1 /*
   2  * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.reflect.*;
  29 import java.util.List;
  30 import java.util.ArrayList;
  31 import java.util.Arrays;
  32 
  33 import sun.invoke.util.ValueConversions;
  34 import sun.invoke.util.VerifyAccess;
  35 import sun.invoke.util.Wrapper;
  36 import sun.reflect.CallerSensitive;
  37 import sun.reflect.Reflection;
  38 import sun.reflect.misc.ReflectUtil;
  39 import sun.security.util.SecurityConstants;
  40 import java.lang.invoke.LambdaForm.BasicType;
  41 import static java.lang.invoke.LambdaForm.BasicType.*;
  42 import static java.lang.invoke.MethodHandleStatics.*;
  43 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  44 import java.util.concurrent.ConcurrentHashMap;
  45 
  46 /**
  47  * This class consists exclusively of static methods that operate on or return
  48  * method handles. They fall into several categories:
  49  * <ul>
  50  * <li>Lookup methods which help create method handles for methods and fields.
  51  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  52  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  53  * </ul>
  54  * <p>
  55  * @author John Rose, JSR 292 EG
  56  * @since 1.7
  57  */
  58 public class MethodHandles {
  59 
  60     private MethodHandles() { }  // do not instantiate
  61 
  62     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  63     static { MethodHandleImpl.initStatics(); }
  64     // See IMPL_LOOKUP below.
  65 
  66     //// Method handle creation from ordinary methods.
  67 
  68     /**
  69      * Returns a {@link Lookup lookup object} with
  70      * full capabilities to emulate all supported bytecode behaviors of the caller.
  71      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  72      * Factory methods on the lookup object can create
  73      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  74      * for any member that the caller has access to via bytecodes,
  75      * including protected and private fields and methods.
  76      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
  77      * Do not store it in place where untrusted code can access it.
  78      * <p>
  79      * This method is caller sensitive, which means that it may return different
  80      * values to different callers.
  81      * <p>
  82      * For any given caller class {@code C}, the lookup object returned by this call
  83      * has equivalent capabilities to any lookup object
  84      * supplied by the JVM to the bootstrap method of an
  85      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
  86      * executing in the same caller class {@code C}.
  87      * @return a lookup object for the caller of this method, with private access
  88      */
  89     @CallerSensitive
  90     public static Lookup lookup() {
  91         return new Lookup(Reflection.getCallerClass());
  92     }
  93 
  94     /**
  95      * Returns a {@link Lookup lookup object} which is trusted minimally.
  96      * It can only be used to create method handles to
  97      * publicly accessible fields and methods.
  98      * <p>
  99      * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
 100      * of this lookup object will be {@link java.lang.Object}.
 101      *
 102      * <p style="font-size:smaller;">
 103      * <em>Discussion:</em>
 104      * The lookup class can be changed to any other class {@code C} using an expression of the form
 105      * {@link Lookup#in publicLookup().in(C.class)}.
 106      * Since all classes have equal access to public names,
 107      * such a change would confer no new access rights.
 108      * A public lookup object is always subject to
 109      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 110      * Also, it cannot access
 111      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 112      * @return a lookup object which is trusted minimally
 113      */
 114     public static Lookup publicLookup() {
 115         return Lookup.PUBLIC_LOOKUP;
 116     }
 117 
 118     /**
 119      * Performs an unchecked "crack" of a
 120      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 121      * The result is as if the user had obtained a lookup object capable enough
 122      * to crack the target method handle, called
 123      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 124      * on the target to obtain its symbolic reference, and then called
 125      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 126      * to resolve the symbolic reference to a member.
 127      * <p>
 128      * If there is a security manager, its {@code checkPermission} method
 129      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 130      * @param <T> the desired type of the result, either {@link Member} or a subtype
 131      * @param target a direct method handle to crack into symbolic reference components
 132      * @param expected a class object representing the desired result type {@code T}
 133      * @return a reference to the method, constructor, or field object
 134      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 135      * @exception NullPointerException if either argument is {@code null}
 136      * @exception IllegalArgumentException if the target is not a direct method handle
 137      * @exception ClassCastException if the member is not of the expected type
 138      * @since 1.8
 139      */
 140     public static <T extends Member> T
 141     reflectAs(Class<T> expected, MethodHandle target) {
 142         SecurityManager smgr = System.getSecurityManager();
 143         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 144         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 145         return lookup.revealDirect(target).reflectAs(expected, lookup);
 146     }
 147     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 148     static final private java.security.Permission ACCESS_PERMISSION =
 149         new ReflectPermission("suppressAccessChecks");
 150 
 151     /**
 152      * A <em>lookup object</em> is a factory for creating method handles,
 153      * when the creation requires access checking.
 154      * Method handles do not perform
 155      * access checks when they are called, but rather when they are created.
 156      * Therefore, method handle access
 157      * restrictions must be enforced when a method handle is created.
 158      * The caller class against which those restrictions are enforced
 159      * is known as the {@linkplain #lookupClass lookup class}.
 160      * <p>
 161      * A lookup class which needs to create method handles will call
 162      * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
 163      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 164      * determined, and securely stored in the {@code Lookup} object.
 165      * The lookup class (or its delegates) may then use factory methods
 166      * on the {@code Lookup} object to create method handles for access-checked members.
 167      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 168      * even private ones.
 169      *
 170      * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
 171      * The factory methods on a {@code Lookup} object correspond to all major
 172      * use cases for methods, constructors, and fields.
 173      * Each method handle created by a factory method is the functional
 174      * equivalent of a particular <em>bytecode behavior</em>.
 175      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 176      * Here is a summary of the correspondence between these factory methods and
 177      * the behavior the resulting method handles:
 178      * <table border=1 cellpadding=5 summary="lookup method behaviors">
 179      * <tr>
 180      *     <th><a name="equiv"></a>lookup expression</th>
 181      *     <th>member</th>
 182      *     <th>bytecode behavior</th>
 183      * </tr>
 184      * <tr>
 185      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
 186      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 187      * </tr>
 188      * <tr>
 189      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
 190      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 191      * </tr>
 192      * <tr>
 193      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
 194      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 195      * </tr>
 196      * <tr>
 197      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
 198      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 199      * </tr>
 200      * <tr>
 201      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
 202      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 203      * </tr>
 204      * <tr>
 205      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
 206      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 207      * </tr>
 208      * <tr>
 209      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
 210      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 211      * </tr>
 212      * <tr>
 213      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
 214      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 215      * </tr>
 216      * <tr>
 217      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
 218      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 219      * </tr>
 220      * <tr>
 221      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
 222      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 223      * </tr>
 224      * <tr>
 225      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 226      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 227      * </tr>
 228      * <tr>
 229      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
 230      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 231      * </tr>
 232      * <tr>
 233      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 234      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 235      * </tr>
 236      * </table>
 237      *
 238      * Here, the type {@code C} is the class or interface being searched for a member,
 239      * documented as a parameter named {@code refc} in the lookup methods.
 240      * The method type {@code MT} is composed from the return type {@code T}
 241      * and the sequence of argument types {@code A*}.
 242      * The constructor also has a sequence of argument types {@code A*} and
 243      * is deemed to return the newly-created object of type {@code C}.
 244      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 245      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 246      * if it is present, it is always the leading argument to the method handle invocation.
 247      * (In the case of some {@code protected} members, {@code this} may be
 248      * restricted in type to the lookup class; see below.)
 249      * The name {@code arg} stands for all the other method handle arguments.
 250      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 251      * stands for a null reference if the accessed method or field is static,
 252      * and {@code this} otherwise.
 253      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 254      * for reflective objects corresponding to the given members.
 255      * <p>
 256      * In cases where the given member is of variable arity (i.e., a method or constructor)
 257      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 258      * In all other cases, the returned method handle will be of fixed arity.
 259      * <p style="font-size:smaller;">
 260      * <em>Discussion:</em>
 261      * The equivalence between looked-up method handles and underlying
 262      * class members and bytecode behaviors
 263      * can break down in a few ways:
 264      * <ul style="font-size:smaller;">
 265      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 266      * the lookup can still succeed, even when there is no equivalent
 267      * Java expression or bytecoded constant.
 268      * <li>Likewise, if {@code T} or {@code MT}
 269      * is not symbolically accessible from the lookup class's loader,
 270      * the lookup can still succeed.
 271      * For example, lookups for {@code MethodHandle.invokeExact} and
 272      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 273      * <li>If there is a security manager installed, it can forbid the lookup
 274      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 275      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 276      * constant is not subject to security manager checks.
 277      * <li>If the looked-up method has a
 278      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 279      * the method handle creation may fail, due to the method handle
 280      * type having too many parameters.
 281      * </ul>
 282      *
 283      * <h1><a name="access"></a>Access checking</h1>
 284      * Access checks are applied in the factory methods of {@code Lookup},
 285      * when a method handle is created.
 286      * This is a key difference from the Core Reflection API, since
 287      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 288      * performs access checking against every caller, on every call.
 289      * <p>
 290      * All access checks start from a {@code Lookup} object, which
 291      * compares its recorded lookup class against all requests to
 292      * create method handles.
 293      * A single {@code Lookup} object can be used to create any number
 294      * of access-checked method handles, all checked against a single
 295      * lookup class.
 296      * <p>
 297      * A {@code Lookup} object can be shared with other trusted code,
 298      * such as a metaobject protocol.
 299      * A shared {@code Lookup} object delegates the capability
 300      * to create method handles on private members of the lookup class.
 301      * Even if privileged code uses the {@code Lookup} object,
 302      * the access checking is confined to the privileges of the
 303      * original lookup class.
 304      * <p>
 305      * A lookup can fail, because
 306      * the containing class is not accessible to the lookup class, or
 307      * because the desired class member is missing, or because the
 308      * desired class member is not accessible to the lookup class, or
 309      * because the lookup object is not trusted enough to access the member.
 310      * In any of these cases, a {@code ReflectiveOperationException} will be
 311      * thrown from the attempted lookup.  The exact class will be one of
 312      * the following:
 313      * <ul>
 314      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 315      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 316      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 317      * </ul>
 318      * <p>
 319      * In general, the conditions under which a method handle may be
 320      * looked up for a method {@code M} are no more restrictive than the conditions
 321      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 322      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 323      * a method handle lookup will generally raise a corresponding
 324      * checked exception, such as {@code NoSuchMethodException}.
 325      * And the effect of invoking the method handle resulting from the lookup
 326      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 327      * to executing the compiled, verified, and resolved call to {@code M}.
 328      * The same point is true of fields and constructors.
 329      * <p style="font-size:smaller;">
 330      * <em>Discussion:</em>
 331      * Access checks only apply to named and reflected methods,
 332      * constructors, and fields.
 333      * Other method handle creation methods, such as
 334      * {@link MethodHandle#asType MethodHandle.asType},
 335      * do not require any access checks, and are used
 336      * independently of any {@code Lookup} object.
 337      * <p>
 338      * If the desired member is {@code protected}, the usual JVM rules apply,
 339      * including the requirement that the lookup class must be either be in the
 340      * same package as the desired member, or must inherit that member.
 341      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 342      * In addition, if the desired member is a non-static field or method
 343      * in a different package, the resulting method handle may only be applied
 344      * to objects of the lookup class or one of its subclasses.
 345      * This requirement is enforced by narrowing the type of the leading
 346      * {@code this} parameter from {@code C}
 347      * (which will necessarily be a superclass of the lookup class)
 348      * to the lookup class itself.
 349      * <p>
 350      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 351      * that the receiver argument must match both the resolved method <em>and</em>
 352      * the current class.  Again, this requirement is enforced by narrowing the
 353      * type of the leading parameter to the resulting method handle.
 354      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 355      * <p>
 356      * The JVM represents constructors and static initializer blocks as internal methods
 357      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 358      * The internal syntax of invocation instructions allows them to refer to such internal
 359      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 360      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 361      * <p>
 362      * In some cases, access between nested classes is obtained by the Java compiler by creating
 363      * an wrapper method to access a private method of another class
 364      * in the same top-level declaration.
 365      * For example, a nested class {@code C.D}
 366      * can access private members within other related classes such as
 367      * {@code C}, {@code C.D.E}, or {@code C.B},
 368      * but the Java compiler may need to generate wrapper methods in
 369      * those related classes.  In such cases, a {@code Lookup} object on
 370      * {@code C.E} would be unable to those private members.
 371      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 372      * which can transform a lookup on {@code C.E} into one on any of those other
 373      * classes, without special elevation of privilege.
 374      * <p>
 375      * The accesses permitted to a given lookup object may be limited,
 376      * according to its set of {@link #lookupModes lookupModes},
 377      * to a subset of members normally accessible to the lookup class.
 378      * For example, the {@link MethodHandles#publicLookup publicLookup}
 379      * method produces a lookup object which is only allowed to access
 380      * public members in public classes.
 381      * The caller sensitive method {@link MethodHandles#lookup lookup}
 382      * produces a lookup object with full capabilities relative to
 383      * its caller class, to emulate all supported bytecode behaviors.
 384      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 385      * with fewer access modes than the original lookup object.
 386      *
 387      * <p style="font-size:smaller;">
 388      * <a name="privacc"></a>
 389      * <em>Discussion of private access:</em>
 390      * We say that a lookup has <em>private access</em>
 391      * if its {@linkplain #lookupModes lookup modes}
 392      * include the possibility of accessing {@code private} members.
 393      * As documented in the relevant methods elsewhere,
 394      * only lookups with private access possess the following capabilities:
 395      * <ul style="font-size:smaller;">
 396      * <li>access private fields, methods, and constructors of the lookup class
 397      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 398      *     such as {@code Class.forName}
 399      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 400      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 401      *     for classes accessible to the lookup class
 402      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 403      *     within the same package member
 404      * </ul>
 405      * <p style="font-size:smaller;">
 406      * Each of these permissions is a consequence of the fact that a lookup object
 407      * with private access can be securely traced back to an originating class,
 408      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 409      * can be reliably determined and emulated by method handles.
 410      *
 411      * <h1><a name="secmgr"></a>Security manager interactions</h1>
 412      * Although bytecode instructions can only refer to classes in
 413      * a related class loader, this API can search for methods in any
 414      * class, as long as a reference to its {@code Class} object is
 415      * available.  Such cross-loader references are also possible with the
 416      * Core Reflection API, and are impossible to bytecode instructions
 417      * such as {@code invokestatic} or {@code getfield}.
 418      * There is a {@linkplain java.lang.SecurityManager security manager API}
 419      * to allow applications to check such cross-loader references.
 420      * These checks apply to both the {@code MethodHandles.Lookup} API
 421      * and the Core Reflection API
 422      * (as found on {@link java.lang.Class Class}).
 423      * <p>
 424      * If a security manager is present, member lookups are subject to
 425      * additional checks.
 426      * From one to three calls are made to the security manager.
 427      * Any of these calls can refuse access by throwing a
 428      * {@link java.lang.SecurityException SecurityException}.
 429      * Define {@code smgr} as the security manager,
 430      * {@code lookc} as the lookup class of the current lookup object,
 431      * {@code refc} as the containing class in which the member
 432      * is being sought, and {@code defc} as the class in which the
 433      * member is actually defined.
 434      * The value {@code lookc} is defined as <em>not present</em>
 435      * if the current lookup object does not have
 436      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 437      * The calls are made according to the following rules:
 438      * <ul>
 439      * <li><b>Step 1:</b>
 440      *     If {@code lookc} is not present, or if its class loader is not
 441      *     the same as or an ancestor of the class loader of {@code refc},
 442      *     then {@link SecurityManager#checkPackageAccess
 443      *     smgr.checkPackageAccess(refcPkg)} is called,
 444      *     where {@code refcPkg} is the package of {@code refc}.
 445      * <li><b>Step 2:</b>
 446      *     If the retrieved member is not public and
 447      *     {@code lookc} is not present, then
 448      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 449      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 450      * <li><b>Step 3:</b>
 451      *     If the retrieved member is not public,
 452      *     and if {@code lookc} is not present,
 453      *     and if {@code defc} and {@code refc} are different,
 454      *     then {@link SecurityManager#checkPackageAccess
 455      *     smgr.checkPackageAccess(defcPkg)} is called,
 456      *     where {@code defcPkg} is the package of {@code defc}.
 457      * </ul>
 458      * Security checks are performed after other access checks have passed.
 459      * Therefore, the above rules presuppose a member that is public,
 460      * or else that is being accessed from a lookup class that has
 461      * rights to access the member.
 462      *
 463      * <h1><a name="callsens"></a>Caller sensitive methods</h1>
 464      * A small number of Java methods have a special property called caller sensitivity.
 465      * A <em>caller-sensitive</em> method can behave differently depending on the
 466      * identity of its immediate caller.
 467      * <p>
 468      * If a method handle for a caller-sensitive method is requested,
 469      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 470      * but they take account of the lookup class in a special way.
 471      * The resulting method handle behaves as if it were called
 472      * from an instruction contained in the lookup class,
 473      * so that the caller-sensitive method detects the lookup class.
 474      * (By contrast, the invoker of the method handle is disregarded.)
 475      * Thus, in the case of caller-sensitive methods,
 476      * different lookup classes may give rise to
 477      * differently behaving method handles.
 478      * <p>
 479      * In cases where the lookup object is
 480      * {@link MethodHandles#publicLookup() publicLookup()},
 481      * or some other lookup object without
 482      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 483      * the lookup class is disregarded.
 484      * In such cases, no caller-sensitive method handle can be created,
 485      * access is forbidden, and the lookup fails with an
 486      * {@code IllegalAccessException}.
 487      * <p style="font-size:smaller;">
 488      * <em>Discussion:</em>
 489      * For example, the caller-sensitive method
 490      * {@link java.lang.Class#forName(String) Class.forName(x)}
 491      * can return varying classes or throw varying exceptions,
 492      * depending on the class loader of the class that calls it.
 493      * A public lookup of {@code Class.forName} will fail, because
 494      * there is no reasonable way to determine its bytecode behavior.
 495      * <p style="font-size:smaller;">
 496      * If an application caches method handles for broad sharing,
 497      * it should use {@code publicLookup()} to create them.
 498      * If there is a lookup of {@code Class.forName}, it will fail,
 499      * and the application must take appropriate action in that case.
 500      * It may be that a later lookup, perhaps during the invocation of a
 501      * bootstrap method, can incorporate the specific identity
 502      * of the caller, making the method accessible.
 503      * <p style="font-size:smaller;">
 504      * The function {@code MethodHandles.lookup} is caller sensitive
 505      * so that there can be a secure foundation for lookups.
 506      * Nearly all other methods in the JSR 292 API rely on lookup
 507      * objects to check access requests.
 508      */
 509     public static final
 510     class Lookup {
 511         /** The class on behalf of whom the lookup is being performed. */
 512         private final Class<?> lookupClass;
 513 
 514         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 515         private final int allowedModes;
 516 
 517         /** A single-bit mask representing {@code public} access,
 518          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 519          *  The value, {@code 0x01}, happens to be the same as the value of the
 520          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 521          */
 522         public static final int PUBLIC = Modifier.PUBLIC;
 523 
 524         /** A single-bit mask representing {@code private} access,
 525          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 526          *  The value, {@code 0x02}, happens to be the same as the value of the
 527          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 528          */
 529         public static final int PRIVATE = Modifier.PRIVATE;
 530 
 531         /** A single-bit mask representing {@code protected} access,
 532          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 533          *  The value, {@code 0x04}, happens to be the same as the value of the
 534          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 535          */
 536         public static final int PROTECTED = Modifier.PROTECTED;
 537 
 538         /** A single-bit mask representing {@code package} access (default access),
 539          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 540          *  The value is {@code 0x08}, which does not correspond meaningfully to
 541          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 542          */
 543         public static final int PACKAGE = Modifier.STATIC;
 544 
 545         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
 546         private static final int TRUSTED   = -1;
 547 
 548         private static int fixmods(int mods) {
 549             mods &= (ALL_MODES - PACKAGE);
 550             return (mods != 0) ? mods : PACKAGE;
 551         }
 552 
 553         /** Tells which class is performing the lookup.  It is this class against
 554          *  which checks are performed for visibility and access permissions.
 555          *  <p>
 556          *  The class implies a maximum level of access permission,
 557          *  but the permissions may be additionally limited by the bitmask
 558          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 559          *  can be accessed.
 560          *  @return the lookup class, on behalf of which this lookup object finds members
 561          */
 562         public Class<?> lookupClass() {
 563             return lookupClass;
 564         }
 565 
 566         // This is just for calling out to MethodHandleImpl.
 567         private Class<?> lookupClassOrNull() {
 568             return (allowedModes == TRUSTED) ? null : lookupClass;
 569         }
 570 
 571         /** Tells which access-protection classes of members this lookup object can produce.
 572          *  The result is a bit-mask of the bits
 573          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 574          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 575          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 576          *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
 577          *  <p>
 578          *  A freshly-created lookup object
 579          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
 580          *  has all possible bits set, since the caller class can access all its own members.
 581          *  A lookup object on a new lookup class
 582          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 583          *  may have some mode bits set to zero.
 584          *  The purpose of this is to restrict access via the new lookup object,
 585          *  so that it can access only names which can be reached by the original
 586          *  lookup object, and also by the new lookup class.
 587          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 588          */
 589         public int lookupModes() {
 590             return allowedModes & ALL_MODES;
 591         }
 592 
 593         /** Embody the current class (the lookupClass) as a lookup class
 594          * for method handle creation.
 595          * Must be called by from a method in this package,
 596          * which in turn is called by a method not in this package.
 597          */
 598         Lookup(Class<?> lookupClass) {
 599             this(lookupClass, ALL_MODES);
 600             // make sure we haven't accidentally picked up a privileged class:
 601             checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
 602         }
 603 
 604         private Lookup(Class<?> lookupClass, int allowedModes) {
 605             this.lookupClass = lookupClass;
 606             this.allowedModes = allowedModes;
 607         }
 608 
 609         /**
 610          * Creates a lookup on the specified new lookup class.
 611          * The resulting object will report the specified
 612          * class as its own {@link #lookupClass lookupClass}.
 613          * <p>
 614          * However, the resulting {@code Lookup} object is guaranteed
 615          * to have no more access capabilities than the original.
 616          * In particular, access capabilities can be lost as follows:<ul>
 617          * <li>If the new lookup class differs from the old one,
 618          * protected members will not be accessible by virtue of inheritance.
 619          * (Protected members may continue to be accessible because of package sharing.)
 620          * <li>If the new lookup class is in a different package
 621          * than the old one, protected and default (package) members will not be accessible.
 622          * <li>If the new lookup class is not within the same package member
 623          * as the old one, private members will not be accessible.
 624          * <li>If the new lookup class is not accessible to the old lookup class,
 625          * then no members, not even public members, will be accessible.
 626          * (In all other cases, public members will continue to be accessible.)
 627          * </ul>
 628          *
 629          * @param requestedLookupClass the desired lookup class for the new lookup object
 630          * @return a lookup object which reports the desired lookup class
 631          * @throws NullPointerException if the argument is null
 632          */
 633         public Lookup in(Class<?> requestedLookupClass) {
 634             requestedLookupClass.getClass();  // null check
 635             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 636                 return new Lookup(requestedLookupClass, ALL_MODES);
 637             if (requestedLookupClass == this.lookupClass)
 638                 return this;  // keep same capabilities
 639             int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
 640             if ((newModes & PACKAGE) != 0
 641                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 642                 newModes &= ~(PACKAGE|PRIVATE);
 643             }
 644             // Allow nestmate lookups to be created without special privilege:
 645             if ((newModes & PRIVATE) != 0
 646                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 647                 newModes &= ~PRIVATE;
 648             }
 649             if ((newModes & PUBLIC) != 0
 650                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 651                 // The requested class it not accessible from the lookup class.
 652                 // No permissions.
 653                 newModes = 0;
 654             }
 655             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
 656             return new Lookup(requestedLookupClass, newModes);
 657         }
 658 
 659         // Make sure outer class is initialized first.
 660         static { IMPL_NAMES.getClass(); }
 661 
 662         /** Version of lookup which is trusted minimally.
 663          *  It can only be used to create method handles to
 664          *  publicly accessible members.
 665          */
 666         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
 667 
 668         /** Package-private version of lookup which is trusted. */
 669         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
 670 
 671         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
 672             String name = lookupClass.getName();
 673             if (name.startsWith("java.lang.invoke."))
 674                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
 675 
 676             // For caller-sensitive MethodHandles.lookup()
 677             // disallow lookup more restricted packages
 678             if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) {
 679                 if (name.startsWith("java.") ||
 680                         (name.startsWith("sun.") && !name.startsWith("sun.invoke."))) {
 681                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
 682                 }
 683             }
 684         }
 685 
 686         /**
 687          * Displays the name of the class from which lookups are to be made.
 688          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
 689          * If there are restrictions on the access permitted to this lookup,
 690          * this is indicated by adding a suffix to the class name, consisting
 691          * of a slash and a keyword.  The keyword represents the strongest
 692          * allowed access, and is chosen as follows:
 693          * <ul>
 694          * <li>If no access is allowed, the suffix is "/noaccess".
 695          * <li>If only public access is allowed, the suffix is "/public".
 696          * <li>If only public and package access are allowed, the suffix is "/package".
 697          * <li>If only public, package, and private access are allowed, the suffix is "/private".
 698          * </ul>
 699          * If none of the above cases apply, it is the case that full
 700          * access (public, package, private, and protected) is allowed.
 701          * In this case, no suffix is added.
 702          * This is true only of an object obtained originally from
 703          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
 704          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
 705          * always have restricted access, and will display a suffix.
 706          * <p>
 707          * (It may seem strange that protected access should be
 708          * stronger than private access.  Viewed independently from
 709          * package access, protected access is the first to be lost,
 710          * because it requires a direct subclass relationship between
 711          * caller and callee.)
 712          * @see #in
 713          */
 714         @Override
 715         public String toString() {
 716             String cname = lookupClass.getName();
 717             switch (allowedModes) {
 718             case 0:  // no privileges
 719                 return cname + "/noaccess";
 720             case PUBLIC:
 721                 return cname + "/public";
 722             case PUBLIC|PACKAGE:
 723                 return cname + "/package";
 724             case ALL_MODES & ~PROTECTED:
 725                 return cname + "/private";
 726             case ALL_MODES:
 727                 return cname;
 728             case TRUSTED:
 729                 return "/trusted";  // internal only; not exported
 730             default:  // Should not happen, but it's a bitfield...
 731                 cname = cname + "/" + Integer.toHexString(allowedModes);
 732                 assert(false) : cname;
 733                 return cname;
 734             }
 735         }
 736 
 737         /**
 738          * Produces a method handle for a static method.
 739          * The type of the method handle will be that of the method.
 740          * (Since static methods do not take receivers, there is no
 741          * additional receiver argument inserted into the method handle type,
 742          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
 743          * The method and all its argument types must be accessible to the lookup object.
 744          * <p>
 745          * The returned method handle will have
 746          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 747          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 748          * <p>
 749          * If the returned method handle is invoked, the method's class will
 750          * be initialized, if it has not already been initialized.
 751          * <p><b>Example:</b>
 752          * <blockquote><pre>{@code
 753 import static java.lang.invoke.MethodHandles.*;
 754 import static java.lang.invoke.MethodType.*;
 755 ...
 756 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
 757   "asList", methodType(List.class, Object[].class));
 758 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
 759          * }</pre></blockquote>
 760          * @param refc the class from which the method is accessed
 761          * @param name the name of the method
 762          * @param type the type of the method
 763          * @return the desired method handle
 764          * @throws NoSuchMethodException if the method does not exist
 765          * @throws IllegalAccessException if access checking fails,
 766          *                                or if the method is not {@code static},
 767          *                                or if the method's variable arity modifier bit
 768          *                                is set and {@code asVarargsCollector} fails
 769          * @exception SecurityException if a security manager is present and it
 770          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 771          * @throws NullPointerException if any argument is null
 772          */
 773         public
 774         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 775             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
 776             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
 777         }
 778 
 779         /**
 780          * Produces a method handle for a virtual method.
 781          * The type of the method handle will be that of the method,
 782          * with the receiver type (usually {@code refc}) prepended.
 783          * The method and all its argument types must be accessible to the lookup object.
 784          * <p>
 785          * When called, the handle will treat the first argument as a receiver
 786          * and dispatch on the receiver's type to determine which method
 787          * implementation to enter.
 788          * (The dispatching action is identical with that performed by an
 789          * {@code invokevirtual} or {@code invokeinterface} instruction.)
 790          * <p>
 791          * The first argument will be of type {@code refc} if the lookup
 792          * class has full privileges to access the member.  Otherwise
 793          * the member must be {@code protected} and the first argument
 794          * will be restricted in type to the lookup class.
 795          * <p>
 796          * The returned method handle will have
 797          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 798          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 799          * <p>
 800          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
 801          * instructions and method handles produced by {@code findVirtual},
 802          * if the class is {@code MethodHandle} and the name string is
 803          * {@code invokeExact} or {@code invoke}, the resulting
 804          * method handle is equivalent to one produced by
 805          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
 806          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
 807          * with the same {@code type} argument.
 808          *
 809          * <b>Example:</b>
 810          * <blockquote><pre>{@code
 811 import static java.lang.invoke.MethodHandles.*;
 812 import static java.lang.invoke.MethodType.*;
 813 ...
 814 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
 815   "concat", methodType(String.class, String.class));
 816 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
 817   "hashCode", methodType(int.class));
 818 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
 819   "hashCode", methodType(int.class));
 820 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
 821 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
 822 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
 823 // interface method:
 824 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
 825   "subSequence", methodType(CharSequence.class, int.class, int.class));
 826 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
 827 // constructor "internal method" must be accessed differently:
 828 MethodType MT_newString = methodType(void.class); //()V for new String()
 829 try { assertEquals("impossible", lookup()
 830         .findVirtual(String.class, "<init>", MT_newString));
 831  } catch (NoSuchMethodException ex) { } // OK
 832 MethodHandle MH_newString = publicLookup()
 833   .findConstructor(String.class, MT_newString);
 834 assertEquals("", (String) MH_newString.invokeExact());
 835          * }</pre></blockquote>
 836          *
 837          * @param refc the class or interface from which the method is accessed
 838          * @param name the name of the method
 839          * @param type the type of the method, with the receiver argument omitted
 840          * @return the desired method handle
 841          * @throws NoSuchMethodException if the method does not exist
 842          * @throws IllegalAccessException if access checking fails,
 843          *                                or if the method is {@code static}
 844          *                                or if the method's variable arity modifier bit
 845          *                                is set and {@code asVarargsCollector} fails
 846          * @exception SecurityException if a security manager is present and it
 847          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 848          * @throws NullPointerException if any argument is null
 849          */
 850         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 851             if (refc == MethodHandle.class) {
 852                 MethodHandle mh = findVirtualForMH(name, type);
 853                 if (mh != null)  return mh;
 854             }
 855             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
 856             MemberName method = resolveOrFail(refKind, refc, name, type);
 857             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
 858         }
 859         private MethodHandle findVirtualForMH(String name, MethodType type) {
 860             // these names require special lookups because of the implicit MethodType argument
 861             if ("invoke".equals(name))
 862                 return invoker(type);
 863             if ("invokeExact".equals(name))
 864                 return exactInvoker(type);
 865             assert(!MemberName.isMethodHandleInvokeName(name));
 866             return null;
 867         }
 868 
 869         /**
 870          * Produces a method handle which creates an object and initializes it, using
 871          * the constructor of the specified type.
 872          * The parameter types of the method handle will be those of the constructor,
 873          * while the return type will be a reference to the constructor's class.
 874          * The constructor and all its argument types must be accessible to the lookup object.
 875          * <p>
 876          * The requested type must have a return type of {@code void}.
 877          * (This is consistent with the JVM's treatment of constructor type descriptors.)
 878          * <p>
 879          * The returned method handle will have
 880          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 881          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
 882          * <p>
 883          * If the returned method handle is invoked, the constructor's class will
 884          * be initialized, if it has not already been initialized.
 885          * <p><b>Example:</b>
 886          * <blockquote><pre>{@code
 887 import static java.lang.invoke.MethodHandles.*;
 888 import static java.lang.invoke.MethodType.*;
 889 ...
 890 MethodHandle MH_newArrayList = publicLookup().findConstructor(
 891   ArrayList.class, methodType(void.class, Collection.class));
 892 Collection orig = Arrays.asList("x", "y");
 893 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
 894 assert(orig != copy);
 895 assertEquals(orig, copy);
 896 // a variable-arity constructor:
 897 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
 898   ProcessBuilder.class, methodType(void.class, String[].class));
 899 ProcessBuilder pb = (ProcessBuilder)
 900   MH_newProcessBuilder.invoke("x", "y", "z");
 901 assertEquals("[x, y, z]", pb.command().toString());
 902          * }</pre></blockquote>
 903          * @param refc the class or interface from which the method is accessed
 904          * @param type the type of the method, with the receiver argument omitted, and a void return type
 905          * @return the desired method handle
 906          * @throws NoSuchMethodException if the constructor does not exist
 907          * @throws IllegalAccessException if access checking fails
 908          *                                or if the method's variable arity modifier bit
 909          *                                is set and {@code asVarargsCollector} fails
 910          * @exception SecurityException if a security manager is present and it
 911          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 912          * @throws NullPointerException if any argument is null
 913          */
 914         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 915             String name = "<init>";
 916             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
 917             return getDirectConstructor(refc, ctor);
 918         }
 919 
 920         /**
 921          * Produces an early-bound method handle for a virtual method.
 922          * It will bypass checks for overriding methods on the receiver,
 923          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
 924          * instruction from within the explicitly specified {@code specialCaller}.
 925          * The type of the method handle will be that of the method,
 926          * with a suitably restricted receiver type prepended.
 927          * (The receiver type will be {@code specialCaller} or a subtype.)
 928          * The method and all its argument types must be accessible
 929          * to the lookup object.
 930          * <p>
 931          * Before method resolution,
 932          * if the explicitly specified caller class is not identical with the
 933          * lookup class, or if this lookup object does not have
 934          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
 935          * privileges, the access fails.
 936          * <p>
 937          * The returned method handle will have
 938          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 939          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 940          * <p style="font-size:smaller;">
 941          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
 942          * even though the {@code invokespecial} instruction can refer to them
 943          * in special circumstances.  Use {@link #findConstructor findConstructor}
 944          * to access instance initialization methods in a safe manner.)</em>
 945          * <p><b>Example:</b>
 946          * <blockquote><pre>{@code
 947 import static java.lang.invoke.MethodHandles.*;
 948 import static java.lang.invoke.MethodType.*;
 949 ...
 950 static class Listie extends ArrayList {
 951   public String toString() { return "[wee Listie]"; }
 952   static Lookup lookup() { return MethodHandles.lookup(); }
 953 }
 954 ...
 955 // no access to constructor via invokeSpecial:
 956 MethodHandle MH_newListie = Listie.lookup()
 957   .findConstructor(Listie.class, methodType(void.class));
 958 Listie l = (Listie) MH_newListie.invokeExact();
 959 try { assertEquals("impossible", Listie.lookup().findSpecial(
 960         Listie.class, "<init>", methodType(void.class), Listie.class));
 961  } catch (NoSuchMethodException ex) { } // OK
 962 // access to super and self methods via invokeSpecial:
 963 MethodHandle MH_super = Listie.lookup().findSpecial(
 964   ArrayList.class, "toString" , methodType(String.class), Listie.class);
 965 MethodHandle MH_this = Listie.lookup().findSpecial(
 966   Listie.class, "toString" , methodType(String.class), Listie.class);
 967 MethodHandle MH_duper = Listie.lookup().findSpecial(
 968   Object.class, "toString" , methodType(String.class), Listie.class);
 969 assertEquals("[]", (String) MH_super.invokeExact(l));
 970 assertEquals(""+l, (String) MH_this.invokeExact(l));
 971 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
 972 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
 973         String.class, "toString", methodType(String.class), Listie.class));
 974  } catch (IllegalAccessException ex) { } // OK
 975 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
 976 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
 977          * }</pre></blockquote>
 978          *
 979          * @param refc the class or interface from which the method is accessed
 980          * @param name the name of the method (which must not be "&lt;init&gt;")
 981          * @param type the type of the method, with the receiver argument omitted
 982          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
 983          * @return the desired method handle
 984          * @throws NoSuchMethodException if the method does not exist
 985          * @throws IllegalAccessException if access checking fails
 986          *                                or if the method's variable arity modifier bit
 987          *                                is set and {@code asVarargsCollector} fails
 988          * @exception SecurityException if a security manager is present and it
 989          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 990          * @throws NullPointerException if any argument is null
 991          */
 992         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
 993                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
 994             checkSpecialCaller(specialCaller);
 995             Lookup specialLookup = this.in(specialCaller);
 996             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
 997             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
 998         }
 999 
1000         /**
1001          * Produces a method handle giving read access to a non-static field.
1002          * The type of the method handle will have a return type of the field's
1003          * value type.
1004          * The method handle's single argument will be the instance containing
1005          * the field.
1006          * Access checking is performed immediately on behalf of the lookup class.
1007          * @param refc the class or interface from which the method is accessed
1008          * @param name the field's name
1009          * @param type the field's type
1010          * @return a method handle which can load values from the field
1011          * @throws NoSuchFieldException if the field does not exist
1012          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1013          * @exception SecurityException if a security manager is present and it
1014          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1015          * @throws NullPointerException if any argument is null
1016          */
1017         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1018             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1019             return getDirectField(REF_getField, refc, field);
1020         }
1021 
1022         /**
1023          * Produces a method handle giving write access to a non-static field.
1024          * The type of the method handle will have a void return type.
1025          * The method handle will take two arguments, the instance containing
1026          * the field, and the value to be stored.
1027          * The second argument will be of the field's value type.
1028          * Access checking is performed immediately on behalf of the lookup class.
1029          * @param refc the class or interface from which the method is accessed
1030          * @param name the field's name
1031          * @param type the field's type
1032          * @return a method handle which can store values into the field
1033          * @throws NoSuchFieldException if the field does not exist
1034          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1035          * @exception SecurityException if a security manager is present and it
1036          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1037          * @throws NullPointerException if any argument is null
1038          */
1039         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1040             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1041             return getDirectField(REF_putField, refc, field);
1042         }
1043 
1044         /**
1045          * Produces a method handle giving read access to a static field.
1046          * The type of the method handle will have a return type of the field's
1047          * value type.
1048          * The method handle will take no arguments.
1049          * Access checking is performed immediately on behalf of the lookup class.
1050          * <p>
1051          * If the returned method handle is invoked, the field's class will
1052          * be initialized, if it has not already been initialized.
1053          * @param refc the class or interface from which the method is accessed
1054          * @param name the field's name
1055          * @param type the field's type
1056          * @return a method handle which can load values from the field
1057          * @throws NoSuchFieldException if the field does not exist
1058          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1059          * @exception SecurityException if a security manager is present and it
1060          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1061          * @throws NullPointerException if any argument is null
1062          */
1063         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1064             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1065             return getDirectField(REF_getStatic, refc, field);
1066         }
1067 
1068         /**
1069          * Produces a method handle giving write access to a static field.
1070          * The type of the method handle will have a void return type.
1071          * The method handle will take a single
1072          * argument, of the field's value type, the value to be stored.
1073          * Access checking is performed immediately on behalf of the lookup class.
1074          * <p>
1075          * If the returned method handle is invoked, the field's class will
1076          * be initialized, if it has not already been initialized.
1077          * @param refc the class or interface from which the method is accessed
1078          * @param name the field's name
1079          * @param type the field's type
1080          * @return a method handle which can store values into the field
1081          * @throws NoSuchFieldException if the field does not exist
1082          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1083          * @exception SecurityException if a security manager is present and it
1084          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1085          * @throws NullPointerException if any argument is null
1086          */
1087         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1088             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1089             return getDirectField(REF_putStatic, refc, field);
1090         }
1091 
1092         /**
1093          * Produces an early-bound method handle for a non-static method.
1094          * The receiver must have a supertype {@code defc} in which a method
1095          * of the given name and type is accessible to the lookup class.
1096          * The method and all its argument types must be accessible to the lookup object.
1097          * The type of the method handle will be that of the method,
1098          * without any insertion of an additional receiver parameter.
1099          * The given receiver will be bound into the method handle,
1100          * so that every call to the method handle will invoke the
1101          * requested method on the given receiver.
1102          * <p>
1103          * The returned method handle will have
1104          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1105          * the method's variable arity modifier bit ({@code 0x0080}) is set
1106          * <em>and</em> the trailing array argument is not the only argument.
1107          * (If the trailing array argument is the only argument,
1108          * the given receiver value will be bound to it.)
1109          * <p>
1110          * This is equivalent to the following code:
1111          * <blockquote><pre>{@code
1112 import static java.lang.invoke.MethodHandles.*;
1113 import static java.lang.invoke.MethodType.*;
1114 ...
1115 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1116 MethodHandle mh1 = mh0.bindTo(receiver);
1117 MethodType mt1 = mh1.type();
1118 if (mh0.isVarargsCollector())
1119   mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
1120 return mh1;
1121          * }</pre></blockquote>
1122          * where {@code defc} is either {@code receiver.getClass()} or a super
1123          * type of that class, in which the requested method is accessible
1124          * to the lookup class.
1125          * (Note that {@code bindTo} does not preserve variable arity.)
1126          * @param receiver the object from which the method is accessed
1127          * @param name the name of the method
1128          * @param type the type of the method, with the receiver argument omitted
1129          * @return the desired method handle
1130          * @throws NoSuchMethodException if the method does not exist
1131          * @throws IllegalAccessException if access checking fails
1132          *                                or if the method's variable arity modifier bit
1133          *                                is set and {@code asVarargsCollector} fails
1134          * @exception SecurityException if a security manager is present and it
1135          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1136          * @throws NullPointerException if any argument is null
1137          * @see MethodHandle#bindTo
1138          * @see #findVirtual
1139          */
1140         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1141             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1142             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1143             MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1144             return mh.bindReceiver(receiver).setVarargs(method);
1145         }
1146 
1147         /**
1148          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1149          * to <i>m</i>, if the lookup class has permission.
1150          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1151          * If <i>m</i> is virtual, overriding is respected on every call.
1152          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1153          * The type of the method handle will be that of the method,
1154          * with the receiver type prepended (but only if it is non-static).
1155          * If the method's {@code accessible} flag is not set,
1156          * access checking is performed immediately on behalf of the lookup class.
1157          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1158          * <p>
1159          * The returned method handle will have
1160          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1161          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1162          * <p>
1163          * If <i>m</i> is static, and
1164          * if the returned method handle is invoked, the method's class will
1165          * be initialized, if it has not already been initialized.
1166          * @param m the reflected method
1167          * @return a method handle which can invoke the reflected method
1168          * @throws IllegalAccessException if access checking fails
1169          *                                or if the method's variable arity modifier bit
1170          *                                is set and {@code asVarargsCollector} fails
1171          * @throws NullPointerException if the argument is null
1172          */
1173         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1174             if (m.getDeclaringClass() == MethodHandle.class) {
1175                 MethodHandle mh = unreflectForMH(m);
1176                 if (mh != null)  return mh;
1177             }
1178             MemberName method = new MemberName(m);
1179             byte refKind = method.getReferenceKind();
1180             if (refKind == REF_invokeSpecial)
1181                 refKind = REF_invokeVirtual;
1182             assert(method.isMethod());
1183             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1184             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1185         }
1186         private MethodHandle unreflectForMH(Method m) {
1187             // these names require special lookups because they throw UnsupportedOperationException
1188             if (MemberName.isMethodHandleInvokeName(m.getName()))
1189                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1190             return null;
1191         }
1192 
1193         /**
1194          * Produces a method handle for a reflected method.
1195          * It will bypass checks for overriding methods on the receiver,
1196          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1197          * instruction from within the explicitly specified {@code specialCaller}.
1198          * The type of the method handle will be that of the method,
1199          * with a suitably restricted receiver type prepended.
1200          * (The receiver type will be {@code specialCaller} or a subtype.)
1201          * If the method's {@code accessible} flag is not set,
1202          * access checking is performed immediately on behalf of the lookup class,
1203          * as if {@code invokespecial} instruction were being linked.
1204          * <p>
1205          * Before method resolution,
1206          * if the explicitly specified caller class is not identical with the
1207          * lookup class, or if this lookup object does not have
1208          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1209          * privileges, the access fails.
1210          * <p>
1211          * The returned method handle will have
1212          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1213          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1214          * @param m the reflected method
1215          * @param specialCaller the class nominally calling the method
1216          * @return a method handle which can invoke the reflected method
1217          * @throws IllegalAccessException if access checking fails
1218          *                                or if the method's variable arity modifier bit
1219          *                                is set and {@code asVarargsCollector} fails
1220          * @throws NullPointerException if any argument is null
1221          */
1222         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1223             checkSpecialCaller(specialCaller);
1224             Lookup specialLookup = this.in(specialCaller);
1225             MemberName method = new MemberName(m, true);
1226             assert(method.isMethod());
1227             // ignore m.isAccessible:  this is a new kind of access
1228             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1229         }
1230 
1231         /**
1232          * Produces a method handle for a reflected constructor.
1233          * The type of the method handle will be that of the constructor,
1234          * with the return type changed to the declaring class.
1235          * The method handle will perform a {@code newInstance} operation,
1236          * creating a new instance of the constructor's class on the
1237          * arguments passed to the method handle.
1238          * <p>
1239          * If the constructor's {@code accessible} flag is not set,
1240          * access checking is performed immediately on behalf of the lookup class.
1241          * <p>
1242          * The returned method handle will have
1243          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1244          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1245          * <p>
1246          * If the returned method handle is invoked, the constructor's class will
1247          * be initialized, if it has not already been initialized.
1248          * @param c the reflected constructor
1249          * @return a method handle which can invoke the reflected constructor
1250          * @throws IllegalAccessException if access checking fails
1251          *                                or if the method's variable arity modifier bit
1252          *                                is set and {@code asVarargsCollector} fails
1253          * @throws NullPointerException if the argument is null
1254          */
1255         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1256             MemberName ctor = new MemberName(c);
1257             assert(ctor.isConstructor());
1258             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1259             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1260         }
1261 
1262         /**
1263          * Produces a method handle giving read access to a reflected field.
1264          * The type of the method handle will have a return type of the field's
1265          * value type.
1266          * If the field is static, the method handle will take no arguments.
1267          * Otherwise, its single argument will be the instance containing
1268          * the field.
1269          * If the field's {@code accessible} flag is not set,
1270          * access checking is performed immediately on behalf of the lookup class.
1271          * <p>
1272          * If the field is static, and
1273          * if the returned method handle is invoked, the field's class will
1274          * be initialized, if it has not already been initialized.
1275          * @param f the reflected field
1276          * @return a method handle which can load values from the reflected field
1277          * @throws IllegalAccessException if access checking fails
1278          * @throws NullPointerException if the argument is null
1279          */
1280         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1281             return unreflectField(f, false);
1282         }
1283         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1284             MemberName field = new MemberName(f, isSetter);
1285             assert(isSetter
1286                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1287                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1288             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1289             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1290         }
1291 
1292         /**
1293          * Produces a method handle giving write access to a reflected field.
1294          * The type of the method handle will have a void return type.
1295          * If the field is static, the method handle will take a single
1296          * argument, of the field's value type, the value to be stored.
1297          * Otherwise, the two arguments will be the instance containing
1298          * the field, and the value to be stored.
1299          * If the field's {@code accessible} flag is not set,
1300          * access checking is performed immediately on behalf of the lookup class.
1301          * <p>
1302          * If the field is static, and
1303          * if the returned method handle is invoked, the field's class will
1304          * be initialized, if it has not already been initialized.
1305          * @param f the reflected field
1306          * @return a method handle which can store values into the reflected field
1307          * @throws IllegalAccessException if access checking fails
1308          * @throws NullPointerException if the argument is null
1309          */
1310         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1311             return unreflectField(f, true);
1312         }
1313 
1314         /**
1315          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1316          * created by this lookup object or a similar one.
1317          * Security and access checks are performed to ensure that this lookup object
1318          * is capable of reproducing the target method handle.
1319          * This means that the cracking may fail if target is a direct method handle
1320          * but was created by an unrelated lookup object.
1321          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1322          * and was created by a lookup object for a different class.
1323          * @param target a direct method handle to crack into symbolic reference components
1324          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1325          * @exception SecurityException if a security manager is present and it
1326          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1327          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1328          * @exception NullPointerException if the target is {@code null}
1329          * @see MethodHandleInfo
1330          * @since 1.8
1331          */
1332         public MethodHandleInfo revealDirect(MethodHandle target) {
1333             MemberName member = target.internalMemberName();
1334             if (member == null || (!member.isResolved() && !member.isMethodHandleInvoke()))
1335                 throw newIllegalArgumentException("not a direct method handle");
1336             Class<?> defc = member.getDeclaringClass();
1337             byte refKind = member.getReferenceKind();
1338             assert(MethodHandleNatives.refKindIsValid(refKind));
1339             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
1340                 // Devirtualized method invocation is usually formally virtual.
1341                 // To avoid creating extra MemberName objects for this common case,
1342                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
1343                 refKind = REF_invokeVirtual;
1344             if (refKind == REF_invokeVirtual && defc.isInterface())
1345                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
1346                 refKind = REF_invokeInterface;
1347             // Check SM permissions and member access before cracking.
1348             try {
1349                 checkAccess(refKind, defc, member);
1350                 checkSecurityManager(defc, member);
1351             } catch (IllegalAccessException ex) {
1352                 throw new IllegalArgumentException(ex);
1353             }
1354             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
1355                 Class<?> callerClass = target.internalCallerClass();
1356                 if (!hasPrivateAccess() || callerClass != lookupClass())
1357                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
1358             }
1359             // Produce the handle to the results.
1360             return new InfoFromMemberName(this, member, refKind);
1361         }
1362 
1363         /// Helper methods, all package-private.
1364 
1365         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1366             checkSymbolicClass(refc);  // do this before attempting to resolve
1367             name.getClass();  // NPE
1368             type.getClass();  // NPE
1369             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1370                                             NoSuchFieldException.class);
1371         }
1372 
1373         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1374             checkSymbolicClass(refc);  // do this before attempting to resolve
1375             name.getClass();  // NPE
1376             type.getClass();  // NPE
1377             checkMethodName(refKind, name);  // NPE check on name
1378             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1379                                             NoSuchMethodException.class);
1380         }
1381 
1382         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
1383             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
1384             member.getName().getClass();  // NPE
1385             member.getType().getClass();  // NPE
1386             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
1387                                             ReflectiveOperationException.class);
1388         }
1389 
1390         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1391             refc.getClass();  // NPE
1392             Class<?> caller = lookupClassOrNull();
1393             if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
1394                 throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this);
1395         }
1396 
1397         /** Check name for an illegal leading "&lt;" character. */
1398         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
1399             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
1400                 throw new NoSuchMethodException("illegal method name: "+name);
1401         }
1402 
1403 
1404         /**
1405          * Find my trustable caller class if m is a caller sensitive method.
1406          * If this lookup object has private access, then the caller class is the lookupClass.
1407          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
1408          */
1409         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
1410             Class<?> callerClass = null;
1411             if (MethodHandleNatives.isCallerSensitive(m)) {
1412                 // Only lookups with private access are allowed to resolve caller-sensitive methods
1413                 if (hasPrivateAccess()) {
1414                     callerClass = lookupClass;
1415                 } else {
1416                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
1417                 }
1418             }
1419             return callerClass;
1420         }
1421 
1422         private boolean hasPrivateAccess() {
1423             return (allowedModes & PRIVATE) != 0;
1424         }
1425 
1426         /**
1427          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
1428          * Determines a trustable caller class to compare with refc, the symbolic reference class.
1429          * If this lookup object has private access, then the caller class is the lookupClass.
1430          */
1431         void checkSecurityManager(Class<?> refc, MemberName m) {
1432             SecurityManager smgr = System.getSecurityManager();
1433             if (smgr == null)  return;
1434             if (allowedModes == TRUSTED)  return;
1435 
1436             // Step 1:
1437             boolean fullPowerLookup = hasPrivateAccess();
1438             if (!fullPowerLookup ||
1439                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
1440                 ReflectUtil.checkPackageAccess(refc);
1441             }
1442 
1443             // Step 2:
1444             if (m.isPublic()) return;
1445             if (!fullPowerLookup) {
1446                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
1447             }
1448 
1449             // Step 3:
1450             Class<?> defc = m.getDeclaringClass();
1451             if (!fullPowerLookup && defc != refc) {
1452                 ReflectUtil.checkPackageAccess(defc);
1453             }
1454         }
1455 
1456         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1457             boolean wantStatic = (refKind == REF_invokeStatic);
1458             String message;
1459             if (m.isConstructor())
1460                 message = "expected a method, not a constructor";
1461             else if (!m.isMethod())
1462                 message = "expected a method";
1463             else if (wantStatic != m.isStatic())
1464                 message = wantStatic ? "expected a static method" : "expected a non-static method";
1465             else
1466                 { checkAccess(refKind, refc, m); return; }
1467             throw m.makeAccessException(message, this);
1468         }
1469 
1470         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1471             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
1472             String message;
1473             if (wantStatic != m.isStatic())
1474                 message = wantStatic ? "expected a static field" : "expected a non-static field";
1475             else
1476                 { checkAccess(refKind, refc, m); return; }
1477             throw m.makeAccessException(message, this);
1478         }
1479 
1480         /** Check public/protected/private bits on the symbolic reference class and its member. */
1481         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1482             assert(m.referenceKindIsConsistentWith(refKind) &&
1483                    MethodHandleNatives.refKindIsValid(refKind) &&
1484                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
1485             int allowedModes = this.allowedModes;
1486             if (allowedModes == TRUSTED)  return;
1487             int mods = m.getModifiers();
1488             if (Modifier.isProtected(mods) &&
1489                     refKind == REF_invokeVirtual &&
1490                     m.getDeclaringClass() == Object.class &&
1491                     m.getName().equals("clone") &&
1492                     refc.isArray()) {
1493                 // The JVM does this hack also.
1494                 // (See ClassVerifier::verify_invoke_instructions
1495                 // and LinkResolver::check_method_accessability.)
1496                 // Because the JVM does not allow separate methods on array types,
1497                 // there is no separate method for int[].clone.
1498                 // All arrays simply inherit Object.clone.
1499                 // But for access checking logic, we make Object.clone
1500                 // (normally protected) appear to be public.
1501                 // Later on, when the DirectMethodHandle is created,
1502                 // its leading argument will be restricted to the
1503                 // requested array type.
1504                 // N.B. The return type is not adjusted, because
1505                 // that is *not* the bytecode behavior.
1506                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
1507             }
1508             if (Modifier.isFinal(mods) &&
1509                     MethodHandleNatives.refKindIsSetter(refKind))
1510                 throw m.makeAccessException("unexpected set of a final field", this);
1511             if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
1512                 return;  // common case
1513             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
1514             if ((requestedModes & allowedModes) != 0) {
1515                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
1516                                                     mods, lookupClass(), allowedModes))
1517                     return;
1518             } else {
1519                 // Protected members can also be checked as if they were package-private.
1520                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
1521                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
1522                     return;
1523             }
1524             throw m.makeAccessException(accessFailedMessage(refc, m), this);
1525         }
1526 
1527         String accessFailedMessage(Class<?> refc, MemberName m) {
1528             Class<?> defc = m.getDeclaringClass();
1529             int mods = m.getModifiers();
1530             // check the class first:
1531             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
1532                                (defc == refc ||
1533                                 Modifier.isPublic(refc.getModifiers())));
1534             if (!classOK && (allowedModes & PACKAGE) != 0) {
1535                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
1536                            (defc == refc ||
1537                             VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
1538             }
1539             if (!classOK)
1540                 return "class is not public";
1541             if (Modifier.isPublic(mods))
1542                 return "access to public member failed";  // (how?)
1543             if (Modifier.isPrivate(mods))
1544                 return "member is private";
1545             if (Modifier.isProtected(mods))
1546                 return "member is protected";
1547             return "member is private to package";
1548         }
1549 
1550         private static final boolean ALLOW_NESTMATE_ACCESS = false;
1551 
1552         private void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
1553             int allowedModes = this.allowedModes;
1554             if (allowedModes == TRUSTED)  return;
1555             if (!hasPrivateAccess()
1556                 || (specialCaller != lookupClass()
1557                     && !(ALLOW_NESTMATE_ACCESS &&
1558                          VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
1559                 throw new MemberName(specialCaller).
1560                     makeAccessException("no private access for invokespecial", this);
1561         }
1562 
1563         private boolean restrictProtectedReceiver(MemberName method) {
1564             // The accessing class only has the right to use a protected member
1565             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
1566             if (!method.isProtected() || method.isStatic()
1567                 || allowedModes == TRUSTED
1568                 || method.getDeclaringClass() == lookupClass()
1569                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
1570                 || (ALLOW_NESTMATE_ACCESS &&
1571                     VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
1572                 return false;
1573             return true;
1574         }
1575         private MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException {
1576             assert(!method.isStatic());
1577             // receiver type of mh is too wide; narrow to caller
1578             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
1579                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
1580             }
1581             MethodType rawType = mh.type();
1582             if (rawType.parameterType(0) == caller)  return mh;
1583             MethodType narrowType = rawType.changeParameterType(0, caller);
1584             return mh.viewAsType(narrowType);
1585         }
1586 
1587         /** Check access and get the requested method. */
1588         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1589             final boolean doRestrict    = true;
1590             final boolean checkSecurity = true;
1591             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1592         }
1593         /** Check access and get the requested method, eliding receiver narrowing rules. */
1594         private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1595             final boolean doRestrict    = false;
1596             final boolean checkSecurity = true;
1597             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1598         }
1599         /** Check access and get the requested method, eliding security manager checks. */
1600         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1601             final boolean doRestrict    = true;
1602             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
1603             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1604         }
1605         /** Common code for all methods; do not call directly except from immediately above. */
1606         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
1607                                                    boolean checkSecurity,
1608                                                    boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
1609             checkMethod(refKind, refc, method);
1610             // Optionally check with the security manager; this isn't needed for unreflect* calls.
1611             if (checkSecurity)
1612                 checkSecurityManager(refc, method);
1613             assert(!method.isMethodHandleInvoke());
1614 
1615             Class<?> refcAsSuper;
1616             if (refKind == REF_invokeSpecial &&
1617                 refc != lookupClass() &&
1618                 !refc.isInterface() &&
1619                 refc != (refcAsSuper = lookupClass().getSuperclass()) &&
1620                 refc.isAssignableFrom(lookupClass())) {
1621                 assert(!method.getName().equals("<init>"));  // not this code path
1622                 // Per JVMS 6.5, desc. of invokespecial instruction:
1623                 // If the method is in a superclass of the LC,
1624                 // and if our original search was above LC.super,
1625                 // repeat the search (symbolic lookup) from LC.super.
1626                 // FIXME: MemberName.resolve should handle this instead.
1627                 MemberName m2 = new MemberName(refcAsSuper,
1628                                                method.getName(),
1629                                                method.getMethodType(),
1630                                                REF_invokeSpecial);
1631                 m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
1632                 if (m2 == null)  throw new InternalError(method.toString());
1633                 method = m2;
1634                 refc = refcAsSuper;
1635                 // redo basic checks
1636                 checkMethod(refKind, refc, method);
1637             }
1638 
1639             MethodHandle mh = DirectMethodHandle.make(refKind, refc, method);
1640             mh = maybeBindCaller(method, mh, callerClass);
1641             mh = mh.setVarargs(method);
1642             // Optionally narrow the receiver argument to refc using restrictReceiver.
1643             if (doRestrict &&
1644                    (refKind == REF_invokeSpecial ||
1645                        (MethodHandleNatives.refKindHasReceiver(refKind) &&
1646                            restrictProtectedReceiver(method))))
1647                 mh = restrictReceiver(method, mh, lookupClass());
1648             return mh;
1649         }
1650         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
1651                                              Class<?> callerClass)
1652                                              throws IllegalAccessException {
1653             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
1654                 return mh;
1655             Class<?> hostClass = lookupClass;
1656             if (!hasPrivateAccess())  // caller must have private access
1657                 hostClass = callerClass;  // callerClass came from a security manager style stack walk
1658             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
1659             // Note: caller will apply varargs after this step happens.
1660             return cbmh;
1661         }
1662         /** Check access and get the requested field. */
1663         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
1664             final boolean checkSecurity = true;
1665             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
1666         }
1667         /** Check access and get the requested field, eliding security manager checks. */
1668         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
1669             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
1670             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
1671         }
1672         /** Common code for all fields; do not call directly except from immediately above. */
1673         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
1674                                                   boolean checkSecurity) throws IllegalAccessException {
1675             checkField(refKind, refc, field);
1676             // Optionally check with the security manager; this isn't needed for unreflect* calls.
1677             if (checkSecurity)
1678                 checkSecurityManager(refc, field);
1679             MethodHandle mh = DirectMethodHandle.make(refc, field);
1680             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
1681                                     restrictProtectedReceiver(field));
1682             if (doRestrict)
1683                 mh = restrictReceiver(field, mh, lookupClass());
1684             return mh;
1685         }
1686         /** Check access and get the requested constructor. */
1687         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
1688             final boolean checkSecurity = true;
1689             return getDirectConstructorCommon(refc, ctor, checkSecurity);
1690         }
1691         /** Check access and get the requested constructor, eliding security manager checks. */
1692         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
1693             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
1694             return getDirectConstructorCommon(refc, ctor, checkSecurity);
1695         }
1696         /** Common code for all constructors; do not call directly except from immediately above. */
1697         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
1698                                                   boolean checkSecurity) throws IllegalAccessException {
1699             assert(ctor.isConstructor());
1700             checkAccess(REF_newInvokeSpecial, refc, ctor);
1701             // Optionally check with the security manager; this isn't needed for unreflect* calls.
1702             if (checkSecurity)
1703                 checkSecurityManager(refc, ctor);
1704             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
1705             return DirectMethodHandle.make(ctor).setVarargs(ctor);
1706         }
1707 
1708         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
1709          */
1710         /*non-public*/
1711         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
1712             if (!(type instanceof Class || type instanceof MethodType))
1713                 throw new InternalError("unresolved MemberName");
1714             MemberName member = new MemberName(refKind, defc, name, type);
1715             MethodHandle mh = LOOKASIDE_TABLE.get(member);
1716             if (mh != null) {
1717                 checkSymbolicClass(defc);
1718                 return mh;
1719             }
1720             // Treat MethodHandle.invoke and invokeExact specially.
1721             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
1722                 mh = findVirtualForMH(member.getName(), member.getMethodType());
1723                 if (mh != null) {
1724                     return mh;
1725                 }
1726             }
1727             MemberName resolved = resolveOrFail(refKind, member);
1728             mh = getDirectMethodForConstant(refKind, defc, resolved);
1729             if (mh instanceof DirectMethodHandle
1730                     && canBeCached(refKind, defc, resolved)) {
1731                 MemberName key = mh.internalMemberName();
1732                 if (key != null) {
1733                     key = key.asNormalOriginal();
1734                 }
1735                 if (member.equals(key)) {  // better safe than sorry
1736                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
1737                 }
1738             }
1739             return mh;
1740         }
1741         private
1742         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
1743             if (refKind == REF_invokeSpecial) {
1744                 return false;
1745             }
1746             if (!Modifier.isPublic(defc.getModifiers()) ||
1747                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
1748                     !member.isPublic() ||
1749                     member.isCallerSensitive()) {
1750                 return false;
1751             }
1752             ClassLoader loader = defc.getClassLoader();
1753             if (!sun.misc.VM.isSystemDomainLoader(loader)) {
1754                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
1755                 boolean found = false;
1756                 while (sysl != null) {
1757                     if (loader == sysl) { found = true; break; }
1758                     sysl = sysl.getParent();
1759                 }
1760                 if (!found) {
1761                     return false;
1762                 }
1763             }
1764             try {
1765                 MemberName resolved2 = publicLookup().resolveOrFail(refKind,
1766                     new MemberName(refKind, defc, member.getName(), member.getType()));
1767                 checkSecurityManager(defc, resolved2);
1768             } catch (ReflectiveOperationException | SecurityException ex) {
1769                 return false;
1770             }
1771             return true;
1772         }
1773         private
1774         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
1775                 throws ReflectiveOperationException {
1776             if (MethodHandleNatives.refKindIsField(refKind)) {
1777                 return getDirectFieldNoSecurityManager(refKind, defc, member);
1778             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
1779                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
1780             } else if (refKind == REF_newInvokeSpecial) {
1781                 return getDirectConstructorNoSecurityManager(defc, member);
1782             }
1783             // oops
1784             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
1785         }
1786 
1787         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
1788     }
1789 
1790     /**
1791      * Produces a method handle giving read access to elements of an array.
1792      * The type of the method handle will have a return type of the array's
1793      * element type.  Its first argument will be the array type,
1794      * and the second will be {@code int}.
1795      * @param arrayClass an array type
1796      * @return a method handle which can load values from the given array type
1797      * @throws NullPointerException if the argument is null
1798      * @throws  IllegalArgumentException if arrayClass is not an array type
1799      */
1800     public static
1801     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
1802         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false);
1803     }
1804 
1805     /**
1806      * Produces a method handle giving write access to elements of an array.
1807      * The type of the method handle will have a void return type.
1808      * Its last argument will be the array's element type.
1809      * The first and second arguments will be the array type and int.
1810      * @param arrayClass the class of an array
1811      * @return a method handle which can store values into the array type
1812      * @throws NullPointerException if the argument is null
1813      * @throws IllegalArgumentException if arrayClass is not an array type
1814      */
1815     public static
1816     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
1817         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true);
1818     }
1819 
1820     /// method handle invocation (reflective style)
1821 
1822     /**
1823      * Produces a method handle which will invoke any method handle of the
1824      * given {@code type}, with a given number of trailing arguments replaced by
1825      * a single trailing {@code Object[]} array.
1826      * The resulting invoker will be a method handle with the following
1827      * arguments:
1828      * <ul>
1829      * <li>a single {@code MethodHandle} target
1830      * <li>zero or more leading values (counted by {@code leadingArgCount})
1831      * <li>an {@code Object[]} array containing trailing arguments
1832      * </ul>
1833      * <p>
1834      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
1835      * the indicated {@code type}.
1836      * That is, if the target is exactly of the given {@code type}, it will behave
1837      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
1838      * is used to convert the target to the required {@code type}.
1839      * <p>
1840      * The type of the returned invoker will not be the given {@code type}, but rather
1841      * will have all parameters except the first {@code leadingArgCount}
1842      * replaced by a single array of type {@code Object[]}, which will be
1843      * the final parameter.
1844      * <p>
1845      * Before invoking its target, the invoker will spread the final array, apply
1846      * reference casts as necessary, and unbox and widen primitive arguments.
1847      * If, when the invoker is called, the supplied array argument does
1848      * not have the correct number of elements, the invoker will throw
1849      * an {@link IllegalArgumentException} instead of invoking the target.
1850      * <p>
1851      * This method is equivalent to the following code (though it may be more efficient):
1852      * <blockquote><pre>{@code
1853 MethodHandle invoker = MethodHandles.invoker(type);
1854 int spreadArgCount = type.parameterCount() - leadingArgCount;
1855 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
1856 return invoker;
1857      * }</pre></blockquote>
1858      * This method throws no reflective or security exceptions.
1859      * @param type the desired target type
1860      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
1861      * @return a method handle suitable for invoking any method handle of the given type
1862      * @throws NullPointerException if {@code type} is null
1863      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
1864      *                  the range from 0 to {@code type.parameterCount()} inclusive,
1865      *                  or if the resulting method handle's type would have
1866      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1867      */
1868     static public
1869     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
1870         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
1871             throw new IllegalArgumentException("bad argument count "+leadingArgCount);
1872         return type.invokers().spreadInvoker(leadingArgCount);
1873     }
1874 
1875     /**
1876      * Produces a special <em>invoker method handle</em> which can be used to
1877      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
1878      * The resulting invoker will have a type which is
1879      * exactly equal to the desired type, except that it will accept
1880      * an additional leading argument of type {@code MethodHandle}.
1881      * <p>
1882      * This method is equivalent to the following code (though it may be more efficient):
1883      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
1884      *
1885      * <p style="font-size:smaller;">
1886      * <em>Discussion:</em>
1887      * Invoker method handles can be useful when working with variable method handles
1888      * of unknown types.
1889      * For example, to emulate an {@code invokeExact} call to a variable method
1890      * handle {@code M}, extract its type {@code T},
1891      * look up the invoker method {@code X} for {@code T},
1892      * and call the invoker method, as {@code X.invoke(T, A...)}.
1893      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
1894      * is unknown.)
1895      * If spreading, collecting, or other argument transformations are required,
1896      * they can be applied once to the invoker {@code X} and reused on many {@code M}
1897      * method handle values, as long as they are compatible with the type of {@code X}.
1898      * <p style="font-size:smaller;">
1899      * <em>(Note:  The invoker method is not available via the Core Reflection API.
1900      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1901      * on the declared {@code invokeExact} or {@code invoke} method will raise an
1902      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
1903      * <p>
1904      * This method throws no reflective or security exceptions.
1905      * @param type the desired target type
1906      * @return a method handle suitable for invoking any method handle of the given type
1907      * @throws IllegalArgumentException if the resulting method handle's type would have
1908      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1909      */
1910     static public
1911     MethodHandle exactInvoker(MethodType type) {
1912         return type.invokers().exactInvoker();
1913     }
1914 
1915     /**
1916      * Produces a special <em>invoker method handle</em> which can be used to
1917      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
1918      * The resulting invoker will have a type which is
1919      * exactly equal to the desired type, except that it will accept
1920      * an additional leading argument of type {@code MethodHandle}.
1921      * <p>
1922      * Before invoking its target, if the target differs from the expected type,
1923      * the invoker will apply reference casts as
1924      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
1925      * Similarly, the return value will be converted as necessary.
1926      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
1927      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
1928      * <p>
1929      * This method is equivalent to the following code (though it may be more efficient):
1930      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
1931      * <p style="font-size:smaller;">
1932      * <em>Discussion:</em>
1933      * A {@linkplain MethodType#genericMethodType general method type} is one which
1934      * mentions only {@code Object} arguments and return values.
1935      * An invoker for such a type is capable of calling any method handle
1936      * of the same arity as the general type.
1937      * <p style="font-size:smaller;">
1938      * <em>(Note:  The invoker method is not available via the Core Reflection API.
1939      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1940      * on the declared {@code invokeExact} or {@code invoke} method will raise an
1941      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
1942      * <p>
1943      * This method throws no reflective or security exceptions.
1944      * @param type the desired target type
1945      * @return a method handle suitable for invoking any method handle convertible to the given type
1946      * @throws IllegalArgumentException if the resulting method handle's type would have
1947      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1948      */
1949     static public
1950     MethodHandle invoker(MethodType type) {
1951         return type.invokers().generalInvoker();
1952     }
1953 
1954     static /*non-public*/
1955     MethodHandle basicInvoker(MethodType type) {
1956         return type.form().basicInvoker();
1957     }
1958 
1959      /// method handle modification (creation from other method handles)
1960 
1961     /**
1962      * Produces a method handle which adapts the type of the
1963      * given method handle to a new type by pairwise argument and return type conversion.
1964      * The original type and new type must have the same number of arguments.
1965      * The resulting method handle is guaranteed to report a type
1966      * which is equal to the desired new type.
1967      * <p>
1968      * If the original type and new type are equal, returns target.
1969      * <p>
1970      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
1971      * and some additional conversions are also applied if those conversions fail.
1972      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
1973      * if possible, before or instead of any conversions done by {@code asType}:
1974      * <ul>
1975      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
1976      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
1977      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
1978      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
1979      *     the boolean is converted to a byte value, 1 for true, 0 for false.
1980      *     (This treatment follows the usage of the bytecode verifier.)
1981      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
1982      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
1983      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
1984      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
1985      *     then a Java casting conversion (JLS 5.5) is applied.
1986      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
1987      *     widening and/or narrowing.)
1988      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
1989      *     conversion will be applied at runtime, possibly followed
1990      *     by a Java casting conversion (JLS 5.5) on the primitive value,
1991      *     possibly followed by a conversion from byte to boolean by testing
1992      *     the low-order bit.
1993      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
1994      *     and if the reference is null at runtime, a zero value is introduced.
1995      * </ul>
1996      * @param target the method handle to invoke after arguments are retyped
1997      * @param newType the expected type of the new method handle
1998      * @return a method handle which delegates to the target after performing
1999      *           any necessary argument conversions, and arranges for any
2000      *           necessary return value conversions
2001      * @throws NullPointerException if either argument is null
2002      * @throws WrongMethodTypeException if the conversion cannot be made
2003      * @see MethodHandle#asType
2004      */
2005     public static
2006     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
2007         if (!target.type().isCastableTo(newType)) {
2008             throw new WrongMethodTypeException("cannot explicitly cast "+target+" to "+newType);
2009         }
2010         return MethodHandleImpl.makePairwiseConvert(target, newType, 2);
2011     }
2012 
2013     /**
2014      * Produces a method handle which adapts the calling sequence of the
2015      * given method handle to a new type, by reordering the arguments.
2016      * The resulting method handle is guaranteed to report a type
2017      * which is equal to the desired new type.
2018      * <p>
2019      * The given array controls the reordering.
2020      * Call {@code #I} the number of incoming parameters (the value
2021      * {@code newType.parameterCount()}, and call {@code #O} the number
2022      * of outgoing parameters (the value {@code target.type().parameterCount()}).
2023      * Then the length of the reordering array must be {@code #O},
2024      * and each element must be a non-negative number less than {@code #I}.
2025      * For every {@code N} less than {@code #O}, the {@code N}-th
2026      * outgoing argument will be taken from the {@code I}-th incoming
2027      * argument, where {@code I} is {@code reorder[N]}.
2028      * <p>
2029      * No argument or return value conversions are applied.
2030      * The type of each incoming argument, as determined by {@code newType},
2031      * must be identical to the type of the corresponding outgoing parameter
2032      * or parameters in the target method handle.
2033      * The return type of {@code newType} must be identical to the return
2034      * type of the original target.
2035      * <p>
2036      * The reordering array need not specify an actual permutation.
2037      * An incoming argument will be duplicated if its index appears
2038      * more than once in the array, and an incoming argument will be dropped
2039      * if its index does not appear in the array.
2040      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
2041      * incoming arguments which are not mentioned in the reordering array
2042      * are may be any type, as determined only by {@code newType}.
2043      * <blockquote><pre>{@code
2044 import static java.lang.invoke.MethodHandles.*;
2045 import static java.lang.invoke.MethodType.*;
2046 ...
2047 MethodType intfn1 = methodType(int.class, int.class);
2048 MethodType intfn2 = methodType(int.class, int.class, int.class);
2049 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2050 assert(sub.type().equals(intfn2));
2051 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
2052 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2053 assert((int)rsub.invokeExact(1, 100) == 99);
2054 MethodHandle add = ... (int x, int y) -> (x+y) ...;
2055 assert(add.type().equals(intfn2));
2056 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2057 assert(twice.type().equals(intfn1));
2058 assert((int)twice.invokeExact(21) == 42);
2059      * }</pre></blockquote>
2060      * @param target the method handle to invoke after arguments are reordered
2061      * @param newType the expected type of the new method handle
2062      * @param reorder an index array which controls the reordering
2063      * @return a method handle which delegates to the target after it
2064      *           drops unused arguments and moves and/or duplicates the other arguments
2065      * @throws NullPointerException if any argument is null
2066      * @throws IllegalArgumentException if the index array length is not equal to
2067      *                  the arity of the target, or if any index array element
2068      *                  not a valid index for a parameter of {@code newType},
2069      *                  or if two corresponding parameter types in
2070      *                  {@code target.type()} and {@code newType} are not identical,
2071      */
2072     public static
2073     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
2074         checkReorder(reorder, newType, target.type());
2075         return target.permuteArguments(newType, reorder);
2076     }
2077 
2078     private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) {
2079         if (newType.returnType() != oldType.returnType())
2080             throw newIllegalArgumentException("return types do not match",
2081                     oldType, newType);
2082         if (reorder.length == oldType.parameterCount()) {
2083             int limit = newType.parameterCount();
2084             boolean bad = false;
2085             for (int j = 0; j < reorder.length; j++) {
2086                 int i = reorder[j];
2087                 if (i < 0 || i >= limit) {
2088                     bad = true; break;
2089                 }
2090                 Class<?> src = newType.parameterType(i);
2091                 Class<?> dst = oldType.parameterType(j);
2092                 if (src != dst)
2093                     throw newIllegalArgumentException("parameter types do not match after reorder",
2094                             oldType, newType);
2095             }
2096             if (!bad)  return;
2097         }
2098         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
2099     }
2100 
2101     /**
2102      * Produces a method handle of the requested return type which returns the given
2103      * constant value every time it is invoked.
2104      * <p>
2105      * Before the method handle is returned, the passed-in value is converted to the requested type.
2106      * If the requested type is primitive, widening primitive conversions are attempted,
2107      * else reference conversions are attempted.
2108      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
2109      * @param type the return type of the desired method handle
2110      * @param value the value to return
2111      * @return a method handle of the given return type and no arguments, which always returns the given value
2112      * @throws NullPointerException if the {@code type} argument is null
2113      * @throws ClassCastException if the value cannot be converted to the required return type
2114      * @throws IllegalArgumentException if the given type is {@code void.class}
2115      */
2116     public static
2117     MethodHandle constant(Class<?> type, Object value) {
2118         if (type.isPrimitive()) {
2119             if (type == void.class)
2120                 throw newIllegalArgumentException("void type");
2121             Wrapper w = Wrapper.forPrimitiveType(type);
2122             return insertArguments(identity(type), 0, w.convert(value, type));
2123         } else {
2124             return identity(type).bindTo(type.cast(value));
2125         }
2126     }
2127 
2128     /**
2129      * Produces a method handle which returns its sole argument when invoked.
2130      * @param type the type of the sole parameter and return value of the desired method handle
2131      * @return a unary method handle which accepts and returns the given type
2132      * @throws NullPointerException if the argument is null
2133      * @throws IllegalArgumentException if the given type is {@code void.class}
2134      */
2135     public static
2136     MethodHandle identity(Class<?> type) {
2137         if (type == void.class)
2138             throw newIllegalArgumentException("void type");
2139         else if (type == Object.class)
2140             return ValueConversions.identity();
2141         else if (type.isPrimitive())
2142             return ValueConversions.identity(Wrapper.forPrimitiveType(type));
2143         else
2144             return MethodHandleImpl.makeReferenceIdentity(type);
2145     }
2146 
2147     /**
2148      * Provides a target method handle with one or more <em>bound arguments</em>
2149      * in advance of the method handle's invocation.
2150      * The formal parameters to the target corresponding to the bound
2151      * arguments are called <em>bound parameters</em>.
2152      * Returns a new method handle which saves away the bound arguments.
2153      * When it is invoked, it receives arguments for any non-bound parameters,
2154      * binds the saved arguments to their corresponding parameters,
2155      * and calls the original target.
2156      * <p>
2157      * The type of the new method handle will drop the types for the bound
2158      * parameters from the original target type, since the new method handle
2159      * will no longer require those arguments to be supplied by its callers.
2160      * <p>
2161      * Each given argument object must match the corresponding bound parameter type.
2162      * If a bound parameter type is a primitive, the argument object
2163      * must be a wrapper, and will be unboxed to produce the primitive value.
2164      * <p>
2165      * The {@code pos} argument selects which parameters are to be bound.
2166      * It may range between zero and <i>N-L</i> (inclusively),
2167      * where <i>N</i> is the arity of the target method handle
2168      * and <i>L</i> is the length of the values array.
2169      * @param target the method handle to invoke after the argument is inserted
2170      * @param pos where to insert the argument (zero for the first)
2171      * @param values the series of arguments to insert
2172      * @return a method handle which inserts an additional argument,
2173      *         before calling the original method handle
2174      * @throws NullPointerException if the target or the {@code values} array is null
2175      * @see MethodHandle#bindTo
2176      */
2177     public static
2178     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
2179         int insCount = values.length;
2180         MethodType oldType = target.type();
2181         int outargs = oldType.parameterCount();
2182         int inargs  = outargs - insCount;
2183         if (inargs < 0)
2184             throw newIllegalArgumentException("too many values to insert");
2185         if (pos < 0 || pos > inargs)
2186             throw newIllegalArgumentException("no argument type to append");
2187         MethodHandle result = target;
2188         for (int i = 0; i < insCount; i++) {
2189             Object value = values[i];
2190             Class<?> ptype = oldType.parameterType(pos+i);
2191             if (ptype.isPrimitive()) {
2192                 BasicType btype = I_TYPE;
2193                 Wrapper w = Wrapper.forPrimitiveType(ptype);
2194                 switch (w) {
2195                 case LONG:    btype = J_TYPE; break;
2196                 case FLOAT:   btype = F_TYPE; break;
2197                 case DOUBLE:  btype = D_TYPE; break;
2198                 }
2199                 // perform unboxing and/or primitive conversion
2200                 value = w.convert(value, ptype);
2201                 result = result.bindArgument(pos, btype, value);
2202                 continue;
2203             }
2204             value = ptype.cast(value);  // throw CCE if needed
2205             if (pos == 0) {
2206                 result = result.bindReceiver(value);
2207             } else {
2208                 result = result.bindArgument(pos, L_TYPE, value);
2209             }
2210         }
2211         return result;
2212     }
2213 
2214     /**
2215      * Produces a method handle which will discard some dummy arguments
2216      * before calling some other specified <i>target</i> method handle.
2217      * The type of the new method handle will be the same as the target's type,
2218      * except it will also include the dummy argument types,
2219      * at some given position.
2220      * <p>
2221      * The {@code pos} argument may range between zero and <i>N</i>,
2222      * where <i>N</i> is the arity of the target.
2223      * If {@code pos} is zero, the dummy arguments will precede
2224      * the target's real arguments; if {@code pos} is <i>N</i>
2225      * they will come after.
2226      * <p>
2227      * <b>Example:</b>
2228      * <blockquote><pre>{@code
2229 import static java.lang.invoke.MethodHandles.*;
2230 import static java.lang.invoke.MethodType.*;
2231 ...
2232 MethodHandle cat = lookup().findVirtual(String.class,
2233   "concat", methodType(String.class, String.class));
2234 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2235 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
2236 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
2237 assertEquals(bigType, d0.type());
2238 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
2239      * }</pre></blockquote>
2240      * <p>
2241      * This method is also equivalent to the following code:
2242      * <blockquote><pre>
2243      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
2244      * </pre></blockquote>
2245      * @param target the method handle to invoke after the arguments are dropped
2246      * @param valueTypes the type(s) of the argument(s) to drop
2247      * @param pos position of first argument to drop (zero for the leftmost)
2248      * @return a method handle which drops arguments of the given types,
2249      *         before calling the original method handle
2250      * @throws NullPointerException if the target is null,
2251      *                              or if the {@code valueTypes} list or any of its elements is null
2252      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
2253      *                  or if {@code pos} is negative or greater than the arity of the target,
2254      *                  or if the new method handle's type would have too many parameters
2255      */
2256     public static
2257     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
2258         MethodType oldType = target.type();  // get NPE
2259         int dropped = valueTypes.size();
2260         MethodType.checkSlotCount(dropped);
2261         if (dropped == 0)  return target;
2262         int outargs = oldType.parameterCount();
2263         int inargs  = outargs + dropped;
2264         if (pos < 0 || pos >= inargs)
2265             throw newIllegalArgumentException("no argument type to remove");
2266         ArrayList<Class<?>> ptypes = new ArrayList<>(oldType.parameterList());
2267         ptypes.addAll(pos, valueTypes);
2268         MethodType newType = MethodType.methodType(oldType.returnType(), ptypes);
2269         return target.dropArguments(newType, pos, dropped);
2270     }
2271 
2272     /**
2273      * Produces a method handle which will discard some dummy arguments
2274      * before calling some other specified <i>target</i> method handle.
2275      * The type of the new method handle will be the same as the target's type,
2276      * except it will also include the dummy argument types,
2277      * at some given position.
2278      * <p>
2279      * The {@code pos} argument may range between zero and <i>N</i>,
2280      * where <i>N</i> is the arity of the target.
2281      * If {@code pos} is zero, the dummy arguments will precede
2282      * the target's real arguments; if {@code pos} is <i>N</i>
2283      * they will come after.
2284      * <p>
2285      * <b>Example:</b>
2286      * <blockquote><pre>{@code
2287 import static java.lang.invoke.MethodHandles.*;
2288 import static java.lang.invoke.MethodType.*;
2289 ...
2290 MethodHandle cat = lookup().findVirtual(String.class,
2291   "concat", methodType(String.class, String.class));
2292 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2293 MethodHandle d0 = dropArguments(cat, 0, String.class);
2294 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
2295 MethodHandle d1 = dropArguments(cat, 1, String.class);
2296 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
2297 MethodHandle d2 = dropArguments(cat, 2, String.class);
2298 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
2299 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
2300 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
2301      * }</pre></blockquote>
2302      * <p>
2303      * This method is also equivalent to the following code:
2304      * <blockquote><pre>
2305      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
2306      * </pre></blockquote>
2307      * @param target the method handle to invoke after the arguments are dropped
2308      * @param valueTypes the type(s) of the argument(s) to drop
2309      * @param pos position of first argument to drop (zero for the leftmost)
2310      * @return a method handle which drops arguments of the given types,
2311      *         before calling the original method handle
2312      * @throws NullPointerException if the target is null,
2313      *                              or if the {@code valueTypes} array or any of its elements is null
2314      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
2315      *                  or if {@code pos} is negative or greater than the arity of the target,
2316      *                  or if the new method handle's type would have
2317      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
2318      */
2319     public static
2320     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
2321         return dropArguments(target, pos, Arrays.asList(valueTypes));
2322     }
2323 
2324     /**
2325      * Adapts a target method handle by pre-processing
2326      * one or more of its arguments, each with its own unary filter function,
2327      * and then calling the target with each pre-processed argument
2328      * replaced by the result of its corresponding filter function.
2329      * <p>
2330      * The pre-processing is performed by one or more method handles,
2331      * specified in the elements of the {@code filters} array.
2332      * The first element of the filter array corresponds to the {@code pos}
2333      * argument of the target, and so on in sequence.
2334      * <p>
2335      * Null arguments in the array are treated as identity functions,
2336      * and the corresponding arguments left unchanged.
2337      * (If there are no non-null elements in the array, the original target is returned.)
2338      * Each filter is applied to the corresponding argument of the adapter.
2339      * <p>
2340      * If a filter {@code F} applies to the {@code N}th argument of
2341      * the target, then {@code F} must be a method handle which
2342      * takes exactly one argument.  The type of {@code F}'s sole argument
2343      * replaces the corresponding argument type of the target
2344      * in the resulting adapted method handle.
2345      * The return type of {@code F} must be identical to the corresponding
2346      * parameter type of the target.
2347      * <p>
2348      * It is an error if there are elements of {@code filters}
2349      * (null or not)
2350      * which do not correspond to argument positions in the target.
2351      * <p><b>Example:</b>
2352      * <blockquote><pre>{@code
2353 import static java.lang.invoke.MethodHandles.*;
2354 import static java.lang.invoke.MethodType.*;
2355 ...
2356 MethodHandle cat = lookup().findVirtual(String.class,
2357   "concat", methodType(String.class, String.class));
2358 MethodHandle upcase = lookup().findVirtual(String.class,
2359   "toUpperCase", methodType(String.class));
2360 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2361 MethodHandle f0 = filterArguments(cat, 0, upcase);
2362 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
2363 MethodHandle f1 = filterArguments(cat, 1, upcase);
2364 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
2365 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
2366 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
2367      * }</pre></blockquote>
2368      * <p> Here is pseudocode for the resulting adapter:
2369      * <blockquote><pre>{@code
2370      * V target(P... p, A[i]... a[i], B... b);
2371      * A[i] filter[i](V[i]);
2372      * T adapter(P... p, V[i]... v[i], B... b) {
2373      *   return target(p..., f[i](v[i])..., b...);
2374      * }
2375      * }</pre></blockquote>
2376      *
2377      * @param target the method handle to invoke after arguments are filtered
2378      * @param pos the position of the first argument to filter
2379      * @param filters method handles to call initially on filtered arguments
2380      * @return method handle which incorporates the specified argument filtering logic
2381      * @throws NullPointerException if the target is null
2382      *                              or if the {@code filters} array is null
2383      * @throws IllegalArgumentException if a non-null element of {@code filters}
2384      *          does not match a corresponding argument type of target as described above,
2385      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
2386      *          or if the resulting method handle's type would have
2387      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2388      */
2389     public static
2390     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
2391         MethodType targetType = target.type();
2392         MethodHandle adapter = target;
2393         MethodType adapterType = null;
2394         assert((adapterType = targetType) != null);
2395         int maxPos = targetType.parameterCount();
2396         if (pos + filters.length > maxPos)
2397             throw newIllegalArgumentException("too many filters");
2398         int curPos = pos-1;  // pre-incremented
2399         for (MethodHandle filter : filters) {
2400             curPos += 1;
2401             if (filter == null)  continue;  // ignore null elements of filters
2402             adapter = filterArgument(adapter, curPos, filter);
2403             assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null);
2404         }
2405         assert(adapterType.equals(adapter.type()));
2406         return adapter;
2407     }
2408 
2409     /*non-public*/ static
2410     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
2411         MethodType targetType = target.type();
2412         MethodType filterType = filter.type();
2413         if (filterType.parameterCount() != 1
2414             || filterType.returnType() != targetType.parameterType(pos))
2415             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2416         return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2417     }
2418 
2419     /**
2420      * Adapts a target method handle by pre-processing
2421      * a sub-sequence of its arguments with a filter (another method handle).
2422      * The pre-processed arguments are replaced by the result (if any) of the
2423      * filter function.
2424      * The target is then called on the modified (usually shortened) argument list.
2425      * <p>
2426      * If the filter returns a value, the target must accept that value as
2427      * its argument in position {@code pos}, preceded and/or followed by
2428      * any arguments not passed to the filter.
2429      * If the filter returns void, the target must accept all arguments
2430      * not passed to the filter.
2431      * No arguments are reordered, and a result returned from the filter
2432      * replaces (in order) the whole subsequence of arguments originally
2433      * passed to the adapter.
2434      * <p>
2435      * The argument types (if any) of the filter
2436      * replace zero or one argument types of the target, at position {@code pos},
2437      * in the resulting adapted method handle.
2438      * The return type of the filter (if any) must be identical to the
2439      * argument type of the target at position {@code pos}, and that target argument
2440      * is supplied by the return value of the filter.
2441      * <p>
2442      * In all cases, {@code pos} must be greater than or equal to zero, and
2443      * {@code pos} must also be less than or equal to the target's arity.
2444      * <p><b>Example:</b>
2445      * <blockquote><pre>{@code
2446 import static java.lang.invoke.MethodHandles.*;
2447 import static java.lang.invoke.MethodType.*;
2448 ...
2449 MethodHandle deepToString = publicLookup()
2450   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
2451 
2452 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
2453 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
2454 
2455 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
2456 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
2457 
2458 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
2459 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
2460 assertEquals("[top, [up, down], strange]",
2461              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
2462 
2463 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
2464 assertEquals("[top, [up, down], [strange]]",
2465              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
2466 
2467 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
2468 assertEquals("[top, [[up, down, strange], charm], bottom]",
2469              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
2470      * }</pre></blockquote>
2471      * <p> Here is pseudocode for the resulting adapter:
2472      * <blockquote><pre>{@code
2473      * T target(A...,V,C...);
2474      * V filter(B...);
2475      * T adapter(A... a,B... b,C... c) {
2476      *   V v = filter(b...);
2477      *   return target(a...,v,c...);
2478      * }
2479      * // and if the filter has no arguments:
2480      * T target2(A...,V,C...);
2481      * V filter2();
2482      * T adapter2(A... a,C... c) {
2483      *   V v = filter2();
2484      *   return target2(a...,v,c...);
2485      * }
2486      * // and if the filter has a void return:
2487      * T target3(A...,C...);
2488      * void filter3(B...);
2489      * void adapter3(A... a,B... b,C... c) {
2490      *   filter3(b...);
2491      *   return target3(a...,c...);
2492      * }
2493      * }</pre></blockquote>
2494      * <p>
2495      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
2496      * one which first "folds" the affected arguments, and then drops them, in separate
2497      * steps as follows:
2498      * <blockquote><pre>{@code
2499      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
2500      * mh = MethodHandles.foldArguments(mh, coll); //step 1
2501      * }</pre></blockquote>
2502      * If the target method handle consumes no arguments besides than the result
2503      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
2504      * is equivalent to {@code filterReturnValue(coll, mh)}.
2505      * If the filter method handle {@code coll} consumes one argument and produces
2506      * a non-void result, then {@code collectArguments(mh, N, coll)}
2507      * is equivalent to {@code filterArguments(mh, N, coll)}.
2508      * Other equivalences are possible but would require argument permutation.
2509      *
2510      * @param target the method handle to invoke after filtering the subsequence of arguments
2511      * @param pos the position of the first adapter argument to pass to the filter,
2512      *            and/or the target argument which receives the result of the filter
2513      * @param filter method handle to call on the subsequence of arguments
2514      * @return method handle which incorporates the specified argument subsequence filtering logic
2515      * @throws NullPointerException if either argument is null
2516      * @throws IllegalArgumentException if the return type of {@code filter}
2517      *          is non-void and is not the same as the {@code pos} argument of the target,
2518      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
2519      *          or if the resulting method handle's type would have
2520      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2521      * @see MethodHandles#foldArguments
2522      * @see MethodHandles#filterArguments
2523      * @see MethodHandles#filterReturnValue
2524      */
2525     public static
2526     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
2527         MethodType targetType = target.type();
2528         MethodType filterType = filter.type();
2529         if (filterType.returnType() != void.class &&
2530             filterType.returnType() != targetType.parameterType(pos))
2531             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2532         return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2533     }
2534 
2535     /**
2536      * Adapts a target method handle by post-processing
2537      * its return value (if any) with a filter (another method handle).
2538      * The result of the filter is returned from the adapter.
2539      * <p>
2540      * If the target returns a value, the filter must accept that value as
2541      * its only argument.
2542      * If the target returns void, the filter must accept no arguments.
2543      * <p>
2544      * The return type of the filter
2545      * replaces the return type of the target
2546      * in the resulting adapted method handle.
2547      * The argument type of the filter (if any) must be identical to the
2548      * return type of the target.
2549      * <p><b>Example:</b>
2550      * <blockquote><pre>{@code
2551 import static java.lang.invoke.MethodHandles.*;
2552 import static java.lang.invoke.MethodType.*;
2553 ...
2554 MethodHandle cat = lookup().findVirtual(String.class,
2555   "concat", methodType(String.class, String.class));
2556 MethodHandle length = lookup().findVirtual(String.class,
2557   "length", methodType(int.class));
2558 System.out.println((String) cat.invokeExact("x", "y")); // xy
2559 MethodHandle f0 = filterReturnValue(cat, length);
2560 System.out.println((int) f0.invokeExact("x", "y")); // 2
2561      * }</pre></blockquote>
2562      * <p> Here is pseudocode for the resulting adapter:
2563      * <blockquote><pre>{@code
2564      * V target(A...);
2565      * T filter(V);
2566      * T adapter(A... a) {
2567      *   V v = target(a...);
2568      *   return filter(v);
2569      * }
2570      * // and if the target has a void return:
2571      * void target2(A...);
2572      * T filter2();
2573      * T adapter2(A... a) {
2574      *   target2(a...);
2575      *   return filter2();
2576      * }
2577      * // and if the filter has a void return:
2578      * V target3(A...);
2579      * void filter3(V);
2580      * void adapter3(A... a) {
2581      *   V v = target3(a...);
2582      *   filter3(v);
2583      * }
2584      * }</pre></blockquote>
2585      * @param target the method handle to invoke before filtering the return value
2586      * @param filter method handle to call on the return value
2587      * @return method handle which incorporates the specified return value filtering logic
2588      * @throws NullPointerException if either argument is null
2589      * @throws IllegalArgumentException if the argument list of {@code filter}
2590      *          does not match the return type of target as described above
2591      */
2592     public static
2593     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
2594         MethodType targetType = target.type();
2595         MethodType filterType = filter.type();
2596         Class<?> rtype = targetType.returnType();
2597         int filterValues = filterType.parameterCount();
2598         if (filterValues == 0
2599                 ? (rtype != void.class)
2600                 : (rtype != filterType.parameterType(0)))
2601             throw newIllegalArgumentException("target and filter types do not match", target, filter);
2602         // result = fold( lambda(retval, arg...) { filter(retval) },
2603         //                lambda(        arg...) { target(arg...) } )
2604         return MethodHandleImpl.makeCollectArguments(filter, target, 0, false);
2605     }
2606 
2607     /**
2608      * Adapts a target method handle by pre-processing
2609      * some of its arguments, and then calling the target with
2610      * the result of the pre-processing, inserted into the original
2611      * sequence of arguments.
2612      * <p>
2613      * The pre-processing is performed by {@code combiner}, a second method handle.
2614      * Of the arguments passed to the adapter, the first {@code N} arguments
2615      * are copied to the combiner, which is then called.
2616      * (Here, {@code N} is defined as the parameter count of the combiner.)
2617      * After this, control passes to the target, with any result
2618      * from the combiner inserted before the original {@code N} incoming
2619      * arguments.
2620      * <p>
2621      * If the combiner returns a value, the first parameter type of the target
2622      * must be identical with the return type of the combiner, and the next
2623      * {@code N} parameter types of the target must exactly match the parameters
2624      * of the combiner.
2625      * <p>
2626      * If the combiner has a void return, no result will be inserted,
2627      * and the first {@code N} parameter types of the target
2628      * must exactly match the parameters of the combiner.
2629      * <p>
2630      * The resulting adapter is the same type as the target, except that the
2631      * first parameter type is dropped,
2632      * if it corresponds to the result of the combiner.
2633      * <p>
2634      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
2635      * that either the combiner or the target does not wish to receive.
2636      * If some of the incoming arguments are destined only for the combiner,
2637      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
2638      * arguments will not need to be live on the stack on entry to the
2639      * target.)
2640      * <p><b>Example:</b>
2641      * <blockquote><pre>{@code
2642 import static java.lang.invoke.MethodHandles.*;
2643 import static java.lang.invoke.MethodType.*;
2644 ...
2645 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
2646   "println", methodType(void.class, String.class))
2647     .bindTo(System.out);
2648 MethodHandle cat = lookup().findVirtual(String.class,
2649   "concat", methodType(String.class, String.class));
2650 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
2651 MethodHandle catTrace = foldArguments(cat, trace);
2652 // also prints "boo":
2653 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
2654      * }</pre></blockquote>
2655      * <p> Here is pseudocode for the resulting adapter:
2656      * <blockquote><pre>{@code
2657      * // there are N arguments in A...
2658      * T target(V, A[N]..., B...);
2659      * V combiner(A...);
2660      * T adapter(A... a, B... b) {
2661      *   V v = combiner(a...);
2662      *   return target(v, a..., b...);
2663      * }
2664      * // and if the combiner has a void return:
2665      * T target2(A[N]..., B...);
2666      * void combiner2(A...);
2667      * T adapter2(A... a, B... b) {
2668      *   combiner2(a...);
2669      *   return target2(a..., b...);
2670      * }
2671      * }</pre></blockquote>
2672      * @param target the method handle to invoke after arguments are combined
2673      * @param combiner method handle to call initially on the incoming arguments
2674      * @return method handle which incorporates the specified argument folding logic
2675      * @throws NullPointerException if either argument is null
2676      * @throws IllegalArgumentException if {@code combiner}'s return type
2677      *          is non-void and not the same as the first argument type of
2678      *          the target, or if the initial {@code N} argument types
2679      *          of the target
2680      *          (skipping one matching the {@code combiner}'s return type)
2681      *          are not identical with the argument types of {@code combiner}
2682      */
2683     public static
2684     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
2685         int pos = 0;
2686         MethodType targetType = target.type();
2687         MethodType combinerType = combiner.type();
2688         int foldPos = pos;
2689         int foldArgs = combinerType.parameterCount();
2690         int foldVals = combinerType.returnType() == void.class ? 0 : 1;
2691         int afterInsertPos = foldPos + foldVals;
2692         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
2693         if (ok && !(combinerType.parameterList()
2694                     .equals(targetType.parameterList().subList(afterInsertPos,
2695                                                                afterInsertPos + foldArgs))))
2696             ok = false;
2697         if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0)))
2698             ok = false;
2699         if (!ok)
2700             throw misMatchedTypes("target and combiner types", targetType, combinerType);
2701         MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos);
2702         return MethodHandleImpl.makeCollectArguments(target, combiner, foldPos, true);
2703     }
2704 
2705     /**
2706      * Makes a method handle which adapts a target method handle,
2707      * by guarding it with a test, a boolean-valued method handle.
2708      * If the guard fails, a fallback handle is called instead.
2709      * All three method handles must have the same corresponding
2710      * argument and return types, except that the return type
2711      * of the test must be boolean, and the test is allowed
2712      * to have fewer arguments than the other two method handles.
2713      * <p> Here is pseudocode for the resulting adapter:
2714      * <blockquote><pre>{@code
2715      * boolean test(A...);
2716      * T target(A...,B...);
2717      * T fallback(A...,B...);
2718      * T adapter(A... a,B... b) {
2719      *   if (test(a...))
2720      *     return target(a..., b...);
2721      *   else
2722      *     return fallback(a..., b...);
2723      * }
2724      * }</pre></blockquote>
2725      * Note that the test arguments ({@code a...} in the pseudocode) cannot
2726      * be modified by execution of the test, and so are passed unchanged
2727      * from the caller to the target or fallback as appropriate.
2728      * @param test method handle used for test, must return boolean
2729      * @param target method handle to call if test passes
2730      * @param fallback method handle to call if test fails
2731      * @return method handle which incorporates the specified if/then/else logic
2732      * @throws NullPointerException if any argument is null
2733      * @throws IllegalArgumentException if {@code test} does not return boolean,
2734      *          or if all three method types do not match (with the return
2735      *          type of {@code test} changed to match that of the target).
2736      */
2737     public static
2738     MethodHandle guardWithTest(MethodHandle test,
2739                                MethodHandle target,
2740                                MethodHandle fallback) {
2741         MethodType gtype = test.type();
2742         MethodType ttype = target.type();
2743         MethodType ftype = fallback.type();
2744         if (!ttype.equals(ftype))
2745             throw misMatchedTypes("target and fallback types", ttype, ftype);
2746         if (gtype.returnType() != boolean.class)
2747             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
2748         List<Class<?>> targs = ttype.parameterList();
2749         List<Class<?>> gargs = gtype.parameterList();
2750         if (!targs.equals(gargs)) {
2751             int gpc = gargs.size(), tpc = targs.size();
2752             if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
2753                 throw misMatchedTypes("target and test types", ttype, gtype);
2754             test = dropArguments(test, gpc, targs.subList(gpc, tpc));
2755             gtype = test.type();
2756         }
2757         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
2758     }
2759 
2760     static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
2761         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
2762     }
2763 
2764     /**
2765      * Makes a method handle which adapts a target method handle,
2766      * by running it inside an exception handler.
2767      * If the target returns normally, the adapter returns that value.
2768      * If an exception matching the specified type is thrown, the fallback
2769      * handle is called instead on the exception, plus the original arguments.
2770      * <p>
2771      * The target and handler must have the same corresponding
2772      * argument and return types, except that handler may omit trailing arguments
2773      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
2774      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
2775      * <p> Here is pseudocode for the resulting adapter:
2776      * <blockquote><pre>{@code
2777      * T target(A..., B...);
2778      * T handler(ExType, A...);
2779      * T adapter(A... a, B... b) {
2780      *   try {
2781      *     return target(a..., b...);
2782      *   } catch (ExType ex) {
2783      *     return handler(ex, a...);
2784      *   }
2785      * }
2786      * }</pre></blockquote>
2787      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
2788      * be modified by execution of the target, and so are passed unchanged
2789      * from the caller to the handler, if the handler is invoked.
2790      * <p>
2791      * The target and handler must return the same type, even if the handler
2792      * always throws.  (This might happen, for instance, because the handler
2793      * is simulating a {@code finally} clause).
2794      * To create such a throwing handler, compose the handler creation logic
2795      * with {@link #throwException throwException},
2796      * in order to create a method handle of the correct return type.
2797      * @param target method handle to call
2798      * @param exType the type of exception which the handler will catch
2799      * @param handler method handle to call if a matching exception is thrown
2800      * @return method handle which incorporates the specified try/catch logic
2801      * @throws NullPointerException if any argument is null
2802      * @throws IllegalArgumentException if {@code handler} does not accept
2803      *          the given exception type, or if the method handle types do
2804      *          not match in their return types and their
2805      *          corresponding parameters
2806      */
2807     public static
2808     MethodHandle catchException(MethodHandle target,
2809                                 Class<? extends Throwable> exType,
2810                                 MethodHandle handler) {
2811         MethodType ttype = target.type();
2812         MethodType htype = handler.type();
2813         if (htype.parameterCount() < 1 ||
2814             !htype.parameterType(0).isAssignableFrom(exType))
2815             throw newIllegalArgumentException("handler does not accept exception type "+exType);
2816         if (htype.returnType() != ttype.returnType())
2817             throw misMatchedTypes("target and handler return types", ttype, htype);
2818         List<Class<?>> targs = ttype.parameterList();
2819         List<Class<?>> hargs = htype.parameterList();
2820         hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
2821         if (!targs.equals(hargs)) {
2822             int hpc = hargs.size(), tpc = targs.size();
2823             if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
2824                 throw misMatchedTypes("target and handler types", ttype, htype);
2825             handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc));
2826             htype = handler.type();
2827         }
2828         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
2829     }
2830 
2831     /**
2832      * Produces a method handle which will throw exceptions of the given {@code exType}.
2833      * The method handle will accept a single argument of {@code exType},
2834      * and immediately throw it as an exception.
2835      * The method type will nominally specify a return of {@code returnType}.
2836      * The return type may be anything convenient:  It doesn't matter to the
2837      * method handle's behavior, since it will never return normally.
2838      * @param returnType the return type of the desired method handle
2839      * @param exType the parameter type of the desired method handle
2840      * @return method handle which can throw the given exceptions
2841      * @throws NullPointerException if either argument is null
2842      */
2843     public static
2844     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
2845         if (!Throwable.class.isAssignableFrom(exType))
2846             throw new ClassCastException(exType.getName());
2847         return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
2848     }
2849 }