/* * Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang.invoke; import java.lang.annotation.*; import java.lang.reflect.Method; import java.util.Map; import java.util.List; import java.util.Arrays; import java.util.HashMap; import java.util.concurrent.ConcurrentHashMap; import sun.invoke.util.Wrapper; import java.lang.reflect.Field; import static java.lang.invoke.LambdaForm.BasicType.*; import static java.lang.invoke.MethodHandleStatics.*; import static java.lang.invoke.MethodHandleNatives.Constants.*; /** * The symbolic, non-executable form of a method handle's invocation semantics. * It consists of a series of names. * The first N (N=arity) names are parameters, * while any remaining names are temporary values. * Each temporary specifies the application of a function to some arguments. * The functions are method handles, while the arguments are mixes of * constant values and local names. * The result of the lambda is defined as one of the names, often the last one. *

* Here is an approximate grammar: *

{@code
 * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
 * ArgName = "a" N ":" T
 * TempName = "t" N ":" T "=" Function "(" Argument* ");"
 * Function = ConstantValue
 * Argument = NameRef | ConstantValue
 * Result = NameRef | "void"
 * NameRef = "a" N | "t" N
 * N = (any whole number)
 * T = "L" | "I" | "J" | "F" | "D" | "V"
 * }
* Names are numbered consecutively from left to right starting at zero. * (The letters are merely a taste of syntax sugar.) * Thus, the first temporary (if any) is always numbered N (where N=arity). * Every occurrence of a name reference in an argument list must refer to * a name previously defined within the same lambda. * A lambda has a void result if and only if its result index is -1. * If a temporary has the type "V", it cannot be the subject of a NameRef, * even though possesses a number. * Note that all reference types are erased to "L", which stands for {@code Object}. * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}. * The other types stand for the usual primitive types. *

* Function invocation closely follows the static rules of the Java verifier. * Arguments and return values must exactly match when their "Name" types are * considered. * Conversions are allowed only if they do not change the erased type. *

* Although implicit conversions are not allowed, explicit ones can easily be * encoded by using temporary expressions which call type-transformed identity functions. *

* Examples: *

{@code
 * (a0:J)=>{ a0 }
 *     == identity(long)
 * (a0:I)=>{ t1:V = System.out#println(a0); void }
 *     == System.out#println(int)
 * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 *     == identity, with printing side-effect
 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 *                 t3:L = BoundMethodHandle#target(a0);
 *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 *     == general invoker for unary insertArgument combination
 * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 *                 t3:L = MethodHandle#invoke(t2, a1);
 *                 t4:L = FilterMethodHandle#target(a0);
 *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 *     == general invoker for unary filterArgument combination
 * (a0:L, a1:L)=>{ ...(same as previous example)...
 *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 *     == general invoker for unary/unary foldArgument combination
 * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 *     == invoker for identity method handle which performs i2l
 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 *                 t3:L = Class#cast(t2,a1); t3 }
 *     == invoker for identity method handle which performs cast
 * }
*

* @author John Rose, JSR 292 EG */ class LambdaForm { final int arity; final int result; @Stable final Name[] names; final String debugName; MemberName vmentry; // low-level behavior, or null if not yet prepared private boolean isCompiled; // Caches for common structural transforms: LambdaForm[] bindCache; public static final int VOID_RESULT = -1, LAST_RESULT = -2; public enum BasicType { L_TYPE('L', Object.class, Wrapper.OBJECT), // all reference types I_TYPE('I', int.class, Wrapper.INT), J_TYPE('J', long.class, Wrapper.LONG), F_TYPE('F', float.class, Wrapper.FLOAT), D_TYPE('D', double.class, Wrapper.DOUBLE), // all primitive types V_TYPE('V', void.class, Wrapper.VOID); // not valid in all contexts public static final BasicType[] ALL_TYPES = { L_TYPE, I_TYPE, J_TYPE, F_TYPE, D_TYPE, V_TYPE }; public static final BasicType[] ARG_TYPES = { L_TYPE, I_TYPE, J_TYPE, F_TYPE, D_TYPE }; public static final int ARG_TYPE_LIMIT = V_TYPE.ordinal(); public static final int TYPE_LIMIT = ARG_TYPE_LIMIT+1; private final char btChar; private final Class btClass; private final Wrapper btWrapper; private BasicType(char btChar, Class btClass, Wrapper wrapper) { this.btChar = btChar; this.btClass = btClass; this.btWrapper = wrapper; } public char basicTypeChar() { return btChar; } public Class basicTypeClass() { return btClass; } public Wrapper basicTypeWrapper() { return btWrapper; } public int basicTypeSlots() { return btWrapper.stackSlots(); } public static BasicType basicType(byte type) { return ALL_TYPES[type]; } public static BasicType basicType(char type) { switch (type) { case 'L': return L_TYPE; case 'I': return I_TYPE; case 'J': return J_TYPE; case 'F': return F_TYPE; case 'D': return D_TYPE; case 'V': return V_TYPE; // all subword types are represented as ints case 'Z': case 'B': case 'S': case 'C': return I_TYPE; default: throw newInternalError("Unknown type char: '"+type+"'"); } } public static BasicType basicType(Wrapper type) { char c = type.basicTypeChar(); return basicType(c); } public static BasicType basicType(Class type) { if (!type.isPrimitive()) return L_TYPE; return basicType(Wrapper.forPrimitiveType(type)); } public static char basicTypeChar(Class type) { return basicType(type).btChar; } public static BasicType[] basicTypes(List> types) { BasicType[] btypes = new BasicType[types.size()]; for (int i = 0; i < btypes.length; i++) { btypes[i] = basicType(types.get(i)); } return btypes; } public static BasicType[] basicTypes(String types) { BasicType[] btypes = new BasicType[types.length()]; for (int i = 0; i < btypes.length; i++) { btypes[i] = basicType(types.charAt(i)); } return btypes; } public static boolean isBasicTypeChar(char c) { return "LIJFDV".indexOf(c) >= 0; } public static boolean isArgBasicTypeChar(char c) { return "LIJFD".indexOf(c) >= 0; } } LambdaForm(String debugName, int arity, Name[] names, int result) { assert(namesOK(arity, names)); this.arity = arity; this.result = fixResult(result, names); this.names = names.clone(); this.debugName = fixDebugName(debugName); normalize(); } LambdaForm(String debugName, int arity, Name[] names) { this(debugName, arity, names, LAST_RESULT); } LambdaForm(String debugName, Name[] formals, Name[] temps, Name result) { this(debugName, formals.length, buildNames(formals, temps, result), LAST_RESULT); } private static Name[] buildNames(Name[] formals, Name[] temps, Name result) { int arity = formals.length; int length = arity + temps.length + (result == null ? 0 : 1); Name[] names = Arrays.copyOf(formals, length); System.arraycopy(temps, 0, names, arity, temps.length); if (result != null) names[length - 1] = result; return names; } private LambdaForm(String sig) { // Make a blank lambda form, which returns a constant zero or null. // It is used as a template for managing the invocation of similar forms that are non-empty. // Called only from getPreparedForm. assert(isValidSignature(sig)); this.arity = signatureArity(sig); this.result = (signatureReturn(sig) == V_TYPE ? -1 : arity); this.names = buildEmptyNames(arity, sig); this.debugName = "LF.zero"; assert(nameRefsAreLegal()); assert(isEmpty()); assert(sig.equals(basicTypeSignature())) : sig + " != " + basicTypeSignature(); } private static Name[] buildEmptyNames(int arity, String basicTypeSignature) { assert(isValidSignature(basicTypeSignature)); int resultPos = arity + 1; // skip '_' if (arity < 0 || basicTypeSignature.length() != resultPos+1) throw new IllegalArgumentException("bad arity for "+basicTypeSignature); int numRes = (basicType(basicTypeSignature.charAt(resultPos)) == V_TYPE ? 0 : 1); Name[] names = arguments(numRes, basicTypeSignature.substring(0, arity)); for (int i = 0; i < numRes; i++) { Name zero = new Name(constantZero(basicType(basicTypeSignature.charAt(resultPos + i)))); names[arity + i] = zero.newIndex(arity + i); } return names; } private static int fixResult(int result, Name[] names) { if (result == LAST_RESULT) result = names.length - 1; // might still be void if (result >= 0 && names[result].type == V_TYPE) result = -1; return result; } private static String fixDebugName(String debugName) { if (DEBUG_NAME_COUNTERS != null) { int under = debugName.indexOf('_'); int length = debugName.length(); if (under < 0) under = length; String debugNameStem = debugName.substring(0, under); Integer ctr; synchronized (DEBUG_NAME_COUNTERS) { ctr = DEBUG_NAME_COUNTERS.get(debugNameStem); if (ctr == null) ctr = 0; DEBUG_NAME_COUNTERS.put(debugNameStem, ctr+1); } StringBuilder buf = new StringBuilder(debugNameStem); buf.append('_'); int leadingZero = buf.length(); buf.append((int) ctr); for (int i = buf.length() - leadingZero; i < 3; i++) buf.insert(leadingZero, '0'); if (under < length) { ++under; // skip "_" while (under < length && Character.isDigit(debugName.charAt(under))) { ++under; } if (under < length && debugName.charAt(under) == '_') ++under; if (under < length) buf.append('_').append(debugName, under, length); } return buf.toString(); } return debugName; } private static boolean namesOK(int arity, Name[] names) { for (int i = 0; i < names.length; i++) { Name n = names[i]; assert(n != null) : "n is null"; if (i < arity) assert( n.isParam()) : n + " is not param at " + i; else assert(!n.isParam()) : n + " is param at " + i; } return true; } /** Renumber and/or replace params so that they are interned and canonically numbered. */ private void normalize() { Name[] oldNames = null; int changesStart = 0; for (int i = 0; i < names.length; i++) { Name n = names[i]; if (!n.initIndex(i)) { if (oldNames == null) { oldNames = names.clone(); changesStart = i; } names[i] = n.cloneWithIndex(i); } } if (oldNames != null) { int startFixing = arity; if (startFixing <= changesStart) startFixing = changesStart+1; for (int i = startFixing; i < names.length; i++) { Name fixed = names[i].replaceNames(oldNames, names, changesStart, i); names[i] = fixed.newIndex(i); } } assert(nameRefsAreLegal()); int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT); boolean needIntern = false; for (int i = 0; i < maxInterned; i++) { Name n = names[i], n2 = internArgument(n); if (n != n2) { names[i] = n2; needIntern = true; } } if (needIntern) { for (int i = arity; i < names.length; i++) { names[i].internArguments(); } assert(nameRefsAreLegal()); } } /** * Check that all embedded Name references are localizable to this lambda, * and are properly ordered after their corresponding definitions. *

* Note that a Name can be local to multiple lambdas, as long as * it possesses the same index in each use site. * This allows Name references to be freely reused to construct * fresh lambdas, without confusion. */ private boolean nameRefsAreLegal() { assert(arity >= 0 && arity <= names.length); assert(result >= -1 && result < names.length); // Do all names possess an index consistent with their local definition order? for (int i = 0; i < arity; i++) { Name n = names[i]; assert(n.index() == i) : Arrays.asList(n.index(), i); assert(n.isParam()); } // Also, do all local name references for (int i = arity; i < names.length; i++) { Name n = names[i]; assert(n.index() == i); for (Object arg : n.arguments) { if (arg instanceof Name) { Name n2 = (Name) arg; int i2 = n2.index; assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length; assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this); assert(i2 < i); // ref must come after def! } } } return true; } /** Invoke this form on the given arguments. */ // final Object invoke(Object... args) throws Throwable { // // NYI: fit this into the fast path? // return interpretWithArguments(args); // } /** Report the return type. */ BasicType returnType() { if (result < 0) return V_TYPE; Name n = names[result]; return n.type; } /** Report the N-th argument type. */ BasicType parameterType(int n) { assert(n < arity); return names[n].type; } /** Report the arity. */ int arity() { return arity; } /** Return the method type corresponding to my basic type signature. */ MethodType methodType() { return signatureType(basicTypeSignature()); } /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */ final String basicTypeSignature() { StringBuilder buf = new StringBuilder(arity() + 3); for (int i = 0, a = arity(); i < a; i++) buf.append(parameterType(i).basicTypeChar()); return buf.append('_').append(returnType().basicTypeChar()).toString(); } static int signatureArity(String sig) { assert(isValidSignature(sig)); return sig.indexOf('_'); } static BasicType signatureReturn(String sig) { return basicType(sig.charAt(signatureArity(sig)+1)); } static boolean isValidSignature(String sig) { int arity = sig.indexOf('_'); if (arity < 0) return false; // must be of the form *_* int siglen = sig.length(); if (siglen != arity + 2) return false; // *_X for (int i = 0; i < siglen; i++) { if (i == arity) continue; // skip '_' char c = sig.charAt(i); if (c == 'V') return (i == siglen - 1 && arity == siglen - 2); if (!isArgBasicTypeChar(c)) return false; // must be [LIJFD] } return true; // [LIJFD]*_[LIJFDV] } static MethodType signatureType(String sig) { Class[] ptypes = new Class[signatureArity(sig)]; for (int i = 0; i < ptypes.length; i++) ptypes[i] = basicType(sig.charAt(i)).btClass; Class rtype = signatureReturn(sig).btClass; return MethodType.methodType(rtype, ptypes); } /* * Code generation issues: * * Compiled LFs should be reusable in general. * The biggest issue is how to decide when to pull a name into * the bytecode, versus loading a reified form from the MH data. * * For example, an asType wrapper may require execution of a cast * after a call to a MH. The target type of the cast can be placed * as a constant in the LF itself. This will force the cast type * to be compiled into the bytecodes and native code for the MH. * Or, the target type of the cast can be erased in the LF, and * loaded from the MH data. (Later on, if the MH as a whole is * inlined, the data will flow into the inlined instance of the LF, * as a constant, and the end result will be an optimal cast.) * * This erasure of cast types can be done with any use of * reference types. It can also be done with whole method * handles. Erasing a method handle might leave behind * LF code that executes correctly for any MH of a given * type, and load the required MH from the enclosing MH's data. * Or, the erasure might even erase the expected MT. * * Also, for direct MHs, the MemberName of the target * could be erased, and loaded from the containing direct MH. * As a simple case, a LF for all int-valued non-static * field getters would perform a cast on its input argument * (to non-constant base type derived from the MemberName) * and load an integer value from the input object * (at a non-constant offset also derived from the MemberName). * Such MN-erased LFs would be inlinable back to optimized * code, whenever a constant enclosing DMH is available * to supply a constant MN from its data. * * The main problem here is to keep LFs reasonably generic, * while ensuring that hot spots will inline good instances. * "Reasonably generic" means that we don't end up with * repeated versions of bytecode or machine code that do * not differ in their optimized form. Repeated versions * of machine would have the undesirable overheads of * (a) redundant compilation work and (b) extra I$ pressure. * To control repeated versions, we need to be ready to * erase details from LFs and move them into MH data, * whevener those details are not relevant to significant * optimization. "Significant" means optimization of * code that is actually hot. * * Achieving this may require dynamic splitting of MHs, by replacing * a generic LF with a more specialized one, on the same MH, * if (a) the MH is frequently executed and (b) the MH cannot * be inlined into a containing caller, such as an invokedynamic. * * Compiled LFs that are no longer used should be GC-able. * If they contain non-BCP references, they should be properly * interlinked with the class loader(s) that their embedded types * depend on. This probably means that reusable compiled LFs * will be tabulated (indexed) on relevant class loaders, * or else that the tables that cache them will have weak links. */ /** * Make this LF directly executable, as part of a MethodHandle. * Invariant: Every MH which is invoked must prepare its LF * before invocation. * (In principle, the JVM could do this very lazily, * as a sort of pre-invocation linkage step.) */ public void prepare() { if (COMPILE_THRESHOLD == 0) { compileToBytecode(); } if (this.vmentry != null) { // already prepared (e.g., a primitive DMH invoker form) return; } LambdaForm prep = getPreparedForm(basicTypeSignature()); this.vmentry = prep.vmentry; // TO DO: Maybe add invokeGeneric, invokeWithArguments } /** Generate optimizable bytecode for this form. */ MemberName compileToBytecode() { MethodType invokerType = methodType(); assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType)); if (vmentry != null && isCompiled) { return vmentry; // already compiled somehow } try { vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType); if (TRACE_INTERPRETER) traceInterpreter("compileToBytecode", this); isCompiled = true; return vmentry; } catch (Error | Exception ex) { throw newInternalError("compileToBytecode", ex); } } private static final ConcurrentHashMap PREPARED_FORMS; static { int capacity = 512; // expect many distinct signatures over time float loadFactor = 0.75f; // normal default int writers = 1; PREPARED_FORMS = new ConcurrentHashMap<>(capacity, loadFactor, writers); } private static Map computeInitialPreparedForms() { // Find all predefined invokers and associate them with canonical empty lambda forms. HashMap forms = new HashMap<>(); for (MemberName m : MemberName.getFactory().getMethods(LambdaForm.class, false, null, null, null)) { if (!m.isStatic() || !m.isPackage()) continue; MethodType mt = m.getMethodType(); if (mt.parameterCount() > 0 && mt.parameterType(0) == MethodHandle.class && m.getName().startsWith("interpret_")) { String sig = basicTypeSignature(mt); assert(m.getName().equals("interpret" + sig.substring(sig.indexOf('_')))); LambdaForm form = new LambdaForm(sig); form.vmentry = m; mt.form().setCachedLambdaForm(MethodTypeForm.LF_COUNTER, form); // FIXME: get rid of PREPARED_FORMS; use MethodTypeForm cache only forms.put(sig, form); } } //System.out.println("computeInitialPreparedForms => "+forms); return forms; } // Set this false to disable use of the interpret_L methods defined in this file. private static final boolean USE_PREDEFINED_INTERPRET_METHODS = true; // The following are predefined exact invokers. The system must build // a separate invoker for each distinct signature. static Object interpret_L(MethodHandle mh) throws Throwable { Object[] av = {mh}; String sig = null; assert(argumentTypesMatch(sig = "L_L", av)); Object res = mh.form.interpretWithArguments(av); assert(returnTypesMatch(sig, av, res)); return res; } static Object interpret_L(MethodHandle mh, Object x1) throws Throwable { Object[] av = {mh, x1}; String sig = null; assert(argumentTypesMatch(sig = "LL_L", av)); Object res = mh.form.interpretWithArguments(av); assert(returnTypesMatch(sig, av, res)); return res; } static Object interpret_L(MethodHandle mh, Object x1, Object x2) throws Throwable { Object[] av = {mh, x1, x2}; String sig = null; assert(argumentTypesMatch(sig = "LLL_L", av)); Object res = mh.form.interpretWithArguments(av); assert(returnTypesMatch(sig, av, res)); return res; } private static LambdaForm getPreparedForm(String sig) { MethodType mtype = signatureType(sig); //LambdaForm prep = PREPARED_FORMS.get(sig); LambdaForm prep = mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET); if (prep != null) return prep; assert(isValidSignature(sig)); prep = new LambdaForm(sig); prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(sig); //LambdaForm prep2 = PREPARED_FORMS.putIfAbsent(sig.intern(), prep); return mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep); } // The next few routines are called only from assert expressions // They verify that the built-in invokers process the correct raw data types. private static boolean argumentTypesMatch(String sig, Object[] av) { int arity = signatureArity(sig); assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity; assert(av[0] instanceof MethodHandle) : "av[0] not instace of MethodHandle: " + av[0]; MethodHandle mh = (MethodHandle) av[0]; MethodType mt = mh.type(); assert(mt.parameterCount() == arity-1); for (int i = 0; i < av.length; i++) { Class pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1)); assert(valueMatches(basicType(sig.charAt(i)), pt, av[i])); } return true; } private static boolean valueMatches(BasicType tc, Class type, Object x) { // The following line is needed because (...)void method handles can use non-void invokers if (type == void.class) tc = V_TYPE; // can drop any kind of value assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type); switch (tc) { case I_TYPE: assert checkInt(type, x) : "checkInt(" + type + "," + x +")"; break; case J_TYPE: assert x instanceof Long : "instanceof Long: " + x; break; case F_TYPE: assert x instanceof Float : "instanceof Float: " + x; break; case D_TYPE: assert x instanceof Double : "instanceof Double: " + x; break; case L_TYPE: assert checkRef(type, x) : "checkRef(" + type + "," + x + ")"; break; case V_TYPE: break; // allow anything here; will be dropped default: assert(false); } return true; } private static boolean returnTypesMatch(String sig, Object[] av, Object res) { MethodHandle mh = (MethodHandle) av[0]; return valueMatches(signatureReturn(sig), mh.type().returnType(), res); } private static boolean checkInt(Class type, Object x) { assert(x instanceof Integer); if (type == int.class) return true; Wrapper w = Wrapper.forBasicType(type); assert(w.isSubwordOrInt()); Object x1 = Wrapper.INT.wrap(w.wrap(x)); return x.equals(x1); } private static boolean checkRef(Class type, Object x) { assert(!type.isPrimitive()); if (x == null) return true; if (type.isInterface()) return true; return type.isInstance(x); } /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */ private static final int COMPILE_THRESHOLD; static { if (MethodHandleStatics.COMPILE_THRESHOLD != null) COMPILE_THRESHOLD = MethodHandleStatics.COMPILE_THRESHOLD; else COMPILE_THRESHOLD = 30; // default value } private int invocationCounter = 0; @Hidden @DontInline /** Interpretively invoke this form on the given arguments. */ Object interpretWithArguments(Object... argumentValues) throws Throwable { if (TRACE_INTERPRETER) return interpretWithArgumentsTracing(argumentValues); checkInvocationCounter(); assert(arityCheck(argumentValues)); Object[] values = Arrays.copyOf(argumentValues, names.length); for (int i = argumentValues.length; i < values.length; i++) { values[i] = interpretName(names[i], values); } return (result < 0) ? null : values[result]; } @Hidden @DontInline /** Evaluate a single Name within this form, applying its function to its arguments. */ Object interpretName(Name name, Object[] values) throws Throwable { if (TRACE_INTERPRETER) traceInterpreter("| interpretName", name.debugString(), (Object[]) null); Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class); for (int i = 0; i < arguments.length; i++) { Object a = arguments[i]; if (a instanceof Name) { int i2 = ((Name)a).index(); assert(names[i2] == a); a = values[i2]; arguments[i] = a; } } return name.function.invokeWithArguments(arguments); } private void checkInvocationCounter() { if (COMPILE_THRESHOLD != 0 && invocationCounter < COMPILE_THRESHOLD) { invocationCounter++; // benign race if (invocationCounter >= COMPILE_THRESHOLD) { // Replace vmentry with a bytecode version of this LF. compileToBytecode(); } } } Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable { traceInterpreter("[ interpretWithArguments", this, argumentValues); if (invocationCounter < COMPILE_THRESHOLD) { int ctr = invocationCounter++; // benign race traceInterpreter("| invocationCounter", ctr); if (invocationCounter >= COMPILE_THRESHOLD) { compileToBytecode(); } } Object rval; try { assert(arityCheck(argumentValues)); Object[] values = Arrays.copyOf(argumentValues, names.length); for (int i = argumentValues.length; i < values.length; i++) { values[i] = interpretName(names[i], values); } rval = (result < 0) ? null : values[result]; } catch (Throwable ex) { traceInterpreter("] throw =>", ex); throw ex; } traceInterpreter("] return =>", rval); return rval; } //** This transform is applied (statically) to every name.function. */ /* private static MethodHandle eraseSubwordTypes(MethodHandle mh) { MethodType mt = mh.type(); if (mt.hasPrimitives()) { mt = mt.changeReturnType(eraseSubwordType(mt.returnType())); for (int i = 0; i < mt.parameterCount(); i++) { mt = mt.changeParameterType(i, eraseSubwordType(mt.parameterType(i))); } mh = MethodHandles.explicitCastArguments(mh, mt); } return mh; } private static Class eraseSubwordType(Class type) { if (!type.isPrimitive()) return type; if (type == int.class) return type; Wrapper w = Wrapper.forPrimitiveType(type); if (w.isSubwordOrInt()) return int.class; return type; } */ static void traceInterpreter(String event, Object obj, Object... args) { if (TRACE_INTERPRETER) { System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : "")); } } static void traceInterpreter(String event, Object obj) { traceInterpreter(event, obj, (Object[])null); } private boolean arityCheck(Object[] argumentValues) { assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length"; // also check that the leading (receiver) argument is somehow bound to this LF: assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0]; assert(((MethodHandle)argumentValues[0]).internalForm() == this); // note: argument #0 could also be an interface wrapper, in the future return true; } private boolean isEmpty() { if (result < 0) return (names.length == arity); else if (result == arity && names.length == arity + 1) return names[arity].isConstantZero(); else return false; } public String toString() { StringBuilder buf = new StringBuilder(debugName+"=Lambda("); for (int i = 0; i < names.length; i++) { if (i == arity) buf.append(")=>{"); Name n = names[i]; if (i >= arity) buf.append("\n "); buf.append(n); if (i < arity) { if (i+1 < arity) buf.append(","); continue; } buf.append("=").append(n.exprString()); buf.append(";"); } buf.append(result < 0 ? "void" : names[result]).append("}"); if (TRACE_INTERPRETER) { // Extra verbosity: buf.append(":").append(basicTypeSignature()); buf.append("/").append(vmentry); } return buf.toString(); } /** * Apply immediate binding for a Name in this form indicated by its position relative to the form. * The first parameter to a LambdaForm, a0:L, always represents the form's method handle, so 0 is not * accepted as valid. */ LambdaForm bindImmediate(int pos, BasicType basicType, Object value) { // must be an argument, and the types must match assert pos > 0 && pos < arity && names[pos].type == basicType && Name.typesMatch(basicType, value); int arity2 = arity - 1; Name[] names2 = new Name[names.length - 1]; for (int r = 0, w = 0; r < names.length; ++r, ++w) { // (r)ead from names, (w)rite to names2 Name n = names[r]; if (n.isParam()) { if (n.index == pos) { // do not copy over the argument that is to be replaced with a literal, // but adjust the write index --w; } else { names2[w] = new Name(w, n.type); } } else { Object[] arguments2 = new Object[n.arguments.length]; for (int i = 0; i < n.arguments.length; ++i) { Object arg = n.arguments[i]; if (arg instanceof Name) { int ni = ((Name) arg).index; if (ni == pos) { arguments2[i] = value; } else if (ni < pos) { // replacement position not yet passed arguments2[i] = names2[ni]; } else { // replacement position passed arguments2[i] = names2[ni - 1]; } } else { arguments2[i] = arg; } } names2[w] = new Name(n.function, arguments2); names2[w].initIndex(w); } } int result2 = result == -1 ? -1 : result - 1; return new LambdaForm(debugName, arity2, names2, result2); } LambdaForm bind(int namePos, BoundMethodHandle.SpeciesData oldData) { Name name = names[namePos]; BoundMethodHandle.SpeciesData newData = oldData.extendWith(name.type); return bind(name, new Name(newData.getterFunction(oldData.fieldCount()), names[0]), oldData, newData); } LambdaForm bind(Name name, Name binding, BoundMethodHandle.SpeciesData oldData, BoundMethodHandle.SpeciesData newData) { int pos = name.index; assert(name.isParam()); assert(!binding.isParam()); assert(name.type == binding.type); assert(0 <= pos && pos < arity && names[pos] == name); assert(binding.function.memberDeclaringClassOrNull() == newData.clazz); assert(oldData.getters.length == newData.getters.length-1); if (bindCache != null) { LambdaForm form = bindCache[pos]; if (form != null) { assert(form.contains(binding)) : "form << " + form + " >> does not contain binding << " + binding + " >>"; return form; } } else { bindCache = new LambdaForm[arity]; } assert(nameRefsAreLegal()); int arity2 = arity-1; Name[] names2 = names.clone(); names2[pos] = binding; // we might move this in a moment // The newly created LF will run with a different BMH. // Switch over any pre-existing BMH field references to the new BMH class. int firstOldRef = -1; for (int i = 0; i < names2.length; i++) { Name n = names[i]; if (n.function != null && n.function.memberDeclaringClassOrNull() == oldData.clazz) { MethodHandle oldGetter = n.function.resolvedHandle; MethodHandle newGetter = null; for (int j = 0; j < oldData.getters.length; j++) { if (oldGetter == oldData.getters[j]) newGetter = newData.getters[j]; } if (newGetter != null) { if (firstOldRef < 0) firstOldRef = i; Name n2 = new Name(newGetter, n.arguments); names2[i] = n2; } } } // Walk over the new list of names once, in forward order. // Replace references to 'name' with 'binding'. // Replace data structure references to the old BMH species with the new. // This might cause a ripple effect, but it will settle in one pass. assert(firstOldRef < 0 || firstOldRef > pos); for (int i = pos+1; i < names2.length; i++) { if (i <= arity2) continue; names2[i] = names2[i].replaceNames(names, names2, pos, i); } // (a0, a1, name=a2, a3, a4) => (a0, a1, a3, a4, binding) int insPos = pos; for (; insPos+1 < names2.length; insPos++) { Name n = names2[insPos+1]; if (n.isSiblingBindingBefore(binding)) { names2[insPos] = n; } else { break; } } names2[insPos] = binding; // Since we moved some stuff, maybe update the result reference: int result2 = result; if (result2 == pos) result2 = insPos; else if (result2 > pos && result2 <= insPos) result2 -= 1; return bindCache[pos] = new LambdaForm(debugName, arity2, names2, result2); } boolean contains(Name name) { int pos = name.index(); if (pos >= 0) { return pos < names.length && name.equals(names[pos]); } for (int i = arity; i < names.length; i++) { if (name.equals(names[i])) return true; } return false; } LambdaForm addArguments(int pos, BasicType... types) { assert(pos <= arity); int length = names.length; int inTypes = types.length; Name[] names2 = Arrays.copyOf(names, length + inTypes); int arity2 = arity + inTypes; int result2 = result; if (result2 >= arity) result2 += inTypes; // names array has MH in slot 0; skip it. int argpos = pos + 1; // Note: The LF constructor will rename names2[argpos...]. // Make space for new arguments (shift temporaries). System.arraycopy(names, argpos, names2, argpos + inTypes, length - argpos); for (int i = 0; i < inTypes; i++) { names2[argpos + i] = new Name(types[i]); } return new LambdaForm(debugName, arity2, names2, result2); } LambdaForm addArguments(int pos, List> types) { BasicType[] basicTypes = new BasicType[types.size()]; for (int i = 0; i < basicTypes.length; i++) basicTypes[i] = basicType(types.get(i)); return addArguments(pos, basicTypes); } LambdaForm permuteArguments(int skip, int[] reorder, BasicType[] types) { // Note: When inArg = reorder[outArg], outArg is fed by a copy of inArg. // The types are the types of the new (incoming) arguments. int length = names.length; int inTypes = types.length; int outArgs = reorder.length; assert(skip+outArgs == arity); assert(permutedTypesMatch(reorder, types, names, skip)); int pos = 0; // skip trivial first part of reordering: while (pos < outArgs && reorder[pos] == pos) pos += 1; Name[] names2 = new Name[length - outArgs + inTypes]; System.arraycopy(names, 0, names2, 0, skip+pos); // copy the body: int bodyLength = length - arity; System.arraycopy(names, skip+outArgs, names2, skip+inTypes, bodyLength); int arity2 = names2.length - bodyLength; int result2 = result; if (result2 >= 0) { if (result2 < skip+outArgs) { // return the corresponding inArg result2 = reorder[result2-skip]; } else { result2 = result2 - outArgs + inTypes; } } // rework names in the body: for (int j = pos; j < outArgs; j++) { Name n = names[skip+j]; int i = reorder[j]; // replace names[skip+j] by names2[skip+i] Name n2 = names2[skip+i]; if (n2 == null) names2[skip+i] = n2 = new Name(types[i]); else assert(n2.type == types[i]); for (int k = arity2; k < names2.length; k++) { names2[k] = names2[k].replaceName(n, n2); } } // some names are unused, but must be filled in for (int i = skip+pos; i < arity2; i++) { if (names2[i] == null) names2[i] = argument(i, types[i - skip]); } for (int j = arity; j < names.length; j++) { int i = j - arity + arity2; // replace names2[i] by names[j] Name n = names[j]; Name n2 = names2[i]; if (n != n2) { for (int k = i+1; k < names2.length; k++) { names2[k] = names2[k].replaceName(n, n2); } } } return new LambdaForm(debugName, arity2, names2, result2); } static boolean permutedTypesMatch(int[] reorder, BasicType[] types, Name[] names, int skip) { int inTypes = types.length; int outArgs = reorder.length; for (int i = 0; i < outArgs; i++) { assert(names[skip+i].isParam()); assert(names[skip+i].type == types[reorder[i]]); } return true; } static class NamedFunction { final MemberName member; @Stable MethodHandle resolvedHandle; @Stable MethodHandle invoker; NamedFunction(MethodHandle resolvedHandle) { this(resolvedHandle.internalMemberName(), resolvedHandle); } NamedFunction(MemberName member, MethodHandle resolvedHandle) { this.member = member; //resolvedHandle = eraseSubwordTypes(resolvedHandle); this.resolvedHandle = resolvedHandle; } NamedFunction(MethodType basicInvokerType) { assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType; if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) { this.resolvedHandle = basicInvokerType.invokers().basicInvoker(); this.member = resolvedHandle.internalMemberName(); } else { // necessary to pass BigArityTest this.member = Invokers.invokeBasicMethod(basicInvokerType); } } // The next 3 constructors are used to break circular dependencies on MH.invokeStatic, etc. // Any LambdaForm containing such a member is not interpretable. // This is OK, since all such LFs are prepared with special primitive vmentry points. // And even without the resolvedHandle, the name can still be compiled and optimized. NamedFunction(Method method) { this(new MemberName(method)); } NamedFunction(Field field) { this(new MemberName(field)); } NamedFunction(MemberName member) { this.member = member; this.resolvedHandle = null; } MethodHandle resolvedHandle() { if (resolvedHandle == null) resolve(); return resolvedHandle; } void resolve() { resolvedHandle = DirectMethodHandle.make(member); } @Override public boolean equals(Object other) { if (this == other) return true; if (other == null) return false; if (!(other instanceof NamedFunction)) return false; NamedFunction that = (NamedFunction) other; return this.member != null && this.member.equals(that.member); } @Override public int hashCode() { if (member != null) return member.hashCode(); return super.hashCode(); } // Put the predefined NamedFunction invokers into the table. static void initializeInvokers() { for (MemberName m : MemberName.getFactory().getMethods(NamedFunction.class, false, null, null, null)) { if (!m.isStatic() || !m.isPackage()) continue; MethodType type = m.getMethodType(); if (type.equals(INVOKER_METHOD_TYPE) && m.getName().startsWith("invoke_")) { String sig = m.getName().substring("invoke_".length()); int arity = LambdaForm.signatureArity(sig); MethodType srcType = MethodType.genericMethodType(arity); if (LambdaForm.signatureReturn(sig) == V_TYPE) srcType = srcType.changeReturnType(void.class); MethodTypeForm typeForm = srcType.form(); typeForm.namedFunctionInvoker = DirectMethodHandle.make(m); } } } // The following are predefined NamedFunction invokers. The system must build // a separate invoker for each distinct signature. /** void return type invokers. */ @Hidden static Object invoke__V(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 0); mh.invokeBasic(); return null; } @Hidden static Object invoke_L_V(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 1); mh.invokeBasic(a[0]); return null; } @Hidden static Object invoke_LL_V(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 2); mh.invokeBasic(a[0], a[1]); return null; } @Hidden static Object invoke_LLL_V(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 3); mh.invokeBasic(a[0], a[1], a[2]); return null; } @Hidden static Object invoke_LLLL_V(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 4); mh.invokeBasic(a[0], a[1], a[2], a[3]); return null; } @Hidden static Object invoke_LLLLL_V(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 5); mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]); return null; } /** Object return type invokers. */ @Hidden static Object invoke__L(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 0); return mh.invokeBasic(); } @Hidden static Object invoke_L_L(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 1); return mh.invokeBasic(a[0]); } @Hidden static Object invoke_LL_L(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 2); return mh.invokeBasic(a[0], a[1]); } @Hidden static Object invoke_LLL_L(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 3); return mh.invokeBasic(a[0], a[1], a[2]); } @Hidden static Object invoke_LLLL_L(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 4); return mh.invokeBasic(a[0], a[1], a[2], a[3]); } @Hidden static Object invoke_LLLLL_L(MethodHandle mh, Object[] a) throws Throwable { assert(a.length == 5); return mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]); } static final MethodType INVOKER_METHOD_TYPE = MethodType.methodType(Object.class, MethodHandle.class, Object[].class); private static MethodHandle computeInvoker(MethodTypeForm typeForm) { MethodHandle mh = typeForm.namedFunctionInvoker; if (mh != null) return mh; MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm); // this could take a while mh = DirectMethodHandle.make(invoker); MethodHandle mh2 = typeForm.namedFunctionInvoker; if (mh2 != null) return mh2; // benign race if (!mh.type().equals(INVOKER_METHOD_TYPE)) throw newInternalError(mh.debugString()); return typeForm.namedFunctionInvoker = mh; } @Hidden Object invokeWithArguments(Object... arguments) throws Throwable { // If we have a cached invoker, call it right away. // NOTE: The invoker always returns a reference value. if (TRACE_INTERPRETER) return invokeWithArgumentsTracing(arguments); assert(checkArgumentTypes(arguments, methodType())); return invoker().invokeBasic(resolvedHandle(), arguments); } @Hidden Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable { Object rval; try { traceInterpreter("[ call", this, arguments); if (invoker == null) { traceInterpreter("| getInvoker", this); invoker(); } if (resolvedHandle == null) { traceInterpreter("| resolve", this); resolvedHandle(); } assert(checkArgumentTypes(arguments, methodType())); rval = invoker().invokeBasic(resolvedHandle(), arguments); } catch (Throwable ex) { traceInterpreter("] throw =>", ex); throw ex; } traceInterpreter("] return =>", rval); return rval; } private MethodHandle invoker() { if (invoker != null) return invoker; // Get an invoker and cache it. return invoker = computeInvoker(methodType().form()); } private static boolean checkArgumentTypes(Object[] arguments, MethodType methodType) { if (true) return true; // FIXME MethodType dstType = methodType.form().erasedType(); MethodType srcType = dstType.basicType().wrap(); Class[] ptypes = new Class[arguments.length]; for (int i = 0; i < arguments.length; i++) { Object arg = arguments[i]; Class ptype = arg == null ? Object.class : arg.getClass(); // If the dest. type is a primitive we keep the // argument type. ptypes[i] = dstType.parameterType(i).isPrimitive() ? ptype : Object.class; } MethodType argType = MethodType.methodType(srcType.returnType(), ptypes).wrap(); assert(argType.isConvertibleTo(srcType)) : "wrong argument types: cannot convert " + argType + " to " + srcType; return true; } String basicTypeSignature() { //return LambdaForm.basicTypeSignature(resolvedHandle.type()); return LambdaForm.basicTypeSignature(methodType()); } MethodType methodType() { if (resolvedHandle != null) return resolvedHandle.type(); else // only for certain internal LFs during bootstrapping return member.getInvocationType(); } MemberName member() { assert(assertMemberIsConsistent()); return member; } // Called only from assert. private boolean assertMemberIsConsistent() { if (resolvedHandle instanceof DirectMethodHandle) { MemberName m = resolvedHandle.internalMemberName(); assert(m.equals(member)); } return true; } Class memberDeclaringClassOrNull() { return (member == null) ? null : member.getDeclaringClass(); } BasicType returnType() { return basicType(methodType().returnType()); } BasicType parameterType(int n) { return basicType(methodType().parameterType(n)); } int arity() { //int siglen = member.getMethodType().parameterCount(); //if (!member.isStatic()) siglen += 1; //return siglen; return methodType().parameterCount(); } public String toString() { if (member == null) return String.valueOf(resolvedHandle); return member.getDeclaringClass().getSimpleName()+"."+member.getName(); } public boolean isIdentity() { return this.equals(identity(returnType())); } public boolean isConstantZero() { return this.equals(constantZero(returnType())); } } void resolve() { for (Name n : names) n.resolve(); } public static String basicTypeSignature(MethodType type) { char[] sig = new char[type.parameterCount() + 2]; int sigp = 0; for (Class pt : type.parameterList()) { sig[sigp++] = basicTypeChar(pt); } sig[sigp++] = '_'; sig[sigp++] = basicTypeChar(type.returnType()); assert(sigp == sig.length); return String.valueOf(sig); } public static String shortenSignature(String signature) { // Hack to make signatures more readable when they show up in method names. final int NO_CHAR = -1, MIN_RUN = 3; int c0, c1 = NO_CHAR, c1reps = 0; StringBuilder buf = null; int len = signature.length(); if (len < MIN_RUN) return signature; for (int i = 0; i <= len; i++) { // shift in the next char: c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i)); if (c1 == c0) { ++c1reps; continue; } // shift in the next count: int c0reps = c1reps; c1reps = 1; // end of a character run if (c0reps < MIN_RUN) { if (buf != null) { while (--c0reps >= 0) buf.append((char)c0); } continue; } // found three or more in a row if (buf == null) buf = new StringBuilder().append(signature, 0, i - c0reps); buf.append((char)c0).append(c0reps); } return (buf == null) ? signature : buf.toString(); } static void testShortenSignature() { for (String s : new String[] { // invariant strings: "L", "LL", "ILL", "LIL", "LLI", "IILL", "ILIL", "ILLI", // a few mappings: "LLL=L3", "LLLL=L4", "LLLLLLLLLL=L10", "IIIDDD=I3D3", "IDDD=ID3", "IIDDD=IID3", "IIID=I3D", "IIIDD=I3DD" }) { String s2 = s.substring(s.indexOf('=')+1); String s1 = s.equals(s2) ? s : s.substring(0, s.length() - s2.length() - 1); // mix the above cases with before and after reps of Z* for (int k = -3; k <= 3; k++) { String beg = (k < 0 ? "ZZZZ".substring(-k) : ""); String end = (k > 0 ? "ZZZZ".substring(+k) : ""); String ks1 = beg+s1+end; String ks2 = shortenSignature(beg)+s2+shortenSignature(end); String ks3 = shortenSignature(ks1); if (!ks3.equals(ks2)) System.out.println(Arrays.asList(ks1, ks2, ks3)); assert(ks3.equals(ks2)) : Arrays.asList(ks1, ks2, ks3); } } } static final class Name { final BasicType type; private short index; final NamedFunction function; @Stable final Object[] arguments; private Name(int index, BasicType type, NamedFunction function, Object[] arguments) { this.index = (short)index; this.type = type; this.function = function; this.arguments = arguments; assert(this.index == index); } Name(MethodHandle function, Object... arguments) { this(new NamedFunction(function), arguments); } Name(MethodType functionType, Object... arguments) { this(new NamedFunction(functionType), arguments); assert(arguments[0] instanceof Name && ((Name)arguments[0]).type == L_TYPE); } Name(MemberName function, Object... arguments) { this(new NamedFunction(function), arguments); } Name(NamedFunction function, Object... arguments) { this(-1, function.returnType(), function, arguments = arguments.clone()); assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString(); for (int i = 0; i < arguments.length; i++) assert(typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString(); } /** Create a raw parameter of the given type, with an expected index. */ Name(int index, BasicType type) { this(index, type, null, null); } /** Create a raw parameter of the given type. */ Name(BasicType type) { this(-1, type); } BasicType type() { return type; } int index() { return index; } boolean initIndex(int i) { if (index != i) { if (index != -1) return false; index = (short)i; } return true; } char typeChar() { return type.btChar; } void resolve() { if (function != null) function.resolve(); } Name newIndex(int i) { if (initIndex(i)) return this; return cloneWithIndex(i); } Name cloneWithIndex(int i) { Object[] newArguments = (arguments == null) ? null : arguments.clone(); return new Name(i, type, function, newArguments); } Name replaceName(Name oldName, Name newName) { // FIXME: use replaceNames uniformly if (oldName == newName) return this; @SuppressWarnings("LocalVariableHidesMemberVariable") Object[] arguments = this.arguments; if (arguments == null) return this; boolean replaced = false; for (int j = 0; j < arguments.length; j++) { if (arguments[j] == oldName) { if (!replaced) { replaced = true; arguments = arguments.clone(); } arguments[j] = newName; } } if (!replaced) return this; return new Name(function, arguments); } Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) { @SuppressWarnings("LocalVariableHidesMemberVariable") Object[] arguments = this.arguments; boolean replaced = false; eachArg: for (int j = 0; j < arguments.length; j++) { if (arguments[j] instanceof Name) { Name n = (Name) arguments[j]; int check = n.index; // harmless check to see if the thing is already in newNames: if (check >= 0 && check < newNames.length && n == newNames[check]) continue eachArg; // n might not have the correct index: n != oldNames[n.index]. for (int i = start; i < end; i++) { if (n == oldNames[i]) { if (n == newNames[i]) continue eachArg; if (!replaced) { replaced = true; arguments = arguments.clone(); } arguments[j] = newNames[i]; continue eachArg; } } } } if (!replaced) return this; return new Name(function, arguments); } void internArguments() { @SuppressWarnings("LocalVariableHidesMemberVariable") Object[] arguments = this.arguments; for (int j = 0; j < arguments.length; j++) { if (arguments[j] instanceof Name) { Name n = (Name) arguments[j]; if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT) arguments[j] = internArgument(n); } } } boolean isParam() { return function == null; } boolean isConstantZero() { return !isParam() && arguments.length == 0 && function.isConstantZero(); } public String toString() { return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar(); } public String debugString() { String s = toString(); return (function == null) ? s : s + "=" + exprString(); } public String exprString() { if (function == null) return toString(); StringBuilder buf = new StringBuilder(function.toString()); buf.append("("); String cma = ""; for (Object a : arguments) { buf.append(cma); cma = ","; if (a instanceof Name || a instanceof Integer) buf.append(a); else buf.append("(").append(a).append(")"); } buf.append(")"); return buf.toString(); } static boolean typesMatch(BasicType parameterType, Object object) { if (object instanceof Name) { return ((Name)object).type == parameterType; } switch (parameterType) { case I_TYPE: return object instanceof Integer; case J_TYPE: return object instanceof Long; case F_TYPE: return object instanceof Float; case D_TYPE: return object instanceof Double; } assert(parameterType == L_TYPE); return true; } /** * Does this Name precede the given binding node in some canonical order? * This predicate is used to order data bindings (via insertion sort) * with some stability. */ boolean isSiblingBindingBefore(Name binding) { assert(!binding.isParam()); if (isParam()) return true; if (function.equals(binding.function) && arguments.length == binding.arguments.length) { boolean sawInt = false; for (int i = 0; i < arguments.length; i++) { Object a1 = arguments[i]; Object a2 = binding.arguments[i]; if (!a1.equals(a2)) { if (a1 instanceof Integer && a2 instanceof Integer) { if (sawInt) continue; sawInt = true; if ((int)a1 < (int)a2) continue; // still might be true } return false; } } return sawInt; } return false; } /** Return the index of the last occurrence of n in the argument array. * Return -1 if the name is not used. */ int lastUseIndex(Name n) { if (arguments == null) return -1; for (int i = arguments.length; --i >= 0; ) { if (arguments[i] == n) return i; } return -1; } /** Return the number of occurrences of n in the argument array. * Return 0 if the name is not used. */ int useCount(Name n) { if (arguments == null) return 0; int count = 0; for (int i = arguments.length; --i >= 0; ) { if (arguments[i] == n) ++count; } return count; } boolean contains(Name n) { return this == n || lastUseIndex(n) >= 0; } public boolean equals(Name that) { if (this == that) return true; if (isParam()) // each parameter is a unique atom return false; // this != that return //this.index == that.index && this.type == that.type && this.function.equals(that.function) && Arrays.equals(this.arguments, that.arguments); } @Override public boolean equals(Object x) { return x instanceof Name && equals((Name)x); } @Override public int hashCode() { if (isParam()) return index | (type.ordinal() << 8); return function.hashCode() ^ Arrays.hashCode(arguments); } } /** Return the index of the last name which contains n as an argument. * Return -1 if the name is not used. Return names.length if it is the return value. */ int lastUseIndex(Name n) { int ni = n.index, nmax = names.length; assert(names[ni] == n); if (result == ni) return nmax; // live all the way beyond the end for (int i = nmax; --i > ni; ) { if (names[i].lastUseIndex(n) >= 0) return i; } return -1; } /** Return the number of times n is used as an argument or return value. */ int useCount(Name n) { int ni = n.index, nmax = names.length; int end = lastUseIndex(n); if (end < 0) return 0; int count = 0; if (end == nmax) { count++; end--; } int beg = n.index() + 1; if (beg < arity) beg = arity; for (int i = beg; i <= end; i++) { count += names[i].useCount(n); } return count; } static Name argument(int which, char type) { return argument(which, basicType(type)); } static Name argument(int which, BasicType type) { if (which >= INTERNED_ARGUMENT_LIMIT) return new Name(which, type); return INTERNED_ARGUMENTS[type.ordinal()][which]; } static Name internArgument(Name n) { assert(n.isParam()) : "not param: " + n; assert(n.index < INTERNED_ARGUMENT_LIMIT); return argument(n.index, n.type); } static Name[] arguments(int extra, String types) { int length = types.length(); Name[] names = new Name[length + extra]; for (int i = 0; i < length; i++) names[i] = argument(i, types.charAt(i)); return names; } static Name[] arguments(int extra, char... types) { int length = types.length; Name[] names = new Name[length + extra]; for (int i = 0; i < length; i++) names[i] = argument(i, types[i]); return names; } static Name[] arguments(int extra, List> types) { int length = types.size(); Name[] names = new Name[length + extra]; for (int i = 0; i < length; i++) names[i] = argument(i, basicType(types.get(i))); return names; } static Name[] arguments(int extra, Class... types) { int length = types.length; Name[] names = new Name[length + extra]; for (int i = 0; i < length; i++) names[i] = argument(i, basicType(types[i])); return names; } static Name[] arguments(int extra, MethodType types) { int length = types.parameterCount(); Name[] names = new Name[length + extra]; for (int i = 0; i < length; i++) names[i] = argument(i, basicType(types.parameterType(i))); return names; } static final int INTERNED_ARGUMENT_LIMIT = 10; private static final Name[][] INTERNED_ARGUMENTS = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT]; static { for (BasicType type : BasicType.ARG_TYPES) { int id = type.ordinal(); for (int i = 0; i < INTERNED_ARGUMENTS[id].length; i++) { INTERNED_ARGUMENTS[id][i] = new Name(i, type); } } } private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); static LambdaForm identityForm(BasicType type) { return LF_identityForm[type.ordinal()]; } static LambdaForm zeroForm(BasicType type) { return LF_zeroForm[type.ordinal()]; } static NamedFunction identity(BasicType type) { return NF_identity[type.ordinal()]; } static NamedFunction constantZero(BasicType type) { return NF_zero[type.ordinal()]; } private static final LambdaForm[] LF_identityForm = new LambdaForm[TYPE_LIMIT]; private static final LambdaForm[] LF_zeroForm = new LambdaForm[TYPE_LIMIT]; private static final NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT]; private static final NamedFunction[] NF_zero = new NamedFunction[TYPE_LIMIT]; private static void createIdentityForms() { for (BasicType type : BasicType.ALL_TYPES) { int btId = type.ordinal(); char btChar = type.basicTypeChar(); boolean isVoid = (type == V_TYPE); Class btClass = type.btClass; MethodType zeType = MethodType.methodType(btClass); MethodType idType = isVoid ? zeType : zeType.appendParameterTypes(btClass); // Look up some symbolic names. It might not be necessary to have these, // but if we need to emit direct references to bytecodes, it helps. // Zero is built from a call to an identity function with a constant zero input. MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic); MemberName zeMem = new MemberName(LambdaForm.class, "zero_"+btChar, zeType, REF_invokeStatic); try { zeMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zeMem, null, NoSuchMethodException.class); idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, NoSuchMethodException.class); } catch (IllegalAccessException|NoSuchMethodException ex) { throw newInternalError(ex); } NamedFunction idFun = new NamedFunction(idMem); LambdaForm idForm; if (isVoid) { Name[] idNames = new Name[] { argument(0, L_TYPE) }; idForm = new LambdaForm(idMem.getName(), 1, idNames, VOID_RESULT); } else { Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) }; idForm = new LambdaForm(idMem.getName(), 2, idNames, 1); } LF_identityForm[btId] = idForm; NF_identity[btId] = idFun; //idFun.resolvedHandle = SimpleMethodHandle.make(idMem.getInvocationType(), idForm); NamedFunction zeFun = new NamedFunction(zeMem); LambdaForm zeForm; if (isVoid) { zeForm = idForm; } else { Object zeValue = Wrapper.forBasicType(btChar).zero(); Name[] zeNames = new Name[] { argument(0, L_TYPE), new Name(idFun, zeValue) }; zeForm = new LambdaForm(zeMem.getName(), 1, zeNames, 1); } LF_zeroForm[btId] = zeForm; NF_zero[btId] = zeFun; //zeFun.resolvedHandle = SimpleMethodHandle.make(zeMem.getInvocationType(), zeForm); assert(idFun.isIdentity()); assert(zeFun.isConstantZero()); assert(new Name(zeFun).isConstantZero()); } // Do this in a separate pass, so that SimpleMethodHandle.make can see the tables. for (BasicType type : BasicType.ALL_TYPES) { int btId = type.ordinal(); NamedFunction idFun = NF_identity[btId]; LambdaForm idForm = LF_identityForm[btId]; MemberName idMem = idFun.member; idFun.resolvedHandle = SimpleMethodHandle.make(idMem.getInvocationType(), idForm); NamedFunction zeFun = NF_zero[btId]; LambdaForm zeForm = LF_zeroForm[btId]; MemberName zeMem = zeFun.member; zeFun.resolvedHandle = SimpleMethodHandle.make(zeMem.getInvocationType(), zeForm); assert(idFun.isIdentity()); assert(zeFun.isConstantZero()); assert(new Name(zeFun).isConstantZero()); } } // Avoid appealing to ValueConversions at bootstrap time: private static int identity_I(int x) { return x; } private static long identity_J(long x) { return x; } private static float identity_F(float x) { return x; } private static double identity_D(double x) { return x; } private static Object identity_L(Object x) { return x; } private static void identity_V() { return; } // same as zeroV, but that's OK private static int zero_I() { return 0; } private static long zero_J() { return 0; } private static float zero_F() { return 0; } private static double zero_D() { return 0; } private static Object zero_L() { return null; } private static void zero_V() { return; } /** * Internal marker for byte-compiled LambdaForms. */ /*non-public*/ @Target(ElementType.METHOD) @Retention(RetentionPolicy.RUNTIME) @interface Compiled { } /** * Internal marker for LambdaForm interpreter frames. */ /*non-public*/ @Target(ElementType.METHOD) @Retention(RetentionPolicy.RUNTIME) @interface Hidden { } /* // Smoke-test for the invokers used in this file. static void testMethodHandleLinkers() throws Throwable { MemberName.Factory lookup = MemberName.getFactory(); MemberName asList_MN = new MemberName(Arrays.class, "asList", MethodType.methodType(List.class, Object[].class), REF_invokeStatic); //MethodHandleNatives.resolve(asList_MN, null); asList_MN = lookup.resolveOrFail(asList_MN, REF_invokeStatic, null, NoSuchMethodException.class); System.out.println("about to call "+asList_MN); Object[] abc = { "a", "bc" }; List lst = (List) MethodHandle.linkToStatic(abc, asList_MN); System.out.println("lst="+lst); MemberName toString_MN = new MemberName(Object.class.getMethod("toString")); String s1 = (String) MethodHandle.linkToVirtual(lst, toString_MN); toString_MN = new MemberName(Object.class.getMethod("toString"), true); String s2 = (String) MethodHandle.linkToSpecial(lst, toString_MN); System.out.println("[s1,s2,lst]="+Arrays.asList(s1, s2, lst.toString())); MemberName toArray_MN = new MemberName(List.class.getMethod("toArray")); Object[] arr = (Object[]) MethodHandle.linkToInterface(lst, toArray_MN); System.out.println("toArray="+Arrays.toString(arr)); } static { try { testMethodHandleLinkers(); } catch (Throwable ex) { throw new RuntimeException(ex); } } // Requires these definitions in MethodHandle: static final native Object linkToStatic(Object x1, MemberName mn) throws Throwable; static final native Object linkToVirtual(Object x1, MemberName mn) throws Throwable; static final native Object linkToSpecial(Object x1, MemberName mn) throws Throwable; static final native Object linkToInterface(Object x1, MemberName mn) throws Throwable; */ private static final HashMap DEBUG_NAME_COUNTERS; static { if (debugEnabled()) DEBUG_NAME_COUNTERS = new HashMap<>(); else DEBUG_NAME_COUNTERS = null; } // Put this last, so that previous static inits can run before. static { createIdentityForms(); if (USE_PREDEFINED_INTERPRET_METHODS) PREPARED_FORMS.putAll(computeInitialPreparedForms()); NamedFunction.initializeInvokers(); } // The following hack is necessary in order to suppress TRACE_INTERPRETER // during execution of the static initializes of this class. // Turning on TRACE_INTERPRETER too early will cause // stack overflows and other misbehavior during attempts to trace events // that occur during LambdaForm.. // Therefore, do not move this line higher in this file, and do not remove. private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER; }