1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "vmreg_x86.inline.hpp"
  44 
  45 
  46 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  47 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  48 // fast versions of NegF/NegD and AbsF/AbsD.
  49 
  50 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  51 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  52   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  53   // of 128-bits operands for SSE instructions.
  54   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  55   // Store the value to a 128-bits operand.
  56   operand[0] = lo;
  57   operand[1] = hi;
  58   return operand;
  59 }
  60 
  61 // Buffer for 128-bits masks used by SSE instructions.
  62 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  63 
  64 // Static initialization during VM startup.
  65 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  66 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  67 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  68 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  69 
  70 
  71 NEEDS_CLEANUP // remove this definitions ?
  72 const Register IC_Klass    = rax;   // where the IC klass is cached
  73 const Register SYNC_header = rax;   // synchronization header
  74 const Register SHIFT_count = rcx;   // where count for shift operations must be
  75 
  76 #define __ _masm->
  77 
  78 
  79 static void select_different_registers(Register preserve,
  80                                        Register extra,
  81                                        Register &tmp1,
  82                                        Register &tmp2) {
  83   if (tmp1 == preserve) {
  84     assert_different_registers(tmp1, tmp2, extra);
  85     tmp1 = extra;
  86   } else if (tmp2 == preserve) {
  87     assert_different_registers(tmp1, tmp2, extra);
  88     tmp2 = extra;
  89   }
  90   assert_different_registers(preserve, tmp1, tmp2);
  91 }
  92 
  93 
  94 
  95 static void select_different_registers(Register preserve,
  96                                        Register extra,
  97                                        Register &tmp1,
  98                                        Register &tmp2,
  99                                        Register &tmp3) {
 100   if (tmp1 == preserve) {
 101     assert_different_registers(tmp1, tmp2, tmp3, extra);
 102     tmp1 = extra;
 103   } else if (tmp2 == preserve) {
 104     assert_different_registers(tmp1, tmp2, tmp3, extra);
 105     tmp2 = extra;
 106   } else if (tmp3 == preserve) {
 107     assert_different_registers(tmp1, tmp2, tmp3, extra);
 108     tmp3 = extra;
 109   }
 110   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 111 }
 112 
 113 
 114 
 115 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 116   if (opr->is_constant()) {
 117     LIR_Const* constant = opr->as_constant_ptr();
 118     switch (constant->type()) {
 119       case T_INT: {
 120         return true;
 121       }
 122 
 123       default:
 124         return false;
 125     }
 126   }
 127   return false;
 128 }
 129 
 130 
 131 LIR_Opr LIR_Assembler::receiverOpr() {
 132   return FrameMap::receiver_opr;
 133 }
 134 
 135 LIR_Opr LIR_Assembler::osrBufferPointer() {
 136   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 137 }
 138 
 139 //--------------fpu register translations-----------------------
 140 
 141 
 142 address LIR_Assembler::float_constant(float f) {
 143   address const_addr = __ float_constant(f);
 144   if (const_addr == NULL) {
 145     bailout("const section overflow");
 146     return __ code()->consts()->start();
 147   } else {
 148     return const_addr;
 149   }
 150 }
 151 
 152 
 153 address LIR_Assembler::double_constant(double d) {
 154   address const_addr = __ double_constant(d);
 155   if (const_addr == NULL) {
 156     bailout("const section overflow");
 157     return __ code()->consts()->start();
 158   } else {
 159     return const_addr;
 160   }
 161 }
 162 
 163 #ifndef _LP64
 164 void LIR_Assembler::fpop() {
 165   __ fpop();
 166 }
 167 
 168 void LIR_Assembler::fxch(int i) {
 169   __ fxch(i);
 170 }
 171 
 172 void LIR_Assembler::fld(int i) {
 173   __ fld_s(i);
 174 }
 175 
 176 void LIR_Assembler::ffree(int i) {
 177   __ ffree(i);
 178 }
 179 #endif // !_LP64
 180 
 181 void LIR_Assembler::breakpoint() {
 182   __ int3();
 183 }
 184 
 185 void LIR_Assembler::push(LIR_Opr opr) {
 186   if (opr->is_single_cpu()) {
 187     __ push_reg(opr->as_register());
 188   } else if (opr->is_double_cpu()) {
 189     NOT_LP64(__ push_reg(opr->as_register_hi()));
 190     __ push_reg(opr->as_register_lo());
 191   } else if (opr->is_stack()) {
 192     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 193   } else if (opr->is_constant()) {
 194     LIR_Const* const_opr = opr->as_constant_ptr();
 195     if (const_opr->type() == T_OBJECT) {
 196       __ push_oop(const_opr->as_jobject());
 197     } else if (const_opr->type() == T_INT) {
 198       __ push_jint(const_opr->as_jint());
 199     } else {
 200       ShouldNotReachHere();
 201     }
 202 
 203   } else {
 204     ShouldNotReachHere();
 205   }
 206 }
 207 
 208 void LIR_Assembler::pop(LIR_Opr opr) {
 209   if (opr->is_single_cpu()) {
 210     __ pop_reg(opr->as_register());
 211   } else {
 212     ShouldNotReachHere();
 213   }
 214 }
 215 
 216 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 217   return addr->base()->is_illegal() && addr->index()->is_illegal();
 218 }
 219 
 220 //-------------------------------------------
 221 
 222 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 223   return as_Address(addr, rscratch1);
 224 }
 225 
 226 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 227   if (addr->base()->is_illegal()) {
 228     assert(addr->index()->is_illegal(), "must be illegal too");
 229     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 230     if (! __ reachable(laddr)) {
 231       __ movptr(tmp, laddr.addr());
 232       Address res(tmp, 0);
 233       return res;
 234     } else {
 235       return __ as_Address(laddr);
 236     }
 237   }
 238 
 239   Register base = addr->base()->as_pointer_register();
 240 
 241   if (addr->index()->is_illegal()) {
 242     return Address( base, addr->disp());
 243   } else if (addr->index()->is_cpu_register()) {
 244     Register index = addr->index()->as_pointer_register();
 245     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 246   } else if (addr->index()->is_constant()) {
 247     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 248     assert(Assembler::is_simm32(addr_offset), "must be");
 249 
 250     return Address(base, addr_offset);
 251   } else {
 252     Unimplemented();
 253     return Address();
 254   }
 255 }
 256 
 257 
 258 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 259   Address base = as_Address(addr);
 260   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 261 }
 262 
 263 
 264 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 265   return as_Address(addr);
 266 }
 267 
 268 
 269 void LIR_Assembler::osr_entry() {
 270   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 271   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 272   ValueStack* entry_state = osr_entry->state();
 273   int number_of_locks = entry_state->locks_size();
 274 
 275   // we jump here if osr happens with the interpreter
 276   // state set up to continue at the beginning of the
 277   // loop that triggered osr - in particular, we have
 278   // the following registers setup:
 279   //
 280   // rcx: osr buffer
 281   //
 282 
 283   // build frame
 284   ciMethod* m = compilation()->method();
 285   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 286 
 287   // OSR buffer is
 288   //
 289   // locals[nlocals-1..0]
 290   // monitors[0..number_of_locks]
 291   //
 292   // locals is a direct copy of the interpreter frame so in the osr buffer
 293   // so first slot in the local array is the last local from the interpreter
 294   // and last slot is local[0] (receiver) from the interpreter
 295   //
 296   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 297   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 298   // in the interpreter frame (the method lock if a sync method)
 299 
 300   // Initialize monitors in the compiled activation.
 301   //   rcx: pointer to osr buffer
 302   //
 303   // All other registers are dead at this point and the locals will be
 304   // copied into place by code emitted in the IR.
 305 
 306   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 307   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 308     int monitor_offset = BytesPerWord * method()->max_locals() +
 309       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 310     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 311     // the OSR buffer using 2 word entries: first the lock and then
 312     // the oop.
 313     for (int i = 0; i < number_of_locks; i++) {
 314       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 315 #ifdef ASSERT
 316       // verify the interpreter's monitor has a non-null object
 317       {
 318         Label L;
 319         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 320         __ jcc(Assembler::notZero, L);
 321         __ stop("locked object is NULL");
 322         __ bind(L);
 323       }
 324 #endif
 325       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 326       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 327       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 328       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 329     }
 330   }
 331 }
 332 
 333 
 334 // inline cache check; done before the frame is built.
 335 int LIR_Assembler::check_icache() {
 336   Register receiver = FrameMap::receiver_opr->as_register();
 337   Register ic_klass = IC_Klass;
 338   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 339   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 340   if (!do_post_padding) {
 341     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 342     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 343   }
 344   int offset = __ offset();
 345   __ inline_cache_check(receiver, IC_Klass);
 346   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 347   if (do_post_padding) {
 348     // force alignment after the cache check.
 349     // It's been verified to be aligned if !VerifyOops
 350     __ align(CodeEntryAlignment);
 351   }
 352   return offset;
 353 }
 354 
 355 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 356   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 357   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 358 
 359   Label L_skip_barrier;
 360   Register klass = rscratch1;
 361   Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
 362   assert(thread != noreg, "x86_32 not implemented");
 363 
 364   __ mov_metadata(klass, method->holder()->constant_encoding());
 365   __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
 366 
 367   __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 368 
 369   __ bind(L_skip_barrier);
 370 }
 371 
 372 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 373   jobject o = NULL;
 374   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 375   __ movoop(reg, o);
 376   patching_epilog(patch, lir_patch_normal, reg, info);
 377 }
 378 
 379 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 380   Metadata* o = NULL;
 381   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 382   __ mov_metadata(reg, o);
 383   patching_epilog(patch, lir_patch_normal, reg, info);
 384 }
 385 
 386 // This specifies the rsp decrement needed to build the frame
 387 int LIR_Assembler::initial_frame_size_in_bytes() const {
 388   // if rounding, must let FrameMap know!
 389 
 390   // The frame_map records size in slots (32bit word)
 391 
 392   // subtract two words to account for return address and link
 393   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 394 }
 395 
 396 
 397 int LIR_Assembler::emit_exception_handler() {
 398   // if the last instruction is a call (typically to do a throw which
 399   // is coming at the end after block reordering) the return address
 400   // must still point into the code area in order to avoid assertion
 401   // failures when searching for the corresponding bci => add a nop
 402   // (was bug 5/14/1999 - gri)
 403   __ nop();
 404 
 405   // generate code for exception handler
 406   address handler_base = __ start_a_stub(exception_handler_size());
 407   if (handler_base == NULL) {
 408     // not enough space left for the handler
 409     bailout("exception handler overflow");
 410     return -1;
 411   }
 412 
 413   int offset = code_offset();
 414 
 415   // the exception oop and pc are in rax, and rdx
 416   // no other registers need to be preserved, so invalidate them
 417   __ invalidate_registers(false, true, true, false, true, true);
 418 
 419   // check that there is really an exception
 420   __ verify_not_null_oop(rax);
 421 
 422   // search an exception handler (rax: exception oop, rdx: throwing pc)
 423   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 424   __ should_not_reach_here();
 425   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 426   __ end_a_stub();
 427 
 428   return offset;
 429 }
 430 
 431 
 432 // Emit the code to remove the frame from the stack in the exception
 433 // unwind path.
 434 int LIR_Assembler::emit_unwind_handler() {
 435 #ifndef PRODUCT
 436   if (CommentedAssembly) {
 437     _masm->block_comment("Unwind handler");
 438   }
 439 #endif
 440 
 441   int offset = code_offset();
 442 
 443   // Fetch the exception from TLS and clear out exception related thread state
 444   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 445   NOT_LP64(__ get_thread(rsi));
 446   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 447   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 448   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 449 
 450   __ bind(_unwind_handler_entry);
 451   __ verify_not_null_oop(rax);
 452   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 453     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 454   }
 455 
 456   // Preform needed unlocking
 457   MonitorExitStub* stub = NULL;
 458   if (method()->is_synchronized()) {
 459     monitor_address(0, FrameMap::rax_opr);
 460     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 461     __ unlock_object(rdi, rsi, rax, *stub->entry());
 462     __ bind(*stub->continuation());
 463   }
 464 
 465   if (compilation()->env()->dtrace_method_probes()) {
 466 #ifdef _LP64
 467     __ mov(rdi, r15_thread);
 468     __ mov_metadata(rsi, method()->constant_encoding());
 469 #else
 470     __ get_thread(rax);
 471     __ movptr(Address(rsp, 0), rax);
 472     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 473 #endif
 474     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 475   }
 476 
 477   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 478     __ mov(rax, rbx);  // Restore the exception
 479   }
 480 
 481   // remove the activation and dispatch to the unwind handler
 482   __ remove_frame(initial_frame_size_in_bytes());
 483   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 484 
 485   // Emit the slow path assembly
 486   if (stub != NULL) {
 487     stub->emit_code(this);
 488   }
 489 
 490   return offset;
 491 }
 492 
 493 
 494 int LIR_Assembler::emit_deopt_handler() {
 495   // if the last instruction is a call (typically to do a throw which
 496   // is coming at the end after block reordering) the return address
 497   // must still point into the code area in order to avoid assertion
 498   // failures when searching for the corresponding bci => add a nop
 499   // (was bug 5/14/1999 - gri)
 500   __ nop();
 501 
 502   // generate code for exception handler
 503   address handler_base = __ start_a_stub(deopt_handler_size());
 504   if (handler_base == NULL) {
 505     // not enough space left for the handler
 506     bailout("deopt handler overflow");
 507     return -1;
 508   }
 509 
 510   int offset = code_offset();
 511   InternalAddress here(__ pc());
 512 
 513   __ pushptr(here.addr());
 514   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 515   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 516   __ end_a_stub();
 517 
 518   return offset;
 519 }
 520 
 521 
 522 void LIR_Assembler::return_op(LIR_Opr result) {
 523   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 524   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 525     assert(result->fpu() == 0, "result must already be on TOS");
 526   }
 527 
 528   // Pop the stack before the safepoint code
 529   __ remove_frame(initial_frame_size_in_bytes());
 530 
 531   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 532     __ reserved_stack_check();
 533   }
 534 
 535   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 536 
 537   // Note: we do not need to round double result; float result has the right precision
 538   // the poll sets the condition code, but no data registers
 539 
 540   if (SafepointMechanism::uses_thread_local_poll()) {
 541 #ifdef _LP64
 542     const Register poll_addr = rscratch1;
 543     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 544 #else
 545     const Register poll_addr = rbx;
 546     assert(FrameMap::is_caller_save_register(poll_addr), "will overwrite");
 547     __ get_thread(poll_addr);
 548     __ movptr(poll_addr, Address(poll_addr, Thread::polling_page_offset()));
 549 #endif
 550     __ relocate(relocInfo::poll_return_type);
 551     __ testl(rax, Address(poll_addr, 0));
 552   } else {
 553     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 554 
 555     if (Assembler::is_polling_page_far()) {
 556       __ lea(rscratch1, polling_page);
 557       __ relocate(relocInfo::poll_return_type);
 558       __ testl(rax, Address(rscratch1, 0));
 559     } else {
 560       __ testl(rax, polling_page);
 561     }
 562   }
 563   __ ret(0);
 564 }
 565 
 566 
 567 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 568   guarantee(info != NULL, "Shouldn't be NULL");
 569   int offset = __ offset();
 570   if (SafepointMechanism::uses_thread_local_poll()) {
 571 #ifdef _LP64
 572     const Register poll_addr = rscratch1;
 573     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 574 #else
 575     assert(tmp->is_cpu_register(), "needed");
 576     const Register poll_addr = tmp->as_register();
 577     __ get_thread(poll_addr);
 578     __ movptr(poll_addr, Address(poll_addr, in_bytes(Thread::polling_page_offset())));
 579 #endif
 580     add_debug_info_for_branch(info);
 581     __ relocate(relocInfo::poll_type);
 582     address pre_pc = __ pc();
 583     __ testl(rax, Address(poll_addr, 0));
 584     address post_pc = __ pc();
 585     guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 586   } else {
 587     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 588     if (Assembler::is_polling_page_far()) {
 589       __ lea(rscratch1, polling_page);
 590       offset = __ offset();
 591       add_debug_info_for_branch(info);
 592       __ relocate(relocInfo::poll_type);
 593       __ testl(rax, Address(rscratch1, 0));
 594     } else {
 595       add_debug_info_for_branch(info);
 596       __ testl(rax, polling_page);
 597     }
 598   }
 599   return offset;
 600 }
 601 
 602 
 603 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 604   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 605 }
 606 
 607 void LIR_Assembler::swap_reg(Register a, Register b) {
 608   __ xchgptr(a, b);
 609 }
 610 
 611 
 612 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 613   assert(src->is_constant(), "should not call otherwise");
 614   assert(dest->is_register(), "should not call otherwise");
 615   LIR_Const* c = src->as_constant_ptr();
 616 
 617   switch (c->type()) {
 618     case T_INT: {
 619       assert(patch_code == lir_patch_none, "no patching handled here");
 620       __ movl(dest->as_register(), c->as_jint());
 621       break;
 622     }
 623 
 624     case T_ADDRESS: {
 625       assert(patch_code == lir_patch_none, "no patching handled here");
 626       __ movptr(dest->as_register(), c->as_jint());
 627       break;
 628     }
 629 
 630     case T_LONG: {
 631       assert(patch_code == lir_patch_none, "no patching handled here");
 632 #ifdef _LP64
 633       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 634 #else
 635       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 636       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 637 #endif // _LP64
 638       break;
 639     }
 640 
 641     case T_OBJECT: {
 642       if (patch_code != lir_patch_none) {
 643         jobject2reg_with_patching(dest->as_register(), info);
 644       } else {
 645         __ movoop(dest->as_register(), c->as_jobject());
 646       }
 647       break;
 648     }
 649 
 650     case T_METADATA: {
 651       if (patch_code != lir_patch_none) {
 652         klass2reg_with_patching(dest->as_register(), info);
 653       } else {
 654         __ mov_metadata(dest->as_register(), c->as_metadata());
 655       }
 656       break;
 657     }
 658 
 659     case T_FLOAT: {
 660       if (dest->is_single_xmm()) {
 661         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 662           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 663         } else {
 664           __ movflt(dest->as_xmm_float_reg(),
 665                    InternalAddress(float_constant(c->as_jfloat())));
 666         }
 667       } else {
 668 #ifndef _LP64
 669         assert(dest->is_single_fpu(), "must be");
 670         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 671         if (c->is_zero_float()) {
 672           __ fldz();
 673         } else if (c->is_one_float()) {
 674           __ fld1();
 675         } else {
 676           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 677         }
 678 #else
 679         ShouldNotReachHere();
 680 #endif // !_LP64
 681       }
 682       break;
 683     }
 684 
 685     case T_DOUBLE: {
 686       if (dest->is_double_xmm()) {
 687         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 688           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 689         } else {
 690           __ movdbl(dest->as_xmm_double_reg(),
 691                     InternalAddress(double_constant(c->as_jdouble())));
 692         }
 693       } else {
 694 #ifndef _LP64
 695         assert(dest->is_double_fpu(), "must be");
 696         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 697         if (c->is_zero_double()) {
 698           __ fldz();
 699         } else if (c->is_one_double()) {
 700           __ fld1();
 701         } else {
 702           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 703         }
 704 #else
 705         ShouldNotReachHere();
 706 #endif // !_LP64
 707       }
 708       break;
 709     }
 710 
 711     default:
 712       ShouldNotReachHere();
 713   }
 714 }
 715 
 716 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 717   assert(src->is_constant(), "should not call otherwise");
 718   assert(dest->is_stack(), "should not call otherwise");
 719   LIR_Const* c = src->as_constant_ptr();
 720 
 721   switch (c->type()) {
 722     case T_INT:  // fall through
 723     case T_FLOAT:
 724       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 725       break;
 726 
 727     case T_ADDRESS:
 728       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 729       break;
 730 
 731     case T_OBJECT:
 732       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 733       break;
 734 
 735     case T_LONG:  // fall through
 736     case T_DOUBLE:
 737 #ifdef _LP64
 738       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 739                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 740 #else
 741       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 742                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 743       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 744                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 745 #endif // _LP64
 746       break;
 747 
 748     default:
 749       ShouldNotReachHere();
 750   }
 751 }
 752 
 753 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 754   assert(src->is_constant(), "should not call otherwise");
 755   assert(dest->is_address(), "should not call otherwise");
 756   LIR_Const* c = src->as_constant_ptr();
 757   LIR_Address* addr = dest->as_address_ptr();
 758 
 759   int null_check_here = code_offset();
 760   switch (type) {
 761     case T_INT:    // fall through
 762     case T_FLOAT:
 763       __ movl(as_Address(addr), c->as_jint_bits());
 764       break;
 765 
 766     case T_ADDRESS:
 767       __ movptr(as_Address(addr), c->as_jint_bits());
 768       break;
 769 
 770     case T_OBJECT:  // fall through
 771     case T_ARRAY:
 772       if (c->as_jobject() == NULL) {
 773         if (UseCompressedOops && !wide) {
 774           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 775         } else {
 776 #ifdef _LP64
 777           __ xorptr(rscratch1, rscratch1);
 778           null_check_here = code_offset();
 779           __ movptr(as_Address(addr), rscratch1);
 780 #else
 781           __ movptr(as_Address(addr), NULL_WORD);
 782 #endif
 783         }
 784       } else {
 785         if (is_literal_address(addr)) {
 786           ShouldNotReachHere();
 787           __ movoop(as_Address(addr, noreg), c->as_jobject());
 788         } else {
 789 #ifdef _LP64
 790           __ movoop(rscratch1, c->as_jobject());
 791           if (UseCompressedOops && !wide) {
 792             __ encode_heap_oop(rscratch1);
 793             null_check_here = code_offset();
 794             __ movl(as_Address_lo(addr), rscratch1);
 795           } else {
 796             null_check_here = code_offset();
 797             __ movptr(as_Address_lo(addr), rscratch1);
 798           }
 799 #else
 800           __ movoop(as_Address(addr), c->as_jobject());
 801 #endif
 802         }
 803       }
 804       break;
 805 
 806     case T_LONG:    // fall through
 807     case T_DOUBLE:
 808 #ifdef _LP64
 809       if (is_literal_address(addr)) {
 810         ShouldNotReachHere();
 811         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 812       } else {
 813         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 814         null_check_here = code_offset();
 815         __ movptr(as_Address_lo(addr), r10);
 816       }
 817 #else
 818       // Always reachable in 32bit so this doesn't produce useless move literal
 819       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 820       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 821 #endif // _LP64
 822       break;
 823 
 824     case T_BOOLEAN: // fall through
 825     case T_BYTE:
 826       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 827       break;
 828 
 829     case T_CHAR:    // fall through
 830     case T_SHORT:
 831       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 832       break;
 833 
 834     default:
 835       ShouldNotReachHere();
 836   };
 837 
 838   if (info != NULL) {
 839     add_debug_info_for_null_check(null_check_here, info);
 840   }
 841 }
 842 
 843 
 844 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 845   assert(src->is_register(), "should not call otherwise");
 846   assert(dest->is_register(), "should not call otherwise");
 847 
 848   // move between cpu-registers
 849   if (dest->is_single_cpu()) {
 850 #ifdef _LP64
 851     if (src->type() == T_LONG) {
 852       // Can do LONG -> OBJECT
 853       move_regs(src->as_register_lo(), dest->as_register());
 854       return;
 855     }
 856 #endif
 857     assert(src->is_single_cpu(), "must match");
 858     if (src->type() == T_OBJECT) {
 859       __ verify_oop(src->as_register());
 860     }
 861     move_regs(src->as_register(), dest->as_register());
 862 
 863   } else if (dest->is_double_cpu()) {
 864 #ifdef _LP64
 865     if (is_reference_type(src->type())) {
 866       // Surprising to me but we can see move of a long to t_object
 867       __ verify_oop(src->as_register());
 868       move_regs(src->as_register(), dest->as_register_lo());
 869       return;
 870     }
 871 #endif
 872     assert(src->is_double_cpu(), "must match");
 873     Register f_lo = src->as_register_lo();
 874     Register f_hi = src->as_register_hi();
 875     Register t_lo = dest->as_register_lo();
 876     Register t_hi = dest->as_register_hi();
 877 #ifdef _LP64
 878     assert(f_hi == f_lo, "must be same");
 879     assert(t_hi == t_lo, "must be same");
 880     move_regs(f_lo, t_lo);
 881 #else
 882     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 883 
 884 
 885     if (f_lo == t_hi && f_hi == t_lo) {
 886       swap_reg(f_lo, f_hi);
 887     } else if (f_hi == t_lo) {
 888       assert(f_lo != t_hi, "overwriting register");
 889       move_regs(f_hi, t_hi);
 890       move_regs(f_lo, t_lo);
 891     } else {
 892       assert(f_hi != t_lo, "overwriting register");
 893       move_regs(f_lo, t_lo);
 894       move_regs(f_hi, t_hi);
 895     }
 896 #endif // LP64
 897 
 898 #ifndef _LP64
 899     // special moves from fpu-register to xmm-register
 900     // necessary for method results
 901   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 902     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 903     __ fld_s(Address(rsp, 0));
 904   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 905     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 906     __ fld_d(Address(rsp, 0));
 907   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 908     __ fstp_s(Address(rsp, 0));
 909     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 910   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 911     __ fstp_d(Address(rsp, 0));
 912     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 913 
 914   // move between fpu-registers (no instruction necessary because of fpu-stack)
 915   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 916     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 917     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 918 #endif // !_LP64
 919 
 920     // move between xmm-registers
 921   } else if (dest->is_single_xmm()) {
 922     assert(src->is_single_xmm(), "must match");
 923     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 924   } else if (dest->is_double_xmm()) {
 925     assert(src->is_double_xmm(), "must match");
 926     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 927 
 928   } else {
 929     ShouldNotReachHere();
 930   }
 931 }
 932 
 933 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 934   assert(src->is_register(), "should not call otherwise");
 935   assert(dest->is_stack(), "should not call otherwise");
 936 
 937   if (src->is_single_cpu()) {
 938     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 939     if (is_reference_type(type)) {
 940       __ verify_oop(src->as_register());
 941       __ movptr (dst, src->as_register());
 942     } else if (type == T_METADATA) {
 943       __ movptr (dst, src->as_register());
 944     } else {
 945       __ movl (dst, src->as_register());
 946     }
 947 
 948   } else if (src->is_double_cpu()) {
 949     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 950     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 951     __ movptr (dstLO, src->as_register_lo());
 952     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 953 
 954   } else if (src->is_single_xmm()) {
 955     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 956     __ movflt(dst_addr, src->as_xmm_float_reg());
 957 
 958   } else if (src->is_double_xmm()) {
 959     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 960     __ movdbl(dst_addr, src->as_xmm_double_reg());
 961 
 962 #ifndef _LP64
 963   } else if (src->is_single_fpu()) {
 964     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 965     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 966     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 967     else                   __ fst_s  (dst_addr);
 968 
 969   } else if (src->is_double_fpu()) {
 970     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 971     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 972     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 973     else                   __ fst_d  (dst_addr);
 974 #endif // !_LP64
 975 
 976   } else {
 977     ShouldNotReachHere();
 978   }
 979 }
 980 
 981 
 982 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 983   LIR_Address* to_addr = dest->as_address_ptr();
 984   PatchingStub* patch = NULL;
 985   Register compressed_src = rscratch1;
 986 
 987   if (is_reference_type(type)) {
 988     __ verify_oop(src->as_register());
 989 #ifdef _LP64
 990     if (UseCompressedOops && !wide) {
 991       __ movptr(compressed_src, src->as_register());
 992       __ encode_heap_oop(compressed_src);
 993       if (patch_code != lir_patch_none) {
 994         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 995       }
 996     }
 997 #endif
 998   }
 999 
1000   if (patch_code != lir_patch_none) {
1001     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1002     Address toa = as_Address(to_addr);
1003     assert(toa.disp() != 0, "must have");
1004   }
1005 
1006   int null_check_here = code_offset();
1007   switch (type) {
1008     case T_FLOAT: {
1009 #ifdef _LP64
1010       assert(src->is_single_xmm(), "not a float");
1011       __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1012 #else
1013       if (src->is_single_xmm()) {
1014         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1015       } else {
1016         assert(src->is_single_fpu(), "must be");
1017         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1018         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1019         else                    __ fst_s (as_Address(to_addr));
1020       }
1021 #endif // _LP64
1022       break;
1023     }
1024 
1025     case T_DOUBLE: {
1026 #ifdef _LP64
1027       assert(src->is_double_xmm(), "not a double");
1028       __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1029 #else
1030       if (src->is_double_xmm()) {
1031         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1032       } else {
1033         assert(src->is_double_fpu(), "must be");
1034         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1035         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1036         else                    __ fst_d (as_Address(to_addr));
1037       }
1038 #endif // _LP64
1039       break;
1040     }
1041 
1042     case T_ARRAY:   // fall through
1043     case T_OBJECT:  // fall through
1044       if (UseCompressedOops && !wide) {
1045         __ movl(as_Address(to_addr), compressed_src);
1046       } else {
1047         __ movptr(as_Address(to_addr), src->as_register());
1048       }
1049       break;
1050     case T_METADATA:
1051       // We get here to store a method pointer to the stack to pass to
1052       // a dtrace runtime call. This can't work on 64 bit with
1053       // compressed klass ptrs: T_METADATA can be a compressed klass
1054       // ptr or a 64 bit method pointer.
1055       LP64_ONLY(ShouldNotReachHere());
1056       __ movptr(as_Address(to_addr), src->as_register());
1057       break;
1058     case T_ADDRESS:
1059       __ movptr(as_Address(to_addr), src->as_register());
1060       break;
1061     case T_INT:
1062       __ movl(as_Address(to_addr), src->as_register());
1063       break;
1064 
1065     case T_LONG: {
1066       Register from_lo = src->as_register_lo();
1067       Register from_hi = src->as_register_hi();
1068 #ifdef _LP64
1069       __ movptr(as_Address_lo(to_addr), from_lo);
1070 #else
1071       Register base = to_addr->base()->as_register();
1072       Register index = noreg;
1073       if (to_addr->index()->is_register()) {
1074         index = to_addr->index()->as_register();
1075       }
1076       if (base == from_lo || index == from_lo) {
1077         assert(base != from_hi, "can't be");
1078         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1079         __ movl(as_Address_hi(to_addr), from_hi);
1080         if (patch != NULL) {
1081           patching_epilog(patch, lir_patch_high, base, info);
1082           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1083           patch_code = lir_patch_low;
1084         }
1085         __ movl(as_Address_lo(to_addr), from_lo);
1086       } else {
1087         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1088         __ movl(as_Address_lo(to_addr), from_lo);
1089         if (patch != NULL) {
1090           patching_epilog(patch, lir_patch_low, base, info);
1091           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1092           patch_code = lir_patch_high;
1093         }
1094         __ movl(as_Address_hi(to_addr), from_hi);
1095       }
1096 #endif // _LP64
1097       break;
1098     }
1099 
1100     case T_BYTE:    // fall through
1101     case T_BOOLEAN: {
1102       Register src_reg = src->as_register();
1103       Address dst_addr = as_Address(to_addr);
1104       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1105       __ movb(dst_addr, src_reg);
1106       break;
1107     }
1108 
1109     case T_CHAR:    // fall through
1110     case T_SHORT:
1111       __ movw(as_Address(to_addr), src->as_register());
1112       break;
1113 
1114     default:
1115       ShouldNotReachHere();
1116   }
1117   if (info != NULL) {
1118     add_debug_info_for_null_check(null_check_here, info);
1119   }
1120 
1121   if (patch_code != lir_patch_none) {
1122     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1123   }
1124 }
1125 
1126 
1127 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1128   assert(src->is_stack(), "should not call otherwise");
1129   assert(dest->is_register(), "should not call otherwise");
1130 
1131   if (dest->is_single_cpu()) {
1132     if (is_reference_type(type)) {
1133       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1134       __ verify_oop(dest->as_register());
1135     } else if (type == T_METADATA) {
1136       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1137     } else {
1138       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1139     }
1140 
1141   } else if (dest->is_double_cpu()) {
1142     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1143     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1144     __ movptr(dest->as_register_lo(), src_addr_LO);
1145     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1146 
1147   } else if (dest->is_single_xmm()) {
1148     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1149     __ movflt(dest->as_xmm_float_reg(), src_addr);
1150 
1151   } else if (dest->is_double_xmm()) {
1152     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1153     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1154 
1155 #ifndef _LP64
1156   } else if (dest->is_single_fpu()) {
1157     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1158     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1159     __ fld_s(src_addr);
1160 
1161   } else if (dest->is_double_fpu()) {
1162     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1163     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1164     __ fld_d(src_addr);
1165 #endif // _LP64
1166 
1167   } else {
1168     ShouldNotReachHere();
1169   }
1170 }
1171 
1172 
1173 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1174   if (src->is_single_stack()) {
1175     if (is_reference_type(type)) {
1176       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1177       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1178     } else {
1179 #ifndef _LP64
1180       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1181       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1182 #else
1183       //no pushl on 64bits
1184       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1185       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1186 #endif
1187     }
1188 
1189   } else if (src->is_double_stack()) {
1190 #ifdef _LP64
1191     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1192     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1193 #else
1194     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1195     // push and pop the part at src + wordSize, adding wordSize for the previous push
1196     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1197     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1198     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1199 #endif // _LP64
1200 
1201   } else {
1202     ShouldNotReachHere();
1203   }
1204 }
1205 
1206 
1207 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1208   assert(src->is_address(), "should not call otherwise");
1209   assert(dest->is_register(), "should not call otherwise");
1210 
1211   LIR_Address* addr = src->as_address_ptr();
1212   Address from_addr = as_Address(addr);
1213 
1214   if (addr->base()->type() == T_OBJECT) {
1215     __ verify_oop(addr->base()->as_pointer_register());
1216   }
1217 
1218   switch (type) {
1219     case T_BOOLEAN: // fall through
1220     case T_BYTE:    // fall through
1221     case T_CHAR:    // fall through
1222     case T_SHORT:
1223       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1224         // on pre P6 processors we may get partial register stalls
1225         // so blow away the value of to_rinfo before loading a
1226         // partial word into it.  Do it here so that it precedes
1227         // the potential patch point below.
1228         __ xorptr(dest->as_register(), dest->as_register());
1229       }
1230       break;
1231    default:
1232      break;
1233   }
1234 
1235   PatchingStub* patch = NULL;
1236   if (patch_code != lir_patch_none) {
1237     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1238     assert(from_addr.disp() != 0, "must have");
1239   }
1240   if (info != NULL) {
1241     add_debug_info_for_null_check_here(info);
1242   }
1243 
1244   switch (type) {
1245     case T_FLOAT: {
1246       if (dest->is_single_xmm()) {
1247         __ movflt(dest->as_xmm_float_reg(), from_addr);
1248       } else {
1249 #ifndef _LP64
1250         assert(dest->is_single_fpu(), "must be");
1251         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1252         __ fld_s(from_addr);
1253 #else
1254         ShouldNotReachHere();
1255 #endif // !LP64
1256       }
1257       break;
1258     }
1259 
1260     case T_DOUBLE: {
1261       if (dest->is_double_xmm()) {
1262         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1263       } else {
1264 #ifndef _LP64
1265         assert(dest->is_double_fpu(), "must be");
1266         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1267         __ fld_d(from_addr);
1268 #else
1269         ShouldNotReachHere();
1270 #endif // !LP64
1271       }
1272       break;
1273     }
1274 
1275     case T_OBJECT:  // fall through
1276     case T_ARRAY:   // fall through
1277       if (UseCompressedOops && !wide) {
1278         __ movl(dest->as_register(), from_addr);
1279       } else {
1280         __ movptr(dest->as_register(), from_addr);
1281       }
1282       break;
1283 
1284     case T_ADDRESS:
1285       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1286         __ movl(dest->as_register(), from_addr);
1287       } else {
1288         __ movptr(dest->as_register(), from_addr);
1289       }
1290       break;
1291     case T_INT:
1292       __ movl(dest->as_register(), from_addr);
1293       break;
1294 
1295     case T_LONG: {
1296       Register to_lo = dest->as_register_lo();
1297       Register to_hi = dest->as_register_hi();
1298 #ifdef _LP64
1299       __ movptr(to_lo, as_Address_lo(addr));
1300 #else
1301       Register base = addr->base()->as_register();
1302       Register index = noreg;
1303       if (addr->index()->is_register()) {
1304         index = addr->index()->as_register();
1305       }
1306       if ((base == to_lo && index == to_hi) ||
1307           (base == to_hi && index == to_lo)) {
1308         // addresses with 2 registers are only formed as a result of
1309         // array access so this code will never have to deal with
1310         // patches or null checks.
1311         assert(info == NULL && patch == NULL, "must be");
1312         __ lea(to_hi, as_Address(addr));
1313         __ movl(to_lo, Address(to_hi, 0));
1314         __ movl(to_hi, Address(to_hi, BytesPerWord));
1315       } else if (base == to_lo || index == to_lo) {
1316         assert(base != to_hi, "can't be");
1317         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1318         __ movl(to_hi, as_Address_hi(addr));
1319         if (patch != NULL) {
1320           patching_epilog(patch, lir_patch_high, base, info);
1321           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1322           patch_code = lir_patch_low;
1323         }
1324         __ movl(to_lo, as_Address_lo(addr));
1325       } else {
1326         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1327         __ movl(to_lo, as_Address_lo(addr));
1328         if (patch != NULL) {
1329           patching_epilog(patch, lir_patch_low, base, info);
1330           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1331           patch_code = lir_patch_high;
1332         }
1333         __ movl(to_hi, as_Address_hi(addr));
1334       }
1335 #endif // _LP64
1336       break;
1337     }
1338 
1339     case T_BOOLEAN: // fall through
1340     case T_BYTE: {
1341       Register dest_reg = dest->as_register();
1342       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1343       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1344         __ movsbl(dest_reg, from_addr);
1345       } else {
1346         __ movb(dest_reg, from_addr);
1347         __ shll(dest_reg, 24);
1348         __ sarl(dest_reg, 24);
1349       }
1350       break;
1351     }
1352 
1353     case T_CHAR: {
1354       Register dest_reg = dest->as_register();
1355       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1356       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1357         __ movzwl(dest_reg, from_addr);
1358       } else {
1359         __ movw(dest_reg, from_addr);
1360       }
1361       break;
1362     }
1363 
1364     case T_SHORT: {
1365       Register dest_reg = dest->as_register();
1366       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1367         __ movswl(dest_reg, from_addr);
1368       } else {
1369         __ movw(dest_reg, from_addr);
1370         __ shll(dest_reg, 16);
1371         __ sarl(dest_reg, 16);
1372       }
1373       break;
1374     }
1375 
1376     default:
1377       ShouldNotReachHere();
1378   }
1379 
1380   if (patch != NULL) {
1381     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1382   }
1383 
1384   if (is_reference_type(type)) {
1385 #ifdef _LP64
1386     if (UseCompressedOops && !wide) {
1387       __ decode_heap_oop(dest->as_register());
1388     }
1389 #endif
1390 
1391     // Load barrier has not yet been applied, so ZGC can't verify the oop here
1392     if (!UseZGC) {
1393       __ verify_oop(dest->as_register());
1394     }
1395   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1396 #ifdef _LP64
1397     if (UseCompressedClassPointers) {
1398       __ decode_klass_not_null(dest->as_register());
1399     }
1400 #endif
1401   }
1402 }
1403 
1404 
1405 NEEDS_CLEANUP; // This could be static?
1406 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1407   int elem_size = type2aelembytes(type);
1408   switch (elem_size) {
1409     case 1: return Address::times_1;
1410     case 2: return Address::times_2;
1411     case 4: return Address::times_4;
1412     case 8: return Address::times_8;
1413   }
1414   ShouldNotReachHere();
1415   return Address::no_scale;
1416 }
1417 
1418 
1419 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1420   switch (op->code()) {
1421     case lir_idiv:
1422     case lir_irem:
1423       arithmetic_idiv(op->code(),
1424                       op->in_opr1(),
1425                       op->in_opr2(),
1426                       op->in_opr3(),
1427                       op->result_opr(),
1428                       op->info());
1429       break;
1430     case lir_fmad:
1431       __ fmad(op->result_opr()->as_xmm_double_reg(),
1432               op->in_opr1()->as_xmm_double_reg(),
1433               op->in_opr2()->as_xmm_double_reg(),
1434               op->in_opr3()->as_xmm_double_reg());
1435       break;
1436     case lir_fmaf:
1437       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1438               op->in_opr1()->as_xmm_float_reg(),
1439               op->in_opr2()->as_xmm_float_reg(),
1440               op->in_opr3()->as_xmm_float_reg());
1441       break;
1442     default:      ShouldNotReachHere(); break;
1443   }
1444 }
1445 
1446 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1447 #ifdef ASSERT
1448   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1449   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1450   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1451 #endif
1452 
1453   if (op->cond() == lir_cond_always) {
1454     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1455     __ jmp (*(op->label()));
1456   } else {
1457     Assembler::Condition acond = Assembler::zero;
1458     if (op->code() == lir_cond_float_branch) {
1459       assert(op->ublock() != NULL, "must have unordered successor");
1460       __ jcc(Assembler::parity, *(op->ublock()->label()));
1461       switch(op->cond()) {
1462         case lir_cond_equal:        acond = Assembler::equal;      break;
1463         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1464         case lir_cond_less:         acond = Assembler::below;      break;
1465         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1466         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1467         case lir_cond_greater:      acond = Assembler::above;      break;
1468         default:                         ShouldNotReachHere();
1469       }
1470     } else {
1471       switch (op->cond()) {
1472         case lir_cond_equal:        acond = Assembler::equal;       break;
1473         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1474         case lir_cond_less:         acond = Assembler::less;        break;
1475         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1476         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1477         case lir_cond_greater:      acond = Assembler::greater;     break;
1478         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1479         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1480         default:                         ShouldNotReachHere();
1481       }
1482     }
1483     __ jcc(acond,*(op->label()));
1484   }
1485 }
1486 
1487 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1488   LIR_Opr src  = op->in_opr();
1489   LIR_Opr dest = op->result_opr();
1490 
1491   switch (op->bytecode()) {
1492     case Bytecodes::_i2l:
1493 #ifdef _LP64
1494       __ movl2ptr(dest->as_register_lo(), src->as_register());
1495 #else
1496       move_regs(src->as_register(), dest->as_register_lo());
1497       move_regs(src->as_register(), dest->as_register_hi());
1498       __ sarl(dest->as_register_hi(), 31);
1499 #endif // LP64
1500       break;
1501 
1502     case Bytecodes::_l2i:
1503 #ifdef _LP64
1504       __ movl(dest->as_register(), src->as_register_lo());
1505 #else
1506       move_regs(src->as_register_lo(), dest->as_register());
1507 #endif
1508       break;
1509 
1510     case Bytecodes::_i2b:
1511       move_regs(src->as_register(), dest->as_register());
1512       __ sign_extend_byte(dest->as_register());
1513       break;
1514 
1515     case Bytecodes::_i2c:
1516       move_regs(src->as_register(), dest->as_register());
1517       __ andl(dest->as_register(), 0xFFFF);
1518       break;
1519 
1520     case Bytecodes::_i2s:
1521       move_regs(src->as_register(), dest->as_register());
1522       __ sign_extend_short(dest->as_register());
1523       break;
1524 
1525 
1526 #ifdef _LP64
1527     case Bytecodes::_f2d:
1528       __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1529       break;
1530 
1531     case Bytecodes::_d2f:
1532       __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1533       break;
1534 
1535     case Bytecodes::_i2f:
1536       __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1537       break;
1538 
1539     case Bytecodes::_i2d:
1540       __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1541       break;
1542 
1543     case Bytecodes::_l2f:
1544       __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo());
1545       break;
1546 
1547     case Bytecodes::_l2d:
1548       __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo());
1549       break;
1550 
1551     case Bytecodes::_f2i:
1552       __ convert_f2i(dest->as_register(), src->as_xmm_float_reg());
1553       break;
1554 
1555     case Bytecodes::_d2i:
1556       __ convert_d2i(dest->as_register(), src->as_xmm_double_reg());
1557       break;
1558 
1559     case Bytecodes::_f2l:
1560       __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg());
1561       break;
1562 
1563     case Bytecodes::_d2l:
1564       __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg());
1565       break;
1566 #else
1567     case Bytecodes::_f2d:
1568     case Bytecodes::_d2f:
1569       if (dest->is_single_xmm()) {
1570         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1571       } else if (dest->is_double_xmm()) {
1572         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1573       } else {
1574         assert(src->fpu() == dest->fpu(), "register must be equal");
1575         // do nothing (float result is rounded later through spilling)
1576       }
1577       break;
1578 
1579     case Bytecodes::_i2f:
1580     case Bytecodes::_i2d:
1581       if (dest->is_single_xmm()) {
1582         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1583       } else if (dest->is_double_xmm()) {
1584         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1585       } else {
1586         assert(dest->fpu() == 0, "result must be on TOS");
1587         __ movl(Address(rsp, 0), src->as_register());
1588         __ fild_s(Address(rsp, 0));
1589       }
1590       break;
1591 
1592     case Bytecodes::_l2f:
1593     case Bytecodes::_l2d:
1594       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1595       assert(dest->fpu() == 0, "result must be on TOS");
1596       __ movptr(Address(rsp, 0),          src->as_register_lo());
1597       __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
1598       __ fild_d(Address(rsp, 0));
1599       // float result is rounded later through spilling
1600 
1601     case Bytecodes::_f2i:
1602     case Bytecodes::_d2i:
1603       if (src->is_single_xmm()) {
1604         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1605       } else if (src->is_double_xmm()) {
1606         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1607       } else {
1608         assert(src->fpu() == 0, "input must be on TOS");
1609         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1610         __ fist_s(Address(rsp, 0));
1611         __ movl(dest->as_register(), Address(rsp, 0));
1612         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1613       }
1614       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1615       assert(op->stub() != NULL, "stub required");
1616       __ cmpl(dest->as_register(), 0x80000000);
1617       __ jcc(Assembler::equal, *op->stub()->entry());
1618       __ bind(*op->stub()->continuation());
1619       break;
1620 
1621     case Bytecodes::_f2l:
1622     case Bytecodes::_d2l:
1623       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1624       assert(src->fpu() == 0, "input must be on TOS");
1625       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1626 
1627       // instruction sequence too long to inline it here
1628       {
1629         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1630       }
1631       break;
1632 #endif // _LP64
1633 
1634     default: ShouldNotReachHere();
1635   }
1636 }
1637 
1638 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1639   if (op->init_check()) {
1640     add_debug_info_for_null_check_here(op->stub()->info());
1641     __ cmpb(Address(op->klass()->as_register(),
1642                     InstanceKlass::init_state_offset()),
1643                     InstanceKlass::fully_initialized);
1644     __ jcc(Assembler::notEqual, *op->stub()->entry());
1645   }
1646   __ allocate_object(op->obj()->as_register(),
1647                      op->tmp1()->as_register(),
1648                      op->tmp2()->as_register(),
1649                      op->header_size(),
1650                      op->object_size(),
1651                      op->klass()->as_register(),
1652                      *op->stub()->entry());
1653   __ bind(*op->stub()->continuation());
1654 }
1655 
1656 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1657   Register len =  op->len()->as_register();
1658   LP64_ONLY( __ movslq(len, len); )
1659 
1660   if (UseSlowPath ||
1661       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1662       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1663     __ jmp(*op->stub()->entry());
1664   } else {
1665     Register tmp1 = op->tmp1()->as_register();
1666     Register tmp2 = op->tmp2()->as_register();
1667     Register tmp3 = op->tmp3()->as_register();
1668     if (len == tmp1) {
1669       tmp1 = tmp3;
1670     } else if (len == tmp2) {
1671       tmp2 = tmp3;
1672     } else if (len == tmp3) {
1673       // everything is ok
1674     } else {
1675       __ mov(tmp3, len);
1676     }
1677     __ allocate_array(op->obj()->as_register(),
1678                       len,
1679                       tmp1,
1680                       tmp2,
1681                       arrayOopDesc::header_size(op->type()),
1682                       array_element_size(op->type()),
1683                       op->klass()->as_register(),
1684                       *op->stub()->entry());
1685   }
1686   __ bind(*op->stub()->continuation());
1687 }
1688 
1689 void LIR_Assembler::type_profile_helper(Register mdo,
1690                                         ciMethodData *md, ciProfileData *data,
1691                                         Register recv, Label* update_done) {
1692   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1693     Label next_test;
1694     // See if the receiver is receiver[n].
1695     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1696     __ jccb(Assembler::notEqual, next_test);
1697     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1698     __ addptr(data_addr, DataLayout::counter_increment);
1699     __ jmp(*update_done);
1700     __ bind(next_test);
1701   }
1702 
1703   // Didn't find receiver; find next empty slot and fill it in
1704   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1705     Label next_test;
1706     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1707     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1708     __ jccb(Assembler::notEqual, next_test);
1709     __ movptr(recv_addr, recv);
1710     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1711     __ jmp(*update_done);
1712     __ bind(next_test);
1713   }
1714 }
1715 
1716 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1717   // we always need a stub for the failure case.
1718   CodeStub* stub = op->stub();
1719   Register obj = op->object()->as_register();
1720   Register k_RInfo = op->tmp1()->as_register();
1721   Register klass_RInfo = op->tmp2()->as_register();
1722   Register dst = op->result_opr()->as_register();
1723   ciKlass* k = op->klass();
1724   Register Rtmp1 = noreg;
1725 
1726   // check if it needs to be profiled
1727   ciMethodData* md = NULL;
1728   ciProfileData* data = NULL;
1729 
1730   if (op->should_profile()) {
1731     ciMethod* method = op->profiled_method();
1732     assert(method != NULL, "Should have method");
1733     int bci = op->profiled_bci();
1734     md = method->method_data_or_null();
1735     assert(md != NULL, "Sanity");
1736     data = md->bci_to_data(bci);
1737     assert(data != NULL,                "need data for type check");
1738     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1739   }
1740   Label profile_cast_success, profile_cast_failure;
1741   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1742   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1743 
1744   if (obj == k_RInfo) {
1745     k_RInfo = dst;
1746   } else if (obj == klass_RInfo) {
1747     klass_RInfo = dst;
1748   }
1749   if (k->is_loaded() && !UseCompressedClassPointers) {
1750     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1751   } else {
1752     Rtmp1 = op->tmp3()->as_register();
1753     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1754   }
1755 
1756   assert_different_registers(obj, k_RInfo, klass_RInfo);
1757 
1758   __ cmpptr(obj, (int32_t)NULL_WORD);
1759   if (op->should_profile()) {
1760     Label not_null;
1761     __ jccb(Assembler::notEqual, not_null);
1762     // Object is null; update MDO and exit
1763     Register mdo  = klass_RInfo;
1764     __ mov_metadata(mdo, md->constant_encoding());
1765     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1766     int header_bits = BitData::null_seen_byte_constant();
1767     __ orb(data_addr, header_bits);
1768     __ jmp(*obj_is_null);
1769     __ bind(not_null);
1770   } else {
1771     __ jcc(Assembler::equal, *obj_is_null);
1772   }
1773 
1774   if (!k->is_loaded()) {
1775     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1776   } else {
1777 #ifdef _LP64
1778     __ mov_metadata(k_RInfo, k->constant_encoding());
1779 #endif // _LP64
1780   }
1781   __ verify_oop(obj);
1782 
1783   if (op->fast_check()) {
1784     // get object class
1785     // not a safepoint as obj null check happens earlier
1786 #ifdef _LP64
1787     if (UseCompressedClassPointers) {
1788       __ load_klass(Rtmp1, obj);
1789       __ cmpptr(k_RInfo, Rtmp1);
1790     } else {
1791       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1792     }
1793 #else
1794     if (k->is_loaded()) {
1795       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1796     } else {
1797       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1798     }
1799 #endif
1800     __ jcc(Assembler::notEqual, *failure_target);
1801     // successful cast, fall through to profile or jump
1802   } else {
1803     // get object class
1804     // not a safepoint as obj null check happens earlier
1805     __ load_klass(klass_RInfo, obj);
1806     if (k->is_loaded()) {
1807       // See if we get an immediate positive hit
1808 #ifdef _LP64
1809       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1810 #else
1811       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1812 #endif // _LP64
1813       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1814         __ jcc(Assembler::notEqual, *failure_target);
1815         // successful cast, fall through to profile or jump
1816       } else {
1817         // See if we get an immediate positive hit
1818         __ jcc(Assembler::equal, *success_target);
1819         // check for self
1820 #ifdef _LP64
1821         __ cmpptr(klass_RInfo, k_RInfo);
1822 #else
1823         __ cmpklass(klass_RInfo, k->constant_encoding());
1824 #endif // _LP64
1825         __ jcc(Assembler::equal, *success_target);
1826 
1827         __ push(klass_RInfo);
1828 #ifdef _LP64
1829         __ push(k_RInfo);
1830 #else
1831         __ pushklass(k->constant_encoding());
1832 #endif // _LP64
1833         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1834         __ pop(klass_RInfo);
1835         __ pop(klass_RInfo);
1836         // result is a boolean
1837         __ cmpl(klass_RInfo, 0);
1838         __ jcc(Assembler::equal, *failure_target);
1839         // successful cast, fall through to profile or jump
1840       }
1841     } else {
1842       // perform the fast part of the checking logic
1843       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1844       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1845       __ push(klass_RInfo);
1846       __ push(k_RInfo);
1847       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1848       __ pop(klass_RInfo);
1849       __ pop(k_RInfo);
1850       // result is a boolean
1851       __ cmpl(k_RInfo, 0);
1852       __ jcc(Assembler::equal, *failure_target);
1853       // successful cast, fall through to profile or jump
1854     }
1855   }
1856   if (op->should_profile()) {
1857     Register mdo  = klass_RInfo, recv = k_RInfo;
1858     __ bind(profile_cast_success);
1859     __ mov_metadata(mdo, md->constant_encoding());
1860     __ load_klass(recv, obj);
1861     type_profile_helper(mdo, md, data, recv, success);
1862     __ jmp(*success);
1863 
1864     __ bind(profile_cast_failure);
1865     __ mov_metadata(mdo, md->constant_encoding());
1866     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1867     __ subptr(counter_addr, DataLayout::counter_increment);
1868     __ jmp(*failure);
1869   }
1870   __ jmp(*success);
1871 }
1872 
1873 
1874 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1875   LIR_Code code = op->code();
1876   if (code == lir_store_check) {
1877     Register value = op->object()->as_register();
1878     Register array = op->array()->as_register();
1879     Register k_RInfo = op->tmp1()->as_register();
1880     Register klass_RInfo = op->tmp2()->as_register();
1881     Register Rtmp1 = op->tmp3()->as_register();
1882 
1883     CodeStub* stub = op->stub();
1884 
1885     // check if it needs to be profiled
1886     ciMethodData* md = NULL;
1887     ciProfileData* data = NULL;
1888 
1889     if (op->should_profile()) {
1890       ciMethod* method = op->profiled_method();
1891       assert(method != NULL, "Should have method");
1892       int bci = op->profiled_bci();
1893       md = method->method_data_or_null();
1894       assert(md != NULL, "Sanity");
1895       data = md->bci_to_data(bci);
1896       assert(data != NULL,                "need data for type check");
1897       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1898     }
1899     Label profile_cast_success, profile_cast_failure, done;
1900     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1901     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1902 
1903     __ cmpptr(value, (int32_t)NULL_WORD);
1904     if (op->should_profile()) {
1905       Label not_null;
1906       __ jccb(Assembler::notEqual, not_null);
1907       // Object is null; update MDO and exit
1908       Register mdo  = klass_RInfo;
1909       __ mov_metadata(mdo, md->constant_encoding());
1910       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1911       int header_bits = BitData::null_seen_byte_constant();
1912       __ orb(data_addr, header_bits);
1913       __ jmp(done);
1914       __ bind(not_null);
1915     } else {
1916       __ jcc(Assembler::equal, done);
1917     }
1918 
1919     add_debug_info_for_null_check_here(op->info_for_exception());
1920     __ load_klass(k_RInfo, array);
1921     __ load_klass(klass_RInfo, value);
1922 
1923     // get instance klass (it's already uncompressed)
1924     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1925     // perform the fast part of the checking logic
1926     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1927     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1928     __ push(klass_RInfo);
1929     __ push(k_RInfo);
1930     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1931     __ pop(klass_RInfo);
1932     __ pop(k_RInfo);
1933     // result is a boolean
1934     __ cmpl(k_RInfo, 0);
1935     __ jcc(Assembler::equal, *failure_target);
1936     // fall through to the success case
1937 
1938     if (op->should_profile()) {
1939       Register mdo  = klass_RInfo, recv = k_RInfo;
1940       __ bind(profile_cast_success);
1941       __ mov_metadata(mdo, md->constant_encoding());
1942       __ load_klass(recv, value);
1943       type_profile_helper(mdo, md, data, recv, &done);
1944       __ jmpb(done);
1945 
1946       __ bind(profile_cast_failure);
1947       __ mov_metadata(mdo, md->constant_encoding());
1948       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1949       __ subptr(counter_addr, DataLayout::counter_increment);
1950       __ jmp(*stub->entry());
1951     }
1952 
1953     __ bind(done);
1954   } else
1955     if (code == lir_checkcast) {
1956       Register obj = op->object()->as_register();
1957       Register dst = op->result_opr()->as_register();
1958       Label success;
1959       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1960       __ bind(success);
1961       if (dst != obj) {
1962         __ mov(dst, obj);
1963       }
1964     } else
1965       if (code == lir_instanceof) {
1966         Register obj = op->object()->as_register();
1967         Register dst = op->result_opr()->as_register();
1968         Label success, failure, done;
1969         emit_typecheck_helper(op, &success, &failure, &failure);
1970         __ bind(failure);
1971         __ xorptr(dst, dst);
1972         __ jmpb(done);
1973         __ bind(success);
1974         __ movptr(dst, 1);
1975         __ bind(done);
1976       } else {
1977         ShouldNotReachHere();
1978       }
1979 
1980 }
1981 
1982 
1983 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1984   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1985     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1986     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1987     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1988     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1989     Register addr = op->addr()->as_register();
1990     __ lock();
1991     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1992 
1993   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1994     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1995     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1996     Register newval = op->new_value()->as_register();
1997     Register cmpval = op->cmp_value()->as_register();
1998     assert(cmpval == rax, "wrong register");
1999     assert(newval != NULL, "new val must be register");
2000     assert(cmpval != newval, "cmp and new values must be in different registers");
2001     assert(cmpval != addr, "cmp and addr must be in different registers");
2002     assert(newval != addr, "new value and addr must be in different registers");
2003 
2004     if ( op->code() == lir_cas_obj) {
2005 #ifdef _LP64
2006       if (UseCompressedOops) {
2007         __ encode_heap_oop(cmpval);
2008         __ mov(rscratch1, newval);
2009         __ encode_heap_oop(rscratch1);
2010         __ lock();
2011         // cmpval (rax) is implicitly used by this instruction
2012         __ cmpxchgl(rscratch1, Address(addr, 0));
2013       } else
2014 #endif
2015       {
2016         __ lock();
2017         __ cmpxchgptr(newval, Address(addr, 0));
2018       }
2019     } else {
2020       assert(op->code() == lir_cas_int, "lir_cas_int expected");
2021       __ lock();
2022       __ cmpxchgl(newval, Address(addr, 0));
2023     }
2024 #ifdef _LP64
2025   } else if (op->code() == lir_cas_long) {
2026     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2027     Register newval = op->new_value()->as_register_lo();
2028     Register cmpval = op->cmp_value()->as_register_lo();
2029     assert(cmpval == rax, "wrong register");
2030     assert(newval != NULL, "new val must be register");
2031     assert(cmpval != newval, "cmp and new values must be in different registers");
2032     assert(cmpval != addr, "cmp and addr must be in different registers");
2033     assert(newval != addr, "new value and addr must be in different registers");
2034     __ lock();
2035     __ cmpxchgq(newval, Address(addr, 0));
2036 #endif // _LP64
2037   } else {
2038     Unimplemented();
2039   }
2040 }
2041 
2042 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
2043   Assembler::Condition acond, ncond;
2044   switch (condition) {
2045     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2046     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2047     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2048     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2049     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2050     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2051     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2052     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2053     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
2054                                 ShouldNotReachHere();
2055   }
2056 
2057   if (opr1->is_cpu_register()) {
2058     reg2reg(opr1, result);
2059   } else if (opr1->is_stack()) {
2060     stack2reg(opr1, result, result->type());
2061   } else if (opr1->is_constant()) {
2062     const2reg(opr1, result, lir_patch_none, NULL);
2063   } else {
2064     ShouldNotReachHere();
2065   }
2066 
2067   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2068     // optimized version that does not require a branch
2069     if (opr2->is_single_cpu()) {
2070       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2071       __ cmov(ncond, result->as_register(), opr2->as_register());
2072     } else if (opr2->is_double_cpu()) {
2073       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2074       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2075       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2076       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2077     } else if (opr2->is_single_stack()) {
2078       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2079     } else if (opr2->is_double_stack()) {
2080       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2081       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2082     } else {
2083       ShouldNotReachHere();
2084     }
2085 
2086   } else {
2087     Label skip;
2088     __ jcc (acond, skip);
2089     if (opr2->is_cpu_register()) {
2090       reg2reg(opr2, result);
2091     } else if (opr2->is_stack()) {
2092       stack2reg(opr2, result, result->type());
2093     } else if (opr2->is_constant()) {
2094       const2reg(opr2, result, lir_patch_none, NULL);
2095     } else {
2096       ShouldNotReachHere();
2097     }
2098     __ bind(skip);
2099   }
2100 }
2101 
2102 
2103 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2104   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2105 
2106   if (left->is_single_cpu()) {
2107     assert(left == dest, "left and dest must be equal");
2108     Register lreg = left->as_register();
2109 
2110     if (right->is_single_cpu()) {
2111       // cpu register - cpu register
2112       Register rreg = right->as_register();
2113       switch (code) {
2114         case lir_add: __ addl (lreg, rreg); break;
2115         case lir_sub: __ subl (lreg, rreg); break;
2116         case lir_mul: __ imull(lreg, rreg); break;
2117         default:      ShouldNotReachHere();
2118       }
2119 
2120     } else if (right->is_stack()) {
2121       // cpu register - stack
2122       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2123       switch (code) {
2124         case lir_add: __ addl(lreg, raddr); break;
2125         case lir_sub: __ subl(lreg, raddr); break;
2126         default:      ShouldNotReachHere();
2127       }
2128 
2129     } else if (right->is_constant()) {
2130       // cpu register - constant
2131       jint c = right->as_constant_ptr()->as_jint();
2132       switch (code) {
2133         case lir_add: {
2134           __ incrementl(lreg, c);
2135           break;
2136         }
2137         case lir_sub: {
2138           __ decrementl(lreg, c);
2139           break;
2140         }
2141         default: ShouldNotReachHere();
2142       }
2143 
2144     } else {
2145       ShouldNotReachHere();
2146     }
2147 
2148   } else if (left->is_double_cpu()) {
2149     assert(left == dest, "left and dest must be equal");
2150     Register lreg_lo = left->as_register_lo();
2151     Register lreg_hi = left->as_register_hi();
2152 
2153     if (right->is_double_cpu()) {
2154       // cpu register - cpu register
2155       Register rreg_lo = right->as_register_lo();
2156       Register rreg_hi = right->as_register_hi();
2157       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2158       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2159       switch (code) {
2160         case lir_add:
2161           __ addptr(lreg_lo, rreg_lo);
2162           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2163           break;
2164         case lir_sub:
2165           __ subptr(lreg_lo, rreg_lo);
2166           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2167           break;
2168         case lir_mul:
2169 #ifdef _LP64
2170           __ imulq(lreg_lo, rreg_lo);
2171 #else
2172           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2173           __ imull(lreg_hi, rreg_lo);
2174           __ imull(rreg_hi, lreg_lo);
2175           __ addl (rreg_hi, lreg_hi);
2176           __ mull (rreg_lo);
2177           __ addl (lreg_hi, rreg_hi);
2178 #endif // _LP64
2179           break;
2180         default:
2181           ShouldNotReachHere();
2182       }
2183 
2184     } else if (right->is_constant()) {
2185       // cpu register - constant
2186 #ifdef _LP64
2187       jlong c = right->as_constant_ptr()->as_jlong_bits();
2188       __ movptr(r10, (intptr_t) c);
2189       switch (code) {
2190         case lir_add:
2191           __ addptr(lreg_lo, r10);
2192           break;
2193         case lir_sub:
2194           __ subptr(lreg_lo, r10);
2195           break;
2196         default:
2197           ShouldNotReachHere();
2198       }
2199 #else
2200       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2201       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2202       switch (code) {
2203         case lir_add:
2204           __ addptr(lreg_lo, c_lo);
2205           __ adcl(lreg_hi, c_hi);
2206           break;
2207         case lir_sub:
2208           __ subptr(lreg_lo, c_lo);
2209           __ sbbl(lreg_hi, c_hi);
2210           break;
2211         default:
2212           ShouldNotReachHere();
2213       }
2214 #endif // _LP64
2215 
2216     } else {
2217       ShouldNotReachHere();
2218     }
2219 
2220   } else if (left->is_single_xmm()) {
2221     assert(left == dest, "left and dest must be equal");
2222     XMMRegister lreg = left->as_xmm_float_reg();
2223 
2224     if (right->is_single_xmm()) {
2225       XMMRegister rreg = right->as_xmm_float_reg();
2226       switch (code) {
2227         case lir_add: __ addss(lreg, rreg);  break;
2228         case lir_sub: __ subss(lreg, rreg);  break;
2229         case lir_mul_strictfp: // fall through
2230         case lir_mul: __ mulss(lreg, rreg);  break;
2231         case lir_div_strictfp: // fall through
2232         case lir_div: __ divss(lreg, rreg);  break;
2233         default: ShouldNotReachHere();
2234       }
2235     } else {
2236       Address raddr;
2237       if (right->is_single_stack()) {
2238         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2239       } else if (right->is_constant()) {
2240         // hack for now
2241         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2242       } else {
2243         ShouldNotReachHere();
2244       }
2245       switch (code) {
2246         case lir_add: __ addss(lreg, raddr);  break;
2247         case lir_sub: __ subss(lreg, raddr);  break;
2248         case lir_mul_strictfp: // fall through
2249         case lir_mul: __ mulss(lreg, raddr);  break;
2250         case lir_div_strictfp: // fall through
2251         case lir_div: __ divss(lreg, raddr);  break;
2252         default: ShouldNotReachHere();
2253       }
2254     }
2255 
2256   } else if (left->is_double_xmm()) {
2257     assert(left == dest, "left and dest must be equal");
2258 
2259     XMMRegister lreg = left->as_xmm_double_reg();
2260     if (right->is_double_xmm()) {
2261       XMMRegister rreg = right->as_xmm_double_reg();
2262       switch (code) {
2263         case lir_add: __ addsd(lreg, rreg);  break;
2264         case lir_sub: __ subsd(lreg, rreg);  break;
2265         case lir_mul_strictfp: // fall through
2266         case lir_mul: __ mulsd(lreg, rreg);  break;
2267         case lir_div_strictfp: // fall through
2268         case lir_div: __ divsd(lreg, rreg);  break;
2269         default: ShouldNotReachHere();
2270       }
2271     } else {
2272       Address raddr;
2273       if (right->is_double_stack()) {
2274         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2275       } else if (right->is_constant()) {
2276         // hack for now
2277         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2278       } else {
2279         ShouldNotReachHere();
2280       }
2281       switch (code) {
2282         case lir_add: __ addsd(lreg, raddr);  break;
2283         case lir_sub: __ subsd(lreg, raddr);  break;
2284         case lir_mul_strictfp: // fall through
2285         case lir_mul: __ mulsd(lreg, raddr);  break;
2286         case lir_div_strictfp: // fall through
2287         case lir_div: __ divsd(lreg, raddr);  break;
2288         default: ShouldNotReachHere();
2289       }
2290     }
2291 
2292 #ifndef _LP64
2293   } else if (left->is_single_fpu()) {
2294     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2295 
2296     if (right->is_single_fpu()) {
2297       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2298 
2299     } else {
2300       assert(left->fpu_regnr() == 0, "left must be on TOS");
2301       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2302 
2303       Address raddr;
2304       if (right->is_single_stack()) {
2305         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2306       } else if (right->is_constant()) {
2307         address const_addr = float_constant(right->as_jfloat());
2308         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2309         // hack for now
2310         raddr = __ as_Address(InternalAddress(const_addr));
2311       } else {
2312         ShouldNotReachHere();
2313       }
2314 
2315       switch (code) {
2316         case lir_add: __ fadd_s(raddr); break;
2317         case lir_sub: __ fsub_s(raddr); break;
2318         case lir_mul_strictfp: // fall through
2319         case lir_mul: __ fmul_s(raddr); break;
2320         case lir_div_strictfp: // fall through
2321         case lir_div: __ fdiv_s(raddr); break;
2322         default:      ShouldNotReachHere();
2323       }
2324     }
2325 
2326   } else if (left->is_double_fpu()) {
2327     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2328 
2329     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2330       // Double values require special handling for strictfp mul/div on x86
2331       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2332       __ fmulp(left->fpu_regnrLo() + 1);
2333     }
2334 
2335     if (right->is_double_fpu()) {
2336       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2337 
2338     } else {
2339       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2340       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2341 
2342       Address raddr;
2343       if (right->is_double_stack()) {
2344         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2345       } else if (right->is_constant()) {
2346         // hack for now
2347         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2348       } else {
2349         ShouldNotReachHere();
2350       }
2351 
2352       switch (code) {
2353         case lir_add: __ fadd_d(raddr); break;
2354         case lir_sub: __ fsub_d(raddr); break;
2355         case lir_mul_strictfp: // fall through
2356         case lir_mul: __ fmul_d(raddr); break;
2357         case lir_div_strictfp: // fall through
2358         case lir_div: __ fdiv_d(raddr); break;
2359         default: ShouldNotReachHere();
2360       }
2361     }
2362 
2363     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2364       // Double values require special handling for strictfp mul/div on x86
2365       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2366       __ fmulp(dest->fpu_regnrLo() + 1);
2367     }
2368 #endif // !_LP64
2369 
2370   } else if (left->is_single_stack() || left->is_address()) {
2371     assert(left == dest, "left and dest must be equal");
2372 
2373     Address laddr;
2374     if (left->is_single_stack()) {
2375       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2376     } else if (left->is_address()) {
2377       laddr = as_Address(left->as_address_ptr());
2378     } else {
2379       ShouldNotReachHere();
2380     }
2381 
2382     if (right->is_single_cpu()) {
2383       Register rreg = right->as_register();
2384       switch (code) {
2385         case lir_add: __ addl(laddr, rreg); break;
2386         case lir_sub: __ subl(laddr, rreg); break;
2387         default:      ShouldNotReachHere();
2388       }
2389     } else if (right->is_constant()) {
2390       jint c = right->as_constant_ptr()->as_jint();
2391       switch (code) {
2392         case lir_add: {
2393           __ incrementl(laddr, c);
2394           break;
2395         }
2396         case lir_sub: {
2397           __ decrementl(laddr, c);
2398           break;
2399         }
2400         default: ShouldNotReachHere();
2401       }
2402     } else {
2403       ShouldNotReachHere();
2404     }
2405 
2406   } else {
2407     ShouldNotReachHere();
2408   }
2409 }
2410 
2411 #ifndef _LP64
2412 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2413   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2414   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2415   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2416 
2417   bool left_is_tos = (left_index == 0);
2418   bool dest_is_tos = (dest_index == 0);
2419   int non_tos_index = (left_is_tos ? right_index : left_index);
2420 
2421   switch (code) {
2422     case lir_add:
2423       if (pop_fpu_stack)       __ faddp(non_tos_index);
2424       else if (dest_is_tos)    __ fadd (non_tos_index);
2425       else                     __ fadda(non_tos_index);
2426       break;
2427 
2428     case lir_sub:
2429       if (left_is_tos) {
2430         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2431         else if (dest_is_tos)  __ fsub  (non_tos_index);
2432         else                   __ fsubra(non_tos_index);
2433       } else {
2434         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2435         else if (dest_is_tos)  __ fsubr (non_tos_index);
2436         else                   __ fsuba (non_tos_index);
2437       }
2438       break;
2439 
2440     case lir_mul_strictfp: // fall through
2441     case lir_mul:
2442       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2443       else if (dest_is_tos)    __ fmul (non_tos_index);
2444       else                     __ fmula(non_tos_index);
2445       break;
2446 
2447     case lir_div_strictfp: // fall through
2448     case lir_div:
2449       if (left_is_tos) {
2450         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2451         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2452         else                   __ fdivra(non_tos_index);
2453       } else {
2454         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2455         else if (dest_is_tos)  __ fdivr (non_tos_index);
2456         else                   __ fdiva (non_tos_index);
2457       }
2458       break;
2459 
2460     case lir_rem:
2461       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2462       __ fremr(noreg);
2463       break;
2464 
2465     default:
2466       ShouldNotReachHere();
2467   }
2468 }
2469 #endif // _LP64
2470 
2471 
2472 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2473   if (value->is_double_xmm()) {
2474     switch(code) {
2475       case lir_abs :
2476         {
2477 #ifdef _LP64
2478           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2479             assert(tmp->is_valid(), "need temporary");
2480             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2481           } else
2482 #endif
2483           {
2484             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2485               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2486             }
2487             assert(!tmp->is_valid(), "do not need temporary");
2488             __ andpd(dest->as_xmm_double_reg(),
2489                      ExternalAddress((address)double_signmask_pool));
2490           }
2491         }
2492         break;
2493 
2494       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2495       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2496       default      : ShouldNotReachHere();
2497     }
2498 
2499 #ifndef _LP64
2500   } else if (value->is_double_fpu()) {
2501     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2502     switch(code) {
2503       case lir_abs   : __ fabs() ; break;
2504       case lir_sqrt  : __ fsqrt(); break;
2505       default      : ShouldNotReachHere();
2506     }
2507 #endif // !_LP64
2508   } else {
2509     Unimplemented();
2510   }
2511 }
2512 
2513 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2514   // assert(left->destroys_register(), "check");
2515   if (left->is_single_cpu()) {
2516     Register reg = left->as_register();
2517     if (right->is_constant()) {
2518       int val = right->as_constant_ptr()->as_jint();
2519       switch (code) {
2520         case lir_logic_and: __ andl (reg, val); break;
2521         case lir_logic_or:  __ orl  (reg, val); break;
2522         case lir_logic_xor: __ xorl (reg, val); break;
2523         default: ShouldNotReachHere();
2524       }
2525     } else if (right->is_stack()) {
2526       // added support for stack operands
2527       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2528       switch (code) {
2529         case lir_logic_and: __ andl (reg, raddr); break;
2530         case lir_logic_or:  __ orl  (reg, raddr); break;
2531         case lir_logic_xor: __ xorl (reg, raddr); break;
2532         default: ShouldNotReachHere();
2533       }
2534     } else {
2535       Register rright = right->as_register();
2536       switch (code) {
2537         case lir_logic_and: __ andptr (reg, rright); break;
2538         case lir_logic_or : __ orptr  (reg, rright); break;
2539         case lir_logic_xor: __ xorptr (reg, rright); break;
2540         default: ShouldNotReachHere();
2541       }
2542     }
2543     move_regs(reg, dst->as_register());
2544   } else {
2545     Register l_lo = left->as_register_lo();
2546     Register l_hi = left->as_register_hi();
2547     if (right->is_constant()) {
2548 #ifdef _LP64
2549       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2550       switch (code) {
2551         case lir_logic_and:
2552           __ andq(l_lo, rscratch1);
2553           break;
2554         case lir_logic_or:
2555           __ orq(l_lo, rscratch1);
2556           break;
2557         case lir_logic_xor:
2558           __ xorq(l_lo, rscratch1);
2559           break;
2560         default: ShouldNotReachHere();
2561       }
2562 #else
2563       int r_lo = right->as_constant_ptr()->as_jint_lo();
2564       int r_hi = right->as_constant_ptr()->as_jint_hi();
2565       switch (code) {
2566         case lir_logic_and:
2567           __ andl(l_lo, r_lo);
2568           __ andl(l_hi, r_hi);
2569           break;
2570         case lir_logic_or:
2571           __ orl(l_lo, r_lo);
2572           __ orl(l_hi, r_hi);
2573           break;
2574         case lir_logic_xor:
2575           __ xorl(l_lo, r_lo);
2576           __ xorl(l_hi, r_hi);
2577           break;
2578         default: ShouldNotReachHere();
2579       }
2580 #endif // _LP64
2581     } else {
2582 #ifdef _LP64
2583       Register r_lo;
2584       if (is_reference_type(right->type())) {
2585         r_lo = right->as_register();
2586       } else {
2587         r_lo = right->as_register_lo();
2588       }
2589 #else
2590       Register r_lo = right->as_register_lo();
2591       Register r_hi = right->as_register_hi();
2592       assert(l_lo != r_hi, "overwriting registers");
2593 #endif
2594       switch (code) {
2595         case lir_logic_and:
2596           __ andptr(l_lo, r_lo);
2597           NOT_LP64(__ andptr(l_hi, r_hi);)
2598           break;
2599         case lir_logic_or:
2600           __ orptr(l_lo, r_lo);
2601           NOT_LP64(__ orptr(l_hi, r_hi);)
2602           break;
2603         case lir_logic_xor:
2604           __ xorptr(l_lo, r_lo);
2605           NOT_LP64(__ xorptr(l_hi, r_hi);)
2606           break;
2607         default: ShouldNotReachHere();
2608       }
2609     }
2610 
2611     Register dst_lo = dst->as_register_lo();
2612     Register dst_hi = dst->as_register_hi();
2613 
2614 #ifdef _LP64
2615     move_regs(l_lo, dst_lo);
2616 #else
2617     if (dst_lo == l_hi) {
2618       assert(dst_hi != l_lo, "overwriting registers");
2619       move_regs(l_hi, dst_hi);
2620       move_regs(l_lo, dst_lo);
2621     } else {
2622       assert(dst_lo != l_hi, "overwriting registers");
2623       move_regs(l_lo, dst_lo);
2624       move_regs(l_hi, dst_hi);
2625     }
2626 #endif // _LP64
2627   }
2628 }
2629 
2630 
2631 // we assume that rax, and rdx can be overwritten
2632 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2633 
2634   assert(left->is_single_cpu(),   "left must be register");
2635   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2636   assert(result->is_single_cpu(), "result must be register");
2637 
2638   //  assert(left->destroys_register(), "check");
2639   //  assert(right->destroys_register(), "check");
2640 
2641   Register lreg = left->as_register();
2642   Register dreg = result->as_register();
2643 
2644   if (right->is_constant()) {
2645     jint divisor = right->as_constant_ptr()->as_jint();
2646     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2647     if (code == lir_idiv) {
2648       assert(lreg == rax, "must be rax,");
2649       assert(temp->as_register() == rdx, "tmp register must be rdx");
2650       __ cdql(); // sign extend into rdx:rax
2651       if (divisor == 2) {
2652         __ subl(lreg, rdx);
2653       } else {
2654         __ andl(rdx, divisor - 1);
2655         __ addl(lreg, rdx);
2656       }
2657       __ sarl(lreg, log2_jint(divisor));
2658       move_regs(lreg, dreg);
2659     } else if (code == lir_irem) {
2660       Label done;
2661       __ mov(dreg, lreg);
2662       __ andl(dreg, 0x80000000 | (divisor - 1));
2663       __ jcc(Assembler::positive, done);
2664       __ decrement(dreg);
2665       __ orl(dreg, ~(divisor - 1));
2666       __ increment(dreg);
2667       __ bind(done);
2668     } else {
2669       ShouldNotReachHere();
2670     }
2671   } else {
2672     Register rreg = right->as_register();
2673     assert(lreg == rax, "left register must be rax,");
2674     assert(rreg != rdx, "right register must not be rdx");
2675     assert(temp->as_register() == rdx, "tmp register must be rdx");
2676 
2677     move_regs(lreg, rax);
2678 
2679     int idivl_offset = __ corrected_idivl(rreg);
2680     if (ImplicitDiv0Checks) {
2681       add_debug_info_for_div0(idivl_offset, info);
2682     }
2683     if (code == lir_irem) {
2684       move_regs(rdx, dreg); // result is in rdx
2685     } else {
2686       move_regs(rax, dreg);
2687     }
2688   }
2689 }
2690 
2691 
2692 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2693   if (opr1->is_single_cpu()) {
2694     Register reg1 = opr1->as_register();
2695     if (opr2->is_single_cpu()) {
2696       // cpu register - cpu register
2697       if (is_reference_type(opr1->type())) {
2698         __ cmpoop(reg1, opr2->as_register());
2699       } else {
2700         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
2701         __ cmpl(reg1, opr2->as_register());
2702       }
2703     } else if (opr2->is_stack()) {
2704       // cpu register - stack
2705       if (is_reference_type(opr1->type())) {
2706         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2707       } else {
2708         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2709       }
2710     } else if (opr2->is_constant()) {
2711       // cpu register - constant
2712       LIR_Const* c = opr2->as_constant_ptr();
2713       if (c->type() == T_INT) {
2714         __ cmpl(reg1, c->as_jint());
2715       } else if (c->type() == T_METADATA) {
2716         // All we need for now is a comparison with NULL for equality.
2717         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
2718         Metadata* m = c->as_metadata();
2719         if (m == NULL) {
2720           __ cmpptr(reg1, (int32_t)0);
2721         } else {
2722           ShouldNotReachHere();
2723         }
2724       } else if (is_reference_type(c->type())) {
2725         // In 64bit oops are single register
2726         jobject o = c->as_jobject();
2727         if (o == NULL) {
2728           __ cmpptr(reg1, (int32_t)NULL_WORD);
2729         } else {
2730           __ cmpoop(reg1, o);
2731         }
2732       } else {
2733         fatal("unexpected type: %s", basictype_to_str(c->type()));
2734       }
2735       // cpu register - address
2736     } else if (opr2->is_address()) {
2737       if (op->info() != NULL) {
2738         add_debug_info_for_null_check_here(op->info());
2739       }
2740       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2741     } else {
2742       ShouldNotReachHere();
2743     }
2744 
2745   } else if(opr1->is_double_cpu()) {
2746     Register xlo = opr1->as_register_lo();
2747     Register xhi = opr1->as_register_hi();
2748     if (opr2->is_double_cpu()) {
2749 #ifdef _LP64
2750       __ cmpptr(xlo, opr2->as_register_lo());
2751 #else
2752       // cpu register - cpu register
2753       Register ylo = opr2->as_register_lo();
2754       Register yhi = opr2->as_register_hi();
2755       __ subl(xlo, ylo);
2756       __ sbbl(xhi, yhi);
2757       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2758         __ orl(xhi, xlo);
2759       }
2760 #endif // _LP64
2761     } else if (opr2->is_constant()) {
2762       // cpu register - constant 0
2763       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2764 #ifdef _LP64
2765       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2766 #else
2767       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2768       __ orl(xhi, xlo);
2769 #endif // _LP64
2770     } else {
2771       ShouldNotReachHere();
2772     }
2773 
2774   } else if (opr1->is_single_xmm()) {
2775     XMMRegister reg1 = opr1->as_xmm_float_reg();
2776     if (opr2->is_single_xmm()) {
2777       // xmm register - xmm register
2778       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2779     } else if (opr2->is_stack()) {
2780       // xmm register - stack
2781       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2782     } else if (opr2->is_constant()) {
2783       // xmm register - constant
2784       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2785     } else if (opr2->is_address()) {
2786       // xmm register - address
2787       if (op->info() != NULL) {
2788         add_debug_info_for_null_check_here(op->info());
2789       }
2790       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2791     } else {
2792       ShouldNotReachHere();
2793     }
2794 
2795   } else if (opr1->is_double_xmm()) {
2796     XMMRegister reg1 = opr1->as_xmm_double_reg();
2797     if (opr2->is_double_xmm()) {
2798       // xmm register - xmm register
2799       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2800     } else if (opr2->is_stack()) {
2801       // xmm register - stack
2802       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2803     } else if (opr2->is_constant()) {
2804       // xmm register - constant
2805       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2806     } else if (opr2->is_address()) {
2807       // xmm register - address
2808       if (op->info() != NULL) {
2809         add_debug_info_for_null_check_here(op->info());
2810       }
2811       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2812     } else {
2813       ShouldNotReachHere();
2814     }
2815 
2816 #ifndef _LP64
2817   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2818     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2819     assert(opr2->is_fpu_register(), "both must be registers");
2820     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2821 #endif // LP64
2822 
2823   } else if (opr1->is_address() && opr2->is_constant()) {
2824     LIR_Const* c = opr2->as_constant_ptr();
2825 #ifdef _LP64
2826     if (is_reference_type(c->type())) {
2827       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2828       __ movoop(rscratch1, c->as_jobject());
2829     }
2830 #endif // LP64
2831     if (op->info() != NULL) {
2832       add_debug_info_for_null_check_here(op->info());
2833     }
2834     // special case: address - constant
2835     LIR_Address* addr = opr1->as_address_ptr();
2836     if (c->type() == T_INT) {
2837       __ cmpl(as_Address(addr), c->as_jint());
2838     } else if (is_reference_type(c->type())) {
2839 #ifdef _LP64
2840       // %%% Make this explode if addr isn't reachable until we figure out a
2841       // better strategy by giving noreg as the temp for as_Address
2842       __ cmpoop(rscratch1, as_Address(addr, noreg));
2843 #else
2844       __ cmpoop(as_Address(addr), c->as_jobject());
2845 #endif // _LP64
2846     } else {
2847       ShouldNotReachHere();
2848     }
2849 
2850   } else {
2851     ShouldNotReachHere();
2852   }
2853 }
2854 
2855 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2856   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2857     if (left->is_single_xmm()) {
2858       assert(right->is_single_xmm(), "must match");
2859       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2860     } else if (left->is_double_xmm()) {
2861       assert(right->is_double_xmm(), "must match");
2862       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2863 
2864     } else {
2865 #ifdef _LP64
2866       ShouldNotReachHere();
2867 #else
2868       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2869       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2870 
2871       assert(left->fpu() == 0, "left must be on TOS");
2872       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2873                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2874 #endif // LP64
2875     }
2876   } else {
2877     assert(code == lir_cmp_l2i, "check");
2878 #ifdef _LP64
2879     Label done;
2880     Register dest = dst->as_register();
2881     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2882     __ movl(dest, -1);
2883     __ jccb(Assembler::less, done);
2884     __ set_byte_if_not_zero(dest);
2885     __ movzbl(dest, dest);
2886     __ bind(done);
2887 #else
2888     __ lcmp2int(left->as_register_hi(),
2889                 left->as_register_lo(),
2890                 right->as_register_hi(),
2891                 right->as_register_lo());
2892     move_regs(left->as_register_hi(), dst->as_register());
2893 #endif // _LP64
2894   }
2895 }
2896 
2897 
2898 void LIR_Assembler::align_call(LIR_Code code) {
2899   // make sure that the displacement word of the call ends up word aligned
2900   int offset = __ offset();
2901   switch (code) {
2902   case lir_static_call:
2903   case lir_optvirtual_call:
2904   case lir_dynamic_call:
2905     offset += NativeCall::displacement_offset;
2906     break;
2907   case lir_icvirtual_call:
2908     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2909     break;
2910   case lir_virtual_call:  // currently, sparc-specific for niagara
2911   default: ShouldNotReachHere();
2912   }
2913   __ align(BytesPerWord, offset);
2914 }
2915 
2916 
2917 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2918   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2919          "must be aligned");
2920   __ call(AddressLiteral(op->addr(), rtype));
2921   add_call_info(code_offset(), op->info());
2922 }
2923 
2924 
2925 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2926   __ ic_call(op->addr());
2927   add_call_info(code_offset(), op->info());
2928   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2929          "must be aligned");
2930 }
2931 
2932 
2933 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2934 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2935   ShouldNotReachHere();
2936 }
2937 
2938 
2939 void LIR_Assembler::emit_static_call_stub() {
2940   address call_pc = __ pc();
2941   address stub = __ start_a_stub(call_stub_size());
2942   if (stub == NULL) {
2943     bailout("static call stub overflow");
2944     return;
2945   }
2946 
2947   int start = __ offset();
2948 
2949   // make sure that the displacement word of the call ends up word aligned
2950   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2951   __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2952   __ mov_metadata(rbx, (Metadata*)NULL);
2953   // must be set to -1 at code generation time
2954   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2955   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2956   __ jump(RuntimeAddress(__ pc()));
2957 
2958   if (UseAOT) {
2959     // Trampoline to aot code
2960     __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2961 #ifdef _LP64
2962     __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2963 #else
2964     __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2965 #endif
2966     __ jmp(rax);
2967   }
2968   assert(__ offset() - start <= call_stub_size(), "stub too big");
2969   __ end_a_stub();
2970 }
2971 
2972 
2973 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2974   assert(exceptionOop->as_register() == rax, "must match");
2975   assert(exceptionPC->as_register() == rdx, "must match");
2976 
2977   // exception object is not added to oop map by LinearScan
2978   // (LinearScan assumes that no oops are in fixed registers)
2979   info->add_register_oop(exceptionOop);
2980   Runtime1::StubID unwind_id;
2981 
2982   // get current pc information
2983   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2984   int pc_for_athrow_offset = __ offset();
2985   InternalAddress pc_for_athrow(__ pc());
2986   __ lea(exceptionPC->as_register(), pc_for_athrow);
2987   add_call_info(pc_for_athrow_offset, info); // for exception handler
2988 
2989   __ verify_not_null_oop(rax);
2990   // search an exception handler (rax: exception oop, rdx: throwing pc)
2991   if (compilation()->has_fpu_code()) {
2992     unwind_id = Runtime1::handle_exception_id;
2993   } else {
2994     unwind_id = Runtime1::handle_exception_nofpu_id;
2995   }
2996   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2997 
2998   // enough room for two byte trap
2999   __ nop();
3000 }
3001 
3002 
3003 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
3004   assert(exceptionOop->as_register() == rax, "must match");
3005 
3006   __ jmp(_unwind_handler_entry);
3007 }
3008 
3009 
3010 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
3011 
3012   // optimized version for linear scan:
3013   // * count must be already in ECX (guaranteed by LinearScan)
3014   // * left and dest must be equal
3015   // * tmp must be unused
3016   assert(count->as_register() == SHIFT_count, "count must be in ECX");
3017   assert(left == dest, "left and dest must be equal");
3018   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
3019 
3020   if (left->is_single_cpu()) {
3021     Register value = left->as_register();
3022     assert(value != SHIFT_count, "left cannot be ECX");
3023 
3024     switch (code) {
3025       case lir_shl:  __ shll(value); break;
3026       case lir_shr:  __ sarl(value); break;
3027       case lir_ushr: __ shrl(value); break;
3028       default: ShouldNotReachHere();
3029     }
3030   } else if (left->is_double_cpu()) {
3031     Register lo = left->as_register_lo();
3032     Register hi = left->as_register_hi();
3033     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
3034 #ifdef _LP64
3035     switch (code) {
3036       case lir_shl:  __ shlptr(lo);        break;
3037       case lir_shr:  __ sarptr(lo);        break;
3038       case lir_ushr: __ shrptr(lo);        break;
3039       default: ShouldNotReachHere();
3040     }
3041 #else
3042 
3043     switch (code) {
3044       case lir_shl:  __ lshl(hi, lo);        break;
3045       case lir_shr:  __ lshr(hi, lo, true);  break;
3046       case lir_ushr: __ lshr(hi, lo, false); break;
3047       default: ShouldNotReachHere();
3048     }
3049 #endif // LP64
3050   } else {
3051     ShouldNotReachHere();
3052   }
3053 }
3054 
3055 
3056 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3057   if (dest->is_single_cpu()) {
3058     // first move left into dest so that left is not destroyed by the shift
3059     Register value = dest->as_register();
3060     count = count & 0x1F; // Java spec
3061 
3062     move_regs(left->as_register(), value);
3063     switch (code) {
3064       case lir_shl:  __ shll(value, count); break;
3065       case lir_shr:  __ sarl(value, count); break;
3066       case lir_ushr: __ shrl(value, count); break;
3067       default: ShouldNotReachHere();
3068     }
3069   } else if (dest->is_double_cpu()) {
3070 #ifndef _LP64
3071     Unimplemented();
3072 #else
3073     // first move left into dest so that left is not destroyed by the shift
3074     Register value = dest->as_register_lo();
3075     count = count & 0x1F; // Java spec
3076 
3077     move_regs(left->as_register_lo(), value);
3078     switch (code) {
3079       case lir_shl:  __ shlptr(value, count); break;
3080       case lir_shr:  __ sarptr(value, count); break;
3081       case lir_ushr: __ shrptr(value, count); break;
3082       default: ShouldNotReachHere();
3083     }
3084 #endif // _LP64
3085   } else {
3086     ShouldNotReachHere();
3087   }
3088 }
3089 
3090 
3091 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3092   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3093   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3094   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3095   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3096 }
3097 
3098 
3099 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3100   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3101   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3102   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3103   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3104 }
3105 
3106 
3107 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3108   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3109   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3110   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3111   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3112 }
3113 
3114 
3115 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
3116   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3117   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3118   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3119   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
3120 }
3121 
3122 
3123 // This code replaces a call to arraycopy; no exception may
3124 // be thrown in this code, they must be thrown in the System.arraycopy
3125 // activation frame; we could save some checks if this would not be the case
3126 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3127   ciArrayKlass* default_type = op->expected_type();
3128   Register src = op->src()->as_register();
3129   Register dst = op->dst()->as_register();
3130   Register src_pos = op->src_pos()->as_register();
3131   Register dst_pos = op->dst_pos()->as_register();
3132   Register length  = op->length()->as_register();
3133   Register tmp = op->tmp()->as_register();
3134 
3135   __ resolve(ACCESS_READ, src);
3136   __ resolve(ACCESS_WRITE, dst);
3137 
3138   CodeStub* stub = op->stub();
3139   int flags = op->flags();
3140   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3141   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3142 
3143   // if we don't know anything, just go through the generic arraycopy
3144   if (default_type == NULL) {
3145     // save outgoing arguments on stack in case call to System.arraycopy is needed
3146     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3147     // for interpreter calling conventions. Now we have to do it in new style conventions.
3148     // For the moment until C1 gets the new register allocator I just force all the
3149     // args to the right place (except the register args) and then on the back side
3150     // reload the register args properly if we go slow path. Yuck
3151 
3152     // These are proper for the calling convention
3153     store_parameter(length, 2);
3154     store_parameter(dst_pos, 1);
3155     store_parameter(dst, 0);
3156 
3157     // these are just temporary placements until we need to reload
3158     store_parameter(src_pos, 3);
3159     store_parameter(src, 4);
3160     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3161 
3162     address copyfunc_addr = StubRoutines::generic_arraycopy();
3163     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
3164 
3165     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3166 #ifdef _LP64
3167     // The arguments are in java calling convention so we can trivially shift them to C
3168     // convention
3169     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3170     __ mov(c_rarg0, j_rarg0);
3171     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3172     __ mov(c_rarg1, j_rarg1);
3173     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3174     __ mov(c_rarg2, j_rarg2);
3175     assert_different_registers(c_rarg3, j_rarg4);
3176     __ mov(c_rarg3, j_rarg3);
3177 #ifdef _WIN64
3178     // Allocate abi space for args but be sure to keep stack aligned
3179     __ subptr(rsp, 6*wordSize);
3180     store_parameter(j_rarg4, 4);
3181 #ifndef PRODUCT
3182     if (PrintC1Statistics) {
3183       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3184     }
3185 #endif
3186     __ call(RuntimeAddress(copyfunc_addr));
3187     __ addptr(rsp, 6*wordSize);
3188 #else
3189     __ mov(c_rarg4, j_rarg4);
3190 #ifndef PRODUCT
3191     if (PrintC1Statistics) {
3192       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3193     }
3194 #endif
3195     __ call(RuntimeAddress(copyfunc_addr));
3196 #endif // _WIN64
3197 #else
3198     __ push(length);
3199     __ push(dst_pos);
3200     __ push(dst);
3201     __ push(src_pos);
3202     __ push(src);
3203 
3204 #ifndef PRODUCT
3205     if (PrintC1Statistics) {
3206       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3207     }
3208 #endif
3209     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3210 
3211 #endif // _LP64
3212 
3213     __ cmpl(rax, 0);
3214     __ jcc(Assembler::equal, *stub->continuation());
3215 
3216     __ mov(tmp, rax);
3217     __ xorl(tmp, -1);
3218 
3219     // Reload values from the stack so they are where the stub
3220     // expects them.
3221     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3222     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3223     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3224     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3225     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3226 
3227     __ subl(length, tmp);
3228     __ addl(src_pos, tmp);
3229     __ addl(dst_pos, tmp);
3230     __ jmp(*stub->entry());
3231 
3232     __ bind(*stub->continuation());
3233     return;
3234   }
3235 
3236   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3237 
3238   int elem_size = type2aelembytes(basic_type);
3239   Address::ScaleFactor scale;
3240 
3241   switch (elem_size) {
3242     case 1 :
3243       scale = Address::times_1;
3244       break;
3245     case 2 :
3246       scale = Address::times_2;
3247       break;
3248     case 4 :
3249       scale = Address::times_4;
3250       break;
3251     case 8 :
3252       scale = Address::times_8;
3253       break;
3254     default:
3255       scale = Address::no_scale;
3256       ShouldNotReachHere();
3257   }
3258 
3259   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3260   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3261   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3262   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3263 
3264   // length and pos's are all sign extended at this point on 64bit
3265 
3266   // test for NULL
3267   if (flags & LIR_OpArrayCopy::src_null_check) {
3268     __ testptr(src, src);
3269     __ jcc(Assembler::zero, *stub->entry());
3270   }
3271   if (flags & LIR_OpArrayCopy::dst_null_check) {
3272     __ testptr(dst, dst);
3273     __ jcc(Assembler::zero, *stub->entry());
3274   }
3275 
3276   // If the compiler was not able to prove that exact type of the source or the destination
3277   // of the arraycopy is an array type, check at runtime if the source or the destination is
3278   // an instance type.
3279   if (flags & LIR_OpArrayCopy::type_check) {
3280     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3281       __ load_klass(tmp, dst);
3282       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3283       __ jcc(Assembler::greaterEqual, *stub->entry());
3284     }
3285 
3286     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3287       __ load_klass(tmp, src);
3288       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3289       __ jcc(Assembler::greaterEqual, *stub->entry());
3290     }
3291   }
3292 
3293   // check if negative
3294   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3295     __ testl(src_pos, src_pos);
3296     __ jcc(Assembler::less, *stub->entry());
3297   }
3298   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3299     __ testl(dst_pos, dst_pos);
3300     __ jcc(Assembler::less, *stub->entry());
3301   }
3302 
3303   if (flags & LIR_OpArrayCopy::src_range_check) {
3304     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3305     __ cmpl(tmp, src_length_addr);
3306     __ jcc(Assembler::above, *stub->entry());
3307   }
3308   if (flags & LIR_OpArrayCopy::dst_range_check) {
3309     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3310     __ cmpl(tmp, dst_length_addr);
3311     __ jcc(Assembler::above, *stub->entry());
3312   }
3313 
3314   if (flags & LIR_OpArrayCopy::length_positive_check) {
3315     __ testl(length, length);
3316     __ jcc(Assembler::less, *stub->entry());
3317   }
3318 
3319 #ifdef _LP64
3320   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3321   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3322 #endif
3323 
3324   if (flags & LIR_OpArrayCopy::type_check) {
3325     // We don't know the array types are compatible
3326     if (basic_type != T_OBJECT) {
3327       // Simple test for basic type arrays
3328       if (UseCompressedClassPointers) {
3329         __ movl(tmp, src_klass_addr);
3330         __ cmpl(tmp, dst_klass_addr);
3331       } else {
3332         __ movptr(tmp, src_klass_addr);
3333         __ cmpptr(tmp, dst_klass_addr);
3334       }
3335       __ jcc(Assembler::notEqual, *stub->entry());
3336     } else {
3337       // For object arrays, if src is a sub class of dst then we can
3338       // safely do the copy.
3339       Label cont, slow;
3340 
3341       __ push(src);
3342       __ push(dst);
3343 
3344       __ load_klass(src, src);
3345       __ load_klass(dst, dst);
3346 
3347       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3348 
3349       __ push(src);
3350       __ push(dst);
3351       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3352       __ pop(dst);
3353       __ pop(src);
3354 
3355       __ cmpl(src, 0);
3356       __ jcc(Assembler::notEqual, cont);
3357 
3358       __ bind(slow);
3359       __ pop(dst);
3360       __ pop(src);
3361 
3362       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3363       if (copyfunc_addr != NULL) { // use stub if available
3364         // src is not a sub class of dst so we have to do a
3365         // per-element check.
3366 
3367         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3368         if ((flags & mask) != mask) {
3369           // Check that at least both of them object arrays.
3370           assert(flags & mask, "one of the two should be known to be an object array");
3371 
3372           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3373             __ load_klass(tmp, src);
3374           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3375             __ load_klass(tmp, dst);
3376           }
3377           int lh_offset = in_bytes(Klass::layout_helper_offset());
3378           Address klass_lh_addr(tmp, lh_offset);
3379           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3380           __ cmpl(klass_lh_addr, objArray_lh);
3381           __ jcc(Assembler::notEqual, *stub->entry());
3382         }
3383 
3384        // Spill because stubs can use any register they like and it's
3385        // easier to restore just those that we care about.
3386        store_parameter(dst, 0);
3387        store_parameter(dst_pos, 1);
3388        store_parameter(length, 2);
3389        store_parameter(src_pos, 3);
3390        store_parameter(src, 4);
3391 
3392 #ifndef _LP64
3393         __ movptr(tmp, dst_klass_addr);
3394         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3395         __ push(tmp);
3396         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3397         __ push(tmp);
3398         __ push(length);
3399         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3400         __ push(tmp);
3401         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3402         __ push(tmp);
3403 
3404         __ call_VM_leaf(copyfunc_addr, 5);
3405 #else
3406         __ movl2ptr(length, length); //higher 32bits must be null
3407 
3408         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3409         assert_different_registers(c_rarg0, dst, dst_pos, length);
3410         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3411         assert_different_registers(c_rarg1, dst, length);
3412 
3413         __ mov(c_rarg2, length);
3414         assert_different_registers(c_rarg2, dst);
3415 
3416 #ifdef _WIN64
3417         // Allocate abi space for args but be sure to keep stack aligned
3418         __ subptr(rsp, 6*wordSize);
3419         __ load_klass(c_rarg3, dst);
3420         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3421         store_parameter(c_rarg3, 4);
3422         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3423         __ call(RuntimeAddress(copyfunc_addr));
3424         __ addptr(rsp, 6*wordSize);
3425 #else
3426         __ load_klass(c_rarg4, dst);
3427         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3428         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3429         __ call(RuntimeAddress(copyfunc_addr));
3430 #endif
3431 
3432 #endif
3433 
3434 #ifndef PRODUCT
3435         if (PrintC1Statistics) {
3436           Label failed;
3437           __ testl(rax, rax);
3438           __ jcc(Assembler::notZero, failed);
3439           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3440           __ bind(failed);
3441         }
3442 #endif
3443 
3444         __ testl(rax, rax);
3445         __ jcc(Assembler::zero, *stub->continuation());
3446 
3447 #ifndef PRODUCT
3448         if (PrintC1Statistics) {
3449           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3450         }
3451 #endif
3452 
3453         __ mov(tmp, rax);
3454 
3455         __ xorl(tmp, -1);
3456 
3457         // Restore previously spilled arguments
3458         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3459         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3460         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3461         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3462         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3463 
3464 
3465         __ subl(length, tmp);
3466         __ addl(src_pos, tmp);
3467         __ addl(dst_pos, tmp);
3468       }
3469 
3470       __ jmp(*stub->entry());
3471 
3472       __ bind(cont);
3473       __ pop(dst);
3474       __ pop(src);
3475     }
3476   }
3477 
3478 #ifdef ASSERT
3479   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3480     // Sanity check the known type with the incoming class.  For the
3481     // primitive case the types must match exactly with src.klass and
3482     // dst.klass each exactly matching the default type.  For the
3483     // object array case, if no type check is needed then either the
3484     // dst type is exactly the expected type and the src type is a
3485     // subtype which we can't check or src is the same array as dst
3486     // but not necessarily exactly of type default_type.
3487     Label known_ok, halt;
3488     __ mov_metadata(tmp, default_type->constant_encoding());
3489 #ifdef _LP64
3490     if (UseCompressedClassPointers) {
3491       __ encode_klass_not_null(tmp);
3492     }
3493 #endif
3494 
3495     if (basic_type != T_OBJECT) {
3496 
3497       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3498       else                   __ cmpptr(tmp, dst_klass_addr);
3499       __ jcc(Assembler::notEqual, halt);
3500       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3501       else                   __ cmpptr(tmp, src_klass_addr);
3502       __ jcc(Assembler::equal, known_ok);
3503     } else {
3504       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3505       else                   __ cmpptr(tmp, dst_klass_addr);
3506       __ jcc(Assembler::equal, known_ok);
3507       __ cmpptr(src, dst);
3508       __ jcc(Assembler::equal, known_ok);
3509     }
3510     __ bind(halt);
3511     __ stop("incorrect type information in arraycopy");
3512     __ bind(known_ok);
3513   }
3514 #endif
3515 
3516 #ifndef PRODUCT
3517   if (PrintC1Statistics) {
3518     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3519   }
3520 #endif
3521 
3522 #ifdef _LP64
3523   assert_different_registers(c_rarg0, dst, dst_pos, length);
3524   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3525   assert_different_registers(c_rarg1, length);
3526   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3527   __ mov(c_rarg2, length);
3528 
3529 #else
3530   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3531   store_parameter(tmp, 0);
3532   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3533   store_parameter(tmp, 1);
3534   store_parameter(length, 2);
3535 #endif // _LP64
3536 
3537   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3538   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3539   const char *name;
3540   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3541   __ call_VM_leaf(entry, 0);
3542 
3543   __ bind(*stub->continuation());
3544 }
3545 
3546 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3547   assert(op->crc()->is_single_cpu(),  "crc must be register");
3548   assert(op->val()->is_single_cpu(),  "byte value must be register");
3549   assert(op->result_opr()->is_single_cpu(), "result must be register");
3550   Register crc = op->crc()->as_register();
3551   Register val = op->val()->as_register();
3552   Register res = op->result_opr()->as_register();
3553 
3554   assert_different_registers(val, crc, res);
3555 
3556   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3557   __ notl(crc); // ~crc
3558   __ update_byte_crc32(crc, val, res);
3559   __ notl(crc); // ~crc
3560   __ mov(res, crc);
3561 }
3562 
3563 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3564   Register obj = op->obj_opr()->as_register();  // may not be an oop
3565   Register hdr = op->hdr_opr()->as_register();
3566   Register lock = op->lock_opr()->as_register();
3567   if (!UseFastLocking) {
3568     __ jmp(*op->stub()->entry());
3569   } else if (op->code() == lir_lock) {
3570     Register scratch = noreg;
3571     if (UseBiasedLocking) {
3572       scratch = op->scratch_opr()->as_register();
3573     }
3574     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3575     __ resolve(ACCESS_READ | ACCESS_WRITE, obj);
3576     // add debug info for NullPointerException only if one is possible
3577     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3578     if (op->info() != NULL) {
3579       add_debug_info_for_null_check(null_check_offset, op->info());
3580     }
3581     // done
3582   } else if (op->code() == lir_unlock) {
3583     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3584     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3585   } else {
3586     Unimplemented();
3587   }
3588   __ bind(*op->stub()->continuation());
3589 }
3590 
3591 
3592 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3593   ciMethod* method = op->profiled_method();
3594   int bci          = op->profiled_bci();
3595   ciMethod* callee = op->profiled_callee();
3596 
3597   // Update counter for all call types
3598   ciMethodData* md = method->method_data_or_null();
3599   assert(md != NULL, "Sanity");
3600   ciProfileData* data = md->bci_to_data(bci);
3601   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
3602   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3603   Register mdo  = op->mdo()->as_register();
3604   __ mov_metadata(mdo, md->constant_encoding());
3605   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3606   // Perform additional virtual call profiling for invokevirtual and
3607   // invokeinterface bytecodes
3608   if (op->should_profile_receiver_type()) {
3609     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3610     Register recv = op->recv()->as_register();
3611     assert_different_registers(mdo, recv);
3612     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3613     ciKlass* known_klass = op->known_holder();
3614     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3615       // We know the type that will be seen at this call site; we can
3616       // statically update the MethodData* rather than needing to do
3617       // dynamic tests on the receiver type
3618 
3619       // NOTE: we should probably put a lock around this search to
3620       // avoid collisions by concurrent compilations
3621       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3622       uint i;
3623       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3624         ciKlass* receiver = vc_data->receiver(i);
3625         if (known_klass->equals(receiver)) {
3626           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3627           __ addptr(data_addr, DataLayout::counter_increment);
3628           return;
3629         }
3630       }
3631 
3632       // Receiver type not found in profile data; select an empty slot
3633 
3634       // Note that this is less efficient than it should be because it
3635       // always does a write to the receiver part of the
3636       // VirtualCallData rather than just the first time
3637       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3638         ciKlass* receiver = vc_data->receiver(i);
3639         if (receiver == NULL) {
3640           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3641           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3642           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3643           __ addptr(data_addr, DataLayout::counter_increment);
3644           return;
3645         }
3646       }
3647     } else {
3648       __ load_klass(recv, recv);
3649       Label update_done;
3650       type_profile_helper(mdo, md, data, recv, &update_done);
3651       // Receiver did not match any saved receiver and there is no empty row for it.
3652       // Increment total counter to indicate polymorphic case.
3653       __ addptr(counter_addr, DataLayout::counter_increment);
3654 
3655       __ bind(update_done);
3656     }
3657   } else {
3658     // Static call
3659     __ addptr(counter_addr, DataLayout::counter_increment);
3660   }
3661 }
3662 
3663 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3664   Register obj = op->obj()->as_register();
3665   Register tmp = op->tmp()->as_pointer_register();
3666   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3667   ciKlass* exact_klass = op->exact_klass();
3668   intptr_t current_klass = op->current_klass();
3669   bool not_null = op->not_null();
3670   bool no_conflict = op->no_conflict();
3671 
3672   Label update, next, none;
3673 
3674   bool do_null = !not_null;
3675   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3676   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3677 
3678   assert(do_null || do_update, "why are we here?");
3679   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3680 
3681   __ verify_oop(obj);
3682 
3683   if (tmp != obj) {
3684     __ mov(tmp, obj);
3685   }
3686   if (do_null) {
3687     __ testptr(tmp, tmp);
3688     __ jccb(Assembler::notZero, update);
3689     if (!TypeEntries::was_null_seen(current_klass)) {
3690       __ orptr(mdo_addr, TypeEntries::null_seen);
3691     }
3692     if (do_update) {
3693 #ifndef ASSERT
3694       __ jmpb(next);
3695     }
3696 #else
3697       __ jmp(next);
3698     }
3699   } else {
3700     __ testptr(tmp, tmp);
3701     __ jcc(Assembler::notZero, update);
3702     __ stop("unexpect null obj");
3703 #endif
3704   }
3705 
3706   __ bind(update);
3707 
3708   if (do_update) {
3709 #ifdef ASSERT
3710     if (exact_klass != NULL) {
3711       Label ok;
3712       __ load_klass(tmp, tmp);
3713       __ push(tmp);
3714       __ mov_metadata(tmp, exact_klass->constant_encoding());
3715       __ cmpptr(tmp, Address(rsp, 0));
3716       __ jcc(Assembler::equal, ok);
3717       __ stop("exact klass and actual klass differ");
3718       __ bind(ok);
3719       __ pop(tmp);
3720     }
3721 #endif
3722     if (!no_conflict) {
3723       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3724         if (exact_klass != NULL) {
3725           __ mov_metadata(tmp, exact_klass->constant_encoding());
3726         } else {
3727           __ load_klass(tmp, tmp);
3728         }
3729 
3730         __ xorptr(tmp, mdo_addr);
3731         __ testptr(tmp, TypeEntries::type_klass_mask);
3732         // klass seen before, nothing to do. The unknown bit may have been
3733         // set already but no need to check.
3734         __ jccb(Assembler::zero, next);
3735 
3736         __ testptr(tmp, TypeEntries::type_unknown);
3737         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3738 
3739         if (TypeEntries::is_type_none(current_klass)) {
3740           __ cmpptr(mdo_addr, 0);
3741           __ jccb(Assembler::equal, none);
3742           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3743           __ jccb(Assembler::equal, none);
3744           // There is a chance that the checks above (re-reading profiling
3745           // data from memory) fail if another thread has just set the
3746           // profiling to this obj's klass
3747           __ xorptr(tmp, mdo_addr);
3748           __ testptr(tmp, TypeEntries::type_klass_mask);
3749           __ jccb(Assembler::zero, next);
3750         }
3751       } else {
3752         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3753                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3754 
3755         __ movptr(tmp, mdo_addr);
3756         __ testptr(tmp, TypeEntries::type_unknown);
3757         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3758       }
3759 
3760       // different than before. Cannot keep accurate profile.
3761       __ orptr(mdo_addr, TypeEntries::type_unknown);
3762 
3763       if (TypeEntries::is_type_none(current_klass)) {
3764         __ jmpb(next);
3765 
3766         __ bind(none);
3767         // first time here. Set profile type.
3768         __ movptr(mdo_addr, tmp);
3769       }
3770     } else {
3771       // There's a single possible klass at this profile point
3772       assert(exact_klass != NULL, "should be");
3773       if (TypeEntries::is_type_none(current_klass)) {
3774         __ mov_metadata(tmp, exact_klass->constant_encoding());
3775         __ xorptr(tmp, mdo_addr);
3776         __ testptr(tmp, TypeEntries::type_klass_mask);
3777 #ifdef ASSERT
3778         __ jcc(Assembler::zero, next);
3779 
3780         {
3781           Label ok;
3782           __ push(tmp);
3783           __ cmpptr(mdo_addr, 0);
3784           __ jcc(Assembler::equal, ok);
3785           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3786           __ jcc(Assembler::equal, ok);
3787           // may have been set by another thread
3788           __ mov_metadata(tmp, exact_klass->constant_encoding());
3789           __ xorptr(tmp, mdo_addr);
3790           __ testptr(tmp, TypeEntries::type_mask);
3791           __ jcc(Assembler::zero, ok);
3792 
3793           __ stop("unexpected profiling mismatch");
3794           __ bind(ok);
3795           __ pop(tmp);
3796         }
3797 #else
3798         __ jccb(Assembler::zero, next);
3799 #endif
3800         // first time here. Set profile type.
3801         __ movptr(mdo_addr, tmp);
3802       } else {
3803         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3804                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3805 
3806         __ movptr(tmp, mdo_addr);
3807         __ testptr(tmp, TypeEntries::type_unknown);
3808         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3809 
3810         __ orptr(mdo_addr, TypeEntries::type_unknown);
3811       }
3812     }
3813 
3814     __ bind(next);
3815   }
3816 }
3817 
3818 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3819   Unimplemented();
3820 }
3821 
3822 
3823 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3824   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3825 }
3826 
3827 
3828 void LIR_Assembler::align_backward_branch_target() {
3829   __ align(BytesPerWord);
3830 }
3831 
3832 
3833 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3834   if (left->is_single_cpu()) {
3835     __ negl(left->as_register());
3836     move_regs(left->as_register(), dest->as_register());
3837 
3838   } else if (left->is_double_cpu()) {
3839     Register lo = left->as_register_lo();
3840 #ifdef _LP64
3841     Register dst = dest->as_register_lo();
3842     __ movptr(dst, lo);
3843     __ negptr(dst);
3844 #else
3845     Register hi = left->as_register_hi();
3846     __ lneg(hi, lo);
3847     if (dest->as_register_lo() == hi) {
3848       assert(dest->as_register_hi() != lo, "destroying register");
3849       move_regs(hi, dest->as_register_hi());
3850       move_regs(lo, dest->as_register_lo());
3851     } else {
3852       move_regs(lo, dest->as_register_lo());
3853       move_regs(hi, dest->as_register_hi());
3854     }
3855 #endif // _LP64
3856 
3857   } else if (dest->is_single_xmm()) {
3858 #ifdef _LP64
3859     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3860       assert(tmp->is_valid(), "need temporary");
3861       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
3862       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
3863     }
3864     else
3865 #endif
3866     {
3867       assert(!tmp->is_valid(), "do not need temporary");
3868       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3869         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3870       }
3871       __ xorps(dest->as_xmm_float_reg(),
3872                ExternalAddress((address)float_signflip_pool));
3873     }
3874   } else if (dest->is_double_xmm()) {
3875 #ifdef _LP64
3876     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3877       assert(tmp->is_valid(), "need temporary");
3878       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
3879       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
3880     }
3881     else
3882 #endif
3883     {
3884       assert(!tmp->is_valid(), "do not need temporary");
3885       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3886         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3887       }
3888       __ xorpd(dest->as_xmm_double_reg(),
3889                ExternalAddress((address)double_signflip_pool));
3890     }
3891 #ifndef _LP64
3892   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3893     assert(left->fpu() == 0, "arg must be on TOS");
3894     assert(dest->fpu() == 0, "dest must be TOS");
3895     __ fchs();
3896 #endif // !_LP64
3897 
3898   } else {
3899     ShouldNotReachHere();
3900   }
3901 }
3902 
3903 
3904 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3905   assert(src->is_address(), "must be an address");
3906   assert(dest->is_register(), "must be a register");
3907 
3908   PatchingStub* patch = NULL;
3909   if (patch_code != lir_patch_none) {
3910     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3911   }
3912 
3913   Register reg = dest->as_pointer_register();
3914   LIR_Address* addr = src->as_address_ptr();
3915   __ lea(reg, as_Address(addr));
3916 
3917   if (patch != NULL) {
3918     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3919   }
3920 }
3921 
3922 
3923 
3924 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3925   assert(!tmp->is_valid(), "don't need temporary");
3926   __ call(RuntimeAddress(dest));
3927   if (info != NULL) {
3928     add_call_info_here(info);
3929   }
3930 }
3931 
3932 
3933 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3934   assert(type == T_LONG, "only for volatile long fields");
3935 
3936   if (info != NULL) {
3937     add_debug_info_for_null_check_here(info);
3938   }
3939 
3940   if (src->is_double_xmm()) {
3941     if (dest->is_double_cpu()) {
3942 #ifdef _LP64
3943       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3944 #else
3945       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3946       __ psrlq(src->as_xmm_double_reg(), 32);
3947       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3948 #endif // _LP64
3949     } else if (dest->is_double_stack()) {
3950       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3951     } else if (dest->is_address()) {
3952       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3953     } else {
3954       ShouldNotReachHere();
3955     }
3956 
3957   } else if (dest->is_double_xmm()) {
3958     if (src->is_double_stack()) {
3959       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3960     } else if (src->is_address()) {
3961       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3962     } else {
3963       ShouldNotReachHere();
3964     }
3965 
3966 #ifndef _LP64
3967   } else if (src->is_double_fpu()) {
3968     assert(src->fpu_regnrLo() == 0, "must be TOS");
3969     if (dest->is_double_stack()) {
3970       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3971     } else if (dest->is_address()) {
3972       __ fistp_d(as_Address(dest->as_address_ptr()));
3973     } else {
3974       ShouldNotReachHere();
3975     }
3976 
3977   } else if (dest->is_double_fpu()) {
3978     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3979     if (src->is_double_stack()) {
3980       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3981     } else if (src->is_address()) {
3982       __ fild_d(as_Address(src->as_address_ptr()));
3983     } else {
3984       ShouldNotReachHere();
3985     }
3986 #endif // !_LP64
3987 
3988   } else {
3989     ShouldNotReachHere();
3990   }
3991 }
3992 
3993 #ifdef ASSERT
3994 // emit run-time assertion
3995 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3996   assert(op->code() == lir_assert, "must be");
3997 
3998   if (op->in_opr1()->is_valid()) {
3999     assert(op->in_opr2()->is_valid(), "both operands must be valid");
4000     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
4001   } else {
4002     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
4003     assert(op->condition() == lir_cond_always, "no other conditions allowed");
4004   }
4005 
4006   Label ok;
4007   if (op->condition() != lir_cond_always) {
4008     Assembler::Condition acond = Assembler::zero;
4009     switch (op->condition()) {
4010       case lir_cond_equal:        acond = Assembler::equal;       break;
4011       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
4012       case lir_cond_less:         acond = Assembler::less;        break;
4013       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
4014       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
4015       case lir_cond_greater:      acond = Assembler::greater;     break;
4016       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
4017       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
4018       default:                    ShouldNotReachHere();
4019     }
4020     __ jcc(acond, ok);
4021   }
4022   if (op->halt()) {
4023     const char* str = __ code_string(op->msg());
4024     __ stop(str);
4025   } else {
4026     breakpoint();
4027   }
4028   __ bind(ok);
4029 }
4030 #endif
4031 
4032 void LIR_Assembler::membar() {
4033   // QQQ sparc TSO uses this,
4034   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
4035 }
4036 
4037 void LIR_Assembler::membar_acquire() {
4038   // No x86 machines currently require load fences
4039 }
4040 
4041 void LIR_Assembler::membar_release() {
4042   // No x86 machines currently require store fences
4043 }
4044 
4045 void LIR_Assembler::membar_loadload() {
4046   // no-op
4047   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
4048 }
4049 
4050 void LIR_Assembler::membar_storestore() {
4051   // no-op
4052   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
4053 }
4054 
4055 void LIR_Assembler::membar_loadstore() {
4056   // no-op
4057   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
4058 }
4059 
4060 void LIR_Assembler::membar_storeload() {
4061   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4062 }
4063 
4064 void LIR_Assembler::on_spin_wait() {
4065   __ pause ();
4066 }
4067 
4068 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4069   assert(result_reg->is_register(), "check");
4070 #ifdef _LP64
4071   // __ get_thread(result_reg->as_register_lo());
4072   __ mov(result_reg->as_register(), r15_thread);
4073 #else
4074   __ get_thread(result_reg->as_register());
4075 #endif // _LP64
4076 }
4077 
4078 
4079 void LIR_Assembler::peephole(LIR_List*) {
4080   // do nothing for now
4081 }
4082 
4083 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4084   assert(data == dest, "xchg/xadd uses only 2 operands");
4085 
4086   if (data->type() == T_INT) {
4087     if (code == lir_xadd) {
4088       __ lock();
4089       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4090     } else {
4091       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4092     }
4093   } else if (data->is_oop()) {
4094     assert (code == lir_xchg, "xadd for oops");
4095     Register obj = data->as_register();
4096 #ifdef _LP64
4097     if (UseCompressedOops) {
4098       __ encode_heap_oop(obj);
4099       __ xchgl(obj, as_Address(src->as_address_ptr()));
4100       __ decode_heap_oop(obj);
4101     } else {
4102       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4103     }
4104 #else
4105     __ xchgl(obj, as_Address(src->as_address_ptr()));
4106 #endif
4107   } else if (data->type() == T_LONG) {
4108 #ifdef _LP64
4109     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4110     if (code == lir_xadd) {
4111       __ lock();
4112       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4113     } else {
4114       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4115     }
4116 #else
4117     ShouldNotReachHere();
4118 #endif
4119   } else {
4120     ShouldNotReachHere();
4121   }
4122 }
4123 
4124 #undef __