1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/compressedOops.inline.hpp"
  38 #include "oops/klass.inline.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/flags/flagSetting.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/objectMonitor.hpp"
  44 #include "runtime/os.hpp"
  45 #include "runtime/safepoint.hpp"
  46 #include "runtime/safepointMechanism.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/thread.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "crc32c.h"
  52 #ifdef COMPILER2
  53 #include "opto/intrinsicnode.hpp"
  54 #endif
  55 
  56 #ifdef PRODUCT
  57 #define BLOCK_COMMENT(str) /* nothing */
  58 #define STOP(error) stop(error)
  59 #else
  60 #define BLOCK_COMMENT(str) block_comment(str)
  61 #define STOP(error) block_comment(error); stop(error)
  62 #endif
  63 
  64 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  65 
  66 #ifdef ASSERT
  67 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  68 #endif
  69 
  70 static Assembler::Condition reverse[] = {
  71     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  72     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  73     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  74     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  75     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  76     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  77     Assembler::above          /* belowEqual    = 0x6 */ ,
  78     Assembler::belowEqual     /* above         = 0x7 */ ,
  79     Assembler::positive       /* negative      = 0x8 */ ,
  80     Assembler::negative       /* positive      = 0x9 */ ,
  81     Assembler::noParity       /* parity        = 0xa */ ,
  82     Assembler::parity         /* noParity      = 0xb */ ,
  83     Assembler::greaterEqual   /* less          = 0xc */ ,
  84     Assembler::less           /* greaterEqual  = 0xd */ ,
  85     Assembler::greater        /* lessEqual     = 0xe */ ,
  86     Assembler::lessEqual      /* greater       = 0xf, */
  87 
  88 };
  89 
  90 
  91 // Implementation of MacroAssembler
  92 
  93 // First all the versions that have distinct versions depending on 32/64 bit
  94 // Unless the difference is trivial (1 line or so).
  95 
  96 #ifndef _LP64
  97 
  98 // 32bit versions
  99 
 100 Address MacroAssembler::as_Address(AddressLiteral adr) {
 101   return Address(adr.target(), adr.rspec());
 102 }
 103 
 104 Address MacroAssembler::as_Address(ArrayAddress adr) {
 105   return Address::make_array(adr);
 106 }
 107 
 108 void MacroAssembler::call_VM_leaf_base(address entry_point,
 109                                        int number_of_arguments) {
 110   call(RuntimeAddress(entry_point));
 111   increment(rsp, number_of_arguments * wordSize);
 112 }
 113 
 114 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 115   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 116 }
 117 
 118 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 119   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 120 }
 121 
 122 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 123   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 124 }
 125 
 126 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 127   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 128 }
 129 
 130 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 131   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 132   bs->obj_equals(this, src1, obj);
 133 }
 134 
 135 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 136   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 137   bs->obj_equals(this, src1, obj);
 138 }
 139 
 140 void MacroAssembler::extend_sign(Register hi, Register lo) {
 141   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 142   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 143     cdql();
 144   } else {
 145     movl(hi, lo);
 146     sarl(hi, 31);
 147   }
 148 }
 149 
 150 void MacroAssembler::jC2(Register tmp, Label& L) {
 151   // set parity bit if FPU flag C2 is set (via rax)
 152   save_rax(tmp);
 153   fwait(); fnstsw_ax();
 154   sahf();
 155   restore_rax(tmp);
 156   // branch
 157   jcc(Assembler::parity, L);
 158 }
 159 
 160 void MacroAssembler::jnC2(Register tmp, Label& L) {
 161   // set parity bit if FPU flag C2 is set (via rax)
 162   save_rax(tmp);
 163   fwait(); fnstsw_ax();
 164   sahf();
 165   restore_rax(tmp);
 166   // branch
 167   jcc(Assembler::noParity, L);
 168 }
 169 
 170 // 32bit can do a case table jump in one instruction but we no longer allow the base
 171 // to be installed in the Address class
 172 void MacroAssembler::jump(ArrayAddress entry) {
 173   jmp(as_Address(entry));
 174 }
 175 
 176 // Note: y_lo will be destroyed
 177 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 178   // Long compare for Java (semantics as described in JVM spec.)
 179   Label high, low, done;
 180 
 181   cmpl(x_hi, y_hi);
 182   jcc(Assembler::less, low);
 183   jcc(Assembler::greater, high);
 184   // x_hi is the return register
 185   xorl(x_hi, x_hi);
 186   cmpl(x_lo, y_lo);
 187   jcc(Assembler::below, low);
 188   jcc(Assembler::equal, done);
 189 
 190   bind(high);
 191   xorl(x_hi, x_hi);
 192   increment(x_hi);
 193   jmp(done);
 194 
 195   bind(low);
 196   xorl(x_hi, x_hi);
 197   decrementl(x_hi);
 198 
 199   bind(done);
 200 }
 201 
 202 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 203     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 204 }
 205 
 206 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 207   // leal(dst, as_Address(adr));
 208   // see note in movl as to why we must use a move
 209   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 210 }
 211 
 212 void MacroAssembler::leave() {
 213   mov(rsp, rbp);
 214   pop(rbp);
 215 }
 216 
 217 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 218   // Multiplication of two Java long values stored on the stack
 219   // as illustrated below. Result is in rdx:rax.
 220   //
 221   // rsp ---> [  ??  ] \               \
 222   //            ....    | y_rsp_offset  |
 223   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 224   //          [ y_hi ]                  | (in bytes)
 225   //            ....                    |
 226   //          [ x_lo ]                 /
 227   //          [ x_hi ]
 228   //            ....
 229   //
 230   // Basic idea: lo(result) = lo(x_lo * y_lo)
 231   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 232   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 233   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 234   Label quick;
 235   // load x_hi, y_hi and check if quick
 236   // multiplication is possible
 237   movl(rbx, x_hi);
 238   movl(rcx, y_hi);
 239   movl(rax, rbx);
 240   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 241   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 242   // do full multiplication
 243   // 1st step
 244   mull(y_lo);                                    // x_hi * y_lo
 245   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 246   // 2nd step
 247   movl(rax, x_lo);
 248   mull(rcx);                                     // x_lo * y_hi
 249   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 250   // 3rd step
 251   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 252   movl(rax, x_lo);
 253   mull(y_lo);                                    // x_lo * y_lo
 254   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 255 }
 256 
 257 void MacroAssembler::lneg(Register hi, Register lo) {
 258   negl(lo);
 259   adcl(hi, 0);
 260   negl(hi);
 261 }
 262 
 263 void MacroAssembler::lshl(Register hi, Register lo) {
 264   // Java shift left long support (semantics as described in JVM spec., p.305)
 265   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 266   // shift value is in rcx !
 267   assert(hi != rcx, "must not use rcx");
 268   assert(lo != rcx, "must not use rcx");
 269   const Register s = rcx;                        // shift count
 270   const int      n = BitsPerWord;
 271   Label L;
 272   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 273   cmpl(s, n);                                    // if (s < n)
 274   jcc(Assembler::less, L);                       // else (s >= n)
 275   movl(hi, lo);                                  // x := x << n
 276   xorl(lo, lo);
 277   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 278   bind(L);                                       // s (mod n) < n
 279   shldl(hi, lo);                                 // x := x << s
 280   shll(lo);
 281 }
 282 
 283 
 284 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 285   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 286   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 287   assert(hi != rcx, "must not use rcx");
 288   assert(lo != rcx, "must not use rcx");
 289   const Register s = rcx;                        // shift count
 290   const int      n = BitsPerWord;
 291   Label L;
 292   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 293   cmpl(s, n);                                    // if (s < n)
 294   jcc(Assembler::less, L);                       // else (s >= n)
 295   movl(lo, hi);                                  // x := x >> n
 296   if (sign_extension) sarl(hi, 31);
 297   else                xorl(hi, hi);
 298   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 299   bind(L);                                       // s (mod n) < n
 300   shrdl(lo, hi);                                 // x := x >> s
 301   if (sign_extension) sarl(hi);
 302   else                shrl(hi);
 303 }
 304 
 305 void MacroAssembler::movoop(Register dst, jobject obj) {
 306   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movoop(Address dst, jobject obj) {
 310   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 311 }
 312 
 313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 314   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 315 }
 316 
 317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 318   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 319 }
 320 
 321 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 322   // scratch register is not used,
 323   // it is defined to match parameters of 64-bit version of this method.
 324   if (src.is_lval()) {
 325     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 326   } else {
 327     movl(dst, as_Address(src));
 328   }
 329 }
 330 
 331 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 332   movl(as_Address(dst), src);
 333 }
 334 
 335 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 336   movl(dst, as_Address(src));
 337 }
 338 
 339 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 340 void MacroAssembler::movptr(Address dst, intptr_t src) {
 341   movl(dst, src);
 342 }
 343 
 344 
 345 void MacroAssembler::pop_callee_saved_registers() {
 346   pop(rcx);
 347   pop(rdx);
 348   pop(rdi);
 349   pop(rsi);
 350 }
 351 
 352 void MacroAssembler::pop_fTOS() {
 353   fld_d(Address(rsp, 0));
 354   addl(rsp, 2 * wordSize);
 355 }
 356 
 357 void MacroAssembler::push_callee_saved_registers() {
 358   push(rsi);
 359   push(rdi);
 360   push(rdx);
 361   push(rcx);
 362 }
 363 
 364 void MacroAssembler::push_fTOS() {
 365   subl(rsp, 2 * wordSize);
 366   fstp_d(Address(rsp, 0));
 367 }
 368 
 369 
 370 void MacroAssembler::pushoop(jobject obj) {
 371   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 372 }
 373 
 374 void MacroAssembler::pushklass(Metadata* obj) {
 375   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 376 }
 377 
 378 void MacroAssembler::pushptr(AddressLiteral src) {
 379   if (src.is_lval()) {
 380     push_literal32((int32_t)src.target(), src.rspec());
 381   } else {
 382     pushl(as_Address(src));
 383   }
 384 }
 385 
 386 void MacroAssembler::set_word_if_not_zero(Register dst) {
 387   xorl(dst, dst);
 388   set_byte_if_not_zero(dst);
 389 }
 390 
 391 static void pass_arg0(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 static void pass_arg1(MacroAssembler* masm, Register arg) {
 396   masm->push(arg);
 397 }
 398 
 399 static void pass_arg2(MacroAssembler* masm, Register arg) {
 400   masm->push(arg);
 401 }
 402 
 403 static void pass_arg3(MacroAssembler* masm, Register arg) {
 404   masm->push(arg);
 405 }
 406 
 407 #ifndef PRODUCT
 408 extern "C" void findpc(intptr_t x);
 409 #endif
 410 
 411 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 412   // In order to get locks to work, we need to fake a in_VM state
 413   JavaThread* thread = JavaThread::current();
 414   JavaThreadState saved_state = thread->thread_state();
 415   thread->set_thread_state(_thread_in_vm);
 416   if (ShowMessageBoxOnError) {
 417     JavaThread* thread = JavaThread::current();
 418     JavaThreadState saved_state = thread->thread_state();
 419     thread->set_thread_state(_thread_in_vm);
 420     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 421       ttyLocker ttyl;
 422       BytecodeCounter::print();
 423     }
 424     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 425     // This is the value of eip which points to where verify_oop will return.
 426     if (os::message_box(msg, "Execution stopped, print registers?")) {
 427       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 428       BREAKPOINT;
 429     }
 430   }
 431   fatal("DEBUG MESSAGE: %s", msg);
 432 }
 433 
 434 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 435   ttyLocker ttyl;
 436   FlagSetting fs(Debugging, true);
 437   tty->print_cr("eip = 0x%08x", eip);
 438 #ifndef PRODUCT
 439   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 440     tty->cr();
 441     findpc(eip);
 442     tty->cr();
 443   }
 444 #endif
 445 #define PRINT_REG(rax) \
 446   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 447   PRINT_REG(rax);
 448   PRINT_REG(rbx);
 449   PRINT_REG(rcx);
 450   PRINT_REG(rdx);
 451   PRINT_REG(rdi);
 452   PRINT_REG(rsi);
 453   PRINT_REG(rbp);
 454   PRINT_REG(rsp);
 455 #undef PRINT_REG
 456   // Print some words near top of staack.
 457   int* dump_sp = (int*) rsp;
 458   for (int col1 = 0; col1 < 8; col1++) {
 459     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 460     os::print_location(tty, *dump_sp++);
 461   }
 462   for (int row = 0; row < 16; row++) {
 463     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 464     for (int col = 0; col < 8; col++) {
 465       tty->print(" 0x%08x", *dump_sp++);
 466     }
 467     tty->cr();
 468   }
 469   // Print some instructions around pc:
 470   Disassembler::decode((address)eip-64, (address)eip);
 471   tty->print_cr("--------");
 472   Disassembler::decode((address)eip, (address)eip+32);
 473 }
 474 
 475 void MacroAssembler::stop(const char* msg) {
 476   ExternalAddress message((address)msg);
 477   // push address of message
 478   pushptr(message.addr());
 479   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 480   pusha();                                            // push registers
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 482   hlt();
 483 }
 484 
 485 void MacroAssembler::warn(const char* msg) {
 486   push_CPU_state();
 487 
 488   ExternalAddress message((address) msg);
 489   // push address of message
 490   pushptr(message.addr());
 491 
 492   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 493   addl(rsp, wordSize);       // discard argument
 494   pop_CPU_state();
 495 }
 496 
 497 void MacroAssembler::print_state() {
 498   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 499   pusha();                                            // push registers
 500 
 501   push_CPU_state();
 502   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 503   pop_CPU_state();
 504 
 505   popa();
 506   addl(rsp, wordSize);
 507 }
 508 
 509 #else // _LP64
 510 
 511 // 64 bit versions
 512 
 513 Address MacroAssembler::as_Address(AddressLiteral adr) {
 514   // amd64 always does this as a pc-rel
 515   // we can be absolute or disp based on the instruction type
 516   // jmp/call are displacements others are absolute
 517   assert(!adr.is_lval(), "must be rval");
 518   assert(reachable(adr), "must be");
 519   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 520 
 521 }
 522 
 523 Address MacroAssembler::as_Address(ArrayAddress adr) {
 524   AddressLiteral base = adr.base();
 525   lea(rscratch1, base);
 526   Address index = adr.index();
 527   assert(index._disp == 0, "must not have disp"); // maybe it can?
 528   Address array(rscratch1, index._index, index._scale, index._disp);
 529   return array;
 530 }
 531 
 532 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 533   Label L, E;
 534 
 535 #ifdef _WIN64
 536   // Windows always allocates space for it's register args
 537   assert(num_args <= 4, "only register arguments supported");
 538   subq(rsp,  frame::arg_reg_save_area_bytes);
 539 #endif
 540 
 541   // Align stack if necessary
 542   testl(rsp, 15);
 543   jcc(Assembler::zero, L);
 544 
 545   subq(rsp, 8);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549   addq(rsp, 8);
 550   jmp(E);
 551 
 552   bind(L);
 553   {
 554     call(RuntimeAddress(entry_point));
 555   }
 556 
 557   bind(E);
 558 
 559 #ifdef _WIN64
 560   // restore stack pointer
 561   addq(rsp, frame::arg_reg_save_area_bytes);
 562 #endif
 563 
 564 }
 565 
 566 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 567   assert(!src2.is_lval(), "should use cmpptr");
 568 
 569   if (reachable(src2)) {
 570     cmpq(src1, as_Address(src2));
 571   } else {
 572     lea(rscratch1, src2);
 573     Assembler::cmpq(src1, Address(rscratch1, 0));
 574   }
 575 }
 576 
 577 int MacroAssembler::corrected_idivq(Register reg) {
 578   // Full implementation of Java ldiv and lrem; checks for special
 579   // case as described in JVM spec., p.243 & p.271.  The function
 580   // returns the (pc) offset of the idivl instruction - may be needed
 581   // for implicit exceptions.
 582   //
 583   //         normal case                           special case
 584   //
 585   // input : rax: dividend                         min_long
 586   //         reg: divisor   (may not be eax/edx)   -1
 587   //
 588   // output: rax: quotient  (= rax idiv reg)       min_long
 589   //         rdx: remainder (= rax irem reg)       0
 590   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 591   static const int64_t min_long = 0x8000000000000000;
 592   Label normal_case, special_case;
 593 
 594   // check for special case
 595   cmp64(rax, ExternalAddress((address) &min_long));
 596   jcc(Assembler::notEqual, normal_case);
 597   xorl(rdx, rdx); // prepare rdx for possible special case (where
 598                   // remainder = 0)
 599   cmpq(reg, -1);
 600   jcc(Assembler::equal, special_case);
 601 
 602   // handle normal case
 603   bind(normal_case);
 604   cdqq();
 605   int idivq_offset = offset();
 606   idivq(reg);
 607 
 608   // normal and special case exit
 609   bind(special_case);
 610 
 611   return idivq_offset;
 612 }
 613 
 614 void MacroAssembler::decrementq(Register reg, int value) {
 615   if (value == min_jint) { subq(reg, value); return; }
 616   if (value <  0) { incrementq(reg, -value); return; }
 617   if (value == 0) {                        ; return; }
 618   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 619   /* else */      { subq(reg, value)       ; return; }
 620 }
 621 
 622 void MacroAssembler::decrementq(Address dst, int value) {
 623   if (value == min_jint) { subq(dst, value); return; }
 624   if (value <  0) { incrementq(dst, -value); return; }
 625   if (value == 0) {                        ; return; }
 626   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 627   /* else */      { subq(dst, value)       ; return; }
 628 }
 629 
 630 void MacroAssembler::incrementq(AddressLiteral dst) {
 631   if (reachable(dst)) {
 632     incrementq(as_Address(dst));
 633   } else {
 634     lea(rscratch1, dst);
 635     incrementq(Address(rscratch1, 0));
 636   }
 637 }
 638 
 639 void MacroAssembler::incrementq(Register reg, int value) {
 640   if (value == min_jint) { addq(reg, value); return; }
 641   if (value <  0) { decrementq(reg, -value); return; }
 642   if (value == 0) {                        ; return; }
 643   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 644   /* else */      { addq(reg, value)       ; return; }
 645 }
 646 
 647 void MacroAssembler::incrementq(Address dst, int value) {
 648   if (value == min_jint) { addq(dst, value); return; }
 649   if (value <  0) { decrementq(dst, -value); return; }
 650   if (value == 0) {                        ; return; }
 651   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 652   /* else */      { addq(dst, value)       ; return; }
 653 }
 654 
 655 // 32bit can do a case table jump in one instruction but we no longer allow the base
 656 // to be installed in the Address class
 657 void MacroAssembler::jump(ArrayAddress entry) {
 658   lea(rscratch1, entry.base());
 659   Address dispatch = entry.index();
 660   assert(dispatch._base == noreg, "must be");
 661   dispatch._base = rscratch1;
 662   jmp(dispatch);
 663 }
 664 
 665 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 666   ShouldNotReachHere(); // 64bit doesn't use two regs
 667   cmpq(x_lo, y_lo);
 668 }
 669 
 670 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 671     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 672 }
 673 
 674 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 675   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 676   movptr(dst, rscratch1);
 677 }
 678 
 679 void MacroAssembler::leave() {
 680   // %%% is this really better? Why not on 32bit too?
 681   emit_int8((unsigned char)0xC9); // LEAVE
 682 }
 683 
 684 void MacroAssembler::lneg(Register hi, Register lo) {
 685   ShouldNotReachHere(); // 64bit doesn't use two regs
 686   negq(lo);
 687 }
 688 
 689 void MacroAssembler::movoop(Register dst, jobject obj) {
 690   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 691 }
 692 
 693 void MacroAssembler::movoop(Address dst, jobject obj) {
 694   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 695   movq(dst, rscratch1);
 696 }
 697 
 698 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 699   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 700 }
 701 
 702 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 703   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 704   movq(dst, rscratch1);
 705 }
 706 
 707 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 708   if (src.is_lval()) {
 709     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 710   } else {
 711     if (reachable(src)) {
 712       movq(dst, as_Address(src));
 713     } else {
 714       lea(scratch, src);
 715       movq(dst, Address(scratch, 0));
 716     }
 717   }
 718 }
 719 
 720 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 721   movq(as_Address(dst), src);
 722 }
 723 
 724 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 725   movq(dst, as_Address(src));
 726 }
 727 
 728 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 729 void MacroAssembler::movptr(Address dst, intptr_t src) {
 730   mov64(rscratch1, src);
 731   movq(dst, rscratch1);
 732 }
 733 
 734 // These are mostly for initializing NULL
 735 void MacroAssembler::movptr(Address dst, int32_t src) {
 736   movslq(dst, src);
 737 }
 738 
 739 void MacroAssembler::movptr(Register dst, int32_t src) {
 740   mov64(dst, (intptr_t)src);
 741 }
 742 
 743 void MacroAssembler::pushoop(jobject obj) {
 744   movoop(rscratch1, obj);
 745   push(rscratch1);
 746 }
 747 
 748 void MacroAssembler::pushklass(Metadata* obj) {
 749   mov_metadata(rscratch1, obj);
 750   push(rscratch1);
 751 }
 752 
 753 void MacroAssembler::pushptr(AddressLiteral src) {
 754   lea(rscratch1, src);
 755   if (src.is_lval()) {
 756     push(rscratch1);
 757   } else {
 758     pushq(Address(rscratch1, 0));
 759   }
 760 }
 761 
 762 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 763   // we must set sp to zero to clear frame
 764   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 765   // must clear fp, so that compiled frames are not confused; it is
 766   // possible that we need it only for debugging
 767   if (clear_fp) {
 768     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 769   }
 770 
 771   // Always clear the pc because it could have been set by make_walkable()
 772   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 773   vzeroupper();
 774 }
 775 
 776 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 777                                          Register last_java_fp,
 778                                          address  last_java_pc) {
 779   vzeroupper();
 780   // determine last_java_sp register
 781   if (!last_java_sp->is_valid()) {
 782     last_java_sp = rsp;
 783   }
 784 
 785   // last_java_fp is optional
 786   if (last_java_fp->is_valid()) {
 787     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 788            last_java_fp);
 789   }
 790 
 791   // last_java_pc is optional
 792   if (last_java_pc != NULL) {
 793     Address java_pc(r15_thread,
 794                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 795     lea(rscratch1, InternalAddress(last_java_pc));
 796     movptr(java_pc, rscratch1);
 797   }
 798 
 799   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 800 }
 801 
 802 static void pass_arg0(MacroAssembler* masm, Register arg) {
 803   if (c_rarg0 != arg ) {
 804     masm->mov(c_rarg0, arg);
 805   }
 806 }
 807 
 808 static void pass_arg1(MacroAssembler* masm, Register arg) {
 809   if (c_rarg1 != arg ) {
 810     masm->mov(c_rarg1, arg);
 811   }
 812 }
 813 
 814 static void pass_arg2(MacroAssembler* masm, Register arg) {
 815   if (c_rarg2 != arg ) {
 816     masm->mov(c_rarg2, arg);
 817   }
 818 }
 819 
 820 static void pass_arg3(MacroAssembler* masm, Register arg) {
 821   if (c_rarg3 != arg ) {
 822     masm->mov(c_rarg3, arg);
 823   }
 824 }
 825 
 826 void MacroAssembler::stop(const char* msg) {
 827   if (ShowMessageBoxOnError) {
 828     address rip = pc();
 829     pusha(); // get regs on stack
 830     lea(c_rarg1, InternalAddress(rip));
 831     movq(c_rarg2, rsp); // pass pointer to regs array
 832   }
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   andq(rsp, -16); // align stack as required by ABI
 835   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 836   hlt();
 837 }
 838 
 839 void MacroAssembler::warn(const char* msg) {
 840   push(rbp);
 841   movq(rbp, rsp);
 842   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 843   push_CPU_state();   // keeps alignment at 16 bytes
 844   lea(c_rarg0, ExternalAddress((address) msg));
 845   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 846   call(rax);
 847   pop_CPU_state();
 848   mov(rsp, rbp);
 849   pop(rbp);
 850 }
 851 
 852 void MacroAssembler::print_state() {
 853   address rip = pc();
 854   pusha();            // get regs on stack
 855   push(rbp);
 856   movq(rbp, rsp);
 857   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 858   push_CPU_state();   // keeps alignment at 16 bytes
 859 
 860   lea(c_rarg0, InternalAddress(rip));
 861   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 862   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 863 
 864   pop_CPU_state();
 865   mov(rsp, rbp);
 866   pop(rbp);
 867   popa();
 868 }
 869 
 870 #ifndef PRODUCT
 871 extern "C" void findpc(intptr_t x);
 872 #endif
 873 
 874 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 875   // In order to get locks to work, we need to fake a in_VM state
 876   if (ShowMessageBoxOnError) {
 877     JavaThread* thread = JavaThread::current();
 878     JavaThreadState saved_state = thread->thread_state();
 879     thread->set_thread_state(_thread_in_vm);
 880 #ifndef PRODUCT
 881     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 882       ttyLocker ttyl;
 883       BytecodeCounter::print();
 884     }
 885 #endif
 886     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 887     // XXX correct this offset for amd64
 888     // This is the value of eip which points to where verify_oop will return.
 889     if (os::message_box(msg, "Execution stopped, print registers?")) {
 890       print_state64(pc, regs);
 891       BREAKPOINT;
 892     }
 893   }
 894   fatal("DEBUG MESSAGE: %s", msg);
 895 }
 896 
 897 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 898   ttyLocker ttyl;
 899   FlagSetting fs(Debugging, true);
 900   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 901 #ifndef PRODUCT
 902   tty->cr();
 903   findpc(pc);
 904   tty->cr();
 905 #endif
 906 #define PRINT_REG(rax, value) \
 907   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 908   PRINT_REG(rax, regs[15]);
 909   PRINT_REG(rbx, regs[12]);
 910   PRINT_REG(rcx, regs[14]);
 911   PRINT_REG(rdx, regs[13]);
 912   PRINT_REG(rdi, regs[8]);
 913   PRINT_REG(rsi, regs[9]);
 914   PRINT_REG(rbp, regs[10]);
 915   PRINT_REG(rsp, regs[11]);
 916   PRINT_REG(r8 , regs[7]);
 917   PRINT_REG(r9 , regs[6]);
 918   PRINT_REG(r10, regs[5]);
 919   PRINT_REG(r11, regs[4]);
 920   PRINT_REG(r12, regs[3]);
 921   PRINT_REG(r13, regs[2]);
 922   PRINT_REG(r14, regs[1]);
 923   PRINT_REG(r15, regs[0]);
 924 #undef PRINT_REG
 925   // Print some words near top of staack.
 926   int64_t* rsp = (int64_t*) regs[11];
 927   int64_t* dump_sp = rsp;
 928   for (int col1 = 0; col1 < 8; col1++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 930     os::print_location(tty, *dump_sp++);
 931   }
 932   for (int row = 0; row < 25; row++) {
 933     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 934     for (int col = 0; col < 4; col++) {
 935       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 936     }
 937     tty->cr();
 938   }
 939   // Print some instructions around pc:
 940   Disassembler::decode((address)pc-64, (address)pc);
 941   tty->print_cr("--------");
 942   Disassembler::decode((address)pc, (address)pc+32);
 943 }
 944 
 945 #endif // _LP64
 946 
 947 // Now versions that are common to 32/64 bit
 948 
 949 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 950   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 951 }
 952 
 953 void MacroAssembler::addptr(Register dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addptr(Address dst, Register src) {
 958   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 959 }
 960 
 961 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 962   if (reachable(src)) {
 963     Assembler::addsd(dst, as_Address(src));
 964   } else {
 965     lea(rscratch1, src);
 966     Assembler::addsd(dst, Address(rscratch1, 0));
 967   }
 968 }
 969 
 970 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 971   if (reachable(src)) {
 972     addss(dst, as_Address(src));
 973   } else {
 974     lea(rscratch1, src);
 975     addss(dst, Address(rscratch1, 0));
 976   }
 977 }
 978 
 979 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 980   if (reachable(src)) {
 981     Assembler::addpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::addpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::align(int modulus) {
 989   align(modulus, offset());
 990 }
 991 
 992 void MacroAssembler::align(int modulus, int target) {
 993   if (target % modulus != 0) {
 994     nop(modulus - (target % modulus));
 995   }
 996 }
 997 
 998 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
 999   // Used in sign-masking with aligned address.
1000   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1001   if (reachable(src)) {
1002     Assembler::andpd(dst, as_Address(src));
1003   } else {
1004     lea(scratch_reg, src);
1005     Assembler::andpd(dst, Address(scratch_reg, 0));
1006   }
1007 }
1008 
1009 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
1010   // Used in sign-masking with aligned address.
1011   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1012   if (reachable(src)) {
1013     Assembler::andps(dst, as_Address(src));
1014   } else {
1015     lea(scratch_reg, src);
1016     Assembler::andps(dst, Address(scratch_reg, 0));
1017   }
1018 }
1019 
1020 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1021   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1022 }
1023 
1024 void MacroAssembler::atomic_incl(Address counter_addr) {
1025   lock();
1026   incrementl(counter_addr);
1027 }
1028 
1029 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1030   if (reachable(counter_addr)) {
1031     atomic_incl(as_Address(counter_addr));
1032   } else {
1033     lea(scr, counter_addr);
1034     atomic_incl(Address(scr, 0));
1035   }
1036 }
1037 
1038 #ifdef _LP64
1039 void MacroAssembler::atomic_incq(Address counter_addr) {
1040   lock();
1041   incrementq(counter_addr);
1042 }
1043 
1044 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1045   if (reachable(counter_addr)) {
1046     atomic_incq(as_Address(counter_addr));
1047   } else {
1048     lea(scr, counter_addr);
1049     atomic_incq(Address(scr, 0));
1050   }
1051 }
1052 #endif
1053 
1054 // Writes to stack successive pages until offset reached to check for
1055 // stack overflow + shadow pages.  This clobbers tmp.
1056 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1057   movptr(tmp, rsp);
1058   // Bang stack for total size given plus shadow page size.
1059   // Bang one page at a time because large size can bang beyond yellow and
1060   // red zones.
1061   Label loop;
1062   bind(loop);
1063   movl(Address(tmp, (-os::vm_page_size())), size );
1064   subptr(tmp, os::vm_page_size());
1065   subl(size, os::vm_page_size());
1066   jcc(Assembler::greater, loop);
1067 
1068   // Bang down shadow pages too.
1069   // At this point, (tmp-0) is the last address touched, so don't
1070   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1071   // was post-decremented.)  Skip this address by starting at i=1, and
1072   // touch a few more pages below.  N.B.  It is important to touch all
1073   // the way down including all pages in the shadow zone.
1074   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1075     // this could be any sized move but this is can be a debugging crumb
1076     // so the bigger the better.
1077     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1078   }
1079 }
1080 
1081 void MacroAssembler::reserved_stack_check() {
1082     // testing if reserved zone needs to be enabled
1083     Label no_reserved_zone_enabling;
1084     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1085     NOT_LP64(get_thread(rsi);)
1086 
1087     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1088     jcc(Assembler::below, no_reserved_zone_enabling);
1089 
1090     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1091     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1092     should_not_reach_here();
1093 
1094     bind(no_reserved_zone_enabling);
1095 }
1096 
1097 int MacroAssembler::biased_locking_enter(Register lock_reg,
1098                                          Register obj_reg,
1099                                          Register swap_reg,
1100                                          Register tmp_reg,
1101                                          bool swap_reg_contains_mark,
1102                                          Label& done,
1103                                          Label* slow_case,
1104                                          BiasedLockingCounters* counters) {
1105   assert(UseBiasedLocking, "why call this otherwise?");
1106   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1107   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1108   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1109   assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout");
1110   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1111   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1112 
1113   if (PrintBiasedLockingStatistics && counters == NULL) {
1114     counters = BiasedLocking::counters();
1115   }
1116   // Biased locking
1117   // See whether the lock is currently biased toward our thread and
1118   // whether the epoch is still valid
1119   // Note that the runtime guarantees sufficient alignment of JavaThread
1120   // pointers to allow age to be placed into low bits
1121   // First check to see whether biasing is even enabled for this object
1122   Label cas_label;
1123   int null_check_offset = -1;
1124   if (!swap_reg_contains_mark) {
1125     null_check_offset = offset();
1126     movptr(swap_reg, mark_addr);
1127   }
1128   movptr(tmp_reg, swap_reg);
1129   andptr(tmp_reg, markWord::biased_lock_mask_in_place);
1130   cmpptr(tmp_reg, markWord::biased_lock_pattern);
1131   jcc(Assembler::notEqual, cas_label);
1132   // The bias pattern is present in the object's header. Need to check
1133   // whether the bias owner and the epoch are both still current.
1134 #ifndef _LP64
1135   // Note that because there is no current thread register on x86_32 we
1136   // need to store off the mark word we read out of the object to
1137   // avoid reloading it and needing to recheck invariants below. This
1138   // store is unfortunate but it makes the overall code shorter and
1139   // simpler.
1140   movptr(saved_mark_addr, swap_reg);
1141 #endif
1142   if (swap_reg_contains_mark) {
1143     null_check_offset = offset();
1144   }
1145   load_prototype_header(tmp_reg, obj_reg);
1146 #ifdef _LP64
1147   orptr(tmp_reg, r15_thread);
1148   xorptr(tmp_reg, swap_reg);
1149   Register header_reg = tmp_reg;
1150 #else
1151   xorptr(tmp_reg, swap_reg);
1152   get_thread(swap_reg);
1153   xorptr(swap_reg, tmp_reg);
1154   Register header_reg = swap_reg;
1155 #endif
1156   andptr(header_reg, ~((int) markWord::age_mask_in_place));
1157   if (counters != NULL) {
1158     cond_inc32(Assembler::zero,
1159                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1160   }
1161   jcc(Assembler::equal, done);
1162 
1163   Label try_revoke_bias;
1164   Label try_rebias;
1165 
1166   // At this point we know that the header has the bias pattern and
1167   // that we are not the bias owner in the current epoch. We need to
1168   // figure out more details about the state of the header in order to
1169   // know what operations can be legally performed on the object's
1170   // header.
1171 
1172   // If the low three bits in the xor result aren't clear, that means
1173   // the prototype header is no longer biased and we have to revoke
1174   // the bias on this object.
1175   testptr(header_reg, markWord::biased_lock_mask_in_place);
1176   jccb(Assembler::notZero, try_revoke_bias);
1177 
1178   // Biasing is still enabled for this data type. See whether the
1179   // epoch of the current bias is still valid, meaning that the epoch
1180   // bits of the mark word are equal to the epoch bits of the
1181   // prototype header. (Note that the prototype header's epoch bits
1182   // only change at a safepoint.) If not, attempt to rebias the object
1183   // toward the current thread. Note that we must be absolutely sure
1184   // that the current epoch is invalid in order to do this because
1185   // otherwise the manipulations it performs on the mark word are
1186   // illegal.
1187   testptr(header_reg, markWord::epoch_mask_in_place);
1188   jccb(Assembler::notZero, try_rebias);
1189 
1190   // The epoch of the current bias is still valid but we know nothing
1191   // about the owner; it might be set or it might be clear. Try to
1192   // acquire the bias of the object using an atomic operation. If this
1193   // fails we will go in to the runtime to revoke the object's bias.
1194   // Note that we first construct the presumed unbiased header so we
1195   // don't accidentally blow away another thread's valid bias.
1196   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1197   andptr(swap_reg,
1198          markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place);
1199 #ifdef _LP64
1200   movptr(tmp_reg, swap_reg);
1201   orptr(tmp_reg, r15_thread);
1202 #else
1203   get_thread(tmp_reg);
1204   orptr(tmp_reg, swap_reg);
1205 #endif
1206   lock();
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   lock();
1240   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1241   // If the biasing toward our thread failed, then another thread
1242   // succeeded in biasing it toward itself and we need to revoke that
1243   // bias. The revocation will occur in the runtime in the slow case.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1247   }
1248   if (slow_case != NULL) {
1249     jcc(Assembler::notZero, *slow_case);
1250   }
1251   jmp(done);
1252 
1253   bind(try_revoke_bias);
1254   // The prototype mark in the klass doesn't have the bias bit set any
1255   // more, indicating that objects of this data type are not supposed
1256   // to be biased any more. We are going to try to reset the mark of
1257   // this object to the prototype value and fall through to the
1258   // CAS-based locking scheme. Note that if our CAS fails, it means
1259   // that another thread raced us for the privilege of revoking the
1260   // bias of this particular object, so it's okay to continue in the
1261   // normal locking code.
1262   //
1263   // FIXME: due to a lack of registers we currently blow away the age
1264   // bits in this situation. Should attempt to preserve them.
1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1266   load_prototype_header(tmp_reg, obj_reg);
1267   lock();
1268   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1269   // Fall through to the normal CAS-based lock, because no matter what
1270   // the result of the above CAS, some thread must have succeeded in
1271   // removing the bias bit from the object's header.
1272   if (counters != NULL) {
1273     cond_inc32(Assembler::zero,
1274                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1275   }
1276 
1277   bind(cas_label);
1278 
1279   return null_check_offset;
1280 }
1281 
1282 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1283   assert(UseBiasedLocking, "why call this otherwise?");
1284 
1285   // Check for biased locking unlock case, which is a no-op
1286   // Note: we do not have to check the thread ID for two reasons.
1287   // First, the interpreter checks for IllegalMonitorStateException at
1288   // a higher level. Second, if the bias was revoked while we held the
1289   // lock, the object could not be rebiased toward another thread, so
1290   // the bias bit would be clear.
1291   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1292   andptr(temp_reg, markWord::biased_lock_mask_in_place);
1293   cmpptr(temp_reg, markWord::biased_lock_pattern);
1294   jcc(Assembler::equal, done);
1295 }
1296 
1297 #ifdef COMPILER2
1298 
1299 #if INCLUDE_RTM_OPT
1300 
1301 // Update rtm_counters based on abort status
1302 // input: abort_status
1303 //        rtm_counters (RTMLockingCounters*)
1304 // flags are killed
1305 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1306 
1307   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1308   if (PrintPreciseRTMLockingStatistics) {
1309     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1310       Label check_abort;
1311       testl(abort_status, (1<<i));
1312       jccb(Assembler::equal, check_abort);
1313       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1314       bind(check_abort);
1315     }
1316   }
1317 }
1318 
1319 // Branch if (random & (count-1) != 0), count is 2^n
1320 // tmp, scr and flags are killed
1321 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1322   assert(tmp == rax, "");
1323   assert(scr == rdx, "");
1324   rdtsc(); // modifies EDX:EAX
1325   andptr(tmp, count-1);
1326   jccb(Assembler::notZero, brLabel);
1327 }
1328 
1329 // Perform abort ratio calculation, set no_rtm bit if high ratio
1330 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1331 // tmpReg, rtm_counters_Reg and flags are killed
1332 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1333                                                  Register rtm_counters_Reg,
1334                                                  RTMLockingCounters* rtm_counters,
1335                                                  Metadata* method_data) {
1336   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1337 
1338   if (RTMLockingCalculationDelay > 0) {
1339     // Delay calculation
1340     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1341     testptr(tmpReg, tmpReg);
1342     jccb(Assembler::equal, L_done);
1343   }
1344   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1345   //   Aborted transactions = abort_count * 100
1346   //   All transactions = total_count *  RTMTotalCountIncrRate
1347   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1348 
1349   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1350   cmpptr(tmpReg, RTMAbortThreshold);
1351   jccb(Assembler::below, L_check_always_rtm2);
1352   imulptr(tmpReg, tmpReg, 100);
1353 
1354   Register scrReg = rtm_counters_Reg;
1355   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1356   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1357   imulptr(scrReg, scrReg, RTMAbortRatio);
1358   cmpptr(tmpReg, scrReg);
1359   jccb(Assembler::below, L_check_always_rtm1);
1360   if (method_data != NULL) {
1361     // set rtm_state to "no rtm" in MDO
1362     mov_metadata(tmpReg, method_data);
1363     lock();
1364     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1365   }
1366   jmpb(L_done);
1367   bind(L_check_always_rtm1);
1368   // Reload RTMLockingCounters* address
1369   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1370   bind(L_check_always_rtm2);
1371   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1372   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1373   jccb(Assembler::below, L_done);
1374   if (method_data != NULL) {
1375     // set rtm_state to "always rtm" in MDO
1376     mov_metadata(tmpReg, method_data);
1377     lock();
1378     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1379   }
1380   bind(L_done);
1381 }
1382 
1383 // Update counters and perform abort ratio calculation
1384 // input:  abort_status_Reg
1385 // rtm_counters_Reg, flags are killed
1386 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1387                                    Register rtm_counters_Reg,
1388                                    RTMLockingCounters* rtm_counters,
1389                                    Metadata* method_data,
1390                                    bool profile_rtm) {
1391 
1392   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1393   // update rtm counters based on rax value at abort
1394   // reads abort_status_Reg, updates flags
1395   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1396   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1397   if (profile_rtm) {
1398     // Save abort status because abort_status_Reg is used by following code.
1399     if (RTMRetryCount > 0) {
1400       push(abort_status_Reg);
1401     }
1402     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1403     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1404     // restore abort status
1405     if (RTMRetryCount > 0) {
1406       pop(abort_status_Reg);
1407     }
1408   }
1409 }
1410 
1411 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1412 // inputs: retry_count_Reg
1413 //       : abort_status_Reg
1414 // output: retry_count_Reg decremented by 1
1415 // flags are killed
1416 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1417   Label doneRetry;
1418   assert(abort_status_Reg == rax, "");
1419   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1420   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1421   // if reason is in 0x6 and retry count != 0 then retry
1422   andptr(abort_status_Reg, 0x6);
1423   jccb(Assembler::zero, doneRetry);
1424   testl(retry_count_Reg, retry_count_Reg);
1425   jccb(Assembler::zero, doneRetry);
1426   pause();
1427   decrementl(retry_count_Reg);
1428   jmp(retryLabel);
1429   bind(doneRetry);
1430 }
1431 
1432 // Spin and retry if lock is busy,
1433 // inputs: box_Reg (monitor address)
1434 //       : retry_count_Reg
1435 // output: retry_count_Reg decremented by 1
1436 //       : clear z flag if retry count exceeded
1437 // tmp_Reg, scr_Reg, flags are killed
1438 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1439                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1440   Label SpinLoop, SpinExit, doneRetry;
1441   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1442 
1443   testl(retry_count_Reg, retry_count_Reg);
1444   jccb(Assembler::zero, doneRetry);
1445   decrementl(retry_count_Reg);
1446   movptr(scr_Reg, RTMSpinLoopCount);
1447 
1448   bind(SpinLoop);
1449   pause();
1450   decrementl(scr_Reg);
1451   jccb(Assembler::lessEqual, SpinExit);
1452   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1453   testptr(tmp_Reg, tmp_Reg);
1454   jccb(Assembler::notZero, SpinLoop);
1455 
1456   bind(SpinExit);
1457   jmp(retryLabel);
1458   bind(doneRetry);
1459   incrementl(retry_count_Reg); // clear z flag
1460 }
1461 
1462 // Use RTM for normal stack locks
1463 // Input: objReg (object to lock)
1464 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1465                                        Register retry_on_abort_count_Reg,
1466                                        RTMLockingCounters* stack_rtm_counters,
1467                                        Metadata* method_data, bool profile_rtm,
1468                                        Label& DONE_LABEL, Label& IsInflated) {
1469   assert(UseRTMForStackLocks, "why call this otherwise?");
1470   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1471   assert(tmpReg == rax, "");
1472   assert(scrReg == rdx, "");
1473   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1474 
1475   if (RTMRetryCount > 0) {
1476     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1477     bind(L_rtm_retry);
1478   }
1479   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1480   testptr(tmpReg, markWord::monitor_value);  // inflated vs stack-locked|neutral|biased
1481   jcc(Assembler::notZero, IsInflated);
1482 
1483   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1484     Label L_noincrement;
1485     if (RTMTotalCountIncrRate > 1) {
1486       // tmpReg, scrReg and flags are killed
1487       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1488     }
1489     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1490     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1491     bind(L_noincrement);
1492   }
1493   xbegin(L_on_abort);
1494   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1495   andptr(tmpReg, markWord::biased_lock_mask_in_place); // look at 3 lock bits
1496   cmpptr(tmpReg, markWord::unlocked_value);            // bits = 001 unlocked
1497   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1498 
1499   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1500   if (UseRTMXendForLockBusy) {
1501     xend();
1502     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1503     jmp(L_decrement_retry);
1504   }
1505   else {
1506     xabort(0);
1507   }
1508   bind(L_on_abort);
1509   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1510     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1511   }
1512   bind(L_decrement_retry);
1513   if (RTMRetryCount > 0) {
1514     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1515     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1516   }
1517 }
1518 
1519 // Use RTM for inflating locks
1520 // inputs: objReg (object to lock)
1521 //         boxReg (on-stack box address (displaced header location) - KILLED)
1522 //         tmpReg (ObjectMonitor address + markWord::monitor_value)
1523 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1524                                           Register scrReg, Register retry_on_busy_count_Reg,
1525                                           Register retry_on_abort_count_Reg,
1526                                           RTMLockingCounters* rtm_counters,
1527                                           Metadata* method_data, bool profile_rtm,
1528                                           Label& DONE_LABEL) {
1529   assert(UseRTMLocking, "why call this otherwise?");
1530   assert(tmpReg == rax, "");
1531   assert(scrReg == rdx, "");
1532   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1533   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1534 
1535   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
1536   movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
1537   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1538 
1539   if (RTMRetryCount > 0) {
1540     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1541     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1542     bind(L_rtm_retry);
1543   }
1544   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1545     Label L_noincrement;
1546     if (RTMTotalCountIncrRate > 1) {
1547       // tmpReg, scrReg and flags are killed
1548       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1549     }
1550     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1551     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1552     bind(L_noincrement);
1553   }
1554   xbegin(L_on_abort);
1555   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1556   movptr(tmpReg, Address(tmpReg, owner_offset));
1557   testptr(tmpReg, tmpReg);
1558   jcc(Assembler::zero, DONE_LABEL);
1559   if (UseRTMXendForLockBusy) {
1560     xend();
1561     jmp(L_decrement_retry);
1562   }
1563   else {
1564     xabort(0);
1565   }
1566   bind(L_on_abort);
1567   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1568   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1569     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1570   }
1571   if (RTMRetryCount > 0) {
1572     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1573     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1574   }
1575 
1576   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1577   testptr(tmpReg, tmpReg) ;
1578   jccb(Assembler::notZero, L_decrement_retry) ;
1579 
1580   // Appears unlocked - try to swing _owner from null to non-null.
1581   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1582 #ifdef _LP64
1583   Register threadReg = r15_thread;
1584 #else
1585   get_thread(scrReg);
1586   Register threadReg = scrReg;
1587 #endif
1588   lock();
1589   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1590 
1591   if (RTMRetryCount > 0) {
1592     // success done else retry
1593     jccb(Assembler::equal, DONE_LABEL) ;
1594     bind(L_decrement_retry);
1595     // Spin and retry if lock is busy.
1596     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1597   }
1598   else {
1599     bind(L_decrement_retry);
1600   }
1601 }
1602 
1603 #endif //  INCLUDE_RTM_OPT
1604 
1605 // fast_lock and fast_unlock used by C2
1606 
1607 // Because the transitions from emitted code to the runtime
1608 // monitorenter/exit helper stubs are so slow it's critical that
1609 // we inline both the stack-locking fast path and the inflated fast path.
1610 //
1611 // See also: cmpFastLock and cmpFastUnlock.
1612 //
1613 // What follows is a specialized inline transliteration of the code
1614 // in enter() and exit(). If we're concerned about I$ bloat another
1615 // option would be to emit TrySlowEnter and TrySlowExit methods
1616 // at startup-time.  These methods would accept arguments as
1617 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1618 // indications in the icc.ZFlag.  fast_lock and fast_unlock would simply
1619 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1620 // In practice, however, the # of lock sites is bounded and is usually small.
1621 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1622 // if the processor uses simple bimodal branch predictors keyed by EIP
1623 // Since the helper routines would be called from multiple synchronization
1624 // sites.
1625 //
1626 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1627 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1628 // to those specialized methods.  That'd give us a mostly platform-independent
1629 // implementation that the JITs could optimize and inline at their pleasure.
1630 // Done correctly, the only time we'd need to cross to native could would be
1631 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1632 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1633 // (b) explicit barriers or fence operations.
1634 //
1635 // TODO:
1636 //
1637 // *  Arrange for C2 to pass "Self" into fast_lock and fast_unlock in one of the registers (scr).
1638 //    This avoids manifesting the Self pointer in the fast_lock and fast_unlock terminals.
1639 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1640 //    the lock operators would typically be faster than reifying Self.
1641 //
1642 // *  Ideally I'd define the primitives as:
1643 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1644 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1645 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1646 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1647 //    Furthermore the register assignments are overconstrained, possibly resulting in
1648 //    sub-optimal code near the synchronization site.
1649 //
1650 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1651 //    Alternately, use a better sp-proximity test.
1652 //
1653 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1654 //    Either one is sufficient to uniquely identify a thread.
1655 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1656 //
1657 // *  Intrinsify notify() and notifyAll() for the common cases where the
1658 //    object is locked by the calling thread but the waitlist is empty.
1659 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1660 //
1661 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1662 //    But beware of excessive branch density on AMD Opterons.
1663 //
1664 // *  Both fast_lock and fast_unlock set the ICC.ZF to indicate success
1665 //    or failure of the fast path.  If the fast path fails then we pass
1666 //    control to the slow path, typically in C.  In fast_lock and
1667 //    fast_unlock we often branch to DONE_LABEL, just to find that C2
1668 //    will emit a conditional branch immediately after the node.
1669 //    So we have branches to branches and lots of ICC.ZF games.
1670 //    Instead, it might be better to have C2 pass a "FailureLabel"
1671 //    into fast_lock and fast_unlock.  In the case of success, control
1672 //    will drop through the node.  ICC.ZF is undefined at exit.
1673 //    In the case of failure, the node will branch directly to the
1674 //    FailureLabel
1675 
1676 
1677 // obj: object to lock
1678 // box: on-stack box address (displaced header location) - KILLED
1679 // rax,: tmp -- KILLED
1680 // scr: tmp -- KILLED
1681 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1682                                Register scrReg, Register cx1Reg, Register cx2Reg,
1683                                BiasedLockingCounters* counters,
1684                                RTMLockingCounters* rtm_counters,
1685                                RTMLockingCounters* stack_rtm_counters,
1686                                Metadata* method_data,
1687                                bool use_rtm, bool profile_rtm) {
1688   // Ensure the register assignments are disjoint
1689   assert(tmpReg == rax, "");
1690 
1691   if (use_rtm) {
1692     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1693   } else {
1694     assert(cx1Reg == noreg, "");
1695     assert(cx2Reg == noreg, "");
1696     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1697   }
1698 
1699   if (counters != NULL) {
1700     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1701   }
1702 
1703   // Possible cases that we'll encounter in fast_lock
1704   // ------------------------------------------------
1705   // * Inflated
1706   //    -- unlocked
1707   //    -- Locked
1708   //       = by self
1709   //       = by other
1710   // * biased
1711   //    -- by Self
1712   //    -- by other
1713   // * neutral
1714   // * stack-locked
1715   //    -- by self
1716   //       = sp-proximity test hits
1717   //       = sp-proximity test generates false-negative
1718   //    -- by other
1719   //
1720 
1721   Label IsInflated, DONE_LABEL;
1722 
1723   // it's stack-locked, biased or neutral
1724   // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1725   // order to reduce the number of conditional branches in the most common cases.
1726   // Beware -- there's a subtle invariant that fetch of the markword
1727   // at [FETCH], below, will never observe a biased encoding (*101b).
1728   // If this invariant is not held we risk exclusion (safety) failure.
1729   if (UseBiasedLocking && !UseOptoBiasInlining) {
1730     biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1731   }
1732 
1733 #if INCLUDE_RTM_OPT
1734   if (UseRTMForStackLocks && use_rtm) {
1735     rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1736                       stack_rtm_counters, method_data, profile_rtm,
1737                       DONE_LABEL, IsInflated);
1738   }
1739 #endif // INCLUDE_RTM_OPT
1740 
1741   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1742   testptr(tmpReg, markWord::monitor_value); // inflated vs stack-locked|neutral|biased
1743   jccb(Assembler::notZero, IsInflated);
1744 
1745   // Attempt stack-locking ...
1746   orptr (tmpReg, markWord::unlocked_value);
1747   movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1748   lock();
1749   cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1750   if (counters != NULL) {
1751     cond_inc32(Assembler::equal,
1752                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1753   }
1754   jcc(Assembler::equal, DONE_LABEL);           // Success
1755 
1756   // Recursive locking.
1757   // The object is stack-locked: markword contains stack pointer to BasicLock.
1758   // Locked by current thread if difference with current SP is less than one page.
1759   subptr(tmpReg, rsp);
1760   // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1761   andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1762   movptr(Address(boxReg, 0), tmpReg);
1763   if (counters != NULL) {
1764     cond_inc32(Assembler::equal,
1765                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1766   }
1767   jmp(DONE_LABEL);
1768 
1769   bind(IsInflated);
1770   // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markWord::monitor_value
1771 
1772 #if INCLUDE_RTM_OPT
1773   // Use the same RTM locking code in 32- and 64-bit VM.
1774   if (use_rtm) {
1775     rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1776                          rtm_counters, method_data, profile_rtm, DONE_LABEL);
1777   } else {
1778 #endif // INCLUDE_RTM_OPT
1779 
1780 #ifndef _LP64
1781   // The object is inflated.
1782 
1783   // boxReg refers to the on-stack BasicLock in the current frame.
1784   // We'd like to write:
1785   //   set box->_displaced_header = markWord::unused_mark().  Any non-0 value suffices.
1786   // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1787   // additional latency as we have another ST in the store buffer that must drain.
1788 
1789   // avoid ST-before-CAS
1790   // register juggle because we need tmpReg for cmpxchgptr below
1791   movptr(scrReg, boxReg);
1792   movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1793 
1794   // Optimistic form: consider XORL tmpReg,tmpReg
1795   movptr(tmpReg, NULL_WORD);
1796 
1797   // Appears unlocked - try to swing _owner from null to non-null.
1798   // Ideally, I'd manifest "Self" with get_thread and then attempt
1799   // to CAS the register containing Self into m->Owner.
1800   // But we don't have enough registers, so instead we can either try to CAS
1801   // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1802   // we later store "Self" into m->Owner.  Transiently storing a stack address
1803   // (rsp or the address of the box) into  m->owner is harmless.
1804   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1805   lock();
1806   cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1807   movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1808   // If we weren't able to swing _owner from NULL to the BasicLock
1809   // then take the slow path.
1810   jccb  (Assembler::notZero, DONE_LABEL);
1811   // update _owner from BasicLock to thread
1812   get_thread (scrReg);                    // beware: clobbers ICCs
1813   movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1814   xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1815 
1816   // If the CAS fails we can either retry or pass control to the slow path.
1817   // We use the latter tactic.
1818   // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1819   // If the CAS was successful ...
1820   //   Self has acquired the lock
1821   //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1822   // Intentional fall-through into DONE_LABEL ...
1823 #else // _LP64
1824   // It's inflated and we use scrReg for ObjectMonitor* in this section.
1825   movq(scrReg, tmpReg);
1826   xorq(tmpReg, tmpReg);
1827   lock();
1828   cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1829   // Unconditionally set box->_displaced_header = markWord::unused_mark().
1830   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
1831   movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
1832   // Intentional fall-through into DONE_LABEL ...
1833   // Propagate ICC.ZF from CAS above into DONE_LABEL.
1834 #endif // _LP64
1835 #if INCLUDE_RTM_OPT
1836   } // use_rtm()
1837 #endif
1838   // DONE_LABEL is a hot target - we'd really like to place it at the
1839   // start of cache line by padding with NOPs.
1840   // See the AMD and Intel software optimization manuals for the
1841   // most efficient "long" NOP encodings.
1842   // Unfortunately none of our alignment mechanisms suffice.
1843   bind(DONE_LABEL);
1844 
1845   // At DONE_LABEL the icc ZFlag is set as follows ...
1846   // fast_unlock uses the same protocol.
1847   // ZFlag == 1 -> Success
1848   // ZFlag == 0 -> Failure - force control through the slow path
1849 }
1850 
1851 // obj: object to unlock
1852 // box: box address (displaced header location), killed.  Must be EAX.
1853 // tmp: killed, cannot be obj nor box.
1854 //
1855 // Some commentary on balanced locking:
1856 //
1857 // fast_lock and fast_unlock are emitted only for provably balanced lock sites.
1858 // Methods that don't have provably balanced locking are forced to run in the
1859 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1860 // The interpreter provides two properties:
1861 // I1:  At return-time the interpreter automatically and quietly unlocks any
1862 //      objects acquired the current activation (frame).  Recall that the
1863 //      interpreter maintains an on-stack list of locks currently held by
1864 //      a frame.
1865 // I2:  If a method attempts to unlock an object that is not held by the
1866 //      the frame the interpreter throws IMSX.
1867 //
1868 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1869 // B() doesn't have provably balanced locking so it runs in the interpreter.
1870 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1871 // is still locked by A().
1872 //
1873 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1874 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1875 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1876 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1877 // Arguably given that the spec legislates the JNI case as undefined our implementation
1878 // could reasonably *avoid* checking owner in fast_unlock().
1879 // In the interest of performance we elide m->Owner==Self check in unlock.
1880 // A perfectly viable alternative is to elide the owner check except when
1881 // Xcheck:jni is enabled.
1882 
1883 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1884   assert(boxReg == rax, "");
1885   assert_different_registers(objReg, boxReg, tmpReg);
1886 
1887   Label DONE_LABEL, Stacked, CheckSucc;
1888 
1889   // Critically, the biased locking test must have precedence over
1890   // and appear before the (box->dhw == 0) recursive stack-lock test.
1891   if (UseBiasedLocking && !UseOptoBiasInlining) {
1892     biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1893   }
1894 
1895 #if INCLUDE_RTM_OPT
1896   if (UseRTMForStackLocks && use_rtm) {
1897     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1898     Label L_regular_unlock;
1899     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // fetch markword
1900     andptr(tmpReg, markWord::biased_lock_mask_in_place);              // look at 3 lock bits
1901     cmpptr(tmpReg, markWord::unlocked_value);                         // bits = 001 unlocked
1902     jccb(Assembler::notEqual, L_regular_unlock);                      // if !HLE RegularLock
1903     xend();                                                           // otherwise end...
1904     jmp(DONE_LABEL);                                                  // ... and we're done
1905     bind(L_regular_unlock);
1906   }
1907 #endif
1908 
1909   cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD);                   // Examine the displaced header
1910   jcc   (Assembler::zero, DONE_LABEL);                              // 0 indicates recursive stack-lock
1911   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Examine the object's markword
1912   testptr(tmpReg, markWord::monitor_value);                         // Inflated?
1913   jccb  (Assembler::zero, Stacked);
1914 
1915   // It's inflated.
1916 #if INCLUDE_RTM_OPT
1917   if (use_rtm) {
1918     Label L_regular_inflated_unlock;
1919     int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1920     movptr(boxReg, Address(tmpReg, owner_offset));
1921     testptr(boxReg, boxReg);
1922     jccb(Assembler::notZero, L_regular_inflated_unlock);
1923     xend();
1924     jmpb(DONE_LABEL);
1925     bind(L_regular_inflated_unlock);
1926   }
1927 #endif
1928 
1929   // Despite our balanced locking property we still check that m->_owner == Self
1930   // as java routines or native JNI code called by this thread might
1931   // have released the lock.
1932   // Refer to the comments in synchronizer.cpp for how we might encode extra
1933   // state in _succ so we can avoid fetching EntryList|cxq.
1934   //
1935   // I'd like to add more cases in fast_lock() and fast_unlock() --
1936   // such as recursive enter and exit -- but we have to be wary of
1937   // I$ bloat, T$ effects and BP$ effects.
1938   //
1939   // If there's no contention try a 1-0 exit.  That is, exit without
1940   // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
1941   // we detect and recover from the race that the 1-0 exit admits.
1942   //
1943   // Conceptually fast_unlock() must execute a STST|LDST "release" barrier
1944   // before it STs null into _owner, releasing the lock.  Updates
1945   // to data protected by the critical section must be visible before
1946   // we drop the lock (and thus before any other thread could acquire
1947   // the lock and observe the fields protected by the lock).
1948   // IA32's memory-model is SPO, so STs are ordered with respect to
1949   // each other and there's no need for an explicit barrier (fence).
1950   // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
1951 #ifndef _LP64
1952   get_thread (boxReg);
1953 
1954   // Note that we could employ various encoding schemes to reduce
1955   // the number of loads below (currently 4) to just 2 or 3.
1956   // Refer to the comments in synchronizer.cpp.
1957   // In practice the chain of fetches doesn't seem to impact performance, however.
1958   xorptr(boxReg, boxReg);
1959   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1960   jccb  (Assembler::notZero, DONE_LABEL);
1961   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
1962   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
1963   jccb  (Assembler::notZero, CheckSucc);
1964   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
1965   jmpb  (DONE_LABEL);
1966 
1967   bind (Stacked);
1968   // It's not inflated and it's not recursively stack-locked and it's not biased.
1969   // It must be stack-locked.
1970   // Try to reset the header to displaced header.
1971   // The "box" value on the stack is stable, so we can reload
1972   // and be assured we observe the same value as above.
1973   movptr(tmpReg, Address(boxReg, 0));
1974   lock();
1975   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
1976   // Intention fall-thru into DONE_LABEL
1977 
1978   // DONE_LABEL is a hot target - we'd really like to place it at the
1979   // start of cache line by padding with NOPs.
1980   // See the AMD and Intel software optimization manuals for the
1981   // most efficient "long" NOP encodings.
1982   // Unfortunately none of our alignment mechanisms suffice.
1983   bind (CheckSucc);
1984 #else // _LP64
1985   // It's inflated
1986   xorptr(boxReg, boxReg);
1987   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1988   jccb  (Assembler::notZero, DONE_LABEL);
1989   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
1990   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
1991   jccb  (Assembler::notZero, CheckSucc);
1992   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
1993   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
1994   jmpb  (DONE_LABEL);
1995 
1996   // Try to avoid passing control into the slow_path ...
1997   Label LSuccess, LGoSlowPath ;
1998   bind  (CheckSucc);
1999 
2000   // The following optional optimization can be elided if necessary
2001   // Effectively: if (succ == null) goto slow path
2002   // The code reduces the window for a race, however,
2003   // and thus benefits performance.
2004   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2005   jccb  (Assembler::zero, LGoSlowPath);
2006 
2007   xorptr(boxReg, boxReg);
2008   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
2009   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2010 
2011   // Memory barrier/fence
2012   // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2013   // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2014   // This is faster on Nehalem and AMD Shanghai/Barcelona.
2015   // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2016   // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2017   // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2018   lock(); addl(Address(rsp, 0), 0);
2019 
2020   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2021   jccb  (Assembler::notZero, LSuccess);
2022 
2023   // Rare inopportune interleaving - race.
2024   // The successor vanished in the small window above.
2025   // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2026   // We need to ensure progress and succession.
2027   // Try to reacquire the lock.
2028   // If that fails then the new owner is responsible for succession and this
2029   // thread needs to take no further action and can exit via the fast path (success).
2030   // If the re-acquire succeeds then pass control into the slow path.
2031   // As implemented, this latter mode is horrible because we generated more
2032   // coherence traffic on the lock *and* artifically extended the critical section
2033   // length while by virtue of passing control into the slow path.
2034 
2035   // box is really RAX -- the following CMPXCHG depends on that binding
2036   // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2037   lock();
2038   cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2039   // There's no successor so we tried to regrab the lock.
2040   // If that didn't work, then another thread grabbed the
2041   // lock so we're done (and exit was a success).
2042   jccb  (Assembler::notEqual, LSuccess);
2043   // Intentional fall-through into slow path
2044 
2045   bind  (LGoSlowPath);
2046   orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2047   jmpb  (DONE_LABEL);
2048 
2049   bind  (LSuccess);
2050   testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2051   jmpb  (DONE_LABEL);
2052 
2053   bind  (Stacked);
2054   movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2055   lock();
2056   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2057 
2058 #endif
2059   bind(DONE_LABEL);
2060 }
2061 #endif // COMPILER2
2062 
2063 void MacroAssembler::c2bool(Register x) {
2064   // implements x == 0 ? 0 : 1
2065   // note: must only look at least-significant byte of x
2066   //       since C-style booleans are stored in one byte
2067   //       only! (was bug)
2068   andl(x, 0xFF);
2069   setb(Assembler::notZero, x);
2070 }
2071 
2072 // Wouldn't need if AddressLiteral version had new name
2073 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2074   Assembler::call(L, rtype);
2075 }
2076 
2077 void MacroAssembler::call(Register entry) {
2078   Assembler::call(entry);
2079 }
2080 
2081 void MacroAssembler::call(AddressLiteral entry) {
2082   if (reachable(entry)) {
2083     Assembler::call_literal(entry.target(), entry.rspec());
2084   } else {
2085     lea(rscratch1, entry);
2086     Assembler::call(rscratch1);
2087   }
2088 }
2089 
2090 void MacroAssembler::ic_call(address entry, jint method_index) {
2091   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2092   movptr(rax, (intptr_t)Universe::non_oop_word());
2093   call(AddressLiteral(entry, rh));
2094 }
2095 
2096 // Implementation of call_VM versions
2097 
2098 void MacroAssembler::call_VM(Register oop_result,
2099                              address entry_point,
2100                              bool check_exceptions) {
2101   Label C, E;
2102   call(C, relocInfo::none);
2103   jmp(E);
2104 
2105   bind(C);
2106   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2107   ret(0);
2108 
2109   bind(E);
2110 }
2111 
2112 void MacroAssembler::call_VM(Register oop_result,
2113                              address entry_point,
2114                              Register arg_1,
2115                              bool check_exceptions) {
2116   Label C, E;
2117   call(C, relocInfo::none);
2118   jmp(E);
2119 
2120   bind(C);
2121   pass_arg1(this, arg_1);
2122   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2123   ret(0);
2124 
2125   bind(E);
2126 }
2127 
2128 void MacroAssembler::call_VM(Register oop_result,
2129                              address entry_point,
2130                              Register arg_1,
2131                              Register arg_2,
2132                              bool check_exceptions) {
2133   Label C, E;
2134   call(C, relocInfo::none);
2135   jmp(E);
2136 
2137   bind(C);
2138 
2139   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2140 
2141   pass_arg2(this, arg_2);
2142   pass_arg1(this, arg_1);
2143   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2144   ret(0);
2145 
2146   bind(E);
2147 }
2148 
2149 void MacroAssembler::call_VM(Register oop_result,
2150                              address entry_point,
2151                              Register arg_1,
2152                              Register arg_2,
2153                              Register arg_3,
2154                              bool check_exceptions) {
2155   Label C, E;
2156   call(C, relocInfo::none);
2157   jmp(E);
2158 
2159   bind(C);
2160 
2161   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2162   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2163   pass_arg3(this, arg_3);
2164 
2165   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2166   pass_arg2(this, arg_2);
2167 
2168   pass_arg1(this, arg_1);
2169   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2170   ret(0);
2171 
2172   bind(E);
2173 }
2174 
2175 void MacroAssembler::call_VM(Register oop_result,
2176                              Register last_java_sp,
2177                              address entry_point,
2178                              int number_of_arguments,
2179                              bool check_exceptions) {
2180   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2181   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2182 }
2183 
2184 void MacroAssembler::call_VM(Register oop_result,
2185                              Register last_java_sp,
2186                              address entry_point,
2187                              Register arg_1,
2188                              bool check_exceptions) {
2189   pass_arg1(this, arg_1);
2190   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2191 }
2192 
2193 void MacroAssembler::call_VM(Register oop_result,
2194                              Register last_java_sp,
2195                              address entry_point,
2196                              Register arg_1,
2197                              Register arg_2,
2198                              bool check_exceptions) {
2199 
2200   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2201   pass_arg2(this, arg_2);
2202   pass_arg1(this, arg_1);
2203   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2204 }
2205 
2206 void MacroAssembler::call_VM(Register oop_result,
2207                              Register last_java_sp,
2208                              address entry_point,
2209                              Register arg_1,
2210                              Register arg_2,
2211                              Register arg_3,
2212                              bool check_exceptions) {
2213   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2214   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2215   pass_arg3(this, arg_3);
2216   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2217   pass_arg2(this, arg_2);
2218   pass_arg1(this, arg_1);
2219   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2220 }
2221 
2222 void MacroAssembler::super_call_VM(Register oop_result,
2223                                    Register last_java_sp,
2224                                    address entry_point,
2225                                    int number_of_arguments,
2226                                    bool check_exceptions) {
2227   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2228   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2229 }
2230 
2231 void MacroAssembler::super_call_VM(Register oop_result,
2232                                    Register last_java_sp,
2233                                    address entry_point,
2234                                    Register arg_1,
2235                                    bool check_exceptions) {
2236   pass_arg1(this, arg_1);
2237   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2238 }
2239 
2240 void MacroAssembler::super_call_VM(Register oop_result,
2241                                    Register last_java_sp,
2242                                    address entry_point,
2243                                    Register arg_1,
2244                                    Register arg_2,
2245                                    bool check_exceptions) {
2246 
2247   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2248   pass_arg2(this, arg_2);
2249   pass_arg1(this, arg_1);
2250   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2251 }
2252 
2253 void MacroAssembler::super_call_VM(Register oop_result,
2254                                    Register last_java_sp,
2255                                    address entry_point,
2256                                    Register arg_1,
2257                                    Register arg_2,
2258                                    Register arg_3,
2259                                    bool check_exceptions) {
2260   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2261   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2262   pass_arg3(this, arg_3);
2263   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2264   pass_arg2(this, arg_2);
2265   pass_arg1(this, arg_1);
2266   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2267 }
2268 
2269 void MacroAssembler::call_VM_base(Register oop_result,
2270                                   Register java_thread,
2271                                   Register last_java_sp,
2272                                   address  entry_point,
2273                                   int      number_of_arguments,
2274                                   bool     check_exceptions) {
2275   // determine java_thread register
2276   if (!java_thread->is_valid()) {
2277 #ifdef _LP64
2278     java_thread = r15_thread;
2279 #else
2280     java_thread = rdi;
2281     get_thread(java_thread);
2282 #endif // LP64
2283   }
2284   // determine last_java_sp register
2285   if (!last_java_sp->is_valid()) {
2286     last_java_sp = rsp;
2287   }
2288   // debugging support
2289   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2290   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2291 #ifdef ASSERT
2292   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2293   // r12 is the heapbase.
2294   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2295 #endif // ASSERT
2296 
2297   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2298   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2299 
2300   // push java thread (becomes first argument of C function)
2301 
2302   NOT_LP64(push(java_thread); number_of_arguments++);
2303   LP64_ONLY(mov(c_rarg0, r15_thread));
2304 
2305   // set last Java frame before call
2306   assert(last_java_sp != rbp, "can't use ebp/rbp");
2307 
2308   // Only interpreter should have to set fp
2309   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2310 
2311   // do the call, remove parameters
2312   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2313 
2314   // restore the thread (cannot use the pushed argument since arguments
2315   // may be overwritten by C code generated by an optimizing compiler);
2316   // however can use the register value directly if it is callee saved.
2317   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2318     // rdi & rsi (also r15) are callee saved -> nothing to do
2319 #ifdef ASSERT
2320     guarantee(java_thread != rax, "change this code");
2321     push(rax);
2322     { Label L;
2323       get_thread(rax);
2324       cmpptr(java_thread, rax);
2325       jcc(Assembler::equal, L);
2326       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2327       bind(L);
2328     }
2329     pop(rax);
2330 #endif
2331   } else {
2332     get_thread(java_thread);
2333   }
2334   // reset last Java frame
2335   // Only interpreter should have to clear fp
2336   reset_last_Java_frame(java_thread, true);
2337 
2338    // C++ interp handles this in the interpreter
2339   check_and_handle_popframe(java_thread);
2340   check_and_handle_earlyret(java_thread);
2341 
2342   if (check_exceptions) {
2343     // check for pending exceptions (java_thread is set upon return)
2344     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2345 #ifndef _LP64
2346     jump_cc(Assembler::notEqual,
2347             RuntimeAddress(StubRoutines::forward_exception_entry()));
2348 #else
2349     // This used to conditionally jump to forward_exception however it is
2350     // possible if we relocate that the branch will not reach. So we must jump
2351     // around so we can always reach
2352 
2353     Label ok;
2354     jcc(Assembler::equal, ok);
2355     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2356     bind(ok);
2357 #endif // LP64
2358   }
2359 
2360   // get oop result if there is one and reset the value in the thread
2361   if (oop_result->is_valid()) {
2362     get_vm_result(oop_result, java_thread);
2363   }
2364 }
2365 
2366 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2367 
2368   // Calculate the value for last_Java_sp
2369   // somewhat subtle. call_VM does an intermediate call
2370   // which places a return address on the stack just under the
2371   // stack pointer as the user finsihed with it. This allows
2372   // use to retrieve last_Java_pc from last_Java_sp[-1].
2373   // On 32bit we then have to push additional args on the stack to accomplish
2374   // the actual requested call. On 64bit call_VM only can use register args
2375   // so the only extra space is the return address that call_VM created.
2376   // This hopefully explains the calculations here.
2377 
2378 #ifdef _LP64
2379   // We've pushed one address, correct last_Java_sp
2380   lea(rax, Address(rsp, wordSize));
2381 #else
2382   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2383 #endif // LP64
2384 
2385   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2386 
2387 }
2388 
2389 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2390 void MacroAssembler::call_VM_leaf0(address entry_point) {
2391   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2392 }
2393 
2394 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2395   call_VM_leaf_base(entry_point, number_of_arguments);
2396 }
2397 
2398 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2399   pass_arg0(this, arg_0);
2400   call_VM_leaf(entry_point, 1);
2401 }
2402 
2403 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2404 
2405   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2406   pass_arg1(this, arg_1);
2407   pass_arg0(this, arg_0);
2408   call_VM_leaf(entry_point, 2);
2409 }
2410 
2411 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2412   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2413   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2414   pass_arg2(this, arg_2);
2415   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2416   pass_arg1(this, arg_1);
2417   pass_arg0(this, arg_0);
2418   call_VM_leaf(entry_point, 3);
2419 }
2420 
2421 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2422   pass_arg0(this, arg_0);
2423   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2424 }
2425 
2426 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2427 
2428   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2429   pass_arg1(this, arg_1);
2430   pass_arg0(this, arg_0);
2431   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2432 }
2433 
2434 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2435   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2436   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2437   pass_arg2(this, arg_2);
2438   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2439   pass_arg1(this, arg_1);
2440   pass_arg0(this, arg_0);
2441   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2442 }
2443 
2444 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2445   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2446   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2447   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2448   pass_arg3(this, arg_3);
2449   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2450   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2451   pass_arg2(this, arg_2);
2452   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2453   pass_arg1(this, arg_1);
2454   pass_arg0(this, arg_0);
2455   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2456 }
2457 
2458 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2459   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2460   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2461   verify_oop(oop_result, "broken oop in call_VM_base");
2462 }
2463 
2464 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2465   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2466   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2467 }
2468 
2469 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2470 }
2471 
2472 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2473 }
2474 
2475 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2476   if (reachable(src1)) {
2477     cmpl(as_Address(src1), imm);
2478   } else {
2479     lea(rscratch1, src1);
2480     cmpl(Address(rscratch1, 0), imm);
2481   }
2482 }
2483 
2484 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2485   assert(!src2.is_lval(), "use cmpptr");
2486   if (reachable(src2)) {
2487     cmpl(src1, as_Address(src2));
2488   } else {
2489     lea(rscratch1, src2);
2490     cmpl(src1, Address(rscratch1, 0));
2491   }
2492 }
2493 
2494 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2495   Assembler::cmpl(src1, imm);
2496 }
2497 
2498 void MacroAssembler::cmp32(Register src1, Address src2) {
2499   Assembler::cmpl(src1, src2);
2500 }
2501 
2502 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2503   ucomisd(opr1, opr2);
2504 
2505   Label L;
2506   if (unordered_is_less) {
2507     movl(dst, -1);
2508     jcc(Assembler::parity, L);
2509     jcc(Assembler::below , L);
2510     movl(dst, 0);
2511     jcc(Assembler::equal , L);
2512     increment(dst);
2513   } else { // unordered is greater
2514     movl(dst, 1);
2515     jcc(Assembler::parity, L);
2516     jcc(Assembler::above , L);
2517     movl(dst, 0);
2518     jcc(Assembler::equal , L);
2519     decrementl(dst);
2520   }
2521   bind(L);
2522 }
2523 
2524 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2525   ucomiss(opr1, opr2);
2526 
2527   Label L;
2528   if (unordered_is_less) {
2529     movl(dst, -1);
2530     jcc(Assembler::parity, L);
2531     jcc(Assembler::below , L);
2532     movl(dst, 0);
2533     jcc(Assembler::equal , L);
2534     increment(dst);
2535   } else { // unordered is greater
2536     movl(dst, 1);
2537     jcc(Assembler::parity, L);
2538     jcc(Assembler::above , L);
2539     movl(dst, 0);
2540     jcc(Assembler::equal , L);
2541     decrementl(dst);
2542   }
2543   bind(L);
2544 }
2545 
2546 
2547 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2548   if (reachable(src1)) {
2549     cmpb(as_Address(src1), imm);
2550   } else {
2551     lea(rscratch1, src1);
2552     cmpb(Address(rscratch1, 0), imm);
2553   }
2554 }
2555 
2556 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2557 #ifdef _LP64
2558   if (src2.is_lval()) {
2559     movptr(rscratch1, src2);
2560     Assembler::cmpq(src1, rscratch1);
2561   } else if (reachable(src2)) {
2562     cmpq(src1, as_Address(src2));
2563   } else {
2564     lea(rscratch1, src2);
2565     Assembler::cmpq(src1, Address(rscratch1, 0));
2566   }
2567 #else
2568   if (src2.is_lval()) {
2569     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2570   } else {
2571     cmpl(src1, as_Address(src2));
2572   }
2573 #endif // _LP64
2574 }
2575 
2576 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2577   assert(src2.is_lval(), "not a mem-mem compare");
2578 #ifdef _LP64
2579   // moves src2's literal address
2580   movptr(rscratch1, src2);
2581   Assembler::cmpq(src1, rscratch1);
2582 #else
2583   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2584 #endif // _LP64
2585 }
2586 
2587 void MacroAssembler::cmpoop(Register src1, Register src2) {
2588   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2589   bs->obj_equals(this, src1, src2);
2590 }
2591 
2592 void MacroAssembler::cmpoop(Register src1, Address src2) {
2593   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2594   bs->obj_equals(this, src1, src2);
2595 }
2596 
2597 #ifdef _LP64
2598 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2599   movoop(rscratch1, src2);
2600   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2601   bs->obj_equals(this, src1, rscratch1);
2602 }
2603 #endif
2604 
2605 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2606   if (reachable(adr)) {
2607     lock();
2608     cmpxchgptr(reg, as_Address(adr));
2609   } else {
2610     lea(rscratch1, adr);
2611     lock();
2612     cmpxchgptr(reg, Address(rscratch1, 0));
2613   }
2614 }
2615 
2616 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2617   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2618 }
2619 
2620 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2621   if (reachable(src)) {
2622     Assembler::comisd(dst, as_Address(src));
2623   } else {
2624     lea(rscratch1, src);
2625     Assembler::comisd(dst, Address(rscratch1, 0));
2626   }
2627 }
2628 
2629 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2630   if (reachable(src)) {
2631     Assembler::comiss(dst, as_Address(src));
2632   } else {
2633     lea(rscratch1, src);
2634     Assembler::comiss(dst, Address(rscratch1, 0));
2635   }
2636 }
2637 
2638 
2639 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2640   Condition negated_cond = negate_condition(cond);
2641   Label L;
2642   jcc(negated_cond, L);
2643   pushf(); // Preserve flags
2644   atomic_incl(counter_addr);
2645   popf();
2646   bind(L);
2647 }
2648 
2649 int MacroAssembler::corrected_idivl(Register reg) {
2650   // Full implementation of Java idiv and irem; checks for
2651   // special case as described in JVM spec., p.243 & p.271.
2652   // The function returns the (pc) offset of the idivl
2653   // instruction - may be needed for implicit exceptions.
2654   //
2655   //         normal case                           special case
2656   //
2657   // input : rax,: dividend                         min_int
2658   //         reg: divisor   (may not be rax,/rdx)   -1
2659   //
2660   // output: rax,: quotient  (= rax, idiv reg)       min_int
2661   //         rdx: remainder (= rax, irem reg)       0
2662   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2663   const int min_int = 0x80000000;
2664   Label normal_case, special_case;
2665 
2666   // check for special case
2667   cmpl(rax, min_int);
2668   jcc(Assembler::notEqual, normal_case);
2669   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2670   cmpl(reg, -1);
2671   jcc(Assembler::equal, special_case);
2672 
2673   // handle normal case
2674   bind(normal_case);
2675   cdql();
2676   int idivl_offset = offset();
2677   idivl(reg);
2678 
2679   // normal and special case exit
2680   bind(special_case);
2681 
2682   return idivl_offset;
2683 }
2684 
2685 
2686 
2687 void MacroAssembler::decrementl(Register reg, int value) {
2688   if (value == min_jint) {subl(reg, value) ; return; }
2689   if (value <  0) { incrementl(reg, -value); return; }
2690   if (value == 0) {                        ; return; }
2691   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2692   /* else */      { subl(reg, value)       ; return; }
2693 }
2694 
2695 void MacroAssembler::decrementl(Address dst, int value) {
2696   if (value == min_jint) {subl(dst, value) ; return; }
2697   if (value <  0) { incrementl(dst, -value); return; }
2698   if (value == 0) {                        ; return; }
2699   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2700   /* else */      { subl(dst, value)       ; return; }
2701 }
2702 
2703 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2704   assert (shift_value > 0, "illegal shift value");
2705   Label _is_positive;
2706   testl (reg, reg);
2707   jcc (Assembler::positive, _is_positive);
2708   int offset = (1 << shift_value) - 1 ;
2709 
2710   if (offset == 1) {
2711     incrementl(reg);
2712   } else {
2713     addl(reg, offset);
2714   }
2715 
2716   bind (_is_positive);
2717   sarl(reg, shift_value);
2718 }
2719 
2720 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2721   if (reachable(src)) {
2722     Assembler::divsd(dst, as_Address(src));
2723   } else {
2724     lea(rscratch1, src);
2725     Assembler::divsd(dst, Address(rscratch1, 0));
2726   }
2727 }
2728 
2729 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2730   if (reachable(src)) {
2731     Assembler::divss(dst, as_Address(src));
2732   } else {
2733     lea(rscratch1, src);
2734     Assembler::divss(dst, Address(rscratch1, 0));
2735   }
2736 }
2737 
2738 // !defined(COMPILER2) is because of stupid core builds
2739 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2740 void MacroAssembler::empty_FPU_stack() {
2741   if (VM_Version::supports_mmx()) {
2742     emms();
2743   } else {
2744     for (int i = 8; i-- > 0; ) ffree(i);
2745   }
2746 }
2747 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2748 
2749 
2750 void MacroAssembler::enter() {
2751   push(rbp);
2752   mov(rbp, rsp);
2753 }
2754 
2755 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2756 void MacroAssembler::fat_nop() {
2757   if (UseAddressNop) {
2758     addr_nop_5();
2759   } else {
2760     emit_int8(0x26); // es:
2761     emit_int8(0x2e); // cs:
2762     emit_int8(0x64); // fs:
2763     emit_int8(0x65); // gs:
2764     emit_int8((unsigned char)0x90);
2765   }
2766 }
2767 
2768 void MacroAssembler::fcmp(Register tmp) {
2769   fcmp(tmp, 1, true, true);
2770 }
2771 
2772 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2773   assert(!pop_right || pop_left, "usage error");
2774   if (VM_Version::supports_cmov()) {
2775     assert(tmp == noreg, "unneeded temp");
2776     if (pop_left) {
2777       fucomip(index);
2778     } else {
2779       fucomi(index);
2780     }
2781     if (pop_right) {
2782       fpop();
2783     }
2784   } else {
2785     assert(tmp != noreg, "need temp");
2786     if (pop_left) {
2787       if (pop_right) {
2788         fcompp();
2789       } else {
2790         fcomp(index);
2791       }
2792     } else {
2793       fcom(index);
2794     }
2795     // convert FPU condition into eflags condition via rax,
2796     save_rax(tmp);
2797     fwait(); fnstsw_ax();
2798     sahf();
2799     restore_rax(tmp);
2800   }
2801   // condition codes set as follows:
2802   //
2803   // CF (corresponds to C0) if x < y
2804   // PF (corresponds to C2) if unordered
2805   // ZF (corresponds to C3) if x = y
2806 }
2807 
2808 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2809   fcmp2int(dst, unordered_is_less, 1, true, true);
2810 }
2811 
2812 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2813   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2814   Label L;
2815   if (unordered_is_less) {
2816     movl(dst, -1);
2817     jcc(Assembler::parity, L);
2818     jcc(Assembler::below , L);
2819     movl(dst, 0);
2820     jcc(Assembler::equal , L);
2821     increment(dst);
2822   } else { // unordered is greater
2823     movl(dst, 1);
2824     jcc(Assembler::parity, L);
2825     jcc(Assembler::above , L);
2826     movl(dst, 0);
2827     jcc(Assembler::equal , L);
2828     decrementl(dst);
2829   }
2830   bind(L);
2831 }
2832 
2833 void MacroAssembler::fld_d(AddressLiteral src) {
2834   fld_d(as_Address(src));
2835 }
2836 
2837 void MacroAssembler::fld_s(AddressLiteral src) {
2838   fld_s(as_Address(src));
2839 }
2840 
2841 void MacroAssembler::fld_x(AddressLiteral src) {
2842   Assembler::fld_x(as_Address(src));
2843 }
2844 
2845 void MacroAssembler::fldcw(AddressLiteral src) {
2846   Assembler::fldcw(as_Address(src));
2847 }
2848 
2849 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
2850   if (reachable(src)) {
2851     Assembler::mulpd(dst, as_Address(src));
2852   } else {
2853     lea(rscratch1, src);
2854     Assembler::mulpd(dst, Address(rscratch1, 0));
2855   }
2856 }
2857 
2858 void MacroAssembler::increase_precision() {
2859   subptr(rsp, BytesPerWord);
2860   fnstcw(Address(rsp, 0));
2861   movl(rax, Address(rsp, 0));
2862   orl(rax, 0x300);
2863   push(rax);
2864   fldcw(Address(rsp, 0));
2865   pop(rax);
2866 }
2867 
2868 void MacroAssembler::restore_precision() {
2869   fldcw(Address(rsp, 0));
2870   addptr(rsp, BytesPerWord);
2871 }
2872 
2873 void MacroAssembler::fpop() {
2874   ffree();
2875   fincstp();
2876 }
2877 
2878 void MacroAssembler::load_float(Address src) {
2879   if (UseSSE >= 1) {
2880     movflt(xmm0, src);
2881   } else {
2882     LP64_ONLY(ShouldNotReachHere());
2883     NOT_LP64(fld_s(src));
2884   }
2885 }
2886 
2887 void MacroAssembler::store_float(Address dst) {
2888   if (UseSSE >= 1) {
2889     movflt(dst, xmm0);
2890   } else {
2891     LP64_ONLY(ShouldNotReachHere());
2892     NOT_LP64(fstp_s(dst));
2893   }
2894 }
2895 
2896 void MacroAssembler::load_double(Address src) {
2897   if (UseSSE >= 2) {
2898     movdbl(xmm0, src);
2899   } else {
2900     LP64_ONLY(ShouldNotReachHere());
2901     NOT_LP64(fld_d(src));
2902   }
2903 }
2904 
2905 void MacroAssembler::store_double(Address dst) {
2906   if (UseSSE >= 2) {
2907     movdbl(dst, xmm0);
2908   } else {
2909     LP64_ONLY(ShouldNotReachHere());
2910     NOT_LP64(fstp_d(dst));
2911   }
2912 }
2913 
2914 void MacroAssembler::fremr(Register tmp) {
2915   save_rax(tmp);
2916   { Label L;
2917     bind(L);
2918     fprem();
2919     fwait(); fnstsw_ax();
2920 #ifdef _LP64
2921     testl(rax, 0x400);
2922     jcc(Assembler::notEqual, L);
2923 #else
2924     sahf();
2925     jcc(Assembler::parity, L);
2926 #endif // _LP64
2927   }
2928   restore_rax(tmp);
2929   // Result is in ST0.
2930   // Note: fxch & fpop to get rid of ST1
2931   // (otherwise FPU stack could overflow eventually)
2932   fxch(1);
2933   fpop();
2934 }
2935 
2936 // dst = c = a * b + c
2937 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2938   Assembler::vfmadd231sd(c, a, b);
2939   if (dst != c) {
2940     movdbl(dst, c);
2941   }
2942 }
2943 
2944 // dst = c = a * b + c
2945 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2946   Assembler::vfmadd231ss(c, a, b);
2947   if (dst != c) {
2948     movflt(dst, c);
2949   }
2950 }
2951 
2952 // dst = c = a * b + c
2953 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2954   Assembler::vfmadd231pd(c, a, b, vector_len);
2955   if (dst != c) {
2956     vmovdqu(dst, c);
2957   }
2958 }
2959 
2960 // dst = c = a * b + c
2961 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2962   Assembler::vfmadd231ps(c, a, b, vector_len);
2963   if (dst != c) {
2964     vmovdqu(dst, c);
2965   }
2966 }
2967 
2968 // dst = c = a * b + c
2969 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2970   Assembler::vfmadd231pd(c, a, b, vector_len);
2971   if (dst != c) {
2972     vmovdqu(dst, c);
2973   }
2974 }
2975 
2976 // dst = c = a * b + c
2977 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2978   Assembler::vfmadd231ps(c, a, b, vector_len);
2979   if (dst != c) {
2980     vmovdqu(dst, c);
2981   }
2982 }
2983 
2984 void MacroAssembler::incrementl(AddressLiteral dst) {
2985   if (reachable(dst)) {
2986     incrementl(as_Address(dst));
2987   } else {
2988     lea(rscratch1, dst);
2989     incrementl(Address(rscratch1, 0));
2990   }
2991 }
2992 
2993 void MacroAssembler::incrementl(ArrayAddress dst) {
2994   incrementl(as_Address(dst));
2995 }
2996 
2997 void MacroAssembler::incrementl(Register reg, int value) {
2998   if (value == min_jint) {addl(reg, value) ; return; }
2999   if (value <  0) { decrementl(reg, -value); return; }
3000   if (value == 0) {                        ; return; }
3001   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3002   /* else */      { addl(reg, value)       ; return; }
3003 }
3004 
3005 void MacroAssembler::incrementl(Address dst, int value) {
3006   if (value == min_jint) {addl(dst, value) ; return; }
3007   if (value <  0) { decrementl(dst, -value); return; }
3008   if (value == 0) {                        ; return; }
3009   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3010   /* else */      { addl(dst, value)       ; return; }
3011 }
3012 
3013 void MacroAssembler::jump(AddressLiteral dst) {
3014   if (reachable(dst)) {
3015     jmp_literal(dst.target(), dst.rspec());
3016   } else {
3017     lea(rscratch1, dst);
3018     jmp(rscratch1);
3019   }
3020 }
3021 
3022 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3023   if (reachable(dst)) {
3024     InstructionMark im(this);
3025     relocate(dst.reloc());
3026     const int short_size = 2;
3027     const int long_size = 6;
3028     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3029     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3030       // 0111 tttn #8-bit disp
3031       emit_int8(0x70 | cc);
3032       emit_int8((offs - short_size) & 0xFF);
3033     } else {
3034       // 0000 1111 1000 tttn #32-bit disp
3035       emit_int8(0x0F);
3036       emit_int8((unsigned char)(0x80 | cc));
3037       emit_int32(offs - long_size);
3038     }
3039   } else {
3040 #ifdef ASSERT
3041     warning("reversing conditional branch");
3042 #endif /* ASSERT */
3043     Label skip;
3044     jccb(reverse[cc], skip);
3045     lea(rscratch1, dst);
3046     Assembler::jmp(rscratch1);
3047     bind(skip);
3048   }
3049 }
3050 
3051 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3052   if (reachable(src)) {
3053     Assembler::ldmxcsr(as_Address(src));
3054   } else {
3055     lea(rscratch1, src);
3056     Assembler::ldmxcsr(Address(rscratch1, 0));
3057   }
3058 }
3059 
3060 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3061   int off;
3062   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3063     off = offset();
3064     movsbl(dst, src); // movsxb
3065   } else {
3066     off = load_unsigned_byte(dst, src);
3067     shll(dst, 24);
3068     sarl(dst, 24);
3069   }
3070   return off;
3071 }
3072 
3073 // Note: load_signed_short used to be called load_signed_word.
3074 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3075 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3076 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3077 int MacroAssembler::load_signed_short(Register dst, Address src) {
3078   int off;
3079   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3080     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3081     // version but this is what 64bit has always done. This seems to imply
3082     // that users are only using 32bits worth.
3083     off = offset();
3084     movswl(dst, src); // movsxw
3085   } else {
3086     off = load_unsigned_short(dst, src);
3087     shll(dst, 16);
3088     sarl(dst, 16);
3089   }
3090   return off;
3091 }
3092 
3093 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3094   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3095   // and "3.9 Partial Register Penalties", p. 22).
3096   int off;
3097   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3098     off = offset();
3099     movzbl(dst, src); // movzxb
3100   } else {
3101     xorl(dst, dst);
3102     off = offset();
3103     movb(dst, src);
3104   }
3105   return off;
3106 }
3107 
3108 // Note: load_unsigned_short used to be called load_unsigned_word.
3109 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3110   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3111   // and "3.9 Partial Register Penalties", p. 22).
3112   int off;
3113   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3114     off = offset();
3115     movzwl(dst, src); // movzxw
3116   } else {
3117     xorl(dst, dst);
3118     off = offset();
3119     movw(dst, src);
3120   }
3121   return off;
3122 }
3123 
3124 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3125   switch (size_in_bytes) {
3126 #ifndef _LP64
3127   case  8:
3128     assert(dst2 != noreg, "second dest register required");
3129     movl(dst,  src);
3130     movl(dst2, src.plus_disp(BytesPerInt));
3131     break;
3132 #else
3133   case  8:  movq(dst, src); break;
3134 #endif
3135   case  4:  movl(dst, src); break;
3136   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3137   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3138   default:  ShouldNotReachHere();
3139   }
3140 }
3141 
3142 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3143   switch (size_in_bytes) {
3144 #ifndef _LP64
3145   case  8:
3146     assert(src2 != noreg, "second source register required");
3147     movl(dst,                        src);
3148     movl(dst.plus_disp(BytesPerInt), src2);
3149     break;
3150 #else
3151   case  8:  movq(dst, src); break;
3152 #endif
3153   case  4:  movl(dst, src); break;
3154   case  2:  movw(dst, src); break;
3155   case  1:  movb(dst, src); break;
3156   default:  ShouldNotReachHere();
3157   }
3158 }
3159 
3160 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3161   if (reachable(dst)) {
3162     movl(as_Address(dst), src);
3163   } else {
3164     lea(rscratch1, dst);
3165     movl(Address(rscratch1, 0), src);
3166   }
3167 }
3168 
3169 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3170   if (reachable(src)) {
3171     movl(dst, as_Address(src));
3172   } else {
3173     lea(rscratch1, src);
3174     movl(dst, Address(rscratch1, 0));
3175   }
3176 }
3177 
3178 // C++ bool manipulation
3179 
3180 void MacroAssembler::movbool(Register dst, Address src) {
3181   if(sizeof(bool) == 1)
3182     movb(dst, src);
3183   else if(sizeof(bool) == 2)
3184     movw(dst, src);
3185   else if(sizeof(bool) == 4)
3186     movl(dst, src);
3187   else
3188     // unsupported
3189     ShouldNotReachHere();
3190 }
3191 
3192 void MacroAssembler::movbool(Address dst, bool boolconst) {
3193   if(sizeof(bool) == 1)
3194     movb(dst, (int) boolconst);
3195   else if(sizeof(bool) == 2)
3196     movw(dst, (int) boolconst);
3197   else if(sizeof(bool) == 4)
3198     movl(dst, (int) boolconst);
3199   else
3200     // unsupported
3201     ShouldNotReachHere();
3202 }
3203 
3204 void MacroAssembler::movbool(Address dst, Register src) {
3205   if(sizeof(bool) == 1)
3206     movb(dst, src);
3207   else if(sizeof(bool) == 2)
3208     movw(dst, src);
3209   else if(sizeof(bool) == 4)
3210     movl(dst, src);
3211   else
3212     // unsupported
3213     ShouldNotReachHere();
3214 }
3215 
3216 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3217   movb(as_Address(dst), src);
3218 }
3219 
3220 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3221   if (reachable(src)) {
3222     movdl(dst, as_Address(src));
3223   } else {
3224     lea(rscratch1, src);
3225     movdl(dst, Address(rscratch1, 0));
3226   }
3227 }
3228 
3229 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3230   if (reachable(src)) {
3231     movq(dst, as_Address(src));
3232   } else {
3233     lea(rscratch1, src);
3234     movq(dst, Address(rscratch1, 0));
3235   }
3236 }
3237 
3238 #ifdef COMPILER2
3239 void MacroAssembler::setvectmask(Register dst, Register src) {
3240   guarantee(PostLoopMultiversioning, "must be");
3241   Assembler::movl(dst, 1);
3242   Assembler::shlxl(dst, dst, src);
3243   Assembler::decl(dst);
3244   Assembler::kmovdl(k1, dst);
3245   Assembler::movl(dst, src);
3246 }
3247 
3248 void MacroAssembler::restorevectmask() {
3249   guarantee(PostLoopMultiversioning, "must be");
3250   Assembler::knotwl(k1, k0);
3251 }
3252 #endif // COMPILER2
3253 
3254 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3255   if (reachable(src)) {
3256     if (UseXmmLoadAndClearUpper) {
3257       movsd (dst, as_Address(src));
3258     } else {
3259       movlpd(dst, as_Address(src));
3260     }
3261   } else {
3262     lea(rscratch1, src);
3263     if (UseXmmLoadAndClearUpper) {
3264       movsd (dst, Address(rscratch1, 0));
3265     } else {
3266       movlpd(dst, Address(rscratch1, 0));
3267     }
3268   }
3269 }
3270 
3271 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3272   if (reachable(src)) {
3273     movss(dst, as_Address(src));
3274   } else {
3275     lea(rscratch1, src);
3276     movss(dst, Address(rscratch1, 0));
3277   }
3278 }
3279 
3280 void MacroAssembler::movptr(Register dst, Register src) {
3281   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3282 }
3283 
3284 void MacroAssembler::movptr(Register dst, Address src) {
3285   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3286 }
3287 
3288 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3289 void MacroAssembler::movptr(Register dst, intptr_t src) {
3290   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3291 }
3292 
3293 void MacroAssembler::movptr(Address dst, Register src) {
3294   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3295 }
3296 
3297 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3298     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3299     Assembler::movdqu(dst, src);
3300 }
3301 
3302 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3303     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3304     Assembler::movdqu(dst, src);
3305 }
3306 
3307 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3308     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3309     Assembler::movdqu(dst, src);
3310 }
3311 
3312 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3313   if (reachable(src)) {
3314     movdqu(dst, as_Address(src));
3315   } else {
3316     lea(scratchReg, src);
3317     movdqu(dst, Address(scratchReg, 0));
3318   }
3319 }
3320 
3321 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3322     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3323     Assembler::vmovdqu(dst, src);
3324 }
3325 
3326 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3327     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3328     Assembler::vmovdqu(dst, src);
3329 }
3330 
3331 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3332     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3333     Assembler::vmovdqu(dst, src);
3334 }
3335 
3336 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3337   if (reachable(src)) {
3338     vmovdqu(dst, as_Address(src));
3339   }
3340   else {
3341     lea(scratch_reg, src);
3342     vmovdqu(dst, Address(scratch_reg, 0));
3343   }
3344 }
3345 
3346 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3347   if (reachable(src)) {
3348     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3349   } else {
3350     lea(rscratch, src);
3351     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3352   }
3353 }
3354 
3355 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3356   if (reachable(src)) {
3357     Assembler::movdqa(dst, as_Address(src));
3358   } else {
3359     lea(rscratch1, src);
3360     Assembler::movdqa(dst, Address(rscratch1, 0));
3361   }
3362 }
3363 
3364 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3365   if (reachable(src)) {
3366     Assembler::movsd(dst, as_Address(src));
3367   } else {
3368     lea(rscratch1, src);
3369     Assembler::movsd(dst, Address(rscratch1, 0));
3370   }
3371 }
3372 
3373 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3374   if (reachable(src)) {
3375     Assembler::movss(dst, as_Address(src));
3376   } else {
3377     lea(rscratch1, src);
3378     Assembler::movss(dst, Address(rscratch1, 0));
3379   }
3380 }
3381 
3382 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3383   if (reachable(src)) {
3384     Assembler::mulsd(dst, as_Address(src));
3385   } else {
3386     lea(rscratch1, src);
3387     Assembler::mulsd(dst, Address(rscratch1, 0));
3388   }
3389 }
3390 
3391 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3392   if (reachable(src)) {
3393     Assembler::mulss(dst, as_Address(src));
3394   } else {
3395     lea(rscratch1, src);
3396     Assembler::mulss(dst, Address(rscratch1, 0));
3397   }
3398 }
3399 
3400 void MacroAssembler::null_check(Register reg, int offset) {
3401   if (needs_explicit_null_check(offset)) {
3402     // provoke OS NULL exception if reg = NULL by
3403     // accessing M[reg] w/o changing any (non-CC) registers
3404     // NOTE: cmpl is plenty here to provoke a segv
3405     cmpptr(rax, Address(reg, 0));
3406     // Note: should probably use testl(rax, Address(reg, 0));
3407     //       may be shorter code (however, this version of
3408     //       testl needs to be implemented first)
3409   } else {
3410     // nothing to do, (later) access of M[reg + offset]
3411     // will provoke OS NULL exception if reg = NULL
3412   }
3413 }
3414 
3415 void MacroAssembler::os_breakpoint() {
3416   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3417   // (e.g., MSVC can't call ps() otherwise)
3418   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3419 }
3420 
3421 void MacroAssembler::unimplemented(const char* what) {
3422   const char* buf = NULL;
3423   {
3424     ResourceMark rm;
3425     stringStream ss;
3426     ss.print("unimplemented: %s", what);
3427     buf = code_string(ss.as_string());
3428   }
3429   stop(buf);
3430 }
3431 
3432 #ifdef _LP64
3433 #define XSTATE_BV 0x200
3434 #endif
3435 
3436 void MacroAssembler::pop_CPU_state() {
3437   pop_FPU_state();
3438   pop_IU_state();
3439 }
3440 
3441 void MacroAssembler::pop_FPU_state() {
3442 #ifndef _LP64
3443   frstor(Address(rsp, 0));
3444 #else
3445   fxrstor(Address(rsp, 0));
3446 #endif
3447   addptr(rsp, FPUStateSizeInWords * wordSize);
3448 }
3449 
3450 void MacroAssembler::pop_IU_state() {
3451   popa();
3452   LP64_ONLY(addq(rsp, 8));
3453   popf();
3454 }
3455 
3456 // Save Integer and Float state
3457 // Warning: Stack must be 16 byte aligned (64bit)
3458 void MacroAssembler::push_CPU_state() {
3459   push_IU_state();
3460   push_FPU_state();
3461 }
3462 
3463 void MacroAssembler::push_FPU_state() {
3464   subptr(rsp, FPUStateSizeInWords * wordSize);
3465 #ifndef _LP64
3466   fnsave(Address(rsp, 0));
3467   fwait();
3468 #else
3469   fxsave(Address(rsp, 0));
3470 #endif // LP64
3471 }
3472 
3473 void MacroAssembler::push_IU_state() {
3474   // Push flags first because pusha kills them
3475   pushf();
3476   // Make sure rsp stays 16-byte aligned
3477   LP64_ONLY(subq(rsp, 8));
3478   pusha();
3479 }
3480 
3481 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3482   if (!java_thread->is_valid()) {
3483     java_thread = rdi;
3484     get_thread(java_thread);
3485   }
3486   // we must set sp to zero to clear frame
3487   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3488   if (clear_fp) {
3489     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3490   }
3491 
3492   // Always clear the pc because it could have been set by make_walkable()
3493   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3494 
3495   vzeroupper();
3496 }
3497 
3498 void MacroAssembler::restore_rax(Register tmp) {
3499   if (tmp == noreg) pop(rax);
3500   else if (tmp != rax) mov(rax, tmp);
3501 }
3502 
3503 void MacroAssembler::round_to(Register reg, int modulus) {
3504   addptr(reg, modulus - 1);
3505   andptr(reg, -modulus);
3506 }
3507 
3508 void MacroAssembler::save_rax(Register tmp) {
3509   if (tmp == noreg) push(rax);
3510   else if (tmp != rax) mov(tmp, rax);
3511 }
3512 
3513 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3514   if (SafepointMechanism::uses_thread_local_poll()) {
3515 #ifdef _LP64
3516     assert(thread_reg == r15_thread, "should be");
3517 #else
3518     if (thread_reg == noreg) {
3519       thread_reg = temp_reg;
3520       get_thread(thread_reg);
3521     }
3522 #endif
3523     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3524     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3525   } else {
3526     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3527         SafepointSynchronize::_not_synchronized);
3528     jcc(Assembler::notEqual, slow_path);
3529   }
3530 }
3531 
3532 // Calls to C land
3533 //
3534 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3535 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3536 // has to be reset to 0. This is required to allow proper stack traversal.
3537 void MacroAssembler::set_last_Java_frame(Register java_thread,
3538                                          Register last_java_sp,
3539                                          Register last_java_fp,
3540                                          address  last_java_pc) {
3541   vzeroupper();
3542   // determine java_thread register
3543   if (!java_thread->is_valid()) {
3544     java_thread = rdi;
3545     get_thread(java_thread);
3546   }
3547   // determine last_java_sp register
3548   if (!last_java_sp->is_valid()) {
3549     last_java_sp = rsp;
3550   }
3551 
3552   // last_java_fp is optional
3553 
3554   if (last_java_fp->is_valid()) {
3555     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3556   }
3557 
3558   // last_java_pc is optional
3559 
3560   if (last_java_pc != NULL) {
3561     lea(Address(java_thread,
3562                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3563         InternalAddress(last_java_pc));
3564 
3565   }
3566   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3567 }
3568 
3569 void MacroAssembler::shlptr(Register dst, int imm8) {
3570   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3571 }
3572 
3573 void MacroAssembler::shrptr(Register dst, int imm8) {
3574   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3575 }
3576 
3577 void MacroAssembler::sign_extend_byte(Register reg) {
3578   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3579     movsbl(reg, reg); // movsxb
3580   } else {
3581     shll(reg, 24);
3582     sarl(reg, 24);
3583   }
3584 }
3585 
3586 void MacroAssembler::sign_extend_short(Register reg) {
3587   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3588     movswl(reg, reg); // movsxw
3589   } else {
3590     shll(reg, 16);
3591     sarl(reg, 16);
3592   }
3593 }
3594 
3595 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3596   assert(reachable(src), "Address should be reachable");
3597   testl(dst, as_Address(src));
3598 }
3599 
3600 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3601   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3602   Assembler::pcmpeqb(dst, src);
3603 }
3604 
3605 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3606   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3607   Assembler::pcmpeqw(dst, src);
3608 }
3609 
3610 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3611   assert((dst->encoding() < 16),"XMM register should be 0-15");
3612   Assembler::pcmpestri(dst, src, imm8);
3613 }
3614 
3615 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3616   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3617   Assembler::pcmpestri(dst, src, imm8);
3618 }
3619 
3620 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3621   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3622   Assembler::pmovzxbw(dst, src);
3623 }
3624 
3625 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3626   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3627   Assembler::pmovzxbw(dst, src);
3628 }
3629 
3630 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3631   assert((src->encoding() < 16),"XMM register should be 0-15");
3632   Assembler::pmovmskb(dst, src);
3633 }
3634 
3635 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3636   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3637   Assembler::ptest(dst, src);
3638 }
3639 
3640 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3641   if (reachable(src)) {
3642     Assembler::sqrtsd(dst, as_Address(src));
3643   } else {
3644     lea(rscratch1, src);
3645     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3646   }
3647 }
3648 
3649 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3650   if (reachable(src)) {
3651     Assembler::sqrtss(dst, as_Address(src));
3652   } else {
3653     lea(rscratch1, src);
3654     Assembler::sqrtss(dst, Address(rscratch1, 0));
3655   }
3656 }
3657 
3658 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3659   if (reachable(src)) {
3660     Assembler::subsd(dst, as_Address(src));
3661   } else {
3662     lea(rscratch1, src);
3663     Assembler::subsd(dst, Address(rscratch1, 0));
3664   }
3665 }
3666 
3667 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg) {
3668   if (reachable(src)) {
3669     Assembler::roundsd(dst, as_Address(src), rmode);
3670   } else {
3671     lea(scratch_reg, src);
3672     Assembler::roundsd(dst, Address(scratch_reg, 0), rmode);
3673   }
3674 }
3675 
3676 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3677   if (reachable(src)) {
3678     Assembler::subss(dst, as_Address(src));
3679   } else {
3680     lea(rscratch1, src);
3681     Assembler::subss(dst, Address(rscratch1, 0));
3682   }
3683 }
3684 
3685 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3686   if (reachable(src)) {
3687     Assembler::ucomisd(dst, as_Address(src));
3688   } else {
3689     lea(rscratch1, src);
3690     Assembler::ucomisd(dst, Address(rscratch1, 0));
3691   }
3692 }
3693 
3694 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3695   if (reachable(src)) {
3696     Assembler::ucomiss(dst, as_Address(src));
3697   } else {
3698     lea(rscratch1, src);
3699     Assembler::ucomiss(dst, Address(rscratch1, 0));
3700   }
3701 }
3702 
3703 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3704   // Used in sign-bit flipping with aligned address.
3705   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3706   if (reachable(src)) {
3707     Assembler::xorpd(dst, as_Address(src));
3708   } else {
3709     lea(scratch_reg, src);
3710     Assembler::xorpd(dst, Address(scratch_reg, 0));
3711   }
3712 }
3713 
3714 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
3715   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3716     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3717   }
3718   else {
3719     Assembler::xorpd(dst, src);
3720   }
3721 }
3722 
3723 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
3724   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3725     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3726   } else {
3727     Assembler::xorps(dst, src);
3728   }
3729 }
3730 
3731 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3732   // Used in sign-bit flipping with aligned address.
3733   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3734   if (reachable(src)) {
3735     Assembler::xorps(dst, as_Address(src));
3736   } else {
3737     lea(scratch_reg, src);
3738     Assembler::xorps(dst, Address(scratch_reg, 0));
3739   }
3740 }
3741 
3742 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3743   // Used in sign-bit flipping with aligned address.
3744   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3745   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3746   if (reachable(src)) {
3747     Assembler::pshufb(dst, as_Address(src));
3748   } else {
3749     lea(rscratch1, src);
3750     Assembler::pshufb(dst, Address(rscratch1, 0));
3751   }
3752 }
3753 
3754 // AVX 3-operands instructions
3755 
3756 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3757   if (reachable(src)) {
3758     vaddsd(dst, nds, as_Address(src));
3759   } else {
3760     lea(rscratch1, src);
3761     vaddsd(dst, nds, Address(rscratch1, 0));
3762   }
3763 }
3764 
3765 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3766   if (reachable(src)) {
3767     vaddss(dst, nds, as_Address(src));
3768   } else {
3769     lea(rscratch1, src);
3770     vaddss(dst, nds, Address(rscratch1, 0));
3771   }
3772 }
3773 
3774 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3775   assert(UseAVX > 0, "requires some form of AVX");
3776   if (reachable(src)) {
3777     Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
3778   } else {
3779     lea(rscratch, src);
3780     Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
3781   }
3782 }
3783 
3784 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3785   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3786   vandps(dst, nds, negate_field, vector_len);
3787 }
3788 
3789 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3790   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3791   vandpd(dst, nds, negate_field, vector_len);
3792 }
3793 
3794 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3795   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3796   Assembler::vpaddb(dst, nds, src, vector_len);
3797 }
3798 
3799 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3800   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3801   Assembler::vpaddb(dst, nds, src, vector_len);
3802 }
3803 
3804 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3805   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3806   Assembler::vpaddw(dst, nds, src, vector_len);
3807 }
3808 
3809 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3810   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3811   Assembler::vpaddw(dst, nds, src, vector_len);
3812 }
3813 
3814 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3815   if (reachable(src)) {
3816     Assembler::vpand(dst, nds, as_Address(src), vector_len);
3817   } else {
3818     lea(scratch_reg, src);
3819     Assembler::vpand(dst, nds, Address(scratch_reg, 0), vector_len);
3820   }
3821 }
3822 
3823 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
3824   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3825   Assembler::vpbroadcastw(dst, src, vector_len);
3826 }
3827 
3828 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3829   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3830   Assembler::vpcmpeqb(dst, nds, src, vector_len);
3831 }
3832 
3833 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3834   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3835   Assembler::vpcmpeqw(dst, nds, src, vector_len);
3836 }
3837 
3838 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3839   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3840   Assembler::vpmovzxbw(dst, src, vector_len);
3841 }
3842 
3843 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
3844   assert((src->encoding() < 16),"XMM register should be 0-15");
3845   Assembler::vpmovmskb(dst, src);
3846 }
3847 
3848 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3849   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3850   Assembler::vpmullw(dst, nds, src, vector_len);
3851 }
3852 
3853 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3854   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3855   Assembler::vpmullw(dst, nds, src, vector_len);
3856 }
3857 
3858 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3859   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3860   Assembler::vpsubb(dst, nds, src, vector_len);
3861 }
3862 
3863 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3864   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3865   Assembler::vpsubb(dst, nds, src, vector_len);
3866 }
3867 
3868 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3869   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3870   Assembler::vpsubw(dst, nds, src, vector_len);
3871 }
3872 
3873 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3874   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3875   Assembler::vpsubw(dst, nds, src, vector_len);
3876 }
3877 
3878 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3879   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3880   Assembler::vpsraw(dst, nds, shift, vector_len);
3881 }
3882 
3883 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3884   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3885   Assembler::vpsraw(dst, nds, shift, vector_len);
3886 }
3887 
3888 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3889   assert(UseAVX > 2,"");
3890   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3891      vector_len = 2;
3892   }
3893   Assembler::evpsraq(dst, nds, shift, vector_len);
3894 }
3895 
3896 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3897   assert(UseAVX > 2,"");
3898   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3899      vector_len = 2;
3900   }
3901   Assembler::evpsraq(dst, nds, shift, vector_len);
3902 }
3903 
3904 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3905   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3906   Assembler::vpsrlw(dst, nds, shift, vector_len);
3907 }
3908 
3909 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3910   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3911   Assembler::vpsrlw(dst, nds, shift, vector_len);
3912 }
3913 
3914 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3915   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3916   Assembler::vpsllw(dst, nds, shift, vector_len);
3917 }
3918 
3919 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3920   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3921   Assembler::vpsllw(dst, nds, shift, vector_len);
3922 }
3923 
3924 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
3925   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3926   Assembler::vptest(dst, src);
3927 }
3928 
3929 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3930   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3931   Assembler::punpcklbw(dst, src);
3932 }
3933 
3934 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
3935   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3936   Assembler::pshufd(dst, src, mode);
3937 }
3938 
3939 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3940   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3941   Assembler::pshuflw(dst, src, mode);
3942 }
3943 
3944 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3945   if (reachable(src)) {
3946     vandpd(dst, nds, as_Address(src), vector_len);
3947   } else {
3948     lea(scratch_reg, src);
3949     vandpd(dst, nds, Address(scratch_reg, 0), vector_len);
3950   }
3951 }
3952 
3953 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3954   if (reachable(src)) {
3955     vandps(dst, nds, as_Address(src), vector_len);
3956   } else {
3957     lea(scratch_reg, src);
3958     vandps(dst, nds, Address(scratch_reg, 0), vector_len);
3959   }
3960 }
3961 
3962 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3963   if (reachable(src)) {
3964     vdivsd(dst, nds, as_Address(src));
3965   } else {
3966     lea(rscratch1, src);
3967     vdivsd(dst, nds, Address(rscratch1, 0));
3968   }
3969 }
3970 
3971 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3972   if (reachable(src)) {
3973     vdivss(dst, nds, as_Address(src));
3974   } else {
3975     lea(rscratch1, src);
3976     vdivss(dst, nds, Address(rscratch1, 0));
3977   }
3978 }
3979 
3980 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3981   if (reachable(src)) {
3982     vmulsd(dst, nds, as_Address(src));
3983   } else {
3984     lea(rscratch1, src);
3985     vmulsd(dst, nds, Address(rscratch1, 0));
3986   }
3987 }
3988 
3989 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3990   if (reachable(src)) {
3991     vmulss(dst, nds, as_Address(src));
3992   } else {
3993     lea(rscratch1, src);
3994     vmulss(dst, nds, Address(rscratch1, 0));
3995   }
3996 }
3997 
3998 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3999   if (reachable(src)) {
4000     vsubsd(dst, nds, as_Address(src));
4001   } else {
4002     lea(rscratch1, src);
4003     vsubsd(dst, nds, Address(rscratch1, 0));
4004   }
4005 }
4006 
4007 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4008   if (reachable(src)) {
4009     vsubss(dst, nds, as_Address(src));
4010   } else {
4011     lea(rscratch1, src);
4012     vsubss(dst, nds, Address(rscratch1, 0));
4013   }
4014 }
4015 
4016 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4017   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4018   vxorps(dst, nds, src, Assembler::AVX_128bit);
4019 }
4020 
4021 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4022   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4023   vxorpd(dst, nds, src, Assembler::AVX_128bit);
4024 }
4025 
4026 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4027   if (reachable(src)) {
4028     vxorpd(dst, nds, as_Address(src), vector_len);
4029   } else {
4030     lea(scratch_reg, src);
4031     vxorpd(dst, nds, Address(scratch_reg, 0), vector_len);
4032   }
4033 }
4034 
4035 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4036   if (reachable(src)) {
4037     vxorps(dst, nds, as_Address(src), vector_len);
4038   } else {
4039     lea(scratch_reg, src);
4040     vxorps(dst, nds, Address(scratch_reg, 0), vector_len);
4041   }
4042 }
4043 
4044 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4045   if (UseAVX > 1 || (vector_len < 1)) {
4046     if (reachable(src)) {
4047       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
4048     } else {
4049       lea(scratch_reg, src);
4050       Assembler::vpxor(dst, nds, Address(scratch_reg, 0), vector_len);
4051     }
4052   }
4053   else {
4054     MacroAssembler::vxorpd(dst, nds, src, vector_len, scratch_reg);
4055   }
4056 }
4057 
4058 //-------------------------------------------------------------------------------------------
4059 #ifdef COMPILER2
4060 // Generic instructions support for use in .ad files C2 code generation
4061 
4062 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, XMMRegister src, Register scr) {
4063   if (dst != src) {
4064     movdqu(dst, src);
4065   }
4066   if (opcode == Op_AbsVD) {
4067     andpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), scr);
4068   } else {
4069     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4070     xorpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), scr);
4071   }
4072 }
4073 
4074 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4075   if (opcode == Op_AbsVD) {
4076     vandpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), vector_len, scr);
4077   } else {
4078     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4079     vxorpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), vector_len, scr);
4080   }
4081 }
4082 
4083 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, XMMRegister src, Register scr) {
4084   if (dst != src) {
4085     movdqu(dst, src);
4086   }
4087   if (opcode == Op_AbsVF) {
4088     andps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), scr);
4089   } else {
4090     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4091     xorps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), scr);
4092   }
4093 }
4094 
4095 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4096   if (opcode == Op_AbsVF) {
4097     vandps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), vector_len, scr);
4098   } else {
4099     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4100     vxorps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), vector_len, scr);
4101   }
4102 }
4103 
4104 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src) {
4105   if (sign) {
4106     pmovsxbw(dst, src);
4107   } else {
4108     pmovzxbw(dst, src);
4109   }
4110 }
4111 
4112 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len) {
4113   if (sign) {
4114     vpmovsxbw(dst, src, vector_len);
4115   } else {
4116     vpmovzxbw(dst, src, vector_len);
4117   }
4118 }
4119 
4120 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister src) {
4121   if (opcode == Op_RShiftVI) {
4122     psrad(dst, src);
4123   } else if (opcode == Op_LShiftVI) {
4124     pslld(dst, src);
4125   } else {
4126     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4127     psrld(dst, src);
4128   }
4129 }
4130 
4131 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4132   if (opcode == Op_RShiftVI) {
4133     vpsrad(dst, nds, src, vector_len);
4134   } else if (opcode == Op_LShiftVI) {
4135     vpslld(dst, nds, src, vector_len);
4136   } else {
4137     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4138     vpsrld(dst, nds, src, vector_len);
4139   }
4140 }
4141 
4142 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister src) {
4143   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4144     psraw(dst, src);
4145   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4146     psllw(dst, src);
4147   } else {
4148     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4149     psrlw(dst, src);
4150   }
4151 }
4152 
4153 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4154   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4155     vpsraw(dst, nds, src, vector_len);
4156   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4157     vpsllw(dst, nds, src, vector_len);
4158   } else {
4159     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4160     vpsrlw(dst, nds, src, vector_len);
4161   }
4162 }
4163 
4164 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister src) {
4165   if (opcode == Op_RShiftVL) {
4166     psrlq(dst, src);  // using srl to implement sra on pre-avs512 systems
4167   } else if (opcode == Op_LShiftVL) {
4168     psllq(dst, src);
4169   } else {
4170     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4171     psrlq(dst, src);
4172   }
4173 }
4174 
4175 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4176   if (opcode == Op_RShiftVL) {
4177     evpsraq(dst, nds, src, vector_len);
4178   } else if (opcode == Op_LShiftVL) {
4179     vpsllq(dst, nds, src, vector_len);
4180   } else {
4181     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4182     vpsrlq(dst, nds, src, vector_len);
4183   }
4184 }
4185 #endif
4186 //-------------------------------------------------------------------------------------------
4187 
4188 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
4189   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
4190   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
4191   // The inverted mask is sign-extended
4192   andptr(possibly_jweak, inverted_jweak_mask);
4193 }
4194 
4195 void MacroAssembler::resolve_jobject(Register value,
4196                                      Register thread,
4197                                      Register tmp) {
4198   assert_different_registers(value, thread, tmp);
4199   Label done, not_weak;
4200   testptr(value, value);
4201   jcc(Assembler::zero, done);                // Use NULL as-is.
4202   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
4203   jcc(Assembler::zero, not_weak);
4204   // Resolve jweak.
4205   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4206                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
4207   verify_oop(value);
4208   jmp(done);
4209   bind(not_weak);
4210   // Resolve (untagged) jobject.
4211   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
4212   verify_oop(value);
4213   bind(done);
4214 }
4215 
4216 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4217   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4218 }
4219 
4220 // Force generation of a 4 byte immediate value even if it fits into 8bit
4221 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4222   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4223 }
4224 
4225 void MacroAssembler::subptr(Register dst, Register src) {
4226   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4227 }
4228 
4229 // C++ bool manipulation
4230 void MacroAssembler::testbool(Register dst) {
4231   if(sizeof(bool) == 1)
4232     testb(dst, 0xff);
4233   else if(sizeof(bool) == 2) {
4234     // testw implementation needed for two byte bools
4235     ShouldNotReachHere();
4236   } else if(sizeof(bool) == 4)
4237     testl(dst, dst);
4238   else
4239     // unsupported
4240     ShouldNotReachHere();
4241 }
4242 
4243 void MacroAssembler::testptr(Register dst, Register src) {
4244   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4245 }
4246 
4247 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4248 void MacroAssembler::tlab_allocate(Register thread, Register obj,
4249                                    Register var_size_in_bytes,
4250                                    int con_size_in_bytes,
4251                                    Register t1,
4252                                    Register t2,
4253                                    Label& slow_case) {
4254   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4255   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4256 }
4257 
4258 // Defines obj, preserves var_size_in_bytes
4259 void MacroAssembler::eden_allocate(Register thread, Register obj,
4260                                    Register var_size_in_bytes,
4261                                    int con_size_in_bytes,
4262                                    Register t1,
4263                                    Label& slow_case) {
4264   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4265   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
4266 }
4267 
4268 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
4269 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
4270   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
4271   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
4272   Label done;
4273 
4274   testptr(length_in_bytes, length_in_bytes);
4275   jcc(Assembler::zero, done);
4276 
4277   // initialize topmost word, divide index by 2, check if odd and test if zero
4278   // note: for the remaining code to work, index must be a multiple of BytesPerWord
4279 #ifdef ASSERT
4280   {
4281     Label L;
4282     testptr(length_in_bytes, BytesPerWord - 1);
4283     jcc(Assembler::zero, L);
4284     stop("length must be a multiple of BytesPerWord");
4285     bind(L);
4286   }
4287 #endif
4288   Register index = length_in_bytes;
4289   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
4290   if (UseIncDec) {
4291     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
4292   } else {
4293     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
4294     shrptr(index, 1);
4295   }
4296 #ifndef _LP64
4297   // index could have not been a multiple of 8 (i.e., bit 2 was set)
4298   {
4299     Label even;
4300     // note: if index was a multiple of 8, then it cannot
4301     //       be 0 now otherwise it must have been 0 before
4302     //       => if it is even, we don't need to check for 0 again
4303     jcc(Assembler::carryClear, even);
4304     // clear topmost word (no jump would be needed if conditional assignment worked here)
4305     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
4306     // index could be 0 now, must check again
4307     jcc(Assembler::zero, done);
4308     bind(even);
4309   }
4310 #endif // !_LP64
4311   // initialize remaining object fields: index is a multiple of 2 now
4312   {
4313     Label loop;
4314     bind(loop);
4315     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
4316     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
4317     decrement(index);
4318     jcc(Assembler::notZero, loop);
4319   }
4320 
4321   bind(done);
4322 }
4323 
4324 // Look up the method for a megamorphic invokeinterface call.
4325 // The target method is determined by <intf_klass, itable_index>.
4326 // The receiver klass is in recv_klass.
4327 // On success, the result will be in method_result, and execution falls through.
4328 // On failure, execution transfers to the given label.
4329 void MacroAssembler::lookup_interface_method(Register recv_klass,
4330                                              Register intf_klass,
4331                                              RegisterOrConstant itable_index,
4332                                              Register method_result,
4333                                              Register scan_temp,
4334                                              Label& L_no_such_interface,
4335                                              bool return_method) {
4336   assert_different_registers(recv_klass, intf_klass, scan_temp);
4337   assert_different_registers(method_result, intf_klass, scan_temp);
4338   assert(recv_klass != method_result || !return_method,
4339          "recv_klass can be destroyed when method isn't needed");
4340 
4341   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4342          "caller must use same register for non-constant itable index as for method");
4343 
4344   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4345   int vtable_base = in_bytes(Klass::vtable_start_offset());
4346   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4347   int scan_step   = itableOffsetEntry::size() * wordSize;
4348   int vte_size    = vtableEntry::size_in_bytes();
4349   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4350   assert(vte_size == wordSize, "else adjust times_vte_scale");
4351 
4352   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
4353 
4354   // %%% Could store the aligned, prescaled offset in the klassoop.
4355   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4356 
4357   if (return_method) {
4358     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4359     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4360     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4361   }
4362 
4363   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4364   //   if (scan->interface() == intf) {
4365   //     result = (klass + scan->offset() + itable_index);
4366   //   }
4367   // }
4368   Label search, found_method;
4369 
4370   for (int peel = 1; peel >= 0; peel--) {
4371     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4372     cmpptr(intf_klass, method_result);
4373 
4374     if (peel) {
4375       jccb(Assembler::equal, found_method);
4376     } else {
4377       jccb(Assembler::notEqual, search);
4378       // (invert the test to fall through to found_method...)
4379     }
4380 
4381     if (!peel)  break;
4382 
4383     bind(search);
4384 
4385     // Check that the previous entry is non-null.  A null entry means that
4386     // the receiver class doesn't implement the interface, and wasn't the
4387     // same as when the caller was compiled.
4388     testptr(method_result, method_result);
4389     jcc(Assembler::zero, L_no_such_interface);
4390     addptr(scan_temp, scan_step);
4391   }
4392 
4393   bind(found_method);
4394 
4395   if (return_method) {
4396     // Got a hit.
4397     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4398     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4399   }
4400 }
4401 
4402 
4403 // virtual method calling
4404 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4405                                            RegisterOrConstant vtable_index,
4406                                            Register method_result) {
4407   const int base = in_bytes(Klass::vtable_start_offset());
4408   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4409   Address vtable_entry_addr(recv_klass,
4410                             vtable_index, Address::times_ptr,
4411                             base + vtableEntry::method_offset_in_bytes());
4412   movptr(method_result, vtable_entry_addr);
4413 }
4414 
4415 
4416 void MacroAssembler::check_klass_subtype(Register sub_klass,
4417                            Register super_klass,
4418                            Register temp_reg,
4419                            Label& L_success) {
4420   Label L_failure;
4421   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4422   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4423   bind(L_failure);
4424 }
4425 
4426 
4427 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4428                                                    Register super_klass,
4429                                                    Register temp_reg,
4430                                                    Label* L_success,
4431                                                    Label* L_failure,
4432                                                    Label* L_slow_path,
4433                                         RegisterOrConstant super_check_offset) {
4434   assert_different_registers(sub_klass, super_klass, temp_reg);
4435   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4436   if (super_check_offset.is_register()) {
4437     assert_different_registers(sub_klass, super_klass,
4438                                super_check_offset.as_register());
4439   } else if (must_load_sco) {
4440     assert(temp_reg != noreg, "supply either a temp or a register offset");
4441   }
4442 
4443   Label L_fallthrough;
4444   int label_nulls = 0;
4445   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4446   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4447   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4448   assert(label_nulls <= 1, "at most one NULL in the batch");
4449 
4450   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4451   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4452   Address super_check_offset_addr(super_klass, sco_offset);
4453 
4454   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4455   // range of a jccb.  If this routine grows larger, reconsider at
4456   // least some of these.
4457 #define local_jcc(assembler_cond, label)                                \
4458   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4459   else                             jcc( assembler_cond, label) /*omit semi*/
4460 
4461   // Hacked jmp, which may only be used just before L_fallthrough.
4462 #define final_jmp(label)                                                \
4463   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4464   else                            jmp(label)                /*omit semi*/
4465 
4466   // If the pointers are equal, we are done (e.g., String[] elements).
4467   // This self-check enables sharing of secondary supertype arrays among
4468   // non-primary types such as array-of-interface.  Otherwise, each such
4469   // type would need its own customized SSA.
4470   // We move this check to the front of the fast path because many
4471   // type checks are in fact trivially successful in this manner,
4472   // so we get a nicely predicted branch right at the start of the check.
4473   cmpptr(sub_klass, super_klass);
4474   local_jcc(Assembler::equal, *L_success);
4475 
4476   // Check the supertype display:
4477   if (must_load_sco) {
4478     // Positive movl does right thing on LP64.
4479     movl(temp_reg, super_check_offset_addr);
4480     super_check_offset = RegisterOrConstant(temp_reg);
4481   }
4482   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4483   cmpptr(super_klass, super_check_addr); // load displayed supertype
4484 
4485   // This check has worked decisively for primary supers.
4486   // Secondary supers are sought in the super_cache ('super_cache_addr').
4487   // (Secondary supers are interfaces and very deeply nested subtypes.)
4488   // This works in the same check above because of a tricky aliasing
4489   // between the super_cache and the primary super display elements.
4490   // (The 'super_check_addr' can address either, as the case requires.)
4491   // Note that the cache is updated below if it does not help us find
4492   // what we need immediately.
4493   // So if it was a primary super, we can just fail immediately.
4494   // Otherwise, it's the slow path for us (no success at this point).
4495 
4496   if (super_check_offset.is_register()) {
4497     local_jcc(Assembler::equal, *L_success);
4498     cmpl(super_check_offset.as_register(), sc_offset);
4499     if (L_failure == &L_fallthrough) {
4500       local_jcc(Assembler::equal, *L_slow_path);
4501     } else {
4502       local_jcc(Assembler::notEqual, *L_failure);
4503       final_jmp(*L_slow_path);
4504     }
4505   } else if (super_check_offset.as_constant() == sc_offset) {
4506     // Need a slow path; fast failure is impossible.
4507     if (L_slow_path == &L_fallthrough) {
4508       local_jcc(Assembler::equal, *L_success);
4509     } else {
4510       local_jcc(Assembler::notEqual, *L_slow_path);
4511       final_jmp(*L_success);
4512     }
4513   } else {
4514     // No slow path; it's a fast decision.
4515     if (L_failure == &L_fallthrough) {
4516       local_jcc(Assembler::equal, *L_success);
4517     } else {
4518       local_jcc(Assembler::notEqual, *L_failure);
4519       final_jmp(*L_success);
4520     }
4521   }
4522 
4523   bind(L_fallthrough);
4524 
4525 #undef local_jcc
4526 #undef final_jmp
4527 }
4528 
4529 
4530 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4531                                                    Register super_klass,
4532                                                    Register temp_reg,
4533                                                    Register temp2_reg,
4534                                                    Label* L_success,
4535                                                    Label* L_failure,
4536                                                    bool set_cond_codes) {
4537   assert_different_registers(sub_klass, super_klass, temp_reg);
4538   if (temp2_reg != noreg)
4539     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
4540 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
4541 
4542   Label L_fallthrough;
4543   int label_nulls = 0;
4544   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4545   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4546   assert(label_nulls <= 1, "at most one NULL in the batch");
4547 
4548   // a couple of useful fields in sub_klass:
4549   int ss_offset = in_bytes(Klass::secondary_supers_offset());
4550   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4551   Address secondary_supers_addr(sub_klass, ss_offset);
4552   Address super_cache_addr(     sub_klass, sc_offset);
4553 
4554   // Do a linear scan of the secondary super-klass chain.
4555   // This code is rarely used, so simplicity is a virtue here.
4556   // The repne_scan instruction uses fixed registers, which we must spill.
4557   // Don't worry too much about pre-existing connections with the input regs.
4558 
4559   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
4560   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
4561 
4562   // Get super_klass value into rax (even if it was in rdi or rcx).
4563   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
4564   if (super_klass != rax || UseCompressedOops) {
4565     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
4566     mov(rax, super_klass);
4567   }
4568   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
4569   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
4570 
4571 #ifndef PRODUCT
4572   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4573   ExternalAddress pst_counter_addr((address) pst_counter);
4574   NOT_LP64(  incrementl(pst_counter_addr) );
4575   LP64_ONLY( lea(rcx, pst_counter_addr) );
4576   LP64_ONLY( incrementl(Address(rcx, 0)) );
4577 #endif //PRODUCT
4578 
4579   // We will consult the secondary-super array.
4580   movptr(rdi, secondary_supers_addr);
4581   // Load the array length.  (Positive movl does right thing on LP64.)
4582   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4583   // Skip to start of data.
4584   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4585 
4586   // Scan RCX words at [RDI] for an occurrence of RAX.
4587   // Set NZ/Z based on last compare.
4588   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4589   // not change flags (only scas instruction which is repeated sets flags).
4590   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4591 
4592     testptr(rax,rax); // Set Z = 0
4593     repne_scan();
4594 
4595   // Unspill the temp. registers:
4596   if (pushed_rdi)  pop(rdi);
4597   if (pushed_rcx)  pop(rcx);
4598   if (pushed_rax)  pop(rax);
4599 
4600   if (set_cond_codes) {
4601     // Special hack for the AD files:  rdi is guaranteed non-zero.
4602     assert(!pushed_rdi, "rdi must be left non-NULL");
4603     // Also, the condition codes are properly set Z/NZ on succeed/failure.
4604   }
4605 
4606   if (L_failure == &L_fallthrough)
4607         jccb(Assembler::notEqual, *L_failure);
4608   else  jcc(Assembler::notEqual, *L_failure);
4609 
4610   // Success.  Cache the super we found and proceed in triumph.
4611   movptr(super_cache_addr, super_klass);
4612 
4613   if (L_success != &L_fallthrough) {
4614     jmp(*L_success);
4615   }
4616 
4617 #undef IS_A_TEMP
4618 
4619   bind(L_fallthrough);
4620 }
4621 
4622 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
4623   assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");
4624 
4625   Label L_fallthrough;
4626   if (L_fast_path == NULL) {
4627     L_fast_path = &L_fallthrough;
4628   } else if (L_slow_path == NULL) {
4629     L_slow_path = &L_fallthrough;
4630   }
4631 
4632   // Fast path check: class is fully initialized
4633   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4634   jcc(Assembler::equal, *L_fast_path);
4635 
4636   // Fast path check: current thread is initializer thread
4637   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
4638   if (L_slow_path == &L_fallthrough) {
4639     jcc(Assembler::equal, *L_fast_path);
4640     bind(*L_slow_path);
4641   } else if (L_fast_path == &L_fallthrough) {
4642     jcc(Assembler::notEqual, *L_slow_path);
4643     bind(*L_fast_path);
4644   } else {
4645     Unimplemented();
4646   }
4647 }
4648 
4649 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4650   if (VM_Version::supports_cmov()) {
4651     cmovl(cc, dst, src);
4652   } else {
4653     Label L;
4654     jccb(negate_condition(cc), L);
4655     movl(dst, src);
4656     bind(L);
4657   }
4658 }
4659 
4660 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4661   if (VM_Version::supports_cmov()) {
4662     cmovl(cc, dst, src);
4663   } else {
4664     Label L;
4665     jccb(negate_condition(cc), L);
4666     movl(dst, src);
4667     bind(L);
4668   }
4669 }
4670 
4671 void MacroAssembler::verify_oop(Register reg, const char* s) {
4672   if (!VerifyOops) return;
4673 
4674   // Pass register number to verify_oop_subroutine
4675   const char* b = NULL;
4676   {
4677     ResourceMark rm;
4678     stringStream ss;
4679     ss.print("verify_oop: %s: %s", reg->name(), s);
4680     b = code_string(ss.as_string());
4681   }
4682   BLOCK_COMMENT("verify_oop {");
4683 #ifdef _LP64
4684   push(rscratch1);                    // save r10, trashed by movptr()
4685 #endif
4686   push(rax);                          // save rax,
4687   push(reg);                          // pass register argument
4688   ExternalAddress buffer((address) b);
4689   // avoid using pushptr, as it modifies scratch registers
4690   // and our contract is not to modify anything
4691   movptr(rax, buffer.addr());
4692   push(rax);
4693   // call indirectly to solve generation ordering problem
4694   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4695   call(rax);
4696   // Caller pops the arguments (oop, message) and restores rax, r10
4697   BLOCK_COMMENT("} verify_oop");
4698 }
4699 
4700 
4701 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
4702                                                       Register tmp,
4703                                                       int offset) {
4704   intptr_t value = *delayed_value_addr;
4705   if (value != 0)
4706     return RegisterOrConstant(value + offset);
4707 
4708   // load indirectly to solve generation ordering problem
4709   movptr(tmp, ExternalAddress((address) delayed_value_addr));
4710 
4711 #ifdef ASSERT
4712   { Label L;
4713     testptr(tmp, tmp);
4714     if (WizardMode) {
4715       const char* buf = NULL;
4716       {
4717         ResourceMark rm;
4718         stringStream ss;
4719         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
4720         buf = code_string(ss.as_string());
4721       }
4722       jcc(Assembler::notZero, L);
4723       STOP(buf);
4724     } else {
4725       jccb(Assembler::notZero, L);
4726       hlt();
4727     }
4728     bind(L);
4729   }
4730 #endif
4731 
4732   if (offset != 0)
4733     addptr(tmp, offset);
4734 
4735   return RegisterOrConstant(tmp);
4736 }
4737 
4738 
4739 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4740                                          int extra_slot_offset) {
4741   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4742   int stackElementSize = Interpreter::stackElementSize;
4743   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4744 #ifdef ASSERT
4745   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4746   assert(offset1 - offset == stackElementSize, "correct arithmetic");
4747 #endif
4748   Register             scale_reg    = noreg;
4749   Address::ScaleFactor scale_factor = Address::no_scale;
4750   if (arg_slot.is_constant()) {
4751     offset += arg_slot.as_constant() * stackElementSize;
4752   } else {
4753     scale_reg    = arg_slot.as_register();
4754     scale_factor = Address::times(stackElementSize);
4755   }
4756   offset += wordSize;           // return PC is on stack
4757   return Address(rsp, scale_reg, scale_factor, offset);
4758 }
4759 
4760 
4761 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
4762   if (!VerifyOops) return;
4763 
4764   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
4765   // Pass register number to verify_oop_subroutine
4766   const char* b = NULL;
4767   {
4768     ResourceMark rm;
4769     stringStream ss;
4770     ss.print("verify_oop_addr: %s", s);
4771     b = code_string(ss.as_string());
4772   }
4773 #ifdef _LP64
4774   push(rscratch1);                    // save r10, trashed by movptr()
4775 #endif
4776   push(rax);                          // save rax,
4777   // addr may contain rsp so we will have to adjust it based on the push
4778   // we just did (and on 64 bit we do two pushes)
4779   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4780   // stores rax into addr which is backwards of what was intended.
4781   if (addr.uses(rsp)) {
4782     lea(rax, addr);
4783     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
4784   } else {
4785     pushptr(addr);
4786   }
4787 
4788   ExternalAddress buffer((address) b);
4789   // pass msg argument
4790   // avoid using pushptr, as it modifies scratch registers
4791   // and our contract is not to modify anything
4792   movptr(rax, buffer.addr());
4793   push(rax);
4794 
4795   // call indirectly to solve generation ordering problem
4796   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4797   call(rax);
4798   // Caller pops the arguments (addr, message) and restores rax, r10.
4799 }
4800 
4801 void MacroAssembler::verify_tlab() {
4802 #ifdef ASSERT
4803   if (UseTLAB && VerifyOops) {
4804     Label next, ok;
4805     Register t1 = rsi;
4806     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
4807 
4808     push(t1);
4809     NOT_LP64(push(thread_reg));
4810     NOT_LP64(get_thread(thread_reg));
4811 
4812     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4813     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4814     jcc(Assembler::aboveEqual, next);
4815     STOP("assert(top >= start)");
4816     should_not_reach_here();
4817 
4818     bind(next);
4819     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4820     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4821     jcc(Assembler::aboveEqual, ok);
4822     STOP("assert(top <= end)");
4823     should_not_reach_here();
4824 
4825     bind(ok);
4826     NOT_LP64(pop(thread_reg));
4827     pop(t1);
4828   }
4829 #endif
4830 }
4831 
4832 class ControlWord {
4833  public:
4834   int32_t _value;
4835 
4836   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
4837   int  precision_control() const       { return  (_value >>  8) & 3      ; }
4838   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4839   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4840   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4841   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4842   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4843   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4844 
4845   void print() const {
4846     // rounding control
4847     const char* rc;
4848     switch (rounding_control()) {
4849       case 0: rc = "round near"; break;
4850       case 1: rc = "round down"; break;
4851       case 2: rc = "round up  "; break;
4852       case 3: rc = "chop      "; break;
4853     };
4854     // precision control
4855     const char* pc;
4856     switch (precision_control()) {
4857       case 0: pc = "24 bits "; break;
4858       case 1: pc = "reserved"; break;
4859       case 2: pc = "53 bits "; break;
4860       case 3: pc = "64 bits "; break;
4861     };
4862     // flags
4863     char f[9];
4864     f[0] = ' ';
4865     f[1] = ' ';
4866     f[2] = (precision   ()) ? 'P' : 'p';
4867     f[3] = (underflow   ()) ? 'U' : 'u';
4868     f[4] = (overflow    ()) ? 'O' : 'o';
4869     f[5] = (zero_divide ()) ? 'Z' : 'z';
4870     f[6] = (denormalized()) ? 'D' : 'd';
4871     f[7] = (invalid     ()) ? 'I' : 'i';
4872     f[8] = '\x0';
4873     // output
4874     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
4875   }
4876 
4877 };
4878 
4879 class StatusWord {
4880  public:
4881   int32_t _value;
4882 
4883   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
4884   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
4885   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
4886   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
4887   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
4888   int  top() const                     { return  (_value >> 11) & 7      ; }
4889   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
4890   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
4891   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4892   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4893   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4894   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4895   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4896   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4897 
4898   void print() const {
4899     // condition codes
4900     char c[5];
4901     c[0] = (C3()) ? '3' : '-';
4902     c[1] = (C2()) ? '2' : '-';
4903     c[2] = (C1()) ? '1' : '-';
4904     c[3] = (C0()) ? '0' : '-';
4905     c[4] = '\x0';
4906     // flags
4907     char f[9];
4908     f[0] = (error_status()) ? 'E' : '-';
4909     f[1] = (stack_fault ()) ? 'S' : '-';
4910     f[2] = (precision   ()) ? 'P' : '-';
4911     f[3] = (underflow   ()) ? 'U' : '-';
4912     f[4] = (overflow    ()) ? 'O' : '-';
4913     f[5] = (zero_divide ()) ? 'Z' : '-';
4914     f[6] = (denormalized()) ? 'D' : '-';
4915     f[7] = (invalid     ()) ? 'I' : '-';
4916     f[8] = '\x0';
4917     // output
4918     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
4919   }
4920 
4921 };
4922 
4923 class TagWord {
4924  public:
4925   int32_t _value;
4926 
4927   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
4928 
4929   void print() const {
4930     printf("%04x", _value & 0xFFFF);
4931   }
4932 
4933 };
4934 
4935 class FPU_Register {
4936  public:
4937   int32_t _m0;
4938   int32_t _m1;
4939   int16_t _ex;
4940 
4941   bool is_indefinite() const           {
4942     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
4943   }
4944 
4945   void print() const {
4946     char  sign = (_ex < 0) ? '-' : '+';
4947     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
4948     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
4949   };
4950 
4951 };
4952 
4953 class FPU_State {
4954  public:
4955   enum {
4956     register_size       = 10,
4957     number_of_registers =  8,
4958     register_mask       =  7
4959   };
4960 
4961   ControlWord  _control_word;
4962   StatusWord   _status_word;
4963   TagWord      _tag_word;
4964   int32_t      _error_offset;
4965   int32_t      _error_selector;
4966   int32_t      _data_offset;
4967   int32_t      _data_selector;
4968   int8_t       _register[register_size * number_of_registers];
4969 
4970   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
4971   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
4972 
4973   const char* tag_as_string(int tag) const {
4974     switch (tag) {
4975       case 0: return "valid";
4976       case 1: return "zero";
4977       case 2: return "special";
4978       case 3: return "empty";
4979     }
4980     ShouldNotReachHere();
4981     return NULL;
4982   }
4983 
4984   void print() const {
4985     // print computation registers
4986     { int t = _status_word.top();
4987       for (int i = 0; i < number_of_registers; i++) {
4988         int j = (i - t) & register_mask;
4989         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
4990         st(j)->print();
4991         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
4992       }
4993     }
4994     printf("\n");
4995     // print control registers
4996     printf("ctrl = "); _control_word.print(); printf("\n");
4997     printf("stat = "); _status_word .print(); printf("\n");
4998     printf("tags = "); _tag_word    .print(); printf("\n");
4999   }
5000 
5001 };
5002 
5003 class Flag_Register {
5004  public:
5005   int32_t _value;
5006 
5007   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5008   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5009   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5010   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5011   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5012   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5013   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5014 
5015   void print() const {
5016     // flags
5017     char f[8];
5018     f[0] = (overflow       ()) ? 'O' : '-';
5019     f[1] = (direction      ()) ? 'D' : '-';
5020     f[2] = (sign           ()) ? 'S' : '-';
5021     f[3] = (zero           ()) ? 'Z' : '-';
5022     f[4] = (auxiliary_carry()) ? 'A' : '-';
5023     f[5] = (parity         ()) ? 'P' : '-';
5024     f[6] = (carry          ()) ? 'C' : '-';
5025     f[7] = '\x0';
5026     // output
5027     printf("%08x  flags = %s", _value, f);
5028   }
5029 
5030 };
5031 
5032 class IU_Register {
5033  public:
5034   int32_t _value;
5035 
5036   void print() const {
5037     printf("%08x  %11d", _value, _value);
5038   }
5039 
5040 };
5041 
5042 class IU_State {
5043  public:
5044   Flag_Register _eflags;
5045   IU_Register   _rdi;
5046   IU_Register   _rsi;
5047   IU_Register   _rbp;
5048   IU_Register   _rsp;
5049   IU_Register   _rbx;
5050   IU_Register   _rdx;
5051   IU_Register   _rcx;
5052   IU_Register   _rax;
5053 
5054   void print() const {
5055     // computation registers
5056     printf("rax,  = "); _rax.print(); printf("\n");
5057     printf("rbx,  = "); _rbx.print(); printf("\n");
5058     printf("rcx  = "); _rcx.print(); printf("\n");
5059     printf("rdx  = "); _rdx.print(); printf("\n");
5060     printf("rdi  = "); _rdi.print(); printf("\n");
5061     printf("rsi  = "); _rsi.print(); printf("\n");
5062     printf("rbp,  = "); _rbp.print(); printf("\n");
5063     printf("rsp  = "); _rsp.print(); printf("\n");
5064     printf("\n");
5065     // control registers
5066     printf("flgs = "); _eflags.print(); printf("\n");
5067   }
5068 };
5069 
5070 
5071 class CPU_State {
5072  public:
5073   FPU_State _fpu_state;
5074   IU_State  _iu_state;
5075 
5076   void print() const {
5077     printf("--------------------------------------------------\n");
5078     _iu_state .print();
5079     printf("\n");
5080     _fpu_state.print();
5081     printf("--------------------------------------------------\n");
5082   }
5083 
5084 };
5085 
5086 
5087 static void _print_CPU_state(CPU_State* state) {
5088   state->print();
5089 };
5090 
5091 
5092 void MacroAssembler::print_CPU_state() {
5093   push_CPU_state();
5094   push(rsp);                // pass CPU state
5095   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5096   addptr(rsp, wordSize);       // discard argument
5097   pop_CPU_state();
5098 }
5099 
5100 
5101 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5102   static int counter = 0;
5103   FPU_State* fs = &state->_fpu_state;
5104   counter++;
5105   // For leaf calls, only verify that the top few elements remain empty.
5106   // We only need 1 empty at the top for C2 code.
5107   if( stack_depth < 0 ) {
5108     if( fs->tag_for_st(7) != 3 ) {
5109       printf("FPR7 not empty\n");
5110       state->print();
5111       assert(false, "error");
5112       return false;
5113     }
5114     return true;                // All other stack states do not matter
5115   }
5116 
5117   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5118          "bad FPU control word");
5119 
5120   // compute stack depth
5121   int i = 0;
5122   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5123   int d = i;
5124   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5125   // verify findings
5126   if (i != FPU_State::number_of_registers) {
5127     // stack not contiguous
5128     printf("%s: stack not contiguous at ST%d\n", s, i);
5129     state->print();
5130     assert(false, "error");
5131     return false;
5132   }
5133   // check if computed stack depth corresponds to expected stack depth
5134   if (stack_depth < 0) {
5135     // expected stack depth is -stack_depth or less
5136     if (d > -stack_depth) {
5137       // too many elements on the stack
5138       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5139       state->print();
5140       assert(false, "error");
5141       return false;
5142     }
5143   } else {
5144     // expected stack depth is stack_depth
5145     if (d != stack_depth) {
5146       // wrong stack depth
5147       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5148       state->print();
5149       assert(false, "error");
5150       return false;
5151     }
5152   }
5153   // everything is cool
5154   return true;
5155 }
5156 
5157 
5158 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5159   if (!VerifyFPU) return;
5160   push_CPU_state();
5161   push(rsp);                // pass CPU state
5162   ExternalAddress msg((address) s);
5163   // pass message string s
5164   pushptr(msg.addr());
5165   push(stack_depth);        // pass stack depth
5166   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5167   addptr(rsp, 3 * wordSize);   // discard arguments
5168   // check for error
5169   { Label L;
5170     testl(rax, rax);
5171     jcc(Assembler::notZero, L);
5172     int3();                  // break if error condition
5173     bind(L);
5174   }
5175   pop_CPU_state();
5176 }
5177 
5178 void MacroAssembler::restore_cpu_control_state_after_jni() {
5179   // Either restore the MXCSR register after returning from the JNI Call
5180   // or verify that it wasn't changed (with -Xcheck:jni flag).
5181   if (VM_Version::supports_sse()) {
5182     if (RestoreMXCSROnJNICalls) {
5183       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5184     } else if (CheckJNICalls) {
5185       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5186     }
5187   }
5188   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5189   vzeroupper();
5190   // Reset k1 to 0xffff.
5191 
5192 #ifdef COMPILER2
5193   if (PostLoopMultiversioning && VM_Version::supports_evex()) {
5194     push(rcx);
5195     movl(rcx, 0xffff);
5196     kmovwl(k1, rcx);
5197     pop(rcx);
5198   }
5199 #endif // COMPILER2
5200 
5201 #ifndef _LP64
5202   // Either restore the x87 floating pointer control word after returning
5203   // from the JNI call or verify that it wasn't changed.
5204   if (CheckJNICalls) {
5205     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5206   }
5207 #endif // _LP64
5208 }
5209 
5210 // ((OopHandle)result).resolve();
5211 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
5212   assert_different_registers(result, tmp);
5213 
5214   // Only 64 bit platforms support GCs that require a tmp register
5215   // Only IN_HEAP loads require a thread_tmp register
5216   // OopHandle::resolve is an indirection like jobject.
5217   access_load_at(T_OBJECT, IN_NATIVE,
5218                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
5219 }
5220 
5221 // ((WeakHandle)result).resolve();
5222 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
5223   assert_different_registers(rresult, rtmp);
5224   Label resolved;
5225 
5226   // A null weak handle resolves to null.
5227   cmpptr(rresult, 0);
5228   jcc(Assembler::equal, resolved);
5229 
5230   // Only 64 bit platforms support GCs that require a tmp register
5231   // Only IN_HEAP loads require a thread_tmp register
5232   // WeakHandle::resolve is an indirection like jweak.
5233   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5234                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
5235   bind(resolved);
5236 }
5237 
5238 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
5239   // get mirror
5240   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5241   load_method_holder(mirror, method);
5242   movptr(mirror, Address(mirror, mirror_offset));
5243   resolve_oop_handle(mirror, tmp);
5244 }
5245 
5246 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5247   load_method_holder(rresult, rmethod);
5248   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5249 }
5250 
5251 void MacroAssembler::load_method_holder(Register holder, Register method) {
5252   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
5253   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
5254   movptr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass*
5255 }
5256 
5257 void MacroAssembler::load_klass(Register dst, Register src) {
5258 #ifdef _LP64
5259   if (UseCompressedClassPointers) {
5260     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5261     decode_klass_not_null(dst);
5262   } else
5263 #endif
5264     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5265 }
5266 
5267 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5268   load_klass(dst, src);
5269   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5270 }
5271 
5272 void MacroAssembler::store_klass(Register dst, Register src) {
5273 #ifdef _LP64
5274   if (UseCompressedClassPointers) {
5275     encode_klass_not_null(src);
5276     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5277   } else
5278 #endif
5279     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5280 }
5281 
5282 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
5283                                     Register tmp1, Register thread_tmp) {
5284   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5285   decorators = AccessInternal::decorator_fixup(decorators);
5286   bool as_raw = (decorators & AS_RAW) != 0;
5287   if (as_raw) {
5288     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5289   } else {
5290     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5291   }
5292 }
5293 
5294 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
5295                                      Register tmp1, Register tmp2) {
5296   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5297   decorators = AccessInternal::decorator_fixup(decorators);
5298   bool as_raw = (decorators & AS_RAW) != 0;
5299   if (as_raw) {
5300     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
5301   } else {
5302     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
5303   }
5304 }
5305 
5306 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
5307   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
5308   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
5309     decorators |= ACCESS_READ | ACCESS_WRITE;
5310   }
5311   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5312   return bs->resolve(this, decorators, obj);
5313 }
5314 
5315 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5316                                    Register thread_tmp, DecoratorSet decorators) {
5317   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
5318 }
5319 
5320 // Doesn't do verfication, generates fixed size code
5321 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5322                                             Register thread_tmp, DecoratorSet decorators) {
5323   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
5324 }
5325 
5326 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
5327                                     Register tmp2, DecoratorSet decorators) {
5328   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5329 }
5330 
5331 // Used for storing NULLs.
5332 void MacroAssembler::store_heap_oop_null(Address dst) {
5333   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
5334 }
5335 
5336 #ifdef _LP64
5337 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5338   if (UseCompressedClassPointers) {
5339     // Store to klass gap in destination
5340     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5341   }
5342 }
5343 
5344 #ifdef ASSERT
5345 void MacroAssembler::verify_heapbase(const char* msg) {
5346   assert (UseCompressedOops, "should be compressed");
5347   assert (Universe::heap() != NULL, "java heap should be initialized");
5348   if (CheckCompressedOops) {
5349     Label ok;
5350     push(rscratch1); // cmpptr trashes rscratch1
5351     cmpptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5352     jcc(Assembler::equal, ok);
5353     STOP(msg);
5354     bind(ok);
5355     pop(rscratch1);
5356   }
5357 }
5358 #endif
5359 
5360 // Algorithm must match oop.inline.hpp encode_heap_oop.
5361 void MacroAssembler::encode_heap_oop(Register r) {
5362 #ifdef ASSERT
5363   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5364 #endif
5365   verify_oop(r, "broken oop in encode_heap_oop");
5366   if (CompressedOops::base() == NULL) {
5367     if (CompressedOops::shift() != 0) {
5368       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5369       shrq(r, LogMinObjAlignmentInBytes);
5370     }
5371     return;
5372   }
5373   testq(r, r);
5374   cmovq(Assembler::equal, r, r12_heapbase);
5375   subq(r, r12_heapbase);
5376   shrq(r, LogMinObjAlignmentInBytes);
5377 }
5378 
5379 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5380 #ifdef ASSERT
5381   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5382   if (CheckCompressedOops) {
5383     Label ok;
5384     testq(r, r);
5385     jcc(Assembler::notEqual, ok);
5386     STOP("null oop passed to encode_heap_oop_not_null");
5387     bind(ok);
5388   }
5389 #endif
5390   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5391   if (CompressedOops::base() != NULL) {
5392     subq(r, r12_heapbase);
5393   }
5394   if (CompressedOops::shift() != 0) {
5395     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5396     shrq(r, LogMinObjAlignmentInBytes);
5397   }
5398 }
5399 
5400 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5401 #ifdef ASSERT
5402   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5403   if (CheckCompressedOops) {
5404     Label ok;
5405     testq(src, src);
5406     jcc(Assembler::notEqual, ok);
5407     STOP("null oop passed to encode_heap_oop_not_null2");
5408     bind(ok);
5409   }
5410 #endif
5411   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5412   if (dst != src) {
5413     movq(dst, src);
5414   }
5415   if (CompressedOops::base() != NULL) {
5416     subq(dst, r12_heapbase);
5417   }
5418   if (CompressedOops::shift() != 0) {
5419     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5420     shrq(dst, LogMinObjAlignmentInBytes);
5421   }
5422 }
5423 
5424 void  MacroAssembler::decode_heap_oop(Register r) {
5425 #ifdef ASSERT
5426   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5427 #endif
5428   if (CompressedOops::base() == NULL) {
5429     if (CompressedOops::shift() != 0) {
5430       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5431       shlq(r, LogMinObjAlignmentInBytes);
5432     }
5433   } else {
5434     Label done;
5435     shlq(r, LogMinObjAlignmentInBytes);
5436     jccb(Assembler::equal, done);
5437     addq(r, r12_heapbase);
5438     bind(done);
5439   }
5440   verify_oop(r, "broken oop in decode_heap_oop");
5441 }
5442 
5443 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5444   // Note: it will change flags
5445   assert (UseCompressedOops, "should only be used for compressed headers");
5446   assert (Universe::heap() != NULL, "java heap should be initialized");
5447   // Cannot assert, unverified entry point counts instructions (see .ad file)
5448   // vtableStubs also counts instructions in pd_code_size_limit.
5449   // Also do not verify_oop as this is called by verify_oop.
5450   if (CompressedOops::shift() != 0) {
5451     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5452     shlq(r, LogMinObjAlignmentInBytes);
5453     if (CompressedOops::base() != NULL) {
5454       addq(r, r12_heapbase);
5455     }
5456   } else {
5457     assert (CompressedOops::base() == NULL, "sanity");
5458   }
5459 }
5460 
5461 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5462   // Note: it will change flags
5463   assert (UseCompressedOops, "should only be used for compressed headers");
5464   assert (Universe::heap() != NULL, "java heap should be initialized");
5465   // Cannot assert, unverified entry point counts instructions (see .ad file)
5466   // vtableStubs also counts instructions in pd_code_size_limit.
5467   // Also do not verify_oop as this is called by verify_oop.
5468   if (CompressedOops::shift() != 0) {
5469     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5470     if (LogMinObjAlignmentInBytes == Address::times_8) {
5471       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5472     } else {
5473       if (dst != src) {
5474         movq(dst, src);
5475       }
5476       shlq(dst, LogMinObjAlignmentInBytes);
5477       if (CompressedOops::base() != NULL) {
5478         addq(dst, r12_heapbase);
5479       }
5480     }
5481   } else {
5482     assert (CompressedOops::base() == NULL, "sanity");
5483     if (dst != src) {
5484       movq(dst, src);
5485     }
5486   }
5487 }
5488 
5489 void MacroAssembler::encode_klass_not_null(Register r) {
5490   if (CompressedKlassPointers::base() != NULL) {
5491     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5492     assert(r != r12_heapbase, "Encoding a klass in r12");
5493     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5494     subq(r, r12_heapbase);
5495   }
5496   if (CompressedKlassPointers::shift() != 0) {
5497     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5498     shrq(r, LogKlassAlignmentInBytes);
5499   }
5500   if (CompressedKlassPointers::base() != NULL) {
5501     reinit_heapbase();
5502   }
5503 }
5504 
5505 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5506   if (dst == src) {
5507     encode_klass_not_null(src);
5508   } else {
5509     if (CompressedKlassPointers::base() != NULL) {
5510       mov64(dst, (int64_t)CompressedKlassPointers::base());
5511       negq(dst);
5512       addq(dst, src);
5513     } else {
5514       movptr(dst, src);
5515     }
5516     if (CompressedKlassPointers::shift() != 0) {
5517       assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5518       shrq(dst, LogKlassAlignmentInBytes);
5519     }
5520   }
5521 }
5522 
5523 // Function instr_size_for_decode_klass_not_null() counts the instructions
5524 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5525 // when (Universe::heap() != NULL).  Hence, if the instructions they
5526 // generate change, then this method needs to be updated.
5527 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5528   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5529   if (CompressedKlassPointers::base() != NULL) {
5530     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5531     return (CompressedKlassPointers::shift() == 0 ? 20 : 24);
5532   } else {
5533     // longest load decode klass function, mov64, leaq
5534     return 16;
5535   }
5536 }
5537 
5538 // !!! If the instructions that get generated here change then function
5539 // instr_size_for_decode_klass_not_null() needs to get updated.
5540 void  MacroAssembler::decode_klass_not_null(Register r) {
5541   // Note: it will change flags
5542   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5543   assert(r != r12_heapbase, "Decoding a klass in r12");
5544   // Cannot assert, unverified entry point counts instructions (see .ad file)
5545   // vtableStubs also counts instructions in pd_code_size_limit.
5546   // Also do not verify_oop as this is called by verify_oop.
5547   if (CompressedKlassPointers::shift() != 0) {
5548     assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5549     shlq(r, LogKlassAlignmentInBytes);
5550   }
5551   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5552   if (CompressedKlassPointers::base() != NULL) {
5553     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5554     addq(r, r12_heapbase);
5555     reinit_heapbase();
5556   }
5557 }
5558 
5559 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5560   // Note: it will change flags
5561   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5562   if (dst == src) {
5563     decode_klass_not_null(dst);
5564   } else {
5565     // Cannot assert, unverified entry point counts instructions (see .ad file)
5566     // vtableStubs also counts instructions in pd_code_size_limit.
5567     // Also do not verify_oop as this is called by verify_oop.
5568     mov64(dst, (int64_t)CompressedKlassPointers::base());
5569     if (CompressedKlassPointers::shift() != 0) {
5570       assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5571       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5572       leaq(dst, Address(dst, src, Address::times_8, 0));
5573     } else {
5574       addq(dst, src);
5575     }
5576   }
5577 }
5578 
5579 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5580   assert (UseCompressedOops, "should only be used for compressed headers");
5581   assert (Universe::heap() != NULL, "java heap should be initialized");
5582   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5583   int oop_index = oop_recorder()->find_index(obj);
5584   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5585   mov_narrow_oop(dst, oop_index, rspec);
5586 }
5587 
5588 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5589   assert (UseCompressedOops, "should only be used for compressed headers");
5590   assert (Universe::heap() != NULL, "java heap should be initialized");
5591   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5592   int oop_index = oop_recorder()->find_index(obj);
5593   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5594   mov_narrow_oop(dst, oop_index, rspec);
5595 }
5596 
5597 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5598   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5599   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5600   int klass_index = oop_recorder()->find_index(k);
5601   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5602   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5603 }
5604 
5605 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5606   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5607   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5608   int klass_index = oop_recorder()->find_index(k);
5609   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5610   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5611 }
5612 
5613 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5614   assert (UseCompressedOops, "should only be used for compressed headers");
5615   assert (Universe::heap() != NULL, "java heap should be initialized");
5616   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5617   int oop_index = oop_recorder()->find_index(obj);
5618   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5619   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5620 }
5621 
5622 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5623   assert (UseCompressedOops, "should only be used for compressed headers");
5624   assert (Universe::heap() != NULL, "java heap should be initialized");
5625   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5626   int oop_index = oop_recorder()->find_index(obj);
5627   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5628   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5629 }
5630 
5631 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5632   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5633   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5634   int klass_index = oop_recorder()->find_index(k);
5635   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5636   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5637 }
5638 
5639 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5640   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5641   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5642   int klass_index = oop_recorder()->find_index(k);
5643   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5644   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5645 }
5646 
5647 void MacroAssembler::reinit_heapbase() {
5648   if (UseCompressedOops || UseCompressedClassPointers) {
5649     if (Universe::heap() != NULL) {
5650       if (CompressedOops::base() == NULL) {
5651         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
5652       } else {
5653         mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base());
5654       }
5655     } else {
5656       movptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5657     }
5658   }
5659 }
5660 
5661 #endif // _LP64
5662 
5663 // C2 compiled method's prolog code.
5664 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub) {
5665 
5666   // WARNING: Initial instruction MUST be 5 bytes or longer so that
5667   // NativeJump::patch_verified_entry will be able to patch out the entry
5668   // code safely. The push to verify stack depth is ok at 5 bytes,
5669   // the frame allocation can be either 3 or 6 bytes. So if we don't do
5670   // stack bang then we must use the 6 byte frame allocation even if
5671   // we have no frame. :-(
5672   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
5673 
5674   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5675   // Remove word for return addr
5676   framesize -= wordSize;
5677   stack_bang_size -= wordSize;
5678 
5679   // Calls to C2R adapters often do not accept exceptional returns.
5680   // We require that their callers must bang for them.  But be careful, because
5681   // some VM calls (such as call site linkage) can use several kilobytes of
5682   // stack.  But the stack safety zone should account for that.
5683   // See bugs 4446381, 4468289, 4497237.
5684   if (stack_bang_size > 0) {
5685     generate_stack_overflow_check(stack_bang_size);
5686 
5687     // We always push rbp, so that on return to interpreter rbp, will be
5688     // restored correctly and we can correct the stack.
5689     push(rbp);
5690     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5691     if (PreserveFramePointer) {
5692       mov(rbp, rsp);
5693     }
5694     // Remove word for ebp
5695     framesize -= wordSize;
5696 
5697     // Create frame
5698     if (framesize) {
5699       subptr(rsp, framesize);
5700     }
5701   } else {
5702     // Create frame (force generation of a 4 byte immediate value)
5703     subptr_imm32(rsp, framesize);
5704 
5705     // Save RBP register now.
5706     framesize -= wordSize;
5707     movptr(Address(rsp, framesize), rbp);
5708     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5709     if (PreserveFramePointer) {
5710       movptr(rbp, rsp);
5711       if (framesize > 0) {
5712         addptr(rbp, framesize);
5713       }
5714     }
5715   }
5716 
5717   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
5718     framesize -= wordSize;
5719     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
5720   }
5721 
5722 #ifndef _LP64
5723   // If method sets FPU control word do it now
5724   if (fp_mode_24b) {
5725     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
5726   }
5727   if (UseSSE >= 2 && VerifyFPU) {
5728     verify_FPU(0, "FPU stack must be clean on entry");
5729   }
5730 #endif
5731 
5732 #ifdef ASSERT
5733   if (VerifyStackAtCalls) {
5734     Label L;
5735     push(rax);
5736     mov(rax, rsp);
5737     andptr(rax, StackAlignmentInBytes-1);
5738     cmpptr(rax, StackAlignmentInBytes-wordSize);
5739     pop(rax);
5740     jcc(Assembler::equal, L);
5741     STOP("Stack is not properly aligned!");
5742     bind(L);
5743   }
5744 #endif
5745 
5746   if (!is_stub) {
5747     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5748     bs->nmethod_entry_barrier(this);
5749   }
5750 }
5751 
5752 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
5753 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
5754   // cnt - number of qwords (8-byte words).
5755   // base - start address, qword aligned.
5756   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
5757   if (UseAVX >= 2) {
5758     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
5759   } else {
5760     pxor(xtmp, xtmp);
5761   }
5762   jmp(L_zero_64_bytes);
5763 
5764   BIND(L_loop);
5765   if (UseAVX >= 2) {
5766     vmovdqu(Address(base,  0), xtmp);
5767     vmovdqu(Address(base, 32), xtmp);
5768   } else {
5769     movdqu(Address(base,  0), xtmp);
5770     movdqu(Address(base, 16), xtmp);
5771     movdqu(Address(base, 32), xtmp);
5772     movdqu(Address(base, 48), xtmp);
5773   }
5774   addptr(base, 64);
5775 
5776   BIND(L_zero_64_bytes);
5777   subptr(cnt, 8);
5778   jccb(Assembler::greaterEqual, L_loop);
5779   addptr(cnt, 4);
5780   jccb(Assembler::less, L_tail);
5781   // Copy trailing 32 bytes
5782   if (UseAVX >= 2) {
5783     vmovdqu(Address(base, 0), xtmp);
5784   } else {
5785     movdqu(Address(base,  0), xtmp);
5786     movdqu(Address(base, 16), xtmp);
5787   }
5788   addptr(base, 32);
5789   subptr(cnt, 4);
5790 
5791   BIND(L_tail);
5792   addptr(cnt, 4);
5793   jccb(Assembler::lessEqual, L_end);
5794   decrement(cnt);
5795 
5796   BIND(L_sloop);
5797   movq(Address(base, 0), xtmp);
5798   addptr(base, 8);
5799   decrement(cnt);
5800   jccb(Assembler::greaterEqual, L_sloop);
5801   BIND(L_end);
5802 }
5803 
5804 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
5805   // cnt - number of qwords (8-byte words).
5806   // base - start address, qword aligned.
5807   // is_large - if optimizers know cnt is larger than InitArrayShortSize
5808   assert(base==rdi, "base register must be edi for rep stos");
5809   assert(tmp==rax,   "tmp register must be eax for rep stos");
5810   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
5811   assert(InitArrayShortSize % BytesPerLong == 0,
5812     "InitArrayShortSize should be the multiple of BytesPerLong");
5813 
5814   Label DONE;
5815 
5816   if (!is_large || !UseXMMForObjInit) {
5817     xorptr(tmp, tmp);
5818   }
5819 
5820   if (!is_large) {
5821     Label LOOP, LONG;
5822     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
5823     jccb(Assembler::greater, LONG);
5824 
5825     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5826 
5827     decrement(cnt);
5828     jccb(Assembler::negative, DONE); // Zero length
5829 
5830     // Use individual pointer-sized stores for small counts:
5831     BIND(LOOP);
5832     movptr(Address(base, cnt, Address::times_ptr), tmp);
5833     decrement(cnt);
5834     jccb(Assembler::greaterEqual, LOOP);
5835     jmpb(DONE);
5836 
5837     BIND(LONG);
5838   }
5839 
5840   // Use longer rep-prefixed ops for non-small counts:
5841   if (UseFastStosb) {
5842     shlptr(cnt, 3); // convert to number of bytes
5843     rep_stosb();
5844   } else if (UseXMMForObjInit) {
5845     movptr(tmp, base);
5846     xmm_clear_mem(tmp, cnt, xtmp);
5847   } else {
5848     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5849     rep_stos();
5850   }
5851 
5852   BIND(DONE);
5853 }
5854 
5855 #ifdef COMPILER2
5856 
5857 // IndexOf for constant substrings with size >= 8 chars
5858 // which don't need to be loaded through stack.
5859 void MacroAssembler::string_indexofC8(Register str1, Register str2,
5860                                       Register cnt1, Register cnt2,
5861                                       int int_cnt2,  Register result,
5862                                       XMMRegister vec, Register tmp,
5863                                       int ae) {
5864   ShortBranchVerifier sbv(this);
5865   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
5866   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5867 
5868   // This method uses the pcmpestri instruction with bound registers
5869   //   inputs:
5870   //     xmm - substring
5871   //     rax - substring length (elements count)
5872   //     mem - scanned string
5873   //     rdx - string length (elements count)
5874   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5875   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
5876   //   outputs:
5877   //     rcx - matched index in string
5878   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5879   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
5880   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
5881   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
5882   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
5883 
5884   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
5885         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
5886         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
5887 
5888   // Note, inline_string_indexOf() generates checks:
5889   // if (substr.count > string.count) return -1;
5890   // if (substr.count == 0) return 0;
5891   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
5892 
5893   // Load substring.
5894   if (ae == StrIntrinsicNode::UL) {
5895     pmovzxbw(vec, Address(str2, 0));
5896   } else {
5897     movdqu(vec, Address(str2, 0));
5898   }
5899   movl(cnt2, int_cnt2);
5900   movptr(result, str1); // string addr
5901 
5902   if (int_cnt2 > stride) {
5903     jmpb(SCAN_TO_SUBSTR);
5904 
5905     // Reload substr for rescan, this code
5906     // is executed only for large substrings (> 8 chars)
5907     bind(RELOAD_SUBSTR);
5908     if (ae == StrIntrinsicNode::UL) {
5909       pmovzxbw(vec, Address(str2, 0));
5910     } else {
5911       movdqu(vec, Address(str2, 0));
5912     }
5913     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
5914 
5915     bind(RELOAD_STR);
5916     // We came here after the beginning of the substring was
5917     // matched but the rest of it was not so we need to search
5918     // again. Start from the next element after the previous match.
5919 
5920     // cnt2 is number of substring reminding elements and
5921     // cnt1 is number of string reminding elements when cmp failed.
5922     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
5923     subl(cnt1, cnt2);
5924     addl(cnt1, int_cnt2);
5925     movl(cnt2, int_cnt2); // Now restore cnt2
5926 
5927     decrementl(cnt1);     // Shift to next element
5928     cmpl(cnt1, cnt2);
5929     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5930 
5931     addptr(result, (1<<scale1));
5932 
5933   } // (int_cnt2 > 8)
5934 
5935   // Scan string for start of substr in 16-byte vectors
5936   bind(SCAN_TO_SUBSTR);
5937   pcmpestri(vec, Address(result, 0), mode);
5938   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
5939   subl(cnt1, stride);
5940   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
5941   cmpl(cnt1, cnt2);
5942   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5943   addptr(result, 16);
5944   jmpb(SCAN_TO_SUBSTR);
5945 
5946   // Found a potential substr
5947   bind(FOUND_CANDIDATE);
5948   // Matched whole vector if first element matched (tmp(rcx) == 0).
5949   if (int_cnt2 == stride) {
5950     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
5951   } else { // int_cnt2 > 8
5952     jccb(Assembler::overflow, FOUND_SUBSTR);
5953   }
5954   // After pcmpestri tmp(rcx) contains matched element index
5955   // Compute start addr of substr
5956   lea(result, Address(result, tmp, scale1));
5957 
5958   // Make sure string is still long enough
5959   subl(cnt1, tmp);
5960   cmpl(cnt1, cnt2);
5961   if (int_cnt2 == stride) {
5962     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
5963   } else { // int_cnt2 > 8
5964     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
5965   }
5966   // Left less then substring.
5967 
5968   bind(RET_NOT_FOUND);
5969   movl(result, -1);
5970   jmp(EXIT);
5971 
5972   if (int_cnt2 > stride) {
5973     // This code is optimized for the case when whole substring
5974     // is matched if its head is matched.
5975     bind(MATCH_SUBSTR_HEAD);
5976     pcmpestri(vec, Address(result, 0), mode);
5977     // Reload only string if does not match
5978     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
5979 
5980     Label CONT_SCAN_SUBSTR;
5981     // Compare the rest of substring (> 8 chars).
5982     bind(FOUND_SUBSTR);
5983     // First 8 chars are already matched.
5984     negptr(cnt2);
5985     addptr(cnt2, stride);
5986 
5987     bind(SCAN_SUBSTR);
5988     subl(cnt1, stride);
5989     cmpl(cnt2, -stride); // Do not read beyond substring
5990     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
5991     // Back-up strings to avoid reading beyond substring:
5992     // cnt1 = cnt1 - cnt2 + 8
5993     addl(cnt1, cnt2); // cnt2 is negative
5994     addl(cnt1, stride);
5995     movl(cnt2, stride); negptr(cnt2);
5996     bind(CONT_SCAN_SUBSTR);
5997     if (int_cnt2 < (int)G) {
5998       int tail_off1 = int_cnt2<<scale1;
5999       int tail_off2 = int_cnt2<<scale2;
6000       if (ae == StrIntrinsicNode::UL) {
6001         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
6002       } else {
6003         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
6004       }
6005       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
6006     } else {
6007       // calculate index in register to avoid integer overflow (int_cnt2*2)
6008       movl(tmp, int_cnt2);
6009       addptr(tmp, cnt2);
6010       if (ae == StrIntrinsicNode::UL) {
6011         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
6012       } else {
6013         movdqu(vec, Address(str2, tmp, scale2, 0));
6014       }
6015       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
6016     }
6017     // Need to reload strings pointers if not matched whole vector
6018     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6019     addptr(cnt2, stride);
6020     jcc(Assembler::negative, SCAN_SUBSTR);
6021     // Fall through if found full substring
6022 
6023   } // (int_cnt2 > 8)
6024 
6025   bind(RET_FOUND);
6026   // Found result if we matched full small substring.
6027   // Compute substr offset
6028   subptr(result, str1);
6029   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6030     shrl(result, 1); // index
6031   }
6032   bind(EXIT);
6033 
6034 } // string_indexofC8
6035 
6036 // Small strings are loaded through stack if they cross page boundary.
6037 void MacroAssembler::string_indexof(Register str1, Register str2,
6038                                     Register cnt1, Register cnt2,
6039                                     int int_cnt2,  Register result,
6040                                     XMMRegister vec, Register tmp,
6041                                     int ae) {
6042   ShortBranchVerifier sbv(this);
6043   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6044   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6045 
6046   //
6047   // int_cnt2 is length of small (< 8 chars) constant substring
6048   // or (-1) for non constant substring in which case its length
6049   // is in cnt2 register.
6050   //
6051   // Note, inline_string_indexOf() generates checks:
6052   // if (substr.count > string.count) return -1;
6053   // if (substr.count == 0) return 0;
6054   //
6055   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6056   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
6057   // This method uses the pcmpestri instruction with bound registers
6058   //   inputs:
6059   //     xmm - substring
6060   //     rax - substring length (elements count)
6061   //     mem - scanned string
6062   //     rdx - string length (elements count)
6063   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6064   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6065   //   outputs:
6066   //     rcx - matched index in string
6067   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6068   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6069   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6070   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6071 
6072   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6073         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6074         FOUND_CANDIDATE;
6075 
6076   { //========================================================
6077     // We don't know where these strings are located
6078     // and we can't read beyond them. Load them through stack.
6079     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6080 
6081     movptr(tmp, rsp); // save old SP
6082 
6083     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6084       if (int_cnt2 == (1>>scale2)) { // One byte
6085         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
6086         load_unsigned_byte(result, Address(str2, 0));
6087         movdl(vec, result); // move 32 bits
6088       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
6089         // Not enough header space in 32-bit VM: 12+3 = 15.
6090         movl(result, Address(str2, -1));
6091         shrl(result, 8);
6092         movdl(vec, result); // move 32 bits
6093       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
6094         load_unsigned_short(result, Address(str2, 0));
6095         movdl(vec, result); // move 32 bits
6096       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
6097         movdl(vec, Address(str2, 0)); // move 32 bits
6098       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
6099         movq(vec, Address(str2, 0));  // move 64 bits
6100       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
6101         // Array header size is 12 bytes in 32-bit VM
6102         // + 6 bytes for 3 chars == 18 bytes,
6103         // enough space to load vec and shift.
6104         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6105         if (ae == StrIntrinsicNode::UL) {
6106           int tail_off = int_cnt2-8;
6107           pmovzxbw(vec, Address(str2, tail_off));
6108           psrldq(vec, -2*tail_off);
6109         }
6110         else {
6111           int tail_off = int_cnt2*(1<<scale2);
6112           movdqu(vec, Address(str2, tail_off-16));
6113           psrldq(vec, 16-tail_off);
6114         }
6115       }
6116     } else { // not constant substring
6117       cmpl(cnt2, stride);
6118       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6119 
6120       // We can read beyond string if srt+16 does not cross page boundary
6121       // since heaps are aligned and mapped by pages.
6122       assert(os::vm_page_size() < (int)G, "default page should be small");
6123       movl(result, str2); // We need only low 32 bits
6124       andl(result, (os::vm_page_size()-1));
6125       cmpl(result, (os::vm_page_size()-16));
6126       jccb(Assembler::belowEqual, CHECK_STR);
6127 
6128       // Move small strings to stack to allow load 16 bytes into vec.
6129       subptr(rsp, 16);
6130       int stk_offset = wordSize-(1<<scale2);
6131       push(cnt2);
6132 
6133       bind(COPY_SUBSTR);
6134       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
6135         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
6136         movb(Address(rsp, cnt2, scale2, stk_offset), result);
6137       } else if (ae == StrIntrinsicNode::UU) {
6138         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
6139         movw(Address(rsp, cnt2, scale2, stk_offset), result);
6140       }
6141       decrement(cnt2);
6142       jccb(Assembler::notZero, COPY_SUBSTR);
6143 
6144       pop(cnt2);
6145       movptr(str2, rsp);  // New substring address
6146     } // non constant
6147 
6148     bind(CHECK_STR);
6149     cmpl(cnt1, stride);
6150     jccb(Assembler::aboveEqual, BIG_STRINGS);
6151 
6152     // Check cross page boundary.
6153     movl(result, str1); // We need only low 32 bits
6154     andl(result, (os::vm_page_size()-1));
6155     cmpl(result, (os::vm_page_size()-16));
6156     jccb(Assembler::belowEqual, BIG_STRINGS);
6157 
6158     subptr(rsp, 16);
6159     int stk_offset = -(1<<scale1);
6160     if (int_cnt2 < 0) { // not constant
6161       push(cnt2);
6162       stk_offset += wordSize;
6163     }
6164     movl(cnt2, cnt1);
6165 
6166     bind(COPY_STR);
6167     if (ae == StrIntrinsicNode::LL) {
6168       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
6169       movb(Address(rsp, cnt2, scale1, stk_offset), result);
6170     } else {
6171       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
6172       movw(Address(rsp, cnt2, scale1, stk_offset), result);
6173     }
6174     decrement(cnt2);
6175     jccb(Assembler::notZero, COPY_STR);
6176 
6177     if (int_cnt2 < 0) { // not constant
6178       pop(cnt2);
6179     }
6180     movptr(str1, rsp);  // New string address
6181 
6182     bind(BIG_STRINGS);
6183     // Load substring.
6184     if (int_cnt2 < 0) { // -1
6185       if (ae == StrIntrinsicNode::UL) {
6186         pmovzxbw(vec, Address(str2, 0));
6187       } else {
6188         movdqu(vec, Address(str2, 0));
6189       }
6190       push(cnt2);       // substr count
6191       push(str2);       // substr addr
6192       push(str1);       // string addr
6193     } else {
6194       // Small (< 8 chars) constant substrings are loaded already.
6195       movl(cnt2, int_cnt2);
6196     }
6197     push(tmp);  // original SP
6198 
6199   } // Finished loading
6200 
6201   //========================================================
6202   // Start search
6203   //
6204 
6205   movptr(result, str1); // string addr
6206 
6207   if (int_cnt2  < 0) {  // Only for non constant substring
6208     jmpb(SCAN_TO_SUBSTR);
6209 
6210     // SP saved at sp+0
6211     // String saved at sp+1*wordSize
6212     // Substr saved at sp+2*wordSize
6213     // Substr count saved at sp+3*wordSize
6214 
6215     // Reload substr for rescan, this code
6216     // is executed only for large substrings (> 8 chars)
6217     bind(RELOAD_SUBSTR);
6218     movptr(str2, Address(rsp, 2*wordSize));
6219     movl(cnt2, Address(rsp, 3*wordSize));
6220     if (ae == StrIntrinsicNode::UL) {
6221       pmovzxbw(vec, Address(str2, 0));
6222     } else {
6223       movdqu(vec, Address(str2, 0));
6224     }
6225     // We came here after the beginning of the substring was
6226     // matched but the rest of it was not so we need to search
6227     // again. Start from the next element after the previous match.
6228     subptr(str1, result); // Restore counter
6229     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6230       shrl(str1, 1);
6231     }
6232     addl(cnt1, str1);
6233     decrementl(cnt1);   // Shift to next element
6234     cmpl(cnt1, cnt2);
6235     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6236 
6237     addptr(result, (1<<scale1));
6238   } // non constant
6239 
6240   // Scan string for start of substr in 16-byte vectors
6241   bind(SCAN_TO_SUBSTR);
6242   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6243   pcmpestri(vec, Address(result, 0), mode);
6244   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6245   subl(cnt1, stride);
6246   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6247   cmpl(cnt1, cnt2);
6248   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6249   addptr(result, 16);
6250 
6251   bind(ADJUST_STR);
6252   cmpl(cnt1, stride); // Do not read beyond string
6253   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6254   // Back-up string to avoid reading beyond string.
6255   lea(result, Address(result, cnt1, scale1, -16));
6256   movl(cnt1, stride);
6257   jmpb(SCAN_TO_SUBSTR);
6258 
6259   // Found a potential substr
6260   bind(FOUND_CANDIDATE);
6261   // After pcmpestri tmp(rcx) contains matched element index
6262 
6263   // Make sure string is still long enough
6264   subl(cnt1, tmp);
6265   cmpl(cnt1, cnt2);
6266   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6267   // Left less then substring.
6268 
6269   bind(RET_NOT_FOUND);
6270   movl(result, -1);
6271   jmp(CLEANUP);
6272 
6273   bind(FOUND_SUBSTR);
6274   // Compute start addr of substr
6275   lea(result, Address(result, tmp, scale1));
6276   if (int_cnt2 > 0) { // Constant substring
6277     // Repeat search for small substring (< 8 chars)
6278     // from new point without reloading substring.
6279     // Have to check that we don't read beyond string.
6280     cmpl(tmp, stride-int_cnt2);
6281     jccb(Assembler::greater, ADJUST_STR);
6282     // Fall through if matched whole substring.
6283   } else { // non constant
6284     assert(int_cnt2 == -1, "should be != 0");
6285 
6286     addl(tmp, cnt2);
6287     // Found result if we matched whole substring.
6288     cmpl(tmp, stride);
6289     jcc(Assembler::lessEqual, RET_FOUND);
6290 
6291     // Repeat search for small substring (<= 8 chars)
6292     // from new point 'str1' without reloading substring.
6293     cmpl(cnt2, stride);
6294     // Have to check that we don't read beyond string.
6295     jccb(Assembler::lessEqual, ADJUST_STR);
6296 
6297     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6298     // Compare the rest of substring (> 8 chars).
6299     movptr(str1, result);
6300 
6301     cmpl(tmp, cnt2);
6302     // First 8 chars are already matched.
6303     jccb(Assembler::equal, CHECK_NEXT);
6304 
6305     bind(SCAN_SUBSTR);
6306     pcmpestri(vec, Address(str1, 0), mode);
6307     // Need to reload strings pointers if not matched whole vector
6308     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6309 
6310     bind(CHECK_NEXT);
6311     subl(cnt2, stride);
6312     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6313     addptr(str1, 16);
6314     if (ae == StrIntrinsicNode::UL) {
6315       addptr(str2, 8);
6316     } else {
6317       addptr(str2, 16);
6318     }
6319     subl(cnt1, stride);
6320     cmpl(cnt2, stride); // Do not read beyond substring
6321     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6322     // Back-up strings to avoid reading beyond substring.
6323 
6324     if (ae == StrIntrinsicNode::UL) {
6325       lea(str2, Address(str2, cnt2, scale2, -8));
6326       lea(str1, Address(str1, cnt2, scale1, -16));
6327     } else {
6328       lea(str2, Address(str2, cnt2, scale2, -16));
6329       lea(str1, Address(str1, cnt2, scale1, -16));
6330     }
6331     subl(cnt1, cnt2);
6332     movl(cnt2, stride);
6333     addl(cnt1, stride);
6334     bind(CONT_SCAN_SUBSTR);
6335     if (ae == StrIntrinsicNode::UL) {
6336       pmovzxbw(vec, Address(str2, 0));
6337     } else {
6338       movdqu(vec, Address(str2, 0));
6339     }
6340     jmp(SCAN_SUBSTR);
6341 
6342     bind(RET_FOUND_LONG);
6343     movptr(str1, Address(rsp, wordSize));
6344   } // non constant
6345 
6346   bind(RET_FOUND);
6347   // Compute substr offset
6348   subptr(result, str1);
6349   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6350     shrl(result, 1); // index
6351   }
6352   bind(CLEANUP);
6353   pop(rsp); // restore SP
6354 
6355 } // string_indexof
6356 
6357 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
6358                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
6359   ShortBranchVerifier sbv(this);
6360   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6361 
6362   int stride = 8;
6363 
6364   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
6365         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
6366         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
6367         FOUND_SEQ_CHAR, DONE_LABEL;
6368 
6369   movptr(result, str1);
6370   if (UseAVX >= 2) {
6371     cmpl(cnt1, stride);
6372     jcc(Assembler::less, SCAN_TO_CHAR);
6373     cmpl(cnt1, 2*stride);
6374     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
6375     movdl(vec1, ch);
6376     vpbroadcastw(vec1, vec1, Assembler::AVX_256bit);
6377     vpxor(vec2, vec2);
6378     movl(tmp, cnt1);
6379     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
6380     andl(cnt1,0x0000000F);  //tail count (in chars)
6381 
6382     bind(SCAN_TO_16_CHAR_LOOP);
6383     vmovdqu(vec3, Address(result, 0));
6384     vpcmpeqw(vec3, vec3, vec1, 1);
6385     vptest(vec2, vec3);
6386     jcc(Assembler::carryClear, FOUND_CHAR);
6387     addptr(result, 32);
6388     subl(tmp, 2*stride);
6389     jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
6390     jmp(SCAN_TO_8_CHAR);
6391     bind(SCAN_TO_8_CHAR_INIT);
6392     movdl(vec1, ch);
6393     pshuflw(vec1, vec1, 0x00);
6394     pshufd(vec1, vec1, 0);
6395     pxor(vec2, vec2);
6396   }
6397   bind(SCAN_TO_8_CHAR);
6398   cmpl(cnt1, stride);
6399   jcc(Assembler::less, SCAN_TO_CHAR);
6400   if (UseAVX < 2) {
6401     movdl(vec1, ch);
6402     pshuflw(vec1, vec1, 0x00);
6403     pshufd(vec1, vec1, 0);
6404     pxor(vec2, vec2);
6405   }
6406   movl(tmp, cnt1);
6407   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
6408   andl(cnt1,0x00000007);  //tail count (in chars)
6409 
6410   bind(SCAN_TO_8_CHAR_LOOP);
6411   movdqu(vec3, Address(result, 0));
6412   pcmpeqw(vec3, vec1);
6413   ptest(vec2, vec3);
6414   jcc(Assembler::carryClear, FOUND_CHAR);
6415   addptr(result, 16);
6416   subl(tmp, stride);
6417   jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
6418   bind(SCAN_TO_CHAR);
6419   testl(cnt1, cnt1);
6420   jcc(Assembler::zero, RET_NOT_FOUND);
6421   bind(SCAN_TO_CHAR_LOOP);
6422   load_unsigned_short(tmp, Address(result, 0));
6423   cmpl(ch, tmp);
6424   jccb(Assembler::equal, FOUND_SEQ_CHAR);
6425   addptr(result, 2);
6426   subl(cnt1, 1);
6427   jccb(Assembler::zero, RET_NOT_FOUND);
6428   jmp(SCAN_TO_CHAR_LOOP);
6429 
6430   bind(RET_NOT_FOUND);
6431   movl(result, -1);
6432   jmpb(DONE_LABEL);
6433 
6434   bind(FOUND_CHAR);
6435   if (UseAVX >= 2) {
6436     vpmovmskb(tmp, vec3);
6437   } else {
6438     pmovmskb(tmp, vec3);
6439   }
6440   bsfl(ch, tmp);
6441   addl(result, ch);
6442 
6443   bind(FOUND_SEQ_CHAR);
6444   subptr(result, str1);
6445   shrl(result, 1);
6446 
6447   bind(DONE_LABEL);
6448 } // string_indexof_char
6449 
6450 // helper function for string_compare
6451 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
6452                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
6453                                         Address::ScaleFactor scale2, Register index, int ae) {
6454   if (ae == StrIntrinsicNode::LL) {
6455     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
6456     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
6457   } else if (ae == StrIntrinsicNode::UU) {
6458     load_unsigned_short(elem1, Address(str1, index, scale, 0));
6459     load_unsigned_short(elem2, Address(str2, index, scale, 0));
6460   } else {
6461     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
6462     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
6463   }
6464 }
6465 
6466 // Compare strings, used for char[] and byte[].
6467 void MacroAssembler::string_compare(Register str1, Register str2,
6468                                     Register cnt1, Register cnt2, Register result,
6469                                     XMMRegister vec1, int ae) {
6470   ShortBranchVerifier sbv(this);
6471   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6472   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
6473   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
6474   int stride2x2 = 0x40;
6475   Address::ScaleFactor scale = Address::no_scale;
6476   Address::ScaleFactor scale1 = Address::no_scale;
6477   Address::ScaleFactor scale2 = Address::no_scale;
6478 
6479   if (ae != StrIntrinsicNode::LL) {
6480     stride2x2 = 0x20;
6481   }
6482 
6483   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
6484     shrl(cnt2, 1);
6485   }
6486   // Compute the minimum of the string lengths and the
6487   // difference of the string lengths (stack).
6488   // Do the conditional move stuff
6489   movl(result, cnt1);
6490   subl(cnt1, cnt2);
6491   push(cnt1);
6492   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
6493 
6494   // Is the minimum length zero?
6495   testl(cnt2, cnt2);
6496   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6497   if (ae == StrIntrinsicNode::LL) {
6498     // Load first bytes
6499     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
6500     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
6501   } else if (ae == StrIntrinsicNode::UU) {
6502     // Load first characters
6503     load_unsigned_short(result, Address(str1, 0));
6504     load_unsigned_short(cnt1, Address(str2, 0));
6505   } else {
6506     load_unsigned_byte(result, Address(str1, 0));
6507     load_unsigned_short(cnt1, Address(str2, 0));
6508   }
6509   subl(result, cnt1);
6510   jcc(Assembler::notZero,  POP_LABEL);
6511 
6512   if (ae == StrIntrinsicNode::UU) {
6513     // Divide length by 2 to get number of chars
6514     shrl(cnt2, 1);
6515   }
6516   cmpl(cnt2, 1);
6517   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6518 
6519   // Check if the strings start at the same location and setup scale and stride
6520   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6521     cmpptr(str1, str2);
6522     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6523     if (ae == StrIntrinsicNode::LL) {
6524       scale = Address::times_1;
6525       stride = 16;
6526     } else {
6527       scale = Address::times_2;
6528       stride = 8;
6529     }
6530   } else {
6531     scale1 = Address::times_1;
6532     scale2 = Address::times_2;
6533     // scale not used
6534     stride = 8;
6535   }
6536 
6537   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6538     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6539     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6540     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
6541     Label COMPARE_TAIL_LONG;
6542     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
6543 
6544     int pcmpmask = 0x19;
6545     if (ae == StrIntrinsicNode::LL) {
6546       pcmpmask &= ~0x01;
6547     }
6548 
6549     // Setup to compare 16-chars (32-bytes) vectors,
6550     // start from first character again because it has aligned address.
6551     if (ae == StrIntrinsicNode::LL) {
6552       stride2 = 32;
6553     } else {
6554       stride2 = 16;
6555     }
6556     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6557       adr_stride = stride << scale;
6558     } else {
6559       adr_stride1 = 8;  //stride << scale1;
6560       adr_stride2 = 16; //stride << scale2;
6561     }
6562 
6563     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6564     // rax and rdx are used by pcmpestri as elements counters
6565     movl(result, cnt2);
6566     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6567     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6568 
6569     // fast path : compare first 2 8-char vectors.
6570     bind(COMPARE_16_CHARS);
6571     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6572       movdqu(vec1, Address(str1, 0));
6573     } else {
6574       pmovzxbw(vec1, Address(str1, 0));
6575     }
6576     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6577     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6578 
6579     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6580       movdqu(vec1, Address(str1, adr_stride));
6581       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6582     } else {
6583       pmovzxbw(vec1, Address(str1, adr_stride1));
6584       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
6585     }
6586     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6587     addl(cnt1, stride);
6588 
6589     // Compare the characters at index in cnt1
6590     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
6591     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6592     subl(result, cnt2);
6593     jmp(POP_LABEL);
6594 
6595     // Setup the registers to start vector comparison loop
6596     bind(COMPARE_WIDE_VECTORS);
6597     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6598       lea(str1, Address(str1, result, scale));
6599       lea(str2, Address(str2, result, scale));
6600     } else {
6601       lea(str1, Address(str1, result, scale1));
6602       lea(str2, Address(str2, result, scale2));
6603     }
6604     subl(result, stride2);
6605     subl(cnt2, stride2);
6606     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
6607     negptr(result);
6608 
6609     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6610     bind(COMPARE_WIDE_VECTORS_LOOP);
6611 
6612 #ifdef _LP64
6613     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
6614       cmpl(cnt2, stride2x2);
6615       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
6616       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
6617       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
6618 
6619       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
6620       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6621         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
6622         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6623       } else {
6624         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
6625         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6626       }
6627       kortestql(k7, k7);
6628       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
6629       addptr(result, stride2x2);  // update since we already compared at this addr
6630       subl(cnt2, stride2x2);      // and sub the size too
6631       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
6632 
6633       vpxor(vec1, vec1);
6634       jmpb(COMPARE_WIDE_TAIL);
6635     }//if (VM_Version::supports_avx512vlbw())
6636 #endif // _LP64
6637 
6638 
6639     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6640     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6641       vmovdqu(vec1, Address(str1, result, scale));
6642       vpxor(vec1, Address(str2, result, scale));
6643     } else {
6644       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
6645       vpxor(vec1, Address(str2, result, scale2));
6646     }
6647     vptest(vec1, vec1);
6648     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
6649     addptr(result, stride2);
6650     subl(cnt2, stride2);
6651     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6652     // clean upper bits of YMM registers
6653     vpxor(vec1, vec1);
6654 
6655     // compare wide vectors tail
6656     bind(COMPARE_WIDE_TAIL);
6657     testptr(result, result);
6658     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6659 
6660     movl(result, stride2);
6661     movl(cnt2, result);
6662     negptr(result);
6663     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6664 
6665     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6666     bind(VECTOR_NOT_EQUAL);
6667     // clean upper bits of YMM registers
6668     vpxor(vec1, vec1);
6669     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6670       lea(str1, Address(str1, result, scale));
6671       lea(str2, Address(str2, result, scale));
6672     } else {
6673       lea(str1, Address(str1, result, scale1));
6674       lea(str2, Address(str2, result, scale2));
6675     }
6676     jmp(COMPARE_16_CHARS);
6677 
6678     // Compare tail chars, length between 1 to 15 chars
6679     bind(COMPARE_TAIL_LONG);
6680     movl(cnt2, result);
6681     cmpl(cnt2, stride);
6682     jcc(Assembler::less, COMPARE_SMALL_STR);
6683 
6684     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6685       movdqu(vec1, Address(str1, 0));
6686     } else {
6687       pmovzxbw(vec1, Address(str1, 0));
6688     }
6689     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6690     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6691     subptr(cnt2, stride);
6692     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6693     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6694       lea(str1, Address(str1, result, scale));
6695       lea(str2, Address(str2, result, scale));
6696     } else {
6697       lea(str1, Address(str1, result, scale1));
6698       lea(str2, Address(str2, result, scale2));
6699     }
6700     negptr(cnt2);
6701     jmpb(WHILE_HEAD_LABEL);
6702 
6703     bind(COMPARE_SMALL_STR);
6704   } else if (UseSSE42Intrinsics) {
6705     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6706     int pcmpmask = 0x19;
6707     // Setup to compare 8-char (16-byte) vectors,
6708     // start from first character again because it has aligned address.
6709     movl(result, cnt2);
6710     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6711     if (ae == StrIntrinsicNode::LL) {
6712       pcmpmask &= ~0x01;
6713     }
6714     jcc(Assembler::zero, COMPARE_TAIL);
6715     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6716       lea(str1, Address(str1, result, scale));
6717       lea(str2, Address(str2, result, scale));
6718     } else {
6719       lea(str1, Address(str1, result, scale1));
6720       lea(str2, Address(str2, result, scale2));
6721     }
6722     negptr(result);
6723 
6724     // pcmpestri
6725     //   inputs:
6726     //     vec1- substring
6727     //     rax - negative string length (elements count)
6728     //     mem - scanned string
6729     //     rdx - string length (elements count)
6730     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6731     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6732     //   outputs:
6733     //     rcx - first mismatched element index
6734     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6735 
6736     bind(COMPARE_WIDE_VECTORS);
6737     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6738       movdqu(vec1, Address(str1, result, scale));
6739       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6740     } else {
6741       pmovzxbw(vec1, Address(str1, result, scale1));
6742       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6743     }
6744     // After pcmpestri cnt1(rcx) contains mismatched element index
6745 
6746     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6747     addptr(result, stride);
6748     subptr(cnt2, stride);
6749     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6750 
6751     // compare wide vectors tail
6752     testptr(result, result);
6753     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6754 
6755     movl(cnt2, stride);
6756     movl(result, stride);
6757     negptr(result);
6758     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6759       movdqu(vec1, Address(str1, result, scale));
6760       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6761     } else {
6762       pmovzxbw(vec1, Address(str1, result, scale1));
6763       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6764     }
6765     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6766 
6767     // Mismatched characters in the vectors
6768     bind(VECTOR_NOT_EQUAL);
6769     addptr(cnt1, result);
6770     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6771     subl(result, cnt2);
6772     jmpb(POP_LABEL);
6773 
6774     bind(COMPARE_TAIL); // limit is zero
6775     movl(cnt2, result);
6776     // Fallthru to tail compare
6777   }
6778   // Shift str2 and str1 to the end of the arrays, negate min
6779   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6780     lea(str1, Address(str1, cnt2, scale));
6781     lea(str2, Address(str2, cnt2, scale));
6782   } else {
6783     lea(str1, Address(str1, cnt2, scale1));
6784     lea(str2, Address(str2, cnt2, scale2));
6785   }
6786   decrementl(cnt2);  // first character was compared already
6787   negptr(cnt2);
6788 
6789   // Compare the rest of the elements
6790   bind(WHILE_HEAD_LABEL);
6791   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
6792   subl(result, cnt1);
6793   jccb(Assembler::notZero, POP_LABEL);
6794   increment(cnt2);
6795   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6796 
6797   // Strings are equal up to min length.  Return the length difference.
6798   bind(LENGTH_DIFF_LABEL);
6799   pop(result);
6800   if (ae == StrIntrinsicNode::UU) {
6801     // Divide diff by 2 to get number of chars
6802     sarl(result, 1);
6803   }
6804   jmpb(DONE_LABEL);
6805 
6806 #ifdef _LP64
6807   if (VM_Version::supports_avx512vlbw()) {
6808 
6809     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
6810 
6811     kmovql(cnt1, k7);
6812     notq(cnt1);
6813     bsfq(cnt2, cnt1);
6814     if (ae != StrIntrinsicNode::LL) {
6815       // Divide diff by 2 to get number of chars
6816       sarl(cnt2, 1);
6817     }
6818     addq(result, cnt2);
6819     if (ae == StrIntrinsicNode::LL) {
6820       load_unsigned_byte(cnt1, Address(str2, result));
6821       load_unsigned_byte(result, Address(str1, result));
6822     } else if (ae == StrIntrinsicNode::UU) {
6823       load_unsigned_short(cnt1, Address(str2, result, scale));
6824       load_unsigned_short(result, Address(str1, result, scale));
6825     } else {
6826       load_unsigned_short(cnt1, Address(str2, result, scale2));
6827       load_unsigned_byte(result, Address(str1, result, scale1));
6828     }
6829     subl(result, cnt1);
6830     jmpb(POP_LABEL);
6831   }//if (VM_Version::supports_avx512vlbw())
6832 #endif // _LP64
6833 
6834   // Discard the stored length difference
6835   bind(POP_LABEL);
6836   pop(cnt1);
6837 
6838   // That's it
6839   bind(DONE_LABEL);
6840   if(ae == StrIntrinsicNode::UL) {
6841     negl(result);
6842   }
6843 
6844 }
6845 
6846 // Search for Non-ASCII character (Negative byte value) in a byte array,
6847 // return true if it has any and false otherwise.
6848 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
6849 //   @HotSpotIntrinsicCandidate
6850 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
6851 //     for (int i = off; i < off + len; i++) {
6852 //       if (ba[i] < 0) {
6853 //         return true;
6854 //       }
6855 //     }
6856 //     return false;
6857 //   }
6858 void MacroAssembler::has_negatives(Register ary1, Register len,
6859   Register result, Register tmp1,
6860   XMMRegister vec1, XMMRegister vec2) {
6861   // rsi: byte array
6862   // rcx: len
6863   // rax: result
6864   ShortBranchVerifier sbv(this);
6865   assert_different_registers(ary1, len, result, tmp1);
6866   assert_different_registers(vec1, vec2);
6867   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
6868 
6869   // len == 0
6870   testl(len, len);
6871   jcc(Assembler::zero, FALSE_LABEL);
6872 
6873   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
6874     VM_Version::supports_avx512vlbw() &&
6875     VM_Version::supports_bmi2()) {
6876 
6877     Label test_64_loop, test_tail;
6878     Register tmp3_aliased = len;
6879 
6880     movl(tmp1, len);
6881     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
6882 
6883     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
6884     andl(len, ~(64 - 1));    // vector count (in chars)
6885     jccb(Assembler::zero, test_tail);
6886 
6887     lea(ary1, Address(ary1, len, Address::times_1));
6888     negptr(len);
6889 
6890     bind(test_64_loop);
6891     // Check whether our 64 elements of size byte contain negatives
6892     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
6893     kortestql(k2, k2);
6894     jcc(Assembler::notZero, TRUE_LABEL);
6895 
6896     addptr(len, 64);
6897     jccb(Assembler::notZero, test_64_loop);
6898 
6899 
6900     bind(test_tail);
6901     // bail out when there is nothing to be done
6902     testl(tmp1, -1);
6903     jcc(Assembler::zero, FALSE_LABEL);
6904 
6905     // ~(~0 << len) applied up to two times (for 32-bit scenario)
6906 #ifdef _LP64
6907     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
6908     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
6909     notq(tmp3_aliased);
6910     kmovql(k3, tmp3_aliased);
6911 #else
6912     Label k_init;
6913     jmp(k_init);
6914 
6915     // We could not read 64-bits from a general purpose register thus we move
6916     // data required to compose 64 1's to the instruction stream
6917     // We emit 64 byte wide series of elements from 0..63 which later on would
6918     // be used as a compare targets with tail count contained in tmp1 register.
6919     // Result would be a k register having tmp1 consecutive number or 1
6920     // counting from least significant bit.
6921     address tmp = pc();
6922     emit_int64(0x0706050403020100);
6923     emit_int64(0x0F0E0D0C0B0A0908);
6924     emit_int64(0x1716151413121110);
6925     emit_int64(0x1F1E1D1C1B1A1918);
6926     emit_int64(0x2726252423222120);
6927     emit_int64(0x2F2E2D2C2B2A2928);
6928     emit_int64(0x3736353433323130);
6929     emit_int64(0x3F3E3D3C3B3A3938);
6930 
6931     bind(k_init);
6932     lea(len, InternalAddress(tmp));
6933     // create mask to test for negative byte inside a vector
6934     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
6935     evpcmpgtb(k3, vec1, Address(len, 0), Assembler::AVX_512bit);
6936 
6937 #endif
6938     evpcmpgtb(k2, k3, vec2, Address(ary1, 0), Assembler::AVX_512bit);
6939     ktestq(k2, k3);
6940     jcc(Assembler::notZero, TRUE_LABEL);
6941 
6942     jmp(FALSE_LABEL);
6943   } else {
6944     movl(result, len); // copy
6945 
6946     if (UseAVX >= 2 && UseSSE >= 2) {
6947       // With AVX2, use 32-byte vector compare
6948       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6949 
6950       // Compare 32-byte vectors
6951       andl(result, 0x0000001f);  //   tail count (in bytes)
6952       andl(len, 0xffffffe0);   // vector count (in bytes)
6953       jccb(Assembler::zero, COMPARE_TAIL);
6954 
6955       lea(ary1, Address(ary1, len, Address::times_1));
6956       negptr(len);
6957 
6958       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
6959       movdl(vec2, tmp1);
6960       vpbroadcastd(vec2, vec2, Assembler::AVX_256bit);
6961 
6962       bind(COMPARE_WIDE_VECTORS);
6963       vmovdqu(vec1, Address(ary1, len, Address::times_1));
6964       vptest(vec1, vec2);
6965       jccb(Assembler::notZero, TRUE_LABEL);
6966       addptr(len, 32);
6967       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6968 
6969       testl(result, result);
6970       jccb(Assembler::zero, FALSE_LABEL);
6971 
6972       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6973       vptest(vec1, vec2);
6974       jccb(Assembler::notZero, TRUE_LABEL);
6975       jmpb(FALSE_LABEL);
6976 
6977       bind(COMPARE_TAIL); // len is zero
6978       movl(len, result);
6979       // Fallthru to tail compare
6980     } else if (UseSSE42Intrinsics) {
6981       // With SSE4.2, use double quad vector compare
6982       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6983 
6984       // Compare 16-byte vectors
6985       andl(result, 0x0000000f);  //   tail count (in bytes)
6986       andl(len, 0xfffffff0);   // vector count (in bytes)
6987       jcc(Assembler::zero, COMPARE_TAIL);
6988 
6989       lea(ary1, Address(ary1, len, Address::times_1));
6990       negptr(len);
6991 
6992       movl(tmp1, 0x80808080);
6993       movdl(vec2, tmp1);
6994       pshufd(vec2, vec2, 0);
6995 
6996       bind(COMPARE_WIDE_VECTORS);
6997       movdqu(vec1, Address(ary1, len, Address::times_1));
6998       ptest(vec1, vec2);
6999       jcc(Assembler::notZero, TRUE_LABEL);
7000       addptr(len, 16);
7001       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7002 
7003       testl(result, result);
7004       jcc(Assembler::zero, FALSE_LABEL);
7005 
7006       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7007       ptest(vec1, vec2);
7008       jccb(Assembler::notZero, TRUE_LABEL);
7009       jmpb(FALSE_LABEL);
7010 
7011       bind(COMPARE_TAIL); // len is zero
7012       movl(len, result);
7013       // Fallthru to tail compare
7014     }
7015   }
7016   // Compare 4-byte vectors
7017   andl(len, 0xfffffffc); // vector count (in bytes)
7018   jccb(Assembler::zero, COMPARE_CHAR);
7019 
7020   lea(ary1, Address(ary1, len, Address::times_1));
7021   negptr(len);
7022 
7023   bind(COMPARE_VECTORS);
7024   movl(tmp1, Address(ary1, len, Address::times_1));
7025   andl(tmp1, 0x80808080);
7026   jccb(Assembler::notZero, TRUE_LABEL);
7027   addptr(len, 4);
7028   jcc(Assembler::notZero, COMPARE_VECTORS);
7029 
7030   // Compare trailing char (final 2 bytes), if any
7031   bind(COMPARE_CHAR);
7032   testl(result, 0x2);   // tail  char
7033   jccb(Assembler::zero, COMPARE_BYTE);
7034   load_unsigned_short(tmp1, Address(ary1, 0));
7035   andl(tmp1, 0x00008080);
7036   jccb(Assembler::notZero, TRUE_LABEL);
7037   subptr(result, 2);
7038   lea(ary1, Address(ary1, 2));
7039 
7040   bind(COMPARE_BYTE);
7041   testl(result, 0x1);   // tail  byte
7042   jccb(Assembler::zero, FALSE_LABEL);
7043   load_unsigned_byte(tmp1, Address(ary1, 0));
7044   andl(tmp1, 0x00000080);
7045   jccb(Assembler::notEqual, TRUE_LABEL);
7046   jmpb(FALSE_LABEL);
7047 
7048   bind(TRUE_LABEL);
7049   movl(result, 1);   // return true
7050   jmpb(DONE);
7051 
7052   bind(FALSE_LABEL);
7053   xorl(result, result); // return false
7054 
7055   // That's it
7056   bind(DONE);
7057   if (UseAVX >= 2 && UseSSE >= 2) {
7058     // clean upper bits of YMM registers
7059     vpxor(vec1, vec1);
7060     vpxor(vec2, vec2);
7061   }
7062 }
7063 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
7064 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
7065                                    Register limit, Register result, Register chr,
7066                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
7067   ShortBranchVerifier sbv(this);
7068   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
7069 
7070   int length_offset  = arrayOopDesc::length_offset_in_bytes();
7071   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
7072 
7073   if (is_array_equ) {
7074     // Check the input args
7075     cmpoop(ary1, ary2);
7076     jcc(Assembler::equal, TRUE_LABEL);
7077 
7078     // Need additional checks for arrays_equals.
7079     testptr(ary1, ary1);
7080     jcc(Assembler::zero, FALSE_LABEL);
7081     testptr(ary2, ary2);
7082     jcc(Assembler::zero, FALSE_LABEL);
7083 
7084     // Check the lengths
7085     movl(limit, Address(ary1, length_offset));
7086     cmpl(limit, Address(ary2, length_offset));
7087     jcc(Assembler::notEqual, FALSE_LABEL);
7088   }
7089 
7090   // count == 0
7091   testl(limit, limit);
7092   jcc(Assembler::zero, TRUE_LABEL);
7093 
7094   if (is_array_equ) {
7095     // Load array address
7096     lea(ary1, Address(ary1, base_offset));
7097     lea(ary2, Address(ary2, base_offset));
7098   }
7099 
7100   if (is_array_equ && is_char) {
7101     // arrays_equals when used for char[].
7102     shll(limit, 1);      // byte count != 0
7103   }
7104   movl(result, limit); // copy
7105 
7106   if (UseAVX >= 2) {
7107     // With AVX2, use 32-byte vector compare
7108     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7109 
7110     // Compare 32-byte vectors
7111     andl(result, 0x0000001f);  //   tail count (in bytes)
7112     andl(limit, 0xffffffe0);   // vector count (in bytes)
7113     jcc(Assembler::zero, COMPARE_TAIL);
7114 
7115     lea(ary1, Address(ary1, limit, Address::times_1));
7116     lea(ary2, Address(ary2, limit, Address::times_1));
7117     negptr(limit);
7118 
7119 #ifdef _LP64
7120     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7121       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
7122 
7123       cmpl(limit, -64);
7124       jcc(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7125 
7126       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7127 
7128       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
7129       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
7130       kortestql(k7, k7);
7131       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7132       addptr(limit, 64);  // update since we already compared at this addr
7133       cmpl(limit, -64);
7134       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7135 
7136       // At this point we may still need to compare -limit+result bytes.
7137       // We could execute the next two instruction and just continue via non-wide path:
7138       //  cmpl(limit, 0);
7139       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
7140       // But since we stopped at the points ary{1,2}+limit which are
7141       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
7142       // (|limit| <= 32 and result < 32),
7143       // we may just compare the last 64 bytes.
7144       //
7145       addptr(result, -64);   // it is safe, bc we just came from this area
7146       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
7147       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
7148       kortestql(k7, k7);
7149       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7150 
7151       jmp(TRUE_LABEL);
7152 
7153       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7154 
7155     }//if (VM_Version::supports_avx512vlbw())
7156 #endif //_LP64
7157     bind(COMPARE_WIDE_VECTORS);
7158     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
7159     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
7160     vpxor(vec1, vec2);
7161 
7162     vptest(vec1, vec1);
7163     jcc(Assembler::notZero, FALSE_LABEL);
7164     addptr(limit, 32);
7165     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7166 
7167     testl(result, result);
7168     jcc(Assembler::zero, TRUE_LABEL);
7169 
7170     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7171     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
7172     vpxor(vec1, vec2);
7173 
7174     vptest(vec1, vec1);
7175     jccb(Assembler::notZero, FALSE_LABEL);
7176     jmpb(TRUE_LABEL);
7177 
7178     bind(COMPARE_TAIL); // limit is zero
7179     movl(limit, result);
7180     // Fallthru to tail compare
7181   } else if (UseSSE42Intrinsics) {
7182     // With SSE4.2, use double quad vector compare
7183     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7184 
7185     // Compare 16-byte vectors
7186     andl(result, 0x0000000f);  //   tail count (in bytes)
7187     andl(limit, 0xfffffff0);   // vector count (in bytes)
7188     jcc(Assembler::zero, COMPARE_TAIL);
7189 
7190     lea(ary1, Address(ary1, limit, Address::times_1));
7191     lea(ary2, Address(ary2, limit, Address::times_1));
7192     negptr(limit);
7193 
7194     bind(COMPARE_WIDE_VECTORS);
7195     movdqu(vec1, Address(ary1, limit, Address::times_1));
7196     movdqu(vec2, Address(ary2, limit, Address::times_1));
7197     pxor(vec1, vec2);
7198 
7199     ptest(vec1, vec1);
7200     jcc(Assembler::notZero, FALSE_LABEL);
7201     addptr(limit, 16);
7202     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7203 
7204     testl(result, result);
7205     jcc(Assembler::zero, TRUE_LABEL);
7206 
7207     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7208     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7209     pxor(vec1, vec2);
7210 
7211     ptest(vec1, vec1);
7212     jccb(Assembler::notZero, FALSE_LABEL);
7213     jmpb(TRUE_LABEL);
7214 
7215     bind(COMPARE_TAIL); // limit is zero
7216     movl(limit, result);
7217     // Fallthru to tail compare
7218   }
7219 
7220   // Compare 4-byte vectors
7221   andl(limit, 0xfffffffc); // vector count (in bytes)
7222   jccb(Assembler::zero, COMPARE_CHAR);
7223 
7224   lea(ary1, Address(ary1, limit, Address::times_1));
7225   lea(ary2, Address(ary2, limit, Address::times_1));
7226   negptr(limit);
7227 
7228   bind(COMPARE_VECTORS);
7229   movl(chr, Address(ary1, limit, Address::times_1));
7230   cmpl(chr, Address(ary2, limit, Address::times_1));
7231   jccb(Assembler::notEqual, FALSE_LABEL);
7232   addptr(limit, 4);
7233   jcc(Assembler::notZero, COMPARE_VECTORS);
7234 
7235   // Compare trailing char (final 2 bytes), if any
7236   bind(COMPARE_CHAR);
7237   testl(result, 0x2);   // tail  char
7238   jccb(Assembler::zero, COMPARE_BYTE);
7239   load_unsigned_short(chr, Address(ary1, 0));
7240   load_unsigned_short(limit, Address(ary2, 0));
7241   cmpl(chr, limit);
7242   jccb(Assembler::notEqual, FALSE_LABEL);
7243 
7244   if (is_array_equ && is_char) {
7245     bind(COMPARE_BYTE);
7246   } else {
7247     lea(ary1, Address(ary1, 2));
7248     lea(ary2, Address(ary2, 2));
7249 
7250     bind(COMPARE_BYTE);
7251     testl(result, 0x1);   // tail  byte
7252     jccb(Assembler::zero, TRUE_LABEL);
7253     load_unsigned_byte(chr, Address(ary1, 0));
7254     load_unsigned_byte(limit, Address(ary2, 0));
7255     cmpl(chr, limit);
7256     jccb(Assembler::notEqual, FALSE_LABEL);
7257   }
7258   bind(TRUE_LABEL);
7259   movl(result, 1);   // return true
7260   jmpb(DONE);
7261 
7262   bind(FALSE_LABEL);
7263   xorl(result, result); // return false
7264 
7265   // That's it
7266   bind(DONE);
7267   if (UseAVX >= 2) {
7268     // clean upper bits of YMM registers
7269     vpxor(vec1, vec1);
7270     vpxor(vec2, vec2);
7271   }
7272 }
7273 
7274 #endif
7275 
7276 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7277                                    Register to, Register value, Register count,
7278                                    Register rtmp, XMMRegister xtmp) {
7279   ShortBranchVerifier sbv(this);
7280   assert_different_registers(to, value, count, rtmp);
7281   Label L_exit;
7282   Label L_fill_2_bytes, L_fill_4_bytes;
7283 
7284   int shift = -1;
7285   switch (t) {
7286     case T_BYTE:
7287       shift = 2;
7288       break;
7289     case T_SHORT:
7290       shift = 1;
7291       break;
7292     case T_INT:
7293       shift = 0;
7294       break;
7295     default: ShouldNotReachHere();
7296   }
7297 
7298   if (t == T_BYTE) {
7299     andl(value, 0xff);
7300     movl(rtmp, value);
7301     shll(rtmp, 8);
7302     orl(value, rtmp);
7303   }
7304   if (t == T_SHORT) {
7305     andl(value, 0xffff);
7306   }
7307   if (t == T_BYTE || t == T_SHORT) {
7308     movl(rtmp, value);
7309     shll(rtmp, 16);
7310     orl(value, rtmp);
7311   }
7312 
7313   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7314   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7315   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7316     Label L_skip_align2;
7317     // align source address at 4 bytes address boundary
7318     if (t == T_BYTE) {
7319       Label L_skip_align1;
7320       // One byte misalignment happens only for byte arrays
7321       testptr(to, 1);
7322       jccb(Assembler::zero, L_skip_align1);
7323       movb(Address(to, 0), value);
7324       increment(to);
7325       decrement(count);
7326       BIND(L_skip_align1);
7327     }
7328     // Two bytes misalignment happens only for byte and short (char) arrays
7329     testptr(to, 2);
7330     jccb(Assembler::zero, L_skip_align2);
7331     movw(Address(to, 0), value);
7332     addptr(to, 2);
7333     subl(count, 1<<(shift-1));
7334     BIND(L_skip_align2);
7335   }
7336   if (UseSSE < 2) {
7337     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7338     // Fill 32-byte chunks
7339     subl(count, 8 << shift);
7340     jcc(Assembler::less, L_check_fill_8_bytes);
7341     align(16);
7342 
7343     BIND(L_fill_32_bytes_loop);
7344 
7345     for (int i = 0; i < 32; i += 4) {
7346       movl(Address(to, i), value);
7347     }
7348 
7349     addptr(to, 32);
7350     subl(count, 8 << shift);
7351     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7352     BIND(L_check_fill_8_bytes);
7353     addl(count, 8 << shift);
7354     jccb(Assembler::zero, L_exit);
7355     jmpb(L_fill_8_bytes);
7356 
7357     //
7358     // length is too short, just fill qwords
7359     //
7360     BIND(L_fill_8_bytes_loop);
7361     movl(Address(to, 0), value);
7362     movl(Address(to, 4), value);
7363     addptr(to, 8);
7364     BIND(L_fill_8_bytes);
7365     subl(count, 1 << (shift + 1));
7366     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7367     // fall through to fill 4 bytes
7368   } else {
7369     Label L_fill_32_bytes;
7370     if (!UseUnalignedLoadStores) {
7371       // align to 8 bytes, we know we are 4 byte aligned to start
7372       testptr(to, 4);
7373       jccb(Assembler::zero, L_fill_32_bytes);
7374       movl(Address(to, 0), value);
7375       addptr(to, 4);
7376       subl(count, 1<<shift);
7377     }
7378     BIND(L_fill_32_bytes);
7379     {
7380       assert( UseSSE >= 2, "supported cpu only" );
7381       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7382       movdl(xtmp, value);
7383       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7384         Label L_check_fill_32_bytes;
7385         if (UseAVX > 2) {
7386           // Fill 64-byte chunks
7387           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
7388 
7389           // If number of bytes to fill < AVX3Threshold, perform fill using AVX2
7390           cmpl(count, AVX3Threshold);
7391           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
7392 
7393           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7394 
7395           subl(count, 16 << shift);
7396           jccb(Assembler::less, L_check_fill_32_bytes);
7397           align(16);
7398 
7399           BIND(L_fill_64_bytes_loop_avx3);
7400           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
7401           addptr(to, 64);
7402           subl(count, 16 << shift);
7403           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
7404           jmpb(L_check_fill_32_bytes);
7405 
7406           BIND(L_check_fill_64_bytes_avx2);
7407         }
7408         // Fill 64-byte chunks
7409         Label L_fill_64_bytes_loop;
7410         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
7411 
7412         subl(count, 16 << shift);
7413         jcc(Assembler::less, L_check_fill_32_bytes);
7414         align(16);
7415 
7416         BIND(L_fill_64_bytes_loop);
7417         vmovdqu(Address(to, 0), xtmp);
7418         vmovdqu(Address(to, 32), xtmp);
7419         addptr(to, 64);
7420         subl(count, 16 << shift);
7421         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7422 
7423         BIND(L_check_fill_32_bytes);
7424         addl(count, 8 << shift);
7425         jccb(Assembler::less, L_check_fill_8_bytes);
7426         vmovdqu(Address(to, 0), xtmp);
7427         addptr(to, 32);
7428         subl(count, 8 << shift);
7429 
7430         BIND(L_check_fill_8_bytes);
7431         // clean upper bits of YMM registers
7432         movdl(xtmp, value);
7433         pshufd(xtmp, xtmp, 0);
7434       } else {
7435         // Fill 32-byte chunks
7436         pshufd(xtmp, xtmp, 0);
7437 
7438         subl(count, 8 << shift);
7439         jcc(Assembler::less, L_check_fill_8_bytes);
7440         align(16);
7441 
7442         BIND(L_fill_32_bytes_loop);
7443 
7444         if (UseUnalignedLoadStores) {
7445           movdqu(Address(to, 0), xtmp);
7446           movdqu(Address(to, 16), xtmp);
7447         } else {
7448           movq(Address(to, 0), xtmp);
7449           movq(Address(to, 8), xtmp);
7450           movq(Address(to, 16), xtmp);
7451           movq(Address(to, 24), xtmp);
7452         }
7453 
7454         addptr(to, 32);
7455         subl(count, 8 << shift);
7456         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7457 
7458         BIND(L_check_fill_8_bytes);
7459       }
7460       addl(count, 8 << shift);
7461       jccb(Assembler::zero, L_exit);
7462       jmpb(L_fill_8_bytes);
7463 
7464       //
7465       // length is too short, just fill qwords
7466       //
7467       BIND(L_fill_8_bytes_loop);
7468       movq(Address(to, 0), xtmp);
7469       addptr(to, 8);
7470       BIND(L_fill_8_bytes);
7471       subl(count, 1 << (shift + 1));
7472       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7473     }
7474   }
7475   // fill trailing 4 bytes
7476   BIND(L_fill_4_bytes);
7477   testl(count, 1<<shift);
7478   jccb(Assembler::zero, L_fill_2_bytes);
7479   movl(Address(to, 0), value);
7480   if (t == T_BYTE || t == T_SHORT) {
7481     Label L_fill_byte;
7482     addptr(to, 4);
7483     BIND(L_fill_2_bytes);
7484     // fill trailing 2 bytes
7485     testl(count, 1<<(shift-1));
7486     jccb(Assembler::zero, L_fill_byte);
7487     movw(Address(to, 0), value);
7488     if (t == T_BYTE) {
7489       addptr(to, 2);
7490       BIND(L_fill_byte);
7491       // fill trailing byte
7492       testl(count, 1);
7493       jccb(Assembler::zero, L_exit);
7494       movb(Address(to, 0), value);
7495     } else {
7496       BIND(L_fill_byte);
7497     }
7498   } else {
7499     BIND(L_fill_2_bytes);
7500   }
7501   BIND(L_exit);
7502 }
7503 
7504 // encode char[] to byte[] in ISO_8859_1
7505    //@HotSpotIntrinsicCandidate
7506    //private static int implEncodeISOArray(byte[] sa, int sp,
7507    //byte[] da, int dp, int len) {
7508    //  int i = 0;
7509    //  for (; i < len; i++) {
7510    //    char c = StringUTF16.getChar(sa, sp++);
7511    //    if (c > '\u00FF')
7512    //      break;
7513    //    da[dp++] = (byte)c;
7514    //  }
7515    //  return i;
7516    //}
7517 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7518   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7519   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7520   Register tmp5, Register result) {
7521 
7522   // rsi: src
7523   // rdi: dst
7524   // rdx: len
7525   // rcx: tmp5
7526   // rax: result
7527   ShortBranchVerifier sbv(this);
7528   assert_different_registers(src, dst, len, tmp5, result);
7529   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7530 
7531   // set result
7532   xorl(result, result);
7533   // check for zero length
7534   testl(len, len);
7535   jcc(Assembler::zero, L_done);
7536 
7537   movl(result, len);
7538 
7539   // Setup pointers
7540   lea(src, Address(src, len, Address::times_2)); // char[]
7541   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7542   negptr(len);
7543 
7544   if (UseSSE42Intrinsics || UseAVX >= 2) {
7545     Label L_copy_8_chars, L_copy_8_chars_exit;
7546     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7547 
7548     if (UseAVX >= 2) {
7549       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7550       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7551       movdl(tmp1Reg, tmp5);
7552       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
7553       jmp(L_chars_32_check);
7554 
7555       bind(L_copy_32_chars);
7556       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7557       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7558       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7559       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7560       jccb(Assembler::notZero, L_copy_32_chars_exit);
7561       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7562       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7563       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7564 
7565       bind(L_chars_32_check);
7566       addptr(len, 32);
7567       jcc(Assembler::lessEqual, L_copy_32_chars);
7568 
7569       bind(L_copy_32_chars_exit);
7570       subptr(len, 16);
7571       jccb(Assembler::greater, L_copy_16_chars_exit);
7572 
7573     } else if (UseSSE42Intrinsics) {
7574       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7575       movdl(tmp1Reg, tmp5);
7576       pshufd(tmp1Reg, tmp1Reg, 0);
7577       jmpb(L_chars_16_check);
7578     }
7579 
7580     bind(L_copy_16_chars);
7581     if (UseAVX >= 2) {
7582       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7583       vptest(tmp2Reg, tmp1Reg);
7584       jcc(Assembler::notZero, L_copy_16_chars_exit);
7585       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7586       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7587     } else {
7588       if (UseAVX > 0) {
7589         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7590         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7591         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7592       } else {
7593         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7594         por(tmp2Reg, tmp3Reg);
7595         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7596         por(tmp2Reg, tmp4Reg);
7597       }
7598       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7599       jccb(Assembler::notZero, L_copy_16_chars_exit);
7600       packuswb(tmp3Reg, tmp4Reg);
7601     }
7602     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7603 
7604     bind(L_chars_16_check);
7605     addptr(len, 16);
7606     jcc(Assembler::lessEqual, L_copy_16_chars);
7607 
7608     bind(L_copy_16_chars_exit);
7609     if (UseAVX >= 2) {
7610       // clean upper bits of YMM registers
7611       vpxor(tmp2Reg, tmp2Reg);
7612       vpxor(tmp3Reg, tmp3Reg);
7613       vpxor(tmp4Reg, tmp4Reg);
7614       movdl(tmp1Reg, tmp5);
7615       pshufd(tmp1Reg, tmp1Reg, 0);
7616     }
7617     subptr(len, 8);
7618     jccb(Assembler::greater, L_copy_8_chars_exit);
7619 
7620     bind(L_copy_8_chars);
7621     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7622     ptest(tmp3Reg, tmp1Reg);
7623     jccb(Assembler::notZero, L_copy_8_chars_exit);
7624     packuswb(tmp3Reg, tmp1Reg);
7625     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7626     addptr(len, 8);
7627     jccb(Assembler::lessEqual, L_copy_8_chars);
7628 
7629     bind(L_copy_8_chars_exit);
7630     subptr(len, 8);
7631     jccb(Assembler::zero, L_done);
7632   }
7633 
7634   bind(L_copy_1_char);
7635   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7636   testl(tmp5, 0xff00);      // check if Unicode char
7637   jccb(Assembler::notZero, L_copy_1_char_exit);
7638   movb(Address(dst, len, Address::times_1, 0), tmp5);
7639   addptr(len, 1);
7640   jccb(Assembler::less, L_copy_1_char);
7641 
7642   bind(L_copy_1_char_exit);
7643   addptr(result, len); // len is negative count of not processed elements
7644 
7645   bind(L_done);
7646 }
7647 
7648 #ifdef _LP64
7649 /**
7650  * Helper for multiply_to_len().
7651  */
7652 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7653   addq(dest_lo, src1);
7654   adcq(dest_hi, 0);
7655   addq(dest_lo, src2);
7656   adcq(dest_hi, 0);
7657 }
7658 
7659 /**
7660  * Multiply 64 bit by 64 bit first loop.
7661  */
7662 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7663                                            Register y, Register y_idx, Register z,
7664                                            Register carry, Register product,
7665                                            Register idx, Register kdx) {
7666   //
7667   //  jlong carry, x[], y[], z[];
7668   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7669   //    huge_128 product = y[idx] * x[xstart] + carry;
7670   //    z[kdx] = (jlong)product;
7671   //    carry  = (jlong)(product >>> 64);
7672   //  }
7673   //  z[xstart] = carry;
7674   //
7675 
7676   Label L_first_loop, L_first_loop_exit;
7677   Label L_one_x, L_one_y, L_multiply;
7678 
7679   decrementl(xstart);
7680   jcc(Assembler::negative, L_one_x);
7681 
7682   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7683   rorq(x_xstart, 32); // convert big-endian to little-endian
7684 
7685   bind(L_first_loop);
7686   decrementl(idx);
7687   jcc(Assembler::negative, L_first_loop_exit);
7688   decrementl(idx);
7689   jcc(Assembler::negative, L_one_y);
7690   movq(y_idx, Address(y, idx, Address::times_4,  0));
7691   rorq(y_idx, 32); // convert big-endian to little-endian
7692   bind(L_multiply);
7693   movq(product, x_xstart);
7694   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7695   addq(product, carry);
7696   adcq(rdx, 0);
7697   subl(kdx, 2);
7698   movl(Address(z, kdx, Address::times_4,  4), product);
7699   shrq(product, 32);
7700   movl(Address(z, kdx, Address::times_4,  0), product);
7701   movq(carry, rdx);
7702   jmp(L_first_loop);
7703 
7704   bind(L_one_y);
7705   movl(y_idx, Address(y,  0));
7706   jmp(L_multiply);
7707 
7708   bind(L_one_x);
7709   movl(x_xstart, Address(x,  0));
7710   jmp(L_first_loop);
7711 
7712   bind(L_first_loop_exit);
7713 }
7714 
7715 /**
7716  * Multiply 64 bit by 64 bit and add 128 bit.
7717  */
7718 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7719                                             Register yz_idx, Register idx,
7720                                             Register carry, Register product, int offset) {
7721   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7722   //     z[kdx] = (jlong)product;
7723 
7724   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7725   rorq(yz_idx, 32); // convert big-endian to little-endian
7726   movq(product, x_xstart);
7727   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7728   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7729   rorq(yz_idx, 32); // convert big-endian to little-endian
7730 
7731   add2_with_carry(rdx, product, carry, yz_idx);
7732 
7733   movl(Address(z, idx, Address::times_4,  offset+4), product);
7734   shrq(product, 32);
7735   movl(Address(z, idx, Address::times_4,  offset), product);
7736 
7737 }
7738 
7739 /**
7740  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7741  */
7742 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7743                                              Register yz_idx, Register idx, Register jdx,
7744                                              Register carry, Register product,
7745                                              Register carry2) {
7746   //   jlong carry, x[], y[], z[];
7747   //   int kdx = ystart+1;
7748   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7749   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7750   //     z[kdx+idx+1] = (jlong)product;
7751   //     jlong carry2  = (jlong)(product >>> 64);
7752   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7753   //     z[kdx+idx] = (jlong)product;
7754   //     carry  = (jlong)(product >>> 64);
7755   //   }
7756   //   idx += 2;
7757   //   if (idx > 0) {
7758   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7759   //     z[kdx+idx] = (jlong)product;
7760   //     carry  = (jlong)(product >>> 64);
7761   //   }
7762   //
7763 
7764   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7765 
7766   movl(jdx, idx);
7767   andl(jdx, 0xFFFFFFFC);
7768   shrl(jdx, 2);
7769 
7770   bind(L_third_loop);
7771   subl(jdx, 1);
7772   jcc(Assembler::negative, L_third_loop_exit);
7773   subl(idx, 4);
7774 
7775   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7776   movq(carry2, rdx);
7777 
7778   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7779   movq(carry, rdx);
7780   jmp(L_third_loop);
7781 
7782   bind (L_third_loop_exit);
7783 
7784   andl (idx, 0x3);
7785   jcc(Assembler::zero, L_post_third_loop_done);
7786 
7787   Label L_check_1;
7788   subl(idx, 2);
7789   jcc(Assembler::negative, L_check_1);
7790 
7791   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7792   movq(carry, rdx);
7793 
7794   bind (L_check_1);
7795   addl (idx, 0x2);
7796   andl (idx, 0x1);
7797   subl(idx, 1);
7798   jcc(Assembler::negative, L_post_third_loop_done);
7799 
7800   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7801   movq(product, x_xstart);
7802   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7803   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7804 
7805   add2_with_carry(rdx, product, yz_idx, carry);
7806 
7807   movl(Address(z, idx, Address::times_4,  0), product);
7808   shrq(product, 32);
7809 
7810   shlq(rdx, 32);
7811   orq(product, rdx);
7812   movq(carry, product);
7813 
7814   bind(L_post_third_loop_done);
7815 }
7816 
7817 /**
7818  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7819  *
7820  */
7821 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7822                                                   Register carry, Register carry2,
7823                                                   Register idx, Register jdx,
7824                                                   Register yz_idx1, Register yz_idx2,
7825                                                   Register tmp, Register tmp3, Register tmp4) {
7826   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7827 
7828   //   jlong carry, x[], y[], z[];
7829   //   int kdx = ystart+1;
7830   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7831   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7832   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7833   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7834   //     carry  = (jlong)(tmp4 >>> 64);
7835   //     z[kdx+idx+1] = (jlong)tmp3;
7836   //     z[kdx+idx] = (jlong)tmp4;
7837   //   }
7838   //   idx += 2;
7839   //   if (idx > 0) {
7840   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7841   //     z[kdx+idx] = (jlong)yz_idx1;
7842   //     carry  = (jlong)(yz_idx1 >>> 64);
7843   //   }
7844   //
7845 
7846   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7847 
7848   movl(jdx, idx);
7849   andl(jdx, 0xFFFFFFFC);
7850   shrl(jdx, 2);
7851 
7852   bind(L_third_loop);
7853   subl(jdx, 1);
7854   jcc(Assembler::negative, L_third_loop_exit);
7855   subl(idx, 4);
7856 
7857   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7858   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7859   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7860   rorxq(yz_idx2, yz_idx2, 32);
7861 
7862   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7863   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7864 
7865   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7866   rorxq(yz_idx1, yz_idx1, 32);
7867   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7868   rorxq(yz_idx2, yz_idx2, 32);
7869 
7870   if (VM_Version::supports_adx()) {
7871     adcxq(tmp3, carry);
7872     adoxq(tmp3, yz_idx1);
7873 
7874     adcxq(tmp4, tmp);
7875     adoxq(tmp4, yz_idx2);
7876 
7877     movl(carry, 0); // does not affect flags
7878     adcxq(carry2, carry);
7879     adoxq(carry2, carry);
7880   } else {
7881     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7882     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7883   }
7884   movq(carry, carry2);
7885 
7886   movl(Address(z, idx, Address::times_4, 12), tmp3);
7887   shrq(tmp3, 32);
7888   movl(Address(z, idx, Address::times_4,  8), tmp3);
7889 
7890   movl(Address(z, idx, Address::times_4,  4), tmp4);
7891   shrq(tmp4, 32);
7892   movl(Address(z, idx, Address::times_4,  0), tmp4);
7893 
7894   jmp(L_third_loop);
7895 
7896   bind (L_third_loop_exit);
7897 
7898   andl (idx, 0x3);
7899   jcc(Assembler::zero, L_post_third_loop_done);
7900 
7901   Label L_check_1;
7902   subl(idx, 2);
7903   jcc(Assembler::negative, L_check_1);
7904 
7905   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7906   rorxq(yz_idx1, yz_idx1, 32);
7907   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7908   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7909   rorxq(yz_idx2, yz_idx2, 32);
7910 
7911   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7912 
7913   movl(Address(z, idx, Address::times_4,  4), tmp3);
7914   shrq(tmp3, 32);
7915   movl(Address(z, idx, Address::times_4,  0), tmp3);
7916   movq(carry, tmp4);
7917 
7918   bind (L_check_1);
7919   addl (idx, 0x2);
7920   andl (idx, 0x1);
7921   subl(idx, 1);
7922   jcc(Assembler::negative, L_post_third_loop_done);
7923   movl(tmp4, Address(y, idx, Address::times_4,  0));
7924   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7925   movl(tmp4, Address(z, idx, Address::times_4,  0));
7926 
7927   add2_with_carry(carry2, tmp3, tmp4, carry);
7928 
7929   movl(Address(z, idx, Address::times_4,  0), tmp3);
7930   shrq(tmp3, 32);
7931 
7932   shlq(carry2, 32);
7933   orq(tmp3, carry2);
7934   movq(carry, tmp3);
7935 
7936   bind(L_post_third_loop_done);
7937 }
7938 
7939 /**
7940  * Code for BigInteger::multiplyToLen() instrinsic.
7941  *
7942  * rdi: x
7943  * rax: xlen
7944  * rsi: y
7945  * rcx: ylen
7946  * r8:  z
7947  * r11: zlen
7948  * r12: tmp1
7949  * r13: tmp2
7950  * r14: tmp3
7951  * r15: tmp4
7952  * rbx: tmp5
7953  *
7954  */
7955 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7956                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7957   ShortBranchVerifier sbv(this);
7958   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7959 
7960   push(tmp1);
7961   push(tmp2);
7962   push(tmp3);
7963   push(tmp4);
7964   push(tmp5);
7965 
7966   push(xlen);
7967   push(zlen);
7968 
7969   const Register idx = tmp1;
7970   const Register kdx = tmp2;
7971   const Register xstart = tmp3;
7972 
7973   const Register y_idx = tmp4;
7974   const Register carry = tmp5;
7975   const Register product  = xlen;
7976   const Register x_xstart = zlen;  // reuse register
7977 
7978   // First Loop.
7979   //
7980   //  final static long LONG_MASK = 0xffffffffL;
7981   //  int xstart = xlen - 1;
7982   //  int ystart = ylen - 1;
7983   //  long carry = 0;
7984   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7985   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7986   //    z[kdx] = (int)product;
7987   //    carry = product >>> 32;
7988   //  }
7989   //  z[xstart] = (int)carry;
7990   //
7991 
7992   movl(idx, ylen);      // idx = ylen;
7993   movl(kdx, zlen);      // kdx = xlen+ylen;
7994   xorq(carry, carry);   // carry = 0;
7995 
7996   Label L_done;
7997 
7998   movl(xstart, xlen);
7999   decrementl(xstart);
8000   jcc(Assembler::negative, L_done);
8001 
8002   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
8003 
8004   Label L_second_loop;
8005   testl(kdx, kdx);
8006   jcc(Assembler::zero, L_second_loop);
8007 
8008   Label L_carry;
8009   subl(kdx, 1);
8010   jcc(Assembler::zero, L_carry);
8011 
8012   movl(Address(z, kdx, Address::times_4,  0), carry);
8013   shrq(carry, 32);
8014   subl(kdx, 1);
8015 
8016   bind(L_carry);
8017   movl(Address(z, kdx, Address::times_4,  0), carry);
8018 
8019   // Second and third (nested) loops.
8020   //
8021   // for (int i = xstart-1; i >= 0; i--) { // Second loop
8022   //   carry = 0;
8023   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
8024   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
8025   //                    (z[k] & LONG_MASK) + carry;
8026   //     z[k] = (int)product;
8027   //     carry = product >>> 32;
8028   //   }
8029   //   z[i] = (int)carry;
8030   // }
8031   //
8032   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
8033 
8034   const Register jdx = tmp1;
8035 
8036   bind(L_second_loop);
8037   xorl(carry, carry);    // carry = 0;
8038   movl(jdx, ylen);       // j = ystart+1
8039 
8040   subl(xstart, 1);       // i = xstart-1;
8041   jcc(Assembler::negative, L_done);
8042 
8043   push (z);
8044 
8045   Label L_last_x;
8046   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
8047   subl(xstart, 1);       // i = xstart-1;
8048   jcc(Assembler::negative, L_last_x);
8049 
8050   if (UseBMI2Instructions) {
8051     movq(rdx,  Address(x, xstart, Address::times_4,  0));
8052     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
8053   } else {
8054     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8055     rorq(x_xstart, 32);  // convert big-endian to little-endian
8056   }
8057 
8058   Label L_third_loop_prologue;
8059   bind(L_third_loop_prologue);
8060 
8061   push (x);
8062   push (xstart);
8063   push (ylen);
8064 
8065 
8066   if (UseBMI2Instructions) {
8067     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
8068   } else { // !UseBMI2Instructions
8069     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
8070   }
8071 
8072   pop(ylen);
8073   pop(xlen);
8074   pop(x);
8075   pop(z);
8076 
8077   movl(tmp3, xlen);
8078   addl(tmp3, 1);
8079   movl(Address(z, tmp3, Address::times_4,  0), carry);
8080   subl(tmp3, 1);
8081   jccb(Assembler::negative, L_done);
8082 
8083   shrq(carry, 32);
8084   movl(Address(z, tmp3, Address::times_4,  0), carry);
8085   jmp(L_second_loop);
8086 
8087   // Next infrequent code is moved outside loops.
8088   bind(L_last_x);
8089   if (UseBMI2Instructions) {
8090     movl(rdx, Address(x,  0));
8091   } else {
8092     movl(x_xstart, Address(x,  0));
8093   }
8094   jmp(L_third_loop_prologue);
8095 
8096   bind(L_done);
8097 
8098   pop(zlen);
8099   pop(xlen);
8100 
8101   pop(tmp5);
8102   pop(tmp4);
8103   pop(tmp3);
8104   pop(tmp2);
8105   pop(tmp1);
8106 }
8107 
8108 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
8109   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
8110   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
8111   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
8112   Label VECTOR8_TAIL, VECTOR4_TAIL;
8113   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
8114   Label SAME_TILL_END, DONE;
8115   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
8116 
8117   //scale is in rcx in both Win64 and Unix
8118   ShortBranchVerifier sbv(this);
8119 
8120   shlq(length);
8121   xorq(result, result);
8122 
8123   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
8124       VM_Version::supports_avx512vlbw()) {
8125     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
8126 
8127     cmpq(length, 64);
8128     jcc(Assembler::less, VECTOR32_TAIL);
8129 
8130     movq(tmp1, length);
8131     andq(tmp1, 0x3F);      // tail count
8132     andq(length, ~(0x3F)); //vector count
8133 
8134     bind(VECTOR64_LOOP);
8135     // AVX512 code to compare 64 byte vectors.
8136     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
8137     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
8138     kortestql(k7, k7);
8139     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
8140     addq(result, 64);
8141     subq(length, 64);
8142     jccb(Assembler::notZero, VECTOR64_LOOP);
8143 
8144     //bind(VECTOR64_TAIL);
8145     testq(tmp1, tmp1);
8146     jcc(Assembler::zero, SAME_TILL_END);
8147 
8148     //bind(VECTOR64_TAIL);
8149     // AVX512 code to compare upto 63 byte vectors.
8150     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
8151     shlxq(tmp2, tmp2, tmp1);
8152     notq(tmp2);
8153     kmovql(k3, tmp2);
8154 
8155     evmovdqub(rymm0, k3, Address(obja, result), Assembler::AVX_512bit);
8156     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
8157 
8158     ktestql(k7, k3);
8159     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
8160 
8161     bind(VECTOR64_NOT_EQUAL);
8162     kmovql(tmp1, k7);
8163     notq(tmp1);
8164     tzcntq(tmp1, tmp1);
8165     addq(result, tmp1);
8166     shrq(result);
8167     jmp(DONE);
8168     bind(VECTOR32_TAIL);
8169   }
8170 
8171   cmpq(length, 8);
8172   jcc(Assembler::equal, VECTOR8_LOOP);
8173   jcc(Assembler::less, VECTOR4_TAIL);
8174 
8175   if (UseAVX >= 2) {
8176     Label VECTOR16_TAIL, VECTOR32_LOOP;
8177 
8178     cmpq(length, 16);
8179     jcc(Assembler::equal, VECTOR16_LOOP);
8180     jcc(Assembler::less, VECTOR8_LOOP);
8181 
8182     cmpq(length, 32);
8183     jccb(Assembler::less, VECTOR16_TAIL);
8184 
8185     subq(length, 32);
8186     bind(VECTOR32_LOOP);
8187     vmovdqu(rymm0, Address(obja, result));
8188     vmovdqu(rymm1, Address(objb, result));
8189     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
8190     vptest(rymm2, rymm2);
8191     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
8192     addq(result, 32);
8193     subq(length, 32);
8194     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
8195     addq(length, 32);
8196     jcc(Assembler::equal, SAME_TILL_END);
8197     //falling through if less than 32 bytes left //close the branch here.
8198 
8199     bind(VECTOR16_TAIL);
8200     cmpq(length, 16);
8201     jccb(Assembler::less, VECTOR8_TAIL);
8202     bind(VECTOR16_LOOP);
8203     movdqu(rymm0, Address(obja, result));
8204     movdqu(rymm1, Address(objb, result));
8205     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
8206     ptest(rymm2, rymm2);
8207     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8208     addq(result, 16);
8209     subq(length, 16);
8210     jcc(Assembler::equal, SAME_TILL_END);
8211     //falling through if less than 16 bytes left
8212   } else {//regular intrinsics
8213 
8214     cmpq(length, 16);
8215     jccb(Assembler::less, VECTOR8_TAIL);
8216 
8217     subq(length, 16);
8218     bind(VECTOR16_LOOP);
8219     movdqu(rymm0, Address(obja, result));
8220     movdqu(rymm1, Address(objb, result));
8221     pxor(rymm0, rymm1);
8222     ptest(rymm0, rymm0);
8223     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8224     addq(result, 16);
8225     subq(length, 16);
8226     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
8227     addq(length, 16);
8228     jcc(Assembler::equal, SAME_TILL_END);
8229     //falling through if less than 16 bytes left
8230   }
8231 
8232   bind(VECTOR8_TAIL);
8233   cmpq(length, 8);
8234   jccb(Assembler::less, VECTOR4_TAIL);
8235   bind(VECTOR8_LOOP);
8236   movq(tmp1, Address(obja, result));
8237   movq(tmp2, Address(objb, result));
8238   xorq(tmp1, tmp2);
8239   testq(tmp1, tmp1);
8240   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
8241   addq(result, 8);
8242   subq(length, 8);
8243   jcc(Assembler::equal, SAME_TILL_END);
8244   //falling through if less than 8 bytes left
8245 
8246   bind(VECTOR4_TAIL);
8247   cmpq(length, 4);
8248   jccb(Assembler::less, BYTES_TAIL);
8249   bind(VECTOR4_LOOP);
8250   movl(tmp1, Address(obja, result));
8251   xorl(tmp1, Address(objb, result));
8252   testl(tmp1, tmp1);
8253   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
8254   addq(result, 4);
8255   subq(length, 4);
8256   jcc(Assembler::equal, SAME_TILL_END);
8257   //falling through if less than 4 bytes left
8258 
8259   bind(BYTES_TAIL);
8260   bind(BYTES_LOOP);
8261   load_unsigned_byte(tmp1, Address(obja, result));
8262   load_unsigned_byte(tmp2, Address(objb, result));
8263   xorl(tmp1, tmp2);
8264   testl(tmp1, tmp1);
8265   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8266   decq(length);
8267   jcc(Assembler::zero, SAME_TILL_END);
8268   incq(result);
8269   load_unsigned_byte(tmp1, Address(obja, result));
8270   load_unsigned_byte(tmp2, Address(objb, result));
8271   xorl(tmp1, tmp2);
8272   testl(tmp1, tmp1);
8273   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8274   decq(length);
8275   jcc(Assembler::zero, SAME_TILL_END);
8276   incq(result);
8277   load_unsigned_byte(tmp1, Address(obja, result));
8278   load_unsigned_byte(tmp2, Address(objb, result));
8279   xorl(tmp1, tmp2);
8280   testl(tmp1, tmp1);
8281   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8282   jmp(SAME_TILL_END);
8283 
8284   if (UseAVX >= 2) {
8285     bind(VECTOR32_NOT_EQUAL);
8286     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
8287     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
8288     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
8289     vpmovmskb(tmp1, rymm0);
8290     bsfq(tmp1, tmp1);
8291     addq(result, tmp1);
8292     shrq(result);
8293     jmp(DONE);
8294   }
8295 
8296   bind(VECTOR16_NOT_EQUAL);
8297   if (UseAVX >= 2) {
8298     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
8299     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
8300     pxor(rymm0, rymm2);
8301   } else {
8302     pcmpeqb(rymm2, rymm2);
8303     pxor(rymm0, rymm1);
8304     pcmpeqb(rymm0, rymm1);
8305     pxor(rymm0, rymm2);
8306   }
8307   pmovmskb(tmp1, rymm0);
8308   bsfq(tmp1, tmp1);
8309   addq(result, tmp1);
8310   shrq(result);
8311   jmpb(DONE);
8312 
8313   bind(VECTOR8_NOT_EQUAL);
8314   bind(VECTOR4_NOT_EQUAL);
8315   bsfq(tmp1, tmp1);
8316   shrq(tmp1, 3);
8317   addq(result, tmp1);
8318   bind(BYTES_NOT_EQUAL);
8319   shrq(result);
8320   jmpb(DONE);
8321 
8322   bind(SAME_TILL_END);
8323   mov64(result, -1);
8324 
8325   bind(DONE);
8326 }
8327 
8328 //Helper functions for square_to_len()
8329 
8330 /**
8331  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
8332  * Preserves x and z and modifies rest of the registers.
8333  */
8334 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8335   // Perform square and right shift by 1
8336   // Handle odd xlen case first, then for even xlen do the following
8337   // jlong carry = 0;
8338   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
8339   //     huge_128 product = x[j:j+1] * x[j:j+1];
8340   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
8341   //     z[i+2:i+3] = (jlong)(product >>> 1);
8342   //     carry = (jlong)product;
8343   // }
8344 
8345   xorq(tmp5, tmp5);     // carry
8346   xorq(rdxReg, rdxReg);
8347   xorl(tmp1, tmp1);     // index for x
8348   xorl(tmp4, tmp4);     // index for z
8349 
8350   Label L_first_loop, L_first_loop_exit;
8351 
8352   testl(xlen, 1);
8353   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
8354 
8355   // Square and right shift by 1 the odd element using 32 bit multiply
8356   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
8357   imulq(raxReg, raxReg);
8358   shrq(raxReg, 1);
8359   adcq(tmp5, 0);
8360   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
8361   incrementl(tmp1);
8362   addl(tmp4, 2);
8363 
8364   // Square and  right shift by 1 the rest using 64 bit multiply
8365   bind(L_first_loop);
8366   cmpptr(tmp1, xlen);
8367   jccb(Assembler::equal, L_first_loop_exit);
8368 
8369   // Square
8370   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
8371   rorq(raxReg, 32);    // convert big-endian to little-endian
8372   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
8373 
8374   // Right shift by 1 and save carry
8375   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
8376   rcrq(rdxReg, 1);
8377   rcrq(raxReg, 1);
8378   adcq(tmp5, 0);
8379 
8380   // Store result in z
8381   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
8382   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
8383 
8384   // Update indices for x and z
8385   addl(tmp1, 2);
8386   addl(tmp4, 4);
8387   jmp(L_first_loop);
8388 
8389   bind(L_first_loop_exit);
8390 }
8391 
8392 
8393 /**
8394  * Perform the following multiply add operation using BMI2 instructions
8395  * carry:sum = sum + op1*op2 + carry
8396  * op2 should be in rdx
8397  * op2 is preserved, all other registers are modified
8398  */
8399 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
8400   // assert op2 is rdx
8401   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
8402   addq(sum, carry);
8403   adcq(tmp2, 0);
8404   addq(sum, op1);
8405   adcq(tmp2, 0);
8406   movq(carry, tmp2);
8407 }
8408 
8409 /**
8410  * Perform the following multiply add operation:
8411  * carry:sum = sum + op1*op2 + carry
8412  * Preserves op1, op2 and modifies rest of registers
8413  */
8414 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
8415   // rdx:rax = op1 * op2
8416   movq(raxReg, op2);
8417   mulq(op1);
8418 
8419   //  rdx:rax = sum + carry + rdx:rax
8420   addq(sum, carry);
8421   adcq(rdxReg, 0);
8422   addq(sum, raxReg);
8423   adcq(rdxReg, 0);
8424 
8425   // carry:sum = rdx:sum
8426   movq(carry, rdxReg);
8427 }
8428 
8429 /**
8430  * Add 64 bit long carry into z[] with carry propogation.
8431  * Preserves z and carry register values and modifies rest of registers.
8432  *
8433  */
8434 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8435   Label L_fourth_loop, L_fourth_loop_exit;
8436 
8437   movl(tmp1, 1);
8438   subl(zlen, 2);
8439   addq(Address(z, zlen, Address::times_4, 0), carry);
8440 
8441   bind(L_fourth_loop);
8442   jccb(Assembler::carryClear, L_fourth_loop_exit);
8443   subl(zlen, 2);
8444   jccb(Assembler::negative, L_fourth_loop_exit);
8445   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8446   jmp(L_fourth_loop);
8447   bind(L_fourth_loop_exit);
8448 }
8449 
8450 /**
8451  * Shift z[] left by 1 bit.
8452  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8453  *
8454  */
8455 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8456 
8457   Label L_fifth_loop, L_fifth_loop_exit;
8458 
8459   // Fifth loop
8460   // Perform primitiveLeftShift(z, zlen, 1)
8461 
8462   const Register prev_carry = tmp1;
8463   const Register new_carry = tmp4;
8464   const Register value = tmp2;
8465   const Register zidx = tmp3;
8466 
8467   // int zidx, carry;
8468   // long value;
8469   // carry = 0;
8470   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8471   //    (carry:value)  = (z[i] << 1) | carry ;
8472   //    z[i] = value;
8473   // }
8474 
8475   movl(zidx, zlen);
8476   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8477 
8478   bind(L_fifth_loop);
8479   decl(zidx);  // Use decl to preserve carry flag
8480   decl(zidx);
8481   jccb(Assembler::negative, L_fifth_loop_exit);
8482 
8483   if (UseBMI2Instructions) {
8484      movq(value, Address(z, zidx, Address::times_4, 0));
8485      rclq(value, 1);
8486      rorxq(value, value, 32);
8487      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8488   }
8489   else {
8490     // clear new_carry
8491     xorl(new_carry, new_carry);
8492 
8493     // Shift z[i] by 1, or in previous carry and save new carry
8494     movq(value, Address(z, zidx, Address::times_4, 0));
8495     shlq(value, 1);
8496     adcl(new_carry, 0);
8497 
8498     orq(value, prev_carry);
8499     rorq(value, 0x20);
8500     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8501 
8502     // Set previous carry = new carry
8503     movl(prev_carry, new_carry);
8504   }
8505   jmp(L_fifth_loop);
8506 
8507   bind(L_fifth_loop_exit);
8508 }
8509 
8510 
8511 /**
8512  * Code for BigInteger::squareToLen() intrinsic
8513  *
8514  * rdi: x
8515  * rsi: len
8516  * r8:  z
8517  * rcx: zlen
8518  * r12: tmp1
8519  * r13: tmp2
8520  * r14: tmp3
8521  * r15: tmp4
8522  * rbx: tmp5
8523  *
8524  */
8525 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8526 
8527   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
8528   push(tmp1);
8529   push(tmp2);
8530   push(tmp3);
8531   push(tmp4);
8532   push(tmp5);
8533 
8534   // First loop
8535   // Store the squares, right shifted one bit (i.e., divided by 2).
8536   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8537 
8538   // Add in off-diagonal sums.
8539   //
8540   // Second, third (nested) and fourth loops.
8541   // zlen +=2;
8542   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8543   //    carry = 0;
8544   //    long op2 = x[xidx:xidx+1];
8545   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8546   //       k -= 2;
8547   //       long op1 = x[j:j+1];
8548   //       long sum = z[k:k+1];
8549   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8550   //       z[k:k+1] = sum;
8551   //    }
8552   //    add_one_64(z, k, carry, tmp_regs);
8553   // }
8554 
8555   const Register carry = tmp5;
8556   const Register sum = tmp3;
8557   const Register op1 = tmp4;
8558   Register op2 = tmp2;
8559 
8560   push(zlen);
8561   push(len);
8562   addl(zlen,2);
8563   bind(L_second_loop);
8564   xorq(carry, carry);
8565   subl(zlen, 4);
8566   subl(len, 2);
8567   push(zlen);
8568   push(len);
8569   cmpl(len, 0);
8570   jccb(Assembler::lessEqual, L_second_loop_exit);
8571 
8572   // Multiply an array by one 64 bit long.
8573   if (UseBMI2Instructions) {
8574     op2 = rdxReg;
8575     movq(op2, Address(x, len, Address::times_4,  0));
8576     rorxq(op2, op2, 32);
8577   }
8578   else {
8579     movq(op2, Address(x, len, Address::times_4,  0));
8580     rorq(op2, 32);
8581   }
8582 
8583   bind(L_third_loop);
8584   decrementl(len);
8585   jccb(Assembler::negative, L_third_loop_exit);
8586   decrementl(len);
8587   jccb(Assembler::negative, L_last_x);
8588 
8589   movq(op1, Address(x, len, Address::times_4,  0));
8590   rorq(op1, 32);
8591 
8592   bind(L_multiply);
8593   subl(zlen, 2);
8594   movq(sum, Address(z, zlen, Address::times_4,  0));
8595 
8596   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8597   if (UseBMI2Instructions) {
8598     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8599   }
8600   else {
8601     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8602   }
8603 
8604   movq(Address(z, zlen, Address::times_4, 0), sum);
8605 
8606   jmp(L_third_loop);
8607   bind(L_third_loop_exit);
8608 
8609   // Fourth loop
8610   // Add 64 bit long carry into z with carry propogation.
8611   // Uses offsetted zlen.
8612   add_one_64(z, zlen, carry, tmp1);
8613 
8614   pop(len);
8615   pop(zlen);
8616   jmp(L_second_loop);
8617 
8618   // Next infrequent code is moved outside loops.
8619   bind(L_last_x);
8620   movl(op1, Address(x, 0));
8621   jmp(L_multiply);
8622 
8623   bind(L_second_loop_exit);
8624   pop(len);
8625   pop(zlen);
8626   pop(len);
8627   pop(zlen);
8628 
8629   // Fifth loop
8630   // Shift z left 1 bit.
8631   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8632 
8633   // z[zlen-1] |= x[len-1] & 1;
8634   movl(tmp3, Address(x, len, Address::times_4, -4));
8635   andl(tmp3, 1);
8636   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8637 
8638   pop(tmp5);
8639   pop(tmp4);
8640   pop(tmp3);
8641   pop(tmp2);
8642   pop(tmp1);
8643 }
8644 
8645 /**
8646  * Helper function for mul_add()
8647  * Multiply the in[] by int k and add to out[] starting at offset offs using
8648  * 128 bit by 32 bit multiply and return the carry in tmp5.
8649  * Only quad int aligned length of in[] is operated on in this function.
8650  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8651  * This function preserves out, in and k registers.
8652  * len and offset point to the appropriate index in "in" & "out" correspondingly
8653  * tmp5 has the carry.
8654  * other registers are temporary and are modified.
8655  *
8656  */
8657 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8658   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8659   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8660 
8661   Label L_first_loop, L_first_loop_exit;
8662 
8663   movl(tmp1, len);
8664   shrl(tmp1, 2);
8665 
8666   bind(L_first_loop);
8667   subl(tmp1, 1);
8668   jccb(Assembler::negative, L_first_loop_exit);
8669 
8670   subl(len, 4);
8671   subl(offset, 4);
8672 
8673   Register op2 = tmp2;
8674   const Register sum = tmp3;
8675   const Register op1 = tmp4;
8676   const Register carry = tmp5;
8677 
8678   if (UseBMI2Instructions) {
8679     op2 = rdxReg;
8680   }
8681 
8682   movq(op1, Address(in, len, Address::times_4,  8));
8683   rorq(op1, 32);
8684   movq(sum, Address(out, offset, Address::times_4,  8));
8685   rorq(sum, 32);
8686   if (UseBMI2Instructions) {
8687     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8688   }
8689   else {
8690     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8691   }
8692   // Store back in big endian from little endian
8693   rorq(sum, 0x20);
8694   movq(Address(out, offset, Address::times_4,  8), sum);
8695 
8696   movq(op1, Address(in, len, Address::times_4,  0));
8697   rorq(op1, 32);
8698   movq(sum, Address(out, offset, Address::times_4,  0));
8699   rorq(sum, 32);
8700   if (UseBMI2Instructions) {
8701     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8702   }
8703   else {
8704     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8705   }
8706   // Store back in big endian from little endian
8707   rorq(sum, 0x20);
8708   movq(Address(out, offset, Address::times_4,  0), sum);
8709 
8710   jmp(L_first_loop);
8711   bind(L_first_loop_exit);
8712 }
8713 
8714 /**
8715  * Code for BigInteger::mulAdd() intrinsic
8716  *
8717  * rdi: out
8718  * rsi: in
8719  * r11: offs (out.length - offset)
8720  * rcx: len
8721  * r8:  k
8722  * r12: tmp1
8723  * r13: tmp2
8724  * r14: tmp3
8725  * r15: tmp4
8726  * rbx: tmp5
8727  * Multiply the in[] by word k and add to out[], return the carry in rax
8728  */
8729 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8730    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8731    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8732 
8733   Label L_carry, L_last_in, L_done;
8734 
8735 // carry = 0;
8736 // for (int j=len-1; j >= 0; j--) {
8737 //    long product = (in[j] & LONG_MASK) * kLong +
8738 //                   (out[offs] & LONG_MASK) + carry;
8739 //    out[offs--] = (int)product;
8740 //    carry = product >>> 32;
8741 // }
8742 //
8743   push(tmp1);
8744   push(tmp2);
8745   push(tmp3);
8746   push(tmp4);
8747   push(tmp5);
8748 
8749   Register op2 = tmp2;
8750   const Register sum = tmp3;
8751   const Register op1 = tmp4;
8752   const Register carry =  tmp5;
8753 
8754   if (UseBMI2Instructions) {
8755     op2 = rdxReg;
8756     movl(op2, k);
8757   }
8758   else {
8759     movl(op2, k);
8760   }
8761 
8762   xorq(carry, carry);
8763 
8764   //First loop
8765 
8766   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8767   //The carry is in tmp5
8768   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8769 
8770   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8771   decrementl(len);
8772   jccb(Assembler::negative, L_carry);
8773   decrementl(len);
8774   jccb(Assembler::negative, L_last_in);
8775 
8776   movq(op1, Address(in, len, Address::times_4,  0));
8777   rorq(op1, 32);
8778 
8779   subl(offs, 2);
8780   movq(sum, Address(out, offs, Address::times_4,  0));
8781   rorq(sum, 32);
8782 
8783   if (UseBMI2Instructions) {
8784     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8785   }
8786   else {
8787     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8788   }
8789 
8790   // Store back in big endian from little endian
8791   rorq(sum, 0x20);
8792   movq(Address(out, offs, Address::times_4,  0), sum);
8793 
8794   testl(len, len);
8795   jccb(Assembler::zero, L_carry);
8796 
8797   //Multiply the last in[] entry, if any
8798   bind(L_last_in);
8799   movl(op1, Address(in, 0));
8800   movl(sum, Address(out, offs, Address::times_4,  -4));
8801 
8802   movl(raxReg, k);
8803   mull(op1); //tmp4 * eax -> edx:eax
8804   addl(sum, carry);
8805   adcl(rdxReg, 0);
8806   addl(sum, raxReg);
8807   adcl(rdxReg, 0);
8808   movl(carry, rdxReg);
8809 
8810   movl(Address(out, offs, Address::times_4,  -4), sum);
8811 
8812   bind(L_carry);
8813   //return tmp5/carry as carry in rax
8814   movl(rax, carry);
8815 
8816   bind(L_done);
8817   pop(tmp5);
8818   pop(tmp4);
8819   pop(tmp3);
8820   pop(tmp2);
8821   pop(tmp1);
8822 }
8823 #endif
8824 
8825 /**
8826  * Emits code to update CRC-32 with a byte value according to constants in table
8827  *
8828  * @param [in,out]crc   Register containing the crc.
8829  * @param [in]val       Register containing the byte to fold into the CRC.
8830  * @param [in]table     Register containing the table of crc constants.
8831  *
8832  * uint32_t crc;
8833  * val = crc_table[(val ^ crc) & 0xFF];
8834  * crc = val ^ (crc >> 8);
8835  *
8836  */
8837 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8838   xorl(val, crc);
8839   andl(val, 0xFF);
8840   shrl(crc, 8); // unsigned shift
8841   xorl(crc, Address(table, val, Address::times_4, 0));
8842 }
8843 
8844 /**
8845 * Fold four 128-bit data chunks
8846 */
8847 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8848   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
8849   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
8850   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
8851   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
8852 }
8853 
8854 /**
8855  * Fold 128-bit data chunk
8856  */
8857 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8858   if (UseAVX > 0) {
8859     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8860     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8861     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8862     pxor(xcrc, xtmp);
8863   } else {
8864     movdqa(xtmp, xcrc);
8865     pclmulhdq(xtmp, xK);   // [123:64]
8866     pclmulldq(xcrc, xK);   // [63:0]
8867     pxor(xcrc, xtmp);
8868     movdqu(xtmp, Address(buf, offset));
8869     pxor(xcrc, xtmp);
8870   }
8871 }
8872 
8873 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8874   if (UseAVX > 0) {
8875     vpclmulhdq(xtmp, xK, xcrc);
8876     vpclmulldq(xcrc, xK, xcrc);
8877     pxor(xcrc, xbuf);
8878     pxor(xcrc, xtmp);
8879   } else {
8880     movdqa(xtmp, xcrc);
8881     pclmulhdq(xtmp, xK);
8882     pclmulldq(xcrc, xK);
8883     pxor(xcrc, xbuf);
8884     pxor(xcrc, xtmp);
8885   }
8886 }
8887 
8888 /**
8889  * 8-bit folds to compute 32-bit CRC
8890  *
8891  * uint64_t xcrc;
8892  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8893  */
8894 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8895   movdl(tmp, xcrc);
8896   andl(tmp, 0xFF);
8897   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8898   psrldq(xcrc, 1); // unsigned shift one byte
8899   pxor(xcrc, xtmp);
8900 }
8901 
8902 /**
8903  * uint32_t crc;
8904  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8905  */
8906 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8907   movl(tmp, crc);
8908   andl(tmp, 0xFF);
8909   shrl(crc, 8);
8910   xorl(crc, Address(table, tmp, Address::times_4, 0));
8911 }
8912 
8913 /**
8914  * @param crc   register containing existing CRC (32-bit)
8915  * @param buf   register pointing to input byte buffer (byte*)
8916  * @param len   register containing number of bytes
8917  * @param table register that will contain address of CRC table
8918  * @param tmp   scratch register
8919  */
8920 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8921   assert_different_registers(crc, buf, len, table, tmp, rax);
8922 
8923   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8924   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8925 
8926   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
8927   // context for the registers used, where all instructions below are using 128-bit mode
8928   // On EVEX without VL and BW, these instructions will all be AVX.
8929   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8930   notl(crc); // ~crc
8931   cmpl(len, 16);
8932   jcc(Assembler::less, L_tail);
8933 
8934   // Align buffer to 16 bytes
8935   movl(tmp, buf);
8936   andl(tmp, 0xF);
8937   jccb(Assembler::zero, L_aligned);
8938   subl(tmp,  16);
8939   addl(len, tmp);
8940 
8941   align(4);
8942   BIND(L_align_loop);
8943   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8944   update_byte_crc32(crc, rax, table);
8945   increment(buf);
8946   incrementl(tmp);
8947   jccb(Assembler::less, L_align_loop);
8948 
8949   BIND(L_aligned);
8950   movl(tmp, len); // save
8951   shrl(len, 4);
8952   jcc(Assembler::zero, L_tail_restore);
8953 
8954   // Fold crc into first bytes of vector
8955   movdqa(xmm1, Address(buf, 0));
8956   movdl(rax, xmm1);
8957   xorl(crc, rax);
8958   if (VM_Version::supports_sse4_1()) {
8959     pinsrd(xmm1, crc, 0);
8960   } else {
8961     pinsrw(xmm1, crc, 0);
8962     shrl(crc, 16);
8963     pinsrw(xmm1, crc, 1);
8964   }
8965   addptr(buf, 16);
8966   subl(len, 4); // len > 0
8967   jcc(Assembler::less, L_fold_tail);
8968 
8969   movdqa(xmm2, Address(buf,  0));
8970   movdqa(xmm3, Address(buf, 16));
8971   movdqa(xmm4, Address(buf, 32));
8972   addptr(buf, 48);
8973   subl(len, 3);
8974   jcc(Assembler::lessEqual, L_fold_512b);
8975 
8976   // Fold total 512 bits of polynomial on each iteration,
8977   // 128 bits per each of 4 parallel streams.
8978   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8979 
8980   align(32);
8981   BIND(L_fold_512b_loop);
8982   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8983   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8984   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8985   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8986   addptr(buf, 64);
8987   subl(len, 4);
8988   jcc(Assembler::greater, L_fold_512b_loop);
8989 
8990   // Fold 512 bits to 128 bits.
8991   BIND(L_fold_512b);
8992   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8993   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
8994   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
8995   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
8996 
8997   // Fold the rest of 128 bits data chunks
8998   BIND(L_fold_tail);
8999   addl(len, 3);
9000   jccb(Assembler::lessEqual, L_fold_128b);
9001   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9002 
9003   BIND(L_fold_tail_loop);
9004   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9005   addptr(buf, 16);
9006   decrementl(len);
9007   jccb(Assembler::greater, L_fold_tail_loop);
9008 
9009   // Fold 128 bits in xmm1 down into 32 bits in crc register.
9010   BIND(L_fold_128b);
9011   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
9012   if (UseAVX > 0) {
9013     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
9014     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
9015     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
9016   } else {
9017     movdqa(xmm2, xmm0);
9018     pclmulqdq(xmm2, xmm1, 0x1);
9019     movdqa(xmm3, xmm0);
9020     pand(xmm3, xmm2);
9021     pclmulqdq(xmm0, xmm3, 0x1);
9022   }
9023   psrldq(xmm1, 8);
9024   psrldq(xmm2, 4);
9025   pxor(xmm0, xmm1);
9026   pxor(xmm0, xmm2);
9027 
9028   // 8 8-bit folds to compute 32-bit CRC.
9029   for (int j = 0; j < 4; j++) {
9030     fold_8bit_crc32(xmm0, table, xmm1, rax);
9031   }
9032   movdl(crc, xmm0); // mov 32 bits to general register
9033   for (int j = 0; j < 4; j++) {
9034     fold_8bit_crc32(crc, table, rax);
9035   }
9036 
9037   BIND(L_tail_restore);
9038   movl(len, tmp); // restore
9039   BIND(L_tail);
9040   andl(len, 0xf);
9041   jccb(Assembler::zero, L_exit);
9042 
9043   // Fold the rest of bytes
9044   align(4);
9045   BIND(L_tail_loop);
9046   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9047   update_byte_crc32(crc, rax, table);
9048   increment(buf);
9049   decrementl(len);
9050   jccb(Assembler::greater, L_tail_loop);
9051 
9052   BIND(L_exit);
9053   notl(crc); // ~c
9054 }
9055 
9056 #ifdef _LP64
9057 // S. Gueron / Information Processing Letters 112 (2012) 184
9058 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
9059 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
9060 // Output: the 64-bit carry-less product of B * CONST
9061 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
9062                                      Register tmp1, Register tmp2, Register tmp3) {
9063   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9064   if (n > 0) {
9065     addq(tmp3, n * 256 * 8);
9066   }
9067   //    Q1 = TABLEExt[n][B & 0xFF];
9068   movl(tmp1, in);
9069   andl(tmp1, 0x000000FF);
9070   shll(tmp1, 3);
9071   addq(tmp1, tmp3);
9072   movq(tmp1, Address(tmp1, 0));
9073 
9074   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9075   movl(tmp2, in);
9076   shrl(tmp2, 8);
9077   andl(tmp2, 0x000000FF);
9078   shll(tmp2, 3);
9079   addq(tmp2, tmp3);
9080   movq(tmp2, Address(tmp2, 0));
9081 
9082   shlq(tmp2, 8);
9083   xorq(tmp1, tmp2);
9084 
9085   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9086   movl(tmp2, in);
9087   shrl(tmp2, 16);
9088   andl(tmp2, 0x000000FF);
9089   shll(tmp2, 3);
9090   addq(tmp2, tmp3);
9091   movq(tmp2, Address(tmp2, 0));
9092 
9093   shlq(tmp2, 16);
9094   xorq(tmp1, tmp2);
9095 
9096   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9097   shrl(in, 24);
9098   andl(in, 0x000000FF);
9099   shll(in, 3);
9100   addq(in, tmp3);
9101   movq(in, Address(in, 0));
9102 
9103   shlq(in, 24);
9104   xorq(in, tmp1);
9105   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9106 }
9107 
9108 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9109                                       Register in_out,
9110                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9111                                       XMMRegister w_xtmp2,
9112                                       Register tmp1,
9113                                       Register n_tmp2, Register n_tmp3) {
9114   if (is_pclmulqdq_supported) {
9115     movdl(w_xtmp1, in_out); // modified blindly
9116 
9117     movl(tmp1, const_or_pre_comp_const_index);
9118     movdl(w_xtmp2, tmp1);
9119     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9120 
9121     movdq(in_out, w_xtmp1);
9122   } else {
9123     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
9124   }
9125 }
9126 
9127 // Recombination Alternative 2: No bit-reflections
9128 // T1 = (CRC_A * U1) << 1
9129 // T2 = (CRC_B * U2) << 1
9130 // C1 = T1 >> 32
9131 // C2 = T2 >> 32
9132 // T1 = T1 & 0xFFFFFFFF
9133 // T2 = T2 & 0xFFFFFFFF
9134 // T1 = CRC32(0, T1)
9135 // T2 = CRC32(0, T2)
9136 // C1 = C1 ^ T1
9137 // C2 = C2 ^ T2
9138 // CRC = C1 ^ C2 ^ CRC_C
9139 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9140                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9141                                      Register tmp1, Register tmp2,
9142                                      Register n_tmp3) {
9143   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9144   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9145   shlq(in_out, 1);
9146   movl(tmp1, in_out);
9147   shrq(in_out, 32);
9148   xorl(tmp2, tmp2);
9149   crc32(tmp2, tmp1, 4);
9150   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
9151   shlq(in1, 1);
9152   movl(tmp1, in1);
9153   shrq(in1, 32);
9154   xorl(tmp2, tmp2);
9155   crc32(tmp2, tmp1, 4);
9156   xorl(in1, tmp2);
9157   xorl(in_out, in1);
9158   xorl(in_out, in2);
9159 }
9160 
9161 // Set N to predefined value
9162 // Subtract from a lenght of a buffer
9163 // execute in a loop:
9164 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
9165 // for i = 1 to N do
9166 //  CRC_A = CRC32(CRC_A, A[i])
9167 //  CRC_B = CRC32(CRC_B, B[i])
9168 //  CRC_C = CRC32(CRC_C, C[i])
9169 // end for
9170 // Recombine
9171 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9172                                        Register in_out1, Register in_out2, Register in_out3,
9173                                        Register tmp1, Register tmp2, Register tmp3,
9174                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9175                                        Register tmp4, Register tmp5,
9176                                        Register n_tmp6) {
9177   Label L_processPartitions;
9178   Label L_processPartition;
9179   Label L_exit;
9180 
9181   bind(L_processPartitions);
9182   cmpl(in_out1, 3 * size);
9183   jcc(Assembler::less, L_exit);
9184     xorl(tmp1, tmp1);
9185     xorl(tmp2, tmp2);
9186     movq(tmp3, in_out2);
9187     addq(tmp3, size);
9188 
9189     bind(L_processPartition);
9190       crc32(in_out3, Address(in_out2, 0), 8);
9191       crc32(tmp1, Address(in_out2, size), 8);
9192       crc32(tmp2, Address(in_out2, size * 2), 8);
9193       addq(in_out2, 8);
9194       cmpq(in_out2, tmp3);
9195       jcc(Assembler::less, L_processPartition);
9196     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9197             w_xtmp1, w_xtmp2, w_xtmp3,
9198             tmp4, tmp5,
9199             n_tmp6);
9200     addq(in_out2, 2 * size);
9201     subl(in_out1, 3 * size);
9202     jmp(L_processPartitions);
9203 
9204   bind(L_exit);
9205 }
9206 #else
9207 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
9208                                      Register tmp1, Register tmp2, Register tmp3,
9209                                      XMMRegister xtmp1, XMMRegister xtmp2) {
9210   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9211   if (n > 0) {
9212     addl(tmp3, n * 256 * 8);
9213   }
9214   //    Q1 = TABLEExt[n][B & 0xFF];
9215   movl(tmp1, in_out);
9216   andl(tmp1, 0x000000FF);
9217   shll(tmp1, 3);
9218   addl(tmp1, tmp3);
9219   movq(xtmp1, Address(tmp1, 0));
9220 
9221   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9222   movl(tmp2, in_out);
9223   shrl(tmp2, 8);
9224   andl(tmp2, 0x000000FF);
9225   shll(tmp2, 3);
9226   addl(tmp2, tmp3);
9227   movq(xtmp2, Address(tmp2, 0));
9228 
9229   psllq(xtmp2, 8);
9230   pxor(xtmp1, xtmp2);
9231 
9232   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9233   movl(tmp2, in_out);
9234   shrl(tmp2, 16);
9235   andl(tmp2, 0x000000FF);
9236   shll(tmp2, 3);
9237   addl(tmp2, tmp3);
9238   movq(xtmp2, Address(tmp2, 0));
9239 
9240   psllq(xtmp2, 16);
9241   pxor(xtmp1, xtmp2);
9242 
9243   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9244   shrl(in_out, 24);
9245   andl(in_out, 0x000000FF);
9246   shll(in_out, 3);
9247   addl(in_out, tmp3);
9248   movq(xtmp2, Address(in_out, 0));
9249 
9250   psllq(xtmp2, 24);
9251   pxor(xtmp1, xtmp2); // Result in CXMM
9252   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9253 }
9254 
9255 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9256                                       Register in_out,
9257                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9258                                       XMMRegister w_xtmp2,
9259                                       Register tmp1,
9260                                       Register n_tmp2, Register n_tmp3) {
9261   if (is_pclmulqdq_supported) {
9262     movdl(w_xtmp1, in_out);
9263 
9264     movl(tmp1, const_or_pre_comp_const_index);
9265     movdl(w_xtmp2, tmp1);
9266     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9267     // Keep result in XMM since GPR is 32 bit in length
9268   } else {
9269     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
9270   }
9271 }
9272 
9273 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9274                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9275                                      Register tmp1, Register tmp2,
9276                                      Register n_tmp3) {
9277   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9278   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9279 
9280   psllq(w_xtmp1, 1);
9281   movdl(tmp1, w_xtmp1);
9282   psrlq(w_xtmp1, 32);
9283   movdl(in_out, w_xtmp1);
9284 
9285   xorl(tmp2, tmp2);
9286   crc32(tmp2, tmp1, 4);
9287   xorl(in_out, tmp2);
9288 
9289   psllq(w_xtmp2, 1);
9290   movdl(tmp1, w_xtmp2);
9291   psrlq(w_xtmp2, 32);
9292   movdl(in1, w_xtmp2);
9293 
9294   xorl(tmp2, tmp2);
9295   crc32(tmp2, tmp1, 4);
9296   xorl(in1, tmp2);
9297   xorl(in_out, in1);
9298   xorl(in_out, in2);
9299 }
9300 
9301 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9302                                        Register in_out1, Register in_out2, Register in_out3,
9303                                        Register tmp1, Register tmp2, Register tmp3,
9304                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9305                                        Register tmp4, Register tmp5,
9306                                        Register n_tmp6) {
9307   Label L_processPartitions;
9308   Label L_processPartition;
9309   Label L_exit;
9310 
9311   bind(L_processPartitions);
9312   cmpl(in_out1, 3 * size);
9313   jcc(Assembler::less, L_exit);
9314     xorl(tmp1, tmp1);
9315     xorl(tmp2, tmp2);
9316     movl(tmp3, in_out2);
9317     addl(tmp3, size);
9318 
9319     bind(L_processPartition);
9320       crc32(in_out3, Address(in_out2, 0), 4);
9321       crc32(tmp1, Address(in_out2, size), 4);
9322       crc32(tmp2, Address(in_out2, size*2), 4);
9323       crc32(in_out3, Address(in_out2, 0+4), 4);
9324       crc32(tmp1, Address(in_out2, size+4), 4);
9325       crc32(tmp2, Address(in_out2, size*2+4), 4);
9326       addl(in_out2, 8);
9327       cmpl(in_out2, tmp3);
9328       jcc(Assembler::less, L_processPartition);
9329 
9330         push(tmp3);
9331         push(in_out1);
9332         push(in_out2);
9333         tmp4 = tmp3;
9334         tmp5 = in_out1;
9335         n_tmp6 = in_out2;
9336 
9337       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9338             w_xtmp1, w_xtmp2, w_xtmp3,
9339             tmp4, tmp5,
9340             n_tmp6);
9341 
9342         pop(in_out2);
9343         pop(in_out1);
9344         pop(tmp3);
9345 
9346     addl(in_out2, 2 * size);
9347     subl(in_out1, 3 * size);
9348     jmp(L_processPartitions);
9349 
9350   bind(L_exit);
9351 }
9352 #endif //LP64
9353 
9354 #ifdef _LP64
9355 // Algorithm 2: Pipelined usage of the CRC32 instruction.
9356 // Input: A buffer I of L bytes.
9357 // Output: the CRC32C value of the buffer.
9358 // Notations:
9359 // Write L = 24N + r, with N = floor (L/24).
9360 // r = L mod 24 (0 <= r < 24).
9361 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
9362 // N quadwords, and R consists of r bytes.
9363 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
9364 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
9365 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
9366 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
9367 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9368                                           Register tmp1, Register tmp2, Register tmp3,
9369                                           Register tmp4, Register tmp5, Register tmp6,
9370                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9371                                           bool is_pclmulqdq_supported) {
9372   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9373   Label L_wordByWord;
9374   Label L_byteByByteProlog;
9375   Label L_byteByByte;
9376   Label L_exit;
9377 
9378   if (is_pclmulqdq_supported ) {
9379     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9380     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
9381 
9382     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9383     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9384 
9385     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9386     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9387     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
9388   } else {
9389     const_or_pre_comp_const_index[0] = 1;
9390     const_or_pre_comp_const_index[1] = 0;
9391 
9392     const_or_pre_comp_const_index[2] = 3;
9393     const_or_pre_comp_const_index[3] = 2;
9394 
9395     const_or_pre_comp_const_index[4] = 5;
9396     const_or_pre_comp_const_index[5] = 4;
9397    }
9398   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9399                     in2, in1, in_out,
9400                     tmp1, tmp2, tmp3,
9401                     w_xtmp1, w_xtmp2, w_xtmp3,
9402                     tmp4, tmp5,
9403                     tmp6);
9404   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9405                     in2, in1, in_out,
9406                     tmp1, tmp2, tmp3,
9407                     w_xtmp1, w_xtmp2, w_xtmp3,
9408                     tmp4, tmp5,
9409                     tmp6);
9410   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9411                     in2, in1, in_out,
9412                     tmp1, tmp2, tmp3,
9413                     w_xtmp1, w_xtmp2, w_xtmp3,
9414                     tmp4, tmp5,
9415                     tmp6);
9416   movl(tmp1, in2);
9417   andl(tmp1, 0x00000007);
9418   negl(tmp1);
9419   addl(tmp1, in2);
9420   addq(tmp1, in1);
9421 
9422   BIND(L_wordByWord);
9423   cmpq(in1, tmp1);
9424   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9425     crc32(in_out, Address(in1, 0), 4);
9426     addq(in1, 4);
9427     jmp(L_wordByWord);
9428 
9429   BIND(L_byteByByteProlog);
9430   andl(in2, 0x00000007);
9431   movl(tmp2, 1);
9432 
9433   BIND(L_byteByByte);
9434   cmpl(tmp2, in2);
9435   jccb(Assembler::greater, L_exit);
9436     crc32(in_out, Address(in1, 0), 1);
9437     incq(in1);
9438     incl(tmp2);
9439     jmp(L_byteByByte);
9440 
9441   BIND(L_exit);
9442 }
9443 #else
9444 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9445                                           Register tmp1, Register  tmp2, Register tmp3,
9446                                           Register tmp4, Register  tmp5, Register tmp6,
9447                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9448                                           bool is_pclmulqdq_supported) {
9449   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9450   Label L_wordByWord;
9451   Label L_byteByByteProlog;
9452   Label L_byteByByte;
9453   Label L_exit;
9454 
9455   if (is_pclmulqdq_supported) {
9456     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9457     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
9458 
9459     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9460     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9461 
9462     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9463     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9464   } else {
9465     const_or_pre_comp_const_index[0] = 1;
9466     const_or_pre_comp_const_index[1] = 0;
9467 
9468     const_or_pre_comp_const_index[2] = 3;
9469     const_or_pre_comp_const_index[3] = 2;
9470 
9471     const_or_pre_comp_const_index[4] = 5;
9472     const_or_pre_comp_const_index[5] = 4;
9473   }
9474   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9475                     in2, in1, in_out,
9476                     tmp1, tmp2, tmp3,
9477                     w_xtmp1, w_xtmp2, w_xtmp3,
9478                     tmp4, tmp5,
9479                     tmp6);
9480   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9481                     in2, in1, in_out,
9482                     tmp1, tmp2, tmp3,
9483                     w_xtmp1, w_xtmp2, w_xtmp3,
9484                     tmp4, tmp5,
9485                     tmp6);
9486   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9487                     in2, in1, in_out,
9488                     tmp1, tmp2, tmp3,
9489                     w_xtmp1, w_xtmp2, w_xtmp3,
9490                     tmp4, tmp5,
9491                     tmp6);
9492   movl(tmp1, in2);
9493   andl(tmp1, 0x00000007);
9494   negl(tmp1);
9495   addl(tmp1, in2);
9496   addl(tmp1, in1);
9497 
9498   BIND(L_wordByWord);
9499   cmpl(in1, tmp1);
9500   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9501     crc32(in_out, Address(in1,0), 4);
9502     addl(in1, 4);
9503     jmp(L_wordByWord);
9504 
9505   BIND(L_byteByByteProlog);
9506   andl(in2, 0x00000007);
9507   movl(tmp2, 1);
9508 
9509   BIND(L_byteByByte);
9510   cmpl(tmp2, in2);
9511   jccb(Assembler::greater, L_exit);
9512     movb(tmp1, Address(in1, 0));
9513     crc32(in_out, tmp1, 1);
9514     incl(in1);
9515     incl(tmp2);
9516     jmp(L_byteByByte);
9517 
9518   BIND(L_exit);
9519 }
9520 #endif // LP64
9521 #undef BIND
9522 #undef BLOCK_COMMENT
9523 
9524 // Compress char[] array to byte[].
9525 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
9526 //   @HotSpotIntrinsicCandidate
9527 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
9528 //     for (int i = 0; i < len; i++) {
9529 //       int c = src[srcOff++];
9530 //       if (c >>> 8 != 0) {
9531 //         return 0;
9532 //       }
9533 //       dst[dstOff++] = (byte)c;
9534 //     }
9535 //     return len;
9536 //   }
9537 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
9538   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
9539   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
9540   Register tmp5, Register result) {
9541   Label copy_chars_loop, return_length, return_zero, done;
9542 
9543   // rsi: src
9544   // rdi: dst
9545   // rdx: len
9546   // rcx: tmp5
9547   // rax: result
9548 
9549   // rsi holds start addr of source char[] to be compressed
9550   // rdi holds start addr of destination byte[]
9551   // rdx holds length
9552 
9553   assert(len != result, "");
9554 
9555   // save length for return
9556   push(len);
9557 
9558   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
9559     VM_Version::supports_avx512vlbw() &&
9560     VM_Version::supports_bmi2()) {
9561 
9562     Label copy_32_loop, copy_loop_tail, below_threshold;
9563 
9564     // alignment
9565     Label post_alignment;
9566 
9567     // if length of the string is less than 16, handle it in an old fashioned way
9568     testl(len, -32);
9569     jcc(Assembler::zero, below_threshold);
9570 
9571     // First check whether a character is compressable ( <= 0xFF).
9572     // Create mask to test for Unicode chars inside zmm vector
9573     movl(result, 0x00FF);
9574     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
9575 
9576     testl(len, -64);
9577     jcc(Assembler::zero, post_alignment);
9578 
9579     movl(tmp5, dst);
9580     andl(tmp5, (32 - 1));
9581     negl(tmp5);
9582     andl(tmp5, (32 - 1));
9583 
9584     // bail out when there is nothing to be done
9585     testl(tmp5, 0xFFFFFFFF);
9586     jcc(Assembler::zero, post_alignment);
9587 
9588     // ~(~0 << len), where len is the # of remaining elements to process
9589     movl(result, 0xFFFFFFFF);
9590     shlxl(result, result, tmp5);
9591     notl(result);
9592     kmovdl(k3, result);
9593 
9594     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9595     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9596     ktestd(k2, k3);
9597     jcc(Assembler::carryClear, return_zero);
9598 
9599     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9600 
9601     addptr(src, tmp5);
9602     addptr(src, tmp5);
9603     addptr(dst, tmp5);
9604     subl(len, tmp5);
9605 
9606     bind(post_alignment);
9607     // end of alignment
9608 
9609     movl(tmp5, len);
9610     andl(tmp5, (32 - 1));    // tail count (in chars)
9611     andl(len, ~(32 - 1));    // vector count (in chars)
9612     jcc(Assembler::zero, copy_loop_tail);
9613 
9614     lea(src, Address(src, len, Address::times_2));
9615     lea(dst, Address(dst, len, Address::times_1));
9616     negptr(len);
9617 
9618     bind(copy_32_loop);
9619     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
9620     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9621     kortestdl(k2, k2);
9622     jcc(Assembler::carryClear, return_zero);
9623 
9624     // All elements in current processed chunk are valid candidates for
9625     // compression. Write a truncated byte elements to the memory.
9626     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
9627     addptr(len, 32);
9628     jcc(Assembler::notZero, copy_32_loop);
9629 
9630     bind(copy_loop_tail);
9631     // bail out when there is nothing to be done
9632     testl(tmp5, 0xFFFFFFFF);
9633     jcc(Assembler::zero, return_length);
9634 
9635     movl(len, tmp5);
9636 
9637     // ~(~0 << len), where len is the # of remaining elements to process
9638     movl(result, 0xFFFFFFFF);
9639     shlxl(result, result, len);
9640     notl(result);
9641 
9642     kmovdl(k3, result);
9643 
9644     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9645     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9646     ktestd(k2, k3);
9647     jcc(Assembler::carryClear, return_zero);
9648 
9649     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9650     jmp(return_length);
9651 
9652     bind(below_threshold);
9653   }
9654 
9655   if (UseSSE42Intrinsics) {
9656     Label copy_32_loop, copy_16, copy_tail;
9657 
9658     movl(result, len);
9659 
9660     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
9661 
9662     // vectored compression
9663     andl(len, 0xfffffff0);    // vector count (in chars)
9664     andl(result, 0x0000000f);    // tail count (in chars)
9665     testl(len, len);
9666     jcc(Assembler::zero, copy_16);
9667 
9668     // compress 16 chars per iter
9669     movdl(tmp1Reg, tmp5);
9670     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9671     pxor(tmp4Reg, tmp4Reg);
9672 
9673     lea(src, Address(src, len, Address::times_2));
9674     lea(dst, Address(dst, len, Address::times_1));
9675     negptr(len);
9676 
9677     bind(copy_32_loop);
9678     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
9679     por(tmp4Reg, tmp2Reg);
9680     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
9681     por(tmp4Reg, tmp3Reg);
9682     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
9683     jcc(Assembler::notZero, return_zero);
9684     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
9685     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
9686     addptr(len, 16);
9687     jcc(Assembler::notZero, copy_32_loop);
9688 
9689     // compress next vector of 8 chars (if any)
9690     bind(copy_16);
9691     movl(len, result);
9692     andl(len, 0xfffffff8);    // vector count (in chars)
9693     andl(result, 0x00000007);    // tail count (in chars)
9694     testl(len, len);
9695     jccb(Assembler::zero, copy_tail);
9696 
9697     movdl(tmp1Reg, tmp5);
9698     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9699     pxor(tmp3Reg, tmp3Reg);
9700 
9701     movdqu(tmp2Reg, Address(src, 0));
9702     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
9703     jccb(Assembler::notZero, return_zero);
9704     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
9705     movq(Address(dst, 0), tmp2Reg);
9706     addptr(src, 16);
9707     addptr(dst, 8);
9708 
9709     bind(copy_tail);
9710     movl(len, result);
9711   }
9712   // compress 1 char per iter
9713   testl(len, len);
9714   jccb(Assembler::zero, return_length);
9715   lea(src, Address(src, len, Address::times_2));
9716   lea(dst, Address(dst, len, Address::times_1));
9717   negptr(len);
9718 
9719   bind(copy_chars_loop);
9720   load_unsigned_short(result, Address(src, len, Address::times_2));
9721   testl(result, 0xff00);      // check if Unicode char
9722   jccb(Assembler::notZero, return_zero);
9723   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
9724   increment(len);
9725   jcc(Assembler::notZero, copy_chars_loop);
9726 
9727   // if compression succeeded, return length
9728   bind(return_length);
9729   pop(result);
9730   jmpb(done);
9731 
9732   // if compression failed, return 0
9733   bind(return_zero);
9734   xorl(result, result);
9735   addptr(rsp, wordSize);
9736 
9737   bind(done);
9738 }
9739 
9740 // Inflate byte[] array to char[].
9741 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
9742 //   @HotSpotIntrinsicCandidate
9743 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
9744 //     for (int i = 0; i < len; i++) {
9745 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
9746 //     }
9747 //   }
9748 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
9749   XMMRegister tmp1, Register tmp2) {
9750   Label copy_chars_loop, done, below_threshold, avx3_threshold;
9751   // rsi: src
9752   // rdi: dst
9753   // rdx: len
9754   // rcx: tmp2
9755 
9756   // rsi holds start addr of source byte[] to be inflated
9757   // rdi holds start addr of destination char[]
9758   // rdx holds length
9759   assert_different_registers(src, dst, len, tmp2);
9760   movl(tmp2, len);
9761   if ((UseAVX > 2) && // AVX512
9762     VM_Version::supports_avx512vlbw() &&
9763     VM_Version::supports_bmi2()) {
9764 
9765     Label copy_32_loop, copy_tail;
9766     Register tmp3_aliased = len;
9767 
9768     // if length of the string is less than 16, handle it in an old fashioned way
9769     testl(len, -16);
9770     jcc(Assembler::zero, below_threshold);
9771 
9772     testl(len, -1 * AVX3Threshold);
9773     jcc(Assembler::zero, avx3_threshold);
9774 
9775     // In order to use only one arithmetic operation for the main loop we use
9776     // this pre-calculation
9777     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
9778     andl(len, -32);     // vector count
9779     jccb(Assembler::zero, copy_tail);
9780 
9781     lea(src, Address(src, len, Address::times_1));
9782     lea(dst, Address(dst, len, Address::times_2));
9783     negptr(len);
9784 
9785 
9786     // inflate 32 chars per iter
9787     bind(copy_32_loop);
9788     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
9789     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
9790     addptr(len, 32);
9791     jcc(Assembler::notZero, copy_32_loop);
9792 
9793     bind(copy_tail);
9794     // bail out when there is nothing to be done
9795     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
9796     jcc(Assembler::zero, done);
9797 
9798     // ~(~0 << length), where length is the # of remaining elements to process
9799     movl(tmp3_aliased, -1);
9800     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
9801     notl(tmp3_aliased);
9802     kmovdl(k2, tmp3_aliased);
9803     evpmovzxbw(tmp1, k2, Address(src, 0), Assembler::AVX_512bit);
9804     evmovdquw(Address(dst, 0), k2, tmp1, Assembler::AVX_512bit);
9805 
9806     jmp(done);
9807     bind(avx3_threshold);
9808   }
9809   if (UseSSE42Intrinsics) {
9810     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
9811 
9812     if (UseAVX > 1) {
9813       andl(tmp2, (16 - 1));
9814       andl(len, -16);
9815       jccb(Assembler::zero, copy_new_tail);
9816     } else {
9817       andl(tmp2, 0x00000007);   // tail count (in chars)
9818       andl(len, 0xfffffff8);    // vector count (in chars)
9819       jccb(Assembler::zero, copy_tail);
9820     }
9821 
9822     // vectored inflation
9823     lea(src, Address(src, len, Address::times_1));
9824     lea(dst, Address(dst, len, Address::times_2));
9825     negptr(len);
9826 
9827     if (UseAVX > 1) {
9828       bind(copy_16_loop);
9829       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
9830       vmovdqu(Address(dst, len, Address::times_2), tmp1);
9831       addptr(len, 16);
9832       jcc(Assembler::notZero, copy_16_loop);
9833 
9834       bind(below_threshold);
9835       bind(copy_new_tail);
9836       movl(len, tmp2);
9837       andl(tmp2, 0x00000007);
9838       andl(len, 0xFFFFFFF8);
9839       jccb(Assembler::zero, copy_tail);
9840 
9841       pmovzxbw(tmp1, Address(src, 0));
9842       movdqu(Address(dst, 0), tmp1);
9843       addptr(src, 8);
9844       addptr(dst, 2 * 8);
9845 
9846       jmp(copy_tail, true);
9847     }
9848 
9849     // inflate 8 chars per iter
9850     bind(copy_8_loop);
9851     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
9852     movdqu(Address(dst, len, Address::times_2), tmp1);
9853     addptr(len, 8);
9854     jcc(Assembler::notZero, copy_8_loop);
9855 
9856     bind(copy_tail);
9857     movl(len, tmp2);
9858 
9859     cmpl(len, 4);
9860     jccb(Assembler::less, copy_bytes);
9861 
9862     movdl(tmp1, Address(src, 0));  // load 4 byte chars
9863     pmovzxbw(tmp1, tmp1);
9864     movq(Address(dst, 0), tmp1);
9865     subptr(len, 4);
9866     addptr(src, 4);
9867     addptr(dst, 8);
9868 
9869     bind(copy_bytes);
9870   } else {
9871     bind(below_threshold);
9872   }
9873 
9874   testl(len, len);
9875   jccb(Assembler::zero, done);
9876   lea(src, Address(src, len, Address::times_1));
9877   lea(dst, Address(dst, len, Address::times_2));
9878   negptr(len);
9879 
9880   // inflate 1 char per iter
9881   bind(copy_chars_loop);
9882   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
9883   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
9884   increment(len);
9885   jcc(Assembler::notZero, copy_chars_loop);
9886 
9887   bind(done);
9888 }
9889 
9890 #ifdef _LP64
9891 void MacroAssembler::cache_wb(Address line)
9892 {
9893   // 64 bit cpus always support clflush
9894   assert(VM_Version::supports_clflush(), "clflush should be available");
9895   bool optimized = VM_Version::supports_clflushopt();
9896   bool no_evict = VM_Version::supports_clwb();
9897 
9898   // prefer clwb (writeback without evict) otherwise
9899   // prefer clflushopt (potentially parallel writeback with evict)
9900   // otherwise fallback on clflush (serial writeback with evict)
9901 
9902   if (optimized) {
9903     if (no_evict) {
9904       clwb(line);
9905     } else {
9906       clflushopt(line);
9907     }
9908   } else {
9909     // no need for fence when using CLFLUSH
9910     clflush(line);
9911   }
9912 }
9913 
9914 void MacroAssembler::cache_wbsync(bool is_pre)
9915 {
9916   assert(VM_Version::supports_clflush(), "clflush should be available");
9917   bool optimized = VM_Version::supports_clflushopt();
9918   bool no_evict = VM_Version::supports_clwb();
9919 
9920   // pick the correct implementation
9921 
9922   if (!is_pre && (optimized || no_evict)) {
9923     // need an sfence for post flush when using clflushopt or clwb
9924     // otherwise no no need for any synchroniaztion
9925 
9926     sfence();
9927   }
9928 }
9929 #endif // _LP64
9930 
9931 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9932   switch (cond) {
9933     // Note some conditions are synonyms for others
9934     case Assembler::zero:         return Assembler::notZero;
9935     case Assembler::notZero:      return Assembler::zero;
9936     case Assembler::less:         return Assembler::greaterEqual;
9937     case Assembler::lessEqual:    return Assembler::greater;
9938     case Assembler::greater:      return Assembler::lessEqual;
9939     case Assembler::greaterEqual: return Assembler::less;
9940     case Assembler::below:        return Assembler::aboveEqual;
9941     case Assembler::belowEqual:   return Assembler::above;
9942     case Assembler::above:        return Assembler::belowEqual;
9943     case Assembler::aboveEqual:   return Assembler::below;
9944     case Assembler::overflow:     return Assembler::noOverflow;
9945     case Assembler::noOverflow:   return Assembler::overflow;
9946     case Assembler::negative:     return Assembler::positive;
9947     case Assembler::positive:     return Assembler::negative;
9948     case Assembler::parity:       return Assembler::noParity;
9949     case Assembler::noParity:     return Assembler::parity;
9950   }
9951   ShouldNotReachHere(); return Assembler::overflow;
9952 }
9953 
9954 SkipIfEqual::SkipIfEqual(
9955     MacroAssembler* masm, const bool* flag_addr, bool value) {
9956   _masm = masm;
9957   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9958   _masm->jcc(Assembler::equal, _label);
9959 }
9960 
9961 SkipIfEqual::~SkipIfEqual() {
9962   _masm->bind(_label);
9963 }
9964 
9965 // 32-bit Windows has its own fast-path implementation
9966 // of get_thread
9967 #if !defined(WIN32) || defined(_LP64)
9968 
9969 // This is simply a call to Thread::current()
9970 void MacroAssembler::get_thread(Register thread) {
9971   if (thread != rax) {
9972     push(rax);
9973   }
9974   LP64_ONLY(push(rdi);)
9975   LP64_ONLY(push(rsi);)
9976   push(rdx);
9977   push(rcx);
9978 #ifdef _LP64
9979   push(r8);
9980   push(r9);
9981   push(r10);
9982   push(r11);
9983 #endif
9984 
9985   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
9986 
9987 #ifdef _LP64
9988   pop(r11);
9989   pop(r10);
9990   pop(r9);
9991   pop(r8);
9992 #endif
9993   pop(rcx);
9994   pop(rdx);
9995   LP64_ONLY(pop(rsi);)
9996   LP64_ONLY(pop(rdi);)
9997   if (thread != rax) {
9998     mov(thread, rax);
9999     pop(rax);
10000   }
10001 }
10002 
10003 #endif