1 //
   2 // Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // AMD64 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
  64 // used as byte registers)
  65 
  66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
  67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
  69 
  70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
  71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
  72 
  73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
  74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
  75 
  76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
  77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
  78 
  79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
  80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
  81 
  82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
  83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
  84 
  85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
  86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
  87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
  88 
  89 #ifdef _WIN64
  90 
  91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
  92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
  93 
  94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
  95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
  96 
  97 #else
  98 
  99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
 100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
 101 
 102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
 103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
 104 
 105 #endif
 106 
 107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
 108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
 109 
 110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
 111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
 112 
 113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
 114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
 115 
 116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
 117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
 118 
 119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
 120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
 121 
 122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
 123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
 124 
 125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
 126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
 127 
 128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
 129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
 130 
 131 
 132 // Floating Point Registers
 133 
 134 // Specify priority of register selection within phases of register
 135 // allocation.  Highest priority is first.  A useful heuristic is to
 136 // give registers a low priority when they are required by machine
 137 // instructions, like EAX and EDX on I486, and choose no-save registers
 138 // before save-on-call, & save-on-call before save-on-entry.  Registers
 139 // which participate in fixed calling sequences should come last.
 140 // Registers which are used as pairs must fall on an even boundary.
 141 
 142 alloc_class chunk0(R10,         R10_H,
 143                    R11,         R11_H,
 144                    R8,          R8_H,
 145                    R9,          R9_H,
 146                    R12,         R12_H,
 147                    RCX,         RCX_H,
 148                    RBX,         RBX_H,
 149                    RDI,         RDI_H,
 150                    RDX,         RDX_H,
 151                    RSI,         RSI_H,
 152                    RAX,         RAX_H,
 153                    RBP,         RBP_H,
 154                    R13,         R13_H,
 155                    R14,         R14_H,
 156                    R15,         R15_H,
 157                    RSP,         RSP_H);
 158 
 159 
 160 //----------Architecture Description Register Classes--------------------------
 161 // Several register classes are automatically defined based upon information in
 162 // this architecture description.
 163 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 164 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 165 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 166 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 167 //
 168 
 169 // Empty register class.
 170 reg_class no_reg();
 171 
 172 // Class for all pointer/long registers
 173 reg_class all_reg(RAX, RAX_H,
 174                   RDX, RDX_H,
 175                   RBP, RBP_H,
 176                   RDI, RDI_H,
 177                   RSI, RSI_H,
 178                   RCX, RCX_H,
 179                   RBX, RBX_H,
 180                   RSP, RSP_H,
 181                   R8,  R8_H,
 182                   R9,  R9_H,
 183                   R10, R10_H,
 184                   R11, R11_H,
 185                   R12, R12_H,
 186                   R13, R13_H,
 187                   R14, R14_H,
 188                   R15, R15_H);
 189 
 190 // Class for all int registers
 191 reg_class all_int_reg(RAX
 192                       RDX,
 193                       RBP,
 194                       RDI,
 195                       RSI,
 196                       RCX,
 197                       RBX,
 198                       R8,
 199                       R9,
 200                       R10,
 201                       R11,
 202                       R12,
 203                       R13,
 204                       R14);
 205 
 206 // Class for all pointer registers
 207 reg_class any_reg %{
 208   return _ANY_REG_mask;
 209 %}
 210 
 211 // Class for all pointer registers (excluding RSP)
 212 reg_class ptr_reg %{
 213   return _PTR_REG_mask;
 214 %}
 215 
 216 // Class for all pointer registers (excluding RSP and RBP)
 217 reg_class ptr_reg_no_rbp %{
 218   return _PTR_REG_NO_RBP_mask;
 219 %}
 220 
 221 // Class for all pointer registers (excluding RAX and RSP)
 222 reg_class ptr_no_rax_reg %{
 223   return _PTR_NO_RAX_REG_mask;
 224 %}
 225 
 226 // Class for all pointer registers (excluding RAX, RBX, and RSP)
 227 reg_class ptr_no_rax_rbx_reg %{
 228   return _PTR_NO_RAX_RBX_REG_mask;
 229 %}
 230 
 231 // Class for all long registers (excluding RSP)
 232 reg_class long_reg %{
 233   return _LONG_REG_mask;
 234 %}
 235 
 236 // Class for all long registers (excluding RAX, RDX and RSP)
 237 reg_class long_no_rax_rdx_reg %{
 238   return _LONG_NO_RAX_RDX_REG_mask;
 239 %}
 240 
 241 // Class for all long registers (excluding RCX and RSP)
 242 reg_class long_no_rcx_reg %{
 243   return _LONG_NO_RCX_REG_mask;
 244 %}
 245 
 246 // Class for all int registers (excluding RSP)
 247 reg_class int_reg %{
 248   return _INT_REG_mask;
 249 %}
 250 
 251 // Class for all int registers (excluding RAX, RDX, and RSP)
 252 reg_class int_no_rax_rdx_reg %{
 253   return _INT_NO_RAX_RDX_REG_mask;
 254 %}
 255 
 256 // Class for all int registers (excluding RCX and RSP)
 257 reg_class int_no_rcx_reg %{
 258   return _INT_NO_RCX_REG_mask;
 259 %}
 260 
 261 // Singleton class for RAX pointer register
 262 reg_class ptr_rax_reg(RAX, RAX_H);
 263 
 264 // Singleton class for RBX pointer register
 265 reg_class ptr_rbx_reg(RBX, RBX_H);
 266 
 267 // Singleton class for RSI pointer register
 268 reg_class ptr_rsi_reg(RSI, RSI_H);
 269 
 270 // Singleton class for RBP pointer register
 271 reg_class ptr_rbp_reg(RBP, RBP_H);
 272 
 273 // Singleton class for RDI pointer register
 274 reg_class ptr_rdi_reg(RDI, RDI_H);
 275 
 276 // Singleton class for stack pointer
 277 reg_class ptr_rsp_reg(RSP, RSP_H);
 278 
 279 // Singleton class for TLS pointer
 280 reg_class ptr_r15_reg(R15, R15_H);
 281 
 282 // Singleton class for RAX long register
 283 reg_class long_rax_reg(RAX, RAX_H);
 284 
 285 // Singleton class for RCX long register
 286 reg_class long_rcx_reg(RCX, RCX_H);
 287 
 288 // Singleton class for RDX long register
 289 reg_class long_rdx_reg(RDX, RDX_H);
 290 
 291 // Singleton class for RAX int register
 292 reg_class int_rax_reg(RAX);
 293 
 294 // Singleton class for RBX int register
 295 reg_class int_rbx_reg(RBX);
 296 
 297 // Singleton class for RCX int register
 298 reg_class int_rcx_reg(RCX);
 299 
 300 // Singleton class for RCX int register
 301 reg_class int_rdx_reg(RDX);
 302 
 303 // Singleton class for RCX int register
 304 reg_class int_rdi_reg(RDI);
 305 
 306 // Singleton class for instruction pointer
 307 // reg_class ip_reg(RIP);
 308 
 309 %}
 310 
 311 //----------SOURCE BLOCK-------------------------------------------------------
 312 // This is a block of C++ code which provides values, functions, and
 313 // definitions necessary in the rest of the architecture description
 314 source_hpp %{
 315 
 316 extern RegMask _ANY_REG_mask;
 317 extern RegMask _PTR_REG_mask;
 318 extern RegMask _PTR_REG_NO_RBP_mask;
 319 extern RegMask _PTR_NO_RAX_REG_mask;
 320 extern RegMask _PTR_NO_RAX_RBX_REG_mask;
 321 extern RegMask _LONG_REG_mask;
 322 extern RegMask _LONG_NO_RAX_RDX_REG_mask;
 323 extern RegMask _LONG_NO_RCX_REG_mask;
 324 extern RegMask _INT_REG_mask;
 325 extern RegMask _INT_NO_RAX_RDX_REG_mask;
 326 extern RegMask _INT_NO_RCX_REG_mask;
 327 
 328 extern RegMask _STACK_OR_PTR_REG_mask;
 329 extern RegMask _STACK_OR_LONG_REG_mask;
 330 extern RegMask _STACK_OR_INT_REG_mask;
 331 
 332 inline const RegMask& STACK_OR_PTR_REG_mask()  { return _STACK_OR_PTR_REG_mask;  }
 333 inline const RegMask& STACK_OR_LONG_REG_mask() { return _STACK_OR_LONG_REG_mask; }
 334 inline const RegMask& STACK_OR_INT_REG_mask()  { return _STACK_OR_INT_REG_mask;  }
 335 
 336 %}
 337 
 338 source %{
 339 #define   RELOC_IMM64    Assembler::imm_operand
 340 #define   RELOC_DISP32   Assembler::disp32_operand
 341 
 342 #define __ _masm.
 343 
 344 RegMask _ANY_REG_mask;
 345 RegMask _PTR_REG_mask;
 346 RegMask _PTR_REG_NO_RBP_mask;
 347 RegMask _PTR_NO_RAX_REG_mask;
 348 RegMask _PTR_NO_RAX_RBX_REG_mask;
 349 RegMask _LONG_REG_mask;
 350 RegMask _LONG_NO_RAX_RDX_REG_mask;
 351 RegMask _LONG_NO_RCX_REG_mask;
 352 RegMask _INT_REG_mask;
 353 RegMask _INT_NO_RAX_RDX_REG_mask;
 354 RegMask _INT_NO_RCX_REG_mask;
 355 RegMask _STACK_OR_PTR_REG_mask;
 356 RegMask _STACK_OR_LONG_REG_mask;
 357 RegMask _STACK_OR_INT_REG_mask;
 358 
 359 static bool need_r12_heapbase() {
 360   return UseCompressedOops || UseCompressedClassPointers;
 361 }
 362 
 363 void reg_mask_init() {
 364   // _ALL_REG_mask is generated by adlc from the all_reg register class below.
 365   // We derive a number of subsets from it.
 366   _ANY_REG_mask = _ALL_REG_mask;
 367 
 368   if (PreserveFramePointer) {
 369     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 370     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()->next()));
 371   }
 372   if (need_r12_heapbase()) {
 373     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()));
 374     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()->next()));
 375   }
 376 
 377   _PTR_REG_mask = _ANY_REG_mask;
 378   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(rsp->as_VMReg()));
 379   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(rsp->as_VMReg()->next()));
 380   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(r15->as_VMReg()));
 381   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(r15->as_VMReg()->next()));
 382 
 383   _STACK_OR_PTR_REG_mask = _PTR_REG_mask;
 384   _STACK_OR_PTR_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 385 
 386   _PTR_REG_NO_RBP_mask = _PTR_REG_mask;
 387   _PTR_REG_NO_RBP_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 388   _PTR_REG_NO_RBP_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()->next()));
 389 
 390   _PTR_NO_RAX_REG_mask = _PTR_REG_mask;
 391   _PTR_NO_RAX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 392   _PTR_NO_RAX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()->next()));
 393 
 394   _PTR_NO_RAX_RBX_REG_mask = _PTR_NO_RAX_REG_mask;
 395   _PTR_NO_RAX_RBX_REG_mask.Remove(OptoReg::as_OptoReg(rbx->as_VMReg()));
 396   _PTR_NO_RAX_RBX_REG_mask.Remove(OptoReg::as_OptoReg(rbx->as_VMReg()->next()));
 397 
 398   _LONG_REG_mask = _PTR_REG_mask;
 399   _STACK_OR_LONG_REG_mask = _LONG_REG_mask;
 400   _STACK_OR_LONG_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 401 
 402   _LONG_NO_RAX_RDX_REG_mask = _LONG_REG_mask;
 403   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 404   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()->next()));
 405   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()));
 406   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()->next()));
 407 
 408   _LONG_NO_RCX_REG_mask = _LONG_REG_mask;
 409   _LONG_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()));
 410   _LONG_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()->next()));
 411 
 412   _INT_REG_mask = _ALL_INT_REG_mask;
 413   if (PreserveFramePointer) {
 414     _INT_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 415   }
 416   if (need_r12_heapbase()) {
 417     _INT_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()));
 418   }
 419 
 420   _STACK_OR_INT_REG_mask = _INT_REG_mask;
 421   _STACK_OR_INT_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 422 
 423   _INT_NO_RAX_RDX_REG_mask = _INT_REG_mask;
 424   _INT_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 425   _INT_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()));
 426 
 427   _INT_NO_RCX_REG_mask = _INT_REG_mask;
 428   _INT_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()));
 429 }
 430 
 431 static bool generate_vzeroupper(Compile* C) {
 432   return (VM_Version::supports_vzeroupper() && (C->max_vector_size() > 16 || C->clear_upper_avx() == true)) ? true: false;  // Generate vzeroupper
 433 }
 434 
 435 static int clear_avx_size() {
 436   return generate_vzeroupper(Compile::current()) ? 3: 0;  // vzeroupper
 437 }
 438 
 439 // !!!!! Special hack to get all types of calls to specify the byte offset
 440 //       from the start of the call to the point where the return address
 441 //       will point.
 442 int MachCallStaticJavaNode::ret_addr_offset()
 443 {
 444   int offset = 5; // 5 bytes from start of call to where return address points
 445   offset += clear_avx_size();
 446   return offset;
 447 }
 448 
 449 int MachCallDynamicJavaNode::ret_addr_offset()
 450 {
 451   int offset = 15; // 15 bytes from start of call to where return address points
 452   offset += clear_avx_size();
 453   return offset;
 454 }
 455 
 456 int MachCallRuntimeNode::ret_addr_offset() {
 457   int offset = 13; // movq r10,#addr; callq (r10)
 458   offset += clear_avx_size();
 459   return offset;
 460 }
 461 
 462 // Indicate if the safepoint node needs the polling page as an input,
 463 // it does if the polling page is more than disp32 away.
 464 bool SafePointNode::needs_polling_address_input()
 465 {
 466   return SafepointMechanism::uses_thread_local_poll() || Assembler::is_polling_page_far();
 467 }
 468 
 469 //
 470 // Compute padding required for nodes which need alignment
 471 //
 472 
 473 // The address of the call instruction needs to be 4-byte aligned to
 474 // ensure that it does not span a cache line so that it can be patched.
 475 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
 476 {
 477   current_offset += clear_avx_size(); // skip vzeroupper
 478   current_offset += 1; // skip call opcode byte
 479   return align_up(current_offset, alignment_required()) - current_offset;
 480 }
 481 
 482 // The address of the call instruction needs to be 4-byte aligned to
 483 // ensure that it does not span a cache line so that it can be patched.
 484 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
 485 {
 486   current_offset += clear_avx_size(); // skip vzeroupper
 487   current_offset += 11; // skip movq instruction + call opcode byte
 488   return align_up(current_offset, alignment_required()) - current_offset;
 489 }
 490 
 491 // EMIT_RM()
 492 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 493   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
 494   cbuf.insts()->emit_int8(c);
 495 }
 496 
 497 // EMIT_CC()
 498 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 499   unsigned char c = (unsigned char) (f1 | f2);
 500   cbuf.insts()->emit_int8(c);
 501 }
 502 
 503 // EMIT_OPCODE()
 504 void emit_opcode(CodeBuffer &cbuf, int code) {
 505   cbuf.insts()->emit_int8((unsigned char) code);
 506 }
 507 
 508 // EMIT_OPCODE() w/ relocation information
 509 void emit_opcode(CodeBuffer &cbuf,
 510                  int code, relocInfo::relocType reloc, int offset, int format)
 511 {
 512   cbuf.relocate(cbuf.insts_mark() + offset, reloc, format);
 513   emit_opcode(cbuf, code);
 514 }
 515 
 516 // EMIT_D8()
 517 void emit_d8(CodeBuffer &cbuf, int d8) {
 518   cbuf.insts()->emit_int8((unsigned char) d8);
 519 }
 520 
 521 // EMIT_D16()
 522 void emit_d16(CodeBuffer &cbuf, int d16) {
 523   cbuf.insts()->emit_int16(d16);
 524 }
 525 
 526 // EMIT_D32()
 527 void emit_d32(CodeBuffer &cbuf, int d32) {
 528   cbuf.insts()->emit_int32(d32);
 529 }
 530 
 531 // EMIT_D64()
 532 void emit_d64(CodeBuffer &cbuf, int64_t d64) {
 533   cbuf.insts()->emit_int64(d64);
 534 }
 535 
 536 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 537 void emit_d32_reloc(CodeBuffer& cbuf,
 538                     int d32,
 539                     relocInfo::relocType reloc,
 540                     int format)
 541 {
 542   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
 543   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 544   cbuf.insts()->emit_int32(d32);
 545 }
 546 
 547 // emit 32 bit value and construct relocation entry from RelocationHolder
 548 void emit_d32_reloc(CodeBuffer& cbuf, int d32, RelocationHolder const& rspec, int format) {
 549 #ifdef ASSERT
 550   if (rspec.reloc()->type() == relocInfo::oop_type &&
 551       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
 552     assert(Universe::heap()->is_in((address)(intptr_t)d32), "should be real oop");
 553     assert(oopDesc::is_oop(cast_to_oop((intptr_t)d32)), "cannot embed broken oops in code");
 554   }
 555 #endif
 556   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 557   cbuf.insts()->emit_int32(d32);
 558 }
 559 
 560 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
 561   address next_ip = cbuf.insts_end() + 4;
 562   emit_d32_reloc(cbuf, (int) (addr - next_ip),
 563                  external_word_Relocation::spec(addr),
 564                  RELOC_DISP32);
 565 }
 566 
 567 
 568 // emit 64 bit value and construct relocation entry from relocInfo::relocType
 569 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, relocInfo::relocType reloc, int format) {
 570   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 571   cbuf.insts()->emit_int64(d64);
 572 }
 573 
 574 // emit 64 bit value and construct relocation entry from RelocationHolder
 575 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, RelocationHolder const& rspec, int format) {
 576 #ifdef ASSERT
 577   if (rspec.reloc()->type() == relocInfo::oop_type &&
 578       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
 579     assert(Universe::heap()->is_in((address)d64), "should be real oop");
 580     assert(oopDesc::is_oop(cast_to_oop(d64)), "cannot embed broken oops in code");
 581   }
 582 #endif
 583   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 584   cbuf.insts()->emit_int64(d64);
 585 }
 586 
 587 // Access stack slot for load or store
 588 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
 589 {
 590   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
 591   if (-0x80 <= disp && disp < 0x80) {
 592     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
 593     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 594     emit_d8(cbuf, disp);     // Displacement  // R/M byte
 595   } else {
 596     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
 597     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 598     emit_d32(cbuf, disp);     // Displacement // R/M byte
 599   }
 600 }
 601 
 602    // rRegI ereg, memory mem) %{    // emit_reg_mem
 603 void encode_RegMem(CodeBuffer &cbuf,
 604                    int reg,
 605                    int base, int index, int scale, int disp, relocInfo::relocType disp_reloc)
 606 {
 607   assert(disp_reloc == relocInfo::none, "cannot have disp");
 608   int regenc = reg & 7;
 609   int baseenc = base & 7;
 610   int indexenc = index & 7;
 611 
 612   // There is no index & no scale, use form without SIB byte
 613   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
 614     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 615     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 616       emit_rm(cbuf, 0x0, regenc, baseenc); // *
 617     } else if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 618       // If 8-bit displacement, mode 0x1
 619       emit_rm(cbuf, 0x1, regenc, baseenc); // *
 620       emit_d8(cbuf, disp);
 621     } else {
 622       // If 32-bit displacement
 623       if (base == -1) { // Special flag for absolute address
 624         emit_rm(cbuf, 0x0, regenc, 0x5); // *
 625         if (disp_reloc != relocInfo::none) {
 626           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 627         } else {
 628           emit_d32(cbuf, disp);
 629         }
 630       } else {
 631         // Normal base + offset
 632         emit_rm(cbuf, 0x2, regenc, baseenc); // *
 633         if (disp_reloc != relocInfo::none) {
 634           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 635         } else {
 636           emit_d32(cbuf, disp);
 637         }
 638       }
 639     }
 640   } else {
 641     // Else, encode with the SIB byte
 642     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 643     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 644       // If no displacement
 645       emit_rm(cbuf, 0x0, regenc, 0x4); // *
 646       emit_rm(cbuf, scale, indexenc, baseenc);
 647     } else {
 648       if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 649         // If 8-bit displacement, mode 0x1
 650         emit_rm(cbuf, 0x1, regenc, 0x4); // *
 651         emit_rm(cbuf, scale, indexenc, baseenc);
 652         emit_d8(cbuf, disp);
 653       } else {
 654         // If 32-bit displacement
 655         if (base == 0x04 ) {
 656           emit_rm(cbuf, 0x2, regenc, 0x4);
 657           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
 658         } else {
 659           emit_rm(cbuf, 0x2, regenc, 0x4);
 660           emit_rm(cbuf, scale, indexenc, baseenc); // *
 661         }
 662         if (disp_reloc != relocInfo::none) {
 663           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 664         } else {
 665           emit_d32(cbuf, disp);
 666         }
 667       }
 668     }
 669   }
 670 }
 671 
 672 // This could be in MacroAssembler but it's fairly C2 specific
 673 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 674   Label exit;
 675   __ jccb(Assembler::noParity, exit);
 676   __ pushf();
 677   //
 678   // comiss/ucomiss instructions set ZF,PF,CF flags and
 679   // zero OF,AF,SF for NaN values.
 680   // Fixup flags by zeroing ZF,PF so that compare of NaN
 681   // values returns 'less than' result (CF is set).
 682   // Leave the rest of flags unchanged.
 683   //
 684   //    7 6 5 4 3 2 1 0
 685   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 686   //    0 0 1 0 1 0 1 1   (0x2B)
 687   //
 688   __ andq(Address(rsp, 0), 0xffffff2b);
 689   __ popf();
 690   __ bind(exit);
 691 }
 692 
 693 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 694   Label done;
 695   __ movl(dst, -1);
 696   __ jcc(Assembler::parity, done);
 697   __ jcc(Assembler::below, done);
 698   __ setb(Assembler::notEqual, dst);
 699   __ movzbl(dst, dst);
 700   __ bind(done);
 701 }
 702 
 703 // Math.min()    # Math.max()
 704 // --------------------------
 705 // ucomis[s/d]   #
 706 // ja   -> b     # a
 707 // jp   -> NaN   # NaN
 708 // jb   -> a     # b
 709 // je            #
 710 // |-jz -> a | b # a & b
 711 // |    -> a     #
 712 void emit_fp_min_max(MacroAssembler& _masm, XMMRegister dst,
 713                      XMMRegister a, XMMRegister b,
 714                      XMMRegister xmmt, Register rt,
 715                      bool min, bool single) {
 716 
 717   Label nan, zero, below, above, done;
 718 
 719   if (single)
 720     __ ucomiss(a, b);
 721   else
 722     __ ucomisd(a, b);
 723 
 724   if (dst->encoding() != (min ? b : a)->encoding())
 725     __ jccb(Assembler::above, above); // CF=0 & ZF=0
 726   else
 727     __ jccb(Assembler::above, done);
 728 
 729   __ jccb(Assembler::parity, nan);  // PF=1
 730   __ jccb(Assembler::below, below); // CF=1
 731 
 732   // equal
 733   __ vpxor(xmmt, xmmt, xmmt, Assembler::AVX_128bit);
 734   if (single) {
 735     __ ucomiss(a, xmmt);
 736     __ jccb(Assembler::equal, zero);
 737 
 738     __ movflt(dst, a);
 739     __ jmp(done);
 740   }
 741   else {
 742     __ ucomisd(a, xmmt);
 743     __ jccb(Assembler::equal, zero);
 744 
 745     __ movdbl(dst, a);
 746     __ jmp(done);
 747   }
 748 
 749   __ bind(zero);
 750   if (min)
 751     __ vpor(dst, a, b, Assembler::AVX_128bit);
 752   else
 753     __ vpand(dst, a, b, Assembler::AVX_128bit);
 754 
 755   __ jmp(done);
 756 
 757   __ bind(above);
 758   if (single)
 759     __ movflt(dst, min ? b : a);
 760   else
 761     __ movdbl(dst, min ? b : a);
 762 
 763   __ jmp(done);
 764 
 765   __ bind(nan);
 766   if (single) {
 767     __ movl(rt, 0x7fc00000); // Float.NaN
 768     __ movdl(dst, rt);
 769   }
 770   else {
 771     __ mov64(rt, 0x7ff8000000000000L); // Double.NaN
 772     __ movdq(dst, rt);
 773   }
 774   __ jmp(done);
 775 
 776   __ bind(below);
 777   if (single)
 778     __ movflt(dst, min ? a : b);
 779   else
 780     __ movdbl(dst, min ? a : b);
 781 
 782   __ bind(done);
 783 }
 784 
 785 //=============================================================================
 786 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 787 
 788 int Compile::ConstantTable::calculate_table_base_offset() const {
 789   return 0;  // absolute addressing, no offset
 790 }
 791 
 792 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 793 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 794   ShouldNotReachHere();
 795 }
 796 
 797 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 798   // Empty encoding
 799 }
 800 
 801 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 802   return 0;
 803 }
 804 
 805 #ifndef PRODUCT
 806 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 807   st->print("# MachConstantBaseNode (empty encoding)");
 808 }
 809 #endif
 810 
 811 
 812 //=============================================================================
 813 #ifndef PRODUCT
 814 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 815   Compile* C = ra_->C;
 816 
 817   int framesize = C->frame_size_in_bytes();
 818   int bangsize = C->bang_size_in_bytes();
 819   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 820   // Remove wordSize for return addr which is already pushed.
 821   framesize -= wordSize;
 822 
 823   if (C->need_stack_bang(bangsize)) {
 824     framesize -= wordSize;
 825     st->print("# stack bang (%d bytes)", bangsize);
 826     st->print("\n\t");
 827     st->print("pushq   rbp\t# Save rbp");
 828     if (PreserveFramePointer) {
 829         st->print("\n\t");
 830         st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 831     }
 832     if (framesize) {
 833       st->print("\n\t");
 834       st->print("subq    rsp, #%d\t# Create frame",framesize);
 835     }
 836   } else {
 837     st->print("subq    rsp, #%d\t# Create frame",framesize);
 838     st->print("\n\t");
 839     framesize -= wordSize;
 840     st->print("movq    [rsp + #%d], rbp\t# Save rbp",framesize);
 841     if (PreserveFramePointer) {
 842       st->print("\n\t");
 843       st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 844       if (framesize > 0) {
 845         st->print("\n\t");
 846         st->print("addq    rbp, #%d", framesize);
 847       }
 848     }
 849   }
 850 
 851   if (VerifyStackAtCalls) {
 852     st->print("\n\t");
 853     framesize -= wordSize;
 854     st->print("movq    [rsp + #%d], 0xbadb100d\t# Majik cookie for stack depth check",framesize);
 855 #ifdef ASSERT
 856     st->print("\n\t");
 857     st->print("# stack alignment check");
 858 #endif
 859   }
 860   if (C->stub_function() != NULL && BarrierSet::barrier_set()->barrier_set_nmethod() != NULL) {
 861     st->print("\n\t");
 862     st->print("cmpl    [r15_thread + #disarmed_offset], #disarmed_value\t");
 863     st->print("\n\t");
 864     st->print("je      fast_entry\t");
 865     st->print("\n\t");
 866     st->print("call    #nmethod_entry_barrier_stub\t");
 867     st->print("\n\tfast_entry:");
 868   }
 869   st->cr();
 870 }
 871 #endif
 872 
 873 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 874   Compile* C = ra_->C;
 875   MacroAssembler _masm(&cbuf);
 876 
 877   int framesize = C->frame_size_in_bytes();
 878   int bangsize = C->bang_size_in_bytes();
 879 
 880   if (C->clinit_barrier_on_entry()) {
 881     assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 882     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
 883 
 884     Label L_skip_barrier;
 885     Register klass = rscratch1;
 886 
 887     __ mov_metadata(klass, C->method()->holder()->constant_encoding());
 888     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
 889 
 890     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
 891 
 892     __ bind(L_skip_barrier);
 893   }
 894 
 895   __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, false, C->stub_function() != NULL);
 896 
 897   C->set_frame_complete(cbuf.insts_size());
 898 
 899   if (C->has_mach_constant_base_node()) {
 900     // NOTE: We set the table base offset here because users might be
 901     // emitted before MachConstantBaseNode.
 902     Compile::ConstantTable& constant_table = C->constant_table();
 903     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 904   }
 905 }
 906 
 907 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 908 {
 909   return MachNode::size(ra_); // too many variables; just compute it
 910                               // the hard way
 911 }
 912 
 913 int MachPrologNode::reloc() const
 914 {
 915   return 0; // a large enough number
 916 }
 917 
 918 //=============================================================================
 919 #ifndef PRODUCT
 920 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 921 {
 922   Compile* C = ra_->C;
 923   if (generate_vzeroupper(C)) {
 924     st->print("vzeroupper");
 925     st->cr(); st->print("\t");
 926   }
 927 
 928   int framesize = C->frame_size_in_bytes();
 929   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 930   // Remove word for return adr already pushed
 931   // and RBP
 932   framesize -= 2*wordSize;
 933 
 934   if (framesize) {
 935     st->print_cr("addq    rsp, %d\t# Destroy frame", framesize);
 936     st->print("\t");
 937   }
 938 
 939   st->print_cr("popq    rbp");
 940   if (do_polling() && C->is_method_compilation()) {
 941     st->print("\t");
 942     if (SafepointMechanism::uses_thread_local_poll()) {
 943       st->print_cr("movq    rscratch1, poll_offset[r15_thread] #polling_page_address\n\t"
 944                    "testl   rax, [rscratch1]\t"
 945                    "# Safepoint: poll for GC");
 946     } else if (Assembler::is_polling_page_far()) {
 947       st->print_cr("movq    rscratch1, #polling_page_address\n\t"
 948                    "testl   rax, [rscratch1]\t"
 949                    "# Safepoint: poll for GC");
 950     } else {
 951       st->print_cr("testl   rax, [rip + #offset_to_poll_page]\t"
 952                    "# Safepoint: poll for GC");
 953     }
 954   }
 955 }
 956 #endif
 957 
 958 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
 959 {
 960   Compile* C = ra_->C;
 961   MacroAssembler _masm(&cbuf);
 962 
 963   if (generate_vzeroupper(C)) {
 964     // Clear upper bits of YMM registers when current compiled code uses
 965     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 966     __ vzeroupper();
 967   }
 968 
 969   int framesize = C->frame_size_in_bytes();
 970   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 971   // Remove word for return adr already pushed
 972   // and RBP
 973   framesize -= 2*wordSize;
 974 
 975   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 976 
 977   if (framesize) {
 978     emit_opcode(cbuf, Assembler::REX_W);
 979     if (framesize < 0x80) {
 980       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
 981       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 982       emit_d8(cbuf, framesize);
 983     } else {
 984       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
 985       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 986       emit_d32(cbuf, framesize);
 987     }
 988   }
 989 
 990   // popq rbp
 991   emit_opcode(cbuf, 0x58 | RBP_enc);
 992 
 993   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 994     __ reserved_stack_check();
 995   }
 996 
 997   if (do_polling() && C->is_method_compilation()) {
 998     MacroAssembler _masm(&cbuf);
 999     if (SafepointMechanism::uses_thread_local_poll()) {
1000       __ movq(rscratch1, Address(r15_thread, Thread::polling_page_offset()));
1001       __ relocate(relocInfo::poll_return_type);
1002       __ testl(rax, Address(rscratch1, 0));
1003     } else {
1004       AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
1005       if (Assembler::is_polling_page_far()) {
1006         __ lea(rscratch1, polling_page);
1007         __ relocate(relocInfo::poll_return_type);
1008         __ testl(rax, Address(rscratch1, 0));
1009       } else {
1010         __ testl(rax, polling_page);
1011       }
1012     }
1013   }
1014 }
1015 
1016 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
1017 {
1018   return MachNode::size(ra_); // too many variables; just compute it
1019                               // the hard way
1020 }
1021 
1022 int MachEpilogNode::reloc() const
1023 {
1024   return 2; // a large enough number
1025 }
1026 
1027 const Pipeline* MachEpilogNode::pipeline() const
1028 {
1029   return MachNode::pipeline_class();
1030 }
1031 
1032 int MachEpilogNode::safepoint_offset() const
1033 {
1034   return 0;
1035 }
1036 
1037 //=============================================================================
1038 
1039 enum RC {
1040   rc_bad,
1041   rc_int,
1042   rc_float,
1043   rc_stack
1044 };
1045 
1046 static enum RC rc_class(OptoReg::Name reg)
1047 {
1048   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1049 
1050   if (OptoReg::is_stack(reg)) return rc_stack;
1051 
1052   VMReg r = OptoReg::as_VMReg(reg);
1053 
1054   if (r->is_Register()) return rc_int;
1055 
1056   assert(r->is_XMMRegister(), "must be");
1057   return rc_float;
1058 }
1059 
1060 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
1061 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
1062                           int src_hi, int dst_hi, uint ireg, outputStream* st);
1063 
1064 int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
1065                      int stack_offset, int reg, uint ireg, outputStream* st);
1066 
1067 static void vec_stack_to_stack_helper(CodeBuffer *cbuf, int src_offset,
1068                                       int dst_offset, uint ireg, outputStream* st) {
1069   if (cbuf) {
1070     MacroAssembler _masm(cbuf);
1071     switch (ireg) {
1072     case Op_VecS:
1073       __ movq(Address(rsp, -8), rax);
1074       __ movl(rax, Address(rsp, src_offset));
1075       __ movl(Address(rsp, dst_offset), rax);
1076       __ movq(rax, Address(rsp, -8));
1077       break;
1078     case Op_VecD:
1079       __ pushq(Address(rsp, src_offset));
1080       __ popq (Address(rsp, dst_offset));
1081       break;
1082     case Op_VecX:
1083       __ pushq(Address(rsp, src_offset));
1084       __ popq (Address(rsp, dst_offset));
1085       __ pushq(Address(rsp, src_offset+8));
1086       __ popq (Address(rsp, dst_offset+8));
1087       break;
1088     case Op_VecY:
1089       __ vmovdqu(Address(rsp, -32), xmm0);
1090       __ vmovdqu(xmm0, Address(rsp, src_offset));
1091       __ vmovdqu(Address(rsp, dst_offset), xmm0);
1092       __ vmovdqu(xmm0, Address(rsp, -32));
1093       break;
1094     case Op_VecZ:
1095       __ evmovdquq(Address(rsp, -64), xmm0, 2);
1096       __ evmovdquq(xmm0, Address(rsp, src_offset), 2);
1097       __ evmovdquq(Address(rsp, dst_offset), xmm0, 2);
1098       __ evmovdquq(xmm0, Address(rsp, -64), 2);
1099       break;
1100     default:
1101       ShouldNotReachHere();
1102     }
1103 #ifndef PRODUCT
1104   } else {
1105     switch (ireg) {
1106     case Op_VecS:
1107       st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1108                 "movl    rax, [rsp + #%d]\n\t"
1109                 "movl    [rsp + #%d], rax\n\t"
1110                 "movq    rax, [rsp - #8]",
1111                 src_offset, dst_offset);
1112       break;
1113     case Op_VecD:
1114       st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1115                 "popq    [rsp + #%d]",
1116                 src_offset, dst_offset);
1117       break;
1118      case Op_VecX:
1119       st->print("pushq   [rsp + #%d]\t# 128-bit mem-mem spill\n\t"
1120                 "popq    [rsp + #%d]\n\t"
1121                 "pushq   [rsp + #%d]\n\t"
1122                 "popq    [rsp + #%d]",
1123                 src_offset, dst_offset, src_offset+8, dst_offset+8);
1124       break;
1125     case Op_VecY:
1126       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
1127                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1128                 "vmovdqu [rsp + #%d], xmm0\n\t"
1129                 "vmovdqu xmm0, [rsp - #32]",
1130                 src_offset, dst_offset);
1131       break;
1132     case Op_VecZ:
1133       st->print("vmovdqu [rsp - #64], xmm0\t# 512-bit mem-mem spill\n\t"
1134                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1135                 "vmovdqu [rsp + #%d], xmm0\n\t"
1136                 "vmovdqu xmm0, [rsp - #64]",
1137                 src_offset, dst_offset);
1138       break;
1139     default:
1140       ShouldNotReachHere();
1141     }
1142 #endif
1143   }
1144 }
1145 
1146 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
1147                                        PhaseRegAlloc* ra_,
1148                                        bool do_size,
1149                                        outputStream* st) const {
1150   assert(cbuf != NULL || st  != NULL, "sanity");
1151   // Get registers to move
1152   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1153   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1154   OptoReg::Name dst_second = ra_->get_reg_second(this);
1155   OptoReg::Name dst_first = ra_->get_reg_first(this);
1156 
1157   enum RC src_second_rc = rc_class(src_second);
1158   enum RC src_first_rc = rc_class(src_first);
1159   enum RC dst_second_rc = rc_class(dst_second);
1160   enum RC dst_first_rc = rc_class(dst_first);
1161 
1162   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
1163          "must move at least 1 register" );
1164 
1165   if (src_first == dst_first && src_second == dst_second) {
1166     // Self copy, no move
1167     return 0;
1168   }
1169   if (bottom_type()->isa_vect() != NULL) {
1170     uint ireg = ideal_reg();
1171     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1172     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY || ireg == Op_VecZ ), "sanity");
1173     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1174       // mem -> mem
1175       int src_offset = ra_->reg2offset(src_first);
1176       int dst_offset = ra_->reg2offset(dst_first);
1177       vec_stack_to_stack_helper(cbuf, src_offset, dst_offset, ireg, st);
1178     } else if (src_first_rc == rc_float && dst_first_rc == rc_float ) {
1179       vec_mov_helper(cbuf, false, src_first, dst_first, src_second, dst_second, ireg, st);
1180     } else if (src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1181       int stack_offset = ra_->reg2offset(dst_first);
1182       vec_spill_helper(cbuf, false, false, stack_offset, src_first, ireg, st);
1183     } else if (src_first_rc == rc_stack && dst_first_rc == rc_float ) {
1184       int stack_offset = ra_->reg2offset(src_first);
1185       vec_spill_helper(cbuf, false, true,  stack_offset, dst_first, ireg, st);
1186     } else {
1187       ShouldNotReachHere();
1188     }
1189     return 0;
1190   }
1191   if (src_first_rc == rc_stack) {
1192     // mem ->
1193     if (dst_first_rc == rc_stack) {
1194       // mem -> mem
1195       assert(src_second != dst_first, "overlap");
1196       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1197           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1198         // 64-bit
1199         int src_offset = ra_->reg2offset(src_first);
1200         int dst_offset = ra_->reg2offset(dst_first);
1201         if (cbuf) {
1202           MacroAssembler _masm(cbuf);
1203           __ pushq(Address(rsp, src_offset));
1204           __ popq (Address(rsp, dst_offset));
1205 #ifndef PRODUCT
1206         } else {
1207           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1208                     "popq    [rsp + #%d]",
1209                      src_offset, dst_offset);
1210 #endif
1211         }
1212       } else {
1213         // 32-bit
1214         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1215         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1216         // No pushl/popl, so:
1217         int src_offset = ra_->reg2offset(src_first);
1218         int dst_offset = ra_->reg2offset(dst_first);
1219         if (cbuf) {
1220           MacroAssembler _masm(cbuf);
1221           __ movq(Address(rsp, -8), rax);
1222           __ movl(rax, Address(rsp, src_offset));
1223           __ movl(Address(rsp, dst_offset), rax);
1224           __ movq(rax, Address(rsp, -8));
1225 #ifndef PRODUCT
1226         } else {
1227           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1228                     "movl    rax, [rsp + #%d]\n\t"
1229                     "movl    [rsp + #%d], rax\n\t"
1230                     "movq    rax, [rsp - #8]",
1231                      src_offset, dst_offset);
1232 #endif
1233         }
1234       }
1235       return 0;
1236     } else if (dst_first_rc == rc_int) {
1237       // mem -> gpr
1238       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1239           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1240         // 64-bit
1241         int offset = ra_->reg2offset(src_first);
1242         if (cbuf) {
1243           MacroAssembler _masm(cbuf);
1244           __ movq(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1245 #ifndef PRODUCT
1246         } else {
1247           st->print("movq    %s, [rsp + #%d]\t# spill",
1248                      Matcher::regName[dst_first],
1249                      offset);
1250 #endif
1251         }
1252       } else {
1253         // 32-bit
1254         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1255         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1256         int offset = ra_->reg2offset(src_first);
1257         if (cbuf) {
1258           MacroAssembler _masm(cbuf);
1259           __ movl(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1260 #ifndef PRODUCT
1261         } else {
1262           st->print("movl    %s, [rsp + #%d]\t# spill",
1263                      Matcher::regName[dst_first],
1264                      offset);
1265 #endif
1266         }
1267       }
1268       return 0;
1269     } else if (dst_first_rc == rc_float) {
1270       // mem-> xmm
1271       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1272           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1273         // 64-bit
1274         int offset = ra_->reg2offset(src_first);
1275         if (cbuf) {
1276           MacroAssembler _masm(cbuf);
1277           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1278 #ifndef PRODUCT
1279         } else {
1280           st->print("%s  %s, [rsp + #%d]\t# spill",
1281                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
1282                      Matcher::regName[dst_first],
1283                      offset);
1284 #endif
1285         }
1286       } else {
1287         // 32-bit
1288         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1289         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1290         int offset = ra_->reg2offset(src_first);
1291         if (cbuf) {
1292           MacroAssembler _masm(cbuf);
1293           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1294 #ifndef PRODUCT
1295         } else {
1296           st->print("movss   %s, [rsp + #%d]\t# spill",
1297                      Matcher::regName[dst_first],
1298                      offset);
1299 #endif
1300         }
1301       }
1302       return 0;
1303     }
1304   } else if (src_first_rc == rc_int) {
1305     // gpr ->
1306     if (dst_first_rc == rc_stack) {
1307       // gpr -> mem
1308       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1309           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1310         // 64-bit
1311         int offset = ra_->reg2offset(dst_first);
1312         if (cbuf) {
1313           MacroAssembler _masm(cbuf);
1314           __ movq(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1315 #ifndef PRODUCT
1316         } else {
1317           st->print("movq    [rsp + #%d], %s\t# spill",
1318                      offset,
1319                      Matcher::regName[src_first]);
1320 #endif
1321         }
1322       } else {
1323         // 32-bit
1324         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1325         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1326         int offset = ra_->reg2offset(dst_first);
1327         if (cbuf) {
1328           MacroAssembler _masm(cbuf);
1329           __ movl(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1330 #ifndef PRODUCT
1331         } else {
1332           st->print("movl    [rsp + #%d], %s\t# spill",
1333                      offset,
1334                      Matcher::regName[src_first]);
1335 #endif
1336         }
1337       }
1338       return 0;
1339     } else if (dst_first_rc == rc_int) {
1340       // gpr -> gpr
1341       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1342           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1343         // 64-bit
1344         if (cbuf) {
1345           MacroAssembler _masm(cbuf);
1346           __ movq(as_Register(Matcher::_regEncode[dst_first]),
1347                   as_Register(Matcher::_regEncode[src_first]));
1348 #ifndef PRODUCT
1349         } else {
1350           st->print("movq    %s, %s\t# spill",
1351                      Matcher::regName[dst_first],
1352                      Matcher::regName[src_first]);
1353 #endif
1354         }
1355         return 0;
1356       } else {
1357         // 32-bit
1358         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1359         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1360         if (cbuf) {
1361           MacroAssembler _masm(cbuf);
1362           __ movl(as_Register(Matcher::_regEncode[dst_first]),
1363                   as_Register(Matcher::_regEncode[src_first]));
1364 #ifndef PRODUCT
1365         } else {
1366           st->print("movl    %s, %s\t# spill",
1367                      Matcher::regName[dst_first],
1368                      Matcher::regName[src_first]);
1369 #endif
1370         }
1371         return 0;
1372       }
1373     } else if (dst_first_rc == rc_float) {
1374       // gpr -> xmm
1375       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1376           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1377         // 64-bit
1378         if (cbuf) {
1379           MacroAssembler _masm(cbuf);
1380           __ movdq( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1381 #ifndef PRODUCT
1382         } else {
1383           st->print("movdq   %s, %s\t# spill",
1384                      Matcher::regName[dst_first],
1385                      Matcher::regName[src_first]);
1386 #endif
1387         }
1388       } else {
1389         // 32-bit
1390         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1391         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1392         if (cbuf) {
1393           MacroAssembler _masm(cbuf);
1394           __ movdl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1395 #ifndef PRODUCT
1396         } else {
1397           st->print("movdl   %s, %s\t# spill",
1398                      Matcher::regName[dst_first],
1399                      Matcher::regName[src_first]);
1400 #endif
1401         }
1402       }
1403       return 0;
1404     }
1405   } else if (src_first_rc == rc_float) {
1406     // xmm ->
1407     if (dst_first_rc == rc_stack) {
1408       // xmm -> mem
1409       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1410           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1411         // 64-bit
1412         int offset = ra_->reg2offset(dst_first);
1413         if (cbuf) {
1414           MacroAssembler _masm(cbuf);
1415           __ movdbl( Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1416 #ifndef PRODUCT
1417         } else {
1418           st->print("movsd   [rsp + #%d], %s\t# spill",
1419                      offset,
1420                      Matcher::regName[src_first]);
1421 #endif
1422         }
1423       } else {
1424         // 32-bit
1425         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1426         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1427         int offset = ra_->reg2offset(dst_first);
1428         if (cbuf) {
1429           MacroAssembler _masm(cbuf);
1430           __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1431 #ifndef PRODUCT
1432         } else {
1433           st->print("movss   [rsp + #%d], %s\t# spill",
1434                      offset,
1435                      Matcher::regName[src_first]);
1436 #endif
1437         }
1438       }
1439       return 0;
1440     } else if (dst_first_rc == rc_int) {
1441       // xmm -> gpr
1442       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1443           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1444         // 64-bit
1445         if (cbuf) {
1446           MacroAssembler _masm(cbuf);
1447           __ movdq( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1448 #ifndef PRODUCT
1449         } else {
1450           st->print("movdq   %s, %s\t# spill",
1451                      Matcher::regName[dst_first],
1452                      Matcher::regName[src_first]);
1453 #endif
1454         }
1455       } else {
1456         // 32-bit
1457         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1458         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1459         if (cbuf) {
1460           MacroAssembler _masm(cbuf);
1461           __ movdl( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1462 #ifndef PRODUCT
1463         } else {
1464           st->print("movdl   %s, %s\t# spill",
1465                      Matcher::regName[dst_first],
1466                      Matcher::regName[src_first]);
1467 #endif
1468         }
1469       }
1470       return 0;
1471     } else if (dst_first_rc == rc_float) {
1472       // xmm -> xmm
1473       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1474           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1475         // 64-bit
1476         if (cbuf) {
1477           MacroAssembler _masm(cbuf);
1478           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1479 #ifndef PRODUCT
1480         } else {
1481           st->print("%s  %s, %s\t# spill",
1482                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
1483                      Matcher::regName[dst_first],
1484                      Matcher::regName[src_first]);
1485 #endif
1486         }
1487       } else {
1488         // 32-bit
1489         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1490         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1491         if (cbuf) {
1492           MacroAssembler _masm(cbuf);
1493           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1494 #ifndef PRODUCT
1495         } else {
1496           st->print("%s  %s, %s\t# spill",
1497                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
1498                      Matcher::regName[dst_first],
1499                      Matcher::regName[src_first]);
1500 #endif
1501         }
1502       }
1503       return 0;
1504     }
1505   }
1506 
1507   assert(0," foo ");
1508   Unimplemented();
1509   return 0;
1510 }
1511 
1512 #ifndef PRODUCT
1513 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1514   implementation(NULL, ra_, false, st);
1515 }
1516 #endif
1517 
1518 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1519   implementation(&cbuf, ra_, false, NULL);
1520 }
1521 
1522 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1523   return MachNode::size(ra_);
1524 }
1525 
1526 //=============================================================================
1527 #ifndef PRODUCT
1528 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1529 {
1530   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1531   int reg = ra_->get_reg_first(this);
1532   st->print("leaq    %s, [rsp + #%d]\t# box lock",
1533             Matcher::regName[reg], offset);
1534 }
1535 #endif
1536 
1537 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1538 {
1539   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1540   int reg = ra_->get_encode(this);
1541   if (offset >= 0x80) {
1542     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1543     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1544     emit_rm(cbuf, 0x2, reg & 7, 0x04);
1545     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1546     emit_d32(cbuf, offset);
1547   } else {
1548     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1549     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1550     emit_rm(cbuf, 0x1, reg & 7, 0x04);
1551     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1552     emit_d8(cbuf, offset);
1553   }
1554 }
1555 
1556 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
1557 {
1558   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1559   return (offset < 0x80) ? 5 : 8; // REX
1560 }
1561 
1562 //=============================================================================
1563 #ifndef PRODUCT
1564 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1565 {
1566   if (UseCompressedClassPointers) {
1567     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
1568     st->print_cr("\tdecode_klass_not_null rscratch1, rscratch1");
1569     st->print_cr("\tcmpq    rax, rscratch1\t # Inline cache check");
1570   } else {
1571     st->print_cr("\tcmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t"
1572                  "# Inline cache check");
1573   }
1574   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
1575   st->print_cr("\tnop\t# nops to align entry point");
1576 }
1577 #endif
1578 
1579 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1580 {
1581   MacroAssembler masm(&cbuf);
1582   uint insts_size = cbuf.insts_size();
1583   if (UseCompressedClassPointers) {
1584     masm.load_klass(rscratch1, j_rarg0);
1585     masm.cmpptr(rax, rscratch1);
1586   } else {
1587     masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
1588   }
1589 
1590   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1591 
1592   /* WARNING these NOPs are critical so that verified entry point is properly
1593      4 bytes aligned for patching by NativeJump::patch_verified_entry() */
1594   int nops_cnt = 4 - ((cbuf.insts_size() - insts_size) & 0x3);
1595   if (OptoBreakpoint) {
1596     // Leave space for int3
1597     nops_cnt -= 1;
1598   }
1599   nops_cnt &= 0x3; // Do not add nops if code is aligned.
1600   if (nops_cnt > 0)
1601     masm.nop(nops_cnt);
1602 }
1603 
1604 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
1605 {
1606   return MachNode::size(ra_); // too many variables; just compute it
1607                               // the hard way
1608 }
1609 
1610 
1611 //=============================================================================
1612 
1613 int Matcher::regnum_to_fpu_offset(int regnum)
1614 {
1615   return regnum - 32; // The FP registers are in the second chunk
1616 }
1617 
1618 // This is UltraSparc specific, true just means we have fast l2f conversion
1619 const bool Matcher::convL2FSupported(void) {
1620   return true;
1621 }
1622 
1623 // Is this branch offset short enough that a short branch can be used?
1624 //
1625 // NOTE: If the platform does not provide any short branch variants, then
1626 //       this method should return false for offset 0.
1627 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1628   // The passed offset is relative to address of the branch.
1629   // On 86 a branch displacement is calculated relative to address
1630   // of a next instruction.
1631   offset -= br_size;
1632 
1633   // the short version of jmpConUCF2 contains multiple branches,
1634   // making the reach slightly less
1635   if (rule == jmpConUCF2_rule)
1636     return (-126 <= offset && offset <= 125);
1637   return (-128 <= offset && offset <= 127);
1638 }
1639 
1640 const bool Matcher::isSimpleConstant64(jlong value) {
1641   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1642   //return value == (int) value;  // Cf. storeImmL and immL32.
1643 
1644   // Probably always true, even if a temp register is required.
1645   return true;
1646 }
1647 
1648 // The ecx parameter to rep stosq for the ClearArray node is in words.
1649 const bool Matcher::init_array_count_is_in_bytes = false;
1650 
1651 // No additional cost for CMOVL.
1652 const int Matcher::long_cmove_cost() { return 0; }
1653 
1654 // No CMOVF/CMOVD with SSE2
1655 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
1656 
1657 // Does the CPU require late expand (see block.cpp for description of late expand)?
1658 const bool Matcher::require_postalloc_expand = false;
1659 
1660 // Do we need to mask the count passed to shift instructions or does
1661 // the cpu only look at the lower 5/6 bits anyway?
1662 const bool Matcher::need_masked_shift_count = false;
1663 
1664 bool Matcher::narrow_oop_use_complex_address() {
1665   assert(UseCompressedOops, "only for compressed oops code");
1666   return (LogMinObjAlignmentInBytes <= 3);
1667 }
1668 
1669 bool Matcher::narrow_klass_use_complex_address() {
1670   assert(UseCompressedClassPointers, "only for compressed klass code");
1671   return (LogKlassAlignmentInBytes <= 3);
1672 }
1673 
1674 bool Matcher::const_oop_prefer_decode() {
1675   // Prefer ConN+DecodeN over ConP.
1676   return true;
1677 }
1678 
1679 bool Matcher::const_klass_prefer_decode() {
1680   // TODO: Either support matching DecodeNKlass (heap-based) in operand
1681   //       or condisider the following:
1682   // Prefer ConNKlass+DecodeNKlass over ConP in simple compressed klass mode.
1683   //return CompressedKlassPointers::base() == NULL;
1684   return true;
1685 }
1686 
1687 // Is it better to copy float constants, or load them directly from
1688 // memory?  Intel can load a float constant from a direct address,
1689 // requiring no extra registers.  Most RISCs will have to materialize
1690 // an address into a register first, so they would do better to copy
1691 // the constant from stack.
1692 const bool Matcher::rematerialize_float_constants = true; // XXX
1693 
1694 // If CPU can load and store mis-aligned doubles directly then no
1695 // fixup is needed.  Else we split the double into 2 integer pieces
1696 // and move it piece-by-piece.  Only happens when passing doubles into
1697 // C code as the Java calling convention forces doubles to be aligned.
1698 const bool Matcher::misaligned_doubles_ok = true;
1699 
1700 // No-op on amd64
1701 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
1702 
1703 // Advertise here if the CPU requires explicit rounding operations to
1704 // implement the UseStrictFP mode.
1705 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1706 
1707 // Are floats conerted to double when stored to stack during deoptimization?
1708 // On x64 it is stored without convertion so we can use normal access.
1709 bool Matcher::float_in_double() { return false; }
1710 
1711 // Do ints take an entire long register or just half?
1712 const bool Matcher::int_in_long = true;
1713 
1714 // Return whether or not this register is ever used as an argument.
1715 // This function is used on startup to build the trampoline stubs in
1716 // generateOptoStub.  Registers not mentioned will be killed by the VM
1717 // call in the trampoline, and arguments in those registers not be
1718 // available to the callee.
1719 bool Matcher::can_be_java_arg(int reg)
1720 {
1721   return
1722     reg ==  RDI_num || reg == RDI_H_num ||
1723     reg ==  RSI_num || reg == RSI_H_num ||
1724     reg ==  RDX_num || reg == RDX_H_num ||
1725     reg ==  RCX_num || reg == RCX_H_num ||
1726     reg ==   R8_num || reg ==  R8_H_num ||
1727     reg ==   R9_num || reg ==  R9_H_num ||
1728     reg ==  R12_num || reg == R12_H_num ||
1729     reg == XMM0_num || reg == XMM0b_num ||
1730     reg == XMM1_num || reg == XMM1b_num ||
1731     reg == XMM2_num || reg == XMM2b_num ||
1732     reg == XMM3_num || reg == XMM3b_num ||
1733     reg == XMM4_num || reg == XMM4b_num ||
1734     reg == XMM5_num || reg == XMM5b_num ||
1735     reg == XMM6_num || reg == XMM6b_num ||
1736     reg == XMM7_num || reg == XMM7b_num;
1737 }
1738 
1739 bool Matcher::is_spillable_arg(int reg)
1740 {
1741   return can_be_java_arg(reg);
1742 }
1743 
1744 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1745   // In 64 bit mode a code which use multiply when
1746   // devisor is constant is faster than hardware
1747   // DIV instruction (it uses MulHiL).
1748   return false;
1749 }
1750 
1751 // Register for DIVI projection of divmodI
1752 RegMask Matcher::divI_proj_mask() {
1753   return INT_RAX_REG_mask();
1754 }
1755 
1756 // Register for MODI projection of divmodI
1757 RegMask Matcher::modI_proj_mask() {
1758   return INT_RDX_REG_mask();
1759 }
1760 
1761 // Register for DIVL projection of divmodL
1762 RegMask Matcher::divL_proj_mask() {
1763   return LONG_RAX_REG_mask();
1764 }
1765 
1766 // Register for MODL projection of divmodL
1767 RegMask Matcher::modL_proj_mask() {
1768   return LONG_RDX_REG_mask();
1769 }
1770 
1771 // Register for saving SP into on method handle invokes. Not used on x86_64.
1772 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1773     return NO_REG_mask();
1774 }
1775 
1776 %}
1777 
1778 //----------ENCODING BLOCK-----------------------------------------------------
1779 // This block specifies the encoding classes used by the compiler to
1780 // output byte streams.  Encoding classes are parameterized macros
1781 // used by Machine Instruction Nodes in order to generate the bit
1782 // encoding of the instruction.  Operands specify their base encoding
1783 // interface with the interface keyword.  There are currently
1784 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
1785 // COND_INTER.  REG_INTER causes an operand to generate a function
1786 // which returns its register number when queried.  CONST_INTER causes
1787 // an operand to generate a function which returns the value of the
1788 // constant when queried.  MEMORY_INTER causes an operand to generate
1789 // four functions which return the Base Register, the Index Register,
1790 // the Scale Value, and the Offset Value of the operand when queried.
1791 // COND_INTER causes an operand to generate six functions which return
1792 // the encoding code (ie - encoding bits for the instruction)
1793 // associated with each basic boolean condition for a conditional
1794 // instruction.
1795 //
1796 // Instructions specify two basic values for encoding.  Again, a
1797 // function is available to check if the constant displacement is an
1798 // oop. They use the ins_encode keyword to specify their encoding
1799 // classes (which must be a sequence of enc_class names, and their
1800 // parameters, specified in the encoding block), and they use the
1801 // opcode keyword to specify, in order, their primary, secondary, and
1802 // tertiary opcode.  Only the opcode sections which a particular
1803 // instruction needs for encoding need to be specified.
1804 encode %{
1805   // Build emit functions for each basic byte or larger field in the
1806   // intel encoding scheme (opcode, rm, sib, immediate), and call them
1807   // from C++ code in the enc_class source block.  Emit functions will
1808   // live in the main source block for now.  In future, we can
1809   // generalize this by adding a syntax that specifies the sizes of
1810   // fields in an order, so that the adlc can build the emit functions
1811   // automagically
1812 
1813   // Emit primary opcode
1814   enc_class OpcP
1815   %{
1816     emit_opcode(cbuf, $primary);
1817   %}
1818 
1819   // Emit secondary opcode
1820   enc_class OpcS
1821   %{
1822     emit_opcode(cbuf, $secondary);
1823   %}
1824 
1825   // Emit tertiary opcode
1826   enc_class OpcT
1827   %{
1828     emit_opcode(cbuf, $tertiary);
1829   %}
1830 
1831   // Emit opcode directly
1832   enc_class Opcode(immI d8)
1833   %{
1834     emit_opcode(cbuf, $d8$$constant);
1835   %}
1836 
1837   // Emit size prefix
1838   enc_class SizePrefix
1839   %{
1840     emit_opcode(cbuf, 0x66);
1841   %}
1842 
1843   enc_class reg(rRegI reg)
1844   %{
1845     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
1846   %}
1847 
1848   enc_class reg_reg(rRegI dst, rRegI src)
1849   %{
1850     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1851   %}
1852 
1853   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
1854   %{
1855     emit_opcode(cbuf, $opcode$$constant);
1856     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1857   %}
1858 
1859   enc_class cdql_enc(no_rax_rdx_RegI div)
1860   %{
1861     // Full implementation of Java idiv and irem; checks for
1862     // special case as described in JVM spec., p.243 & p.271.
1863     //
1864     //         normal case                           special case
1865     //
1866     // input : rax: dividend                         min_int
1867     //         reg: divisor                          -1
1868     //
1869     // output: rax: quotient  (= rax idiv reg)       min_int
1870     //         rdx: remainder (= rax irem reg)       0
1871     //
1872     //  Code sequnce:
1873     //
1874     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
1875     //    5:   75 07/08                jne    e <normal>
1876     //    7:   33 d2                   xor    %edx,%edx
1877     //  [div >= 8 -> offset + 1]
1878     //  [REX_B]
1879     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
1880     //    c:   74 03/04                je     11 <done>
1881     // 000000000000000e <normal>:
1882     //    e:   99                      cltd
1883     //  [div >= 8 -> offset + 1]
1884     //  [REX_B]
1885     //    f:   f7 f9                   idiv   $div
1886     // 0000000000000011 <done>:
1887 
1888     // cmp    $0x80000000,%eax
1889     emit_opcode(cbuf, 0x3d);
1890     emit_d8(cbuf, 0x00);
1891     emit_d8(cbuf, 0x00);
1892     emit_d8(cbuf, 0x00);
1893     emit_d8(cbuf, 0x80);
1894 
1895     // jne    e <normal>
1896     emit_opcode(cbuf, 0x75);
1897     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
1898 
1899     // xor    %edx,%edx
1900     emit_opcode(cbuf, 0x33);
1901     emit_d8(cbuf, 0xD2);
1902 
1903     // cmp    $0xffffffffffffffff,%ecx
1904     if ($div$$reg >= 8) {
1905       emit_opcode(cbuf, Assembler::REX_B);
1906     }
1907     emit_opcode(cbuf, 0x83);
1908     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1909     emit_d8(cbuf, 0xFF);
1910 
1911     // je     11 <done>
1912     emit_opcode(cbuf, 0x74);
1913     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
1914 
1915     // <normal>
1916     // cltd
1917     emit_opcode(cbuf, 0x99);
1918 
1919     // idivl (note: must be emitted by the user of this rule)
1920     // <done>
1921   %}
1922 
1923   enc_class cdqq_enc(no_rax_rdx_RegL div)
1924   %{
1925     // Full implementation of Java ldiv and lrem; checks for
1926     // special case as described in JVM spec., p.243 & p.271.
1927     //
1928     //         normal case                           special case
1929     //
1930     // input : rax: dividend                         min_long
1931     //         reg: divisor                          -1
1932     //
1933     // output: rax: quotient  (= rax idiv reg)       min_long
1934     //         rdx: remainder (= rax irem reg)       0
1935     //
1936     //  Code sequnce:
1937     //
1938     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
1939     //    7:   00 00 80
1940     //    a:   48 39 d0                cmp    %rdx,%rax
1941     //    d:   75 08                   jne    17 <normal>
1942     //    f:   33 d2                   xor    %edx,%edx
1943     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
1944     //   15:   74 05                   je     1c <done>
1945     // 0000000000000017 <normal>:
1946     //   17:   48 99                   cqto
1947     //   19:   48 f7 f9                idiv   $div
1948     // 000000000000001c <done>:
1949 
1950     // mov    $0x8000000000000000,%rdx
1951     emit_opcode(cbuf, Assembler::REX_W);
1952     emit_opcode(cbuf, 0xBA);
1953     emit_d8(cbuf, 0x00);
1954     emit_d8(cbuf, 0x00);
1955     emit_d8(cbuf, 0x00);
1956     emit_d8(cbuf, 0x00);
1957     emit_d8(cbuf, 0x00);
1958     emit_d8(cbuf, 0x00);
1959     emit_d8(cbuf, 0x00);
1960     emit_d8(cbuf, 0x80);
1961 
1962     // cmp    %rdx,%rax
1963     emit_opcode(cbuf, Assembler::REX_W);
1964     emit_opcode(cbuf, 0x39);
1965     emit_d8(cbuf, 0xD0);
1966 
1967     // jne    17 <normal>
1968     emit_opcode(cbuf, 0x75);
1969     emit_d8(cbuf, 0x08);
1970 
1971     // xor    %edx,%edx
1972     emit_opcode(cbuf, 0x33);
1973     emit_d8(cbuf, 0xD2);
1974 
1975     // cmp    $0xffffffffffffffff,$div
1976     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
1977     emit_opcode(cbuf, 0x83);
1978     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1979     emit_d8(cbuf, 0xFF);
1980 
1981     // je     1e <done>
1982     emit_opcode(cbuf, 0x74);
1983     emit_d8(cbuf, 0x05);
1984 
1985     // <normal>
1986     // cqto
1987     emit_opcode(cbuf, Assembler::REX_W);
1988     emit_opcode(cbuf, 0x99);
1989 
1990     // idivq (note: must be emitted by the user of this rule)
1991     // <done>
1992   %}
1993 
1994   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1995   enc_class OpcSE(immI imm)
1996   %{
1997     // Emit primary opcode and set sign-extend bit
1998     // Check for 8-bit immediate, and set sign extend bit in opcode
1999     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2000       emit_opcode(cbuf, $primary | 0x02);
2001     } else {
2002       // 32-bit immediate
2003       emit_opcode(cbuf, $primary);
2004     }
2005   %}
2006 
2007   enc_class OpcSErm(rRegI dst, immI imm)
2008   %{
2009     // OpcSEr/m
2010     int dstenc = $dst$$reg;
2011     if (dstenc >= 8) {
2012       emit_opcode(cbuf, Assembler::REX_B);
2013       dstenc -= 8;
2014     }
2015     // Emit primary opcode and set sign-extend bit
2016     // Check for 8-bit immediate, and set sign extend bit in opcode
2017     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2018       emit_opcode(cbuf, $primary | 0x02);
2019     } else {
2020       // 32-bit immediate
2021       emit_opcode(cbuf, $primary);
2022     }
2023     // Emit r/m byte with secondary opcode, after primary opcode.
2024     emit_rm(cbuf, 0x3, $secondary, dstenc);
2025   %}
2026 
2027   enc_class OpcSErm_wide(rRegL dst, immI imm)
2028   %{
2029     // OpcSEr/m
2030     int dstenc = $dst$$reg;
2031     if (dstenc < 8) {
2032       emit_opcode(cbuf, Assembler::REX_W);
2033     } else {
2034       emit_opcode(cbuf, Assembler::REX_WB);
2035       dstenc -= 8;
2036     }
2037     // Emit primary opcode and set sign-extend bit
2038     // Check for 8-bit immediate, and set sign extend bit in opcode
2039     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2040       emit_opcode(cbuf, $primary | 0x02);
2041     } else {
2042       // 32-bit immediate
2043       emit_opcode(cbuf, $primary);
2044     }
2045     // Emit r/m byte with secondary opcode, after primary opcode.
2046     emit_rm(cbuf, 0x3, $secondary, dstenc);
2047   %}
2048 
2049   enc_class Con8or32(immI imm)
2050   %{
2051     // Check for 8-bit immediate, and set sign extend bit in opcode
2052     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2053       $$$emit8$imm$$constant;
2054     } else {
2055       // 32-bit immediate
2056       $$$emit32$imm$$constant;
2057     }
2058   %}
2059 
2060   enc_class opc2_reg(rRegI dst)
2061   %{
2062     // BSWAP
2063     emit_cc(cbuf, $secondary, $dst$$reg);
2064   %}
2065 
2066   enc_class opc3_reg(rRegI dst)
2067   %{
2068     // BSWAP
2069     emit_cc(cbuf, $tertiary, $dst$$reg);
2070   %}
2071 
2072   enc_class reg_opc(rRegI div)
2073   %{
2074     // INC, DEC, IDIV, IMOD, JMP indirect, ...
2075     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
2076   %}
2077 
2078   enc_class enc_cmov(cmpOp cop)
2079   %{
2080     // CMOV
2081     $$$emit8$primary;
2082     emit_cc(cbuf, $secondary, $cop$$cmpcode);
2083   %}
2084 
2085   enc_class enc_PartialSubtypeCheck()
2086   %{
2087     Register Rrdi = as_Register(RDI_enc); // result register
2088     Register Rrax = as_Register(RAX_enc); // super class
2089     Register Rrcx = as_Register(RCX_enc); // killed
2090     Register Rrsi = as_Register(RSI_enc); // sub class
2091     Label miss;
2092     const bool set_cond_codes = true;
2093 
2094     MacroAssembler _masm(&cbuf);
2095     __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
2096                                      NULL, &miss,
2097                                      /*set_cond_codes:*/ true);
2098     if ($primary) {
2099       __ xorptr(Rrdi, Rrdi);
2100     }
2101     __ bind(miss);
2102   %}
2103 
2104   enc_class clear_avx %{
2105     debug_only(int off0 = cbuf.insts_size());
2106     if (generate_vzeroupper(Compile::current())) {
2107       // Clear upper bits of YMM registers to avoid AVX <-> SSE transition penalty
2108       // Clear upper bits of YMM registers when current compiled code uses
2109       // wide vectors to avoid AVX <-> SSE transition penalty during call.
2110       MacroAssembler _masm(&cbuf);
2111       __ vzeroupper();
2112     }
2113     debug_only(int off1 = cbuf.insts_size());
2114     assert(off1 - off0 == clear_avx_size(), "correct size prediction");
2115   %}
2116 
2117   enc_class Java_To_Runtime(method meth) %{
2118     // No relocation needed
2119     MacroAssembler _masm(&cbuf);
2120     __ mov64(r10, (int64_t) $meth$$method);
2121     __ call(r10);
2122   %}
2123 
2124   enc_class Java_To_Interpreter(method meth)
2125   %{
2126     // CALL Java_To_Interpreter
2127     // This is the instruction starting address for relocation info.
2128     cbuf.set_insts_mark();
2129     $$$emit8$primary;
2130     // CALL directly to the runtime
2131     emit_d32_reloc(cbuf,
2132                    (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2133                    runtime_call_Relocation::spec(),
2134                    RELOC_DISP32);
2135   %}
2136 
2137   enc_class Java_Static_Call(method meth)
2138   %{
2139     // JAVA STATIC CALL
2140     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
2141     // determine who we intended to call.
2142     cbuf.set_insts_mark();
2143     $$$emit8$primary;
2144 
2145     if (!_method) {
2146       emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2147                      runtime_call_Relocation::spec(),
2148                      RELOC_DISP32);
2149     } else {
2150       int method_index = resolved_method_index(cbuf);
2151       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
2152                                                   : static_call_Relocation::spec(method_index);
2153       emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2154                      rspec, RELOC_DISP32);
2155       // Emit stubs for static call.
2156       address mark = cbuf.insts_mark();
2157       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf, mark);
2158       if (stub == NULL) {
2159         ciEnv::current()->record_failure("CodeCache is full");
2160         return;
2161       }
2162 #if INCLUDE_AOT
2163       CompiledStaticCall::emit_to_aot_stub(cbuf, mark);
2164 #endif
2165     }
2166   %}
2167 
2168   enc_class Java_Dynamic_Call(method meth) %{
2169     MacroAssembler _masm(&cbuf);
2170     __ ic_call((address)$meth$$method, resolved_method_index(cbuf));
2171   %}
2172 
2173   enc_class Java_Compiled_Call(method meth)
2174   %{
2175     // JAVA COMPILED CALL
2176     int disp = in_bytes(Method:: from_compiled_offset());
2177 
2178     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
2179     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
2180 
2181     // callq *disp(%rax)
2182     cbuf.set_insts_mark();
2183     $$$emit8$primary;
2184     if (disp < 0x80) {
2185       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
2186       emit_d8(cbuf, disp); // Displacement
2187     } else {
2188       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
2189       emit_d32(cbuf, disp); // Displacement
2190     }
2191   %}
2192 
2193   enc_class reg_opc_imm(rRegI dst, immI8 shift)
2194   %{
2195     // SAL, SAR, SHR
2196     int dstenc = $dst$$reg;
2197     if (dstenc >= 8) {
2198       emit_opcode(cbuf, Assembler::REX_B);
2199       dstenc -= 8;
2200     }
2201     $$$emit8$primary;
2202     emit_rm(cbuf, 0x3, $secondary, dstenc);
2203     $$$emit8$shift$$constant;
2204   %}
2205 
2206   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
2207   %{
2208     // SAL, SAR, SHR
2209     int dstenc = $dst$$reg;
2210     if (dstenc < 8) {
2211       emit_opcode(cbuf, Assembler::REX_W);
2212     } else {
2213       emit_opcode(cbuf, Assembler::REX_WB);
2214       dstenc -= 8;
2215     }
2216     $$$emit8$primary;
2217     emit_rm(cbuf, 0x3, $secondary, dstenc);
2218     $$$emit8$shift$$constant;
2219   %}
2220 
2221   enc_class load_immI(rRegI dst, immI src)
2222   %{
2223     int dstenc = $dst$$reg;
2224     if (dstenc >= 8) {
2225       emit_opcode(cbuf, Assembler::REX_B);
2226       dstenc -= 8;
2227     }
2228     emit_opcode(cbuf, 0xB8 | dstenc);
2229     $$$emit32$src$$constant;
2230   %}
2231 
2232   enc_class load_immL(rRegL dst, immL src)
2233   %{
2234     int dstenc = $dst$$reg;
2235     if (dstenc < 8) {
2236       emit_opcode(cbuf, Assembler::REX_W);
2237     } else {
2238       emit_opcode(cbuf, Assembler::REX_WB);
2239       dstenc -= 8;
2240     }
2241     emit_opcode(cbuf, 0xB8 | dstenc);
2242     emit_d64(cbuf, $src$$constant);
2243   %}
2244 
2245   enc_class load_immUL32(rRegL dst, immUL32 src)
2246   %{
2247     // same as load_immI, but this time we care about zeroes in the high word
2248     int dstenc = $dst$$reg;
2249     if (dstenc >= 8) {
2250       emit_opcode(cbuf, Assembler::REX_B);
2251       dstenc -= 8;
2252     }
2253     emit_opcode(cbuf, 0xB8 | dstenc);
2254     $$$emit32$src$$constant;
2255   %}
2256 
2257   enc_class load_immL32(rRegL dst, immL32 src)
2258   %{
2259     int dstenc = $dst$$reg;
2260     if (dstenc < 8) {
2261       emit_opcode(cbuf, Assembler::REX_W);
2262     } else {
2263       emit_opcode(cbuf, Assembler::REX_WB);
2264       dstenc -= 8;
2265     }
2266     emit_opcode(cbuf, 0xC7);
2267     emit_rm(cbuf, 0x03, 0x00, dstenc);
2268     $$$emit32$src$$constant;
2269   %}
2270 
2271   enc_class load_immP31(rRegP dst, immP32 src)
2272   %{
2273     // same as load_immI, but this time we care about zeroes in the high word
2274     int dstenc = $dst$$reg;
2275     if (dstenc >= 8) {
2276       emit_opcode(cbuf, Assembler::REX_B);
2277       dstenc -= 8;
2278     }
2279     emit_opcode(cbuf, 0xB8 | dstenc);
2280     $$$emit32$src$$constant;
2281   %}
2282 
2283   enc_class load_immP(rRegP dst, immP src)
2284   %{
2285     int dstenc = $dst$$reg;
2286     if (dstenc < 8) {
2287       emit_opcode(cbuf, Assembler::REX_W);
2288     } else {
2289       emit_opcode(cbuf, Assembler::REX_WB);
2290       dstenc -= 8;
2291     }
2292     emit_opcode(cbuf, 0xB8 | dstenc);
2293     // This next line should be generated from ADLC
2294     if ($src->constant_reloc() != relocInfo::none) {
2295       emit_d64_reloc(cbuf, $src$$constant, $src->constant_reloc(), RELOC_IMM64);
2296     } else {
2297       emit_d64(cbuf, $src$$constant);
2298     }
2299   %}
2300 
2301   enc_class Con32(immI src)
2302   %{
2303     // Output immediate
2304     $$$emit32$src$$constant;
2305   %}
2306 
2307   enc_class Con32F_as_bits(immF src)
2308   %{
2309     // Output Float immediate bits
2310     jfloat jf = $src$$constant;
2311     jint jf_as_bits = jint_cast(jf);
2312     emit_d32(cbuf, jf_as_bits);
2313   %}
2314 
2315   enc_class Con16(immI src)
2316   %{
2317     // Output immediate
2318     $$$emit16$src$$constant;
2319   %}
2320 
2321   // How is this different from Con32??? XXX
2322   enc_class Con_d32(immI src)
2323   %{
2324     emit_d32(cbuf,$src$$constant);
2325   %}
2326 
2327   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
2328     // Output immediate memory reference
2329     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2330     emit_d32(cbuf, 0x00);
2331   %}
2332 
2333   enc_class lock_prefix()
2334   %{
2335     emit_opcode(cbuf, 0xF0); // lock
2336   %}
2337 
2338   enc_class REX_mem(memory mem)
2339   %{
2340     if ($mem$$base >= 8) {
2341       if ($mem$$index < 8) {
2342         emit_opcode(cbuf, Assembler::REX_B);
2343       } else {
2344         emit_opcode(cbuf, Assembler::REX_XB);
2345       }
2346     } else {
2347       if ($mem$$index >= 8) {
2348         emit_opcode(cbuf, Assembler::REX_X);
2349       }
2350     }
2351   %}
2352 
2353   enc_class REX_mem_wide(memory mem)
2354   %{
2355     if ($mem$$base >= 8) {
2356       if ($mem$$index < 8) {
2357         emit_opcode(cbuf, Assembler::REX_WB);
2358       } else {
2359         emit_opcode(cbuf, Assembler::REX_WXB);
2360       }
2361     } else {
2362       if ($mem$$index < 8) {
2363         emit_opcode(cbuf, Assembler::REX_W);
2364       } else {
2365         emit_opcode(cbuf, Assembler::REX_WX);
2366       }
2367     }
2368   %}
2369 
2370   // for byte regs
2371   enc_class REX_breg(rRegI reg)
2372   %{
2373     if ($reg$$reg >= 4) {
2374       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2375     }
2376   %}
2377 
2378   // for byte regs
2379   enc_class REX_reg_breg(rRegI dst, rRegI src)
2380   %{
2381     if ($dst$$reg < 8) {
2382       if ($src$$reg >= 4) {
2383         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2384       }
2385     } else {
2386       if ($src$$reg < 8) {
2387         emit_opcode(cbuf, Assembler::REX_R);
2388       } else {
2389         emit_opcode(cbuf, Assembler::REX_RB);
2390       }
2391     }
2392   %}
2393 
2394   // for byte regs
2395   enc_class REX_breg_mem(rRegI reg, memory mem)
2396   %{
2397     if ($reg$$reg < 8) {
2398       if ($mem$$base < 8) {
2399         if ($mem$$index >= 8) {
2400           emit_opcode(cbuf, Assembler::REX_X);
2401         } else if ($reg$$reg >= 4) {
2402           emit_opcode(cbuf, Assembler::REX);
2403         }
2404       } else {
2405         if ($mem$$index < 8) {
2406           emit_opcode(cbuf, Assembler::REX_B);
2407         } else {
2408           emit_opcode(cbuf, Assembler::REX_XB);
2409         }
2410       }
2411     } else {
2412       if ($mem$$base < 8) {
2413         if ($mem$$index < 8) {
2414           emit_opcode(cbuf, Assembler::REX_R);
2415         } else {
2416           emit_opcode(cbuf, Assembler::REX_RX);
2417         }
2418       } else {
2419         if ($mem$$index < 8) {
2420           emit_opcode(cbuf, Assembler::REX_RB);
2421         } else {
2422           emit_opcode(cbuf, Assembler::REX_RXB);
2423         }
2424       }
2425     }
2426   %}
2427 
2428   enc_class REX_reg(rRegI reg)
2429   %{
2430     if ($reg$$reg >= 8) {
2431       emit_opcode(cbuf, Assembler::REX_B);
2432     }
2433   %}
2434 
2435   enc_class REX_reg_wide(rRegI reg)
2436   %{
2437     if ($reg$$reg < 8) {
2438       emit_opcode(cbuf, Assembler::REX_W);
2439     } else {
2440       emit_opcode(cbuf, Assembler::REX_WB);
2441     }
2442   %}
2443 
2444   enc_class REX_reg_reg(rRegI dst, rRegI src)
2445   %{
2446     if ($dst$$reg < 8) {
2447       if ($src$$reg >= 8) {
2448         emit_opcode(cbuf, Assembler::REX_B);
2449       }
2450     } else {
2451       if ($src$$reg < 8) {
2452         emit_opcode(cbuf, Assembler::REX_R);
2453       } else {
2454         emit_opcode(cbuf, Assembler::REX_RB);
2455       }
2456     }
2457   %}
2458 
2459   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
2460   %{
2461     if ($dst$$reg < 8) {
2462       if ($src$$reg < 8) {
2463         emit_opcode(cbuf, Assembler::REX_W);
2464       } else {
2465         emit_opcode(cbuf, Assembler::REX_WB);
2466       }
2467     } else {
2468       if ($src$$reg < 8) {
2469         emit_opcode(cbuf, Assembler::REX_WR);
2470       } else {
2471         emit_opcode(cbuf, Assembler::REX_WRB);
2472       }
2473     }
2474   %}
2475 
2476   enc_class REX_reg_mem(rRegI reg, memory mem)
2477   %{
2478     if ($reg$$reg < 8) {
2479       if ($mem$$base < 8) {
2480         if ($mem$$index >= 8) {
2481           emit_opcode(cbuf, Assembler::REX_X);
2482         }
2483       } else {
2484         if ($mem$$index < 8) {
2485           emit_opcode(cbuf, Assembler::REX_B);
2486         } else {
2487           emit_opcode(cbuf, Assembler::REX_XB);
2488         }
2489       }
2490     } else {
2491       if ($mem$$base < 8) {
2492         if ($mem$$index < 8) {
2493           emit_opcode(cbuf, Assembler::REX_R);
2494         } else {
2495           emit_opcode(cbuf, Assembler::REX_RX);
2496         }
2497       } else {
2498         if ($mem$$index < 8) {
2499           emit_opcode(cbuf, Assembler::REX_RB);
2500         } else {
2501           emit_opcode(cbuf, Assembler::REX_RXB);
2502         }
2503       }
2504     }
2505   %}
2506 
2507   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
2508   %{
2509     if ($reg$$reg < 8) {
2510       if ($mem$$base < 8) {
2511         if ($mem$$index < 8) {
2512           emit_opcode(cbuf, Assembler::REX_W);
2513         } else {
2514           emit_opcode(cbuf, Assembler::REX_WX);
2515         }
2516       } else {
2517         if ($mem$$index < 8) {
2518           emit_opcode(cbuf, Assembler::REX_WB);
2519         } else {
2520           emit_opcode(cbuf, Assembler::REX_WXB);
2521         }
2522       }
2523     } else {
2524       if ($mem$$base < 8) {
2525         if ($mem$$index < 8) {
2526           emit_opcode(cbuf, Assembler::REX_WR);
2527         } else {
2528           emit_opcode(cbuf, Assembler::REX_WRX);
2529         }
2530       } else {
2531         if ($mem$$index < 8) {
2532           emit_opcode(cbuf, Assembler::REX_WRB);
2533         } else {
2534           emit_opcode(cbuf, Assembler::REX_WRXB);
2535         }
2536       }
2537     }
2538   %}
2539 
2540   enc_class reg_mem(rRegI ereg, memory mem)
2541   %{
2542     // High registers handle in encode_RegMem
2543     int reg = $ereg$$reg;
2544     int base = $mem$$base;
2545     int index = $mem$$index;
2546     int scale = $mem$$scale;
2547     int disp = $mem$$disp;
2548     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2549 
2550     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_reloc);
2551   %}
2552 
2553   enc_class RM_opc_mem(immI rm_opcode, memory mem)
2554   %{
2555     int rm_byte_opcode = $rm_opcode$$constant;
2556 
2557     // High registers handle in encode_RegMem
2558     int base = $mem$$base;
2559     int index = $mem$$index;
2560     int scale = $mem$$scale;
2561     int displace = $mem$$disp;
2562 
2563     relocInfo::relocType disp_reloc = $mem->disp_reloc();       // disp-as-oop when
2564                                             // working with static
2565                                             // globals
2566     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
2567                   disp_reloc);
2568   %}
2569 
2570   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
2571   %{
2572     int reg_encoding = $dst$$reg;
2573     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2574     int index        = 0x04;            // 0x04 indicates no index
2575     int scale        = 0x00;            // 0x00 indicates no scale
2576     int displace     = $src1$$constant; // 0x00 indicates no displacement
2577     relocInfo::relocType disp_reloc = relocInfo::none;
2578     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
2579                   disp_reloc);
2580   %}
2581 
2582   enc_class neg_reg(rRegI dst)
2583   %{
2584     int dstenc = $dst$$reg;
2585     if (dstenc >= 8) {
2586       emit_opcode(cbuf, Assembler::REX_B);
2587       dstenc -= 8;
2588     }
2589     // NEG $dst
2590     emit_opcode(cbuf, 0xF7);
2591     emit_rm(cbuf, 0x3, 0x03, dstenc);
2592   %}
2593 
2594   enc_class neg_reg_wide(rRegI dst)
2595   %{
2596     int dstenc = $dst$$reg;
2597     if (dstenc < 8) {
2598       emit_opcode(cbuf, Assembler::REX_W);
2599     } else {
2600       emit_opcode(cbuf, Assembler::REX_WB);
2601       dstenc -= 8;
2602     }
2603     // NEG $dst
2604     emit_opcode(cbuf, 0xF7);
2605     emit_rm(cbuf, 0x3, 0x03, dstenc);
2606   %}
2607 
2608   enc_class setLT_reg(rRegI dst)
2609   %{
2610     int dstenc = $dst$$reg;
2611     if (dstenc >= 8) {
2612       emit_opcode(cbuf, Assembler::REX_B);
2613       dstenc -= 8;
2614     } else if (dstenc >= 4) {
2615       emit_opcode(cbuf, Assembler::REX);
2616     }
2617     // SETLT $dst
2618     emit_opcode(cbuf, 0x0F);
2619     emit_opcode(cbuf, 0x9C);
2620     emit_rm(cbuf, 0x3, 0x0, dstenc);
2621   %}
2622 
2623   enc_class setNZ_reg(rRegI dst)
2624   %{
2625     int dstenc = $dst$$reg;
2626     if (dstenc >= 8) {
2627       emit_opcode(cbuf, Assembler::REX_B);
2628       dstenc -= 8;
2629     } else if (dstenc >= 4) {
2630       emit_opcode(cbuf, Assembler::REX);
2631     }
2632     // SETNZ $dst
2633     emit_opcode(cbuf, 0x0F);
2634     emit_opcode(cbuf, 0x95);
2635     emit_rm(cbuf, 0x3, 0x0, dstenc);
2636   %}
2637 
2638 
2639   // Compare the lonogs and set -1, 0, or 1 into dst
2640   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
2641   %{
2642     int src1enc = $src1$$reg;
2643     int src2enc = $src2$$reg;
2644     int dstenc = $dst$$reg;
2645 
2646     // cmpq $src1, $src2
2647     if (src1enc < 8) {
2648       if (src2enc < 8) {
2649         emit_opcode(cbuf, Assembler::REX_W);
2650       } else {
2651         emit_opcode(cbuf, Assembler::REX_WB);
2652       }
2653     } else {
2654       if (src2enc < 8) {
2655         emit_opcode(cbuf, Assembler::REX_WR);
2656       } else {
2657         emit_opcode(cbuf, Assembler::REX_WRB);
2658       }
2659     }
2660     emit_opcode(cbuf, 0x3B);
2661     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
2662 
2663     // movl $dst, -1
2664     if (dstenc >= 8) {
2665       emit_opcode(cbuf, Assembler::REX_B);
2666     }
2667     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
2668     emit_d32(cbuf, -1);
2669 
2670     // jl,s done
2671     emit_opcode(cbuf, 0x7C);
2672     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
2673 
2674     // setne $dst
2675     if (dstenc >= 4) {
2676       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
2677     }
2678     emit_opcode(cbuf, 0x0F);
2679     emit_opcode(cbuf, 0x95);
2680     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
2681 
2682     // movzbl $dst, $dst
2683     if (dstenc >= 4) {
2684       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
2685     }
2686     emit_opcode(cbuf, 0x0F);
2687     emit_opcode(cbuf, 0xB6);
2688     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
2689   %}
2690 
2691   enc_class Push_ResultXD(regD dst) %{
2692     MacroAssembler _masm(&cbuf);
2693     __ fstp_d(Address(rsp, 0));
2694     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2695     __ addptr(rsp, 8);
2696   %}
2697 
2698   enc_class Push_SrcXD(regD src) %{
2699     MacroAssembler _masm(&cbuf);
2700     __ subptr(rsp, 8);
2701     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2702     __ fld_d(Address(rsp, 0));
2703   %}
2704 
2705 
2706   enc_class enc_rethrow()
2707   %{
2708     cbuf.set_insts_mark();
2709     emit_opcode(cbuf, 0xE9); // jmp entry
2710     emit_d32_reloc(cbuf,
2711                    (int) (OptoRuntime::rethrow_stub() - cbuf.insts_end() - 4),
2712                    runtime_call_Relocation::spec(),
2713                    RELOC_DISP32);
2714   %}
2715 
2716 %}
2717 
2718 
2719 
2720 //----------FRAME--------------------------------------------------------------
2721 // Definition of frame structure and management information.
2722 //
2723 //  S T A C K   L A Y O U T    Allocators stack-slot number
2724 //                             |   (to get allocators register number
2725 //  G  Owned by    |        |  v    add OptoReg::stack0())
2726 //  r   CALLER     |        |
2727 //  o     |        +--------+      pad to even-align allocators stack-slot
2728 //  w     V        |  pad0  |        numbers; owned by CALLER
2729 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2730 //  h     ^        |   in   |  5
2731 //        |        |  args  |  4   Holes in incoming args owned by SELF
2732 //  |     |        |        |  3
2733 //  |     |        +--------+
2734 //  V     |        | old out|      Empty on Intel, window on Sparc
2735 //        |    old |preserve|      Must be even aligned.
2736 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
2737 //        |        |   in   |  3   area for Intel ret address
2738 //     Owned by    |preserve|      Empty on Sparc.
2739 //       SELF      +--------+
2740 //        |        |  pad2  |  2   pad to align old SP
2741 //        |        +--------+  1
2742 //        |        | locks  |  0
2743 //        |        +--------+----> OptoReg::stack0(), even aligned
2744 //        |        |  pad1  | 11   pad to align new SP
2745 //        |        +--------+
2746 //        |        |        | 10
2747 //        |        | spills |  9   spills
2748 //        V        |        |  8   (pad0 slot for callee)
2749 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2750 //        ^        |  out   |  7
2751 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2752 //     Owned by    +--------+
2753 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2754 //        |    new |preserve|      Must be even-aligned.
2755 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
2756 //        |        |        |
2757 //
2758 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2759 //         known from SELF's arguments and the Java calling convention.
2760 //         Region 6-7 is determined per call site.
2761 // Note 2: If the calling convention leaves holes in the incoming argument
2762 //         area, those holes are owned by SELF.  Holes in the outgoing area
2763 //         are owned by the CALLEE.  Holes should not be nessecary in the
2764 //         incoming area, as the Java calling convention is completely under
2765 //         the control of the AD file.  Doubles can be sorted and packed to
2766 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
2767 //         varargs C calling conventions.
2768 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
2769 //         even aligned with pad0 as needed.
2770 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
2771 //         region 6-11 is even aligned; it may be padded out more so that
2772 //         the region from SP to FP meets the minimum stack alignment.
2773 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
2774 //         alignment.  Region 11, pad1, may be dynamically extended so that
2775 //         SP meets the minimum alignment.
2776 
2777 frame
2778 %{
2779   // What direction does stack grow in (assumed to be same for C & Java)
2780   stack_direction(TOWARDS_LOW);
2781 
2782   // These three registers define part of the calling convention
2783   // between compiled code and the interpreter.
2784   inline_cache_reg(RAX);                // Inline Cache Register
2785   interpreter_method_oop_reg(RBX);      // Method Oop Register when
2786                                         // calling interpreter
2787 
2788   // Optional: name the operand used by cisc-spilling to access
2789   // [stack_pointer + offset]
2790   cisc_spilling_operand_name(indOffset32);
2791 
2792   // Number of stack slots consumed by locking an object
2793   sync_stack_slots(2);
2794 
2795   // Compiled code's Frame Pointer
2796   frame_pointer(RSP);
2797 
2798   // Interpreter stores its frame pointer in a register which is
2799   // stored to the stack by I2CAdaptors.
2800   // I2CAdaptors convert from interpreted java to compiled java.
2801   interpreter_frame_pointer(RBP);
2802 
2803   // Stack alignment requirement
2804   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
2805 
2806   // Number of stack slots between incoming argument block and the start of
2807   // a new frame.  The PROLOG must add this many slots to the stack.  The
2808   // EPILOG must remove this many slots.  amd64 needs two slots for
2809   // return address.
2810   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
2811 
2812   // Number of outgoing stack slots killed above the out_preserve_stack_slots
2813   // for calls to C.  Supports the var-args backing area for register parms.
2814   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
2815 
2816   // The after-PROLOG location of the return address.  Location of
2817   // return address specifies a type (REG or STACK) and a number
2818   // representing the register number (i.e. - use a register name) or
2819   // stack slot.
2820   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
2821   // Otherwise, it is above the locks and verification slot and alignment word
2822   return_addr(STACK - 2 +
2823               align_up((Compile::current()->in_preserve_stack_slots() +
2824                         Compile::current()->fixed_slots()),
2825                        stack_alignment_in_slots()));
2826 
2827   // Body of function which returns an integer array locating
2828   // arguments either in registers or in stack slots.  Passed an array
2829   // of ideal registers called "sig" and a "length" count.  Stack-slot
2830   // offsets are based on outgoing arguments, i.e. a CALLER setting up
2831   // arguments for a CALLEE.  Incoming stack arguments are
2832   // automatically biased by the preserve_stack_slots field above.
2833 
2834   calling_convention
2835   %{
2836     // No difference between ingoing/outgoing just pass false
2837     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
2838   %}
2839 
2840   c_calling_convention
2841   %{
2842     // This is obviously always outgoing
2843     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
2844   %}
2845 
2846   // Location of compiled Java return values.  Same as C for now.
2847   return_value
2848   %{
2849     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
2850            "only return normal values");
2851 
2852     static const int lo[Op_RegL + 1] = {
2853       0,
2854       0,
2855       RAX_num,  // Op_RegN
2856       RAX_num,  // Op_RegI
2857       RAX_num,  // Op_RegP
2858       XMM0_num, // Op_RegF
2859       XMM0_num, // Op_RegD
2860       RAX_num   // Op_RegL
2861     };
2862     static const int hi[Op_RegL + 1] = {
2863       0,
2864       0,
2865       OptoReg::Bad, // Op_RegN
2866       OptoReg::Bad, // Op_RegI
2867       RAX_H_num,    // Op_RegP
2868       OptoReg::Bad, // Op_RegF
2869       XMM0b_num,    // Op_RegD
2870       RAX_H_num     // Op_RegL
2871     };
2872     // Excluded flags and vector registers.
2873     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 6, "missing type");
2874     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
2875   %}
2876 %}
2877 
2878 //----------ATTRIBUTES---------------------------------------------------------
2879 //----------Operand Attributes-------------------------------------------------
2880 op_attrib op_cost(0);        // Required cost attribute
2881 
2882 //----------Instruction Attributes---------------------------------------------
2883 ins_attrib ins_cost(100);       // Required cost attribute
2884 ins_attrib ins_size(8);         // Required size attribute (in bits)
2885 ins_attrib ins_short_branch(0); // Required flag: is this instruction
2886                                 // a non-matching short branch variant
2887                                 // of some long branch?
2888 ins_attrib ins_alignment(1);    // Required alignment attribute (must
2889                                 // be a power of 2) specifies the
2890                                 // alignment that some part of the
2891                                 // instruction (not necessarily the
2892                                 // start) requires.  If > 1, a
2893                                 // compute_padding() function must be
2894                                 // provided for the instruction
2895 
2896 //----------OPERANDS-----------------------------------------------------------
2897 // Operand definitions must precede instruction definitions for correct parsing
2898 // in the ADLC because operands constitute user defined types which are used in
2899 // instruction definitions.
2900 
2901 //----------Simple Operands----------------------------------------------------
2902 // Immediate Operands
2903 // Integer Immediate
2904 operand immI()
2905 %{
2906   match(ConI);
2907 
2908   op_cost(10);
2909   format %{ %}
2910   interface(CONST_INTER);
2911 %}
2912 
2913 // Constant for test vs zero
2914 operand immI0()
2915 %{
2916   predicate(n->get_int() == 0);
2917   match(ConI);
2918 
2919   op_cost(0);
2920   format %{ %}
2921   interface(CONST_INTER);
2922 %}
2923 
2924 // Constant for increment
2925 operand immI1()
2926 %{
2927   predicate(n->get_int() == 1);
2928   match(ConI);
2929 
2930   op_cost(0);
2931   format %{ %}
2932   interface(CONST_INTER);
2933 %}
2934 
2935 // Constant for decrement
2936 operand immI_M1()
2937 %{
2938   predicate(n->get_int() == -1);
2939   match(ConI);
2940 
2941   op_cost(0);
2942   format %{ %}
2943   interface(CONST_INTER);
2944 %}
2945 
2946 // Valid scale values for addressing modes
2947 operand immI2()
2948 %{
2949   predicate(0 <= n->get_int() && (n->get_int() <= 3));
2950   match(ConI);
2951 
2952   format %{ %}
2953   interface(CONST_INTER);
2954 %}
2955 
2956 operand immI8()
2957 %{
2958   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
2959   match(ConI);
2960 
2961   op_cost(5);
2962   format %{ %}
2963   interface(CONST_INTER);
2964 %}
2965 
2966 operand immU8()
2967 %{
2968   predicate((0 <= n->get_int()) && (n->get_int() <= 255));
2969   match(ConI);
2970 
2971   op_cost(5);
2972   format %{ %}
2973   interface(CONST_INTER);
2974 %}
2975 
2976 operand immI16()
2977 %{
2978   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
2979   match(ConI);
2980 
2981   op_cost(10);
2982   format %{ %}
2983   interface(CONST_INTER);
2984 %}
2985 
2986 // Int Immediate non-negative
2987 operand immU31()
2988 %{
2989   predicate(n->get_int() >= 0);
2990   match(ConI);
2991 
2992   op_cost(0);
2993   format %{ %}
2994   interface(CONST_INTER);
2995 %}
2996 
2997 // Constant for long shifts
2998 operand immI_32()
2999 %{
3000   predicate( n->get_int() == 32 );
3001   match(ConI);
3002 
3003   op_cost(0);
3004   format %{ %}
3005   interface(CONST_INTER);
3006 %}
3007 
3008 // Constant for long shifts
3009 operand immI_64()
3010 %{
3011   predicate( n->get_int() == 64 );
3012   match(ConI);
3013 
3014   op_cost(0);
3015   format %{ %}
3016   interface(CONST_INTER);
3017 %}
3018 
3019 // Pointer Immediate
3020 operand immP()
3021 %{
3022   match(ConP);
3023 
3024   op_cost(10);
3025   format %{ %}
3026   interface(CONST_INTER);
3027 %}
3028 
3029 // NULL Pointer Immediate
3030 operand immP0()
3031 %{
3032   predicate(n->get_ptr() == 0);
3033   match(ConP);
3034 
3035   op_cost(5);
3036   format %{ %}
3037   interface(CONST_INTER);
3038 %}
3039 
3040 // Pointer Immediate
3041 operand immN() %{
3042   match(ConN);
3043 
3044   op_cost(10);
3045   format %{ %}
3046   interface(CONST_INTER);
3047 %}
3048 
3049 operand immNKlass() %{
3050   match(ConNKlass);
3051 
3052   op_cost(10);
3053   format %{ %}
3054   interface(CONST_INTER);
3055 %}
3056 
3057 // NULL Pointer Immediate
3058 operand immN0() %{
3059   predicate(n->get_narrowcon() == 0);
3060   match(ConN);
3061 
3062   op_cost(5);
3063   format %{ %}
3064   interface(CONST_INTER);
3065 %}
3066 
3067 operand immP31()
3068 %{
3069   predicate(n->as_Type()->type()->reloc() == relocInfo::none
3070             && (n->get_ptr() >> 31) == 0);
3071   match(ConP);
3072 
3073   op_cost(5);
3074   format %{ %}
3075   interface(CONST_INTER);
3076 %}
3077 
3078 
3079 // Long Immediate
3080 operand immL()
3081 %{
3082   match(ConL);
3083 
3084   op_cost(20);
3085   format %{ %}
3086   interface(CONST_INTER);
3087 %}
3088 
3089 // Long Immediate 8-bit
3090 operand immL8()
3091 %{
3092   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
3093   match(ConL);
3094 
3095   op_cost(5);
3096   format %{ %}
3097   interface(CONST_INTER);
3098 %}
3099 
3100 // Long Immediate 32-bit unsigned
3101 operand immUL32()
3102 %{
3103   predicate(n->get_long() == (unsigned int) (n->get_long()));
3104   match(ConL);
3105 
3106   op_cost(10);
3107   format %{ %}
3108   interface(CONST_INTER);
3109 %}
3110 
3111 // Long Immediate 32-bit signed
3112 operand immL32()
3113 %{
3114   predicate(n->get_long() == (int) (n->get_long()));
3115   match(ConL);
3116 
3117   op_cost(15);
3118   format %{ %}
3119   interface(CONST_INTER);
3120 %}
3121 
3122 operand immL_Pow2()
3123 %{
3124   predicate(is_power_of_2_long(n->get_long()));
3125   match(ConL);
3126 
3127   op_cost(15);
3128   format %{ %}
3129   interface(CONST_INTER);
3130 %}
3131 
3132 operand immL_NotPow2()
3133 %{
3134   predicate(is_power_of_2_long(~n->get_long()));
3135   match(ConL);
3136 
3137   op_cost(15);
3138   format %{ %}
3139   interface(CONST_INTER);
3140 %}
3141 
3142 // Long Immediate zero
3143 operand immL0()
3144 %{
3145   predicate(n->get_long() == 0L);
3146   match(ConL);
3147 
3148   op_cost(10);
3149   format %{ %}
3150   interface(CONST_INTER);
3151 %}
3152 
3153 // Constant for increment
3154 operand immL1()
3155 %{
3156   predicate(n->get_long() == 1);
3157   match(ConL);
3158 
3159   format %{ %}
3160   interface(CONST_INTER);
3161 %}
3162 
3163 // Constant for decrement
3164 operand immL_M1()
3165 %{
3166   predicate(n->get_long() == -1);
3167   match(ConL);
3168 
3169   format %{ %}
3170   interface(CONST_INTER);
3171 %}
3172 
3173 // Long Immediate: the value 10
3174 operand immL10()
3175 %{
3176   predicate(n->get_long() == 10);
3177   match(ConL);
3178 
3179   format %{ %}
3180   interface(CONST_INTER);
3181 %}
3182 
3183 // Long immediate from 0 to 127.
3184 // Used for a shorter form of long mul by 10.
3185 operand immL_127()
3186 %{
3187   predicate(0 <= n->get_long() && n->get_long() < 0x80);
3188   match(ConL);
3189 
3190   op_cost(10);
3191   format %{ %}
3192   interface(CONST_INTER);
3193 %}
3194 
3195 // Long Immediate: low 32-bit mask
3196 operand immL_32bits()
3197 %{
3198   predicate(n->get_long() == 0xFFFFFFFFL);
3199   match(ConL);
3200   op_cost(20);
3201 
3202   format %{ %}
3203   interface(CONST_INTER);
3204 %}
3205 
3206 // Float Immediate zero
3207 operand immF0()
3208 %{
3209   predicate(jint_cast(n->getf()) == 0);
3210   match(ConF);
3211 
3212   op_cost(5);
3213   format %{ %}
3214   interface(CONST_INTER);
3215 %}
3216 
3217 // Float Immediate
3218 operand immF()
3219 %{
3220   match(ConF);
3221 
3222   op_cost(15);
3223   format %{ %}
3224   interface(CONST_INTER);
3225 %}
3226 
3227 // Double Immediate zero
3228 operand immD0()
3229 %{
3230   predicate(jlong_cast(n->getd()) == 0);
3231   match(ConD);
3232 
3233   op_cost(5);
3234   format %{ %}
3235   interface(CONST_INTER);
3236 %}
3237 
3238 // Double Immediate
3239 operand immD()
3240 %{
3241   match(ConD);
3242 
3243   op_cost(15);
3244   format %{ %}
3245   interface(CONST_INTER);
3246 %}
3247 
3248 // Immediates for special shifts (sign extend)
3249 
3250 // Constants for increment
3251 operand immI_16()
3252 %{
3253   predicate(n->get_int() == 16);
3254   match(ConI);
3255 
3256   format %{ %}
3257   interface(CONST_INTER);
3258 %}
3259 
3260 operand immI_24()
3261 %{
3262   predicate(n->get_int() == 24);
3263   match(ConI);
3264 
3265   format %{ %}
3266   interface(CONST_INTER);
3267 %}
3268 
3269 // Constant for byte-wide masking
3270 operand immI_255()
3271 %{
3272   predicate(n->get_int() == 255);
3273   match(ConI);
3274 
3275   format %{ %}
3276   interface(CONST_INTER);
3277 %}
3278 
3279 // Constant for short-wide masking
3280 operand immI_65535()
3281 %{
3282   predicate(n->get_int() == 65535);
3283   match(ConI);
3284 
3285   format %{ %}
3286   interface(CONST_INTER);
3287 %}
3288 
3289 // Constant for byte-wide masking
3290 operand immL_255()
3291 %{
3292   predicate(n->get_long() == 255);
3293   match(ConL);
3294 
3295   format %{ %}
3296   interface(CONST_INTER);
3297 %}
3298 
3299 // Constant for short-wide masking
3300 operand immL_65535()
3301 %{
3302   predicate(n->get_long() == 65535);
3303   match(ConL);
3304 
3305   format %{ %}
3306   interface(CONST_INTER);
3307 %}
3308 
3309 // Register Operands
3310 // Integer Register
3311 operand rRegI()
3312 %{
3313   constraint(ALLOC_IN_RC(int_reg));
3314   match(RegI);
3315 
3316   match(rax_RegI);
3317   match(rbx_RegI);
3318   match(rcx_RegI);
3319   match(rdx_RegI);
3320   match(rdi_RegI);
3321 
3322   format %{ %}
3323   interface(REG_INTER);
3324 %}
3325 
3326 // Special Registers
3327 operand rax_RegI()
3328 %{
3329   constraint(ALLOC_IN_RC(int_rax_reg));
3330   match(RegI);
3331   match(rRegI);
3332 
3333   format %{ "RAX" %}
3334   interface(REG_INTER);
3335 %}
3336 
3337 // Special Registers
3338 operand rbx_RegI()
3339 %{
3340   constraint(ALLOC_IN_RC(int_rbx_reg));
3341   match(RegI);
3342   match(rRegI);
3343 
3344   format %{ "RBX" %}
3345   interface(REG_INTER);
3346 %}
3347 
3348 operand rcx_RegI()
3349 %{
3350   constraint(ALLOC_IN_RC(int_rcx_reg));
3351   match(RegI);
3352   match(rRegI);
3353 
3354   format %{ "RCX" %}
3355   interface(REG_INTER);
3356 %}
3357 
3358 operand rdx_RegI()
3359 %{
3360   constraint(ALLOC_IN_RC(int_rdx_reg));
3361   match(RegI);
3362   match(rRegI);
3363 
3364   format %{ "RDX" %}
3365   interface(REG_INTER);
3366 %}
3367 
3368 operand rdi_RegI()
3369 %{
3370   constraint(ALLOC_IN_RC(int_rdi_reg));
3371   match(RegI);
3372   match(rRegI);
3373 
3374   format %{ "RDI" %}
3375   interface(REG_INTER);
3376 %}
3377 
3378 operand no_rcx_RegI()
3379 %{
3380   constraint(ALLOC_IN_RC(int_no_rcx_reg));
3381   match(RegI);
3382   match(rax_RegI);
3383   match(rbx_RegI);
3384   match(rdx_RegI);
3385   match(rdi_RegI);
3386 
3387   format %{ %}
3388   interface(REG_INTER);
3389 %}
3390 
3391 operand no_rax_rdx_RegI()
3392 %{
3393   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
3394   match(RegI);
3395   match(rbx_RegI);
3396   match(rcx_RegI);
3397   match(rdi_RegI);
3398 
3399   format %{ %}
3400   interface(REG_INTER);
3401 %}
3402 
3403 // Pointer Register
3404 operand any_RegP()
3405 %{
3406   constraint(ALLOC_IN_RC(any_reg));
3407   match(RegP);
3408   match(rax_RegP);
3409   match(rbx_RegP);
3410   match(rdi_RegP);
3411   match(rsi_RegP);
3412   match(rbp_RegP);
3413   match(r15_RegP);
3414   match(rRegP);
3415 
3416   format %{ %}
3417   interface(REG_INTER);
3418 %}
3419 
3420 operand rRegP()
3421 %{
3422   constraint(ALLOC_IN_RC(ptr_reg));
3423   match(RegP);
3424   match(rax_RegP);
3425   match(rbx_RegP);
3426   match(rdi_RegP);
3427   match(rsi_RegP);
3428   match(rbp_RegP);  // See Q&A below about
3429   match(r15_RegP);  // r15_RegP and rbp_RegP.
3430 
3431   format %{ %}
3432   interface(REG_INTER);
3433 %}
3434 
3435 operand rRegN() %{
3436   constraint(ALLOC_IN_RC(int_reg));
3437   match(RegN);
3438 
3439   format %{ %}
3440   interface(REG_INTER);
3441 %}
3442 
3443 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
3444 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
3445 // It's fine for an instruction input that expects rRegP to match a r15_RegP.
3446 // The output of an instruction is controlled by the allocator, which respects
3447 // register class masks, not match rules.  Unless an instruction mentions
3448 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
3449 // by the allocator as an input.
3450 // The same logic applies to rbp_RegP being a match for rRegP: If PreserveFramePointer==true,
3451 // the RBP is used as a proper frame pointer and is not included in ptr_reg. As a
3452 // result, RBP is not included in the output of the instruction either.
3453 
3454 operand no_rax_RegP()
3455 %{
3456   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
3457   match(RegP);
3458   match(rbx_RegP);
3459   match(rsi_RegP);
3460   match(rdi_RegP);
3461 
3462   format %{ %}
3463   interface(REG_INTER);
3464 %}
3465 
3466 // This operand is not allowed to use RBP even if
3467 // RBP is not used to hold the frame pointer.
3468 operand no_rbp_RegP()
3469 %{
3470   constraint(ALLOC_IN_RC(ptr_reg_no_rbp));
3471   match(RegP);
3472   match(rbx_RegP);
3473   match(rsi_RegP);
3474   match(rdi_RegP);
3475 
3476   format %{ %}
3477   interface(REG_INTER);
3478 %}
3479 
3480 operand no_rax_rbx_RegP()
3481 %{
3482   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
3483   match(RegP);
3484   match(rsi_RegP);
3485   match(rdi_RegP);
3486 
3487   format %{ %}
3488   interface(REG_INTER);
3489 %}
3490 
3491 // Special Registers
3492 // Return a pointer value
3493 operand rax_RegP()
3494 %{
3495   constraint(ALLOC_IN_RC(ptr_rax_reg));
3496   match(RegP);
3497   match(rRegP);
3498 
3499   format %{ %}
3500   interface(REG_INTER);
3501 %}
3502 
3503 // Special Registers
3504 // Return a compressed pointer value
3505 operand rax_RegN()
3506 %{
3507   constraint(ALLOC_IN_RC(int_rax_reg));
3508   match(RegN);
3509   match(rRegN);
3510 
3511   format %{ %}
3512   interface(REG_INTER);
3513 %}
3514 
3515 // Used in AtomicAdd
3516 operand rbx_RegP()
3517 %{
3518   constraint(ALLOC_IN_RC(ptr_rbx_reg));
3519   match(RegP);
3520   match(rRegP);
3521 
3522   format %{ %}
3523   interface(REG_INTER);
3524 %}
3525 
3526 operand rsi_RegP()
3527 %{
3528   constraint(ALLOC_IN_RC(ptr_rsi_reg));
3529   match(RegP);
3530   match(rRegP);
3531 
3532   format %{ %}
3533   interface(REG_INTER);
3534 %}
3535 
3536 operand rbp_RegP()
3537 %{
3538   constraint(ALLOC_IN_RC(ptr_rbp_reg));
3539   match(RegP);
3540   match(rRegP);
3541 
3542   format %{ %}
3543   interface(REG_INTER);
3544 %}
3545 
3546 // Used in rep stosq
3547 operand rdi_RegP()
3548 %{
3549   constraint(ALLOC_IN_RC(ptr_rdi_reg));
3550   match(RegP);
3551   match(rRegP);
3552 
3553   format %{ %}
3554   interface(REG_INTER);
3555 %}
3556 
3557 operand r15_RegP()
3558 %{
3559   constraint(ALLOC_IN_RC(ptr_r15_reg));
3560   match(RegP);
3561   match(rRegP);
3562 
3563   format %{ %}
3564   interface(REG_INTER);
3565 %}
3566 
3567 operand rRegL()
3568 %{
3569   constraint(ALLOC_IN_RC(long_reg));
3570   match(RegL);
3571   match(rax_RegL);
3572   match(rdx_RegL);
3573 
3574   format %{ %}
3575   interface(REG_INTER);
3576 %}
3577 
3578 // Special Registers
3579 operand no_rax_rdx_RegL()
3580 %{
3581   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3582   match(RegL);
3583   match(rRegL);
3584 
3585   format %{ %}
3586   interface(REG_INTER);
3587 %}
3588 
3589 operand no_rax_RegL()
3590 %{
3591   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3592   match(RegL);
3593   match(rRegL);
3594   match(rdx_RegL);
3595 
3596   format %{ %}
3597   interface(REG_INTER);
3598 %}
3599 
3600 operand no_rcx_RegL()
3601 %{
3602   constraint(ALLOC_IN_RC(long_no_rcx_reg));
3603   match(RegL);
3604   match(rRegL);
3605 
3606   format %{ %}
3607   interface(REG_INTER);
3608 %}
3609 
3610 operand rax_RegL()
3611 %{
3612   constraint(ALLOC_IN_RC(long_rax_reg));
3613   match(RegL);
3614   match(rRegL);
3615 
3616   format %{ "RAX" %}
3617   interface(REG_INTER);
3618 %}
3619 
3620 operand rcx_RegL()
3621 %{
3622   constraint(ALLOC_IN_RC(long_rcx_reg));
3623   match(RegL);
3624   match(rRegL);
3625 
3626   format %{ %}
3627   interface(REG_INTER);
3628 %}
3629 
3630 operand rdx_RegL()
3631 %{
3632   constraint(ALLOC_IN_RC(long_rdx_reg));
3633   match(RegL);
3634   match(rRegL);
3635 
3636   format %{ %}
3637   interface(REG_INTER);
3638 %}
3639 
3640 // Flags register, used as output of compare instructions
3641 operand rFlagsReg()
3642 %{
3643   constraint(ALLOC_IN_RC(int_flags));
3644   match(RegFlags);
3645 
3646   format %{ "RFLAGS" %}
3647   interface(REG_INTER);
3648 %}
3649 
3650 // Flags register, used as output of FLOATING POINT compare instructions
3651 operand rFlagsRegU()
3652 %{
3653   constraint(ALLOC_IN_RC(int_flags));
3654   match(RegFlags);
3655 
3656   format %{ "RFLAGS_U" %}
3657   interface(REG_INTER);
3658 %}
3659 
3660 operand rFlagsRegUCF() %{
3661   constraint(ALLOC_IN_RC(int_flags));
3662   match(RegFlags);
3663   predicate(false);
3664 
3665   format %{ "RFLAGS_U_CF" %}
3666   interface(REG_INTER);
3667 %}
3668 
3669 // Float register operands
3670 operand regF() %{
3671    constraint(ALLOC_IN_RC(float_reg));
3672    match(RegF);
3673 
3674    format %{ %}
3675    interface(REG_INTER);
3676 %}
3677 
3678 // Float register operands
3679 operand legRegF() %{
3680    constraint(ALLOC_IN_RC(float_reg_legacy));
3681    match(RegF);
3682 
3683    format %{ %}
3684    interface(REG_INTER);
3685 %}
3686 
3687 // Float register operands
3688 operand vlRegF() %{
3689    constraint(ALLOC_IN_RC(float_reg_vl));
3690    match(RegF);
3691 
3692    format %{ %}
3693    interface(REG_INTER);
3694 %}
3695 
3696 // Double register operands
3697 operand regD() %{
3698    constraint(ALLOC_IN_RC(double_reg));
3699    match(RegD);
3700 
3701    format %{ %}
3702    interface(REG_INTER);
3703 %}
3704 
3705 // Double register operands
3706 operand legRegD() %{
3707    constraint(ALLOC_IN_RC(double_reg_legacy));
3708    match(RegD);
3709 
3710    format %{ %}
3711    interface(REG_INTER);
3712 %}
3713 
3714 // Double register operands
3715 operand vlRegD() %{
3716    constraint(ALLOC_IN_RC(double_reg_vl));
3717    match(RegD);
3718 
3719    format %{ %}
3720    interface(REG_INTER);
3721 %}
3722 
3723 //----------Memory Operands----------------------------------------------------
3724 // Direct Memory Operand
3725 // operand direct(immP addr)
3726 // %{
3727 //   match(addr);
3728 
3729 //   format %{ "[$addr]" %}
3730 //   interface(MEMORY_INTER) %{
3731 //     base(0xFFFFFFFF);
3732 //     index(0x4);
3733 //     scale(0x0);
3734 //     disp($addr);
3735 //   %}
3736 // %}
3737 
3738 // Indirect Memory Operand
3739 operand indirect(any_RegP reg)
3740 %{
3741   constraint(ALLOC_IN_RC(ptr_reg));
3742   match(reg);
3743 
3744   format %{ "[$reg]" %}
3745   interface(MEMORY_INTER) %{
3746     base($reg);
3747     index(0x4);
3748     scale(0x0);
3749     disp(0x0);
3750   %}
3751 %}
3752 
3753 // Indirect Memory Plus Short Offset Operand
3754 operand indOffset8(any_RegP reg, immL8 off)
3755 %{
3756   constraint(ALLOC_IN_RC(ptr_reg));
3757   match(AddP reg off);
3758 
3759   format %{ "[$reg + $off (8-bit)]" %}
3760   interface(MEMORY_INTER) %{
3761     base($reg);
3762     index(0x4);
3763     scale(0x0);
3764     disp($off);
3765   %}
3766 %}
3767 
3768 // Indirect Memory Plus Long Offset Operand
3769 operand indOffset32(any_RegP reg, immL32 off)
3770 %{
3771   constraint(ALLOC_IN_RC(ptr_reg));
3772   match(AddP reg off);
3773 
3774   format %{ "[$reg + $off (32-bit)]" %}
3775   interface(MEMORY_INTER) %{
3776     base($reg);
3777     index(0x4);
3778     scale(0x0);
3779     disp($off);
3780   %}
3781 %}
3782 
3783 // Indirect Memory Plus Index Register Plus Offset Operand
3784 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
3785 %{
3786   constraint(ALLOC_IN_RC(ptr_reg));
3787   match(AddP (AddP reg lreg) off);
3788 
3789   op_cost(10);
3790   format %{"[$reg + $off + $lreg]" %}
3791   interface(MEMORY_INTER) %{
3792     base($reg);
3793     index($lreg);
3794     scale(0x0);
3795     disp($off);
3796   %}
3797 %}
3798 
3799 // Indirect Memory Plus Index Register Plus Offset Operand
3800 operand indIndex(any_RegP reg, rRegL lreg)
3801 %{
3802   constraint(ALLOC_IN_RC(ptr_reg));
3803   match(AddP reg lreg);
3804 
3805   op_cost(10);
3806   format %{"[$reg + $lreg]" %}
3807   interface(MEMORY_INTER) %{
3808     base($reg);
3809     index($lreg);
3810     scale(0x0);
3811     disp(0x0);
3812   %}
3813 %}
3814 
3815 // Indirect Memory Times Scale Plus Index Register
3816 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
3817 %{
3818   constraint(ALLOC_IN_RC(ptr_reg));
3819   match(AddP reg (LShiftL lreg scale));
3820 
3821   op_cost(10);
3822   format %{"[$reg + $lreg << $scale]" %}
3823   interface(MEMORY_INTER) %{
3824     base($reg);
3825     index($lreg);
3826     scale($scale);
3827     disp(0x0);
3828   %}
3829 %}
3830 
3831 operand indPosIndexScale(any_RegP reg, rRegI idx, immI2 scale)
3832 %{
3833   constraint(ALLOC_IN_RC(ptr_reg));
3834   predicate(n->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3835   match(AddP reg (LShiftL (ConvI2L idx) scale));
3836 
3837   op_cost(10);
3838   format %{"[$reg + pos $idx << $scale]" %}
3839   interface(MEMORY_INTER) %{
3840     base($reg);
3841     index($idx);
3842     scale($scale);
3843     disp(0x0);
3844   %}
3845 %}
3846 
3847 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3848 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
3849 %{
3850   constraint(ALLOC_IN_RC(ptr_reg));
3851   match(AddP (AddP reg (LShiftL lreg scale)) off);
3852 
3853   op_cost(10);
3854   format %{"[$reg + $off + $lreg << $scale]" %}
3855   interface(MEMORY_INTER) %{
3856     base($reg);
3857     index($lreg);
3858     scale($scale);
3859     disp($off);
3860   %}
3861 %}
3862 
3863 // Indirect Memory Plus Positive Index Register Plus Offset Operand
3864 operand indPosIndexOffset(any_RegP reg, immL32 off, rRegI idx)
3865 %{
3866   constraint(ALLOC_IN_RC(ptr_reg));
3867   predicate(n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
3868   match(AddP (AddP reg (ConvI2L idx)) off);
3869 
3870   op_cost(10);
3871   format %{"[$reg + $off + $idx]" %}
3872   interface(MEMORY_INTER) %{
3873     base($reg);
3874     index($idx);
3875     scale(0x0);
3876     disp($off);
3877   %}
3878 %}
3879 
3880 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
3881 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
3882 %{
3883   constraint(ALLOC_IN_RC(ptr_reg));
3884   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3885   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
3886 
3887   op_cost(10);
3888   format %{"[$reg + $off + $idx << $scale]" %}
3889   interface(MEMORY_INTER) %{
3890     base($reg);
3891     index($idx);
3892     scale($scale);
3893     disp($off);
3894   %}
3895 %}
3896 
3897 // Indirect Narrow Oop Plus Offset Operand
3898 // Note: x86 architecture doesn't support "scale * index + offset" without a base
3899 // we can't free r12 even with CompressedOops::base() == NULL.
3900 operand indCompressedOopOffset(rRegN reg, immL32 off) %{
3901   predicate(UseCompressedOops && (CompressedOops::shift() == Address::times_8));
3902   constraint(ALLOC_IN_RC(ptr_reg));
3903   match(AddP (DecodeN reg) off);
3904 
3905   op_cost(10);
3906   format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
3907   interface(MEMORY_INTER) %{
3908     base(0xc); // R12
3909     index($reg);
3910     scale(0x3);
3911     disp($off);
3912   %}
3913 %}
3914 
3915 // Indirect Memory Operand
3916 operand indirectNarrow(rRegN reg)
3917 %{
3918   predicate(CompressedOops::shift() == 0);
3919   constraint(ALLOC_IN_RC(ptr_reg));
3920   match(DecodeN reg);
3921 
3922   format %{ "[$reg]" %}
3923   interface(MEMORY_INTER) %{
3924     base($reg);
3925     index(0x4);
3926     scale(0x0);
3927     disp(0x0);
3928   %}
3929 %}
3930 
3931 // Indirect Memory Plus Short Offset Operand
3932 operand indOffset8Narrow(rRegN reg, immL8 off)
3933 %{
3934   predicate(CompressedOops::shift() == 0);
3935   constraint(ALLOC_IN_RC(ptr_reg));
3936   match(AddP (DecodeN reg) off);
3937 
3938   format %{ "[$reg + $off (8-bit)]" %}
3939   interface(MEMORY_INTER) %{
3940     base($reg);
3941     index(0x4);
3942     scale(0x0);
3943     disp($off);
3944   %}
3945 %}
3946 
3947 // Indirect Memory Plus Long Offset Operand
3948 operand indOffset32Narrow(rRegN reg, immL32 off)
3949 %{
3950   predicate(CompressedOops::shift() == 0);
3951   constraint(ALLOC_IN_RC(ptr_reg));
3952   match(AddP (DecodeN reg) off);
3953 
3954   format %{ "[$reg + $off (32-bit)]" %}
3955   interface(MEMORY_INTER) %{
3956     base($reg);
3957     index(0x4);
3958     scale(0x0);
3959     disp($off);
3960   %}
3961 %}
3962 
3963 // Indirect Memory Plus Index Register Plus Offset Operand
3964 operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
3965 %{
3966   predicate(CompressedOops::shift() == 0);
3967   constraint(ALLOC_IN_RC(ptr_reg));
3968   match(AddP (AddP (DecodeN reg) lreg) off);
3969 
3970   op_cost(10);
3971   format %{"[$reg + $off + $lreg]" %}
3972   interface(MEMORY_INTER) %{
3973     base($reg);
3974     index($lreg);
3975     scale(0x0);
3976     disp($off);
3977   %}
3978 %}
3979 
3980 // Indirect Memory Plus Index Register Plus Offset Operand
3981 operand indIndexNarrow(rRegN reg, rRegL lreg)
3982 %{
3983   predicate(CompressedOops::shift() == 0);
3984   constraint(ALLOC_IN_RC(ptr_reg));
3985   match(AddP (DecodeN reg) lreg);
3986 
3987   op_cost(10);
3988   format %{"[$reg + $lreg]" %}
3989   interface(MEMORY_INTER) %{
3990     base($reg);
3991     index($lreg);
3992     scale(0x0);
3993     disp(0x0);
3994   %}
3995 %}
3996 
3997 // Indirect Memory Times Scale Plus Index Register
3998 operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
3999 %{
4000   predicate(CompressedOops::shift() == 0);
4001   constraint(ALLOC_IN_RC(ptr_reg));
4002   match(AddP (DecodeN reg) (LShiftL lreg scale));
4003 
4004   op_cost(10);
4005   format %{"[$reg + $lreg << $scale]" %}
4006   interface(MEMORY_INTER) %{
4007     base($reg);
4008     index($lreg);
4009     scale($scale);
4010     disp(0x0);
4011   %}
4012 %}
4013 
4014 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4015 operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
4016 %{
4017   predicate(CompressedOops::shift() == 0);
4018   constraint(ALLOC_IN_RC(ptr_reg));
4019   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
4020 
4021   op_cost(10);
4022   format %{"[$reg + $off + $lreg << $scale]" %}
4023   interface(MEMORY_INTER) %{
4024     base($reg);
4025     index($lreg);
4026     scale($scale);
4027     disp($off);
4028   %}
4029 %}
4030 
4031 // Indirect Memory Times Plus Positive Index Register Plus Offset Operand
4032 operand indPosIndexOffsetNarrow(rRegN reg, immL32 off, rRegI idx)
4033 %{
4034   constraint(ALLOC_IN_RC(ptr_reg));
4035   predicate(CompressedOops::shift() == 0 && n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
4036   match(AddP (AddP (DecodeN reg) (ConvI2L idx)) off);
4037 
4038   op_cost(10);
4039   format %{"[$reg + $off + $idx]" %}
4040   interface(MEMORY_INTER) %{
4041     base($reg);
4042     index($idx);
4043     scale(0x0);
4044     disp($off);
4045   %}
4046 %}
4047 
4048 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
4049 operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
4050 %{
4051   constraint(ALLOC_IN_RC(ptr_reg));
4052   predicate(CompressedOops::shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
4053   match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
4054 
4055   op_cost(10);
4056   format %{"[$reg + $off + $idx << $scale]" %}
4057   interface(MEMORY_INTER) %{
4058     base($reg);
4059     index($idx);
4060     scale($scale);
4061     disp($off);
4062   %}
4063 %}
4064 
4065 //----------Special Memory Operands--------------------------------------------
4066 // Stack Slot Operand - This operand is used for loading and storing temporary
4067 //                      values on the stack where a match requires a value to
4068 //                      flow through memory.
4069 operand stackSlotP(sRegP reg)
4070 %{
4071   constraint(ALLOC_IN_RC(stack_slots));
4072   // No match rule because this operand is only generated in matching
4073 
4074   format %{ "[$reg]" %}
4075   interface(MEMORY_INTER) %{
4076     base(0x4);   // RSP
4077     index(0x4);  // No Index
4078     scale(0x0);  // No Scale
4079     disp($reg);  // Stack Offset
4080   %}
4081 %}
4082 
4083 operand stackSlotI(sRegI reg)
4084 %{
4085   constraint(ALLOC_IN_RC(stack_slots));
4086   // No match rule because this operand is only generated in matching
4087 
4088   format %{ "[$reg]" %}
4089   interface(MEMORY_INTER) %{
4090     base(0x4);   // RSP
4091     index(0x4);  // No Index
4092     scale(0x0);  // No Scale
4093     disp($reg);  // Stack Offset
4094   %}
4095 %}
4096 
4097 operand stackSlotF(sRegF reg)
4098 %{
4099   constraint(ALLOC_IN_RC(stack_slots));
4100   // No match rule because this operand is only generated in matching
4101 
4102   format %{ "[$reg]" %}
4103   interface(MEMORY_INTER) %{
4104     base(0x4);   // RSP
4105     index(0x4);  // No Index
4106     scale(0x0);  // No Scale
4107     disp($reg);  // Stack Offset
4108   %}
4109 %}
4110 
4111 operand stackSlotD(sRegD reg)
4112 %{
4113   constraint(ALLOC_IN_RC(stack_slots));
4114   // No match rule because this operand is only generated in matching
4115 
4116   format %{ "[$reg]" %}
4117   interface(MEMORY_INTER) %{
4118     base(0x4);   // RSP
4119     index(0x4);  // No Index
4120     scale(0x0);  // No Scale
4121     disp($reg);  // Stack Offset
4122   %}
4123 %}
4124 operand stackSlotL(sRegL reg)
4125 %{
4126   constraint(ALLOC_IN_RC(stack_slots));
4127   // No match rule because this operand is only generated in matching
4128 
4129   format %{ "[$reg]" %}
4130   interface(MEMORY_INTER) %{
4131     base(0x4);   // RSP
4132     index(0x4);  // No Index
4133     scale(0x0);  // No Scale
4134     disp($reg);  // Stack Offset
4135   %}
4136 %}
4137 
4138 //----------Conditional Branch Operands----------------------------------------
4139 // Comparison Op  - This is the operation of the comparison, and is limited to
4140 //                  the following set of codes:
4141 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4142 //
4143 // Other attributes of the comparison, such as unsignedness, are specified
4144 // by the comparison instruction that sets a condition code flags register.
4145 // That result is represented by a flags operand whose subtype is appropriate
4146 // to the unsignedness (etc.) of the comparison.
4147 //
4148 // Later, the instruction which matches both the Comparison Op (a Bool) and
4149 // the flags (produced by the Cmp) specifies the coding of the comparison op
4150 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4151 
4152 // Comparision Code
4153 operand cmpOp()
4154 %{
4155   match(Bool);
4156 
4157   format %{ "" %}
4158   interface(COND_INTER) %{
4159     equal(0x4, "e");
4160     not_equal(0x5, "ne");
4161     less(0xC, "l");
4162     greater_equal(0xD, "ge");
4163     less_equal(0xE, "le");
4164     greater(0xF, "g");
4165     overflow(0x0, "o");
4166     no_overflow(0x1, "no");
4167   %}
4168 %}
4169 
4170 // Comparison Code, unsigned compare.  Used by FP also, with
4171 // C2 (unordered) turned into GT or LT already.  The other bits
4172 // C0 and C3 are turned into Carry & Zero flags.
4173 operand cmpOpU()
4174 %{
4175   match(Bool);
4176 
4177   format %{ "" %}
4178   interface(COND_INTER) %{
4179     equal(0x4, "e");
4180     not_equal(0x5, "ne");
4181     less(0x2, "b");
4182     greater_equal(0x3, "nb");
4183     less_equal(0x6, "be");
4184     greater(0x7, "nbe");
4185     overflow(0x0, "o");
4186     no_overflow(0x1, "no");
4187   %}
4188 %}
4189 
4190 
4191 // Floating comparisons that don't require any fixup for the unordered case
4192 operand cmpOpUCF() %{
4193   match(Bool);
4194   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4195             n->as_Bool()->_test._test == BoolTest::ge ||
4196             n->as_Bool()->_test._test == BoolTest::le ||
4197             n->as_Bool()->_test._test == BoolTest::gt);
4198   format %{ "" %}
4199   interface(COND_INTER) %{
4200     equal(0x4, "e");
4201     not_equal(0x5, "ne");
4202     less(0x2, "b");
4203     greater_equal(0x3, "nb");
4204     less_equal(0x6, "be");
4205     greater(0x7, "nbe");
4206     overflow(0x0, "o");
4207     no_overflow(0x1, "no");
4208   %}
4209 %}
4210 
4211 
4212 // Floating comparisons that can be fixed up with extra conditional jumps
4213 operand cmpOpUCF2() %{
4214   match(Bool);
4215   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4216             n->as_Bool()->_test._test == BoolTest::eq);
4217   format %{ "" %}
4218   interface(COND_INTER) %{
4219     equal(0x4, "e");
4220     not_equal(0x5, "ne");
4221     less(0x2, "b");
4222     greater_equal(0x3, "nb");
4223     less_equal(0x6, "be");
4224     greater(0x7, "nbe");
4225     overflow(0x0, "o");
4226     no_overflow(0x1, "no");
4227   %}
4228 %}
4229 
4230 //----------OPERAND CLASSES----------------------------------------------------
4231 // Operand Classes are groups of operands that are used as to simplify
4232 // instruction definitions by not requiring the AD writer to specify separate
4233 // instructions for every form of operand when the instruction accepts
4234 // multiple operand types with the same basic encoding and format.  The classic
4235 // case of this is memory operands.
4236 
4237 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
4238                indIndexScale, indPosIndexScale, indIndexScaleOffset, indPosIndexOffset, indPosIndexScaleOffset,
4239                indCompressedOopOffset,
4240                indirectNarrow, indOffset8Narrow, indOffset32Narrow,
4241                indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
4242                indIndexScaleOffsetNarrow, indPosIndexOffsetNarrow, indPosIndexScaleOffsetNarrow);
4243 
4244 //----------PIPELINE-----------------------------------------------------------
4245 // Rules which define the behavior of the target architectures pipeline.
4246 pipeline %{
4247 
4248 //----------ATTRIBUTES---------------------------------------------------------
4249 attributes %{
4250   variable_size_instructions;        // Fixed size instructions
4251   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4252   instruction_unit_size = 1;         // An instruction is 1 bytes long
4253   instruction_fetch_unit_size = 16;  // The processor fetches one line
4254   instruction_fetch_units = 1;       // of 16 bytes
4255 
4256   // List of nop instructions
4257   nops( MachNop );
4258 %}
4259 
4260 //----------RESOURCES----------------------------------------------------------
4261 // Resources are the functional units available to the machine
4262 
4263 // Generic P2/P3 pipeline
4264 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4265 // 3 instructions decoded per cycle.
4266 // 2 load/store ops per cycle, 1 branch, 1 FPU,
4267 // 3 ALU op, only ALU0 handles mul instructions.
4268 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4269            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
4270            BR, FPU,
4271            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
4272 
4273 //----------PIPELINE DESCRIPTION-----------------------------------------------
4274 // Pipeline Description specifies the stages in the machine's pipeline
4275 
4276 // Generic P2/P3 pipeline
4277 pipe_desc(S0, S1, S2, S3, S4, S5);
4278 
4279 //----------PIPELINE CLASSES---------------------------------------------------
4280 // Pipeline Classes describe the stages in which input and output are
4281 // referenced by the hardware pipeline.
4282 
4283 // Naming convention: ialu or fpu
4284 // Then: _reg
4285 // Then: _reg if there is a 2nd register
4286 // Then: _long if it's a pair of instructions implementing a long
4287 // Then: _fat if it requires the big decoder
4288 //   Or: _mem if it requires the big decoder and a memory unit.
4289 
4290 // Integer ALU reg operation
4291 pipe_class ialu_reg(rRegI dst)
4292 %{
4293     single_instruction;
4294     dst    : S4(write);
4295     dst    : S3(read);
4296     DECODE : S0;        // any decoder
4297     ALU    : S3;        // any alu
4298 %}
4299 
4300 // Long ALU reg operation
4301 pipe_class ialu_reg_long(rRegL dst)
4302 %{
4303     instruction_count(2);
4304     dst    : S4(write);
4305     dst    : S3(read);
4306     DECODE : S0(2);     // any 2 decoders
4307     ALU    : S3(2);     // both alus
4308 %}
4309 
4310 // Integer ALU reg operation using big decoder
4311 pipe_class ialu_reg_fat(rRegI dst)
4312 %{
4313     single_instruction;
4314     dst    : S4(write);
4315     dst    : S3(read);
4316     D0     : S0;        // big decoder only
4317     ALU    : S3;        // any alu
4318 %}
4319 
4320 // Long ALU reg operation using big decoder
4321 pipe_class ialu_reg_long_fat(rRegL dst)
4322 %{
4323     instruction_count(2);
4324     dst    : S4(write);
4325     dst    : S3(read);
4326     D0     : S0(2);     // big decoder only; twice
4327     ALU    : S3(2);     // any 2 alus
4328 %}
4329 
4330 // Integer ALU reg-reg operation
4331 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
4332 %{
4333     single_instruction;
4334     dst    : S4(write);
4335     src    : S3(read);
4336     DECODE : S0;        // any decoder
4337     ALU    : S3;        // any alu
4338 %}
4339 
4340 // Long ALU reg-reg operation
4341 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
4342 %{
4343     instruction_count(2);
4344     dst    : S4(write);
4345     src    : S3(read);
4346     DECODE : S0(2);     // any 2 decoders
4347     ALU    : S3(2);     // both alus
4348 %}
4349 
4350 // Integer ALU reg-reg operation
4351 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
4352 %{
4353     single_instruction;
4354     dst    : S4(write);
4355     src    : S3(read);
4356     D0     : S0;        // big decoder only
4357     ALU    : S3;        // any alu
4358 %}
4359 
4360 // Long ALU reg-reg operation
4361 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
4362 %{
4363     instruction_count(2);
4364     dst    : S4(write);
4365     src    : S3(read);
4366     D0     : S0(2);     // big decoder only; twice
4367     ALU    : S3(2);     // both alus
4368 %}
4369 
4370 // Integer ALU reg-mem operation
4371 pipe_class ialu_reg_mem(rRegI dst, memory mem)
4372 %{
4373     single_instruction;
4374     dst    : S5(write);
4375     mem    : S3(read);
4376     D0     : S0;        // big decoder only
4377     ALU    : S4;        // any alu
4378     MEM    : S3;        // any mem
4379 %}
4380 
4381 // Integer mem operation (prefetch)
4382 pipe_class ialu_mem(memory mem)
4383 %{
4384     single_instruction;
4385     mem    : S3(read);
4386     D0     : S0;        // big decoder only
4387     MEM    : S3;        // any mem
4388 %}
4389 
4390 // Integer Store to Memory
4391 pipe_class ialu_mem_reg(memory mem, rRegI src)
4392 %{
4393     single_instruction;
4394     mem    : S3(read);
4395     src    : S5(read);
4396     D0     : S0;        // big decoder only
4397     ALU    : S4;        // any alu
4398     MEM    : S3;
4399 %}
4400 
4401 // // Long Store to Memory
4402 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
4403 // %{
4404 //     instruction_count(2);
4405 //     mem    : S3(read);
4406 //     src    : S5(read);
4407 //     D0     : S0(2);          // big decoder only; twice
4408 //     ALU    : S4(2);     // any 2 alus
4409 //     MEM    : S3(2);  // Both mems
4410 // %}
4411 
4412 // Integer Store to Memory
4413 pipe_class ialu_mem_imm(memory mem)
4414 %{
4415     single_instruction;
4416     mem    : S3(read);
4417     D0     : S0;        // big decoder only
4418     ALU    : S4;        // any alu
4419     MEM    : S3;
4420 %}
4421 
4422 // Integer ALU0 reg-reg operation
4423 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
4424 %{
4425     single_instruction;
4426     dst    : S4(write);
4427     src    : S3(read);
4428     D0     : S0;        // Big decoder only
4429     ALU0   : S3;        // only alu0
4430 %}
4431 
4432 // Integer ALU0 reg-mem operation
4433 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
4434 %{
4435     single_instruction;
4436     dst    : S5(write);
4437     mem    : S3(read);
4438     D0     : S0;        // big decoder only
4439     ALU0   : S4;        // ALU0 only
4440     MEM    : S3;        // any mem
4441 %}
4442 
4443 // Integer ALU reg-reg operation
4444 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
4445 %{
4446     single_instruction;
4447     cr     : S4(write);
4448     src1   : S3(read);
4449     src2   : S3(read);
4450     DECODE : S0;        // any decoder
4451     ALU    : S3;        // any alu
4452 %}
4453 
4454 // Integer ALU reg-imm operation
4455 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
4456 %{
4457     single_instruction;
4458     cr     : S4(write);
4459     src1   : S3(read);
4460     DECODE : S0;        // any decoder
4461     ALU    : S3;        // any alu
4462 %}
4463 
4464 // Integer ALU reg-mem operation
4465 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
4466 %{
4467     single_instruction;
4468     cr     : S4(write);
4469     src1   : S3(read);
4470     src2   : S3(read);
4471     D0     : S0;        // big decoder only
4472     ALU    : S4;        // any alu
4473     MEM    : S3;
4474 %}
4475 
4476 // Conditional move reg-reg
4477 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
4478 %{
4479     instruction_count(4);
4480     y      : S4(read);
4481     q      : S3(read);
4482     p      : S3(read);
4483     DECODE : S0(4);     // any decoder
4484 %}
4485 
4486 // Conditional move reg-reg
4487 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
4488 %{
4489     single_instruction;
4490     dst    : S4(write);
4491     src    : S3(read);
4492     cr     : S3(read);
4493     DECODE : S0;        // any decoder
4494 %}
4495 
4496 // Conditional move reg-mem
4497 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
4498 %{
4499     single_instruction;
4500     dst    : S4(write);
4501     src    : S3(read);
4502     cr     : S3(read);
4503     DECODE : S0;        // any decoder
4504     MEM    : S3;
4505 %}
4506 
4507 // Conditional move reg-reg long
4508 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
4509 %{
4510     single_instruction;
4511     dst    : S4(write);
4512     src    : S3(read);
4513     cr     : S3(read);
4514     DECODE : S0(2);     // any 2 decoders
4515 %}
4516 
4517 // XXX
4518 // // Conditional move double reg-reg
4519 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
4520 // %{
4521 //     single_instruction;
4522 //     dst    : S4(write);
4523 //     src    : S3(read);
4524 //     cr     : S3(read);
4525 //     DECODE : S0;     // any decoder
4526 // %}
4527 
4528 // Float reg-reg operation
4529 pipe_class fpu_reg(regD dst)
4530 %{
4531     instruction_count(2);
4532     dst    : S3(read);
4533     DECODE : S0(2);     // any 2 decoders
4534     FPU    : S3;
4535 %}
4536 
4537 // Float reg-reg operation
4538 pipe_class fpu_reg_reg(regD dst, regD src)
4539 %{
4540     instruction_count(2);
4541     dst    : S4(write);
4542     src    : S3(read);
4543     DECODE : S0(2);     // any 2 decoders
4544     FPU    : S3;
4545 %}
4546 
4547 // Float reg-reg operation
4548 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
4549 %{
4550     instruction_count(3);
4551     dst    : S4(write);
4552     src1   : S3(read);
4553     src2   : S3(read);
4554     DECODE : S0(3);     // any 3 decoders
4555     FPU    : S3(2);
4556 %}
4557 
4558 // Float reg-reg operation
4559 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
4560 %{
4561     instruction_count(4);
4562     dst    : S4(write);
4563     src1   : S3(read);
4564     src2   : S3(read);
4565     src3   : S3(read);
4566     DECODE : S0(4);     // any 3 decoders
4567     FPU    : S3(2);
4568 %}
4569 
4570 // Float reg-reg operation
4571 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
4572 %{
4573     instruction_count(4);
4574     dst    : S4(write);
4575     src1   : S3(read);
4576     src2   : S3(read);
4577     src3   : S3(read);
4578     DECODE : S1(3);     // any 3 decoders
4579     D0     : S0;        // Big decoder only
4580     FPU    : S3(2);
4581     MEM    : S3;
4582 %}
4583 
4584 // Float reg-mem operation
4585 pipe_class fpu_reg_mem(regD dst, memory mem)
4586 %{
4587     instruction_count(2);
4588     dst    : S5(write);
4589     mem    : S3(read);
4590     D0     : S0;        // big decoder only
4591     DECODE : S1;        // any decoder for FPU POP
4592     FPU    : S4;
4593     MEM    : S3;        // any mem
4594 %}
4595 
4596 // Float reg-mem operation
4597 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
4598 %{
4599     instruction_count(3);
4600     dst    : S5(write);
4601     src1   : S3(read);
4602     mem    : S3(read);
4603     D0     : S0;        // big decoder only
4604     DECODE : S1(2);     // any decoder for FPU POP
4605     FPU    : S4;
4606     MEM    : S3;        // any mem
4607 %}
4608 
4609 // Float mem-reg operation
4610 pipe_class fpu_mem_reg(memory mem, regD src)
4611 %{
4612     instruction_count(2);
4613     src    : S5(read);
4614     mem    : S3(read);
4615     DECODE : S0;        // any decoder for FPU PUSH
4616     D0     : S1;        // big decoder only
4617     FPU    : S4;
4618     MEM    : S3;        // any mem
4619 %}
4620 
4621 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
4622 %{
4623     instruction_count(3);
4624     src1   : S3(read);
4625     src2   : S3(read);
4626     mem    : S3(read);
4627     DECODE : S0(2);     // any decoder for FPU PUSH
4628     D0     : S1;        // big decoder only
4629     FPU    : S4;
4630     MEM    : S3;        // any mem
4631 %}
4632 
4633 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
4634 %{
4635     instruction_count(3);
4636     src1   : S3(read);
4637     src2   : S3(read);
4638     mem    : S4(read);
4639     DECODE : S0;        // any decoder for FPU PUSH
4640     D0     : S0(2);     // big decoder only
4641     FPU    : S4;
4642     MEM    : S3(2);     // any mem
4643 %}
4644 
4645 pipe_class fpu_mem_mem(memory dst, memory src1)
4646 %{
4647     instruction_count(2);
4648     src1   : S3(read);
4649     dst    : S4(read);
4650     D0     : S0(2);     // big decoder only
4651     MEM    : S3(2);     // any mem
4652 %}
4653 
4654 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
4655 %{
4656     instruction_count(3);
4657     src1   : S3(read);
4658     src2   : S3(read);
4659     dst    : S4(read);
4660     D0     : S0(3);     // big decoder only
4661     FPU    : S4;
4662     MEM    : S3(3);     // any mem
4663 %}
4664 
4665 pipe_class fpu_mem_reg_con(memory mem, regD src1)
4666 %{
4667     instruction_count(3);
4668     src1   : S4(read);
4669     mem    : S4(read);
4670     DECODE : S0;        // any decoder for FPU PUSH
4671     D0     : S0(2);     // big decoder only
4672     FPU    : S4;
4673     MEM    : S3(2);     // any mem
4674 %}
4675 
4676 // Float load constant
4677 pipe_class fpu_reg_con(regD dst)
4678 %{
4679     instruction_count(2);
4680     dst    : S5(write);
4681     D0     : S0;        // big decoder only for the load
4682     DECODE : S1;        // any decoder for FPU POP
4683     FPU    : S4;
4684     MEM    : S3;        // any mem
4685 %}
4686 
4687 // Float load constant
4688 pipe_class fpu_reg_reg_con(regD dst, regD src)
4689 %{
4690     instruction_count(3);
4691     dst    : S5(write);
4692     src    : S3(read);
4693     D0     : S0;        // big decoder only for the load
4694     DECODE : S1(2);     // any decoder for FPU POP
4695     FPU    : S4;
4696     MEM    : S3;        // any mem
4697 %}
4698 
4699 // UnConditional branch
4700 pipe_class pipe_jmp(label labl)
4701 %{
4702     single_instruction;
4703     BR   : S3;
4704 %}
4705 
4706 // Conditional branch
4707 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
4708 %{
4709     single_instruction;
4710     cr    : S1(read);
4711     BR    : S3;
4712 %}
4713 
4714 // Allocation idiom
4715 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
4716 %{
4717     instruction_count(1); force_serialization;
4718     fixed_latency(6);
4719     heap_ptr : S3(read);
4720     DECODE   : S0(3);
4721     D0       : S2;
4722     MEM      : S3;
4723     ALU      : S3(2);
4724     dst      : S5(write);
4725     BR       : S5;
4726 %}
4727 
4728 // Generic big/slow expanded idiom
4729 pipe_class pipe_slow()
4730 %{
4731     instruction_count(10); multiple_bundles; force_serialization;
4732     fixed_latency(100);
4733     D0  : S0(2);
4734     MEM : S3(2);
4735 %}
4736 
4737 // The real do-nothing guy
4738 pipe_class empty()
4739 %{
4740     instruction_count(0);
4741 %}
4742 
4743 // Define the class for the Nop node
4744 define
4745 %{
4746    MachNop = empty;
4747 %}
4748 
4749 %}
4750 
4751 //----------INSTRUCTIONS-------------------------------------------------------
4752 //
4753 // match      -- States which machine-independent subtree may be replaced
4754 //               by this instruction.
4755 // ins_cost   -- The estimated cost of this instruction is used by instruction
4756 //               selection to identify a minimum cost tree of machine
4757 //               instructions that matches a tree of machine-independent
4758 //               instructions.
4759 // format     -- A string providing the disassembly for this instruction.
4760 //               The value of an instruction's operand may be inserted
4761 //               by referring to it with a '$' prefix.
4762 // opcode     -- Three instruction opcodes may be provided.  These are referred
4763 //               to within an encode class as $primary, $secondary, and $tertiary
4764 //               rrspectively.  The primary opcode is commonly used to
4765 //               indicate the type of machine instruction, while secondary
4766 //               and tertiary are often used for prefix options or addressing
4767 //               modes.
4768 // ins_encode -- A list of encode classes with parameters. The encode class
4769 //               name must have been defined in an 'enc_class' specification
4770 //               in the encode section of the architecture description.
4771 
4772 
4773 //----------Load/Store/Move Instructions---------------------------------------
4774 //----------Load Instructions--------------------------------------------------
4775 
4776 // Load Byte (8 bit signed)
4777 instruct loadB(rRegI dst, memory mem)
4778 %{
4779   match(Set dst (LoadB mem));
4780 
4781   ins_cost(125);
4782   format %{ "movsbl  $dst, $mem\t# byte" %}
4783 
4784   ins_encode %{
4785     __ movsbl($dst$$Register, $mem$$Address);
4786   %}
4787 
4788   ins_pipe(ialu_reg_mem);
4789 %}
4790 
4791 // Load Byte (8 bit signed) into Long Register
4792 instruct loadB2L(rRegL dst, memory mem)
4793 %{
4794   match(Set dst (ConvI2L (LoadB mem)));
4795 
4796   ins_cost(125);
4797   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
4798 
4799   ins_encode %{
4800     __ movsbq($dst$$Register, $mem$$Address);
4801   %}
4802 
4803   ins_pipe(ialu_reg_mem);
4804 %}
4805 
4806 // Load Unsigned Byte (8 bit UNsigned)
4807 instruct loadUB(rRegI dst, memory mem)
4808 %{
4809   match(Set dst (LoadUB mem));
4810 
4811   ins_cost(125);
4812   format %{ "movzbl  $dst, $mem\t# ubyte" %}
4813 
4814   ins_encode %{
4815     __ movzbl($dst$$Register, $mem$$Address);
4816   %}
4817 
4818   ins_pipe(ialu_reg_mem);
4819 %}
4820 
4821 // Load Unsigned Byte (8 bit UNsigned) into Long Register
4822 instruct loadUB2L(rRegL dst, memory mem)
4823 %{
4824   match(Set dst (ConvI2L (LoadUB mem)));
4825 
4826   ins_cost(125);
4827   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
4828 
4829   ins_encode %{
4830     __ movzbq($dst$$Register, $mem$$Address);
4831   %}
4832 
4833   ins_pipe(ialu_reg_mem);
4834 %}
4835 
4836 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
4837 instruct loadUB2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
4838   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
4839   effect(KILL cr);
4840 
4841   format %{ "movzbq  $dst, $mem\t# ubyte & 32-bit mask -> long\n\t"
4842             "andl    $dst, right_n_bits($mask, 8)" %}
4843   ins_encode %{
4844     Register Rdst = $dst$$Register;
4845     __ movzbq(Rdst, $mem$$Address);
4846     __ andl(Rdst, $mask$$constant & right_n_bits(8));
4847   %}
4848   ins_pipe(ialu_reg_mem);
4849 %}
4850 
4851 // Load Short (16 bit signed)
4852 instruct loadS(rRegI dst, memory mem)
4853 %{
4854   match(Set dst (LoadS mem));
4855 
4856   ins_cost(125);
4857   format %{ "movswl $dst, $mem\t# short" %}
4858 
4859   ins_encode %{
4860     __ movswl($dst$$Register, $mem$$Address);
4861   %}
4862 
4863   ins_pipe(ialu_reg_mem);
4864 %}
4865 
4866 // Load Short (16 bit signed) to Byte (8 bit signed)
4867 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4868   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
4869 
4870   ins_cost(125);
4871   format %{ "movsbl $dst, $mem\t# short -> byte" %}
4872   ins_encode %{
4873     __ movsbl($dst$$Register, $mem$$Address);
4874   %}
4875   ins_pipe(ialu_reg_mem);
4876 %}
4877 
4878 // Load Short (16 bit signed) into Long Register
4879 instruct loadS2L(rRegL dst, memory mem)
4880 %{
4881   match(Set dst (ConvI2L (LoadS mem)));
4882 
4883   ins_cost(125);
4884   format %{ "movswq $dst, $mem\t# short -> long" %}
4885 
4886   ins_encode %{
4887     __ movswq($dst$$Register, $mem$$Address);
4888   %}
4889 
4890   ins_pipe(ialu_reg_mem);
4891 %}
4892 
4893 // Load Unsigned Short/Char (16 bit UNsigned)
4894 instruct loadUS(rRegI dst, memory mem)
4895 %{
4896   match(Set dst (LoadUS mem));
4897 
4898   ins_cost(125);
4899   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
4900 
4901   ins_encode %{
4902     __ movzwl($dst$$Register, $mem$$Address);
4903   %}
4904 
4905   ins_pipe(ialu_reg_mem);
4906 %}
4907 
4908 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
4909 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4910   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
4911 
4912   ins_cost(125);
4913   format %{ "movsbl $dst, $mem\t# ushort -> byte" %}
4914   ins_encode %{
4915     __ movsbl($dst$$Register, $mem$$Address);
4916   %}
4917   ins_pipe(ialu_reg_mem);
4918 %}
4919 
4920 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
4921 instruct loadUS2L(rRegL dst, memory mem)
4922 %{
4923   match(Set dst (ConvI2L (LoadUS mem)));
4924 
4925   ins_cost(125);
4926   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
4927 
4928   ins_encode %{
4929     __ movzwq($dst$$Register, $mem$$Address);
4930   %}
4931 
4932   ins_pipe(ialu_reg_mem);
4933 %}
4934 
4935 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
4936 instruct loadUS2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
4937   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4938 
4939   format %{ "movzbq  $dst, $mem\t# ushort/char & 0xFF -> long" %}
4940   ins_encode %{
4941     __ movzbq($dst$$Register, $mem$$Address);
4942   %}
4943   ins_pipe(ialu_reg_mem);
4944 %}
4945 
4946 // Load Unsigned Short/Char (16 bit UNsigned) with 32-bit mask into Long Register
4947 instruct loadUS2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
4948   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4949   effect(KILL cr);
4950 
4951   format %{ "movzwq  $dst, $mem\t# ushort/char & 32-bit mask -> long\n\t"
4952             "andl    $dst, right_n_bits($mask, 16)" %}
4953   ins_encode %{
4954     Register Rdst = $dst$$Register;
4955     __ movzwq(Rdst, $mem$$Address);
4956     __ andl(Rdst, $mask$$constant & right_n_bits(16));
4957   %}
4958   ins_pipe(ialu_reg_mem);
4959 %}
4960 
4961 // Load Integer
4962 instruct loadI(rRegI dst, memory mem)
4963 %{
4964   match(Set dst (LoadI mem));
4965 
4966   ins_cost(125);
4967   format %{ "movl    $dst, $mem\t# int" %}
4968 
4969   ins_encode %{
4970     __ movl($dst$$Register, $mem$$Address);
4971   %}
4972 
4973   ins_pipe(ialu_reg_mem);
4974 %}
4975 
4976 // Load Integer (32 bit signed) to Byte (8 bit signed)
4977 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4978   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
4979 
4980   ins_cost(125);
4981   format %{ "movsbl  $dst, $mem\t# int -> byte" %}
4982   ins_encode %{
4983     __ movsbl($dst$$Register, $mem$$Address);
4984   %}
4985   ins_pipe(ialu_reg_mem);
4986 %}
4987 
4988 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
4989 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
4990   match(Set dst (AndI (LoadI mem) mask));
4991 
4992   ins_cost(125);
4993   format %{ "movzbl  $dst, $mem\t# int -> ubyte" %}
4994   ins_encode %{
4995     __ movzbl($dst$$Register, $mem$$Address);
4996   %}
4997   ins_pipe(ialu_reg_mem);
4998 %}
4999 
5000 // Load Integer (32 bit signed) to Short (16 bit signed)
5001 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
5002   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5003 
5004   ins_cost(125);
5005   format %{ "movswl  $dst, $mem\t# int -> short" %}
5006   ins_encode %{
5007     __ movswl($dst$$Register, $mem$$Address);
5008   %}
5009   ins_pipe(ialu_reg_mem);
5010 %}
5011 
5012 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
5013 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
5014   match(Set dst (AndI (LoadI mem) mask));
5015 
5016   ins_cost(125);
5017   format %{ "movzwl  $dst, $mem\t# int -> ushort/char" %}
5018   ins_encode %{
5019     __ movzwl($dst$$Register, $mem$$Address);
5020   %}
5021   ins_pipe(ialu_reg_mem);
5022 %}
5023 
5024 // Load Integer into Long Register
5025 instruct loadI2L(rRegL dst, memory mem)
5026 %{
5027   match(Set dst (ConvI2L (LoadI mem)));
5028 
5029   ins_cost(125);
5030   format %{ "movslq  $dst, $mem\t# int -> long" %}
5031 
5032   ins_encode %{
5033     __ movslq($dst$$Register, $mem$$Address);
5034   %}
5035 
5036   ins_pipe(ialu_reg_mem);
5037 %}
5038 
5039 // Load Integer with mask 0xFF into Long Register
5040 instruct loadI2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
5041   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5042 
5043   format %{ "movzbq  $dst, $mem\t# int & 0xFF -> long" %}
5044   ins_encode %{
5045     __ movzbq($dst$$Register, $mem$$Address);
5046   %}
5047   ins_pipe(ialu_reg_mem);
5048 %}
5049 
5050 // Load Integer with mask 0xFFFF into Long Register
5051 instruct loadI2L_immI_65535(rRegL dst, memory mem, immI_65535 mask) %{
5052   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5053 
5054   format %{ "movzwq  $dst, $mem\t# int & 0xFFFF -> long" %}
5055   ins_encode %{
5056     __ movzwq($dst$$Register, $mem$$Address);
5057   %}
5058   ins_pipe(ialu_reg_mem);
5059 %}
5060 
5061 // Load Integer with a 31-bit mask into Long Register
5062 instruct loadI2L_immU31(rRegL dst, memory mem, immU31 mask, rFlagsReg cr) %{
5063   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5064   effect(KILL cr);
5065 
5066   format %{ "movl    $dst, $mem\t# int & 31-bit mask -> long\n\t"
5067             "andl    $dst, $mask" %}
5068   ins_encode %{
5069     Register Rdst = $dst$$Register;
5070     __ movl(Rdst, $mem$$Address);
5071     __ andl(Rdst, $mask$$constant);
5072   %}
5073   ins_pipe(ialu_reg_mem);
5074 %}
5075 
5076 // Load Unsigned Integer into Long Register
5077 instruct loadUI2L(rRegL dst, memory mem, immL_32bits mask)
5078 %{
5079   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5080 
5081   ins_cost(125);
5082   format %{ "movl    $dst, $mem\t# uint -> long" %}
5083 
5084   ins_encode %{
5085     __ movl($dst$$Register, $mem$$Address);
5086   %}
5087 
5088   ins_pipe(ialu_reg_mem);
5089 %}
5090 
5091 // Load Long
5092 instruct loadL(rRegL dst, memory mem)
5093 %{
5094   match(Set dst (LoadL mem));
5095 
5096   ins_cost(125);
5097   format %{ "movq    $dst, $mem\t# long" %}
5098 
5099   ins_encode %{
5100     __ movq($dst$$Register, $mem$$Address);
5101   %}
5102 
5103   ins_pipe(ialu_reg_mem); // XXX
5104 %}
5105 
5106 // Load Range
5107 instruct loadRange(rRegI dst, memory mem)
5108 %{
5109   match(Set dst (LoadRange mem));
5110 
5111   ins_cost(125); // XXX
5112   format %{ "movl    $dst, $mem\t# range" %}
5113   opcode(0x8B);
5114   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
5115   ins_pipe(ialu_reg_mem);
5116 %}
5117 
5118 // Load Pointer
5119 instruct loadP(rRegP dst, memory mem)
5120 %{
5121   match(Set dst (LoadP mem));
5122   predicate(n->as_Load()->barrier_data() == 0);
5123 
5124   ins_cost(125); // XXX
5125   format %{ "movq    $dst, $mem\t# ptr" %}
5126   opcode(0x8B);
5127   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5128   ins_pipe(ialu_reg_mem); // XXX
5129 %}
5130 
5131 // Load Compressed Pointer
5132 instruct loadN(rRegN dst, memory mem)
5133 %{
5134    match(Set dst (LoadN mem));
5135 
5136    ins_cost(125); // XXX
5137    format %{ "movl    $dst, $mem\t# compressed ptr" %}
5138    ins_encode %{
5139      __ movl($dst$$Register, $mem$$Address);
5140    %}
5141    ins_pipe(ialu_reg_mem); // XXX
5142 %}
5143 
5144 
5145 // Load Klass Pointer
5146 instruct loadKlass(rRegP dst, memory mem)
5147 %{
5148   match(Set dst (LoadKlass mem));
5149 
5150   ins_cost(125); // XXX
5151   format %{ "movq    $dst, $mem\t# class" %}
5152   opcode(0x8B);
5153   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5154   ins_pipe(ialu_reg_mem); // XXX
5155 %}
5156 
5157 // Load narrow Klass Pointer
5158 instruct loadNKlass(rRegN dst, memory mem)
5159 %{
5160   match(Set dst (LoadNKlass mem));
5161 
5162   ins_cost(125); // XXX
5163   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
5164   ins_encode %{
5165     __ movl($dst$$Register, $mem$$Address);
5166   %}
5167   ins_pipe(ialu_reg_mem); // XXX
5168 %}
5169 
5170 // Load Float
5171 instruct loadF(regF dst, memory mem)
5172 %{
5173   match(Set dst (LoadF mem));
5174 
5175   ins_cost(145); // XXX
5176   format %{ "movss   $dst, $mem\t# float" %}
5177   ins_encode %{
5178     __ movflt($dst$$XMMRegister, $mem$$Address);
5179   %}
5180   ins_pipe(pipe_slow); // XXX
5181 %}
5182 
5183 // Load Float
5184 instruct MoveF2VL(vlRegF dst, regF src) %{
5185   match(Set dst src);
5186   format %{ "movss $dst,$src\t! load float (4 bytes)" %}
5187   ins_encode %{
5188     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5189   %}
5190   ins_pipe( fpu_reg_reg );
5191 %}
5192 
5193 // Load Float
5194 instruct MoveF2LEG(legRegF dst, regF src) %{
5195   match(Set dst src);
5196   format %{ "movss $dst,$src\t# if src != dst load float (4 bytes)" %}
5197   ins_encode %{
5198     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5199   %}
5200   ins_pipe( fpu_reg_reg );
5201 %}
5202 
5203 // Load Float
5204 instruct MoveVL2F(regF dst, vlRegF src) %{
5205   match(Set dst src);
5206   format %{ "movss $dst,$src\t! load float (4 bytes)" %}
5207   ins_encode %{
5208     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5209   %}
5210   ins_pipe( fpu_reg_reg );
5211 %}
5212 
5213 // Load Float
5214 instruct MoveLEG2F(regF dst, legRegF src) %{
5215   match(Set dst src);
5216   format %{ "movss $dst,$src\t# if src != dst load float (4 bytes)" %}
5217   ins_encode %{
5218     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5219   %}
5220   ins_pipe( fpu_reg_reg );
5221 %}
5222 
5223 // Load Double
5224 instruct loadD_partial(regD dst, memory mem)
5225 %{
5226   predicate(!UseXmmLoadAndClearUpper);
5227   match(Set dst (LoadD mem));
5228 
5229   ins_cost(145); // XXX
5230   format %{ "movlpd  $dst, $mem\t# double" %}
5231   ins_encode %{
5232     __ movdbl($dst$$XMMRegister, $mem$$Address);
5233   %}
5234   ins_pipe(pipe_slow); // XXX
5235 %}
5236 
5237 instruct loadD(regD dst, memory mem)
5238 %{
5239   predicate(UseXmmLoadAndClearUpper);
5240   match(Set dst (LoadD mem));
5241 
5242   ins_cost(145); // XXX
5243   format %{ "movsd   $dst, $mem\t# double" %}
5244   ins_encode %{
5245     __ movdbl($dst$$XMMRegister, $mem$$Address);
5246   %}
5247   ins_pipe(pipe_slow); // XXX
5248 %}
5249 
5250 // Load Double
5251 instruct MoveD2VL(vlRegD dst, regD src) %{
5252   match(Set dst src);
5253   format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
5254   ins_encode %{
5255     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5256   %}
5257   ins_pipe( fpu_reg_reg );
5258 %}
5259 
5260 // Load Double
5261 instruct MoveD2LEG(legRegD dst, regD src) %{
5262   match(Set dst src);
5263   format %{ "movsd $dst,$src\t# if src != dst load double (8 bytes)" %}
5264   ins_encode %{
5265     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5266   %}
5267   ins_pipe( fpu_reg_reg );
5268 %}
5269 
5270 // Load Double
5271 instruct MoveVL2D(regD dst, vlRegD src) %{
5272   match(Set dst src);
5273   format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
5274   ins_encode %{
5275     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5276   %}
5277   ins_pipe( fpu_reg_reg );
5278 %}
5279 
5280 // Load Double
5281 instruct MoveLEG2D(regD dst, legRegD src) %{
5282   match(Set dst src);
5283   format %{ "movsd $dst,$src\t# if src != dst load double (8 bytes)" %}
5284   ins_encode %{
5285     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5286   %}
5287   ins_pipe( fpu_reg_reg );
5288 %}
5289 
5290 // Following pseudo code describes the algorithm for max[FD]:
5291 // Min algorithm is on similar lines
5292 //  btmp = (b < +0.0) ? a : b
5293 //  atmp = (b < +0.0) ? b : a
5294 //  Tmp  = Max_Float(atmp , btmp)
5295 //  Res  = (atmp == NaN) ? atmp : Tmp
5296 
5297 // max = java.lang.Math.max(float a, float b)
5298 instruct maxF_reg(legRegF dst, legRegF a, legRegF b, legRegF tmp, legRegF atmp, legRegF btmp) %{
5299   predicate(UseAVX > 0 && !n->is_reduction());
5300   match(Set dst (MaxF a b));
5301   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5302   format %{
5303      "blendvps         $btmp,$b,$a,$b           \n\t"
5304      "blendvps         $atmp,$a,$b,$b           \n\t"
5305      "vmaxss           $tmp,$atmp,$btmp         \n\t"
5306      "cmpps.unordered  $btmp,$atmp,$atmp        \n\t"
5307      "blendvps         $dst,$tmp,$atmp,$btmp    \n\t"
5308   %}
5309   ins_encode %{
5310     int vector_len = Assembler::AVX_128bit;
5311     __ blendvps($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, vector_len);
5312     __ blendvps($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $b$$XMMRegister, vector_len);
5313     __ vmaxss($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5314     __ cmpps($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5315     __ blendvps($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5316  %}
5317   ins_pipe( pipe_slow );
5318 %}
5319 
5320 instruct maxF_reduction_reg(legRegF dst, legRegF a, legRegF b, legRegF xmmt, rRegI tmp, rFlagsReg cr) %{
5321   predicate(UseAVX > 0 && n->is_reduction());
5322   match(Set dst (MaxF a b));
5323   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5324 
5325   format %{ "$dst = max($a, $b)\t# intrinsic (float)" %}
5326   ins_encode %{
5327     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5328                     false /*min*/, true /*single*/);
5329   %}
5330   ins_pipe( pipe_slow );
5331 %}
5332 
5333 // max = java.lang.Math.max(double a, double b)
5334 instruct maxD_reg(legRegD dst, legRegD a, legRegD b, legRegD tmp, legRegD atmp, legRegD btmp) %{
5335   predicate(UseAVX > 0 && !n->is_reduction());
5336   match(Set dst (MaxD a b));
5337   effect(USE a, USE b, TEMP atmp, TEMP btmp, TEMP tmp);
5338   format %{
5339      "blendvpd         $btmp,$b,$a,$b            \n\t"
5340      "blendvpd         $atmp,$a,$b,$b            \n\t"
5341      "vmaxsd           $tmp,$atmp,$btmp          \n\t"
5342      "cmppd.unordered  $btmp,$atmp,$atmp         \n\t"
5343      "blendvpd         $dst,$tmp,$atmp,$btmp     \n\t"
5344   %}
5345   ins_encode %{
5346     int vector_len = Assembler::AVX_128bit;
5347     __ blendvpd($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, vector_len);
5348     __ blendvpd($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $b$$XMMRegister, vector_len);
5349     __ vmaxsd($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5350     __ cmppd($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5351     __ blendvpd($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5352   %}
5353   ins_pipe( pipe_slow );
5354 %}
5355 
5356 instruct maxD_reduction_reg(legRegD dst, legRegD a, legRegD b, legRegD xmmt, rRegL tmp, rFlagsReg cr) %{
5357   predicate(UseAVX > 0 && n->is_reduction());
5358   match(Set dst (MaxD a b));
5359   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5360 
5361   format %{ "$dst = max($a, $b)\t# intrinsic (double)" %}
5362   ins_encode %{
5363     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5364                     false /*min*/, false /*single*/);
5365   %}
5366   ins_pipe( pipe_slow );
5367 %}
5368 
5369 // min = java.lang.Math.min(float a, float b)
5370 instruct minF_reg(legRegF dst, legRegF a, legRegF b, legRegF tmp, legRegF atmp, legRegF btmp) %{
5371   predicate(UseAVX > 0 && !n->is_reduction());
5372   match(Set dst (MinF a b));
5373   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5374   format %{
5375      "blendvps         $atmp,$a,$b,$a             \n\t"
5376      "blendvps         $btmp,$b,$a,$a             \n\t"
5377      "vminss           $tmp,$atmp,$btmp           \n\t"
5378      "cmpps.unordered  $btmp,$atmp,$atmp          \n\t"
5379      "blendvps         $dst,$tmp,$atmp,$btmp      \n\t"
5380   %}
5381   ins_encode %{
5382     int vector_len = Assembler::AVX_128bit;
5383     __ blendvps($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, vector_len);
5384     __ blendvps($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $a$$XMMRegister, vector_len);
5385     __ vminss($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5386     __ cmpps($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5387     __ blendvps($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5388   %}
5389   ins_pipe( pipe_slow );
5390 %}
5391 
5392 instruct minF_reduction_reg(legRegF dst, legRegF a, legRegF b, legRegF xmmt, rRegI tmp, rFlagsReg cr) %{
5393   predicate(UseAVX > 0 && n->is_reduction());
5394   match(Set dst (MinF a b));
5395   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5396 
5397   format %{ "$dst = min($a, $b)\t# intrinsic (float)" %}
5398   ins_encode %{
5399     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5400                     true /*min*/, true /*single*/);
5401   %}
5402   ins_pipe( pipe_slow );
5403 %}
5404 
5405 // min = java.lang.Math.min(double a, double b)
5406 instruct minD_reg(legRegD dst, legRegD a, legRegD b, legRegD tmp, legRegD atmp, legRegD btmp) %{
5407   predicate(UseAVX > 0 && !n->is_reduction());
5408   match(Set dst (MinD a b));
5409   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5410   format %{
5411      "blendvpd         $atmp,$a,$b,$a           \n\t"
5412      "blendvpd         $btmp,$b,$a,$a           \n\t"
5413      "vminsd           $tmp,$atmp,$btmp         \n\t"
5414      "cmppd.unordered  $btmp,$atmp,$atmp        \n\t"
5415      "blendvpd         $dst,$tmp,$atmp,$btmp    \n\t"
5416   %}
5417   ins_encode %{
5418     int vector_len = Assembler::AVX_128bit;
5419     __ blendvpd($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, vector_len);
5420     __ blendvpd($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $a$$XMMRegister, vector_len);
5421     __ vminsd($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5422     __ cmppd($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5423     __ blendvpd($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5424   %}
5425   ins_pipe( pipe_slow );
5426 %}
5427 
5428 instruct minD_reduction_reg(legRegD dst, legRegD a, legRegD b, legRegD xmmt, rRegL tmp, rFlagsReg cr) %{
5429   predicate(UseAVX > 0 && n->is_reduction());
5430   match(Set dst (MinD a b));
5431   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5432 
5433   format %{ "$dst = min($a, $b)\t# intrinsic (double)" %}
5434   ins_encode %{
5435     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5436                     true /*min*/, false /*single*/);
5437   %}
5438   ins_pipe( pipe_slow );
5439 %}
5440 
5441 // Load Effective Address
5442 instruct leaP8(rRegP dst, indOffset8 mem)
5443 %{
5444   match(Set dst mem);
5445 
5446   ins_cost(110); // XXX
5447   format %{ "leaq    $dst, $mem\t# ptr 8" %}
5448   opcode(0x8D);
5449   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5450   ins_pipe(ialu_reg_reg_fat);
5451 %}
5452 
5453 instruct leaP32(rRegP dst, indOffset32 mem)
5454 %{
5455   match(Set dst mem);
5456 
5457   ins_cost(110);
5458   format %{ "leaq    $dst, $mem\t# ptr 32" %}
5459   opcode(0x8D);
5460   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5461   ins_pipe(ialu_reg_reg_fat);
5462 %}
5463 
5464 // instruct leaPIdx(rRegP dst, indIndex mem)
5465 // %{
5466 //   match(Set dst mem);
5467 
5468 //   ins_cost(110);
5469 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
5470 //   opcode(0x8D);
5471 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5472 //   ins_pipe(ialu_reg_reg_fat);
5473 // %}
5474 
5475 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
5476 %{
5477   match(Set dst mem);
5478 
5479   ins_cost(110);
5480   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
5481   opcode(0x8D);
5482   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5483   ins_pipe(ialu_reg_reg_fat);
5484 %}
5485 
5486 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
5487 %{
5488   match(Set dst mem);
5489 
5490   ins_cost(110);
5491   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5492   opcode(0x8D);
5493   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5494   ins_pipe(ialu_reg_reg_fat);
5495 %}
5496 
5497 instruct leaPPosIdxScale(rRegP dst, indPosIndexScale mem)
5498 %{
5499   match(Set dst mem);
5500 
5501   ins_cost(110);
5502   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5503   opcode(0x8D);
5504   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5505   ins_pipe(ialu_reg_reg_fat);
5506 %}
5507 
5508 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
5509 %{
5510   match(Set dst mem);
5511 
5512   ins_cost(110);
5513   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
5514   opcode(0x8D);
5515   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5516   ins_pipe(ialu_reg_reg_fat);
5517 %}
5518 
5519 instruct leaPPosIdxOff(rRegP dst, indPosIndexOffset mem)
5520 %{
5521   match(Set dst mem);
5522 
5523   ins_cost(110);
5524   format %{ "leaq    $dst, $mem\t# ptr posidxoff" %}
5525   opcode(0x8D);
5526   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5527   ins_pipe(ialu_reg_reg_fat);
5528 %}
5529 
5530 instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
5531 %{
5532   match(Set dst mem);
5533 
5534   ins_cost(110);
5535   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
5536   opcode(0x8D);
5537   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5538   ins_pipe(ialu_reg_reg_fat);
5539 %}
5540 
5541 // Load Effective Address which uses Narrow (32-bits) oop
5542 instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
5543 %{
5544   predicate(UseCompressedOops && (CompressedOops::shift() != 0));
5545   match(Set dst mem);
5546 
5547   ins_cost(110);
5548   format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
5549   opcode(0x8D);
5550   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5551   ins_pipe(ialu_reg_reg_fat);
5552 %}
5553 
5554 instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
5555 %{
5556   predicate(CompressedOops::shift() == 0);
5557   match(Set dst mem);
5558 
5559   ins_cost(110); // XXX
5560   format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
5561   opcode(0x8D);
5562   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5563   ins_pipe(ialu_reg_reg_fat);
5564 %}
5565 
5566 instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
5567 %{
5568   predicate(CompressedOops::shift() == 0);
5569   match(Set dst mem);
5570 
5571   ins_cost(110);
5572   format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
5573   opcode(0x8D);
5574   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5575   ins_pipe(ialu_reg_reg_fat);
5576 %}
5577 
5578 instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
5579 %{
5580   predicate(CompressedOops::shift() == 0);
5581   match(Set dst mem);
5582 
5583   ins_cost(110);
5584   format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
5585   opcode(0x8D);
5586   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5587   ins_pipe(ialu_reg_reg_fat);
5588 %}
5589 
5590 instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
5591 %{
5592   predicate(CompressedOops::shift() == 0);
5593   match(Set dst mem);
5594 
5595   ins_cost(110);
5596   format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
5597   opcode(0x8D);
5598   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5599   ins_pipe(ialu_reg_reg_fat);
5600 %}
5601 
5602 instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
5603 %{
5604   predicate(CompressedOops::shift() == 0);
5605   match(Set dst mem);
5606 
5607   ins_cost(110);
5608   format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
5609   opcode(0x8D);
5610   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5611   ins_pipe(ialu_reg_reg_fat);
5612 %}
5613 
5614 instruct leaPPosIdxOffNarrow(rRegP dst, indPosIndexOffsetNarrow mem)
5615 %{
5616   predicate(CompressedOops::shift() == 0);
5617   match(Set dst mem);
5618 
5619   ins_cost(110);
5620   format %{ "leaq    $dst, $mem\t# ptr posidxoffnarrow" %}
5621   opcode(0x8D);
5622   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5623   ins_pipe(ialu_reg_reg_fat);
5624 %}
5625 
5626 instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
5627 %{
5628   predicate(CompressedOops::shift() == 0);
5629   match(Set dst mem);
5630 
5631   ins_cost(110);
5632   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
5633   opcode(0x8D);
5634   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5635   ins_pipe(ialu_reg_reg_fat);
5636 %}
5637 
5638 instruct loadConI(rRegI dst, immI src)
5639 %{
5640   match(Set dst src);
5641 
5642   format %{ "movl    $dst, $src\t# int" %}
5643   ins_encode(load_immI(dst, src));
5644   ins_pipe(ialu_reg_fat); // XXX
5645 %}
5646 
5647 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
5648 %{
5649   match(Set dst src);
5650   effect(KILL cr);
5651 
5652   ins_cost(50);
5653   format %{ "xorl    $dst, $dst\t# int" %}
5654   opcode(0x33); /* + rd */
5655   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5656   ins_pipe(ialu_reg);
5657 %}
5658 
5659 instruct loadConL(rRegL dst, immL src)
5660 %{
5661   match(Set dst src);
5662 
5663   ins_cost(150);
5664   format %{ "movq    $dst, $src\t# long" %}
5665   ins_encode(load_immL(dst, src));
5666   ins_pipe(ialu_reg);
5667 %}
5668 
5669 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
5670 %{
5671   match(Set dst src);
5672   effect(KILL cr);
5673 
5674   ins_cost(50);
5675   format %{ "xorl    $dst, $dst\t# long" %}
5676   opcode(0x33); /* + rd */
5677   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5678   ins_pipe(ialu_reg); // XXX
5679 %}
5680 
5681 instruct loadConUL32(rRegL dst, immUL32 src)
5682 %{
5683   match(Set dst src);
5684 
5685   ins_cost(60);
5686   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
5687   ins_encode(load_immUL32(dst, src));
5688   ins_pipe(ialu_reg);
5689 %}
5690 
5691 instruct loadConL32(rRegL dst, immL32 src)
5692 %{
5693   match(Set dst src);
5694 
5695   ins_cost(70);
5696   format %{ "movq    $dst, $src\t# long (32-bit)" %}
5697   ins_encode(load_immL32(dst, src));
5698   ins_pipe(ialu_reg);
5699 %}
5700 
5701 instruct loadConP(rRegP dst, immP con) %{
5702   match(Set dst con);
5703 
5704   format %{ "movq    $dst, $con\t# ptr" %}
5705   ins_encode(load_immP(dst, con));
5706   ins_pipe(ialu_reg_fat); // XXX
5707 %}
5708 
5709 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
5710 %{
5711   match(Set dst src);
5712   effect(KILL cr);
5713 
5714   ins_cost(50);
5715   format %{ "xorl    $dst, $dst\t# ptr" %}
5716   opcode(0x33); /* + rd */
5717   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5718   ins_pipe(ialu_reg);
5719 %}
5720 
5721 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
5722 %{
5723   match(Set dst src);
5724   effect(KILL cr);
5725 
5726   ins_cost(60);
5727   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
5728   ins_encode(load_immP31(dst, src));
5729   ins_pipe(ialu_reg);
5730 %}
5731 
5732 instruct loadConF(regF dst, immF con) %{
5733   match(Set dst con);
5734   ins_cost(125);
5735   format %{ "movss   $dst, [$constantaddress]\t# load from constant table: float=$con" %}
5736   ins_encode %{
5737     __ movflt($dst$$XMMRegister, $constantaddress($con));
5738   %}
5739   ins_pipe(pipe_slow);
5740 %}
5741 
5742 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
5743   match(Set dst src);
5744   effect(KILL cr);
5745   format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
5746   ins_encode %{
5747     __ xorq($dst$$Register, $dst$$Register);
5748   %}
5749   ins_pipe(ialu_reg);
5750 %}
5751 
5752 instruct loadConN(rRegN dst, immN src) %{
5753   match(Set dst src);
5754 
5755   ins_cost(125);
5756   format %{ "movl    $dst, $src\t# compressed ptr" %}
5757   ins_encode %{
5758     address con = (address)$src$$constant;
5759     if (con == NULL) {
5760       ShouldNotReachHere();
5761     } else {
5762       __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
5763     }
5764   %}
5765   ins_pipe(ialu_reg_fat); // XXX
5766 %}
5767 
5768 instruct loadConNKlass(rRegN dst, immNKlass src) %{
5769   match(Set dst src);
5770 
5771   ins_cost(125);
5772   format %{ "movl    $dst, $src\t# compressed klass ptr" %}
5773   ins_encode %{
5774     address con = (address)$src$$constant;
5775     if (con == NULL) {
5776       ShouldNotReachHere();
5777     } else {
5778       __ set_narrow_klass($dst$$Register, (Klass*)$src$$constant);
5779     }
5780   %}
5781   ins_pipe(ialu_reg_fat); // XXX
5782 %}
5783 
5784 instruct loadConF0(regF dst, immF0 src)
5785 %{
5786   match(Set dst src);
5787   ins_cost(100);
5788 
5789   format %{ "xorps   $dst, $dst\t# float 0.0" %}
5790   ins_encode %{
5791     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5792   %}
5793   ins_pipe(pipe_slow);
5794 %}
5795 
5796 // Use the same format since predicate() can not be used here.
5797 instruct loadConD(regD dst, immD con) %{
5798   match(Set dst con);
5799   ins_cost(125);
5800   format %{ "movsd   $dst, [$constantaddress]\t# load from constant table: double=$con" %}
5801   ins_encode %{
5802     __ movdbl($dst$$XMMRegister, $constantaddress($con));
5803   %}
5804   ins_pipe(pipe_slow);
5805 %}
5806 
5807 instruct loadConD0(regD dst, immD0 src)
5808 %{
5809   match(Set dst src);
5810   ins_cost(100);
5811 
5812   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
5813   ins_encode %{
5814     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
5815   %}
5816   ins_pipe(pipe_slow);
5817 %}
5818 
5819 instruct loadSSI(rRegI dst, stackSlotI src)
5820 %{
5821   match(Set dst src);
5822 
5823   ins_cost(125);
5824   format %{ "movl    $dst, $src\t# int stk" %}
5825   opcode(0x8B);
5826   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
5827   ins_pipe(ialu_reg_mem);
5828 %}
5829 
5830 instruct loadSSL(rRegL dst, stackSlotL src)
5831 %{
5832   match(Set dst src);
5833 
5834   ins_cost(125);
5835   format %{ "movq    $dst, $src\t# long stk" %}
5836   opcode(0x8B);
5837   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5838   ins_pipe(ialu_reg_mem);
5839 %}
5840 
5841 instruct loadSSP(rRegP dst, stackSlotP src)
5842 %{
5843   match(Set dst src);
5844 
5845   ins_cost(125);
5846   format %{ "movq    $dst, $src\t# ptr stk" %}
5847   opcode(0x8B);
5848   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5849   ins_pipe(ialu_reg_mem);
5850 %}
5851 
5852 instruct loadSSF(regF dst, stackSlotF src)
5853 %{
5854   match(Set dst src);
5855 
5856   ins_cost(125);
5857   format %{ "movss   $dst, $src\t# float stk" %}
5858   ins_encode %{
5859     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
5860   %}
5861   ins_pipe(pipe_slow); // XXX
5862 %}
5863 
5864 // Use the same format since predicate() can not be used here.
5865 instruct loadSSD(regD dst, stackSlotD src)
5866 %{
5867   match(Set dst src);
5868 
5869   ins_cost(125);
5870   format %{ "movsd   $dst, $src\t# double stk" %}
5871   ins_encode  %{
5872     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
5873   %}
5874   ins_pipe(pipe_slow); // XXX
5875 %}
5876 
5877 // Prefetch instructions for allocation.
5878 // Must be safe to execute with invalid address (cannot fault).
5879 
5880 instruct prefetchAlloc( memory mem ) %{
5881   predicate(AllocatePrefetchInstr==3);
5882   match(PrefetchAllocation mem);
5883   ins_cost(125);
5884 
5885   format %{ "PREFETCHW $mem\t# Prefetch allocation into level 1 cache and mark modified" %}
5886   ins_encode %{
5887     __ prefetchw($mem$$Address);
5888   %}
5889   ins_pipe(ialu_mem);
5890 %}
5891 
5892 instruct prefetchAllocNTA( memory mem ) %{
5893   predicate(AllocatePrefetchInstr==0);
5894   match(PrefetchAllocation mem);
5895   ins_cost(125);
5896 
5897   format %{ "PREFETCHNTA $mem\t# Prefetch allocation to non-temporal cache for write" %}
5898   ins_encode %{
5899     __ prefetchnta($mem$$Address);
5900   %}
5901   ins_pipe(ialu_mem);
5902 %}
5903 
5904 instruct prefetchAllocT0( memory mem ) %{
5905   predicate(AllocatePrefetchInstr==1);
5906   match(PrefetchAllocation mem);
5907   ins_cost(125);
5908 
5909   format %{ "PREFETCHT0 $mem\t# Prefetch allocation to level 1 and 2 caches for write" %}
5910   ins_encode %{
5911     __ prefetcht0($mem$$Address);
5912   %}
5913   ins_pipe(ialu_mem);
5914 %}
5915 
5916 instruct prefetchAllocT2( memory mem ) %{
5917   predicate(AllocatePrefetchInstr==2);
5918   match(PrefetchAllocation mem);
5919   ins_cost(125);
5920 
5921   format %{ "PREFETCHT2 $mem\t# Prefetch allocation to level 2 cache for write" %}
5922   ins_encode %{
5923     __ prefetcht2($mem$$Address);
5924   %}
5925   ins_pipe(ialu_mem);
5926 %}
5927 
5928 //----------Store Instructions-------------------------------------------------
5929 
5930 // Store Byte
5931 instruct storeB(memory mem, rRegI src)
5932 %{
5933   match(Set mem (StoreB mem src));
5934 
5935   ins_cost(125); // XXX
5936   format %{ "movb    $mem, $src\t# byte" %}
5937   opcode(0x88);
5938   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
5939   ins_pipe(ialu_mem_reg);
5940 %}
5941 
5942 // Store Char/Short
5943 instruct storeC(memory mem, rRegI src)
5944 %{
5945   match(Set mem (StoreC mem src));
5946 
5947   ins_cost(125); // XXX
5948   format %{ "movw    $mem, $src\t# char/short" %}
5949   opcode(0x89);
5950   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5951   ins_pipe(ialu_mem_reg);
5952 %}
5953 
5954 // Store Integer
5955 instruct storeI(memory mem, rRegI src)
5956 %{
5957   match(Set mem (StoreI mem src));
5958 
5959   ins_cost(125); // XXX
5960   format %{ "movl    $mem, $src\t# int" %}
5961   opcode(0x89);
5962   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5963   ins_pipe(ialu_mem_reg);
5964 %}
5965 
5966 // Store Long
5967 instruct storeL(memory mem, rRegL src)
5968 %{
5969   match(Set mem (StoreL mem src));
5970 
5971   ins_cost(125); // XXX
5972   format %{ "movq    $mem, $src\t# long" %}
5973   opcode(0x89);
5974   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5975   ins_pipe(ialu_mem_reg); // XXX
5976 %}
5977 
5978 // Store Pointer
5979 instruct storeP(memory mem, any_RegP src)
5980 %{
5981   match(Set mem (StoreP mem src));
5982 
5983   ins_cost(125); // XXX
5984   format %{ "movq    $mem, $src\t# ptr" %}
5985   opcode(0x89);
5986   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5987   ins_pipe(ialu_mem_reg);
5988 %}
5989 
5990 instruct storeImmP0(memory mem, immP0 zero)
5991 %{
5992   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
5993   match(Set mem (StoreP mem zero));
5994 
5995   ins_cost(125); // XXX
5996   format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
5997   ins_encode %{
5998     __ movq($mem$$Address, r12);
5999   %}
6000   ins_pipe(ialu_mem_reg);
6001 %}
6002 
6003 // Store NULL Pointer, mark word, or other simple pointer constant.
6004 instruct storeImmP(memory mem, immP31 src)
6005 %{
6006   match(Set mem (StoreP mem src));
6007 
6008   ins_cost(150); // XXX
6009   format %{ "movq    $mem, $src\t# ptr" %}
6010   opcode(0xC7); /* C7 /0 */
6011   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6012   ins_pipe(ialu_mem_imm);
6013 %}
6014 
6015 // Store Compressed Pointer
6016 instruct storeN(memory mem, rRegN src)
6017 %{
6018   match(Set mem (StoreN mem src));
6019 
6020   ins_cost(125); // XXX
6021   format %{ "movl    $mem, $src\t# compressed ptr" %}
6022   ins_encode %{
6023     __ movl($mem$$Address, $src$$Register);
6024   %}
6025   ins_pipe(ialu_mem_reg);
6026 %}
6027 
6028 instruct storeNKlass(memory mem, rRegN src)
6029 %{
6030   match(Set mem (StoreNKlass mem src));
6031 
6032   ins_cost(125); // XXX
6033   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
6034   ins_encode %{
6035     __ movl($mem$$Address, $src$$Register);
6036   %}
6037   ins_pipe(ialu_mem_reg);
6038 %}
6039 
6040 instruct storeImmN0(memory mem, immN0 zero)
6041 %{
6042   predicate(CompressedOops::base() == NULL && CompressedKlassPointers::base() == NULL);
6043   match(Set mem (StoreN mem zero));
6044 
6045   ins_cost(125); // XXX
6046   format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
6047   ins_encode %{
6048     __ movl($mem$$Address, r12);
6049   %}
6050   ins_pipe(ialu_mem_reg);
6051 %}
6052 
6053 instruct storeImmN(memory mem, immN src)
6054 %{
6055   match(Set mem (StoreN mem src));
6056 
6057   ins_cost(150); // XXX
6058   format %{ "movl    $mem, $src\t# compressed ptr" %}
6059   ins_encode %{
6060     address con = (address)$src$$constant;
6061     if (con == NULL) {
6062       __ movl($mem$$Address, (int32_t)0);
6063     } else {
6064       __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
6065     }
6066   %}
6067   ins_pipe(ialu_mem_imm);
6068 %}
6069 
6070 instruct storeImmNKlass(memory mem, immNKlass src)
6071 %{
6072   match(Set mem (StoreNKlass mem src));
6073 
6074   ins_cost(150); // XXX
6075   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
6076   ins_encode %{
6077     __ set_narrow_klass($mem$$Address, (Klass*)$src$$constant);
6078   %}
6079   ins_pipe(ialu_mem_imm);
6080 %}
6081 
6082 // Store Integer Immediate
6083 instruct storeImmI0(memory mem, immI0 zero)
6084 %{
6085   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6086   match(Set mem (StoreI mem zero));
6087 
6088   ins_cost(125); // XXX
6089   format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
6090   ins_encode %{
6091     __ movl($mem$$Address, r12);
6092   %}
6093   ins_pipe(ialu_mem_reg);
6094 %}
6095 
6096 instruct storeImmI(memory mem, immI src)
6097 %{
6098   match(Set mem (StoreI mem src));
6099 
6100   ins_cost(150);
6101   format %{ "movl    $mem, $src\t# int" %}
6102   opcode(0xC7); /* C7 /0 */
6103   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6104   ins_pipe(ialu_mem_imm);
6105 %}
6106 
6107 // Store Long Immediate
6108 instruct storeImmL0(memory mem, immL0 zero)
6109 %{
6110   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6111   match(Set mem (StoreL mem zero));
6112 
6113   ins_cost(125); // XXX
6114   format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
6115   ins_encode %{
6116     __ movq($mem$$Address, r12);
6117   %}
6118   ins_pipe(ialu_mem_reg);
6119 %}
6120 
6121 instruct storeImmL(memory mem, immL32 src)
6122 %{
6123   match(Set mem (StoreL mem src));
6124 
6125   ins_cost(150);
6126   format %{ "movq    $mem, $src\t# long" %}
6127   opcode(0xC7); /* C7 /0 */
6128   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6129   ins_pipe(ialu_mem_imm);
6130 %}
6131 
6132 // Store Short/Char Immediate
6133 instruct storeImmC0(memory mem, immI0 zero)
6134 %{
6135   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6136   match(Set mem (StoreC mem zero));
6137 
6138   ins_cost(125); // XXX
6139   format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
6140   ins_encode %{
6141     __ movw($mem$$Address, r12);
6142   %}
6143   ins_pipe(ialu_mem_reg);
6144 %}
6145 
6146 instruct storeImmI16(memory mem, immI16 src)
6147 %{
6148   predicate(UseStoreImmI16);
6149   match(Set mem (StoreC mem src));
6150 
6151   ins_cost(150);
6152   format %{ "movw    $mem, $src\t# short/char" %}
6153   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
6154   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
6155   ins_pipe(ialu_mem_imm);
6156 %}
6157 
6158 // Store Byte Immediate
6159 instruct storeImmB0(memory mem, immI0 zero)
6160 %{
6161   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6162   match(Set mem (StoreB mem zero));
6163 
6164   ins_cost(125); // XXX
6165   format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
6166   ins_encode %{
6167     __ movb($mem$$Address, r12);
6168   %}
6169   ins_pipe(ialu_mem_reg);
6170 %}
6171 
6172 instruct storeImmB(memory mem, immI8 src)
6173 %{
6174   match(Set mem (StoreB mem src));
6175 
6176   ins_cost(150); // XXX
6177   format %{ "movb    $mem, $src\t# byte" %}
6178   opcode(0xC6); /* C6 /0 */
6179   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6180   ins_pipe(ialu_mem_imm);
6181 %}
6182 
6183 // Store CMS card-mark Immediate
6184 instruct storeImmCM0_reg(memory mem, immI0 zero)
6185 %{
6186   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6187   match(Set mem (StoreCM mem zero));
6188 
6189   ins_cost(125); // XXX
6190   format %{ "movb    $mem, R12\t# CMS card-mark byte 0 (R12_heapbase==0)" %}
6191   ins_encode %{
6192     __ movb($mem$$Address, r12);
6193   %}
6194   ins_pipe(ialu_mem_reg);
6195 %}
6196 
6197 instruct storeImmCM0(memory mem, immI0 src)
6198 %{
6199   match(Set mem (StoreCM mem src));
6200 
6201   ins_cost(150); // XXX
6202   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
6203   opcode(0xC6); /* C6 /0 */
6204   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6205   ins_pipe(ialu_mem_imm);
6206 %}
6207 
6208 // Store Float
6209 instruct storeF(memory mem, regF src)
6210 %{
6211   match(Set mem (StoreF mem src));
6212 
6213   ins_cost(95); // XXX
6214   format %{ "movss   $mem, $src\t# float" %}
6215   ins_encode %{
6216     __ movflt($mem$$Address, $src$$XMMRegister);
6217   %}
6218   ins_pipe(pipe_slow); // XXX
6219 %}
6220 
6221 // Store immediate Float value (it is faster than store from XMM register)
6222 instruct storeF0(memory mem, immF0 zero)
6223 %{
6224   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6225   match(Set mem (StoreF mem zero));
6226 
6227   ins_cost(25); // XXX
6228   format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
6229   ins_encode %{
6230     __ movl($mem$$Address, r12);
6231   %}
6232   ins_pipe(ialu_mem_reg);
6233 %}
6234 
6235 instruct storeF_imm(memory mem, immF src)
6236 %{
6237   match(Set mem (StoreF mem src));
6238 
6239   ins_cost(50);
6240   format %{ "movl    $mem, $src\t# float" %}
6241   opcode(0xC7); /* C7 /0 */
6242   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6243   ins_pipe(ialu_mem_imm);
6244 %}
6245 
6246 // Store Double
6247 instruct storeD(memory mem, regD src)
6248 %{
6249   match(Set mem (StoreD mem src));
6250 
6251   ins_cost(95); // XXX
6252   format %{ "movsd   $mem, $src\t# double" %}
6253   ins_encode %{
6254     __ movdbl($mem$$Address, $src$$XMMRegister);
6255   %}
6256   ins_pipe(pipe_slow); // XXX
6257 %}
6258 
6259 // Store immediate double 0.0 (it is faster than store from XMM register)
6260 instruct storeD0_imm(memory mem, immD0 src)
6261 %{
6262   predicate(!UseCompressedOops || (CompressedOops::base() != NULL));
6263   match(Set mem (StoreD mem src));
6264 
6265   ins_cost(50);
6266   format %{ "movq    $mem, $src\t# double 0." %}
6267   opcode(0xC7); /* C7 /0 */
6268   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6269   ins_pipe(ialu_mem_imm);
6270 %}
6271 
6272 instruct storeD0(memory mem, immD0 zero)
6273 %{
6274   predicate(UseCompressedOops && (CompressedOops::base() == NULL) && (CompressedKlassPointers::base() == NULL));
6275   match(Set mem (StoreD mem zero));
6276 
6277   ins_cost(25); // XXX
6278   format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
6279   ins_encode %{
6280     __ movq($mem$$Address, r12);
6281   %}
6282   ins_pipe(ialu_mem_reg);
6283 %}
6284 
6285 instruct storeSSI(stackSlotI dst, rRegI src)
6286 %{
6287   match(Set dst src);
6288 
6289   ins_cost(100);
6290   format %{ "movl    $dst, $src\t# int stk" %}
6291   opcode(0x89);
6292   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
6293   ins_pipe( ialu_mem_reg );
6294 %}
6295 
6296 instruct storeSSL(stackSlotL dst, rRegL src)
6297 %{
6298   match(Set dst src);
6299 
6300   ins_cost(100);
6301   format %{ "movq    $dst, $src\t# long stk" %}
6302   opcode(0x89);
6303   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6304   ins_pipe(ialu_mem_reg);
6305 %}
6306 
6307 instruct storeSSP(stackSlotP dst, rRegP src)
6308 %{
6309   match(Set dst src);
6310 
6311   ins_cost(100);
6312   format %{ "movq    $dst, $src\t# ptr stk" %}
6313   opcode(0x89);
6314   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6315   ins_pipe(ialu_mem_reg);
6316 %}
6317 
6318 instruct storeSSF(stackSlotF dst, regF src)
6319 %{
6320   match(Set dst src);
6321 
6322   ins_cost(95); // XXX
6323   format %{ "movss   $dst, $src\t# float stk" %}
6324   ins_encode %{
6325     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
6326   %}
6327   ins_pipe(pipe_slow); // XXX
6328 %}
6329 
6330 instruct storeSSD(stackSlotD dst, regD src)
6331 %{
6332   match(Set dst src);
6333 
6334   ins_cost(95); // XXX
6335   format %{ "movsd   $dst, $src\t# double stk" %}
6336   ins_encode %{
6337     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
6338   %}
6339   ins_pipe(pipe_slow); // XXX
6340 %}
6341 
6342 instruct cacheWB(indirect addr)
6343 %{
6344   predicate(VM_Version::supports_data_cache_line_flush());
6345   match(CacheWB addr);
6346 
6347   ins_cost(100);
6348   format %{"cache wb $addr" %}
6349   ins_encode %{
6350     assert($addr->index_position() < 0, "should be");
6351     assert($addr$$disp == 0, "should be");
6352     __ cache_wb(Address($addr$$base$$Register, 0));
6353   %}
6354   ins_pipe(pipe_slow); // XXX
6355 %}
6356 
6357 instruct cacheWBPreSync()
6358 %{
6359   predicate(VM_Version::supports_data_cache_line_flush());
6360   match(CacheWBPreSync);
6361 
6362   ins_cost(100);
6363   format %{"cache wb presync" %}
6364   ins_encode %{
6365     __ cache_wbsync(true);
6366   %}
6367   ins_pipe(pipe_slow); // XXX
6368 %}
6369 
6370 instruct cacheWBPostSync()
6371 %{
6372   predicate(VM_Version::supports_data_cache_line_flush());
6373   match(CacheWBPostSync);
6374 
6375   ins_cost(100);
6376   format %{"cache wb postsync" %}
6377   ins_encode %{
6378     __ cache_wbsync(false);
6379   %}
6380   ins_pipe(pipe_slow); // XXX
6381 %}
6382 
6383 //----------BSWAP Instructions-------------------------------------------------
6384 instruct bytes_reverse_int(rRegI dst) %{
6385   match(Set dst (ReverseBytesI dst));
6386 
6387   format %{ "bswapl  $dst" %}
6388   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
6389   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
6390   ins_pipe( ialu_reg );
6391 %}
6392 
6393 instruct bytes_reverse_long(rRegL dst) %{
6394   match(Set dst (ReverseBytesL dst));
6395 
6396   format %{ "bswapq  $dst" %}
6397   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
6398   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
6399   ins_pipe( ialu_reg);
6400 %}
6401 
6402 instruct bytes_reverse_unsigned_short(rRegI dst, rFlagsReg cr) %{
6403   match(Set dst (ReverseBytesUS dst));
6404   effect(KILL cr);
6405 
6406   format %{ "bswapl  $dst\n\t"
6407             "shrl    $dst,16\n\t" %}
6408   ins_encode %{
6409     __ bswapl($dst$$Register);
6410     __ shrl($dst$$Register, 16);
6411   %}
6412   ins_pipe( ialu_reg );
6413 %}
6414 
6415 instruct bytes_reverse_short(rRegI dst, rFlagsReg cr) %{
6416   match(Set dst (ReverseBytesS dst));
6417   effect(KILL cr);
6418 
6419   format %{ "bswapl  $dst\n\t"
6420             "sar     $dst,16\n\t" %}
6421   ins_encode %{
6422     __ bswapl($dst$$Register);
6423     __ sarl($dst$$Register, 16);
6424   %}
6425   ins_pipe( ialu_reg );
6426 %}
6427 
6428 //---------- Zeros Count Instructions ------------------------------------------
6429 
6430 instruct countLeadingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6431   predicate(UseCountLeadingZerosInstruction);
6432   match(Set dst (CountLeadingZerosI src));
6433   effect(KILL cr);
6434 
6435   format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
6436   ins_encode %{
6437     __ lzcntl($dst$$Register, $src$$Register);
6438   %}
6439   ins_pipe(ialu_reg);
6440 %}
6441 
6442 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, rFlagsReg cr) %{
6443   predicate(!UseCountLeadingZerosInstruction);
6444   match(Set dst (CountLeadingZerosI src));
6445   effect(KILL cr);
6446 
6447   format %{ "bsrl    $dst, $src\t# count leading zeros (int)\n\t"
6448             "jnz     skip\n\t"
6449             "movl    $dst, -1\n"
6450       "skip:\n\t"
6451             "negl    $dst\n\t"
6452             "addl    $dst, 31" %}
6453   ins_encode %{
6454     Register Rdst = $dst$$Register;
6455     Register Rsrc = $src$$Register;
6456     Label skip;
6457     __ bsrl(Rdst, Rsrc);
6458     __ jccb(Assembler::notZero, skip);
6459     __ movl(Rdst, -1);
6460     __ bind(skip);
6461     __ negl(Rdst);
6462     __ addl(Rdst, BitsPerInt - 1);
6463   %}
6464   ins_pipe(ialu_reg);
6465 %}
6466 
6467 instruct countLeadingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6468   predicate(UseCountLeadingZerosInstruction);
6469   match(Set dst (CountLeadingZerosL src));
6470   effect(KILL cr);
6471 
6472   format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
6473   ins_encode %{
6474     __ lzcntq($dst$$Register, $src$$Register);
6475   %}
6476   ins_pipe(ialu_reg);
6477 %}
6478 
6479 instruct countLeadingZerosL_bsr(rRegI dst, rRegL src, rFlagsReg cr) %{
6480   predicate(!UseCountLeadingZerosInstruction);
6481   match(Set dst (CountLeadingZerosL src));
6482   effect(KILL cr);
6483 
6484   format %{ "bsrq    $dst, $src\t# count leading zeros (long)\n\t"
6485             "jnz     skip\n\t"
6486             "movl    $dst, -1\n"
6487       "skip:\n\t"
6488             "negl    $dst\n\t"
6489             "addl    $dst, 63" %}
6490   ins_encode %{
6491     Register Rdst = $dst$$Register;
6492     Register Rsrc = $src$$Register;
6493     Label skip;
6494     __ bsrq(Rdst, Rsrc);
6495     __ jccb(Assembler::notZero, skip);
6496     __ movl(Rdst, -1);
6497     __ bind(skip);
6498     __ negl(Rdst);
6499     __ addl(Rdst, BitsPerLong - 1);
6500   %}
6501   ins_pipe(ialu_reg);
6502 %}
6503 
6504 instruct countTrailingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6505   predicate(UseCountTrailingZerosInstruction);
6506   match(Set dst (CountTrailingZerosI src));
6507   effect(KILL cr);
6508 
6509   format %{ "tzcntl    $dst, $src\t# count trailing zeros (int)" %}
6510   ins_encode %{
6511     __ tzcntl($dst$$Register, $src$$Register);
6512   %}
6513   ins_pipe(ialu_reg);
6514 %}
6515 
6516 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, rFlagsReg cr) %{
6517   predicate(!UseCountTrailingZerosInstruction);
6518   match(Set dst (CountTrailingZerosI src));
6519   effect(KILL cr);
6520 
6521   format %{ "bsfl    $dst, $src\t# count trailing zeros (int)\n\t"
6522             "jnz     done\n\t"
6523             "movl    $dst, 32\n"
6524       "done:" %}
6525   ins_encode %{
6526     Register Rdst = $dst$$Register;
6527     Label done;
6528     __ bsfl(Rdst, $src$$Register);
6529     __ jccb(Assembler::notZero, done);
6530     __ movl(Rdst, BitsPerInt);
6531     __ bind(done);
6532   %}
6533   ins_pipe(ialu_reg);
6534 %}
6535 
6536 instruct countTrailingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6537   predicate(UseCountTrailingZerosInstruction);
6538   match(Set dst (CountTrailingZerosL src));
6539   effect(KILL cr);
6540 
6541   format %{ "tzcntq    $dst, $src\t# count trailing zeros (long)" %}
6542   ins_encode %{
6543     __ tzcntq($dst$$Register, $src$$Register);
6544   %}
6545   ins_pipe(ialu_reg);
6546 %}
6547 
6548 instruct countTrailingZerosL_bsf(rRegI dst, rRegL src, rFlagsReg cr) %{
6549   predicate(!UseCountTrailingZerosInstruction);
6550   match(Set dst (CountTrailingZerosL src));
6551   effect(KILL cr);
6552 
6553   format %{ "bsfq    $dst, $src\t# count trailing zeros (long)\n\t"
6554             "jnz     done\n\t"
6555             "movl    $dst, 64\n"
6556       "done:" %}
6557   ins_encode %{
6558     Register Rdst = $dst$$Register;
6559     Label done;
6560     __ bsfq(Rdst, $src$$Register);
6561     __ jccb(Assembler::notZero, done);
6562     __ movl(Rdst, BitsPerLong);
6563     __ bind(done);
6564   %}
6565   ins_pipe(ialu_reg);
6566 %}
6567 
6568 
6569 //---------- Population Count Instructions -------------------------------------
6570 
6571 instruct popCountI(rRegI dst, rRegI src, rFlagsReg cr) %{
6572   predicate(UsePopCountInstruction);
6573   match(Set dst (PopCountI src));
6574   effect(KILL cr);
6575 
6576   format %{ "popcnt  $dst, $src" %}
6577   ins_encode %{
6578     __ popcntl($dst$$Register, $src$$Register);
6579   %}
6580   ins_pipe(ialu_reg);
6581 %}
6582 
6583 instruct popCountI_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6584   predicate(UsePopCountInstruction);
6585   match(Set dst (PopCountI (LoadI mem)));
6586   effect(KILL cr);
6587 
6588   format %{ "popcnt  $dst, $mem" %}
6589   ins_encode %{
6590     __ popcntl($dst$$Register, $mem$$Address);
6591   %}
6592   ins_pipe(ialu_reg);
6593 %}
6594 
6595 // Note: Long.bitCount(long) returns an int.
6596 instruct popCountL(rRegI dst, rRegL src, rFlagsReg cr) %{
6597   predicate(UsePopCountInstruction);
6598   match(Set dst (PopCountL src));
6599   effect(KILL cr);
6600 
6601   format %{ "popcnt  $dst, $src" %}
6602   ins_encode %{
6603     __ popcntq($dst$$Register, $src$$Register);
6604   %}
6605   ins_pipe(ialu_reg);
6606 %}
6607 
6608 // Note: Long.bitCount(long) returns an int.
6609 instruct popCountL_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6610   predicate(UsePopCountInstruction);
6611   match(Set dst (PopCountL (LoadL mem)));
6612   effect(KILL cr);
6613 
6614   format %{ "popcnt  $dst, $mem" %}
6615   ins_encode %{
6616     __ popcntq($dst$$Register, $mem$$Address);
6617   %}
6618   ins_pipe(ialu_reg);
6619 %}
6620 
6621 
6622 //----------MemBar Instructions-----------------------------------------------
6623 // Memory barrier flavors
6624 
6625 instruct membar_acquire()
6626 %{
6627   match(MemBarAcquire);
6628   match(LoadFence);
6629   ins_cost(0);
6630 
6631   size(0);
6632   format %{ "MEMBAR-acquire ! (empty encoding)" %}
6633   ins_encode();
6634   ins_pipe(empty);
6635 %}
6636 
6637 instruct membar_acquire_lock()
6638 %{
6639   match(MemBarAcquireLock);
6640   ins_cost(0);
6641 
6642   size(0);
6643   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6644   ins_encode();
6645   ins_pipe(empty);
6646 %}
6647 
6648 instruct membar_release()
6649 %{
6650   match(MemBarRelease);
6651   match(StoreFence);
6652   ins_cost(0);
6653 
6654   size(0);
6655   format %{ "MEMBAR-release ! (empty encoding)" %}
6656   ins_encode();
6657   ins_pipe(empty);
6658 %}
6659 
6660 instruct membar_release_lock()
6661 %{
6662   match(MemBarReleaseLock);
6663   ins_cost(0);
6664 
6665   size(0);
6666   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6667   ins_encode();
6668   ins_pipe(empty);
6669 %}
6670 
6671 instruct membar_volatile(rFlagsReg cr) %{
6672   match(MemBarVolatile);
6673   effect(KILL cr);
6674   ins_cost(400);
6675 
6676   format %{
6677     $$template
6678     $$emit$$"lock addl [rsp + #0], 0\t! membar_volatile"
6679   %}
6680   ins_encode %{
6681     __ membar(Assembler::StoreLoad);
6682   %}
6683   ins_pipe(pipe_slow);
6684 %}
6685 
6686 instruct unnecessary_membar_volatile()
6687 %{
6688   match(MemBarVolatile);
6689   predicate(Matcher::post_store_load_barrier(n));
6690   ins_cost(0);
6691 
6692   size(0);
6693   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6694   ins_encode();
6695   ins_pipe(empty);
6696 %}
6697 
6698 instruct membar_storestore() %{
6699   match(MemBarStoreStore);
6700   ins_cost(0);
6701 
6702   size(0);
6703   format %{ "MEMBAR-storestore (empty encoding)" %}
6704   ins_encode( );
6705   ins_pipe(empty);
6706 %}
6707 
6708 //----------Move Instructions--------------------------------------------------
6709 
6710 instruct castX2P(rRegP dst, rRegL src)
6711 %{
6712   match(Set dst (CastX2P src));
6713 
6714   format %{ "movq    $dst, $src\t# long->ptr" %}
6715   ins_encode %{
6716     if ($dst$$reg != $src$$reg) {
6717       __ movptr($dst$$Register, $src$$Register);
6718     }
6719   %}
6720   ins_pipe(ialu_reg_reg); // XXX
6721 %}
6722 
6723 instruct castP2X(rRegL dst, rRegP src)
6724 %{
6725   match(Set dst (CastP2X src));
6726 
6727   format %{ "movq    $dst, $src\t# ptr -> long" %}
6728   ins_encode %{
6729     if ($dst$$reg != $src$$reg) {
6730       __ movptr($dst$$Register, $src$$Register);
6731     }
6732   %}
6733   ins_pipe(ialu_reg_reg); // XXX
6734 %}
6735 
6736 // Convert oop into int for vectors alignment masking
6737 instruct convP2I(rRegI dst, rRegP src)
6738 %{
6739   match(Set dst (ConvL2I (CastP2X src)));
6740 
6741   format %{ "movl    $dst, $src\t# ptr -> int" %}
6742   ins_encode %{
6743     __ movl($dst$$Register, $src$$Register);
6744   %}
6745   ins_pipe(ialu_reg_reg); // XXX
6746 %}
6747 
6748 // Convert compressed oop into int for vectors alignment masking
6749 // in case of 32bit oops (heap < 4Gb).
6750 instruct convN2I(rRegI dst, rRegN src)
6751 %{
6752   predicate(CompressedOops::shift() == 0);
6753   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6754 
6755   format %{ "movl    $dst, $src\t# compressed ptr -> int" %}
6756   ins_encode %{
6757     __ movl($dst$$Register, $src$$Register);
6758   %}
6759   ins_pipe(ialu_reg_reg); // XXX
6760 %}
6761 
6762 // Convert oop pointer into compressed form
6763 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
6764   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6765   match(Set dst (EncodeP src));
6766   effect(KILL cr);
6767   format %{ "encode_heap_oop $dst,$src" %}
6768   ins_encode %{
6769     Register s = $src$$Register;
6770     Register d = $dst$$Register;
6771     if (s != d) {
6772       __ movq(d, s);
6773     }
6774     __ encode_heap_oop(d);
6775   %}
6776   ins_pipe(ialu_reg_long);
6777 %}
6778 
6779 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6780   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6781   match(Set dst (EncodeP src));
6782   effect(KILL cr);
6783   format %{ "encode_heap_oop_not_null $dst,$src" %}
6784   ins_encode %{
6785     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
6786   %}
6787   ins_pipe(ialu_reg_long);
6788 %}
6789 
6790 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
6791   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
6792             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
6793   match(Set dst (DecodeN src));
6794   effect(KILL cr);
6795   format %{ "decode_heap_oop $dst,$src" %}
6796   ins_encode %{
6797     Register s = $src$$Register;
6798     Register d = $dst$$Register;
6799     if (s != d) {
6800       __ movq(d, s);
6801     }
6802     __ decode_heap_oop(d);
6803   %}
6804   ins_pipe(ialu_reg_long);
6805 %}
6806 
6807 instruct decodeHeapOop_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6808   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
6809             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
6810   match(Set dst (DecodeN src));
6811   effect(KILL cr);
6812   format %{ "decode_heap_oop_not_null $dst,$src" %}
6813   ins_encode %{
6814     Register s = $src$$Register;
6815     Register d = $dst$$Register;
6816     if (s != d) {
6817       __ decode_heap_oop_not_null(d, s);
6818     } else {
6819       __ decode_heap_oop_not_null(d);
6820     }
6821   %}
6822   ins_pipe(ialu_reg_long);
6823 %}
6824 
6825 instruct encodeKlass_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6826   match(Set dst (EncodePKlass src));
6827   effect(KILL cr);
6828   format %{ "encode_klass_not_null $dst,$src" %}
6829   ins_encode %{
6830     __ encode_klass_not_null($dst$$Register, $src$$Register);
6831   %}
6832   ins_pipe(ialu_reg_long);
6833 %}
6834 
6835 instruct decodeKlass_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6836   match(Set dst (DecodeNKlass src));
6837   effect(KILL cr);
6838   format %{ "decode_klass_not_null $dst,$src" %}
6839   ins_encode %{
6840     Register s = $src$$Register;
6841     Register d = $dst$$Register;
6842     if (s != d) {
6843       __ decode_klass_not_null(d, s);
6844     } else {
6845       __ decode_klass_not_null(d);
6846     }
6847   %}
6848   ins_pipe(ialu_reg_long);
6849 %}
6850 
6851 
6852 //----------Conditional Move---------------------------------------------------
6853 // Jump
6854 // dummy instruction for generating temp registers
6855 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
6856   match(Jump (LShiftL switch_val shift));
6857   ins_cost(350);
6858   predicate(false);
6859   effect(TEMP dest);
6860 
6861   format %{ "leaq    $dest, [$constantaddress]\n\t"
6862             "jmp     [$dest + $switch_val << $shift]\n\t" %}
6863   ins_encode %{
6864     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6865     // to do that and the compiler is using that register as one it can allocate.
6866     // So we build it all by hand.
6867     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
6868     // ArrayAddress dispatch(table, index);
6869     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant);
6870     __ lea($dest$$Register, $constantaddress);
6871     __ jmp(dispatch);
6872   %}
6873   ins_pipe(pipe_jmp);
6874 %}
6875 
6876 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
6877   match(Jump (AddL (LShiftL switch_val shift) offset));
6878   ins_cost(350);
6879   effect(TEMP dest);
6880 
6881   format %{ "leaq    $dest, [$constantaddress]\n\t"
6882             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
6883   ins_encode %{
6884     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6885     // to do that and the compiler is using that register as one it can allocate.
6886     // So we build it all by hand.
6887     // Address index(noreg, switch_reg, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6888     // ArrayAddress dispatch(table, index);
6889     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6890     __ lea($dest$$Register, $constantaddress);
6891     __ jmp(dispatch);
6892   %}
6893   ins_pipe(pipe_jmp);
6894 %}
6895 
6896 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
6897   match(Jump switch_val);
6898   ins_cost(350);
6899   effect(TEMP dest);
6900 
6901   format %{ "leaq    $dest, [$constantaddress]\n\t"
6902             "jmp     [$dest + $switch_val]\n\t" %}
6903   ins_encode %{
6904     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6905     // to do that and the compiler is using that register as one it can allocate.
6906     // So we build it all by hand.
6907     // Address index(noreg, switch_reg, Address::times_1);
6908     // ArrayAddress dispatch(table, index);
6909     Address dispatch($dest$$Register, $switch_val$$Register, Address::times_1);
6910     __ lea($dest$$Register, $constantaddress);
6911     __ jmp(dispatch);
6912   %}
6913   ins_pipe(pipe_jmp);
6914 %}
6915 
6916 // Conditional move
6917 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
6918 %{
6919   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6920 
6921   ins_cost(200); // XXX
6922   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6923   opcode(0x0F, 0x40);
6924   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6925   ins_pipe(pipe_cmov_reg);
6926 %}
6927 
6928 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
6929   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6930 
6931   ins_cost(200); // XXX
6932   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6933   opcode(0x0F, 0x40);
6934   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6935   ins_pipe(pipe_cmov_reg);
6936 %}
6937 
6938 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
6939   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6940   ins_cost(200);
6941   expand %{
6942     cmovI_regU(cop, cr, dst, src);
6943   %}
6944 %}
6945 
6946 // Conditional move
6947 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
6948   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6949 
6950   ins_cost(250); // XXX
6951   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6952   opcode(0x0F, 0x40);
6953   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6954   ins_pipe(pipe_cmov_mem);
6955 %}
6956 
6957 // Conditional move
6958 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
6959 %{
6960   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6961 
6962   ins_cost(250); // XXX
6963   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6964   opcode(0x0F, 0x40);
6965   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6966   ins_pipe(pipe_cmov_mem);
6967 %}
6968 
6969 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
6970   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6971   ins_cost(250);
6972   expand %{
6973     cmovI_memU(cop, cr, dst, src);
6974   %}
6975 %}
6976 
6977 // Conditional move
6978 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
6979 %{
6980   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6981 
6982   ins_cost(200); // XXX
6983   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
6984   opcode(0x0F, 0x40);
6985   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6986   ins_pipe(pipe_cmov_reg);
6987 %}
6988 
6989 // Conditional move
6990 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
6991 %{
6992   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6993 
6994   ins_cost(200); // XXX
6995   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
6996   opcode(0x0F, 0x40);
6997   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6998   ins_pipe(pipe_cmov_reg);
6999 %}
7000 
7001 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
7002   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
7003   ins_cost(200);
7004   expand %{
7005     cmovN_regU(cop, cr, dst, src);
7006   %}
7007 %}
7008 
7009 // Conditional move
7010 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
7011 %{
7012   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7013 
7014   ins_cost(200); // XXX
7015   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
7016   opcode(0x0F, 0x40);
7017   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7018   ins_pipe(pipe_cmov_reg);  // XXX
7019 %}
7020 
7021 // Conditional move
7022 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
7023 %{
7024   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7025 
7026   ins_cost(200); // XXX
7027   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
7028   opcode(0x0F, 0x40);
7029   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7030   ins_pipe(pipe_cmov_reg); // XXX
7031 %}
7032 
7033 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
7034   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7035   ins_cost(200);
7036   expand %{
7037     cmovP_regU(cop, cr, dst, src);
7038   %}
7039 %}
7040 
7041 // DISABLED: Requires the ADLC to emit a bottom_type call that
7042 // correctly meets the two pointer arguments; one is an incoming
7043 // register but the other is a memory operand.  ALSO appears to
7044 // be buggy with implicit null checks.
7045 //
7046 //// Conditional move
7047 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
7048 //%{
7049 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7050 //  ins_cost(250);
7051 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7052 //  opcode(0x0F,0x40);
7053 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
7054 //  ins_pipe( pipe_cmov_mem );
7055 //%}
7056 //
7057 //// Conditional move
7058 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
7059 //%{
7060 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7061 //  ins_cost(250);
7062 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7063 //  opcode(0x0F,0x40);
7064 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
7065 //  ins_pipe( pipe_cmov_mem );
7066 //%}
7067 
7068 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
7069 %{
7070   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7071 
7072   ins_cost(200); // XXX
7073   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7074   opcode(0x0F, 0x40);
7075   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7076   ins_pipe(pipe_cmov_reg);  // XXX
7077 %}
7078 
7079 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
7080 %{
7081   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7082 
7083   ins_cost(200); // XXX
7084   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7085   opcode(0x0F, 0x40);
7086   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7087   ins_pipe(pipe_cmov_mem);  // XXX
7088 %}
7089 
7090 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
7091 %{
7092   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7093 
7094   ins_cost(200); // XXX
7095   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7096   opcode(0x0F, 0x40);
7097   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7098   ins_pipe(pipe_cmov_reg); // XXX
7099 %}
7100 
7101 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
7102   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7103   ins_cost(200);
7104   expand %{
7105     cmovL_regU(cop, cr, dst, src);
7106   %}
7107 %}
7108 
7109 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
7110 %{
7111   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7112 
7113   ins_cost(200); // XXX
7114   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7115   opcode(0x0F, 0x40);
7116   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7117   ins_pipe(pipe_cmov_mem); // XXX
7118 %}
7119 
7120 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
7121   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7122   ins_cost(200);
7123   expand %{
7124     cmovL_memU(cop, cr, dst, src);
7125   %}
7126 %}
7127 
7128 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
7129 %{
7130   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7131 
7132   ins_cost(200); // XXX
7133   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7134             "movss     $dst, $src\n"
7135     "skip:" %}
7136   ins_encode %{
7137     Label Lskip;
7138     // Invert sense of branch from sense of CMOV
7139     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7140     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7141     __ bind(Lskip);
7142   %}
7143   ins_pipe(pipe_slow);
7144 %}
7145 
7146 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
7147 // %{
7148 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
7149 
7150 //   ins_cost(200); // XXX
7151 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7152 //             "movss     $dst, $src\n"
7153 //     "skip:" %}
7154 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
7155 //   ins_pipe(pipe_slow);
7156 // %}
7157 
7158 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
7159 %{
7160   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7161 
7162   ins_cost(200); // XXX
7163   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
7164             "movss     $dst, $src\n"
7165     "skip:" %}
7166   ins_encode %{
7167     Label Lskip;
7168     // Invert sense of branch from sense of CMOV
7169     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7170     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7171     __ bind(Lskip);
7172   %}
7173   ins_pipe(pipe_slow);
7174 %}
7175 
7176 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
7177   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7178   ins_cost(200);
7179   expand %{
7180     cmovF_regU(cop, cr, dst, src);
7181   %}
7182 %}
7183 
7184 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
7185 %{
7186   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7187 
7188   ins_cost(200); // XXX
7189   format %{ "jn$cop    skip\t# signed cmove double\n\t"
7190             "movsd     $dst, $src\n"
7191     "skip:" %}
7192   ins_encode %{
7193     Label Lskip;
7194     // Invert sense of branch from sense of CMOV
7195     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7196     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7197     __ bind(Lskip);
7198   %}
7199   ins_pipe(pipe_slow);
7200 %}
7201 
7202 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
7203 %{
7204   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7205 
7206   ins_cost(200); // XXX
7207   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
7208             "movsd     $dst, $src\n"
7209     "skip:" %}
7210   ins_encode %{
7211     Label Lskip;
7212     // Invert sense of branch from sense of CMOV
7213     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7214     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7215     __ bind(Lskip);
7216   %}
7217   ins_pipe(pipe_slow);
7218 %}
7219 
7220 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
7221   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7222   ins_cost(200);
7223   expand %{
7224     cmovD_regU(cop, cr, dst, src);
7225   %}
7226 %}
7227 
7228 //----------Arithmetic Instructions--------------------------------------------
7229 //----------Addition Instructions----------------------------------------------
7230 
7231 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7232 %{
7233   match(Set dst (AddI dst src));
7234   effect(KILL cr);
7235 
7236   format %{ "addl    $dst, $src\t# int" %}
7237   opcode(0x03);
7238   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7239   ins_pipe(ialu_reg_reg);
7240 %}
7241 
7242 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7243 %{
7244   match(Set dst (AddI dst src));
7245   effect(KILL cr);
7246 
7247   format %{ "addl    $dst, $src\t# int" %}
7248   opcode(0x81, 0x00); /* /0 id */
7249   ins_encode(OpcSErm(dst, src), Con8or32(src));
7250   ins_pipe( ialu_reg );
7251 %}
7252 
7253 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7254 %{
7255   match(Set dst (AddI dst (LoadI src)));
7256   effect(KILL cr);
7257 
7258   ins_cost(125); // XXX
7259   format %{ "addl    $dst, $src\t# int" %}
7260   opcode(0x03);
7261   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7262   ins_pipe(ialu_reg_mem);
7263 %}
7264 
7265 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7266 %{
7267   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7268   effect(KILL cr);
7269 
7270   ins_cost(150); // XXX
7271   format %{ "addl    $dst, $src\t# int" %}
7272   opcode(0x01); /* Opcode 01 /r */
7273   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7274   ins_pipe(ialu_mem_reg);
7275 %}
7276 
7277 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
7278 %{
7279   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7280   effect(KILL cr);
7281 
7282   ins_cost(125); // XXX
7283   format %{ "addl    $dst, $src\t# int" %}
7284   opcode(0x81); /* Opcode 81 /0 id */
7285   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7286   ins_pipe(ialu_mem_imm);
7287 %}
7288 
7289 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
7290 %{
7291   predicate(UseIncDec);
7292   match(Set dst (AddI dst src));
7293   effect(KILL cr);
7294 
7295   format %{ "incl    $dst\t# int" %}
7296   opcode(0xFF, 0x00); // FF /0
7297   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7298   ins_pipe(ialu_reg);
7299 %}
7300 
7301 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
7302 %{
7303   predicate(UseIncDec);
7304   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7305   effect(KILL cr);
7306 
7307   ins_cost(125); // XXX
7308   format %{ "incl    $dst\t# int" %}
7309   opcode(0xFF); /* Opcode FF /0 */
7310   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
7311   ins_pipe(ialu_mem_imm);
7312 %}
7313 
7314 // XXX why does that use AddI
7315 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
7316 %{
7317   predicate(UseIncDec);
7318   match(Set dst (AddI dst src));
7319   effect(KILL cr);
7320 
7321   format %{ "decl    $dst\t# int" %}
7322   opcode(0xFF, 0x01); // FF /1
7323   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7324   ins_pipe(ialu_reg);
7325 %}
7326 
7327 // XXX why does that use AddI
7328 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
7329 %{
7330   predicate(UseIncDec);
7331   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7332   effect(KILL cr);
7333 
7334   ins_cost(125); // XXX
7335   format %{ "decl    $dst\t# int" %}
7336   opcode(0xFF); /* Opcode FF /1 */
7337   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
7338   ins_pipe(ialu_mem_imm);
7339 %}
7340 
7341 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
7342 %{
7343   match(Set dst (AddI src0 src1));
7344 
7345   ins_cost(110);
7346   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
7347   opcode(0x8D); /* 0x8D /r */
7348   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7349   ins_pipe(ialu_reg_reg);
7350 %}
7351 
7352 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7353 %{
7354   match(Set dst (AddL dst src));
7355   effect(KILL cr);
7356 
7357   format %{ "addq    $dst, $src\t# long" %}
7358   opcode(0x03);
7359   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7360   ins_pipe(ialu_reg_reg);
7361 %}
7362 
7363 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
7364 %{
7365   match(Set dst (AddL dst src));
7366   effect(KILL cr);
7367 
7368   format %{ "addq    $dst, $src\t# long" %}
7369   opcode(0x81, 0x00); /* /0 id */
7370   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7371   ins_pipe( ialu_reg );
7372 %}
7373 
7374 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7375 %{
7376   match(Set dst (AddL dst (LoadL src)));
7377   effect(KILL cr);
7378 
7379   ins_cost(125); // XXX
7380   format %{ "addq    $dst, $src\t# long" %}
7381   opcode(0x03);
7382   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7383   ins_pipe(ialu_reg_mem);
7384 %}
7385 
7386 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7387 %{
7388   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7389   effect(KILL cr);
7390 
7391   ins_cost(150); // XXX
7392   format %{ "addq    $dst, $src\t# long" %}
7393   opcode(0x01); /* Opcode 01 /r */
7394   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7395   ins_pipe(ialu_mem_reg);
7396 %}
7397 
7398 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7399 %{
7400   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7401   effect(KILL cr);
7402 
7403   ins_cost(125); // XXX
7404   format %{ "addq    $dst, $src\t# long" %}
7405   opcode(0x81); /* Opcode 81 /0 id */
7406   ins_encode(REX_mem_wide(dst),
7407              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7408   ins_pipe(ialu_mem_imm);
7409 %}
7410 
7411 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
7412 %{
7413   predicate(UseIncDec);
7414   match(Set dst (AddL dst src));
7415   effect(KILL cr);
7416 
7417   format %{ "incq    $dst\t# long" %}
7418   opcode(0xFF, 0x00); // FF /0
7419   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7420   ins_pipe(ialu_reg);
7421 %}
7422 
7423 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
7424 %{
7425   predicate(UseIncDec);
7426   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7427   effect(KILL cr);
7428 
7429   ins_cost(125); // XXX
7430   format %{ "incq    $dst\t# long" %}
7431   opcode(0xFF); /* Opcode FF /0 */
7432   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
7433   ins_pipe(ialu_mem_imm);
7434 %}
7435 
7436 // XXX why does that use AddL
7437 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
7438 %{
7439   predicate(UseIncDec);
7440   match(Set dst (AddL dst src));
7441   effect(KILL cr);
7442 
7443   format %{ "decq    $dst\t# long" %}
7444   opcode(0xFF, 0x01); // FF /1
7445   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7446   ins_pipe(ialu_reg);
7447 %}
7448 
7449 // XXX why does that use AddL
7450 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
7451 %{
7452   predicate(UseIncDec);
7453   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7454   effect(KILL cr);
7455 
7456   ins_cost(125); // XXX
7457   format %{ "decq    $dst\t# long" %}
7458   opcode(0xFF); /* Opcode FF /1 */
7459   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
7460   ins_pipe(ialu_mem_imm);
7461 %}
7462 
7463 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
7464 %{
7465   match(Set dst (AddL src0 src1));
7466 
7467   ins_cost(110);
7468   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
7469   opcode(0x8D); /* 0x8D /r */
7470   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7471   ins_pipe(ialu_reg_reg);
7472 %}
7473 
7474 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
7475 %{
7476   match(Set dst (AddP dst src));
7477   effect(KILL cr);
7478 
7479   format %{ "addq    $dst, $src\t# ptr" %}
7480   opcode(0x03);
7481   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7482   ins_pipe(ialu_reg_reg);
7483 %}
7484 
7485 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
7486 %{
7487   match(Set dst (AddP dst src));
7488   effect(KILL cr);
7489 
7490   format %{ "addq    $dst, $src\t# ptr" %}
7491   opcode(0x81, 0x00); /* /0 id */
7492   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7493   ins_pipe( ialu_reg );
7494 %}
7495 
7496 // XXX addP mem ops ????
7497 
7498 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
7499 %{
7500   match(Set dst (AddP src0 src1));
7501 
7502   ins_cost(110);
7503   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
7504   opcode(0x8D); /* 0x8D /r */
7505   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
7506   ins_pipe(ialu_reg_reg);
7507 %}
7508 
7509 instruct checkCastPP(rRegP dst)
7510 %{
7511   match(Set dst (CheckCastPP dst));
7512 
7513   size(0);
7514   format %{ "# checkcastPP of $dst" %}
7515   ins_encode(/* empty encoding */);
7516   ins_pipe(empty);
7517 %}
7518 
7519 instruct castPP(rRegP dst)
7520 %{
7521   match(Set dst (CastPP dst));
7522 
7523   size(0);
7524   format %{ "# castPP of $dst" %}
7525   ins_encode(/* empty encoding */);
7526   ins_pipe(empty);
7527 %}
7528 
7529 instruct castII(rRegI dst)
7530 %{
7531   match(Set dst (CastII dst));
7532 
7533   size(0);
7534   format %{ "# castII of $dst" %}
7535   ins_encode(/* empty encoding */);
7536   ins_cost(0);
7537   ins_pipe(empty);
7538 %}
7539 
7540 instruct castLL(rRegL dst)
7541 %{
7542   match(Set dst (CastLL dst));
7543 
7544   size(0);
7545   format %{ "# castLL of $dst" %}
7546   ins_encode(/* empty encoding */);
7547   ins_cost(0);
7548   ins_pipe(empty);
7549 %}
7550 
7551 // LoadP-locked same as a regular LoadP when used with compare-swap
7552 instruct loadPLocked(rRegP dst, memory mem)
7553 %{
7554   match(Set dst (LoadPLocked mem));
7555 
7556   ins_cost(125); // XXX
7557   format %{ "movq    $dst, $mem\t# ptr locked" %}
7558   opcode(0x8B);
7559   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7560   ins_pipe(ialu_reg_mem); // XXX
7561 %}
7562 
7563 // Conditional-store of the updated heap-top.
7564 // Used during allocation of the shared heap.
7565 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7566 
7567 instruct storePConditional(memory heap_top_ptr,
7568                            rax_RegP oldval, rRegP newval,
7569                            rFlagsReg cr)
7570 %{
7571   predicate(n->as_LoadStore()->barrier_data() == 0);
7572   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7573 
7574   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
7575             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
7576   opcode(0x0F, 0xB1);
7577   ins_encode(lock_prefix,
7578              REX_reg_mem_wide(newval, heap_top_ptr),
7579              OpcP, OpcS,
7580              reg_mem(newval, heap_top_ptr));
7581   ins_pipe(pipe_cmpxchg);
7582 %}
7583 
7584 // Conditional-store of an int value.
7585 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7586 instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
7587 %{
7588   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7589   effect(KILL oldval);
7590 
7591   format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7592   opcode(0x0F, 0xB1);
7593   ins_encode(lock_prefix,
7594              REX_reg_mem(newval, mem),
7595              OpcP, OpcS,
7596              reg_mem(newval, mem));
7597   ins_pipe(pipe_cmpxchg);
7598 %}
7599 
7600 // Conditional-store of a long value.
7601 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7602 instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
7603 %{
7604   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7605   effect(KILL oldval);
7606 
7607   format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7608   opcode(0x0F, 0xB1);
7609   ins_encode(lock_prefix,
7610              REX_reg_mem_wide(newval, mem),
7611              OpcP, OpcS,
7612              reg_mem(newval, mem));
7613   ins_pipe(pipe_cmpxchg);
7614 %}
7615 
7616 
7617 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7618 instruct compareAndSwapP(rRegI res,
7619                          memory mem_ptr,
7620                          rax_RegP oldval, rRegP newval,
7621                          rFlagsReg cr)
7622 %{
7623   predicate(VM_Version::supports_cx8() && n->as_LoadStore()->barrier_data() == 0);
7624   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7625   match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
7626   effect(KILL cr, KILL oldval);
7627 
7628   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7629             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7630             "sete    $res\n\t"
7631             "movzbl  $res, $res" %}
7632   opcode(0x0F, 0xB1);
7633   ins_encode(lock_prefix,
7634              REX_reg_mem_wide(newval, mem_ptr),
7635              OpcP, OpcS,
7636              reg_mem(newval, mem_ptr),
7637              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7638              REX_reg_breg(res, res), // movzbl
7639              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7640   ins_pipe( pipe_cmpxchg );
7641 %}
7642 
7643 instruct compareAndSwapL(rRegI res,
7644                          memory mem_ptr,
7645                          rax_RegL oldval, rRegL newval,
7646                          rFlagsReg cr)
7647 %{
7648   predicate(VM_Version::supports_cx8());
7649   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7650   match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
7651   effect(KILL cr, KILL oldval);
7652 
7653   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7654             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7655             "sete    $res\n\t"
7656             "movzbl  $res, $res" %}
7657   opcode(0x0F, 0xB1);
7658   ins_encode(lock_prefix,
7659              REX_reg_mem_wide(newval, mem_ptr),
7660              OpcP, OpcS,
7661              reg_mem(newval, mem_ptr),
7662              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7663              REX_reg_breg(res, res), // movzbl
7664              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7665   ins_pipe( pipe_cmpxchg );
7666 %}
7667 
7668 instruct compareAndSwapI(rRegI res,
7669                          memory mem_ptr,
7670                          rax_RegI oldval, rRegI newval,
7671                          rFlagsReg cr)
7672 %{
7673   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7674   match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
7675   effect(KILL cr, KILL oldval);
7676 
7677   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7678             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7679             "sete    $res\n\t"
7680             "movzbl  $res, $res" %}
7681   opcode(0x0F, 0xB1);
7682   ins_encode(lock_prefix,
7683              REX_reg_mem(newval, mem_ptr),
7684              OpcP, OpcS,
7685              reg_mem(newval, mem_ptr),
7686              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7687              REX_reg_breg(res, res), // movzbl
7688              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7689   ins_pipe( pipe_cmpxchg );
7690 %}
7691 
7692 instruct compareAndSwapB(rRegI res,
7693                          memory mem_ptr,
7694                          rax_RegI oldval, rRegI newval,
7695                          rFlagsReg cr)
7696 %{
7697   match(Set res (CompareAndSwapB mem_ptr (Binary oldval newval)));
7698   match(Set res (WeakCompareAndSwapB mem_ptr (Binary oldval newval)));
7699   effect(KILL cr, KILL oldval);
7700 
7701   format %{ "cmpxchgb $mem_ptr,$newval\t# "
7702             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7703             "sete    $res\n\t"
7704             "movzbl  $res, $res" %}
7705   opcode(0x0F, 0xB0);
7706   ins_encode(lock_prefix,
7707              REX_breg_mem(newval, mem_ptr),
7708              OpcP, OpcS,
7709              reg_mem(newval, mem_ptr),
7710              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7711              REX_reg_breg(res, res), // movzbl
7712              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7713   ins_pipe( pipe_cmpxchg );
7714 %}
7715 
7716 instruct compareAndSwapS(rRegI res,
7717                          memory mem_ptr,
7718                          rax_RegI oldval, rRegI newval,
7719                          rFlagsReg cr)
7720 %{
7721   match(Set res (CompareAndSwapS mem_ptr (Binary oldval newval)));
7722   match(Set res (WeakCompareAndSwapS mem_ptr (Binary oldval newval)));
7723   effect(KILL cr, KILL oldval);
7724 
7725   format %{ "cmpxchgw $mem_ptr,$newval\t# "
7726             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7727             "sete    $res\n\t"
7728             "movzbl  $res, $res" %}
7729   opcode(0x0F, 0xB1);
7730   ins_encode(lock_prefix,
7731              SizePrefix,
7732              REX_reg_mem(newval, mem_ptr),
7733              OpcP, OpcS,
7734              reg_mem(newval, mem_ptr),
7735              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7736              REX_reg_breg(res, res), // movzbl
7737              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7738   ins_pipe( pipe_cmpxchg );
7739 %}
7740 
7741 instruct compareAndSwapN(rRegI res,
7742                           memory mem_ptr,
7743                           rax_RegN oldval, rRegN newval,
7744                           rFlagsReg cr) %{
7745   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7746   match(Set res (WeakCompareAndSwapN mem_ptr (Binary oldval newval)));
7747   effect(KILL cr, KILL oldval);
7748 
7749   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7750             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7751             "sete    $res\n\t"
7752             "movzbl  $res, $res" %}
7753   opcode(0x0F, 0xB1);
7754   ins_encode(lock_prefix,
7755              REX_reg_mem(newval, mem_ptr),
7756              OpcP, OpcS,
7757              reg_mem(newval, mem_ptr),
7758              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7759              REX_reg_breg(res, res), // movzbl
7760              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7761   ins_pipe( pipe_cmpxchg );
7762 %}
7763 
7764 instruct compareAndExchangeB(
7765                          memory mem_ptr,
7766                          rax_RegI oldval, rRegI newval,
7767                          rFlagsReg cr)
7768 %{
7769   match(Set oldval (CompareAndExchangeB mem_ptr (Binary oldval newval)));
7770   effect(KILL cr);
7771 
7772   format %{ "cmpxchgb $mem_ptr,$newval\t# "
7773             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7774   opcode(0x0F, 0xB0);
7775   ins_encode(lock_prefix,
7776              REX_breg_mem(newval, mem_ptr),
7777              OpcP, OpcS,
7778              reg_mem(newval, mem_ptr) // lock cmpxchg
7779              );
7780   ins_pipe( pipe_cmpxchg );
7781 %}
7782 
7783 instruct compareAndExchangeS(
7784                          memory mem_ptr,
7785                          rax_RegI oldval, rRegI newval,
7786                          rFlagsReg cr)
7787 %{
7788   match(Set oldval (CompareAndExchangeS mem_ptr (Binary oldval newval)));
7789   effect(KILL cr);
7790 
7791   format %{ "cmpxchgw $mem_ptr,$newval\t# "
7792             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7793   opcode(0x0F, 0xB1);
7794   ins_encode(lock_prefix,
7795              SizePrefix,
7796              REX_reg_mem(newval, mem_ptr),
7797              OpcP, OpcS,
7798              reg_mem(newval, mem_ptr) // lock cmpxchg
7799              );
7800   ins_pipe( pipe_cmpxchg );
7801 %}
7802 
7803 instruct compareAndExchangeI(
7804                          memory mem_ptr,
7805                          rax_RegI oldval, rRegI newval,
7806                          rFlagsReg cr)
7807 %{
7808   match(Set oldval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
7809   effect(KILL cr);
7810 
7811   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7812             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7813   opcode(0x0F, 0xB1);
7814   ins_encode(lock_prefix,
7815              REX_reg_mem(newval, mem_ptr),
7816              OpcP, OpcS,
7817              reg_mem(newval, mem_ptr) // lock cmpxchg
7818              );
7819   ins_pipe( pipe_cmpxchg );
7820 %}
7821 
7822 instruct compareAndExchangeL(
7823                          memory mem_ptr,
7824                          rax_RegL oldval, rRegL newval,
7825                          rFlagsReg cr)
7826 %{
7827   predicate(VM_Version::supports_cx8());
7828   match(Set oldval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
7829   effect(KILL cr);
7830 
7831   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7832             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7833   opcode(0x0F, 0xB1);
7834   ins_encode(lock_prefix,
7835              REX_reg_mem_wide(newval, mem_ptr),
7836              OpcP, OpcS,
7837              reg_mem(newval, mem_ptr)  // lock cmpxchg
7838             );
7839   ins_pipe( pipe_cmpxchg );
7840 %}
7841 
7842 instruct compareAndExchangeN(
7843                           memory mem_ptr,
7844                           rax_RegN oldval, rRegN newval,
7845                           rFlagsReg cr) %{
7846   match(Set oldval (CompareAndExchangeN mem_ptr (Binary oldval newval)));
7847   effect(KILL cr);
7848 
7849   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7850             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7851   opcode(0x0F, 0xB1);
7852   ins_encode(lock_prefix,
7853              REX_reg_mem(newval, mem_ptr),
7854              OpcP, OpcS,
7855              reg_mem(newval, mem_ptr)  // lock cmpxchg
7856           );
7857   ins_pipe( pipe_cmpxchg );
7858 %}
7859 
7860 instruct compareAndExchangeP(
7861                          memory mem_ptr,
7862                          rax_RegP oldval, rRegP newval,
7863                          rFlagsReg cr)
7864 %{
7865   predicate(VM_Version::supports_cx8() && n->as_LoadStore()->barrier_data() == 0);
7866   match(Set oldval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
7867   effect(KILL cr);
7868 
7869   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7870             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7871   opcode(0x0F, 0xB1);
7872   ins_encode(lock_prefix,
7873              REX_reg_mem_wide(newval, mem_ptr),
7874              OpcP, OpcS,
7875              reg_mem(newval, mem_ptr)  // lock cmpxchg
7876           );
7877   ins_pipe( pipe_cmpxchg );
7878 %}
7879 
7880 instruct xaddB_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7881   predicate(n->as_LoadStore()->result_not_used());
7882   match(Set dummy (GetAndAddB mem add));
7883   effect(KILL cr);
7884   format %{ "ADDB  [$mem],$add" %}
7885   ins_encode %{
7886     __ lock();
7887     __ addb($mem$$Address, $add$$constant);
7888   %}
7889   ins_pipe( pipe_cmpxchg );
7890 %}
7891 
7892 instruct xaddB( memory mem, rRegI newval, rFlagsReg cr) %{
7893   match(Set newval (GetAndAddB mem newval));
7894   effect(KILL cr);
7895   format %{ "XADDB  [$mem],$newval" %}
7896   ins_encode %{
7897     __ lock();
7898     __ xaddb($mem$$Address, $newval$$Register);
7899   %}
7900   ins_pipe( pipe_cmpxchg );
7901 %}
7902 
7903 instruct xaddS_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7904   predicate(n->as_LoadStore()->result_not_used());
7905   match(Set dummy (GetAndAddS mem add));
7906   effect(KILL cr);
7907   format %{ "ADDW  [$mem],$add" %}
7908   ins_encode %{
7909     __ lock();
7910     __ addw($mem$$Address, $add$$constant);
7911   %}
7912   ins_pipe( pipe_cmpxchg );
7913 %}
7914 
7915 instruct xaddS( memory mem, rRegI newval, rFlagsReg cr) %{
7916   match(Set newval (GetAndAddS mem newval));
7917   effect(KILL cr);
7918   format %{ "XADDW  [$mem],$newval" %}
7919   ins_encode %{
7920     __ lock();
7921     __ xaddw($mem$$Address, $newval$$Register);
7922   %}
7923   ins_pipe( pipe_cmpxchg );
7924 %}
7925 
7926 instruct xaddI_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7927   predicate(n->as_LoadStore()->result_not_used());
7928   match(Set dummy (GetAndAddI mem add));
7929   effect(KILL cr);
7930   format %{ "ADDL  [$mem],$add" %}
7931   ins_encode %{
7932     __ lock();
7933     __ addl($mem$$Address, $add$$constant);
7934   %}
7935   ins_pipe( pipe_cmpxchg );
7936 %}
7937 
7938 instruct xaddI( memory mem, rRegI newval, rFlagsReg cr) %{
7939   match(Set newval (GetAndAddI mem newval));
7940   effect(KILL cr);
7941   format %{ "XADDL  [$mem],$newval" %}
7942   ins_encode %{
7943     __ lock();
7944     __ xaddl($mem$$Address, $newval$$Register);
7945   %}
7946   ins_pipe( pipe_cmpxchg );
7947 %}
7948 
7949 instruct xaddL_no_res( memory mem, Universe dummy, immL32 add, rFlagsReg cr) %{
7950   predicate(n->as_LoadStore()->result_not_used());
7951   match(Set dummy (GetAndAddL mem add));
7952   effect(KILL cr);
7953   format %{ "ADDQ  [$mem],$add" %}
7954   ins_encode %{
7955     __ lock();
7956     __ addq($mem$$Address, $add$$constant);
7957   %}
7958   ins_pipe( pipe_cmpxchg );
7959 %}
7960 
7961 instruct xaddL( memory mem, rRegL newval, rFlagsReg cr) %{
7962   match(Set newval (GetAndAddL mem newval));
7963   effect(KILL cr);
7964   format %{ "XADDQ  [$mem],$newval" %}
7965   ins_encode %{
7966     __ lock();
7967     __ xaddq($mem$$Address, $newval$$Register);
7968   %}
7969   ins_pipe( pipe_cmpxchg );
7970 %}
7971 
7972 instruct xchgB( memory mem, rRegI newval) %{
7973   match(Set newval (GetAndSetB mem newval));
7974   format %{ "XCHGB  $newval,[$mem]" %}
7975   ins_encode %{
7976     __ xchgb($newval$$Register, $mem$$Address);
7977   %}
7978   ins_pipe( pipe_cmpxchg );
7979 %}
7980 
7981 instruct xchgS( memory mem, rRegI newval) %{
7982   match(Set newval (GetAndSetS mem newval));
7983   format %{ "XCHGW  $newval,[$mem]" %}
7984   ins_encode %{
7985     __ xchgw($newval$$Register, $mem$$Address);
7986   %}
7987   ins_pipe( pipe_cmpxchg );
7988 %}
7989 
7990 instruct xchgI( memory mem, rRegI newval) %{
7991   match(Set newval (GetAndSetI mem newval));
7992   format %{ "XCHGL  $newval,[$mem]" %}
7993   ins_encode %{
7994     __ xchgl($newval$$Register, $mem$$Address);
7995   %}
7996   ins_pipe( pipe_cmpxchg );
7997 %}
7998 
7999 instruct xchgL( memory mem, rRegL newval) %{
8000   match(Set newval (GetAndSetL mem newval));
8001   format %{ "XCHGL  $newval,[$mem]" %}
8002   ins_encode %{
8003     __ xchgq($newval$$Register, $mem$$Address);
8004   %}
8005   ins_pipe( pipe_cmpxchg );
8006 %}
8007 
8008 instruct xchgP( memory mem, rRegP newval) %{
8009   match(Set newval (GetAndSetP mem newval));
8010   predicate(n->as_LoadStore()->barrier_data() == 0);
8011   format %{ "XCHGQ  $newval,[$mem]" %}
8012   ins_encode %{
8013     __ xchgq($newval$$Register, $mem$$Address);
8014   %}
8015   ins_pipe( pipe_cmpxchg );
8016 %}
8017 
8018 instruct xchgN( memory mem, rRegN newval) %{
8019   match(Set newval (GetAndSetN mem newval));
8020   format %{ "XCHGL  $newval,$mem]" %}
8021   ins_encode %{
8022     __ xchgl($newval$$Register, $mem$$Address);
8023   %}
8024   ins_pipe( pipe_cmpxchg );
8025 %}
8026 
8027 //----------Abs Instructions-------------------------------------------
8028 
8029 // Integer Absolute Instructions
8030 instruct absI_rReg(rRegI dst, rRegI src, rRegI tmp, rFlagsReg cr)
8031 %{
8032   match(Set dst (AbsI src));
8033   effect(TEMP dst, TEMP tmp, KILL cr);
8034   format %{ "movl $tmp, $src\n\t"
8035             "sarl $tmp, 31\n\t"
8036             "movl $dst, $src\n\t"
8037             "xorl $dst, $tmp\n\t"
8038             "subl $dst, $tmp\n"
8039           %}
8040   ins_encode %{
8041     __ movl($tmp$$Register, $src$$Register);
8042     __ sarl($tmp$$Register, 31);
8043     __ movl($dst$$Register, $src$$Register);
8044     __ xorl($dst$$Register, $tmp$$Register);
8045     __ subl($dst$$Register, $tmp$$Register);
8046   %}
8047 
8048   ins_pipe(ialu_reg_reg);
8049 %}
8050 
8051 // Long Absolute Instructions
8052 instruct absL_rReg(rRegL dst, rRegL src, rRegL tmp, rFlagsReg cr)
8053 %{
8054   match(Set dst (AbsL src));
8055   effect(TEMP dst, TEMP tmp, KILL cr);
8056   format %{ "movq $tmp, $src\n\t"
8057             "sarq $tmp, 63\n\t"
8058             "movq $dst, $src\n\t"
8059             "xorq $dst, $tmp\n\t"
8060             "subq $dst, $tmp\n"
8061           %}
8062   ins_encode %{
8063     __ movq($tmp$$Register, $src$$Register);
8064     __ sarq($tmp$$Register, 63);
8065     __ movq($dst$$Register, $src$$Register);
8066     __ xorq($dst$$Register, $tmp$$Register);
8067     __ subq($dst$$Register, $tmp$$Register);
8068   %}
8069 
8070   ins_pipe(ialu_reg_reg);
8071 %}
8072 
8073 //----------Subtraction Instructions-------------------------------------------
8074 
8075 // Integer Subtraction Instructions
8076 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8077 %{
8078   match(Set dst (SubI dst src));
8079   effect(KILL cr);
8080 
8081   format %{ "subl    $dst, $src\t# int" %}
8082   opcode(0x2B);
8083   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8084   ins_pipe(ialu_reg_reg);
8085 %}
8086 
8087 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8088 %{
8089   match(Set dst (SubI dst src));
8090   effect(KILL cr);
8091 
8092   format %{ "subl    $dst, $src\t# int" %}
8093   opcode(0x81, 0x05);  /* Opcode 81 /5 */
8094   ins_encode(OpcSErm(dst, src), Con8or32(src));
8095   ins_pipe(ialu_reg);
8096 %}
8097 
8098 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8099 %{
8100   match(Set dst (SubI dst (LoadI src)));
8101   effect(KILL cr);
8102 
8103   ins_cost(125);
8104   format %{ "subl    $dst, $src\t# int" %}
8105   opcode(0x2B);
8106   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8107   ins_pipe(ialu_reg_mem);
8108 %}
8109 
8110 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8111 %{
8112   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8113   effect(KILL cr);
8114 
8115   ins_cost(150);
8116   format %{ "subl    $dst, $src\t# int" %}
8117   opcode(0x29); /* Opcode 29 /r */
8118   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8119   ins_pipe(ialu_mem_reg);
8120 %}
8121 
8122 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
8123 %{
8124   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8125   effect(KILL cr);
8126 
8127   ins_cost(125); // XXX
8128   format %{ "subl    $dst, $src\t# int" %}
8129   opcode(0x81); /* Opcode 81 /5 id */
8130   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
8131   ins_pipe(ialu_mem_imm);
8132 %}
8133 
8134 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8135 %{
8136   match(Set dst (SubL dst src));
8137   effect(KILL cr);
8138 
8139   format %{ "subq    $dst, $src\t# long" %}
8140   opcode(0x2B);
8141   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8142   ins_pipe(ialu_reg_reg);
8143 %}
8144 
8145 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
8146 %{
8147   match(Set dst (SubL dst src));
8148   effect(KILL cr);
8149 
8150   format %{ "subq    $dst, $src\t# long" %}
8151   opcode(0x81, 0x05);  /* Opcode 81 /5 */
8152   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
8153   ins_pipe(ialu_reg);
8154 %}
8155 
8156 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
8157 %{
8158   match(Set dst (SubL dst (LoadL src)));
8159   effect(KILL cr);
8160 
8161   ins_cost(125);
8162   format %{ "subq    $dst, $src\t# long" %}
8163   opcode(0x2B);
8164   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
8165   ins_pipe(ialu_reg_mem);
8166 %}
8167 
8168 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
8169 %{
8170   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
8171   effect(KILL cr);
8172 
8173   ins_cost(150);
8174   format %{ "subq    $dst, $src\t# long" %}
8175   opcode(0x29); /* Opcode 29 /r */
8176   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
8177   ins_pipe(ialu_mem_reg);
8178 %}
8179 
8180 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
8181 %{
8182   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
8183   effect(KILL cr);
8184 
8185   ins_cost(125); // XXX
8186   format %{ "subq    $dst, $src\t# long" %}
8187   opcode(0x81); /* Opcode 81 /5 id */
8188   ins_encode(REX_mem_wide(dst),
8189              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
8190   ins_pipe(ialu_mem_imm);
8191 %}
8192 
8193 // Subtract from a pointer
8194 // XXX hmpf???
8195 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
8196 %{
8197   match(Set dst (AddP dst (SubI zero src)));
8198   effect(KILL cr);
8199 
8200   format %{ "subq    $dst, $src\t# ptr - int" %}
8201   opcode(0x2B);
8202   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8203   ins_pipe(ialu_reg_reg);
8204 %}
8205 
8206 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
8207 %{
8208   match(Set dst (SubI zero dst));
8209   effect(KILL cr);
8210 
8211   format %{ "negl    $dst\t# int" %}
8212   opcode(0xF7, 0x03);  // Opcode F7 /3
8213   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8214   ins_pipe(ialu_reg);
8215 %}
8216 
8217 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
8218 %{
8219   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
8220   effect(KILL cr);
8221 
8222   format %{ "negl    $dst\t# int" %}
8223   opcode(0xF7, 0x03);  // Opcode F7 /3
8224   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8225   ins_pipe(ialu_reg);
8226 %}
8227 
8228 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
8229 %{
8230   match(Set dst (SubL zero dst));
8231   effect(KILL cr);
8232 
8233   format %{ "negq    $dst\t# long" %}
8234   opcode(0xF7, 0x03);  // Opcode F7 /3
8235   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8236   ins_pipe(ialu_reg);
8237 %}
8238 
8239 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
8240 %{
8241   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
8242   effect(KILL cr);
8243 
8244   format %{ "negq    $dst\t# long" %}
8245   opcode(0xF7, 0x03);  // Opcode F7 /3
8246   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8247   ins_pipe(ialu_reg);
8248 %}
8249 
8250 //----------Multiplication/Division Instructions-------------------------------
8251 // Integer Multiplication Instructions
8252 // Multiply Register
8253 
8254 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8255 %{
8256   match(Set dst (MulI dst src));
8257   effect(KILL cr);
8258 
8259   ins_cost(300);
8260   format %{ "imull   $dst, $src\t# int" %}
8261   opcode(0x0F, 0xAF);
8262   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8263   ins_pipe(ialu_reg_reg_alu0);
8264 %}
8265 
8266 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
8267 %{
8268   match(Set dst (MulI src imm));
8269   effect(KILL cr);
8270 
8271   ins_cost(300);
8272   format %{ "imull   $dst, $src, $imm\t# int" %}
8273   opcode(0x69); /* 69 /r id */
8274   ins_encode(REX_reg_reg(dst, src),
8275              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8276   ins_pipe(ialu_reg_reg_alu0);
8277 %}
8278 
8279 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
8280 %{
8281   match(Set dst (MulI dst (LoadI src)));
8282   effect(KILL cr);
8283 
8284   ins_cost(350);
8285   format %{ "imull   $dst, $src\t# int" %}
8286   opcode(0x0F, 0xAF);
8287   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
8288   ins_pipe(ialu_reg_mem_alu0);
8289 %}
8290 
8291 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
8292 %{
8293   match(Set dst (MulI (LoadI src) imm));
8294   effect(KILL cr);
8295 
8296   ins_cost(300);
8297   format %{ "imull   $dst, $src, $imm\t# int" %}
8298   opcode(0x69); /* 69 /r id */
8299   ins_encode(REX_reg_mem(dst, src),
8300              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8301   ins_pipe(ialu_reg_mem_alu0);
8302 %}
8303 
8304 instruct mulAddS2I_rReg(rRegI dst, rRegI src1, rRegI src2, rRegI src3, rFlagsReg cr)
8305 %{
8306   match(Set dst (MulAddS2I (Binary dst src1) (Binary src2 src3)));
8307   effect(KILL cr, KILL src2);
8308 
8309   expand %{ mulI_rReg(dst, src1, cr);
8310            mulI_rReg(src2, src3, cr);
8311            addI_rReg(dst, src2, cr); %}
8312 %}
8313 
8314 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8315 %{
8316   match(Set dst (MulL dst src));
8317   effect(KILL cr);
8318 
8319   ins_cost(300);
8320   format %{ "imulq   $dst, $src\t# long" %}
8321   opcode(0x0F, 0xAF);
8322   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
8323   ins_pipe(ialu_reg_reg_alu0);
8324 %}
8325 
8326 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
8327 %{
8328   match(Set dst (MulL src imm));
8329   effect(KILL cr);
8330 
8331   ins_cost(300);
8332   format %{ "imulq   $dst, $src, $imm\t# long" %}
8333   opcode(0x69); /* 69 /r id */
8334   ins_encode(REX_reg_reg_wide(dst, src),
8335              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8336   ins_pipe(ialu_reg_reg_alu0);
8337 %}
8338 
8339 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
8340 %{
8341   match(Set dst (MulL dst (LoadL src)));
8342   effect(KILL cr);
8343 
8344   ins_cost(350);
8345   format %{ "imulq   $dst, $src\t# long" %}
8346   opcode(0x0F, 0xAF);
8347   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
8348   ins_pipe(ialu_reg_mem_alu0);
8349 %}
8350 
8351 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
8352 %{
8353   match(Set dst (MulL (LoadL src) imm));
8354   effect(KILL cr);
8355 
8356   ins_cost(300);
8357   format %{ "imulq   $dst, $src, $imm\t# long" %}
8358   opcode(0x69); /* 69 /r id */
8359   ins_encode(REX_reg_mem_wide(dst, src),
8360              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8361   ins_pipe(ialu_reg_mem_alu0);
8362 %}
8363 
8364 instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8365 %{
8366   match(Set dst (MulHiL src rax));
8367   effect(USE_KILL rax, KILL cr);
8368 
8369   ins_cost(300);
8370   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
8371   opcode(0xF7, 0x5); /* Opcode F7 /5 */
8372   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8373   ins_pipe(ialu_reg_reg_alu0);
8374 %}
8375 
8376 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8377                    rFlagsReg cr)
8378 %{
8379   match(Set rax (DivI rax div));
8380   effect(KILL rdx, KILL cr);
8381 
8382   ins_cost(30*100+10*100); // XXX
8383   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8384             "jne,s   normal\n\t"
8385             "xorl    rdx, rdx\n\t"
8386             "cmpl    $div, -1\n\t"
8387             "je,s    done\n"
8388     "normal: cdql\n\t"
8389             "idivl   $div\n"
8390     "done:"        %}
8391   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8392   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8393   ins_pipe(ialu_reg_reg_alu0);
8394 %}
8395 
8396 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8397                    rFlagsReg cr)
8398 %{
8399   match(Set rax (DivL rax div));
8400   effect(KILL rdx, KILL cr);
8401 
8402   ins_cost(30*100+10*100); // XXX
8403   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8404             "cmpq    rax, rdx\n\t"
8405             "jne,s   normal\n\t"
8406             "xorl    rdx, rdx\n\t"
8407             "cmpq    $div, -1\n\t"
8408             "je,s    done\n"
8409     "normal: cdqq\n\t"
8410             "idivq   $div\n"
8411     "done:"        %}
8412   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8413   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8414   ins_pipe(ialu_reg_reg_alu0);
8415 %}
8416 
8417 // Integer DIVMOD with Register, both quotient and mod results
8418 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8419                              rFlagsReg cr)
8420 %{
8421   match(DivModI rax div);
8422   effect(KILL cr);
8423 
8424   ins_cost(30*100+10*100); // XXX
8425   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8426             "jne,s   normal\n\t"
8427             "xorl    rdx, rdx\n\t"
8428             "cmpl    $div, -1\n\t"
8429             "je,s    done\n"
8430     "normal: cdql\n\t"
8431             "idivl   $div\n"
8432     "done:"        %}
8433   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8434   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8435   ins_pipe(pipe_slow);
8436 %}
8437 
8438 // Long DIVMOD with Register, both quotient and mod results
8439 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8440                              rFlagsReg cr)
8441 %{
8442   match(DivModL rax div);
8443   effect(KILL cr);
8444 
8445   ins_cost(30*100+10*100); // XXX
8446   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8447             "cmpq    rax, rdx\n\t"
8448             "jne,s   normal\n\t"
8449             "xorl    rdx, rdx\n\t"
8450             "cmpq    $div, -1\n\t"
8451             "je,s    done\n"
8452     "normal: cdqq\n\t"
8453             "idivq   $div\n"
8454     "done:"        %}
8455   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8456   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8457   ins_pipe(pipe_slow);
8458 %}
8459 
8460 //----------- DivL-By-Constant-Expansions--------------------------------------
8461 // DivI cases are handled by the compiler
8462 
8463 // Magic constant, reciprocal of 10
8464 instruct loadConL_0x6666666666666667(rRegL dst)
8465 %{
8466   effect(DEF dst);
8467 
8468   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
8469   ins_encode(load_immL(dst, 0x6666666666666667));
8470   ins_pipe(ialu_reg);
8471 %}
8472 
8473 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8474 %{
8475   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
8476 
8477   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
8478   opcode(0xF7, 0x5); /* Opcode F7 /5 */
8479   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8480   ins_pipe(ialu_reg_reg_alu0);
8481 %}
8482 
8483 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
8484 %{
8485   effect(USE_DEF dst, KILL cr);
8486 
8487   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
8488   opcode(0xC1, 0x7); /* C1 /7 ib */
8489   ins_encode(reg_opc_imm_wide(dst, 0x3F));
8490   ins_pipe(ialu_reg);
8491 %}
8492 
8493 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
8494 %{
8495   effect(USE_DEF dst, KILL cr);
8496 
8497   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
8498   opcode(0xC1, 0x7); /* C1 /7 ib */
8499   ins_encode(reg_opc_imm_wide(dst, 0x2));
8500   ins_pipe(ialu_reg);
8501 %}
8502 
8503 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
8504 %{
8505   match(Set dst (DivL src div));
8506 
8507   ins_cost((5+8)*100);
8508   expand %{
8509     rax_RegL rax;                     // Killed temp
8510     rFlagsReg cr;                     // Killed
8511     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
8512     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
8513     sarL_rReg_63(src, cr);            // sarq  src, 63
8514     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
8515     subL_rReg(dst, src, cr);          // subl  rdx, src
8516   %}
8517 %}
8518 
8519 //-----------------------------------------------------------------------------
8520 
8521 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
8522                    rFlagsReg cr)
8523 %{
8524   match(Set rdx (ModI rax div));
8525   effect(KILL rax, KILL cr);
8526 
8527   ins_cost(300); // XXX
8528   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
8529             "jne,s   normal\n\t"
8530             "xorl    rdx, rdx\n\t"
8531             "cmpl    $div, -1\n\t"
8532             "je,s    done\n"
8533     "normal: cdql\n\t"
8534             "idivl   $div\n"
8535     "done:"        %}
8536   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8537   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8538   ins_pipe(ialu_reg_reg_alu0);
8539 %}
8540 
8541 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
8542                    rFlagsReg cr)
8543 %{
8544   match(Set rdx (ModL rax div));
8545   effect(KILL rax, KILL cr);
8546 
8547   ins_cost(300); // XXX
8548   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
8549             "cmpq    rax, rdx\n\t"
8550             "jne,s   normal\n\t"
8551             "xorl    rdx, rdx\n\t"
8552             "cmpq    $div, -1\n\t"
8553             "je,s    done\n"
8554     "normal: cdqq\n\t"
8555             "idivq   $div\n"
8556     "done:"        %}
8557   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8558   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8559   ins_pipe(ialu_reg_reg_alu0);
8560 %}
8561 
8562 // Integer Shift Instructions
8563 // Shift Left by one
8564 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8565 %{
8566   match(Set dst (LShiftI dst shift));
8567   effect(KILL cr);
8568 
8569   format %{ "sall    $dst, $shift" %}
8570   opcode(0xD1, 0x4); /* D1 /4 */
8571   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8572   ins_pipe(ialu_reg);
8573 %}
8574 
8575 // Shift Left by one
8576 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8577 %{
8578   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8579   effect(KILL cr);
8580 
8581   format %{ "sall    $dst, $shift\t" %}
8582   opcode(0xD1, 0x4); /* D1 /4 */
8583   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8584   ins_pipe(ialu_mem_imm);
8585 %}
8586 
8587 // Shift Left by 8-bit immediate
8588 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8589 %{
8590   match(Set dst (LShiftI dst shift));
8591   effect(KILL cr);
8592 
8593   format %{ "sall    $dst, $shift" %}
8594   opcode(0xC1, 0x4); /* C1 /4 ib */
8595   ins_encode(reg_opc_imm(dst, shift));
8596   ins_pipe(ialu_reg);
8597 %}
8598 
8599 // Shift Left by 8-bit immediate
8600 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8601 %{
8602   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8603   effect(KILL cr);
8604 
8605   format %{ "sall    $dst, $shift" %}
8606   opcode(0xC1, 0x4); /* C1 /4 ib */
8607   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8608   ins_pipe(ialu_mem_imm);
8609 %}
8610 
8611 // Shift Left by variable
8612 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8613 %{
8614   match(Set dst (LShiftI dst shift));
8615   effect(KILL cr);
8616 
8617   format %{ "sall    $dst, $shift" %}
8618   opcode(0xD3, 0x4); /* D3 /4 */
8619   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8620   ins_pipe(ialu_reg_reg);
8621 %}
8622 
8623 // Shift Left by variable
8624 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8625 %{
8626   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8627   effect(KILL cr);
8628 
8629   format %{ "sall    $dst, $shift" %}
8630   opcode(0xD3, 0x4); /* D3 /4 */
8631   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8632   ins_pipe(ialu_mem_reg);
8633 %}
8634 
8635 // Arithmetic shift right by one
8636 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8637 %{
8638   match(Set dst (RShiftI dst shift));
8639   effect(KILL cr);
8640 
8641   format %{ "sarl    $dst, $shift" %}
8642   opcode(0xD1, 0x7); /* D1 /7 */
8643   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8644   ins_pipe(ialu_reg);
8645 %}
8646 
8647 // Arithmetic shift right by one
8648 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8649 %{
8650   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8651   effect(KILL cr);
8652 
8653   format %{ "sarl    $dst, $shift" %}
8654   opcode(0xD1, 0x7); /* D1 /7 */
8655   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8656   ins_pipe(ialu_mem_imm);
8657 %}
8658 
8659 // Arithmetic Shift Right by 8-bit immediate
8660 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8661 %{
8662   match(Set dst (RShiftI dst shift));
8663   effect(KILL cr);
8664 
8665   format %{ "sarl    $dst, $shift" %}
8666   opcode(0xC1, 0x7); /* C1 /7 ib */
8667   ins_encode(reg_opc_imm(dst, shift));
8668   ins_pipe(ialu_mem_imm);
8669 %}
8670 
8671 // Arithmetic Shift Right by 8-bit immediate
8672 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8673 %{
8674   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8675   effect(KILL cr);
8676 
8677   format %{ "sarl    $dst, $shift" %}
8678   opcode(0xC1, 0x7); /* C1 /7 ib */
8679   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8680   ins_pipe(ialu_mem_imm);
8681 %}
8682 
8683 // Arithmetic Shift Right by variable
8684 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8685 %{
8686   match(Set dst (RShiftI dst shift));
8687   effect(KILL cr);
8688 
8689   format %{ "sarl    $dst, $shift" %}
8690   opcode(0xD3, 0x7); /* D3 /7 */
8691   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8692   ins_pipe(ialu_reg_reg);
8693 %}
8694 
8695 // Arithmetic Shift Right by variable
8696 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8697 %{
8698   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8699   effect(KILL cr);
8700 
8701   format %{ "sarl    $dst, $shift" %}
8702   opcode(0xD3, 0x7); /* D3 /7 */
8703   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8704   ins_pipe(ialu_mem_reg);
8705 %}
8706 
8707 // Logical shift right by one
8708 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8709 %{
8710   match(Set dst (URShiftI dst shift));
8711   effect(KILL cr);
8712 
8713   format %{ "shrl    $dst, $shift" %}
8714   opcode(0xD1, 0x5); /* D1 /5 */
8715   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8716   ins_pipe(ialu_reg);
8717 %}
8718 
8719 // Logical shift right by one
8720 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8721 %{
8722   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8723   effect(KILL cr);
8724 
8725   format %{ "shrl    $dst, $shift" %}
8726   opcode(0xD1, 0x5); /* D1 /5 */
8727   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8728   ins_pipe(ialu_mem_imm);
8729 %}
8730 
8731 // Logical Shift Right by 8-bit immediate
8732 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8733 %{
8734   match(Set dst (URShiftI dst shift));
8735   effect(KILL cr);
8736 
8737   format %{ "shrl    $dst, $shift" %}
8738   opcode(0xC1, 0x5); /* C1 /5 ib */
8739   ins_encode(reg_opc_imm(dst, shift));
8740   ins_pipe(ialu_reg);
8741 %}
8742 
8743 // Logical Shift Right by 8-bit immediate
8744 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8745 %{
8746   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8747   effect(KILL cr);
8748 
8749   format %{ "shrl    $dst, $shift" %}
8750   opcode(0xC1, 0x5); /* C1 /5 ib */
8751   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8752   ins_pipe(ialu_mem_imm);
8753 %}
8754 
8755 // Logical Shift Right by variable
8756 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8757 %{
8758   match(Set dst (URShiftI dst shift));
8759   effect(KILL cr);
8760 
8761   format %{ "shrl    $dst, $shift" %}
8762   opcode(0xD3, 0x5); /* D3 /5 */
8763   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8764   ins_pipe(ialu_reg_reg);
8765 %}
8766 
8767 // Logical Shift Right by variable
8768 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8769 %{
8770   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8771   effect(KILL cr);
8772 
8773   format %{ "shrl    $dst, $shift" %}
8774   opcode(0xD3, 0x5); /* D3 /5 */
8775   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8776   ins_pipe(ialu_mem_reg);
8777 %}
8778 
8779 // Long Shift Instructions
8780 // Shift Left by one
8781 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8782 %{
8783   match(Set dst (LShiftL dst shift));
8784   effect(KILL cr);
8785 
8786   format %{ "salq    $dst, $shift" %}
8787   opcode(0xD1, 0x4); /* D1 /4 */
8788   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8789   ins_pipe(ialu_reg);
8790 %}
8791 
8792 // Shift Left by one
8793 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8794 %{
8795   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8796   effect(KILL cr);
8797 
8798   format %{ "salq    $dst, $shift" %}
8799   opcode(0xD1, 0x4); /* D1 /4 */
8800   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8801   ins_pipe(ialu_mem_imm);
8802 %}
8803 
8804 // Shift Left by 8-bit immediate
8805 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8806 %{
8807   match(Set dst (LShiftL dst shift));
8808   effect(KILL cr);
8809 
8810   format %{ "salq    $dst, $shift" %}
8811   opcode(0xC1, 0x4); /* C1 /4 ib */
8812   ins_encode(reg_opc_imm_wide(dst, shift));
8813   ins_pipe(ialu_reg);
8814 %}
8815 
8816 // Shift Left by 8-bit immediate
8817 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8818 %{
8819   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8820   effect(KILL cr);
8821 
8822   format %{ "salq    $dst, $shift" %}
8823   opcode(0xC1, 0x4); /* C1 /4 ib */
8824   ins_encode(REX_mem_wide(dst), OpcP,
8825              RM_opc_mem(secondary, dst), Con8or32(shift));
8826   ins_pipe(ialu_mem_imm);
8827 %}
8828 
8829 // Shift Left by variable
8830 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8831 %{
8832   match(Set dst (LShiftL dst shift));
8833   effect(KILL cr);
8834 
8835   format %{ "salq    $dst, $shift" %}
8836   opcode(0xD3, 0x4); /* D3 /4 */
8837   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8838   ins_pipe(ialu_reg_reg);
8839 %}
8840 
8841 // Shift Left by variable
8842 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8843 %{
8844   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8845   effect(KILL cr);
8846 
8847   format %{ "salq    $dst, $shift" %}
8848   opcode(0xD3, 0x4); /* D3 /4 */
8849   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8850   ins_pipe(ialu_mem_reg);
8851 %}
8852 
8853 // Arithmetic shift right by one
8854 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8855 %{
8856   match(Set dst (RShiftL dst shift));
8857   effect(KILL cr);
8858 
8859   format %{ "sarq    $dst, $shift" %}
8860   opcode(0xD1, 0x7); /* D1 /7 */
8861   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8862   ins_pipe(ialu_reg);
8863 %}
8864 
8865 // Arithmetic shift right by one
8866 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8867 %{
8868   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8869   effect(KILL cr);
8870 
8871   format %{ "sarq    $dst, $shift" %}
8872   opcode(0xD1, 0x7); /* D1 /7 */
8873   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8874   ins_pipe(ialu_mem_imm);
8875 %}
8876 
8877 // Arithmetic Shift Right by 8-bit immediate
8878 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8879 %{
8880   match(Set dst (RShiftL dst shift));
8881   effect(KILL cr);
8882 
8883   format %{ "sarq    $dst, $shift" %}
8884   opcode(0xC1, 0x7); /* C1 /7 ib */
8885   ins_encode(reg_opc_imm_wide(dst, shift));
8886   ins_pipe(ialu_mem_imm);
8887 %}
8888 
8889 // Arithmetic Shift Right by 8-bit immediate
8890 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8891 %{
8892   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8893   effect(KILL cr);
8894 
8895   format %{ "sarq    $dst, $shift" %}
8896   opcode(0xC1, 0x7); /* C1 /7 ib */
8897   ins_encode(REX_mem_wide(dst), OpcP,
8898              RM_opc_mem(secondary, dst), Con8or32(shift));
8899   ins_pipe(ialu_mem_imm);
8900 %}
8901 
8902 // Arithmetic Shift Right by variable
8903 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8904 %{
8905   match(Set dst (RShiftL dst shift));
8906   effect(KILL cr);
8907 
8908   format %{ "sarq    $dst, $shift" %}
8909   opcode(0xD3, 0x7); /* D3 /7 */
8910   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8911   ins_pipe(ialu_reg_reg);
8912 %}
8913 
8914 // Arithmetic Shift Right by variable
8915 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8916 %{
8917   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8918   effect(KILL cr);
8919 
8920   format %{ "sarq    $dst, $shift" %}
8921   opcode(0xD3, 0x7); /* D3 /7 */
8922   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8923   ins_pipe(ialu_mem_reg);
8924 %}
8925 
8926 // Logical shift right by one
8927 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8928 %{
8929   match(Set dst (URShiftL dst shift));
8930   effect(KILL cr);
8931 
8932   format %{ "shrq    $dst, $shift" %}
8933   opcode(0xD1, 0x5); /* D1 /5 */
8934   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
8935   ins_pipe(ialu_reg);
8936 %}
8937 
8938 // Logical shift right by one
8939 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8940 %{
8941   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8942   effect(KILL cr);
8943 
8944   format %{ "shrq    $dst, $shift" %}
8945   opcode(0xD1, 0x5); /* D1 /5 */
8946   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8947   ins_pipe(ialu_mem_imm);
8948 %}
8949 
8950 // Logical Shift Right by 8-bit immediate
8951 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8952 %{
8953   match(Set dst (URShiftL dst shift));
8954   effect(KILL cr);
8955 
8956   format %{ "shrq    $dst, $shift" %}
8957   opcode(0xC1, 0x5); /* C1 /5 ib */
8958   ins_encode(reg_opc_imm_wide(dst, shift));
8959   ins_pipe(ialu_reg);
8960 %}
8961 
8962 
8963 // Logical Shift Right by 8-bit immediate
8964 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8965 %{
8966   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8967   effect(KILL cr);
8968 
8969   format %{ "shrq    $dst, $shift" %}
8970   opcode(0xC1, 0x5); /* C1 /5 ib */
8971   ins_encode(REX_mem_wide(dst), OpcP,
8972              RM_opc_mem(secondary, dst), Con8or32(shift));
8973   ins_pipe(ialu_mem_imm);
8974 %}
8975 
8976 // Logical Shift Right by variable
8977 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8978 %{
8979   match(Set dst (URShiftL dst shift));
8980   effect(KILL cr);
8981 
8982   format %{ "shrq    $dst, $shift" %}
8983   opcode(0xD3, 0x5); /* D3 /5 */
8984   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8985   ins_pipe(ialu_reg_reg);
8986 %}
8987 
8988 // Logical Shift Right by variable
8989 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8990 %{
8991   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8992   effect(KILL cr);
8993 
8994   format %{ "shrq    $dst, $shift" %}
8995   opcode(0xD3, 0x5); /* D3 /5 */
8996   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8997   ins_pipe(ialu_mem_reg);
8998 %}
8999 
9000 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
9001 // This idiom is used by the compiler for the i2b bytecode.
9002 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
9003 %{
9004   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
9005 
9006   format %{ "movsbl  $dst, $src\t# i2b" %}
9007   opcode(0x0F, 0xBE);
9008   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9009   ins_pipe(ialu_reg_reg);
9010 %}
9011 
9012 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
9013 // This idiom is used by the compiler the i2s bytecode.
9014 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
9015 %{
9016   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
9017 
9018   format %{ "movswl  $dst, $src\t# i2s" %}
9019   opcode(0x0F, 0xBF);
9020   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9021   ins_pipe(ialu_reg_reg);
9022 %}
9023 
9024 // ROL/ROR instructions
9025 
9026 // ROL expand
9027 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
9028   effect(KILL cr, USE_DEF dst);
9029 
9030   format %{ "roll    $dst" %}
9031   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
9032   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9033   ins_pipe(ialu_reg);
9034 %}
9035 
9036 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
9037   effect(USE_DEF dst, USE shift, KILL cr);
9038 
9039   format %{ "roll    $dst, $shift" %}
9040   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
9041   ins_encode( reg_opc_imm(dst, shift) );
9042   ins_pipe(ialu_reg);
9043 %}
9044 
9045 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
9046 %{
9047   effect(USE_DEF dst, USE shift, KILL cr);
9048 
9049   format %{ "roll    $dst, $shift" %}
9050   opcode(0xD3, 0x0); /* Opcode D3 /0 */
9051   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9052   ins_pipe(ialu_reg_reg);
9053 %}
9054 // end of ROL expand
9055 
9056 // Rotate Left by one
9057 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
9058 %{
9059   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9060 
9061   expand %{
9062     rolI_rReg_imm1(dst, cr);
9063   %}
9064 %}
9065 
9066 // Rotate Left by 8-bit immediate
9067 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
9068 %{
9069   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9070   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9071 
9072   expand %{
9073     rolI_rReg_imm8(dst, lshift, cr);
9074   %}
9075 %}
9076 
9077 // Rotate Left by variable
9078 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9079 %{
9080   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
9081 
9082   expand %{
9083     rolI_rReg_CL(dst, shift, cr);
9084   %}
9085 %}
9086 
9087 // Rotate Left by variable
9088 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
9089 %{
9090   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
9091 
9092   expand %{
9093     rolI_rReg_CL(dst, shift, cr);
9094   %}
9095 %}
9096 
9097 // ROR expand
9098 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
9099 %{
9100   effect(USE_DEF dst, KILL cr);
9101 
9102   format %{ "rorl    $dst" %}
9103   opcode(0xD1, 0x1); /* D1 /1 */
9104   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9105   ins_pipe(ialu_reg);
9106 %}
9107 
9108 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
9109 %{
9110   effect(USE_DEF dst, USE shift, KILL cr);
9111 
9112   format %{ "rorl    $dst, $shift" %}
9113   opcode(0xC1, 0x1); /* C1 /1 ib */
9114   ins_encode(reg_opc_imm(dst, shift));
9115   ins_pipe(ialu_reg);
9116 %}
9117 
9118 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
9119 %{
9120   effect(USE_DEF dst, USE shift, KILL cr);
9121 
9122   format %{ "rorl    $dst, $shift" %}
9123   opcode(0xD3, 0x1); /* D3 /1 */
9124   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9125   ins_pipe(ialu_reg_reg);
9126 %}
9127 // end of ROR expand
9128 
9129 // Rotate Right by one
9130 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
9131 %{
9132   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9133 
9134   expand %{
9135     rorI_rReg_imm1(dst, cr);
9136   %}
9137 %}
9138 
9139 // Rotate Right by 8-bit immediate
9140 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
9141 %{
9142   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9143   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9144 
9145   expand %{
9146     rorI_rReg_imm8(dst, rshift, cr);
9147   %}
9148 %}
9149 
9150 // Rotate Right by variable
9151 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9152 %{
9153   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9154 
9155   expand %{
9156     rorI_rReg_CL(dst, shift, cr);
9157   %}
9158 %}
9159 
9160 // Rotate Right by variable
9161 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
9162 %{
9163   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9164 
9165   expand %{
9166     rorI_rReg_CL(dst, shift, cr);
9167   %}
9168 %}
9169 
9170 // for long rotate
9171 // ROL expand
9172 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
9173   effect(USE_DEF dst, KILL cr);
9174 
9175   format %{ "rolq    $dst" %}
9176   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
9177   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9178   ins_pipe(ialu_reg);
9179 %}
9180 
9181 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
9182   effect(USE_DEF dst, USE shift, KILL cr);
9183 
9184   format %{ "rolq    $dst, $shift" %}
9185   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
9186   ins_encode( reg_opc_imm_wide(dst, shift) );
9187   ins_pipe(ialu_reg);
9188 %}
9189 
9190 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
9191 %{
9192   effect(USE_DEF dst, USE shift, KILL cr);
9193 
9194   format %{ "rolq    $dst, $shift" %}
9195   opcode(0xD3, 0x0); /* Opcode D3 /0 */
9196   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9197   ins_pipe(ialu_reg_reg);
9198 %}
9199 // end of ROL expand
9200 
9201 // Rotate Left by one
9202 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
9203 %{
9204   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
9205 
9206   expand %{
9207     rolL_rReg_imm1(dst, cr);
9208   %}
9209 %}
9210 
9211 // Rotate Left by 8-bit immediate
9212 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
9213 %{
9214   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
9215   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
9216 
9217   expand %{
9218     rolL_rReg_imm8(dst, lshift, cr);
9219   %}
9220 %}
9221 
9222 // Rotate Left by variable
9223 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9224 %{
9225   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
9226 
9227   expand %{
9228     rolL_rReg_CL(dst, shift, cr);
9229   %}
9230 %}
9231 
9232 // Rotate Left by variable
9233 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
9234 %{
9235   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
9236 
9237   expand %{
9238     rolL_rReg_CL(dst, shift, cr);
9239   %}
9240 %}
9241 
9242 // ROR expand
9243 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
9244 %{
9245   effect(USE_DEF dst, KILL cr);
9246 
9247   format %{ "rorq    $dst" %}
9248   opcode(0xD1, 0x1); /* D1 /1 */
9249   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9250   ins_pipe(ialu_reg);
9251 %}
9252 
9253 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
9254 %{
9255   effect(USE_DEF dst, USE shift, KILL cr);
9256 
9257   format %{ "rorq    $dst, $shift" %}
9258   opcode(0xC1, 0x1); /* C1 /1 ib */
9259   ins_encode(reg_opc_imm_wide(dst, shift));
9260   ins_pipe(ialu_reg);
9261 %}
9262 
9263 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
9264 %{
9265   effect(USE_DEF dst, USE shift, KILL cr);
9266 
9267   format %{ "rorq    $dst, $shift" %}
9268   opcode(0xD3, 0x1); /* D3 /1 */
9269   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9270   ins_pipe(ialu_reg_reg);
9271 %}
9272 // end of ROR expand
9273 
9274 // Rotate Right by one
9275 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
9276 %{
9277   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
9278 
9279   expand %{
9280     rorL_rReg_imm1(dst, cr);
9281   %}
9282 %}
9283 
9284 // Rotate Right by 8-bit immediate
9285 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
9286 %{
9287   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
9288   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
9289 
9290   expand %{
9291     rorL_rReg_imm8(dst, rshift, cr);
9292   %}
9293 %}
9294 
9295 // Rotate Right by variable
9296 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9297 %{
9298   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
9299 
9300   expand %{
9301     rorL_rReg_CL(dst, shift, cr);
9302   %}
9303 %}
9304 
9305 // Rotate Right by variable
9306 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
9307 %{
9308   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
9309 
9310   expand %{
9311     rorL_rReg_CL(dst, shift, cr);
9312   %}
9313 %}
9314 
9315 // Logical Instructions
9316 
9317 // Integer Logical Instructions
9318 
9319 // And Instructions
9320 // And Register with Register
9321 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9322 %{
9323   match(Set dst (AndI dst src));
9324   effect(KILL cr);
9325 
9326   format %{ "andl    $dst, $src\t# int" %}
9327   opcode(0x23);
9328   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9329   ins_pipe(ialu_reg_reg);
9330 %}
9331 
9332 // And Register with Immediate 255
9333 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
9334 %{
9335   match(Set dst (AndI dst src));
9336 
9337   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
9338   opcode(0x0F, 0xB6);
9339   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9340   ins_pipe(ialu_reg);
9341 %}
9342 
9343 // And Register with Immediate 255 and promote to long
9344 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
9345 %{
9346   match(Set dst (ConvI2L (AndI src mask)));
9347 
9348   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
9349   opcode(0x0F, 0xB6);
9350   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9351   ins_pipe(ialu_reg);
9352 %}
9353 
9354 // And Register with Immediate 65535
9355 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
9356 %{
9357   match(Set dst (AndI dst src));
9358 
9359   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
9360   opcode(0x0F, 0xB7);
9361   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9362   ins_pipe(ialu_reg);
9363 %}
9364 
9365 // And Register with Immediate 65535 and promote to long
9366 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
9367 %{
9368   match(Set dst (ConvI2L (AndI src mask)));
9369 
9370   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
9371   opcode(0x0F, 0xB7);
9372   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9373   ins_pipe(ialu_reg);
9374 %}
9375 
9376 // And Register with Immediate
9377 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9378 %{
9379   match(Set dst (AndI dst src));
9380   effect(KILL cr);
9381 
9382   format %{ "andl    $dst, $src\t# int" %}
9383   opcode(0x81, 0x04); /* Opcode 81 /4 */
9384   ins_encode(OpcSErm(dst, src), Con8or32(src));
9385   ins_pipe(ialu_reg);
9386 %}
9387 
9388 // And Register with Memory
9389 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9390 %{
9391   match(Set dst (AndI dst (LoadI src)));
9392   effect(KILL cr);
9393 
9394   ins_cost(125);
9395   format %{ "andl    $dst, $src\t# int" %}
9396   opcode(0x23);
9397   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9398   ins_pipe(ialu_reg_mem);
9399 %}
9400 
9401 // And Memory with Register
9402 instruct andB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9403 %{
9404   match(Set dst (StoreB dst (AndI (LoadB dst) src)));
9405   effect(KILL cr);
9406 
9407   ins_cost(150);
9408   format %{ "andb    $dst, $src\t# byte" %}
9409   opcode(0x20);
9410   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9411   ins_pipe(ialu_mem_reg);
9412 %}
9413 
9414 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9415 %{
9416   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9417   effect(KILL cr);
9418 
9419   ins_cost(150);
9420   format %{ "andl    $dst, $src\t# int" %}
9421   opcode(0x21); /* Opcode 21 /r */
9422   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9423   ins_pipe(ialu_mem_reg);
9424 %}
9425 
9426 // And Memory with Immediate
9427 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
9428 %{
9429   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9430   effect(KILL cr);
9431 
9432   ins_cost(125);
9433   format %{ "andl    $dst, $src\t# int" %}
9434   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9435   ins_encode(REX_mem(dst), OpcSE(src),
9436              RM_opc_mem(secondary, dst), Con8or32(src));
9437   ins_pipe(ialu_mem_imm);
9438 %}
9439 
9440 // BMI1 instructions
9441 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, rFlagsReg cr) %{
9442   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2)));
9443   predicate(UseBMI1Instructions);
9444   effect(KILL cr);
9445 
9446   ins_cost(125);
9447   format %{ "andnl  $dst, $src1, $src2" %}
9448 
9449   ins_encode %{
9450     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
9451   %}
9452   ins_pipe(ialu_reg_mem);
9453 %}
9454 
9455 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, rFlagsReg cr) %{
9456   match(Set dst (AndI (XorI src1 minus_1) src2));
9457   predicate(UseBMI1Instructions);
9458   effect(KILL cr);
9459 
9460   format %{ "andnl  $dst, $src1, $src2" %}
9461 
9462   ins_encode %{
9463     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
9464   %}
9465   ins_pipe(ialu_reg);
9466 %}
9467 
9468 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, rFlagsReg cr) %{
9469   match(Set dst (AndI (SubI imm_zero src) src));
9470   predicate(UseBMI1Instructions);
9471   effect(KILL cr);
9472 
9473   format %{ "blsil  $dst, $src" %}
9474 
9475   ins_encode %{
9476     __ blsil($dst$$Register, $src$$Register);
9477   %}
9478   ins_pipe(ialu_reg);
9479 %}
9480 
9481 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, rFlagsReg cr) %{
9482   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
9483   predicate(UseBMI1Instructions);
9484   effect(KILL cr);
9485 
9486   ins_cost(125);
9487   format %{ "blsil  $dst, $src" %}
9488 
9489   ins_encode %{
9490     __ blsil($dst$$Register, $src$$Address);
9491   %}
9492   ins_pipe(ialu_reg_mem);
9493 %}
9494 
9495 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9496 %{
9497   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ) );
9498   predicate(UseBMI1Instructions);
9499   effect(KILL cr);
9500 
9501   ins_cost(125);
9502   format %{ "blsmskl $dst, $src" %}
9503 
9504   ins_encode %{
9505     __ blsmskl($dst$$Register, $src$$Address);
9506   %}
9507   ins_pipe(ialu_reg_mem);
9508 %}
9509 
9510 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9511 %{
9512   match(Set dst (XorI (AddI src minus_1) src));
9513   predicate(UseBMI1Instructions);
9514   effect(KILL cr);
9515 
9516   format %{ "blsmskl $dst, $src" %}
9517 
9518   ins_encode %{
9519     __ blsmskl($dst$$Register, $src$$Register);
9520   %}
9521 
9522   ins_pipe(ialu_reg);
9523 %}
9524 
9525 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9526 %{
9527   match(Set dst (AndI (AddI src minus_1) src) );
9528   predicate(UseBMI1Instructions);
9529   effect(KILL cr);
9530 
9531   format %{ "blsrl  $dst, $src" %}
9532 
9533   ins_encode %{
9534     __ blsrl($dst$$Register, $src$$Register);
9535   %}
9536 
9537   ins_pipe(ialu_reg_mem);
9538 %}
9539 
9540 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9541 %{
9542   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ) );
9543   predicate(UseBMI1Instructions);
9544   effect(KILL cr);
9545 
9546   ins_cost(125);
9547   format %{ "blsrl  $dst, $src" %}
9548 
9549   ins_encode %{
9550     __ blsrl($dst$$Register, $src$$Address);
9551   %}
9552 
9553   ins_pipe(ialu_reg);
9554 %}
9555 
9556 // Or Instructions
9557 // Or Register with Register
9558 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9559 %{
9560   match(Set dst (OrI dst src));
9561   effect(KILL cr);
9562 
9563   format %{ "orl     $dst, $src\t# int" %}
9564   opcode(0x0B);
9565   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9566   ins_pipe(ialu_reg_reg);
9567 %}
9568 
9569 // Or Register with Immediate
9570 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9571 %{
9572   match(Set dst (OrI dst src));
9573   effect(KILL cr);
9574 
9575   format %{ "orl     $dst, $src\t# int" %}
9576   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9577   ins_encode(OpcSErm(dst, src), Con8or32(src));
9578   ins_pipe(ialu_reg);
9579 %}
9580 
9581 // Or Register with Memory
9582 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9583 %{
9584   match(Set dst (OrI dst (LoadI src)));
9585   effect(KILL cr);
9586 
9587   ins_cost(125);
9588   format %{ "orl     $dst, $src\t# int" %}
9589   opcode(0x0B);
9590   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9591   ins_pipe(ialu_reg_mem);
9592 %}
9593 
9594 // Or Memory with Register
9595 instruct orB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9596 %{
9597   match(Set dst (StoreB dst (OrI (LoadB dst) src)));
9598   effect(KILL cr);
9599 
9600   ins_cost(150);
9601   format %{ "orb    $dst, $src\t# byte" %}
9602   opcode(0x08);
9603   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9604   ins_pipe(ialu_mem_reg);
9605 %}
9606 
9607 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9608 %{
9609   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9610   effect(KILL cr);
9611 
9612   ins_cost(150);
9613   format %{ "orl     $dst, $src\t# int" %}
9614   opcode(0x09); /* Opcode 09 /r */
9615   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9616   ins_pipe(ialu_mem_reg);
9617 %}
9618 
9619 // Or Memory with Immediate
9620 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
9621 %{
9622   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9623   effect(KILL cr);
9624 
9625   ins_cost(125);
9626   format %{ "orl     $dst, $src\t# int" %}
9627   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9628   ins_encode(REX_mem(dst), OpcSE(src),
9629              RM_opc_mem(secondary, dst), Con8or32(src));
9630   ins_pipe(ialu_mem_imm);
9631 %}
9632 
9633 // Xor Instructions
9634 // Xor Register with Register
9635 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9636 %{
9637   match(Set dst (XorI dst src));
9638   effect(KILL cr);
9639 
9640   format %{ "xorl    $dst, $src\t# int" %}
9641   opcode(0x33);
9642   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9643   ins_pipe(ialu_reg_reg);
9644 %}
9645 
9646 // Xor Register with Immediate -1
9647 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
9648   match(Set dst (XorI dst imm));
9649 
9650   format %{ "not    $dst" %}
9651   ins_encode %{
9652      __ notl($dst$$Register);
9653   %}
9654   ins_pipe(ialu_reg);
9655 %}
9656 
9657 // Xor Register with Immediate
9658 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9659 %{
9660   match(Set dst (XorI dst src));
9661   effect(KILL cr);
9662 
9663   format %{ "xorl    $dst, $src\t# int" %}
9664   opcode(0x81, 0x06); /* Opcode 81 /6 id */
9665   ins_encode(OpcSErm(dst, src), Con8or32(src));
9666   ins_pipe(ialu_reg);
9667 %}
9668 
9669 // Xor Register with Memory
9670 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9671 %{
9672   match(Set dst (XorI dst (LoadI src)));
9673   effect(KILL cr);
9674 
9675   ins_cost(125);
9676   format %{ "xorl    $dst, $src\t# int" %}
9677   opcode(0x33);
9678   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9679   ins_pipe(ialu_reg_mem);
9680 %}
9681 
9682 // Xor Memory with Register
9683 instruct xorB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9684 %{
9685   match(Set dst (StoreB dst (XorI (LoadB dst) src)));
9686   effect(KILL cr);
9687 
9688   ins_cost(150);
9689   format %{ "xorb    $dst, $src\t# byte" %}
9690   opcode(0x30);
9691   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9692   ins_pipe(ialu_mem_reg);
9693 %}
9694 
9695 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9696 %{
9697   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9698   effect(KILL cr);
9699 
9700   ins_cost(150);
9701   format %{ "xorl    $dst, $src\t# int" %}
9702   opcode(0x31); /* Opcode 31 /r */
9703   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9704   ins_pipe(ialu_mem_reg);
9705 %}
9706 
9707 // Xor Memory with Immediate
9708 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
9709 %{
9710   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9711   effect(KILL cr);
9712 
9713   ins_cost(125);
9714   format %{ "xorl    $dst, $src\t# int" %}
9715   opcode(0x81, 0x6); /* Opcode 81 /6 id */
9716   ins_encode(REX_mem(dst), OpcSE(src),
9717              RM_opc_mem(secondary, dst), Con8or32(src));
9718   ins_pipe(ialu_mem_imm);
9719 %}
9720 
9721 
9722 // Long Logical Instructions
9723 
9724 // And Instructions
9725 // And Register with Register
9726 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9727 %{
9728   match(Set dst (AndL dst src));
9729   effect(KILL cr);
9730 
9731   format %{ "andq    $dst, $src\t# long" %}
9732   opcode(0x23);
9733   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9734   ins_pipe(ialu_reg_reg);
9735 %}
9736 
9737 // And Register with Immediate 255
9738 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
9739 %{
9740   match(Set dst (AndL dst src));
9741 
9742   format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
9743   opcode(0x0F, 0xB6);
9744   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9745   ins_pipe(ialu_reg);
9746 %}
9747 
9748 // And Register with Immediate 65535
9749 instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
9750 %{
9751   match(Set dst (AndL dst src));
9752 
9753   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
9754   opcode(0x0F, 0xB7);
9755   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9756   ins_pipe(ialu_reg);
9757 %}
9758 
9759 // And Register with Immediate
9760 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9761 %{
9762   match(Set dst (AndL dst src));
9763   effect(KILL cr);
9764 
9765   format %{ "andq    $dst, $src\t# long" %}
9766   opcode(0x81, 0x04); /* Opcode 81 /4 */
9767   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9768   ins_pipe(ialu_reg);
9769 %}
9770 
9771 // And Register with Memory
9772 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9773 %{
9774   match(Set dst (AndL dst (LoadL src)));
9775   effect(KILL cr);
9776 
9777   ins_cost(125);
9778   format %{ "andq    $dst, $src\t# long" %}
9779   opcode(0x23);
9780   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9781   ins_pipe(ialu_reg_mem);
9782 %}
9783 
9784 // And Memory with Register
9785 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9786 %{
9787   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9788   effect(KILL cr);
9789 
9790   ins_cost(150);
9791   format %{ "andq    $dst, $src\t# long" %}
9792   opcode(0x21); /* Opcode 21 /r */
9793   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9794   ins_pipe(ialu_mem_reg);
9795 %}
9796 
9797 // And Memory with Immediate
9798 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9799 %{
9800   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9801   effect(KILL cr);
9802 
9803   ins_cost(125);
9804   format %{ "andq    $dst, $src\t# long" %}
9805   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9806   ins_encode(REX_mem_wide(dst), OpcSE(src),
9807              RM_opc_mem(secondary, dst), Con8or32(src));
9808   ins_pipe(ialu_mem_imm);
9809 %}
9810 
9811 instruct btrL_mem_imm(memory dst, immL_NotPow2 con, rFlagsReg cr)
9812 %{
9813   // con should be a pure 64-bit immediate given that not(con) is a power of 2
9814   // because AND/OR works well enough for 8/32-bit values.
9815   predicate(log2_long(~n->in(3)->in(2)->get_long()) > 30);
9816 
9817   match(Set dst (StoreL dst (AndL (LoadL dst) con)));
9818   effect(KILL cr);
9819 
9820   ins_cost(125);
9821   format %{ "btrq    $dst, log2(not($con))\t# long" %}
9822   ins_encode %{
9823     __ btrq($dst$$Address, log2_long(~$con$$constant));
9824   %}
9825   ins_pipe(ialu_mem_imm);
9826 %}
9827 
9828 // BMI1 instructions
9829 instruct andnL_rReg_rReg_mem(rRegL dst, rRegL src1, memory src2, immL_M1 minus_1, rFlagsReg cr) %{
9830   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2)));
9831   predicate(UseBMI1Instructions);
9832   effect(KILL cr);
9833 
9834   ins_cost(125);
9835   format %{ "andnq  $dst, $src1, $src2" %}
9836 
9837   ins_encode %{
9838     __ andnq($dst$$Register, $src1$$Register, $src2$$Address);
9839   %}
9840   ins_pipe(ialu_reg_mem);
9841 %}
9842 
9843 instruct andnL_rReg_rReg_rReg(rRegL dst, rRegL src1, rRegL src2, immL_M1 minus_1, rFlagsReg cr) %{
9844   match(Set dst (AndL (XorL src1 minus_1) src2));
9845   predicate(UseBMI1Instructions);
9846   effect(KILL cr);
9847 
9848   format %{ "andnq  $dst, $src1, $src2" %}
9849 
9850   ins_encode %{
9851   __ andnq($dst$$Register, $src1$$Register, $src2$$Register);
9852   %}
9853   ins_pipe(ialu_reg_mem);
9854 %}
9855 
9856 instruct blsiL_rReg_rReg(rRegL dst, rRegL src, immL0 imm_zero, rFlagsReg cr) %{
9857   match(Set dst (AndL (SubL imm_zero src) src));
9858   predicate(UseBMI1Instructions);
9859   effect(KILL cr);
9860 
9861   format %{ "blsiq  $dst, $src" %}
9862 
9863   ins_encode %{
9864     __ blsiq($dst$$Register, $src$$Register);
9865   %}
9866   ins_pipe(ialu_reg);
9867 %}
9868 
9869 instruct blsiL_rReg_mem(rRegL dst, memory src, immL0 imm_zero, rFlagsReg cr) %{
9870   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
9871   predicate(UseBMI1Instructions);
9872   effect(KILL cr);
9873 
9874   ins_cost(125);
9875   format %{ "blsiq  $dst, $src" %}
9876 
9877   ins_encode %{
9878     __ blsiq($dst$$Register, $src$$Address);
9879   %}
9880   ins_pipe(ialu_reg_mem);
9881 %}
9882 
9883 instruct blsmskL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9884 %{
9885   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ) );
9886   predicate(UseBMI1Instructions);
9887   effect(KILL cr);
9888 
9889   ins_cost(125);
9890   format %{ "blsmskq $dst, $src" %}
9891 
9892   ins_encode %{
9893     __ blsmskq($dst$$Register, $src$$Address);
9894   %}
9895   ins_pipe(ialu_reg_mem);
9896 %}
9897 
9898 instruct blsmskL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9899 %{
9900   match(Set dst (XorL (AddL src minus_1) src));
9901   predicate(UseBMI1Instructions);
9902   effect(KILL cr);
9903 
9904   format %{ "blsmskq $dst, $src" %}
9905 
9906   ins_encode %{
9907     __ blsmskq($dst$$Register, $src$$Register);
9908   %}
9909 
9910   ins_pipe(ialu_reg);
9911 %}
9912 
9913 instruct blsrL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9914 %{
9915   match(Set dst (AndL (AddL src minus_1) src) );
9916   predicate(UseBMI1Instructions);
9917   effect(KILL cr);
9918 
9919   format %{ "blsrq  $dst, $src" %}
9920 
9921   ins_encode %{
9922     __ blsrq($dst$$Register, $src$$Register);
9923   %}
9924 
9925   ins_pipe(ialu_reg);
9926 %}
9927 
9928 instruct blsrL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9929 %{
9930   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src)) );
9931   predicate(UseBMI1Instructions);
9932   effect(KILL cr);
9933 
9934   ins_cost(125);
9935   format %{ "blsrq  $dst, $src" %}
9936 
9937   ins_encode %{
9938     __ blsrq($dst$$Register, $src$$Address);
9939   %}
9940 
9941   ins_pipe(ialu_reg);
9942 %}
9943 
9944 // Or Instructions
9945 // Or Register with Register
9946 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9947 %{
9948   match(Set dst (OrL dst src));
9949   effect(KILL cr);
9950 
9951   format %{ "orq     $dst, $src\t# long" %}
9952   opcode(0x0B);
9953   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9954   ins_pipe(ialu_reg_reg);
9955 %}
9956 
9957 // Use any_RegP to match R15 (TLS register) without spilling.
9958 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
9959   match(Set dst (OrL dst (CastP2X src)));
9960   effect(KILL cr);
9961 
9962   format %{ "orq     $dst, $src\t# long" %}
9963   opcode(0x0B);
9964   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9965   ins_pipe(ialu_reg_reg);
9966 %}
9967 
9968 
9969 // Or Register with Immediate
9970 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9971 %{
9972   match(Set dst (OrL dst src));
9973   effect(KILL cr);
9974 
9975   format %{ "orq     $dst, $src\t# long" %}
9976   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9977   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9978   ins_pipe(ialu_reg);
9979 %}
9980 
9981 // Or Register with Memory
9982 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9983 %{
9984   match(Set dst (OrL dst (LoadL src)));
9985   effect(KILL cr);
9986 
9987   ins_cost(125);
9988   format %{ "orq     $dst, $src\t# long" %}
9989   opcode(0x0B);
9990   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9991   ins_pipe(ialu_reg_mem);
9992 %}
9993 
9994 // Or Memory with Register
9995 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9996 %{
9997   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9998   effect(KILL cr);
9999 
10000   ins_cost(150);
10001   format %{ "orq     $dst, $src\t# long" %}
10002   opcode(0x09); /* Opcode 09 /r */
10003   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
10004   ins_pipe(ialu_mem_reg);
10005 %}
10006 
10007 // Or Memory with Immediate
10008 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
10009 %{
10010   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
10011   effect(KILL cr);
10012 
10013   ins_cost(125);
10014   format %{ "orq     $dst, $src\t# long" %}
10015   opcode(0x81, 0x1); /* Opcode 81 /1 id */
10016   ins_encode(REX_mem_wide(dst), OpcSE(src),
10017              RM_opc_mem(secondary, dst), Con8or32(src));
10018   ins_pipe(ialu_mem_imm);
10019 %}
10020 
10021 instruct btsL_mem_imm(memory dst, immL_Pow2 con, rFlagsReg cr)
10022 %{
10023   // con should be a pure 64-bit power of 2 immediate
10024   // because AND/OR works well enough for 8/32-bit values.
10025   predicate(log2_long(n->in(3)->in(2)->get_long()) > 31);
10026 
10027   match(Set dst (StoreL dst (OrL (LoadL dst) con)));
10028   effect(KILL cr);
10029 
10030   ins_cost(125);
10031   format %{ "btsq    $dst, log2($con)\t# long" %}
10032   ins_encode %{
10033     __ btsq($dst$$Address, log2_long($con$$constant));
10034   %}
10035   ins_pipe(ialu_mem_imm);
10036 %}
10037 
10038 // Xor Instructions
10039 // Xor Register with Register
10040 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
10041 %{
10042   match(Set dst (XorL dst src));
10043   effect(KILL cr);
10044 
10045   format %{ "xorq    $dst, $src\t# long" %}
10046   opcode(0x33);
10047   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
10048   ins_pipe(ialu_reg_reg);
10049 %}
10050 
10051 // Xor Register with Immediate -1
10052 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
10053   match(Set dst (XorL dst imm));
10054 
10055   format %{ "notq   $dst" %}
10056   ins_encode %{
10057      __ notq($dst$$Register);
10058   %}
10059   ins_pipe(ialu_reg);
10060 %}
10061 
10062 // Xor Register with Immediate
10063 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
10064 %{
10065   match(Set dst (XorL dst src));
10066   effect(KILL cr);
10067 
10068   format %{ "xorq    $dst, $src\t# long" %}
10069   opcode(0x81, 0x06); /* Opcode 81 /6 id */
10070   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
10071   ins_pipe(ialu_reg);
10072 %}
10073 
10074 // Xor Register with Memory
10075 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
10076 %{
10077   match(Set dst (XorL dst (LoadL src)));
10078   effect(KILL cr);
10079 
10080   ins_cost(125);
10081   format %{ "xorq    $dst, $src\t# long" %}
10082   opcode(0x33);
10083   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
10084   ins_pipe(ialu_reg_mem);
10085 %}
10086 
10087 // Xor Memory with Register
10088 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
10089 %{
10090   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
10091   effect(KILL cr);
10092 
10093   ins_cost(150);
10094   format %{ "xorq    $dst, $src\t# long" %}
10095   opcode(0x31); /* Opcode 31 /r */
10096   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
10097   ins_pipe(ialu_mem_reg);
10098 %}
10099 
10100 // Xor Memory with Immediate
10101 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
10102 %{
10103   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
10104   effect(KILL cr);
10105 
10106   ins_cost(125);
10107   format %{ "xorq    $dst, $src\t# long" %}
10108   opcode(0x81, 0x6); /* Opcode 81 /6 id */
10109   ins_encode(REX_mem_wide(dst), OpcSE(src),
10110              RM_opc_mem(secondary, dst), Con8or32(src));
10111   ins_pipe(ialu_mem_imm);
10112 %}
10113 
10114 // Convert Int to Boolean
10115 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
10116 %{
10117   match(Set dst (Conv2B src));
10118   effect(KILL cr);
10119 
10120   format %{ "testl   $src, $src\t# ci2b\n\t"
10121             "setnz   $dst\n\t"
10122             "movzbl  $dst, $dst" %}
10123   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
10124              setNZ_reg(dst),
10125              REX_reg_breg(dst, dst), // movzbl
10126              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
10127   ins_pipe(pipe_slow); // XXX
10128 %}
10129 
10130 // Convert Pointer to Boolean
10131 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
10132 %{
10133   match(Set dst (Conv2B src));
10134   effect(KILL cr);
10135 
10136   format %{ "testq   $src, $src\t# cp2b\n\t"
10137             "setnz   $dst\n\t"
10138             "movzbl  $dst, $dst" %}
10139   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
10140              setNZ_reg(dst),
10141              REX_reg_breg(dst, dst), // movzbl
10142              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
10143   ins_pipe(pipe_slow); // XXX
10144 %}
10145 
10146 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
10147 %{
10148   match(Set dst (CmpLTMask p q));
10149   effect(KILL cr);
10150 
10151   ins_cost(400);
10152   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
10153             "setlt   $dst\n\t"
10154             "movzbl  $dst, $dst\n\t"
10155             "negl    $dst" %}
10156   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
10157              setLT_reg(dst),
10158              REX_reg_breg(dst, dst), // movzbl
10159              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
10160              neg_reg(dst));
10161   ins_pipe(pipe_slow);
10162 %}
10163 
10164 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
10165 %{
10166   match(Set dst (CmpLTMask dst zero));
10167   effect(KILL cr);
10168 
10169   ins_cost(100);
10170   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
10171   ins_encode %{
10172   __ sarl($dst$$Register, 31);
10173   %}
10174   ins_pipe(ialu_reg);
10175 %}
10176 
10177 /* Better to save a register than avoid a branch */
10178 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
10179 %{
10180   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
10181   effect(KILL cr);
10182   ins_cost(300);
10183   format %{ "subl    $p,$q\t# cadd_cmpLTMask\n\t"
10184             "jge     done\n\t"
10185             "addl    $p,$y\n"
10186             "done:   " %}
10187   ins_encode %{
10188     Register Rp = $p$$Register;
10189     Register Rq = $q$$Register;
10190     Register Ry = $y$$Register;
10191     Label done;
10192     __ subl(Rp, Rq);
10193     __ jccb(Assembler::greaterEqual, done);
10194     __ addl(Rp, Ry);
10195     __ bind(done);
10196   %}
10197   ins_pipe(pipe_cmplt);
10198 %}
10199 
10200 /* Better to save a register than avoid a branch */
10201 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
10202 %{
10203   match(Set y (AndI (CmpLTMask p q) y));
10204   effect(KILL cr);
10205 
10206   ins_cost(300);
10207 
10208   format %{ "cmpl    $p, $q\t# and_cmpLTMask\n\t"
10209             "jlt     done\n\t"
10210             "xorl    $y, $y\n"
10211             "done:   " %}
10212   ins_encode %{
10213     Register Rp = $p$$Register;
10214     Register Rq = $q$$Register;
10215     Register Ry = $y$$Register;
10216     Label done;
10217     __ cmpl(Rp, Rq);
10218     __ jccb(Assembler::less, done);
10219     __ xorl(Ry, Ry);
10220     __ bind(done);
10221   %}
10222   ins_pipe(pipe_cmplt);
10223 %}
10224 
10225 
10226 //---------- FP Instructions------------------------------------------------
10227 
10228 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
10229 %{
10230   match(Set cr (CmpF src1 src2));
10231 
10232   ins_cost(145);
10233   format %{ "ucomiss $src1, $src2\n\t"
10234             "jnp,s   exit\n\t"
10235             "pushfq\t# saw NaN, set CF\n\t"
10236             "andq    [rsp], #0xffffff2b\n\t"
10237             "popfq\n"
10238     "exit:" %}
10239   ins_encode %{
10240     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10241     emit_cmpfp_fixup(_masm);
10242   %}
10243   ins_pipe(pipe_slow);
10244 %}
10245 
10246 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
10247   match(Set cr (CmpF src1 src2));
10248 
10249   ins_cost(100);
10250   format %{ "ucomiss $src1, $src2" %}
10251   ins_encode %{
10252     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10253   %}
10254   ins_pipe(pipe_slow);
10255 %}
10256 
10257 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
10258 %{
10259   match(Set cr (CmpF src1 (LoadF src2)));
10260 
10261   ins_cost(145);
10262   format %{ "ucomiss $src1, $src2\n\t"
10263             "jnp,s   exit\n\t"
10264             "pushfq\t# saw NaN, set CF\n\t"
10265             "andq    [rsp], #0xffffff2b\n\t"
10266             "popfq\n"
10267     "exit:" %}
10268   ins_encode %{
10269     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10270     emit_cmpfp_fixup(_masm);
10271   %}
10272   ins_pipe(pipe_slow);
10273 %}
10274 
10275 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
10276   match(Set cr (CmpF src1 (LoadF src2)));
10277 
10278   ins_cost(100);
10279   format %{ "ucomiss $src1, $src2" %}
10280   ins_encode %{
10281     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10282   %}
10283   ins_pipe(pipe_slow);
10284 %}
10285 
10286 instruct cmpF_cc_imm(rFlagsRegU cr, regF src, immF con) %{
10287   match(Set cr (CmpF src con));
10288 
10289   ins_cost(145);
10290   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10291             "jnp,s   exit\n\t"
10292             "pushfq\t# saw NaN, set CF\n\t"
10293             "andq    [rsp], #0xffffff2b\n\t"
10294             "popfq\n"
10295     "exit:" %}
10296   ins_encode %{
10297     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10298     emit_cmpfp_fixup(_masm);
10299   %}
10300   ins_pipe(pipe_slow);
10301 %}
10302 
10303 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src, immF con) %{
10304   match(Set cr (CmpF src con));
10305   ins_cost(100);
10306   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con" %}
10307   ins_encode %{
10308     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10309   %}
10310   ins_pipe(pipe_slow);
10311 %}
10312 
10313 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
10314 %{
10315   match(Set cr (CmpD src1 src2));
10316 
10317   ins_cost(145);
10318   format %{ "ucomisd $src1, $src2\n\t"
10319             "jnp,s   exit\n\t"
10320             "pushfq\t# saw NaN, set CF\n\t"
10321             "andq    [rsp], #0xffffff2b\n\t"
10322             "popfq\n"
10323     "exit:" %}
10324   ins_encode %{
10325     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10326     emit_cmpfp_fixup(_masm);
10327   %}
10328   ins_pipe(pipe_slow);
10329 %}
10330 
10331 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
10332   match(Set cr (CmpD src1 src2));
10333 
10334   ins_cost(100);
10335   format %{ "ucomisd $src1, $src2 test" %}
10336   ins_encode %{
10337     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10338   %}
10339   ins_pipe(pipe_slow);
10340 %}
10341 
10342 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
10343 %{
10344   match(Set cr (CmpD src1 (LoadD src2)));
10345 
10346   ins_cost(145);
10347   format %{ "ucomisd $src1, $src2\n\t"
10348             "jnp,s   exit\n\t"
10349             "pushfq\t# saw NaN, set CF\n\t"
10350             "andq    [rsp], #0xffffff2b\n\t"
10351             "popfq\n"
10352     "exit:" %}
10353   ins_encode %{
10354     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10355     emit_cmpfp_fixup(_masm);
10356   %}
10357   ins_pipe(pipe_slow);
10358 %}
10359 
10360 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
10361   match(Set cr (CmpD src1 (LoadD src2)));
10362 
10363   ins_cost(100);
10364   format %{ "ucomisd $src1, $src2" %}
10365   ins_encode %{
10366     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10367   %}
10368   ins_pipe(pipe_slow);
10369 %}
10370 
10371 instruct cmpD_cc_imm(rFlagsRegU cr, regD src, immD con) %{
10372   match(Set cr (CmpD src con));
10373 
10374   ins_cost(145);
10375   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10376             "jnp,s   exit\n\t"
10377             "pushfq\t# saw NaN, set CF\n\t"
10378             "andq    [rsp], #0xffffff2b\n\t"
10379             "popfq\n"
10380     "exit:" %}
10381   ins_encode %{
10382     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10383     emit_cmpfp_fixup(_masm);
10384   %}
10385   ins_pipe(pipe_slow);
10386 %}
10387 
10388 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src, immD con) %{
10389   match(Set cr (CmpD src con));
10390   ins_cost(100);
10391   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con" %}
10392   ins_encode %{
10393     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10394   %}
10395   ins_pipe(pipe_slow);
10396 %}
10397 
10398 // Compare into -1,0,1
10399 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
10400 %{
10401   match(Set dst (CmpF3 src1 src2));
10402   effect(KILL cr);
10403 
10404   ins_cost(275);
10405   format %{ "ucomiss $src1, $src2\n\t"
10406             "movl    $dst, #-1\n\t"
10407             "jp,s    done\n\t"
10408             "jb,s    done\n\t"
10409             "setne   $dst\n\t"
10410             "movzbl  $dst, $dst\n"
10411     "done:" %}
10412   ins_encode %{
10413     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10414     emit_cmpfp3(_masm, $dst$$Register);
10415   %}
10416   ins_pipe(pipe_slow);
10417 %}
10418 
10419 // Compare into -1,0,1
10420 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
10421 %{
10422   match(Set dst (CmpF3 src1 (LoadF src2)));
10423   effect(KILL cr);
10424 
10425   ins_cost(275);
10426   format %{ "ucomiss $src1, $src2\n\t"
10427             "movl    $dst, #-1\n\t"
10428             "jp,s    done\n\t"
10429             "jb,s    done\n\t"
10430             "setne   $dst\n\t"
10431             "movzbl  $dst, $dst\n"
10432     "done:" %}
10433   ins_encode %{
10434     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10435     emit_cmpfp3(_masm, $dst$$Register);
10436   %}
10437   ins_pipe(pipe_slow);
10438 %}
10439 
10440 // Compare into -1,0,1
10441 instruct cmpF_imm(rRegI dst, regF src, immF con, rFlagsReg cr) %{
10442   match(Set dst (CmpF3 src con));
10443   effect(KILL cr);
10444 
10445   ins_cost(275);
10446   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10447             "movl    $dst, #-1\n\t"
10448             "jp,s    done\n\t"
10449             "jb,s    done\n\t"
10450             "setne   $dst\n\t"
10451             "movzbl  $dst, $dst\n"
10452     "done:" %}
10453   ins_encode %{
10454     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10455     emit_cmpfp3(_masm, $dst$$Register);
10456   %}
10457   ins_pipe(pipe_slow);
10458 %}
10459 
10460 // Compare into -1,0,1
10461 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
10462 %{
10463   match(Set dst (CmpD3 src1 src2));
10464   effect(KILL cr);
10465 
10466   ins_cost(275);
10467   format %{ "ucomisd $src1, $src2\n\t"
10468             "movl    $dst, #-1\n\t"
10469             "jp,s    done\n\t"
10470             "jb,s    done\n\t"
10471             "setne   $dst\n\t"
10472             "movzbl  $dst, $dst\n"
10473     "done:" %}
10474   ins_encode %{
10475     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10476     emit_cmpfp3(_masm, $dst$$Register);
10477   %}
10478   ins_pipe(pipe_slow);
10479 %}
10480 
10481 // Compare into -1,0,1
10482 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
10483 %{
10484   match(Set dst (CmpD3 src1 (LoadD src2)));
10485   effect(KILL cr);
10486 
10487   ins_cost(275);
10488   format %{ "ucomisd $src1, $src2\n\t"
10489             "movl    $dst, #-1\n\t"
10490             "jp,s    done\n\t"
10491             "jb,s    done\n\t"
10492             "setne   $dst\n\t"
10493             "movzbl  $dst, $dst\n"
10494     "done:" %}
10495   ins_encode %{
10496     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10497     emit_cmpfp3(_masm, $dst$$Register);
10498   %}
10499   ins_pipe(pipe_slow);
10500 %}
10501 
10502 // Compare into -1,0,1
10503 instruct cmpD_imm(rRegI dst, regD src, immD con, rFlagsReg cr) %{
10504   match(Set dst (CmpD3 src con));
10505   effect(KILL cr);
10506 
10507   ins_cost(275);
10508   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10509             "movl    $dst, #-1\n\t"
10510             "jp,s    done\n\t"
10511             "jb,s    done\n\t"
10512             "setne   $dst\n\t"
10513             "movzbl  $dst, $dst\n"
10514     "done:" %}
10515   ins_encode %{
10516     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10517     emit_cmpfp3(_masm, $dst$$Register);
10518   %}
10519   ins_pipe(pipe_slow);
10520 %}
10521 
10522 //----------Arithmetic Conversion Instructions---------------------------------
10523 
10524 instruct roundFloat_nop(regF dst)
10525 %{
10526   match(Set dst (RoundFloat dst));
10527 
10528   ins_cost(0);
10529   ins_encode();
10530   ins_pipe(empty);
10531 %}
10532 
10533 instruct roundDouble_nop(regD dst)
10534 %{
10535   match(Set dst (RoundDouble dst));
10536 
10537   ins_cost(0);
10538   ins_encode();
10539   ins_pipe(empty);
10540 %}
10541 
10542 instruct convF2D_reg_reg(regD dst, regF src)
10543 %{
10544   match(Set dst (ConvF2D src));
10545 
10546   format %{ "cvtss2sd $dst, $src" %}
10547   ins_encode %{
10548     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10549   %}
10550   ins_pipe(pipe_slow); // XXX
10551 %}
10552 
10553 instruct convF2D_reg_mem(regD dst, memory src)
10554 %{
10555   match(Set dst (ConvF2D (LoadF src)));
10556 
10557   format %{ "cvtss2sd $dst, $src" %}
10558   ins_encode %{
10559     __ cvtss2sd ($dst$$XMMRegister, $src$$Address);
10560   %}
10561   ins_pipe(pipe_slow); // XXX
10562 %}
10563 
10564 instruct convD2F_reg_reg(regF dst, regD src)
10565 %{
10566   match(Set dst (ConvD2F src));
10567 
10568   format %{ "cvtsd2ss $dst, $src" %}
10569   ins_encode %{
10570     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10571   %}
10572   ins_pipe(pipe_slow); // XXX
10573 %}
10574 
10575 instruct convD2F_reg_mem(regF dst, memory src)
10576 %{
10577   match(Set dst (ConvD2F (LoadD src)));
10578 
10579   format %{ "cvtsd2ss $dst, $src" %}
10580   ins_encode %{
10581     __ cvtsd2ss ($dst$$XMMRegister, $src$$Address);
10582   %}
10583   ins_pipe(pipe_slow); // XXX
10584 %}
10585 
10586 // XXX do mem variants
10587 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
10588 %{
10589   match(Set dst (ConvF2I src));
10590   effect(KILL cr);
10591   format %{ "convert_f2i $dst,$src" %}
10592   ins_encode %{
10593     __ convert_f2i($dst$$Register, $src$$XMMRegister);
10594   %}
10595   ins_pipe(pipe_slow);
10596 %}
10597 
10598 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
10599 %{
10600   match(Set dst (ConvF2L src));
10601   effect(KILL cr);
10602   format %{ "convert_f2l $dst,$src"%}
10603   ins_encode %{
10604     __ convert_f2l($dst$$Register, $src$$XMMRegister);
10605   %}
10606   ins_pipe(pipe_slow);
10607 %}
10608 
10609 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
10610 %{
10611   match(Set dst (ConvD2I src));
10612   effect(KILL cr);
10613   format %{ "convert_d2i $dst,$src"%}
10614   ins_encode %{
10615     __ convert_d2i($dst$$Register, $src$$XMMRegister);
10616   %}
10617   ins_pipe(pipe_slow);
10618 %}
10619 
10620 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
10621 %{
10622   match(Set dst (ConvD2L src));
10623   effect(KILL cr);
10624   format %{ "convert_d2l $dst,$src"%}
10625   ins_encode %{
10626     __ convert_d2l($dst$$Register, $src$$XMMRegister);
10627   %}
10628   ins_pipe(pipe_slow);
10629 %}
10630 
10631 instruct convI2F_reg_reg(regF dst, rRegI src)
10632 %{
10633   predicate(!UseXmmI2F);
10634   match(Set dst (ConvI2F src));
10635 
10636   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10637   ins_encode %{
10638     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
10639   %}
10640   ins_pipe(pipe_slow); // XXX
10641 %}
10642 
10643 instruct convI2F_reg_mem(regF dst, memory src)
10644 %{
10645   match(Set dst (ConvI2F (LoadI src)));
10646 
10647   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10648   ins_encode %{
10649     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Address);
10650   %}
10651   ins_pipe(pipe_slow); // XXX
10652 %}
10653 
10654 instruct convI2D_reg_reg(regD dst, rRegI src)
10655 %{
10656   predicate(!UseXmmI2D);
10657   match(Set dst (ConvI2D src));
10658 
10659   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10660   ins_encode %{
10661     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
10662   %}
10663   ins_pipe(pipe_slow); // XXX
10664 %}
10665 
10666 instruct convI2D_reg_mem(regD dst, memory src)
10667 %{
10668   match(Set dst (ConvI2D (LoadI src)));
10669 
10670   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10671   ins_encode %{
10672     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Address);
10673   %}
10674   ins_pipe(pipe_slow); // XXX
10675 %}
10676 
10677 instruct convXI2F_reg(regF dst, rRegI src)
10678 %{
10679   predicate(UseXmmI2F);
10680   match(Set dst (ConvI2F src));
10681 
10682   format %{ "movdl $dst, $src\n\t"
10683             "cvtdq2psl $dst, $dst\t# i2f" %}
10684   ins_encode %{
10685     __ movdl($dst$$XMMRegister, $src$$Register);
10686     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
10687   %}
10688   ins_pipe(pipe_slow); // XXX
10689 %}
10690 
10691 instruct convXI2D_reg(regD dst, rRegI src)
10692 %{
10693   predicate(UseXmmI2D);
10694   match(Set dst (ConvI2D src));
10695 
10696   format %{ "movdl $dst, $src\n\t"
10697             "cvtdq2pdl $dst, $dst\t# i2d" %}
10698   ins_encode %{
10699     __ movdl($dst$$XMMRegister, $src$$Register);
10700     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
10701   %}
10702   ins_pipe(pipe_slow); // XXX
10703 %}
10704 
10705 instruct convL2F_reg_reg(regF dst, rRegL src)
10706 %{
10707   match(Set dst (ConvL2F src));
10708 
10709   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10710   ins_encode %{
10711     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Register);
10712   %}
10713   ins_pipe(pipe_slow); // XXX
10714 %}
10715 
10716 instruct convL2F_reg_mem(regF dst, memory src)
10717 %{
10718   match(Set dst (ConvL2F (LoadL src)));
10719 
10720   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10721   ins_encode %{
10722     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Address);
10723   %}
10724   ins_pipe(pipe_slow); // XXX
10725 %}
10726 
10727 instruct convL2D_reg_reg(regD dst, rRegL src)
10728 %{
10729   match(Set dst (ConvL2D src));
10730 
10731   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10732   ins_encode %{
10733     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Register);
10734   %}
10735   ins_pipe(pipe_slow); // XXX
10736 %}
10737 
10738 instruct convL2D_reg_mem(regD dst, memory src)
10739 %{
10740   match(Set dst (ConvL2D (LoadL src)));
10741 
10742   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10743   ins_encode %{
10744     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Address);
10745   %}
10746   ins_pipe(pipe_slow); // XXX
10747 %}
10748 
10749 instruct convI2L_reg_reg(rRegL dst, rRegI src)
10750 %{
10751   match(Set dst (ConvI2L src));
10752 
10753   ins_cost(125);
10754   format %{ "movslq  $dst, $src\t# i2l" %}
10755   ins_encode %{
10756     __ movslq($dst$$Register, $src$$Register);
10757   %}
10758   ins_pipe(ialu_reg_reg);
10759 %}
10760 
10761 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
10762 // %{
10763 //   match(Set dst (ConvI2L src));
10764 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
10765 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
10766 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
10767 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
10768 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
10769 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
10770 
10771 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
10772 //   ins_encode(enc_copy(dst, src));
10773 // //   opcode(0x63); // needs REX.W
10774 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
10775 //   ins_pipe(ialu_reg_reg);
10776 // %}
10777 
10778 // Zero-extend convert int to long
10779 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
10780 %{
10781   match(Set dst (AndL (ConvI2L src) mask));
10782 
10783   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10784   ins_encode %{
10785     if ($dst$$reg != $src$$reg) {
10786       __ movl($dst$$Register, $src$$Register);
10787     }
10788   %}
10789   ins_pipe(ialu_reg_reg);
10790 %}
10791 
10792 // Zero-extend convert int to long
10793 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
10794 %{
10795   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
10796 
10797   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10798   ins_encode %{
10799     __ movl($dst$$Register, $src$$Address);
10800   %}
10801   ins_pipe(ialu_reg_mem);
10802 %}
10803 
10804 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
10805 %{
10806   match(Set dst (AndL src mask));
10807 
10808   format %{ "movl    $dst, $src\t# zero-extend long" %}
10809   ins_encode %{
10810     __ movl($dst$$Register, $src$$Register);
10811   %}
10812   ins_pipe(ialu_reg_reg);
10813 %}
10814 
10815 instruct convL2I_reg_reg(rRegI dst, rRegL src)
10816 %{
10817   match(Set dst (ConvL2I src));
10818 
10819   format %{ "movl    $dst, $src\t# l2i" %}
10820   ins_encode %{
10821     __ movl($dst$$Register, $src$$Register);
10822   %}
10823   ins_pipe(ialu_reg_reg);
10824 %}
10825 
10826 
10827 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
10828   match(Set dst (MoveF2I src));
10829   effect(DEF dst, USE src);
10830 
10831   ins_cost(125);
10832   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
10833   ins_encode %{
10834     __ movl($dst$$Register, Address(rsp, $src$$disp));
10835   %}
10836   ins_pipe(ialu_reg_mem);
10837 %}
10838 
10839 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
10840   match(Set dst (MoveI2F src));
10841   effect(DEF dst, USE src);
10842 
10843   ins_cost(125);
10844   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
10845   ins_encode %{
10846     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
10847   %}
10848   ins_pipe(pipe_slow);
10849 %}
10850 
10851 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
10852   match(Set dst (MoveD2L src));
10853   effect(DEF dst, USE src);
10854 
10855   ins_cost(125);
10856   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
10857   ins_encode %{
10858     __ movq($dst$$Register, Address(rsp, $src$$disp));
10859   %}
10860   ins_pipe(ialu_reg_mem);
10861 %}
10862 
10863 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
10864   predicate(!UseXmmLoadAndClearUpper);
10865   match(Set dst (MoveL2D src));
10866   effect(DEF dst, USE src);
10867 
10868   ins_cost(125);
10869   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
10870   ins_encode %{
10871     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10872   %}
10873   ins_pipe(pipe_slow);
10874 %}
10875 
10876 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
10877   predicate(UseXmmLoadAndClearUpper);
10878   match(Set dst (MoveL2D src));
10879   effect(DEF dst, USE src);
10880 
10881   ins_cost(125);
10882   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
10883   ins_encode %{
10884     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10885   %}
10886   ins_pipe(pipe_slow);
10887 %}
10888 
10889 
10890 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
10891   match(Set dst (MoveF2I src));
10892   effect(DEF dst, USE src);
10893 
10894   ins_cost(95); // XXX
10895   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
10896   ins_encode %{
10897     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
10898   %}
10899   ins_pipe(pipe_slow);
10900 %}
10901 
10902 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
10903   match(Set dst (MoveI2F src));
10904   effect(DEF dst, USE src);
10905 
10906   ins_cost(100);
10907   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
10908   ins_encode %{
10909     __ movl(Address(rsp, $dst$$disp), $src$$Register);
10910   %}
10911   ins_pipe( ialu_mem_reg );
10912 %}
10913 
10914 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
10915   match(Set dst (MoveD2L src));
10916   effect(DEF dst, USE src);
10917 
10918   ins_cost(95); // XXX
10919   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
10920   ins_encode %{
10921     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
10922   %}
10923   ins_pipe(pipe_slow);
10924 %}
10925 
10926 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
10927   match(Set dst (MoveL2D src));
10928   effect(DEF dst, USE src);
10929 
10930   ins_cost(100);
10931   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
10932   ins_encode %{
10933     __ movq(Address(rsp, $dst$$disp), $src$$Register);
10934   %}
10935   ins_pipe(ialu_mem_reg);
10936 %}
10937 
10938 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
10939   match(Set dst (MoveF2I src));
10940   effect(DEF dst, USE src);
10941   ins_cost(85);
10942   format %{ "movd    $dst,$src\t# MoveF2I" %}
10943   ins_encode %{
10944     __ movdl($dst$$Register, $src$$XMMRegister);
10945   %}
10946   ins_pipe( pipe_slow );
10947 %}
10948 
10949 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
10950   match(Set dst (MoveD2L src));
10951   effect(DEF dst, USE src);
10952   ins_cost(85);
10953   format %{ "movd    $dst,$src\t# MoveD2L" %}
10954   ins_encode %{
10955     __ movdq($dst$$Register, $src$$XMMRegister);
10956   %}
10957   ins_pipe( pipe_slow );
10958 %}
10959 
10960 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
10961   match(Set dst (MoveI2F src));
10962   effect(DEF dst, USE src);
10963   ins_cost(100);
10964   format %{ "movd    $dst,$src\t# MoveI2F" %}
10965   ins_encode %{
10966     __ movdl($dst$$XMMRegister, $src$$Register);
10967   %}
10968   ins_pipe( pipe_slow );
10969 %}
10970 
10971 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
10972   match(Set dst (MoveL2D src));
10973   effect(DEF dst, USE src);
10974   ins_cost(100);
10975   format %{ "movd    $dst,$src\t# MoveL2D" %}
10976   ins_encode %{
10977      __ movdq($dst$$XMMRegister, $src$$Register);
10978   %}
10979   ins_pipe( pipe_slow );
10980 %}
10981 
10982 
10983 // =======================================================================
10984 // fast clearing of an array
10985 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
10986                   Universe dummy, rFlagsReg cr)
10987 %{
10988   predicate(!((ClearArrayNode*)n)->is_large());
10989   match(Set dummy (ClearArray cnt base));
10990   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
10991 
10992   format %{ $$template
10993     $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10994     $$emit$$"cmp     InitArrayShortSize,rcx\n\t"
10995     $$emit$$"jg      LARGE\n\t"
10996     $$emit$$"dec     rcx\n\t"
10997     $$emit$$"js      DONE\t# Zero length\n\t"
10998     $$emit$$"mov     rax,(rdi,rcx,8)\t# LOOP\n\t"
10999     $$emit$$"dec     rcx\n\t"
11000     $$emit$$"jge     LOOP\n\t"
11001     $$emit$$"jmp     DONE\n\t"
11002     $$emit$$"# LARGE:\n\t"
11003     if (UseFastStosb) {
11004        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
11005        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--\n\t"
11006     } else if (UseXMMForObjInit) {
11007        $$emit$$"mov     rdi,rax\n\t"
11008        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
11009        $$emit$$"jmpq    L_zero_64_bytes\n\t"
11010        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
11011        $$emit$$"vmovdqu ymm0,(rax)\n\t"
11012        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
11013        $$emit$$"add     0x40,rax\n\t"
11014        $$emit$$"# L_zero_64_bytes:\n\t"
11015        $$emit$$"sub     0x8,rcx\n\t"
11016        $$emit$$"jge     L_loop\n\t"
11017        $$emit$$"add     0x4,rcx\n\t"
11018        $$emit$$"jl      L_tail\n\t"
11019        $$emit$$"vmovdqu ymm0,(rax)\n\t"
11020        $$emit$$"add     0x20,rax\n\t"
11021        $$emit$$"sub     0x4,rcx\n\t"
11022        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
11023        $$emit$$"add     0x4,rcx\n\t"
11024        $$emit$$"jle     L_end\n\t"
11025        $$emit$$"dec     rcx\n\t"
11026        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
11027        $$emit$$"vmovq   xmm0,(rax)\n\t"
11028        $$emit$$"add     0x8,rax\n\t"
11029        $$emit$$"dec     rcx\n\t"
11030        $$emit$$"jge     L_sloop\n\t"
11031        $$emit$$"# L_end:\n\t"
11032     } else {
11033        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--\n\t"
11034     }
11035     $$emit$$"# DONE"
11036   %}
11037   ins_encode %{
11038     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
11039                  $tmp$$XMMRegister, false);
11040   %}
11041   ins_pipe(pipe_slow);
11042 %}
11043 
11044 instruct rep_stos_large(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
11045                         Universe dummy, rFlagsReg cr)
11046 %{
11047   predicate(((ClearArrayNode*)n)->is_large());
11048   match(Set dummy (ClearArray cnt base));
11049   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
11050 
11051   format %{ $$template
11052     if (UseFastStosb) {
11053        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
11054        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
11055        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--"
11056     } else if (UseXMMForObjInit) {
11057        $$emit$$"mov     rdi,rax\t# ClearArray:\n\t"
11058        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
11059        $$emit$$"jmpq    L_zero_64_bytes\n\t"
11060        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
11061        $$emit$$"vmovdqu ymm0,(rax)\n\t"
11062        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
11063        $$emit$$"add     0x40,rax\n\t"
11064        $$emit$$"# L_zero_64_bytes:\n\t"
11065        $$emit$$"sub     0x8,rcx\n\t"
11066        $$emit$$"jge     L_loop\n\t"
11067        $$emit$$"add     0x4,rcx\n\t"
11068        $$emit$$"jl      L_tail\n\t"
11069        $$emit$$"vmovdqu ymm0,(rax)\n\t"
11070        $$emit$$"add     0x20,rax\n\t"
11071        $$emit$$"sub     0x4,rcx\n\t"
11072        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
11073        $$emit$$"add     0x4,rcx\n\t"
11074        $$emit$$"jle     L_end\n\t"
11075        $$emit$$"dec     rcx\n\t"
11076        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
11077        $$emit$$"vmovq   xmm0,(rax)\n\t"
11078        $$emit$$"add     0x8,rax\n\t"
11079        $$emit$$"dec     rcx\n\t"
11080        $$emit$$"jge     L_sloop\n\t"
11081        $$emit$$"# L_end:\n\t"
11082     } else {
11083        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
11084        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--"
11085     }
11086   %}
11087   ins_encode %{
11088     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
11089                  $tmp$$XMMRegister, true);
11090   %}
11091   ins_pipe(pipe_slow);
11092 %}
11093 
11094 instruct string_compareL(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11095                          rax_RegI result, legRegD tmp1, rFlagsReg cr)
11096 %{
11097   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
11098   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11099   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11100 
11101   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11102   ins_encode %{
11103     __ string_compare($str1$$Register, $str2$$Register,
11104                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11105                       $tmp1$$XMMRegister, StrIntrinsicNode::LL);
11106   %}
11107   ins_pipe( pipe_slow );
11108 %}
11109 
11110 instruct string_compareU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11111                          rax_RegI result, legRegD tmp1, rFlagsReg cr)
11112 %{
11113   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
11114   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11115   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11116 
11117   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11118   ins_encode %{
11119     __ string_compare($str1$$Register, $str2$$Register,
11120                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11121                       $tmp1$$XMMRegister, StrIntrinsicNode::UU);
11122   %}
11123   ins_pipe( pipe_slow );
11124 %}
11125 
11126 instruct string_compareLU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11127                           rax_RegI result, legRegD tmp1, rFlagsReg cr)
11128 %{
11129   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
11130   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11131   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11132 
11133   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11134   ins_encode %{
11135     __ string_compare($str1$$Register, $str2$$Register,
11136                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11137                       $tmp1$$XMMRegister, StrIntrinsicNode::LU);
11138   %}
11139   ins_pipe( pipe_slow );
11140 %}
11141 
11142 instruct string_compareUL(rsi_RegP str1, rdx_RegI cnt1, rdi_RegP str2, rcx_RegI cnt2,
11143                           rax_RegI result, legRegD tmp1, rFlagsReg cr)
11144 %{
11145   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
11146   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11147   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11148 
11149   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11150   ins_encode %{
11151     __ string_compare($str2$$Register, $str1$$Register,
11152                       $cnt2$$Register, $cnt1$$Register, $result$$Register,
11153                       $tmp1$$XMMRegister, StrIntrinsicNode::UL);
11154   %}
11155   ins_pipe( pipe_slow );
11156 %}
11157 
11158 // fast search of substring with known size.
11159 instruct string_indexof_conL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11160                              rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11161 %{
11162   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
11163   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11164   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11165 
11166   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
11167   ins_encode %{
11168     int icnt2 = (int)$int_cnt2$$constant;
11169     if (icnt2 >= 16) {
11170       // IndexOf for constant substrings with size >= 16 elements
11171       // which don't need to be loaded through stack.
11172       __ string_indexofC8($str1$$Register, $str2$$Register,
11173                           $cnt1$$Register, $cnt2$$Register,
11174                           icnt2, $result$$Register,
11175                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11176     } else {
11177       // Small strings are loaded through stack if they cross page boundary.
11178       __ string_indexof($str1$$Register, $str2$$Register,
11179                         $cnt1$$Register, $cnt2$$Register,
11180                         icnt2, $result$$Register,
11181                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11182     }
11183   %}
11184   ins_pipe( pipe_slow );
11185 %}
11186 
11187 // fast search of substring with known size.
11188 instruct string_indexof_conU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11189                              rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11190 %{
11191   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
11192   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11193   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11194 
11195   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
11196   ins_encode %{
11197     int icnt2 = (int)$int_cnt2$$constant;
11198     if (icnt2 >= 8) {
11199       // IndexOf for constant substrings with size >= 8 elements
11200       // which don't need to be loaded through stack.
11201       __ string_indexofC8($str1$$Register, $str2$$Register,
11202                           $cnt1$$Register, $cnt2$$Register,
11203                           icnt2, $result$$Register,
11204                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11205     } else {
11206       // Small strings are loaded through stack if they cross page boundary.
11207       __ string_indexof($str1$$Register, $str2$$Register,
11208                         $cnt1$$Register, $cnt2$$Register,
11209                         icnt2, $result$$Register,
11210                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11211     }
11212   %}
11213   ins_pipe( pipe_slow );
11214 %}
11215 
11216 // fast search of substring with known size.
11217 instruct string_indexof_conUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11218                               rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11219 %{
11220   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
11221   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11222   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11223 
11224   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
11225   ins_encode %{
11226     int icnt2 = (int)$int_cnt2$$constant;
11227     if (icnt2 >= 8) {
11228       // IndexOf for constant substrings with size >= 8 elements
11229       // which don't need to be loaded through stack.
11230       __ string_indexofC8($str1$$Register, $str2$$Register,
11231                           $cnt1$$Register, $cnt2$$Register,
11232                           icnt2, $result$$Register,
11233                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11234     } else {
11235       // Small strings are loaded through stack if they cross page boundary.
11236       __ string_indexof($str1$$Register, $str2$$Register,
11237                         $cnt1$$Register, $cnt2$$Register,
11238                         icnt2, $result$$Register,
11239                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11240     }
11241   %}
11242   ins_pipe( pipe_slow );
11243 %}
11244 
11245 instruct string_indexofL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11246                          rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
11247 %{
11248   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
11249   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11250   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11251 
11252   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11253   ins_encode %{
11254     __ string_indexof($str1$$Register, $str2$$Register,
11255                       $cnt1$$Register, $cnt2$$Register,
11256                       (-1), $result$$Register,
11257                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11258   %}
11259   ins_pipe( pipe_slow );
11260 %}
11261 
11262 instruct string_indexofU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11263                          rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
11264 %{
11265   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
11266   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11267   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11268 
11269   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11270   ins_encode %{
11271     __ string_indexof($str1$$Register, $str2$$Register,
11272                       $cnt1$$Register, $cnt2$$Register,
11273                       (-1), $result$$Register,
11274                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11275   %}
11276   ins_pipe( pipe_slow );
11277 %}
11278 
11279 instruct string_indexofUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11280                           rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
11281 %{
11282   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
11283   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11284   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11285 
11286   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11287   ins_encode %{
11288     __ string_indexof($str1$$Register, $str2$$Register,
11289                       $cnt1$$Register, $cnt2$$Register,
11290                       (-1), $result$$Register,
11291                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11292   %}
11293   ins_pipe( pipe_slow );
11294 %}
11295 
11296 instruct string_indexofU_char(rdi_RegP str1, rdx_RegI cnt1, rax_RegI ch,
11297                               rbx_RegI result, legRegD tmp_vec1, legRegD tmp_vec2, legRegD tmp_vec3, rcx_RegI tmp, rFlagsReg cr)
11298 %{
11299   predicate(UseSSE42Intrinsics);
11300   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
11301   effect(TEMP tmp_vec1, TEMP tmp_vec2, TEMP tmp_vec3, USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP tmp, KILL cr);
11302   format %{ "String IndexOf char[] $str1,$cnt1,$ch -> $result   // KILL all" %}
11303   ins_encode %{
11304     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, $result$$Register,
11305                            $tmp_vec1$$XMMRegister, $tmp_vec2$$XMMRegister, $tmp_vec3$$XMMRegister, $tmp$$Register);
11306   %}
11307   ins_pipe( pipe_slow );
11308 %}
11309 
11310 // fast string equals
11311 instruct string_equals(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
11312                        legRegD tmp1, legRegD tmp2, rbx_RegI tmp3, rFlagsReg cr)
11313 %{
11314   match(Set result (StrEquals (Binary str1 str2) cnt));
11315   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11316 
11317   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11318   ins_encode %{
11319     __ arrays_equals(false, $str1$$Register, $str2$$Register,
11320                      $cnt$$Register, $result$$Register, $tmp3$$Register,
11321                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11322   %}
11323   ins_pipe( pipe_slow );
11324 %}
11325 
11326 // fast array equals
11327 instruct array_equalsB(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11328                        legRegD tmp1, legRegD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11329 %{
11330   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
11331   match(Set result (AryEq ary1 ary2));
11332   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11333 
11334   format %{ "Array Equals byte[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11335   ins_encode %{
11336     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11337                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11338                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11339   %}
11340   ins_pipe( pipe_slow );
11341 %}
11342 
11343 instruct array_equalsC(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11344                        legRegD tmp1, legRegD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11345 %{
11346   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
11347   match(Set result (AryEq ary1 ary2));
11348   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11349 
11350   format %{ "Array Equals char[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11351   ins_encode %{
11352     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11353                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11354                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, true /* char */);
11355   %}
11356   ins_pipe( pipe_slow );
11357 %}
11358 
11359 instruct has_negatives(rsi_RegP ary1, rcx_RegI len, rax_RegI result,
11360                        legRegD tmp1, legRegD tmp2, rbx_RegI tmp3, rFlagsReg cr)
11361 %{
11362   match(Set result (HasNegatives ary1 len));
11363   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL len, KILL tmp3, KILL cr);
11364 
11365   format %{ "has negatives byte[] $ary1,$len -> $result   // KILL $tmp1, $tmp2, $tmp3" %}
11366   ins_encode %{
11367     __ has_negatives($ary1$$Register, $len$$Register,
11368                      $result$$Register, $tmp3$$Register,
11369                      $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11370   %}
11371   ins_pipe( pipe_slow );
11372 %}
11373 
11374 // fast char[] to byte[] compression
11375 instruct string_compress(rsi_RegP src, rdi_RegP dst, rdx_RegI len, legRegD tmp1, legRegD tmp2, legRegD tmp3, legRegD tmp4,
11376                          rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11377   match(Set result (StrCompressedCopy src (Binary dst len)));
11378   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11379 
11380   format %{ "String Compress $src,$dst -> $result    // KILL RAX, RCX, RDX" %}
11381   ins_encode %{
11382     __ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
11383                            $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11384                            $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11385   %}
11386   ins_pipe( pipe_slow );
11387 %}
11388 
11389 // fast byte[] to char[] inflation
11390 instruct string_inflate(Universe dummy, rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11391                         legRegD tmp1, rcx_RegI tmp2, rFlagsReg cr) %{
11392   match(Set dummy (StrInflatedCopy src (Binary dst len)));
11393   effect(TEMP tmp1, TEMP tmp2, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
11394 
11395   format %{ "String Inflate $src,$dst    // KILL $tmp1, $tmp2" %}
11396   ins_encode %{
11397     __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
11398                           $tmp1$$XMMRegister, $tmp2$$Register);
11399   %}
11400   ins_pipe( pipe_slow );
11401 %}
11402 
11403 // encode char[] to byte[] in ISO_8859_1
11404 instruct encode_iso_array(rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11405                           legRegD tmp1, legRegD tmp2, legRegD tmp3, legRegD tmp4,
11406                           rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11407   match(Set result (EncodeISOArray src (Binary dst len)));
11408   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11409 
11410   format %{ "Encode array $src,$dst,$len -> $result    // KILL RCX, RDX, $tmp1, $tmp2, $tmp3, $tmp4, RSI, RDI " %}
11411   ins_encode %{
11412     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11413                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11414                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11415   %}
11416   ins_pipe( pipe_slow );
11417 %}
11418 
11419 //----------Overflow Math Instructions-----------------------------------------
11420 
11421 instruct overflowAddI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11422 %{
11423   match(Set cr (OverflowAddI op1 op2));
11424   effect(DEF cr, USE_KILL op1, USE op2);
11425 
11426   format %{ "addl    $op1, $op2\t# overflow check int" %}
11427 
11428   ins_encode %{
11429     __ addl($op1$$Register, $op2$$Register);
11430   %}
11431   ins_pipe(ialu_reg_reg);
11432 %}
11433 
11434 instruct overflowAddI_rReg_imm(rFlagsReg cr, rax_RegI op1, immI op2)
11435 %{
11436   match(Set cr (OverflowAddI op1 op2));
11437   effect(DEF cr, USE_KILL op1, USE op2);
11438 
11439   format %{ "addl    $op1, $op2\t# overflow check int" %}
11440 
11441   ins_encode %{
11442     __ addl($op1$$Register, $op2$$constant);
11443   %}
11444   ins_pipe(ialu_reg_reg);
11445 %}
11446 
11447 instruct overflowAddL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11448 %{
11449   match(Set cr (OverflowAddL op1 op2));
11450   effect(DEF cr, USE_KILL op1, USE op2);
11451 
11452   format %{ "addq    $op1, $op2\t# overflow check long" %}
11453   ins_encode %{
11454     __ addq($op1$$Register, $op2$$Register);
11455   %}
11456   ins_pipe(ialu_reg_reg);
11457 %}
11458 
11459 instruct overflowAddL_rReg_imm(rFlagsReg cr, rax_RegL op1, immL32 op2)
11460 %{
11461   match(Set cr (OverflowAddL op1 op2));
11462   effect(DEF cr, USE_KILL op1, USE op2);
11463 
11464   format %{ "addq    $op1, $op2\t# overflow check long" %}
11465   ins_encode %{
11466     __ addq($op1$$Register, $op2$$constant);
11467   %}
11468   ins_pipe(ialu_reg_reg);
11469 %}
11470 
11471 instruct overflowSubI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11472 %{
11473   match(Set cr (OverflowSubI op1 op2));
11474 
11475   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11476   ins_encode %{
11477     __ cmpl($op1$$Register, $op2$$Register);
11478   %}
11479   ins_pipe(ialu_reg_reg);
11480 %}
11481 
11482 instruct overflowSubI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11483 %{
11484   match(Set cr (OverflowSubI op1 op2));
11485 
11486   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11487   ins_encode %{
11488     __ cmpl($op1$$Register, $op2$$constant);
11489   %}
11490   ins_pipe(ialu_reg_reg);
11491 %}
11492 
11493 instruct overflowSubL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11494 %{
11495   match(Set cr (OverflowSubL op1 op2));
11496 
11497   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11498   ins_encode %{
11499     __ cmpq($op1$$Register, $op2$$Register);
11500   %}
11501   ins_pipe(ialu_reg_reg);
11502 %}
11503 
11504 instruct overflowSubL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11505 %{
11506   match(Set cr (OverflowSubL op1 op2));
11507 
11508   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11509   ins_encode %{
11510     __ cmpq($op1$$Register, $op2$$constant);
11511   %}
11512   ins_pipe(ialu_reg_reg);
11513 %}
11514 
11515 instruct overflowNegI_rReg(rFlagsReg cr, immI0 zero, rax_RegI op2)
11516 %{
11517   match(Set cr (OverflowSubI zero op2));
11518   effect(DEF cr, USE_KILL op2);
11519 
11520   format %{ "negl    $op2\t# overflow check int" %}
11521   ins_encode %{
11522     __ negl($op2$$Register);
11523   %}
11524   ins_pipe(ialu_reg_reg);
11525 %}
11526 
11527 instruct overflowNegL_rReg(rFlagsReg cr, immL0 zero, rax_RegL op2)
11528 %{
11529   match(Set cr (OverflowSubL zero op2));
11530   effect(DEF cr, USE_KILL op2);
11531 
11532   format %{ "negq    $op2\t# overflow check long" %}
11533   ins_encode %{
11534     __ negq($op2$$Register);
11535   %}
11536   ins_pipe(ialu_reg_reg);
11537 %}
11538 
11539 instruct overflowMulI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11540 %{
11541   match(Set cr (OverflowMulI op1 op2));
11542   effect(DEF cr, USE_KILL op1, USE op2);
11543 
11544   format %{ "imull    $op1, $op2\t# overflow check int" %}
11545   ins_encode %{
11546     __ imull($op1$$Register, $op2$$Register);
11547   %}
11548   ins_pipe(ialu_reg_reg_alu0);
11549 %}
11550 
11551 instruct overflowMulI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
11552 %{
11553   match(Set cr (OverflowMulI op1 op2));
11554   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11555 
11556   format %{ "imull    $tmp, $op1, $op2\t# overflow check int" %}
11557   ins_encode %{
11558     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
11559   %}
11560   ins_pipe(ialu_reg_reg_alu0);
11561 %}
11562 
11563 instruct overflowMulL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11564 %{
11565   match(Set cr (OverflowMulL op1 op2));
11566   effect(DEF cr, USE_KILL op1, USE op2);
11567 
11568   format %{ "imulq    $op1, $op2\t# overflow check long" %}
11569   ins_encode %{
11570     __ imulq($op1$$Register, $op2$$Register);
11571   %}
11572   ins_pipe(ialu_reg_reg_alu0);
11573 %}
11574 
11575 instruct overflowMulL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2, rRegL tmp)
11576 %{
11577   match(Set cr (OverflowMulL op1 op2));
11578   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11579 
11580   format %{ "imulq    $tmp, $op1, $op2\t# overflow check long" %}
11581   ins_encode %{
11582     __ imulq($tmp$$Register, $op1$$Register, $op2$$constant);
11583   %}
11584   ins_pipe(ialu_reg_reg_alu0);
11585 %}
11586 
11587 
11588 //----------Control Flow Instructions------------------------------------------
11589 // Signed compare Instructions
11590 
11591 // XXX more variants!!
11592 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11593 %{
11594   match(Set cr (CmpI op1 op2));
11595   effect(DEF cr, USE op1, USE op2);
11596 
11597   format %{ "cmpl    $op1, $op2" %}
11598   opcode(0x3B);  /* Opcode 3B /r */
11599   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11600   ins_pipe(ialu_cr_reg_reg);
11601 %}
11602 
11603 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11604 %{
11605   match(Set cr (CmpI op1 op2));
11606 
11607   format %{ "cmpl    $op1, $op2" %}
11608   opcode(0x81, 0x07); /* Opcode 81 /7 */
11609   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11610   ins_pipe(ialu_cr_reg_imm);
11611 %}
11612 
11613 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
11614 %{
11615   match(Set cr (CmpI op1 (LoadI op2)));
11616 
11617   ins_cost(500); // XXX
11618   format %{ "cmpl    $op1, $op2" %}
11619   opcode(0x3B); /* Opcode 3B /r */
11620   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11621   ins_pipe(ialu_cr_reg_mem);
11622 %}
11623 
11624 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
11625 %{
11626   match(Set cr (CmpI src zero));
11627 
11628   format %{ "testl   $src, $src" %}
11629   opcode(0x85);
11630   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11631   ins_pipe(ialu_cr_reg_imm);
11632 %}
11633 
11634 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
11635 %{
11636   match(Set cr (CmpI (AndI src con) zero));
11637 
11638   format %{ "testl   $src, $con" %}
11639   opcode(0xF7, 0x00);
11640   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
11641   ins_pipe(ialu_cr_reg_imm);
11642 %}
11643 
11644 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
11645 %{
11646   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
11647 
11648   format %{ "testl   $src, $mem" %}
11649   opcode(0x85);
11650   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
11651   ins_pipe(ialu_cr_reg_mem);
11652 %}
11653 
11654 // Unsigned compare Instructions; really, same as signed except they
11655 // produce an rFlagsRegU instead of rFlagsReg.
11656 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
11657 %{
11658   match(Set cr (CmpU op1 op2));
11659 
11660   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11661   opcode(0x3B); /* Opcode 3B /r */
11662   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11663   ins_pipe(ialu_cr_reg_reg);
11664 %}
11665 
11666 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
11667 %{
11668   match(Set cr (CmpU op1 op2));
11669 
11670   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11671   opcode(0x81,0x07); /* Opcode 81 /7 */
11672   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11673   ins_pipe(ialu_cr_reg_imm);
11674 %}
11675 
11676 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
11677 %{
11678   match(Set cr (CmpU op1 (LoadI op2)));
11679 
11680   ins_cost(500); // XXX
11681   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11682   opcode(0x3B); /* Opcode 3B /r */
11683   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11684   ins_pipe(ialu_cr_reg_mem);
11685 %}
11686 
11687 // // // Cisc-spilled version of cmpU_rReg
11688 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
11689 // //%{
11690 // //  match(Set cr (CmpU (LoadI op1) op2));
11691 // //
11692 // //  format %{ "CMPu   $op1,$op2" %}
11693 // //  ins_cost(500);
11694 // //  opcode(0x39);  /* Opcode 39 /r */
11695 // //  ins_encode( OpcP, reg_mem( op1, op2) );
11696 // //%}
11697 
11698 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
11699 %{
11700   match(Set cr (CmpU src zero));
11701 
11702   format %{ "testl   $src, $src\t# unsigned" %}
11703   opcode(0x85);
11704   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11705   ins_pipe(ialu_cr_reg_imm);
11706 %}
11707 
11708 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
11709 %{
11710   match(Set cr (CmpP op1 op2));
11711 
11712   format %{ "cmpq    $op1, $op2\t# ptr" %}
11713   opcode(0x3B); /* Opcode 3B /r */
11714   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11715   ins_pipe(ialu_cr_reg_reg);
11716 %}
11717 
11718 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
11719 %{
11720   match(Set cr (CmpP op1 (LoadP op2)));
11721   predicate(n->in(2)->as_Load()->barrier_data() == 0);
11722 
11723   ins_cost(500); // XXX
11724   format %{ "cmpq    $op1, $op2\t# ptr" %}
11725   opcode(0x3B); /* Opcode 3B /r */
11726   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11727   ins_pipe(ialu_cr_reg_mem);
11728 %}
11729 
11730 // // // Cisc-spilled version of cmpP_rReg
11731 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
11732 // //%{
11733 // //  match(Set cr (CmpP (LoadP op1) op2));
11734 // //
11735 // //  format %{ "CMPu   $op1,$op2" %}
11736 // //  ins_cost(500);
11737 // //  opcode(0x39);  /* Opcode 39 /r */
11738 // //  ins_encode( OpcP, reg_mem( op1, op2) );
11739 // //%}
11740 
11741 // XXX this is generalized by compP_rReg_mem???
11742 // Compare raw pointer (used in out-of-heap check).
11743 // Only works because non-oop pointers must be raw pointers
11744 // and raw pointers have no anti-dependencies.
11745 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
11746 %{
11747   predicate(n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none &&
11748             n->in(2)->as_Load()->barrier_data() == 0);
11749   match(Set cr (CmpP op1 (LoadP op2)));
11750 
11751   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
11752   opcode(0x3B); /* Opcode 3B /r */
11753   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11754   ins_pipe(ialu_cr_reg_mem);
11755 %}
11756 
11757 // This will generate a signed flags result. This should be OK since
11758 // any compare to a zero should be eq/neq.
11759 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
11760 %{
11761   match(Set cr (CmpP src zero));
11762 
11763   format %{ "testq   $src, $src\t# ptr" %}
11764   opcode(0x85);
11765   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11766   ins_pipe(ialu_cr_reg_imm);
11767 %}
11768 
11769 // This will generate a signed flags result. This should be OK since
11770 // any compare to a zero should be eq/neq.
11771 instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
11772 %{
11773   predicate((!UseCompressedOops || (CompressedOops::base() != NULL)) &&
11774             n->in(1)->as_Load()->barrier_data() == 0);
11775   match(Set cr (CmpP (LoadP op) zero));
11776 
11777   ins_cost(500); // XXX
11778   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
11779   opcode(0xF7); /* Opcode F7 /0 */
11780   ins_encode(REX_mem_wide(op),
11781              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
11782   ins_pipe(ialu_cr_reg_imm);
11783 %}
11784 
11785 instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
11786 %{
11787   predicate(UseCompressedOops && (CompressedOops::base() == NULL) &&
11788             (CompressedKlassPointers::base() == NULL) &&
11789             n->in(1)->as_Load()->barrier_data() == 0);
11790   match(Set cr (CmpP (LoadP mem) zero));
11791 
11792   format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
11793   ins_encode %{
11794     __ cmpq(r12, $mem$$Address);
11795   %}
11796   ins_pipe(ialu_cr_reg_mem);
11797 %}
11798 
11799 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
11800 %{
11801   match(Set cr (CmpN op1 op2));
11802 
11803   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11804   ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
11805   ins_pipe(ialu_cr_reg_reg);
11806 %}
11807 
11808 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
11809 %{
11810   match(Set cr (CmpN src (LoadN mem)));
11811 
11812   format %{ "cmpl    $src, $mem\t# compressed ptr" %}
11813   ins_encode %{
11814     __ cmpl($src$$Register, $mem$$Address);
11815   %}
11816   ins_pipe(ialu_cr_reg_mem);
11817 %}
11818 
11819 instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
11820   match(Set cr (CmpN op1 op2));
11821 
11822   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11823   ins_encode %{
11824     __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
11825   %}
11826   ins_pipe(ialu_cr_reg_imm);
11827 %}
11828 
11829 instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
11830 %{
11831   match(Set cr (CmpN src (LoadN mem)));
11832 
11833   format %{ "cmpl    $mem, $src\t# compressed ptr" %}
11834   ins_encode %{
11835     __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
11836   %}
11837   ins_pipe(ialu_cr_reg_mem);
11838 %}
11839 
11840 instruct compN_rReg_imm_klass(rFlagsRegU cr, rRegN op1, immNKlass op2) %{
11841   match(Set cr (CmpN op1 op2));
11842 
11843   format %{ "cmpl    $op1, $op2\t# compressed klass ptr" %}
11844   ins_encode %{
11845     __ cmp_narrow_klass($op1$$Register, (Klass*)$op2$$constant);
11846   %}
11847   ins_pipe(ialu_cr_reg_imm);
11848 %}
11849 
11850 instruct compN_mem_imm_klass(rFlagsRegU cr, memory mem, immNKlass src)
11851 %{
11852   match(Set cr (CmpN src (LoadNKlass mem)));
11853 
11854   format %{ "cmpl    $mem, $src\t# compressed klass ptr" %}
11855   ins_encode %{
11856     __ cmp_narrow_klass($mem$$Address, (Klass*)$src$$constant);
11857   %}
11858   ins_pipe(ialu_cr_reg_mem);
11859 %}
11860 
11861 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
11862   match(Set cr (CmpN src zero));
11863 
11864   format %{ "testl   $src, $src\t# compressed ptr" %}
11865   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
11866   ins_pipe(ialu_cr_reg_imm);
11867 %}
11868 
11869 instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
11870 %{
11871   predicate(CompressedOops::base() != NULL);
11872   match(Set cr (CmpN (LoadN mem) zero));
11873 
11874   ins_cost(500); // XXX
11875   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
11876   ins_encode %{
11877     __ cmpl($mem$$Address, (int)0xFFFFFFFF);
11878   %}
11879   ins_pipe(ialu_cr_reg_mem);
11880 %}
11881 
11882 instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
11883 %{
11884   predicate(CompressedOops::base() == NULL && (CompressedKlassPointers::base() == NULL));
11885   match(Set cr (CmpN (LoadN mem) zero));
11886 
11887   format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
11888   ins_encode %{
11889     __ cmpl(r12, $mem$$Address);
11890   %}
11891   ins_pipe(ialu_cr_reg_mem);
11892 %}
11893 
11894 // Yanked all unsigned pointer compare operations.
11895 // Pointer compares are done with CmpP which is already unsigned.
11896 
11897 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11898 %{
11899   match(Set cr (CmpL op1 op2));
11900 
11901   format %{ "cmpq    $op1, $op2" %}
11902   opcode(0x3B);  /* Opcode 3B /r */
11903   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11904   ins_pipe(ialu_cr_reg_reg);
11905 %}
11906 
11907 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11908 %{
11909   match(Set cr (CmpL op1 op2));
11910 
11911   format %{ "cmpq    $op1, $op2" %}
11912   opcode(0x81, 0x07); /* Opcode 81 /7 */
11913   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11914   ins_pipe(ialu_cr_reg_imm);
11915 %}
11916 
11917 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
11918 %{
11919   match(Set cr (CmpL op1 (LoadL op2)));
11920 
11921   format %{ "cmpq    $op1, $op2" %}
11922   opcode(0x3B); /* Opcode 3B /r */
11923   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11924   ins_pipe(ialu_cr_reg_mem);
11925 %}
11926 
11927 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
11928 %{
11929   match(Set cr (CmpL src zero));
11930 
11931   format %{ "testq   $src, $src" %}
11932   opcode(0x85);
11933   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11934   ins_pipe(ialu_cr_reg_imm);
11935 %}
11936 
11937 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
11938 %{
11939   match(Set cr (CmpL (AndL src con) zero));
11940 
11941   format %{ "testq   $src, $con\t# long" %}
11942   opcode(0xF7, 0x00);
11943   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
11944   ins_pipe(ialu_cr_reg_imm);
11945 %}
11946 
11947 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
11948 %{
11949   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
11950 
11951   format %{ "testq   $src, $mem" %}
11952   opcode(0x85);
11953   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11954   ins_pipe(ialu_cr_reg_mem);
11955 %}
11956 
11957 instruct testL_reg_mem2(rFlagsReg cr, rRegP src, memory mem, immL0 zero)
11958 %{
11959   match(Set cr (CmpL (AndL (CastP2X src) (LoadL mem)) zero));
11960 
11961   format %{ "testq   $src, $mem" %}
11962   opcode(0x85);
11963   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11964   ins_pipe(ialu_cr_reg_mem);
11965 %}
11966 
11967 // Manifest a CmpL result in an integer register.  Very painful.
11968 // This is the test to avoid.
11969 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
11970 %{
11971   match(Set dst (CmpL3 src1 src2));
11972   effect(KILL flags);
11973 
11974   ins_cost(275); // XXX
11975   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
11976             "movl    $dst, -1\n\t"
11977             "jl,s    done\n\t"
11978             "setne   $dst\n\t"
11979             "movzbl  $dst, $dst\n\t"
11980     "done:" %}
11981   ins_encode(cmpl3_flag(src1, src2, dst));
11982   ins_pipe(pipe_slow);
11983 %}
11984 
11985 // Unsigned long compare Instructions; really, same as signed long except they
11986 // produce an rFlagsRegU instead of rFlagsReg.
11987 instruct compUL_rReg(rFlagsRegU cr, rRegL op1, rRegL op2)
11988 %{
11989   match(Set cr (CmpUL op1 op2));
11990 
11991   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11992   opcode(0x3B);  /* Opcode 3B /r */
11993   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11994   ins_pipe(ialu_cr_reg_reg);
11995 %}
11996 
11997 instruct compUL_rReg_imm(rFlagsRegU cr, rRegL op1, immL32 op2)
11998 %{
11999   match(Set cr (CmpUL op1 op2));
12000 
12001   format %{ "cmpq    $op1, $op2\t# unsigned" %}
12002   opcode(0x81, 0x07); /* Opcode 81 /7 */
12003   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
12004   ins_pipe(ialu_cr_reg_imm);
12005 %}
12006 
12007 instruct compUL_rReg_mem(rFlagsRegU cr, rRegL op1, memory op2)
12008 %{
12009   match(Set cr (CmpUL op1 (LoadL op2)));
12010 
12011   format %{ "cmpq    $op1, $op2\t# unsigned" %}
12012   opcode(0x3B); /* Opcode 3B /r */
12013   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
12014   ins_pipe(ialu_cr_reg_mem);
12015 %}
12016 
12017 instruct testUL_reg(rFlagsRegU cr, rRegL src, immL0 zero)
12018 %{
12019   match(Set cr (CmpUL src zero));
12020 
12021   format %{ "testq   $src, $src\t# unsigned" %}
12022   opcode(0x85);
12023   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
12024   ins_pipe(ialu_cr_reg_imm);
12025 %}
12026 
12027 instruct compB_mem_imm(rFlagsReg cr, memory mem, immI8 imm)
12028 %{
12029   match(Set cr (CmpI (LoadB mem) imm));
12030 
12031   ins_cost(125);
12032   format %{ "cmpb    $mem, $imm" %}
12033   ins_encode %{ __ cmpb($mem$$Address, $imm$$constant); %}
12034   ins_pipe(ialu_cr_reg_mem);
12035 %}
12036 
12037 instruct testUB_mem_imm(rFlagsReg cr, memory mem, immU8 imm, immI0 zero)
12038 %{
12039   match(Set cr (CmpI (AndI (LoadUB mem) imm) zero));
12040 
12041   ins_cost(125);
12042   format %{ "testb   $mem, $imm\t# ubyte" %}
12043   ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
12044   ins_pipe(ialu_cr_reg_mem);
12045 %}
12046 
12047 instruct testB_mem_imm(rFlagsReg cr, memory mem, immI8 imm, immI0 zero)
12048 %{
12049   match(Set cr (CmpI (AndI (LoadB mem) imm) zero));
12050 
12051   ins_cost(125);
12052   format %{ "testb   $mem, $imm\t# byte" %}
12053   ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
12054   ins_pipe(ialu_cr_reg_mem);
12055 %}
12056 
12057 //----------Max and Min--------------------------------------------------------
12058 // Min Instructions
12059 
12060 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
12061 %{
12062   effect(USE_DEF dst, USE src, USE cr);
12063 
12064   format %{ "cmovlgt $dst, $src\t# min" %}
12065   opcode(0x0F, 0x4F);
12066   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
12067   ins_pipe(pipe_cmov_reg);
12068 %}
12069 
12070 
12071 instruct minI_rReg(rRegI dst, rRegI src)
12072 %{
12073   match(Set dst (MinI dst src));
12074 
12075   ins_cost(200);
12076   expand %{
12077     rFlagsReg cr;
12078     compI_rReg(cr, dst, src);
12079     cmovI_reg_g(dst, src, cr);
12080   %}
12081 %}
12082 
12083 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
12084 %{
12085   effect(USE_DEF dst, USE src, USE cr);
12086 
12087   format %{ "cmovllt $dst, $src\t# max" %}
12088   opcode(0x0F, 0x4C);
12089   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
12090   ins_pipe(pipe_cmov_reg);
12091 %}
12092 
12093 
12094 instruct maxI_rReg(rRegI dst, rRegI src)
12095 %{
12096   match(Set dst (MaxI dst src));
12097 
12098   ins_cost(200);
12099   expand %{
12100     rFlagsReg cr;
12101     compI_rReg(cr, dst, src);
12102     cmovI_reg_l(dst, src, cr);
12103   %}
12104 %}
12105 
12106 // ============================================================================
12107 // Branch Instructions
12108 
12109 // Jump Direct - Label defines a relative address from JMP+1
12110 instruct jmpDir(label labl)
12111 %{
12112   match(Goto);
12113   effect(USE labl);
12114 
12115   ins_cost(300);
12116   format %{ "jmp     $labl" %}
12117   size(5);
12118   ins_encode %{
12119     Label* L = $labl$$label;
12120     __ jmp(*L, false); // Always long jump
12121   %}
12122   ins_pipe(pipe_jmp);
12123 %}
12124 
12125 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12126 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
12127 %{
12128   match(If cop cr);
12129   effect(USE labl);
12130 
12131   ins_cost(300);
12132   format %{ "j$cop     $labl" %}
12133   size(6);
12134   ins_encode %{
12135     Label* L = $labl$$label;
12136     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12137   %}
12138   ins_pipe(pipe_jcc);
12139 %}
12140 
12141 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12142 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
12143 %{
12144   predicate(!n->has_vector_mask_set());
12145   match(CountedLoopEnd cop cr);
12146   effect(USE labl);
12147 
12148   ins_cost(300);
12149   format %{ "j$cop     $labl\t# loop end" %}
12150   size(6);
12151   ins_encode %{
12152     Label* L = $labl$$label;
12153     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12154   %}
12155   ins_pipe(pipe_jcc);
12156 %}
12157 
12158 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12159 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12160   predicate(!n->has_vector_mask_set());
12161   match(CountedLoopEnd cop cmp);
12162   effect(USE labl);
12163 
12164   ins_cost(300);
12165   format %{ "j$cop,u   $labl\t# loop end" %}
12166   size(6);
12167   ins_encode %{
12168     Label* L = $labl$$label;
12169     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12170   %}
12171   ins_pipe(pipe_jcc);
12172 %}
12173 
12174 instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12175   predicate(!n->has_vector_mask_set());
12176   match(CountedLoopEnd cop cmp);
12177   effect(USE labl);
12178 
12179   ins_cost(200);
12180   format %{ "j$cop,u   $labl\t# loop end" %}
12181   size(6);
12182   ins_encode %{
12183     Label* L = $labl$$label;
12184     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12185   %}
12186   ins_pipe(pipe_jcc);
12187 %}
12188 
12189 // mask version
12190 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12191 instruct jmpLoopEnd_and_restoreMask(cmpOp cop, rFlagsReg cr, label labl)
12192 %{
12193   predicate(n->has_vector_mask_set());
12194   match(CountedLoopEnd cop cr);
12195   effect(USE labl);
12196 
12197   ins_cost(400);
12198   format %{ "j$cop     $labl\t# loop end\n\t"
12199             "restorevectmask \t# vector mask restore for loops" %}
12200   size(10);
12201   ins_encode %{
12202     Label* L = $labl$$label;
12203     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12204     __ restorevectmask();
12205   %}
12206   ins_pipe(pipe_jcc);
12207 %}
12208 
12209 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12210 instruct jmpLoopEndU_and_restoreMask(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12211   predicate(n->has_vector_mask_set());
12212   match(CountedLoopEnd cop cmp);
12213   effect(USE labl);
12214 
12215   ins_cost(400);
12216   format %{ "j$cop,u   $labl\t# loop end\n\t"
12217             "restorevectmask \t# vector mask restore for loops" %}
12218   size(10);
12219   ins_encode %{
12220     Label* L = $labl$$label;
12221     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12222     __ restorevectmask();
12223   %}
12224   ins_pipe(pipe_jcc);
12225 %}
12226 
12227 instruct jmpLoopEndUCF_and_restoreMask(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12228   predicate(n->has_vector_mask_set());
12229   match(CountedLoopEnd cop cmp);
12230   effect(USE labl);
12231 
12232   ins_cost(300);
12233   format %{ "j$cop,u   $labl\t# loop end\n\t"
12234             "restorevectmask \t# vector mask restore for loops" %}
12235   size(10);
12236   ins_encode %{
12237     Label* L = $labl$$label;
12238     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12239     __ restorevectmask();
12240   %}
12241   ins_pipe(pipe_jcc);
12242 %}
12243 
12244 // Jump Direct Conditional - using unsigned comparison
12245 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12246   match(If cop cmp);
12247   effect(USE labl);
12248 
12249   ins_cost(300);
12250   format %{ "j$cop,u   $labl" %}
12251   size(6);
12252   ins_encode %{
12253     Label* L = $labl$$label;
12254     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12255   %}
12256   ins_pipe(pipe_jcc);
12257 %}
12258 
12259 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12260   match(If cop cmp);
12261   effect(USE labl);
12262 
12263   ins_cost(200);
12264   format %{ "j$cop,u   $labl" %}
12265   size(6);
12266   ins_encode %{
12267     Label* L = $labl$$label;
12268     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12269   %}
12270   ins_pipe(pipe_jcc);
12271 %}
12272 
12273 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12274   match(If cop cmp);
12275   effect(USE labl);
12276 
12277   ins_cost(200);
12278   format %{ $$template
12279     if ($cop$$cmpcode == Assembler::notEqual) {
12280       $$emit$$"jp,u    $labl\n\t"
12281       $$emit$$"j$cop,u   $labl"
12282     } else {
12283       $$emit$$"jp,u    done\n\t"
12284       $$emit$$"j$cop,u   $labl\n\t"
12285       $$emit$$"done:"
12286     }
12287   %}
12288   ins_encode %{
12289     Label* l = $labl$$label;
12290     if ($cop$$cmpcode == Assembler::notEqual) {
12291       __ jcc(Assembler::parity, *l, false);
12292       __ jcc(Assembler::notEqual, *l, false);
12293     } else if ($cop$$cmpcode == Assembler::equal) {
12294       Label done;
12295       __ jccb(Assembler::parity, done);
12296       __ jcc(Assembler::equal, *l, false);
12297       __ bind(done);
12298     } else {
12299        ShouldNotReachHere();
12300     }
12301   %}
12302   ins_pipe(pipe_jcc);
12303 %}
12304 
12305 // ============================================================================
12306 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
12307 // superklass array for an instance of the superklass.  Set a hidden
12308 // internal cache on a hit (cache is checked with exposed code in
12309 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
12310 // encoding ALSO sets flags.
12311 
12312 instruct partialSubtypeCheck(rdi_RegP result,
12313                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12314                              rFlagsReg cr)
12315 %{
12316   match(Set result (PartialSubtypeCheck sub super));
12317   effect(KILL rcx, KILL cr);
12318 
12319   ins_cost(1100);  // slightly larger than the next version
12320   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12321             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12322             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12323             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
12324             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
12325             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12326             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
12327     "miss:\t" %}
12328 
12329   opcode(0x1); // Force a XOR of RDI
12330   ins_encode(enc_PartialSubtypeCheck());
12331   ins_pipe(pipe_slow);
12332 %}
12333 
12334 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
12335                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12336                                      immP0 zero,
12337                                      rdi_RegP result)
12338 %{
12339   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12340   effect(KILL rcx, KILL result);
12341 
12342   ins_cost(1000);
12343   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12344             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12345             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12346             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
12347             "jne,s   miss\t\t# Missed: flags nz\n\t"
12348             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12349     "miss:\t" %}
12350 
12351   opcode(0x0); // No need to XOR RDI
12352   ins_encode(enc_PartialSubtypeCheck());
12353   ins_pipe(pipe_slow);
12354 %}
12355 
12356 // ============================================================================
12357 // Branch Instructions -- short offset versions
12358 //
12359 // These instructions are used to replace jumps of a long offset (the default
12360 // match) with jumps of a shorter offset.  These instructions are all tagged
12361 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12362 // match rules in general matching.  Instead, the ADLC generates a conversion
12363 // method in the MachNode which can be used to do in-place replacement of the
12364 // long variant with the shorter variant.  The compiler will determine if a
12365 // branch can be taken by the is_short_branch_offset() predicate in the machine
12366 // specific code section of the file.
12367 
12368 // Jump Direct - Label defines a relative address from JMP+1
12369 instruct jmpDir_short(label labl) %{
12370   match(Goto);
12371   effect(USE labl);
12372 
12373   ins_cost(300);
12374   format %{ "jmp,s   $labl" %}
12375   size(2);
12376   ins_encode %{
12377     Label* L = $labl$$label;
12378     __ jmpb(*L);
12379   %}
12380   ins_pipe(pipe_jmp);
12381   ins_short_branch(1);
12382 %}
12383 
12384 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12385 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
12386   match(If cop cr);
12387   effect(USE labl);
12388 
12389   ins_cost(300);
12390   format %{ "j$cop,s   $labl" %}
12391   size(2);
12392   ins_encode %{
12393     Label* L = $labl$$label;
12394     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12395   %}
12396   ins_pipe(pipe_jcc);
12397   ins_short_branch(1);
12398 %}
12399 
12400 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12401 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
12402   match(CountedLoopEnd cop cr);
12403   effect(USE labl);
12404 
12405   ins_cost(300);
12406   format %{ "j$cop,s   $labl\t# loop end" %}
12407   size(2);
12408   ins_encode %{
12409     Label* L = $labl$$label;
12410     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12411   %}
12412   ins_pipe(pipe_jcc);
12413   ins_short_branch(1);
12414 %}
12415 
12416 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12417 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12418   match(CountedLoopEnd cop cmp);
12419   effect(USE labl);
12420 
12421   ins_cost(300);
12422   format %{ "j$cop,us  $labl\t# loop end" %}
12423   size(2);
12424   ins_encode %{
12425     Label* L = $labl$$label;
12426     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12427   %}
12428   ins_pipe(pipe_jcc);
12429   ins_short_branch(1);
12430 %}
12431 
12432 instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12433   match(CountedLoopEnd cop cmp);
12434   effect(USE labl);
12435 
12436   ins_cost(300);
12437   format %{ "j$cop,us  $labl\t# loop end" %}
12438   size(2);
12439   ins_encode %{
12440     Label* L = $labl$$label;
12441     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12442   %}
12443   ins_pipe(pipe_jcc);
12444   ins_short_branch(1);
12445 %}
12446 
12447 // Jump Direct Conditional - using unsigned comparison
12448 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12449   match(If cop cmp);
12450   effect(USE labl);
12451 
12452   ins_cost(300);
12453   format %{ "j$cop,us  $labl" %}
12454   size(2);
12455   ins_encode %{
12456     Label* L = $labl$$label;
12457     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12458   %}
12459   ins_pipe(pipe_jcc);
12460   ins_short_branch(1);
12461 %}
12462 
12463 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12464   match(If cop cmp);
12465   effect(USE labl);
12466 
12467   ins_cost(300);
12468   format %{ "j$cop,us  $labl" %}
12469   size(2);
12470   ins_encode %{
12471     Label* L = $labl$$label;
12472     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12473   %}
12474   ins_pipe(pipe_jcc);
12475   ins_short_branch(1);
12476 %}
12477 
12478 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12479   match(If cop cmp);
12480   effect(USE labl);
12481 
12482   ins_cost(300);
12483   format %{ $$template
12484     if ($cop$$cmpcode == Assembler::notEqual) {
12485       $$emit$$"jp,u,s  $labl\n\t"
12486       $$emit$$"j$cop,u,s  $labl"
12487     } else {
12488       $$emit$$"jp,u,s  done\n\t"
12489       $$emit$$"j$cop,u,s  $labl\n\t"
12490       $$emit$$"done:"
12491     }
12492   %}
12493   size(4);
12494   ins_encode %{
12495     Label* l = $labl$$label;
12496     if ($cop$$cmpcode == Assembler::notEqual) {
12497       __ jccb(Assembler::parity, *l);
12498       __ jccb(Assembler::notEqual, *l);
12499     } else if ($cop$$cmpcode == Assembler::equal) {
12500       Label done;
12501       __ jccb(Assembler::parity, done);
12502       __ jccb(Assembler::equal, *l);
12503       __ bind(done);
12504     } else {
12505        ShouldNotReachHere();
12506     }
12507   %}
12508   ins_pipe(pipe_jcc);
12509   ins_short_branch(1);
12510 %}
12511 
12512 // ============================================================================
12513 // inlined locking and unlocking
12514 
12515 instruct cmpFastLockRTM(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rdx_RegI scr, rRegI cx1, rRegI cx2) %{
12516   predicate(Compile::current()->use_rtm());
12517   match(Set cr (FastLock object box));
12518   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
12519   ins_cost(300);
12520   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
12521   ins_encode %{
12522     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12523                  $scr$$Register, $cx1$$Register, $cx2$$Register,
12524                  _counters, _rtm_counters, _stack_rtm_counters,
12525                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
12526                  true, ra_->C->profile_rtm());
12527   %}
12528   ins_pipe(pipe_slow);
12529 %}
12530 
12531 instruct cmpFastLock(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rRegP scr) %{
12532   predicate(!Compile::current()->use_rtm());
12533   match(Set cr (FastLock object box));
12534   effect(TEMP tmp, TEMP scr, USE_KILL box);
12535   ins_cost(300);
12536   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr" %}
12537   ins_encode %{
12538     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12539                  $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
12540   %}
12541   ins_pipe(pipe_slow);
12542 %}
12543 
12544 instruct cmpFastUnlock(rFlagsReg cr, rRegP object, rax_RegP box, rRegP tmp) %{
12545   match(Set cr (FastUnlock object box));
12546   effect(TEMP tmp, USE_KILL box);
12547   ins_cost(300);
12548   format %{ "fastunlock $object,$box\t! kills $box,$tmp" %}
12549   ins_encode %{
12550     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
12551   %}
12552   ins_pipe(pipe_slow);
12553 %}
12554 
12555 
12556 // ============================================================================
12557 // Safepoint Instructions
12558 instruct safePoint_poll(rFlagsReg cr)
12559 %{
12560   predicate(!Assembler::is_polling_page_far() && SafepointMechanism::uses_global_page_poll());
12561   match(SafePoint);
12562   effect(KILL cr);
12563 
12564   format %{ "testl   rax, [rip + #offset_to_poll_page]\t"
12565             "# Safepoint: poll for GC" %}
12566   ins_cost(125);
12567   ins_encode %{
12568     AddressLiteral addr(os::get_polling_page(), relocInfo::poll_type);
12569     __ testl(rax, addr);
12570   %}
12571   ins_pipe(ialu_reg_mem);
12572 %}
12573 
12574 instruct safePoint_poll_far(rFlagsReg cr, rRegP poll)
12575 %{
12576   predicate(Assembler::is_polling_page_far() && SafepointMechanism::uses_global_page_poll());
12577   match(SafePoint poll);
12578   effect(KILL cr, USE poll);
12579 
12580   format %{ "testl   rax, [$poll]\t"
12581             "# Safepoint: poll for GC" %}
12582   ins_cost(125);
12583   ins_encode %{
12584     __ relocate(relocInfo::poll_type);
12585     __ testl(rax, Address($poll$$Register, 0));
12586   %}
12587   ins_pipe(ialu_reg_mem);
12588 %}
12589 
12590 instruct safePoint_poll_tls(rFlagsReg cr, rRegP poll)
12591 %{
12592   predicate(SafepointMechanism::uses_thread_local_poll());
12593   match(SafePoint poll);
12594   effect(KILL cr, USE poll);
12595 
12596   format %{ "testl   rax, [$poll]\t"
12597             "# Safepoint: poll for GC" %}
12598   ins_cost(125);
12599   size(4); /* setting an explicit size will cause debug builds to assert if size is incorrect */
12600   ins_encode %{
12601     __ relocate(relocInfo::poll_type);
12602     address pre_pc = __ pc();
12603     __ testl(rax, Address($poll$$Register, 0));
12604     assert(nativeInstruction_at(pre_pc)->is_safepoint_poll(), "must emit test %%eax [reg]");
12605   %}
12606   ins_pipe(ialu_reg_mem);
12607 %}
12608 
12609 // ============================================================================
12610 // Procedure Call/Return Instructions
12611 // Call Java Static Instruction
12612 // Note: If this code changes, the corresponding ret_addr_offset() and
12613 //       compute_padding() functions will have to be adjusted.
12614 instruct CallStaticJavaDirect(method meth) %{
12615   match(CallStaticJava);
12616   effect(USE meth);
12617 
12618   ins_cost(300);
12619   format %{ "call,static " %}
12620   opcode(0xE8); /* E8 cd */
12621   ins_encode(clear_avx, Java_Static_Call(meth), call_epilog);
12622   ins_pipe(pipe_slow);
12623   ins_alignment(4);
12624 %}
12625 
12626 // Call Java Dynamic Instruction
12627 // Note: If this code changes, the corresponding ret_addr_offset() and
12628 //       compute_padding() functions will have to be adjusted.
12629 instruct CallDynamicJavaDirect(method meth)
12630 %{
12631   match(CallDynamicJava);
12632   effect(USE meth);
12633 
12634   ins_cost(300);
12635   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
12636             "call,dynamic " %}
12637   ins_encode(clear_avx, Java_Dynamic_Call(meth), call_epilog);
12638   ins_pipe(pipe_slow);
12639   ins_alignment(4);
12640 %}
12641 
12642 // Call Runtime Instruction
12643 instruct CallRuntimeDirect(method meth)
12644 %{
12645   match(CallRuntime);
12646   effect(USE meth);
12647 
12648   ins_cost(300);
12649   format %{ "call,runtime " %}
12650   ins_encode(clear_avx, Java_To_Runtime(meth));
12651   ins_pipe(pipe_slow);
12652 %}
12653 
12654 // Call runtime without safepoint
12655 instruct CallLeafDirect(method meth)
12656 %{
12657   match(CallLeaf);
12658   effect(USE meth);
12659 
12660   ins_cost(300);
12661   format %{ "call_leaf,runtime " %}
12662   ins_encode(clear_avx, Java_To_Runtime(meth));
12663   ins_pipe(pipe_slow);
12664 %}
12665 
12666 // Call runtime without safepoint
12667 instruct CallLeafNoFPDirect(method meth)
12668 %{
12669   match(CallLeafNoFP);
12670   effect(USE meth);
12671 
12672   ins_cost(300);
12673   format %{ "call_leaf_nofp,runtime " %}
12674   ins_encode(clear_avx, Java_To_Runtime(meth));
12675   ins_pipe(pipe_slow);
12676 %}
12677 
12678 // Return Instruction
12679 // Remove the return address & jump to it.
12680 // Notice: We always emit a nop after a ret to make sure there is room
12681 // for safepoint patching
12682 instruct Ret()
12683 %{
12684   match(Return);
12685 
12686   format %{ "ret" %}
12687   opcode(0xC3);
12688   ins_encode(OpcP);
12689   ins_pipe(pipe_jmp);
12690 %}
12691 
12692 // Tail Call; Jump from runtime stub to Java code.
12693 // Also known as an 'interprocedural jump'.
12694 // Target of jump will eventually return to caller.
12695 // TailJump below removes the return address.
12696 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
12697 %{
12698   match(TailCall jump_target method_oop);
12699 
12700   ins_cost(300);
12701   format %{ "jmp     $jump_target\t# rbx holds method oop" %}
12702   opcode(0xFF, 0x4); /* Opcode FF /4 */
12703   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
12704   ins_pipe(pipe_jmp);
12705 %}
12706 
12707 // Tail Jump; remove the return address; jump to target.
12708 // TailCall above leaves the return address around.
12709 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
12710 %{
12711   match(TailJump jump_target ex_oop);
12712 
12713   ins_cost(300);
12714   format %{ "popq    rdx\t# pop return address\n\t"
12715             "jmp     $jump_target" %}
12716   opcode(0xFF, 0x4); /* Opcode FF /4 */
12717   ins_encode(Opcode(0x5a), // popq rdx
12718              REX_reg(jump_target), OpcP, reg_opc(jump_target));
12719   ins_pipe(pipe_jmp);
12720 %}
12721 
12722 // Create exception oop: created by stack-crawling runtime code.
12723 // Created exception is now available to this handler, and is setup
12724 // just prior to jumping to this handler.  No code emitted.
12725 instruct CreateException(rax_RegP ex_oop)
12726 %{
12727   match(Set ex_oop (CreateEx));
12728 
12729   size(0);
12730   // use the following format syntax
12731   format %{ "# exception oop is in rax; no code emitted" %}
12732   ins_encode();
12733   ins_pipe(empty);
12734 %}
12735 
12736 // Rethrow exception:
12737 // The exception oop will come in the first argument position.
12738 // Then JUMP (not call) to the rethrow stub code.
12739 instruct RethrowException()
12740 %{
12741   match(Rethrow);
12742 
12743   // use the following format syntax
12744   format %{ "jmp     rethrow_stub" %}
12745   ins_encode(enc_rethrow);
12746   ins_pipe(pipe_jmp);
12747 %}
12748 
12749 // ============================================================================
12750 // This name is KNOWN by the ADLC and cannot be changed.
12751 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
12752 // for this guy.
12753 instruct tlsLoadP(r15_RegP dst) %{
12754   match(Set dst (ThreadLocal));
12755   effect(DEF dst);
12756 
12757   size(0);
12758   format %{ "# TLS is in R15" %}
12759   ins_encode( /*empty encoding*/ );
12760   ins_pipe(ialu_reg_reg);
12761 %}
12762 
12763 
12764 //----------PEEPHOLE RULES-----------------------------------------------------
12765 // These must follow all instruction definitions as they use the names
12766 // defined in the instructions definitions.
12767 //
12768 // peepmatch ( root_instr_name [preceding_instruction]* );
12769 //
12770 // peepconstraint %{
12771 // (instruction_number.operand_name relational_op instruction_number.operand_name
12772 //  [, ...] );
12773 // // instruction numbers are zero-based using left to right order in peepmatch
12774 //
12775 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12776 // // provide an instruction_number.operand_name for each operand that appears
12777 // // in the replacement instruction's match rule
12778 //
12779 // ---------VM FLAGS---------------------------------------------------------
12780 //
12781 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12782 //
12783 // Each peephole rule is given an identifying number starting with zero and
12784 // increasing by one in the order seen by the parser.  An individual peephole
12785 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12786 // on the command-line.
12787 //
12788 // ---------CURRENT LIMITATIONS----------------------------------------------
12789 //
12790 // Only match adjacent instructions in same basic block
12791 // Only equality constraints
12792 // Only constraints between operands, not (0.dest_reg == RAX_enc)
12793 // Only one replacement instruction
12794 //
12795 // ---------EXAMPLE----------------------------------------------------------
12796 //
12797 // // pertinent parts of existing instructions in architecture description
12798 // instruct movI(rRegI dst, rRegI src)
12799 // %{
12800 //   match(Set dst (CopyI src));
12801 // %}
12802 //
12803 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
12804 // %{
12805 //   match(Set dst (AddI dst src));
12806 //   effect(KILL cr);
12807 // %}
12808 //
12809 // // Change (inc mov) to lea
12810 // peephole %{
12811 //   // increment preceeded by register-register move
12812 //   peepmatch ( incI_rReg movI );
12813 //   // require that the destination register of the increment
12814 //   // match the destination register of the move
12815 //   peepconstraint ( 0.dst == 1.dst );
12816 //   // construct a replacement instruction that sets
12817 //   // the destination to ( move's source register + one )
12818 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
12819 // %}
12820 //
12821 
12822 // Implementation no longer uses movX instructions since
12823 // machine-independent system no longer uses CopyX nodes.
12824 //
12825 // peephole
12826 // %{
12827 //   peepmatch (incI_rReg movI);
12828 //   peepconstraint (0.dst == 1.dst);
12829 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12830 // %}
12831 
12832 // peephole
12833 // %{
12834 //   peepmatch (decI_rReg movI);
12835 //   peepconstraint (0.dst == 1.dst);
12836 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12837 // %}
12838 
12839 // peephole
12840 // %{
12841 //   peepmatch (addI_rReg_imm movI);
12842 //   peepconstraint (0.dst == 1.dst);
12843 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12844 // %}
12845 
12846 // peephole
12847 // %{
12848 //   peepmatch (incL_rReg movL);
12849 //   peepconstraint (0.dst == 1.dst);
12850 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12851 // %}
12852 
12853 // peephole
12854 // %{
12855 //   peepmatch (decL_rReg movL);
12856 //   peepconstraint (0.dst == 1.dst);
12857 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12858 // %}
12859 
12860 // peephole
12861 // %{
12862 //   peepmatch (addL_rReg_imm movL);
12863 //   peepconstraint (0.dst == 1.dst);
12864 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12865 // %}
12866 
12867 // peephole
12868 // %{
12869 //   peepmatch (addP_rReg_imm movP);
12870 //   peepconstraint (0.dst == 1.dst);
12871 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
12872 // %}
12873 
12874 // // Change load of spilled value to only a spill
12875 // instruct storeI(memory mem, rRegI src)
12876 // %{
12877 //   match(Set mem (StoreI mem src));
12878 // %}
12879 //
12880 // instruct loadI(rRegI dst, memory mem)
12881 // %{
12882 //   match(Set dst (LoadI mem));
12883 // %}
12884 //
12885 
12886 peephole
12887 %{
12888   peepmatch (loadI storeI);
12889   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
12890   peepreplace (storeI(1.mem 1.mem 1.src));
12891 %}
12892 
12893 peephole
12894 %{
12895   peepmatch (loadL storeL);
12896   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
12897   peepreplace (storeL(1.mem 1.mem 1.src));
12898 %}
12899 
12900 //----------SMARTSPILL RULES---------------------------------------------------
12901 // These must follow all instruction definitions as they use the names
12902 // defined in the instructions definitions.