src);
 961 
 962   // AES instructions
 963   void aesdec(XMMRegister dst, Address src);
 964   void aesdec(XMMRegister dst, XMMRegister src);
 965   void aesdeclast(XMMRegister dst, Address src);
 966   void aesdeclast(XMMRegister dst, XMMRegister src);
 967   void aesenc(XMMRegister dst, Address src);
 968   void aesenc(XMMRegister dst, XMMRegister src);
 969   void aesenclast(XMMRegister dst, Address src);
 970   void aesenclast(XMMRegister dst, XMMRegister src);
 971   // Vector AES instructions
 972   void vaesenc(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
 973   void vaesenclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
 974   void vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
 975   void vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
 976 
 977   void andl(Address  dst, int32_t imm32);
 978   void andl(Register dst, int32_t imm32);
 979   void andl(Register dst, Address src);
 980   void andl(Register dst, Register src);
 981 
 982   void andq(Address  dst, int32_t imm32);
 983   void andq(Register dst, int32_t imm32);
 984   void andq(Register dst, Address src);
 985   void andq(Register dst, Register src);
 986 
 987   // BMI instructions
 988   void andnl(Register dst, Register src1, Register src2);
 989   void andnl(Register dst, Register src1, Address src2);
 990   void andnq(Register dst, Register src1, Register src2);
 991   void andnq(Register dst, Register src1, Address src2);
 992 
 993   void blsil(Register dst, Register src);
 994   void blsil(Register dst, Address src);
 995   void blsiq(Register dst, Register src);
 996   void blsiq(Register dst, Address src);
 997 
 998   void blsmskl(Register dst, Register src);
 999   void blsmskl(Register dst, Address src);
1000   void blsmskq(Register dst, Register src);
1001   void blsmskq(Register dst, Address src);
1002 
1003   void blsrl(Register dst, Register src);
1004   void blsrl(Register dst, Address src);
1005   void blsrq(Register dst, Register src);
1006   void blsrq(Register dst, Address src);
1007 
1008   void bsfl(Register dst, Register src);
1009   void bsrl(Register dst, Register src);
1010 
1011 #ifdef _LP64
1012   void bsfq(Register dst, Register src);
1013   void bsrq(Register dst, Register src);
1014 #endif
1015 
1016   void bswapl(Register reg);
1017 
1018   void bswapq(Register reg);
1019 
1020   void call(Label& L, relocInfo::relocType rtype);
1021   void call(Register reg);  // push pc; pc <- reg
1022   void call(Address adr);   // push pc; pc <- adr
1023 
1024   void cdql();
1025 
1026   void cdqq();
1027 
1028   void cld();
1029 
1030   void clflush(Address adr);
1031   void clflushopt(Address adr);
1032   void clwb(Address adr);
1033 
1034   void cmovl(Condition cc, Register dst, Register src);
1035   void cmovl(Condition cc, Register dst, Address src);
1036 
1037   void cmovq(Condition cc, Register dst, Register src);
1038   void cmovq(Condition cc, Register dst, Address src);
1039 
1040 
1041   void cmpb(Address dst, int imm8);
1042 
1043   void cmpl(Address dst, int32_t imm32);
1044 
1045   void cmpl(Register dst, int32_t imm32);
1046   void cmpl(Register dst, Register src);
1047   void cmpl(Register dst, Address src);
1048 
1049   void cmpq(Address dst, int32_t imm32);
1050   void cmpq(Address dst, Register src);
1051 
1052   void cmpq(Register dst, int32_t imm32);
1053   void cmpq(Register dst, Register src);
1054   void cmpq(Register dst, Address src);
1055 
1056   // these are dummies used to catch attempting to convert NULL to Register
1057   void cmpl(Register dst, void* junk); // dummy
1058   void cmpq(Register dst, void* junk); // dummy
1059 
1060   void cmpw(Address dst, int imm16);
1061 
1062   void cmpxchg8 (Address adr);
1063 
1064   void cmpxchgb(Register reg, Address adr);
1065   void cmpxchgl(Register reg, Address adr);
1066 
1067   void cmpxchgq(Register reg, Address adr);
1068 
1069   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1070   void comisd(XMMRegister dst, Address src);
1071   void comisd(XMMRegister dst, XMMRegister src);
1072 
1073   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1074   void comiss(XMMRegister dst, Address src);
1075   void comiss(XMMRegister dst, XMMRegister src);
1076 
1077   // Identify processor type and features
1078   void cpuid();
1079 
1080   // CRC32C
1081   void crc32(Register crc, Register v, int8_t sizeInBytes);
1082   void crc32(Register crc, Address adr, int8_t sizeInBytes);
1083 
1084   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
1085   void cvtsd2ss(XMMRegister dst, XMMRegister src);
1086   void cvtsd2ss(XMMRegister dst, Address src);
1087 
1088   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
1089   void cvtsi2sdl(XMMRegister dst, Register src);
1090   void cvtsi2sdl(XMMRegister dst, Address src);
1091   void cvtsi2sdq(XMMRegister dst, Register src);
1092   void cvtsi2sdq(XMMRegister dst, Address src);
1093 
1094   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
1095   void cvtsi2ssl(XMMRegister dst, Register src);
1096   void cvtsi2ssl(XMMRegister dst, Address src);
1097   void cvtsi2ssq(XMMRegister dst, Register src);
1098   void cvtsi2ssq(XMMRegister dst, Address src);
1099 
1100   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
1101   void cvtdq2pd(XMMRegister dst, XMMRegister src);
1102 
1103   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
1104   void cvtdq2ps(XMMRegister dst, XMMRegister src);
1105 
1106   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
1107   void cvtss2sd(XMMRegister dst, XMMRegister src);
1108   void cvtss2sd(XMMRegister dst, Address src);
1109 
1110   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
1111   void cvttsd2sil(Register dst, Address src);
1112   void cvttsd2sil(Register dst, XMMRegister src);
1113   void cvttsd2siq(Register dst, Address src);
1114   void cvttsd2siq(Register dst, XMMRegister src);
1115 
1116   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
1117   void cvttss2sil(Register dst, XMMRegister src);
1118   void cvttss2siq(Register dst, XMMRegister src);
1119 
1120   void cvttpd2dq(XMMRegister dst, XMMRegister src);
1121 
1122   //Abs of packed Integer values
1123   void pabsb(XMMRegister dst, XMMRegister src);
1124   void pabsw(XMMRegister dst, XMMRegister src);
1125   void pabsd(XMMRegister dst, XMMRegister src);
1126   void vpabsb(XMMRegister dst, XMMRegister src, int vector_len);
1127   void vpabsw(XMMRegister dst, XMMRegister src, int vector_len);
1128   void vpabsd(XMMRegister dst, XMMRegister src, int vector_len);
1129   void evpabsq(XMMRegister dst, XMMRegister src, int vector_len);
1130 
1131   // Divide Scalar Double-Precision Floating-Point Values
1132   void divsd(XMMRegister dst, Address src);
1133   void divsd(XMMRegister dst, XMMRegister src);
1134 
1135   // Divide Scalar Single-Precision Floating-Point Values
1136   void divss(XMMRegister dst, Address src);
1137   void divss(XMMRegister dst, XMMRegister src);
1138 
1139   void emms();
1140 
1141 #ifndef _LP64
1142   void fabs();
1143 
1144   void fadd(int i);
1145 
1146   void fadd_d(Address src);
1147   void fadd_s(Address src);
1148 
1149   // "Alternate" versions of x87 instructions place result down in FPU
1150   // stack instead of on TOS
1151 
1152   void fadda(int i); // "alternate" fadd
1153   void faddp(int i = 1);
1154 
1155   void fchs();
1156 
1157   void fcom(int i);
1158 
1159   void fcomp(int i = 1);
1160   void fcomp_d(Address src);
1161   void fcomp_s(Address src);
1162 
1163   void fcompp();
1164 
1165   void fcos();
1166 
1167   void fdecstp();
1168 
1169   void fdiv(int i);
1170   void fdiv_d(Address src);
1171   void fdivr_s(Address src);
1172   void fdiva(int i);  // "alternate" fdiv
1173   void fdivp(int i = 1);
1174 
1175   void fdivr(int i);
1176   void fdivr_d(Address src);
1177   void fdiv_s(Address src);
1178 
1179   void fdivra(int i); // "alternate" reversed fdiv
1180 
1181   void fdivrp(int i = 1);
1182 
1183   void ffree(int i = 0);
1184 
1185   void fild_d(Address adr);
1186   void fild_s(Address adr);
1187 
1188   void fincstp();
1189 
1190   void finit();
1191 
1192   void fist_s (Address adr);
1193   void fistp_d(Address adr);
1194   void fistp_s(Address adr);
1195 
1196   void fld1();
1197 
1198   void fld_d(Address adr);
1199   void fld_s(Address adr);
1200   void fld_s(int index);
1201   void fld_x(Address adr);  // extended-precision (80-bit) format
1202 
1203   void fldcw(Address src);
1204 
1205   void fldenv(Address src);
1206 
1207   void fldlg2();
1208 
1209   void fldln2();
1210 
1211   void fldz();
1212 
1213   void flog();
1214   void flog10();
1215 
1216   void fmul(int i);
1217 
1218   void fmul_d(Address src);
1219   void fmul_s(Address src);
1220 
1221   void fmula(int i);  // "alternate" fmul
1222 
1223   void fmulp(int i = 1);
1224 
1225   void fnsave(Address dst);
1226 
1227   void fnstcw(Address src);
1228 
1229   void fnstsw_ax();
1230 
1231   void fprem();
1232   void fprem1();
1233 
1234   void frstor(Address src);
1235 
1236   void fsin();
1237 
1238   void fsqrt();
1239 
1240   void fst_d(Address adr);
1241   void fst_s(Address adr);
1242 
1243   void fstp_d(Address adr);
1244   void fstp_d(int index);
1245   void fstp_s(Address adr);
1246   void fstp_x(Address adr); // extended-precision (80-bit) format
1247 
1248   void fsub(int i);
1249   void fsub_d(Address src);
1250   void fsub_s(Address src);
1251 
1252   void fsuba(int i);  // "alternate" fsub
1253 
1254   void fsubp(int i = 1);
1255 
1256   void fsubr(int i);
1257   void fsubr_d(Address src);
1258   void fsubr_s(Address src);
1259 
1260   void fsubra(int i); // "alternate" reversed fsub
1261 
1262   void fsubrp(int i = 1);
1263 
1264   void ftan();
1265 
1266   void ftst();
1267 
1268   void fucomi(int i = 1);
1269   void fucomip(int i = 1);
1270 
1271   void fwait();
1272 
1273   void fxch(int i = 1);
1274 
1275   void fyl2x();
1276   void frndint();
1277   void f2xm1();
1278   void fldl2e();
1279 #endif // !_LP64
1280 
1281   void fxrstor(Address src);
1282   void xrstor(Address src);
1283 
1284   void fxsave(Address dst);
1285   void xsave(Address dst);
1286 
1287   void hlt();
1288 
1289   void idivl(Register src);
1290   void divl(Register src); // Unsigned division
1291 
1292 #ifdef _LP64
1293   void idivq(Register src);
1294 #endif
1295 
1296   void imull(Register src);
1297   void imull(Register dst, Register src);
1298   void imull(Register dst, Register src, int value);
1299   void imull(Register dst, Address src);
1300 
1301 #ifdef _LP64
1302   void imulq(Register dst, Register src);
1303   void imulq(Register dst, Register src, int value);
1304   void imulq(Register dst, Address src);
1305 #endif
1306 
1307   // jcc is the generic conditional branch generator to run-
1308   // time routines, jcc is used for branches to labels. jcc
1309   // takes a branch opcode (cc) and a label (L) and generates
1310   // either a backward branch or a forward branch and links it
1311   // to the label fixup chain. Usage:
1312   //
1313   // Label L;      // unbound label
1314   // jcc(cc, L);   // forward branch to unbound label
1315   // bind(L);      // bind label to the current pc
1316   // jcc(cc, L);   // backward branch to bound label
1317   // bind(L);      // illegal: a label may be bound only once
1318   //
1319   // Note: The same Label can be used for forward and backward branches
1320   // but it may be bound only once.
1321 
1322   void jcc(Condition cc, Label& L, bool maybe_short = true);
1323 
1324   // Conditional jump to a 8-bit offset to L.
1325   // WARNING: be very careful using this for forward jumps.  If the label is
1326   // not bound within an 8-bit offset of this instruction, a run-time error
1327   // will occur.
1328 
1329   // Use macro to record file and line number.
1330   #define jccb(cc, L) jccb_0(cc, L, __FILE__, __LINE__)
1331 
1332   void jccb_0(Condition cc, Label& L, const char* file, int line);
1333 
1334   void jmp(Address entry);    // pc <- entry
1335 
1336   // Label operations & relative jumps (PPUM Appendix D)
1337   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
1338 
1339   void jmp(Register entry); // pc <- entry
1340 
1341   // Unconditional 8-bit offset jump to L.
1342   // WARNING: be very careful using this for forward jumps.  If the label is
1343   // not bound within an 8-bit offset of this instruction, a run-time error
1344   // will occur.
1345 
1346   // Use macro to record file and line number.
1347   #define jmpb(L) jmpb_0(L, __FILE__, __LINE__)
1348 
1349   void jmpb_0(Label& L, const char* file, int line);
1350 
1351   void ldmxcsr( Address src );
1352 
1353   void leal(Register dst, Address src);
1354 
1355   void leaq(Register dst, Address src);
1356 
1357   void lfence();
1358 
1359   void lock();
1360 
1361   void lzcntl(Register dst, Register src);
1362 
1363 #ifdef _LP64
1364   void lzcntq(Register dst, Register src);
1365 #endif
1366 
1367   enum Membar_mask_bits {
1368     StoreStore = 1 << 3,
1369     LoadStore  = 1 << 2,
1370     StoreLoad  = 1 << 1,
1371     LoadLoad   = 1 << 0
1372   };
1373 
1374   // Serializes memory and blows flags
1375   void membar(Membar_mask_bits order_constraint) {
1376     // We only have to handle StoreLoad
1377     if (order_constraint & StoreLoad) {
1378       // All usable chips support "locked" instructions which suffice
1379       // as barriers, and are much faster than the alternative of
1380       // using cpuid instruction. We use here a locked add [esp-C],0.
1381       // This is conveniently otherwise a no-op except for blowing
1382       // flags, and introducing a false dependency on target memory
1383       // location. We can't do anything with flags, but we can avoid
1384       // memory dependencies in the current method by locked-adding
1385       // somewhere else on the stack. Doing [esp+C] will collide with
1386       // something on stack in current method, hence we go for [esp-C].
1387       // It is convenient since it is almost always in data cache, for
1388       // any small C.  We need to step back from SP to avoid data
1389       // dependencies with other things on below SP (callee-saves, for
1390       // example). Without a clear way to figure out the minimal safe
1391       // distance from SP, it makes sense to step back the complete
1392       // cache line, as this will also avoid possible second-order effects
1393       // with locked ops against the cache line. Our choice of offset
1394       // is bounded by x86 operand encoding, which should stay within
1395       // [-128; +127] to have the 8-byte displacement encoding.
1396       //
1397       // Any change to this code may need to revisit other places in
1398       // the code where this idiom is used, in particular the
1399       // orderAccess code.
1400 
1401       int offset = -VM_Version::L1_line_size();
1402       if (offset < -128) {
1403         offset = -128;
1404       }
1405 
1406       lock();
1407       addl(Address(rsp, offset), 0);// Assert the lock# signal here
1408     }
1409   }
1410 
1411   void mfence();
1412   void sfence();
1413 
1414   // Moves
1415 
1416   void mov64(Register dst, int64_t imm64);
1417 
1418   void movb(Address dst, Register src);
1419   void movb(Address dst, int imm8);
1420   void movb(Register dst, Address src);
1421 
1422   void movddup(XMMRegister dst, XMMRegister src);
1423 
1424   void kmovbl(KRegister dst, Register src);
1425   void kmovbl(Register dst, KRegister src);
1426   void kmovwl(KRegister dst, Register src);
1427   void kmovwl(KRegister dst, Address src);
1428   void kmovwl(Register dst, KRegister src);
1429   void kmovdl(KRegister dst, Register src);
1430   void kmovdl(Register dst, KRegister src);
1431   void kmovql(KRegister dst, KRegister src);
1432   void kmovql(Address dst, KRegister src);
1433   void kmovql(KRegister dst, Address src);
1434   void kmovql(KRegister dst, Register src);
1435   void kmovql(Register dst, KRegister src);
1436 
1437   void knotwl(KRegister dst, KRegister src);
1438 
1439   void kortestbl(KRegister dst, KRegister src);
1440   void kortestwl(KRegister dst, KRegister src);
1441   void kortestdl(KRegister dst, KRegister src);
1442   void kortestql(KRegister dst, KRegister src);
1443 
1444   void ktestq(KRegister src1, KRegister src2);
1445   void ktestd(KRegister src1, KRegister src2);
1446 
1447   void ktestql(KRegister dst, KRegister src);
1448 
1449   void movdl(XMMRegister dst, Register src);
1450   void movdl(Register dst, XMMRegister src);
1451   void movdl(XMMRegister dst, Address src);
1452   void movdl(Address dst, XMMRegister src);
1453 
1454   // Move Double Quadword
1455   void movdq(XMMRegister dst, Register src);
1456   void movdq(Register dst, XMMRegister src);
1457 
1458   // Move Aligned Double Quadword
1459   void movdqa(XMMRegister dst, XMMRegister src);
1460   void movdqa(XMMRegister dst, Address src);
1461 
1462   // Move Unaligned Double Quadword
1463   void movdqu(Address     dst, XMMRegister src);
1464   void movdqu(XMMRegister dst, Address src);
1465   void movdqu(XMMRegister dst, XMMRegister src);
1466 
1467   // Move Unaligned 256bit Vector
1468   void vmovdqu(Address dst, XMMRegister src);
1469   void vmovdqu(XMMRegister dst, Address src);
1470   void vmovdqu(XMMRegister dst, XMMRegister src);
1471 
1472    // Move Unaligned 512bit Vector
1473   void evmovdqub(Address dst, XMMRegister src, int vector_len);
1474   void evmovdqub(XMMRegister dst, Address src, int vector_len);
1475   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len);
1476   void evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len);
1477   void evmovdquw(Address dst, XMMRegister src, int vector_len);
1478   void evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len);
1479   void evmovdquw(XMMRegister dst, Address src, int vector_len);
1480   void evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len);
1481   void evmovdqul(Address dst, XMMRegister src, int vector_len);
1482   void evmovdqul(XMMRegister dst, Address src, int vector_len);
1483   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len);
1484   void evmovdquq(Address dst, XMMRegister src, int vector_len);
1485   void evmovdquq(XMMRegister dst, Address src, int vector_len);
1486   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len);
1487 
1488   // Move lower 64bit to high 64bit in 128bit register
1489   void movlhps(XMMRegister dst, XMMRegister src);
1490 
1491   void movl(Register dst, int32_t imm32);
1492   void movl(Address dst, int32_t imm32);
1493   void movl(Register dst, Register src);
1494   void movl(Register dst, Address src);
1495   void movl(Address dst, Register src);
1496 
1497   // These dummies prevent using movl from converting a zero (like NULL) into Register
1498   // by giving the compiler two choices it can't resolve
1499 
1500   void movl(Address  dst, void* junk);
1501   void movl(Register dst, void* junk);
1502 
1503 #ifdef _LP64
1504   void movq(Register dst, Register src);
1505   void movq(Register dst, Address src);
1506   void movq(Address  dst, Register src);
1507 #endif
1508 
1509   void movq(Address     dst, MMXRegister src );
1510   void movq(MMXRegister dst, Address src );
1511 
1512 #ifdef _LP64
1513   // These dummies prevent using movq from converting a zero (like NULL) into Register
1514   // by giving the compiler two choices it can't resolve
1515 
1516   void movq(Address  dst, void* dummy);
1517   void movq(Register dst, void* dummy);
1518 #endif
1519 
1520   // Move Quadword
1521   void movq(Address     dst, XMMRegister src);
1522   void movq(XMMRegister dst, Address src);
1523 
1524   void movsbl(Register dst, Address src);
1525   void movsbl(Register dst, Register src);
1526 
1527 #ifdef _LP64
1528   void movsbq(Register dst, Address src);
1529   void movsbq(Register dst, Register src);
1530 
1531   // Move signed 32bit immediate to 64bit extending sign
1532   void movslq(Address  dst, int32_t imm64);
1533   void movslq(Register dst, int32_t imm64);
1534 
1535   void movslq(Register dst, Address src);
1536   void movslq(Register dst, Register src);
1537   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1538 #endif
1539 
1540   void movswl(Register dst, Address src);
1541   void movswl(Register dst, Register src);
1542 
1543 #ifdef _LP64
1544   void movswq(Register dst, Address src);
1545   void movswq(Register dst, Register src);
1546 #endif
1547 
1548   void movw(Address dst, int imm16);
1549   void movw(Register dst, Address src);
1550   void movw(Address dst, Register src);
1551 
1552   void movzbl(Register dst, Address src);
1553   void movzbl(Register dst, Register src);
1554 
1555 #ifdef _LP64
1556   void movzbq(Register dst, Address src);
1557   void movzbq(Register dst, Register src);
1558 #endif
1559 
1560   void movzwl(Register dst, Address src);
1561   void movzwl(Register dst, Register src);
1562 
1563 #ifdef _LP64
1564   void movzwq(Register dst, Address src);
1565   void movzwq(Register dst, Register src);
1566 #endif
1567 
1568   // Unsigned multiply with RAX destination register
1569   void mull(Address src);
1570   void mull(Register src);
1571 
1572 #ifdef _LP64
1573   void mulq(Address src);
1574   void mulq(Register src);
1575   void mulxq(Register dst1, Register dst2, Register src);
1576 #endif
1577 
1578   // Multiply Scalar Double-Precision Floating-Point Values
1579   void mulsd(XMMRegister dst, Address src);
1580   void mulsd(XMMRegister dst, XMMRegister src);
1581 
1582   // Multiply Scalar Single-Precision Floating-Point Values
1583   void mulss(XMMRegister dst, Address src);
1584   void mulss(XMMRegister dst, XMMRegister src);
1585 
1586   void negl(Register dst);
1587 
1588 #ifdef _LP64
1589   void negq(Register dst);
1590 #endif
1591 
1592   void nop(int i = 1);
1593 
1594   void notl(Register dst);
1595 
1596 #ifdef _LP64
1597   void notq(Register dst);
1598 
1599   void btsq(Address dst, int imm8);
1600   void btrq(Address dst, int imm8);
1601 #endif
1602 
1603   void orl(Address dst, int32_t imm32);
1604   void orl(Register dst, int32_t imm32);
1605   void orl(Register dst, Address src);
1606   void orl(Register dst, Register src);
1607   void orl(Address dst, Register src);
1608 
1609   void orb(Address dst, int imm8);
1610 
1611   void orq(Address dst, int32_t imm32);
1612   void orq(Register dst, int32_t imm32);
1613   void orq(Register dst, Address src);
1614   void orq(Register dst, Register src);
1615 
1616   // Pack with unsigned saturation
1617   void packuswb(XMMRegister dst, XMMRegister src);
1618   void packuswb(XMMRegister dst, Address src);
1619   void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1620 
1621   // Pemutation of 64bit words
1622   void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len);
1623   void vpermq(XMMRegister dst, XMMRegister src, int imm8);
1624   void vpermq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1625   void vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8);
1626   void vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8);
1627   void evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1628 
1629   void pause();
1630 
1631   // Undefined Instruction
1632   void ud2();
1633 
1634   // SSE4.2 string instructions
1635   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1636   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1637 
1638   void pcmpeqb(XMMRegister dst, XMMRegister src);
1639   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1640   void evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1641   void evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1642   void evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len);
1643 
1644   void evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1645   void evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len);
1646 
1647   void evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len);
1648   void evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate of, int vector_len);
1649   void evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len);
1650 
1651   void pcmpeqw(XMMRegister dst, XMMRegister src);
1652   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1653   void evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1654   void evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1655 
1656   void pcmpeqd(XMMRegister dst, XMMRegister src);
1657   void vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1658   void evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1659   void evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1660 
1661   void pcmpeqq(XMMRegister dst, XMMRegister src);
1662   void vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1663   void evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1664   void evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1665 
1666   void pmovmskb(Register dst, XMMRegister src);
1667   void vpmovmskb(Register dst, XMMRegister src);
1668 
1669   // SSE 4.1 extract
1670   void pextrd(Register dst, XMMRegister src, int imm8);
1671   void pextrq(Register dst, XMMRegister src, int imm8);
1672   void pextrd(Address dst, XMMRegister src, int imm8);
1673   void pextrq(Address dst, XMMRegister src, int imm8);
1674   void pextrb(Address dst, XMMRegister src, int imm8);
1675   // SSE 2 extract
1676   void pextrw(Register dst, XMMRegister src, int imm8);
1677   void pextrw(Address dst, XMMRegister src, int imm8);
1678 
1679   // SSE 4.1 insert
1680   void pinsrd(XMMRegister dst, Register src, int imm8);
1681   void pinsrq(XMMRegister dst, Register src, int imm8);
1682   void pinsrd(XMMRegister dst, Address src, int imm8);
1683   void pinsrq(XMMRegister dst, Address src, int imm8);
1684   void pinsrb(XMMRegister dst, Address src, int imm8);
1685   // SSE 2 insert
1686   void pinsrw(XMMRegister dst, Register src, int imm8);
1687   void pinsrw(XMMRegister dst, Address src, int imm8);
1688 
1689   // SSE4.1 packed move
1690   void pmovzxbw(XMMRegister dst, XMMRegister src);
1691   void pmovzxbw(XMMRegister dst, Address src);
1692 
1693   void vpmovzxbw( XMMRegister dst, Address src, int vector_len);
1694   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len);
1695   void evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len);
1696 
1697   void evpmovwb(Address dst, XMMRegister src, int vector_len);
1698   void evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len);
1699 
1700   void vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len);
1701 
1702   void evpmovdb(Address dst, XMMRegister src, int vector_len);
1703 
1704   // Sign extend moves
1705   void pmovsxbw(XMMRegister dst, XMMRegister src);
1706   void vpmovsxbw(XMMRegister dst, XMMRegister src, int vector_len);
1707 
1708   // Multiply add
1709   void pmaddwd(XMMRegister dst, XMMRegister src);
1710   void vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1711   // Multiply add accumulate
1712   void evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1713 
1714 #ifndef _LP64 // no 32bit push/pop on amd64
1715   void popl(Address dst);
1716 #endif
1717 
1718 #ifdef _LP64
1719   void popq(Address dst);
1720 #endif
1721 
1722   void popcntl(Register dst, Address src);
1723   void popcntl(Register dst, Register src);
1724 
1725   void vpopcntd(XMMRegister dst, XMMRegister src, int vector_len);
1726 
1727 #ifdef _LP64
1728   void popcntq(Register dst, Address src);
1729   void popcntq(Register dst, Register src);
1730 #endif
1731 
1732   // Prefetches (SSE, SSE2, 3DNOW only)
1733 
1734   void prefetchnta(Address src);
1735   void prefetchr(Address src);
1736   void prefetcht0(Address src);
1737   void prefetcht1(Address src);
1738   void prefetcht2(Address src);
1739   void prefetchw(Address src);
1740 
1741   // Shuffle Bytes
1742   void pshufb(XMMRegister dst, XMMRegister src);
1743   void pshufb(XMMRegister dst, Address src);
1744   void vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1745 
1746   // Shuffle Packed Doublewords
1747   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1748   void pshufd(XMMRegister dst, Address src,     int mode);
1749   void vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len);
1750 
1751   // Shuffle Packed Low Words
1752   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1753   void pshuflw(XMMRegister dst, Address src,     int mode);
1754 
1755   // Shuffle packed values at 128 bit granularity
1756   void evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len);
1757 
1758   // Shift Right by bytes Logical DoubleQuadword Immediate
1759   void psrldq(XMMRegister dst, int shift);
1760   // Shift Left by bytes Logical DoubleQuadword Immediate
1761   void pslldq(XMMRegister dst, int shift);
1762 
1763   // Logical Compare 128bit
1764   void ptest(XMMRegister dst, XMMRegister src);
1765   void ptest(XMMRegister dst, Address src);
1766   // Logical Compare 256bit
1767   void vptest(XMMRegister dst, XMMRegister src);
1768   void vptest(XMMRegister dst, Address src);
1769 
1770   // Interleave Low Bytes
1771   void punpcklbw(XMMRegister dst, XMMRegister src);
1772   void punpcklbw(XMMRegister dst, Address src);
1773 
1774   // Interleave Low Doublewords
1775   void punpckldq(XMMRegister dst, XMMRegister src);
1776   void punpckldq(XMMRegister dst, Address src);
1777 
1778   // Interleave Low Quadwords
1779   void punpcklqdq(XMMRegister dst, XMMRegister src);
1780 
1781 #ifndef _LP64 // no 32bit push/pop on amd64
1782   void pushl(Address src);
1783 #endif
1784 
1785   void pushq(Address src);
1786 
1787   void rcll(Register dst, int imm8);
1788 
1789   void rclq(Register dst, int imm8);
1790 
1791   void rcrq(Register dst, int imm8);
1792 
1793   void rcpps(XMMRegister dst, XMMRegister src);
1794 
1795   void rcpss(XMMRegister dst, XMMRegister src);
1796 
1797   void rdtsc();
1798 
1799   void ret(int imm16);
1800 
1801 #ifdef _LP64
1802   void rorq(Register dst, int imm8);
1803   void rorxq(Register dst, Register src, int imm8);
1804   void rorxd(Register dst, Register src, int imm8);
1805 #endif
1806 
1807   void sahf();
1808 
1809   void sarl(Register dst, int imm8);
1810   void sarl(Register dst);
1811 
1812   void sarq(Register dst, int imm8);
1813   void sarq(Register dst);
1814 
1815   void sbbl(Address dst, int32_t imm32);
1816   void sbbl(Register dst, int32_t imm32);
1817   void sbbl(Register dst, Address src);
1818   void sbbl(Register dst, Register src);
1819 
1820   void sbbq(Address dst, int32_t imm32);
1821   void sbbq(Register dst, int32_t imm32);
1822   void sbbq(Register dst, Address src);
1823   void sbbq(Register dst, Register src);
1824 
1825   void setb(Condition cc, Register dst);
1826 
1827   void palignr(XMMRegister dst, XMMRegister src, int imm8);
1828   void vpalignr(XMMRegister dst, XMMRegister src1, XMMRegister src2, int imm8, int vector_len);
1829   void evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
1830 
1831   void pblendw(XMMRegister dst, XMMRegister src, int imm8);
1832 
1833   void sha1rnds4(XMMRegister dst, XMMRegister src, int imm8);
1834   void sha1nexte(XMMRegister dst, XMMRegister src);
1835   void sha1msg1(XMMRegister dst, XMMRegister src);
1836   void sha1msg2(XMMRegister dst, XMMRegister src);
1837   // xmm0 is implicit additional source to the following instruction.
1838   void sha256rnds2(XMMRegister dst, XMMRegister src);
1839   void sha256msg1(XMMRegister dst, XMMRegister src);
1840   void sha256msg2(XMMRegister dst, XMMRegister src);
1841 
1842   void shldl(Register dst, Register src);
1843   void shldl(Register dst, Register src, int8_t imm8);
1844 
1845   void shll(Register dst, int imm8);
1846   void shll(Register dst);
1847 
1848   void shlq(Register dst, int imm8);
1849   void shlq(Register dst);
1850 
1851   void shrdl(Register dst, Register src);
1852 
1853   void shrl(Register dst, int imm8);
1854   void shrl(Register dst);
1855 
1856   void shrq(Register dst, int imm8);
1857   void shrq(Register dst);
1858 
1859   void smovl(); // QQQ generic?
1860 
1861   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1862   void sqrtsd(XMMRegister dst, Address src);
1863   void sqrtsd(XMMRegister dst, XMMRegister src);
1864 
1865   void roundsd(XMMRegister dst, Address src, int32_t rmode);
1866   void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode);
1867 
1868   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1869   void sqrtss(XMMRegister dst, Address src);
1870   void sqrtss(XMMRegister dst, XMMRegister src);
1871 
1872   void std();
1873 
1874   void stmxcsr( Address dst );
1875 
1876   void subl(Address dst, int32_t imm32);
1877   void subl(Address dst, Register src);
1878   void subl(Register dst, int32_t imm32);
1879   void subl(Register dst, Address src);
1880   void subl(Register dst, Register src);
1881 
1882   void subq(Address dst, int32_t imm32);
1883   void subq(Address dst, Register src);
1884   void subq(Register dst, int32_t imm32);
1885   void subq(Register dst, Address src);
1886   void subq(Register dst, Register src);
1887 
1888   // Force generation of a 4 byte immediate value even if it fits into 8bit
1889   void subl_imm32(Register dst, int32_t imm32);
1890   void subq_imm32(Register dst, int32_t imm32);
1891 
1892   // Subtract Scalar Double-Precision Floating-Point Values
1893   void subsd(XMMRegister dst, Address src);
1894   void subsd(XMMRegister dst, XMMRegister src);
1895 
1896   // Subtract Scalar Single-Precision Floating-Point Values
1897   void subss(XMMRegister dst, Address src);
1898   void subss(XMMRegister dst, XMMRegister src);
1899 
1900   void testb(Register dst, int imm8);
1901   void testb(Address dst, int imm8);
1902 
1903   void testl(Register dst, int32_t imm32);
1904   void testl(Register dst, Register src);
1905   void testl(Register dst, Address src);
1906 
1907   void testq(Register dst, int32_t imm32);
1908   void testq(Register dst, Register src);
1909   void testq(Register dst, Address src);
1910 
1911   // BMI - count trailing zeros
1912   void tzcntl(Register dst, Register src);
1913   void tzcntq(Register dst, Register src);
1914 
1915   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1916   void ucomisd(XMMRegister dst, Address src);
1917   void ucomisd(XMMRegister dst, XMMRegister src);
1918 
1919   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1920   void ucomiss(XMMRegister dst, Address src);
1921   void ucomiss(XMMRegister dst, XMMRegister src);
1922 
1923   void xabort(int8_t imm8);
1924 
1925   void xaddb(Address dst, Register src);
1926   void xaddw(Address dst, Register src);
1927   void xaddl(Address dst, Register src);
1928   void xaddq(Address dst, Register src);
1929 
1930   void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
1931 
1932   void xchgb(Register reg, Address adr);
1933   void xchgw(Register reg, Address adr);
1934   void xchgl(Register reg, Address adr);
1935   void xchgl(Register dst, Register src);
1936 
1937   void xchgq(Register reg, Address adr);
1938   void xchgq(Register dst, Register src);
1939 
1940   void xend();
1941 
1942   // Get Value of Extended Control Register
1943   void xgetbv();
1944 
1945   void xorl(Register dst, int32_t imm32);
1946   void xorl(Register dst, Address src);
1947   void xorl(Register dst, Register src);
1948 
1949   void xorb(Register dst, Address src);
1950 
1951   void xorq(Register dst, Address src);
1952   void xorq(Register dst, Register src);
1953 
1954   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1955 
1956   // AVX 3-operands scalar instructions (encoded with VEX prefix)
1957 
1958   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1959   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1960   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1961   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1962   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1963   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1964   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1965   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1966   void vfmadd231sd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1967   void vfmadd231ss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1968   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1969   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1970   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1971   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1972   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1973   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1974   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1975   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1976 
1977   void vmaxss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1978   void vmaxsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1979   void vminss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1980   void vminsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1981 
1982   void shlxl(Register dst, Register src1, Register src2);
1983   void shlxq(Register dst, Register src1, Register src2);
1984 
1985   //====================VECTOR ARITHMETIC=====================================
1986 
1987   // Add Packed Floating-Point Values
1988   void addpd(XMMRegister dst, XMMRegister src);
1989   void addpd(XMMRegister dst, Address src);
1990   void addps(XMMRegister dst, XMMRegister src);
1991   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1992   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1993   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1994   void vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1995 
1996   // Subtract Packed Floating-Point Values
1997   void subpd(XMMRegister dst, XMMRegister src);
1998   void subps(XMMRegister dst, XMMRegister src);
1999   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2000   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2001   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2002   void vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2003 
2004   // Multiply Packed Floating-Point Values
2005   void mulpd(XMMRegister dst, XMMRegister src);
2006   void mulpd(XMMRegister dst, Address src);
2007   void mulps(XMMRegister dst, XMMRegister src);
2008   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2009   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2010   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2011   void vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2012 
2013   void vfmadd231pd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2014   void vfmadd231ps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2015   void vfmadd231pd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2016   void vfmadd231ps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2017 
2018   // Divide Packed Floating-Point Values
2019   void divpd(XMMRegister dst, XMMRegister src);
2020   void divps(XMMRegister dst, XMMRegister src);
2021   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2022   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2023   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2024   void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2025 
2026   // Sqrt Packed Floating-Point Values
2027   void vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len);
2028   void vsqrtpd(XMMRegister dst, Address src, int vector_len);
2029   void vsqrtps(XMMRegister dst, XMMRegister src, int vector_len);
2030   void vsqrtps(XMMRegister dst, Address src, int vector_len);
2031 
2032   // Round Packed Double precision value.
2033   void vroundpd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len);
2034   void vroundpd(XMMRegister dst, Address src, int32_t rmode, int vector_len);
2035   void vrndscalepd(XMMRegister dst,  XMMRegister src,  int32_t rmode, int vector_len);
2036   void vrndscalepd(XMMRegister dst, Address src, int32_t rmode, int vector_len);
2037 
2038   // Bitwise Logical AND of Packed Floating-Point Values
2039   void andpd(XMMRegister dst, XMMRegister src);
2040   void andps(XMMRegister dst, XMMRegister src);
2041   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2042   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2043   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2044   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2045 
2046   void unpckhpd(XMMRegister dst, XMMRegister src);
2047   void unpcklpd(XMMRegister dst, XMMRegister src);
2048 
2049   // Bitwise Logical XOR of Packed Floating-Point Values
2050   void xorpd(XMMRegister dst, XMMRegister src);
2051   void xorps(XMMRegister dst, XMMRegister src);
2052   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2053   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2054   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2055   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2056 
2057   // Add horizontal packed integers
2058   void vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2059   void vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2060   void phaddw(XMMRegister dst, XMMRegister src);
2061   void phaddd(XMMRegister dst, XMMRegister src);
2062 
2063   // Add packed integers
2064   void paddb(XMMRegister dst, XMMRegister src);
2065   void paddw(XMMRegister dst, XMMRegister src);
2066   void paddd(XMMRegister dst, XMMRegister src);
2067   void paddd(XMMRegister dst, Address src);
2068   void paddq(XMMRegister dst, XMMRegister src);
2069   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2070   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2071   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2072   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2073   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2074   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2075   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2076   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2077 
2078   // Sub packed integers
2079   void psubb(XMMRegister dst, XMMRegister src);
2080   void psubw(XMMRegister dst, XMMRegister src);
2081   void psubd(XMMRegister dst, XMMRegister src);
2082   void psubq(XMMRegister dst, XMMRegister src);
2083   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2084   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2085   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2086   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2087   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2088   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2089   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2090   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2091 
2092   // Multiply packed integers (only shorts and ints)
2093   void pmullw(XMMRegister dst, XMMRegister src);
2094   void pmulld(XMMRegister dst, XMMRegister src);
2095   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2096   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2097   void vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2098   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2099   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2100   void vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2101 
2102   // Shift left packed integers
2103   void psllw(XMMRegister dst, int shift);
2104   void pslld(XMMRegister dst, int shift);
2105   void psllq(XMMRegister dst, int shift);
2106   void psllw(XMMRegister dst, XMMRegister shift);
2107   void pslld(XMMRegister dst, XMMRegister shift);
2108   void psllq(XMMRegister dst, XMMRegister shift);
2109   void vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2110   void vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2111   void vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2112   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2113   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2114   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2115   void vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2116 
2117   // Logical shift right packed integers
2118   void psrlw(XMMRegister dst, int shift);
2119   void psrld(XMMRegister dst, int shift);
2120   void psrlq(XMMRegister dst, int shift);
2121   void psrlw(XMMRegister dst, XMMRegister shift);
2122   void psrld(XMMRegister dst, XMMRegister shift);
2123   void psrlq(XMMRegister dst, XMMRegister shift);
2124   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2125   void vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2126   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2127   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2128   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2129   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2130   void vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2131   void evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2132   void evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2133 
2134   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
2135   void psraw(XMMRegister dst, int shift);
2136   void psrad(XMMRegister dst, int shift);
2137   void psraw(XMMRegister dst, XMMRegister shift);
2138   void psrad(XMMRegister dst, XMMRegister shift);
2139   void vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2140   void vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2141   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2142   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2143   void evpsraq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2144   void evpsraq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2145 
2146   // And packed integers
2147   void pand(XMMRegister dst, XMMRegister src);
2148   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2149   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2150   void vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2151 
2152   // Andn packed integers
2153   void pandn(XMMRegister dst, XMMRegister src);
2154   void vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2155 
2156   // Or packed integers
2157   void por(XMMRegister dst, XMMRegister src);
2158   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2159   void vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2160   void vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2161 
2162   // Xor packed integers
2163   void pxor(XMMRegister dst, XMMRegister src);
2164   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2165   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2166   void evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2167   void evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2168 
2169 
2170   // vinserti forms
2171   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2172   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2173   void vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2174   void vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2175   void vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2176 
2177   // vinsertf forms
2178   void vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2179   void vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2180   void vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2181   void vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2182   void vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2183   void vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2184 
2185   // vextracti forms
2186   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8);
2187   void vextracti128(Address dst, XMMRegister src, uint8_t imm8);
2188   void vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2189   void vextracti32x4(Address dst, XMMRegister src, uint8_t imm8);
2190   void vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
2191   void vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2192   void vextracti64x4(Address dst, XMMRegister src, uint8_t imm8);
2193 
2194   // vextractf forms
2195   void vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8);
2196   void vextractf128(Address dst, XMMRegister src, uint8_t imm8);
2197   void vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2198   void vextractf32x4(Address dst, XMMRegister src, uint8_t imm8);
2199   void vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
2200   void vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2201   void vextractf64x4(Address dst, XMMRegister src, uint8_t imm8);
2202 
2203   // xmm/mem sourced byte/word/dword/qword replicate
2204   void vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len);
2205   void vpbroadcastb(XMMRegister dst, Address src, int vector_len);
2206   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
2207   void vpbroadcastw(XMMRegister dst, Address src, int vector_len);
2208   void vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len);
2209   void vpbroadcastd(XMMRegister dst, Address src, int vector_len);
2210   void vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len);
2211   void vpbroadcastq(XMMRegister dst, Address src, int vector_len);
2212 
2213   void evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len);
2214   void evbroadcasti64x2(XMMRegister dst, Address src, int vector_len);
2215 
2216   // scalar single/double precision replicate
2217   void vpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len);
2218   void vpbroadcastss(XMMRegister dst, Address src, int vector_len);
2219   void vpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len);
2220   void vpbroadcastsd(XMMRegister dst, Address src, int vector_len);
2221 
2222   // gpr sourced byte/word/dword/qword replicate
2223   void evpbroadcastb(XMMRegister dst, Register src, int vector_len);
2224   void evpbroadcastw(XMMRegister dst, Register src, int vector_len);
2225   void evpbroadcastd(XMMRegister dst, Register src, int vector_len);
2226   void evpbroadcastq(XMMRegister dst, Register src, int vector_len);
2227 
2228   void evpgatherdd(XMMRegister dst, KRegister k1, Address src, int vector_len);
2229 
2230   // Carry-Less Multiplication Quadword
2231   void pclmulqdq(XMMRegister dst, XMMRegister src, int mask);
2232   void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask);
2233   void evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len);
2234   // AVX instruction which is used to clear upper 128 bits of YMM registers and
2235   // to avoid transaction penalty between AVX and SSE states. There is no
2236   // penalty if legacy SSE instructions are encoded using VEX prefix because
2237   // they always clear upper 128 bits. It should be used before calling
2238   // runtime code and native libraries.
2239   void vzeroupper();
2240 
2241   // AVX support for vectorized conditional move (float/double). The following two instructions used only coupled.
2242   void cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len);
2243   void blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len);
2244   void cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len);
2245   void blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len);
2246   void vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len);
2247 
2248  protected:
2249   // Next instructions require address alignment 16 bytes SSE mode.
2250   // They should be called only from corresponding MacroAssembler instructions.
2251   void andpd(XMMRegister dst, Address src);
2252   void andps(XMMRegister dst, Address src);
2253   void xorpd(XMMRegister dst, Address src);
2254   void xorps(XMMRegister dst, Address src);
2255 
2256 };
2257 
2258 // The Intel x86/Amd64 Assembler attributes: All fields enclosed here are to guide encoding level decisions.
2259 // Specific set functions are for specialized use, else defaults or whatever was supplied to object construction
2260 // are applied.
2261 class InstructionAttr {
2262 public:
2263   InstructionAttr(
2264     int vector_len,     // The length of vector to be applied in encoding - for both AVX and EVEX
2265     bool rex_vex_w,     // Width of data: if 32-bits or less, false, else if 64-bit or specially defined, true
2266     bool legacy_mode,   // Details if either this instruction is conditionally encoded to AVX or earlier if true else possibly EVEX
2267     bool no_reg_mask,   // when true, k0 is used when EVEX encoding is chosen, else embedded_opmask_register_specifier is used
2268     bool uses_vl)       // This instruction may have legacy constraints based on vector length for EVEX
2269     :
2270       _avx_vector_len(vector_len),
2271       _rex_vex_w(rex_vex_w),
2272       _rex_vex_w_reverted(false),
2273       _legacy_mode(legacy_mode),
2274       _no_reg_mask(no_reg_mask),
2275       _uses_vl(uses_vl),
2276       _tuple_type(Assembler::EVEX_ETUP),
2277       _input_size_in_bits(Assembler::EVEX_NObit),
2278       _is_evex_instruction(false),
2279       _evex_encoding(0),
2280       _is_clear_context(true),
2281       _is_extended_context(false),
2282       _embedded_opmask_register_specifier(0), // hard code k0
2283       _current_assembler(NULL) {
2284     if (UseAVX < 3) _legacy_mode = true;
2285   }
2286 
2287   ~InstructionAttr() {
2288     if (_current_assembler != NULL) {
2289       _current_assembler->clear_attributes();
2290     }
2291     _current_assembler = NULL;
2292   }
2293 
2294 private:
2295   int  _avx_vector_len;
2296   bool _rex_vex_w;
2297   bool _rex_vex_w_reverted;
2298   bool _legacy_mode;
2299   bool _no_reg_mask;
2300   bool _uses_vl;
2301   int  _tuple_type;
2302   int  _input_size_in_bits;
2303   bool _is_evex_instruction;
2304   int  _evex_encoding;
2305   bool _is_clear_context;
2306   bool _is_extended_context;
2307   int _embedded_opmask_register_specifier;
2308 
2309   Assembler *_current_assembler;
2310 
2311 public:
2312   // query functions for field accessors
2313   int  get_vector_len(void) const { return _avx_vector_len; }
2314   bool is_rex_vex_w(void) const { return _rex_vex_w; }
2315   bool is_rex_vex_w_reverted(void) { return _rex_vex_w_reverted; }
2316   bool is_legacy_mode(void) const { return _legacy_mode; }
2317   bool is_no_reg_mask(void) const { return _no_reg_mask; }
2318   bool uses_vl(void) const { return _uses_vl; }
2319   int  get_tuple_type(void) const { return _tuple_type; }
2320   int  get_input_size(void) const { return _input_size_in_bits; }
2321   int  is_evex_instruction(void) const { return _is_evex_instruction; }
2322   int  get_evex_encoding(void) const { return _evex_encoding; }
2323   bool is_clear_context(void) const { return _is_clear_context; }
2324   bool is_extended_context(void) const { return _is_extended_context; }
2325   int get_embedded_opmask_register_specifier(void) const { return _embedded_opmask_register_specifier; }
2326 
2327   // Set the vector len manually
2328   void set_vector_len(int vector_len) { _avx_vector_len = vector_len; }
2329 
2330   // Set revert rex_vex_w for avx encoding
2331   void set_rex_vex_w_reverted(void) { _rex_vex_w_reverted = true; }
2332 
2333   // Set rex_vex_w based on state
2334   void set_rex_vex_w(bool state) { _rex_vex_w = state; }
2335 
2336   // Set the instruction to be encoded in AVX mode
2337   void set_is_legacy_mode(void) { _legacy_mode = true; }
2338 
2339   // Set the current instuction to be encoded as an EVEX instuction
2340   void set_is_evex_instruction(void) { _is_evex_instruction = true; }
2341 
2342   // Internal encoding data used in compressed immediate offset programming
2343   void set_evex_encoding(int value) { _evex_encoding = value; }
2344 
2345   // Set the Evex.Z field to be used to clear all non directed XMM/YMM/ZMM components
2346   void reset_is_clear_context(void) { _is_clear_context = false; }
2347 
2348   // Map back to current asembler so that we can manage object level assocation
2349   void set_current_assembler(Assembler *current_assembler) { _current_assembler = current_assembler; }
2350 
2351   // Address modifiers used for compressed displacement calculation
2352   void set_address_attributes(int tuple_type, int input_size_in_bits) {
2353     if (VM_Version::supports_evex()) {
2354       _tuple_type = tuple_type;
2355       _input_size_in_bits = input_size_in_bits;
2356     }
2357   }
2358 
2359   // Set embedded opmask register specifier.
2360   void set_embedded_opmask_register_specifier(KRegister mask) {
2361     _embedded_opmask_register_specifier = (*mask).encoding() & 0x7;
2362   }
2363 
2364 };
2365 
2366 #endif // CPU_X86_ASSEMBLER_X86_HPP