1 /*
   2  * Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.annotation.*;
  29 import java.lang.reflect.Method;
  30 import java.util.Map;
  31 import java.util.List;
  32 import java.util.Arrays;
  33 import java.util.ArrayList;
  34 import java.util.HashMap;
  35 import java.util.concurrent.ConcurrentHashMap;
  36 import sun.invoke.util.Wrapper;
  37 import static java.lang.invoke.MethodHandleStatics.*;
  38 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  39 import java.lang.reflect.Field;
  40 import java.util.Objects;
  41 
  42 /**
  43  * The symbolic, non-executable form of a method handle's invocation semantics.
  44  * It consists of a series of names.
  45  * The first N (N=arity) names are parameters,
  46  * while any remaining names are temporary values.
  47  * Each temporary specifies the application of a function to some arguments.
  48  * The functions are method handles, while the arguments are mixes of
  49  * constant values and local names.
  50  * The result of the lambda is defined as one of the names, often the last one.
  51  * <p>
  52  * Here is an approximate grammar:
  53  * <blockquote><pre>{@code
  54  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  55  * ArgName = "a" N ":" T
  56  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  57  * Function = ConstantValue
  58  * Argument = NameRef | ConstantValue
  59  * Result = NameRef | "void"
  60  * NameRef = "a" N | "t" N
  61  * N = (any whole number)
  62  * T = "L" | "I" | "J" | "F" | "D" | "V"
  63  * }</pre></blockquote>
  64  * Names are numbered consecutively from left to right starting at zero.
  65  * (The letters are merely a taste of syntax sugar.)
  66  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  67  * Every occurrence of a name reference in an argument list must refer to
  68  * a name previously defined within the same lambda.
  69  * A lambda has a void result if and only if its result index is -1.
  70  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  71  * even though possesses a number.
  72  * Note that all reference types are erased to "L", which stands for {@code Object}.
  73  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  74  * The other types stand for the usual primitive types.
  75  * <p>
  76  * Function invocation closely follows the static rules of the Java verifier.
  77  * Arguments and return values must exactly match when their "Name" types are
  78  * considered.
  79  * Conversions are allowed only if they do not change the erased type.
  80  * <ul>
  81  * <li>L = Object: casts are used freely to convert into and out of reference types
  82  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  83  * <li>J = long: no implicit conversions
  84  * <li>F = float: no implicit conversions
  85  * <li>D = double: no implicit conversions
  86  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  87  * </ul>
  88  * Although implicit conversions are not allowed, explicit ones can easily be
  89  * encoded by using temporary expressions which call type-transformed identity functions.
  90  * <p>
  91  * Examples:
  92  * <blockquote><pre>{@code
  93  * (a0:J)=>{ a0 }
  94  *     == identity(long)
  95  * (a0:I)=>{ t1:V = System.out#println(a0); void }
  96  *     == System.out#println(int)
  97  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
  98  *     == identity, with printing side-effect
  99  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 100  *                 t3:L = BoundMethodHandle#target(a0);
 101  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 102  *     == general invoker for unary insertArgument combination
 103  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 104  *                 t3:L = MethodHandle#invoke(t2, a1);
 105  *                 t4:L = FilterMethodHandle#target(a0);
 106  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 107  *     == general invoker for unary filterArgument combination
 108  * (a0:L, a1:L)=>{ ...(same as previous example)...
 109  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 110  *     == general invoker for unary/unary foldArgument combination
 111  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 112  *     == invoker for identity method handle which performs i2l
 113  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 114  *                 t3:L = Class#cast(t2,a1); t3 }
 115  *     == invoker for identity method handle which performs cast
 116  * }</pre></blockquote>
 117  * <p>
 118  * @author John Rose, JSR 292 EG
 119  */
 120 class LambdaForm {
 121     final int arity;
 122     final int result;
 123     @Stable final Name[] names;
 124     final String debugName;
 125     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 126     private boolean isCompiled;
 127 
 128     // Caches for common structural transforms:
 129     LambdaForm[] bindCache;
 130 
 131     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 132 
 133     LambdaForm(String debugName,
 134                int arity, Name[] names, int result) {
 135         assert(namesOK(arity, names));
 136         this.arity = arity;
 137         this.result = fixResult(result, names);
 138         this.names = names.clone();
 139         this.debugName = debugName;
 140         normalize();
 141     }
 142 
 143     LambdaForm(String debugName,
 144                int arity, Name[] names) {
 145         this(debugName,
 146              arity, names, LAST_RESULT);
 147     }
 148 
 149     LambdaForm(String debugName,
 150                Name[] formals, Name[] temps, Name result) {
 151         this(debugName,
 152              formals.length, buildNames(formals, temps, result), LAST_RESULT);
 153     }
 154 
 155     private static Name[] buildNames(Name[] formals, Name[] temps, Name result) {
 156         int arity = formals.length;
 157         int length = arity + temps.length + (result == null ? 0 : 1);
 158         Name[] names = Arrays.copyOf(formals, length);
 159         System.arraycopy(temps, 0, names, arity, temps.length);
 160         if (result != null)
 161             names[length - 1] = result;
 162         return names;
 163     }
 164 
 165     private LambdaForm(String sig) {
 166         // Make a blank lambda form, which returns a constant zero or null.
 167         // It is used as a template for managing the invocation of similar forms that are non-empty.
 168         // Called only from getPreparedForm.
 169         assert(isValidSignature(sig));
 170         this.arity = signatureArity(sig);
 171         this.result = (signatureReturn(sig) == 'V' ? -1 : arity);
 172         this.names = buildEmptyNames(arity, sig);
 173         this.debugName = "LF.zero";
 174         assert(nameRefsAreLegal());
 175         assert(isEmpty());
 176         assert(sig.equals(basicTypeSignature()));
 177     }
 178 
 179     private static Name[] buildEmptyNames(int arity, String basicTypeSignature) {
 180         assert(isValidSignature(basicTypeSignature));
 181         int resultPos = arity + 1;  // skip '_'
 182         if (arity < 0 || basicTypeSignature.length() != resultPos+1)
 183             throw new IllegalArgumentException("bad arity for "+basicTypeSignature);
 184         int numRes = (basicTypeSignature.charAt(resultPos) == 'V' ? 0 : 1);
 185         Name[] names = arguments(numRes, basicTypeSignature.substring(0, arity));
 186         for (int i = 0; i < numRes; i++) {
 187             names[arity + i] = constantZero(arity + i, basicTypeSignature.charAt(resultPos + i));
 188         }
 189         return names;
 190     }
 191 
 192     private static int fixResult(int result, Name[] names) {
 193         if (result >= 0) {
 194             if (names[result].type == 'V')
 195                 return -1;
 196         } else if (result == LAST_RESULT) {
 197             return names.length - 1;
 198         }
 199         return result;
 200     }
 201 
 202     private static boolean namesOK(int arity, Name[] names) {
 203         for (int i = 0; i < names.length; i++) {
 204             Name n = names[i];
 205             assert(n != null) : "n is null";
 206             if (i < arity)
 207                 assert( n.isParam()) : n + " is not param at " + i;
 208             else
 209                 assert(!n.isParam()) : n + " is param at " + i;
 210         }
 211         return true;
 212     }
 213 
 214     /** Renumber and/or replace params so that they are interned and canonically numbered. */
 215     private void normalize() {
 216         Name[] oldNames = null;
 217         int changesStart = 0;
 218         for (int i = 0; i < names.length; i++) {
 219             Name n = names[i];
 220             if (!n.initIndex(i)) {
 221                 if (oldNames == null) {
 222                     oldNames = names.clone();
 223                     changesStart = i;
 224                 }
 225                 names[i] = n.cloneWithIndex(i);
 226             }
 227         }
 228         if (oldNames != null) {
 229             int startFixing = arity;
 230             if (startFixing <= changesStart)
 231                 startFixing = changesStart+1;
 232             for (int i = startFixing; i < names.length; i++) {
 233                 Name fixed = names[i].replaceNames(oldNames, names, changesStart, i);
 234                 names[i] = fixed.newIndex(i);
 235             }
 236         }
 237         assert(nameRefsAreLegal());
 238         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 239         boolean needIntern = false;
 240         for (int i = 0; i < maxInterned; i++) {
 241             Name n = names[i], n2 = internArgument(n);
 242             if (n != n2) {
 243                 names[i] = n2;
 244                 needIntern = true;
 245             }
 246         }
 247         if (needIntern) {
 248             for (int i = arity; i < names.length; i++) {
 249                 names[i].internArguments();
 250             }
 251             assert(nameRefsAreLegal());
 252         }
 253     }
 254 
 255     /**
 256      * Check that all embedded Name references are localizable to this lambda,
 257      * and are properly ordered after their corresponding definitions.
 258      * <p>
 259      * Note that a Name can be local to multiple lambdas, as long as
 260      * it possesses the same index in each use site.
 261      * This allows Name references to be freely reused to construct
 262      * fresh lambdas, without confusion.
 263      */
 264     private boolean nameRefsAreLegal() {
 265         assert(arity >= 0 && arity <= names.length);
 266         assert(result >= -1 && result < names.length);
 267         // Do all names possess an index consistent with their local definition order?
 268         for (int i = 0; i < arity; i++) {
 269             Name n = names[i];
 270             assert(n.index() == i) : Arrays.asList(n.index(), i);
 271             assert(n.isParam());
 272         }
 273         // Also, do all local name references
 274         for (int i = arity; i < names.length; i++) {
 275             Name n = names[i];
 276             assert(n.index() == i);
 277             for (Object arg : n.arguments) {
 278                 if (arg instanceof Name) {
 279                     Name n2 = (Name) arg;
 280                     int i2 = n2.index;
 281                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 282                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 283                     assert(i2 < i);  // ref must come after def!
 284                 }
 285             }
 286         }
 287         return true;
 288     }
 289 
 290     /** Invoke this form on the given arguments. */
 291     // final Object invoke(Object... args) throws Throwable {
 292     //     // NYI: fit this into the fast path?
 293     //     return interpretWithArguments(args);
 294     // }
 295 
 296     /** Report the return type. */
 297     char returnType() {
 298         if (result < 0)  return 'V';
 299         Name n = names[result];
 300         return n.type;
 301     }
 302 
 303     /** Report the N-th argument type. */
 304     char parameterType(int n) {
 305         assert(n < arity);
 306         return names[n].type;
 307     }
 308 
 309     /** Report the arity. */
 310     int arity() {
 311         return arity;
 312     }
 313 
 314     /** Return the method type corresponding to my basic type signature. */
 315     MethodType methodType() {
 316         return signatureType(basicTypeSignature());
 317     }
 318     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 319     final String basicTypeSignature() {
 320         StringBuilder buf = new StringBuilder(arity() + 3);
 321         for (int i = 0, a = arity(); i < a; i++)
 322             buf.append(parameterType(i));
 323         return buf.append('_').append(returnType()).toString();
 324     }
 325     static int signatureArity(String sig) {
 326         assert(isValidSignature(sig));
 327         return sig.indexOf('_');
 328     }
 329     static char signatureReturn(String sig) {
 330         return sig.charAt(signatureArity(sig)+1);
 331     }
 332     static boolean isValidSignature(String sig) {
 333         int arity = sig.indexOf('_');
 334         if (arity < 0)  return false;  // must be of the form *_*
 335         int siglen = sig.length();
 336         if (siglen != arity + 2)  return false;  // *_X
 337         for (int i = 0; i < siglen; i++) {
 338             if (i == arity)  continue;  // skip '_'
 339             char c = sig.charAt(i);
 340             if (c == 'V')
 341                 return (i == siglen - 1 && arity == siglen - 2);
 342             if (ALL_TYPES.indexOf(c) < 0)  return false; // must be [LIJFD]
 343         }
 344         return true;  // [LIJFD]*_[LIJFDV]
 345     }
 346     static Class<?> typeClass(char t) {
 347         switch (t) {
 348         case 'I': return int.class;
 349         case 'J': return long.class;
 350         case 'F': return float.class;
 351         case 'D': return double.class;
 352         case 'L': return Object.class;
 353         case 'V': return void.class;
 354         default: assert false;
 355         }
 356         return null;
 357     }
 358     static MethodType signatureType(String sig) {
 359         Class<?>[] ptypes = new Class<?>[signatureArity(sig)];
 360         for (int i = 0; i < ptypes.length; i++)
 361             ptypes[i] = typeClass(sig.charAt(i));
 362         Class<?> rtype = typeClass(signatureReturn(sig));
 363         return MethodType.methodType(rtype, ptypes);
 364     }
 365 
 366     /*
 367      * Code generation issues:
 368      *
 369      * Compiled LFs should be reusable in general.
 370      * The biggest issue is how to decide when to pull a name into
 371      * the bytecode, versus loading a reified form from the MH data.
 372      *
 373      * For example, an asType wrapper may require execution of a cast
 374      * after a call to a MH.  The target type of the cast can be placed
 375      * as a constant in the LF itself.  This will force the cast type
 376      * to be compiled into the bytecodes and native code for the MH.
 377      * Or, the target type of the cast can be erased in the LF, and
 378      * loaded from the MH data.  (Later on, if the MH as a whole is
 379      * inlined, the data will flow into the inlined instance of the LF,
 380      * as a constant, and the end result will be an optimal cast.)
 381      *
 382      * This erasure of cast types can be done with any use of
 383      * reference types.  It can also be done with whole method
 384      * handles.  Erasing a method handle might leave behind
 385      * LF code that executes correctly for any MH of a given
 386      * type, and load the required MH from the enclosing MH's data.
 387      * Or, the erasure might even erase the expected MT.
 388      *
 389      * Also, for direct MHs, the MemberName of the target
 390      * could be erased, and loaded from the containing direct MH.
 391      * As a simple case, a LF for all int-valued non-static
 392      * field getters would perform a cast on its input argument
 393      * (to non-constant base type derived from the MemberName)
 394      * and load an integer value from the input object
 395      * (at a non-constant offset also derived from the MemberName).
 396      * Such MN-erased LFs would be inlinable back to optimized
 397      * code, whenever a constant enclosing DMH is available
 398      * to supply a constant MN from its data.
 399      *
 400      * The main problem here is to keep LFs reasonably generic,
 401      * while ensuring that hot spots will inline good instances.
 402      * "Reasonably generic" means that we don't end up with
 403      * repeated versions of bytecode or machine code that do
 404      * not differ in their optimized form.  Repeated versions
 405      * of machine would have the undesirable overheads of
 406      * (a) redundant compilation work and (b) extra I$ pressure.
 407      * To control repeated versions, we need to be ready to
 408      * erase details from LFs and move them into MH data,
 409      * whevener those details are not relevant to significant
 410      * optimization.  "Significant" means optimization of
 411      * code that is actually hot.
 412      *
 413      * Achieving this may require dynamic splitting of MHs, by replacing
 414      * a generic LF with a more specialized one, on the same MH,
 415      * if (a) the MH is frequently executed and (b) the MH cannot
 416      * be inlined into a containing caller, such as an invokedynamic.
 417      *
 418      * Compiled LFs that are no longer used should be GC-able.
 419      * If they contain non-BCP references, they should be properly
 420      * interlinked with the class loader(s) that their embedded types
 421      * depend on.  This probably means that reusable compiled LFs
 422      * will be tabulated (indexed) on relevant class loaders,
 423      * or else that the tables that cache them will have weak links.
 424      */
 425 
 426     /**
 427      * Make this LF directly executable, as part of a MethodHandle.
 428      * Invariant:  Every MH which is invoked must prepare its LF
 429      * before invocation.
 430      * (In principle, the JVM could do this very lazily,
 431      * as a sort of pre-invocation linkage step.)
 432      */
 433     public void prepare() {
 434         if (COMPILE_THRESHOLD == 0) {
 435             compileToBytecode();
 436         }
 437         if (this.vmentry != null) {
 438             // already prepared (e.g., a primitive DMH invoker form)
 439             return;
 440         }
 441         LambdaForm prep = getPreparedForm(basicTypeSignature());
 442         this.vmentry = prep.vmentry;
 443         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 444     }
 445 
 446     /** Generate optimizable bytecode for this form. */
 447     MemberName compileToBytecode() {
 448         MethodType invokerType = methodType();
 449         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 450         if (vmentry != null && isCompiled) {
 451             return vmentry;  // already compiled somehow
 452         }
 453         try {
 454             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 455             if (TRACE_INTERPRETER)
 456                 traceInterpreter("compileToBytecode", this);
 457             isCompiled = true;
 458             return vmentry;
 459         } catch (Error | Exception ex) {
 460             throw newInternalError("compileToBytecode", ex);
 461         }
 462     }
 463 
 464     private static final ConcurrentHashMap<String,LambdaForm> PREPARED_FORMS;
 465     static {
 466         int   capacity   = 512;    // expect many distinct signatures over time
 467         float loadFactor = 0.75f;  // normal default
 468         int   writers    = 1;
 469         PREPARED_FORMS = new ConcurrentHashMap<>(capacity, loadFactor, writers);
 470     }
 471 
 472     private static Map<String,LambdaForm> computeInitialPreparedForms() {
 473         // Find all predefined invokers and associate them with canonical empty lambda forms.
 474         HashMap<String,LambdaForm> forms = new HashMap<>();
 475         for (MemberName m : MemberName.getFactory().getMethods(LambdaForm.class, false, null, null, null)) {
 476             if (!m.isStatic() || !m.isPackage())  continue;
 477             MethodType mt = m.getMethodType();
 478             if (mt.parameterCount() > 0 &&
 479                 mt.parameterType(0) == MethodHandle.class &&
 480                 m.getName().startsWith("interpret_")) {
 481                 String sig = basicTypeSignature(mt);
 482                 assert(m.getName().equals("interpret" + sig.substring(sig.indexOf('_'))));
 483                 LambdaForm form = new LambdaForm(sig);
 484                 form.vmentry = m;
 485                 mt.form().setCachedLambdaForm(MethodTypeForm.LF_COUNTER, form);
 486                 // FIXME: get rid of PREPARED_FORMS; use MethodTypeForm cache only
 487                 forms.put(sig, form);
 488             }
 489         }
 490         //System.out.println("computeInitialPreparedForms => "+forms);
 491         return forms;
 492     }
 493 
 494     // Set this false to disable use of the interpret_L methods defined in this file.
 495     private static final boolean USE_PREDEFINED_INTERPRET_METHODS = true;
 496 
 497     // The following are predefined exact invokers.  The system must build
 498     // a separate invoker for each distinct signature.
 499     static Object interpret_L(MethodHandle mh) throws Throwable {
 500         Object[] av = {mh};
 501         String sig = null;
 502         assert(argumentTypesMatch(sig = "L_L", av));
 503         Object res = mh.form.interpretWithArguments(av);
 504         assert(returnTypesMatch(sig, av, res));
 505         return res;
 506     }
 507     static Object interpret_L(MethodHandle mh, Object x1) throws Throwable {
 508         Object[] av = {mh, x1};
 509         String sig = null;
 510         assert(argumentTypesMatch(sig = "LL_L", av));
 511         Object res = mh.form.interpretWithArguments(av);
 512         assert(returnTypesMatch(sig, av, res));
 513         return res;
 514     }
 515     static Object interpret_L(MethodHandle mh, Object x1, Object x2) throws Throwable {
 516         Object[] av = {mh, x1, x2};
 517         String sig = null;
 518         assert(argumentTypesMatch(sig = "LLL_L", av));
 519         Object res = mh.form.interpretWithArguments(av);
 520         assert(returnTypesMatch(sig, av, res));
 521         return res;
 522     }
 523     private static LambdaForm getPreparedForm(String sig) {
 524         MethodType mtype = signatureType(sig);
 525         //LambdaForm prep = PREPARED_FORMS.get(sig);
 526         LambdaForm prep =  mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
 527         if (prep != null)  return prep;
 528         assert(isValidSignature(sig));
 529         prep = new LambdaForm(sig);
 530         prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(sig);
 531         //LambdaForm prep2 = PREPARED_FORMS.putIfAbsent(sig.intern(), prep);
 532         return mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
 533     }
 534 
 535     // The next few routines are called only from assert expressions
 536     // They verify that the built-in invokers process the correct raw data types.
 537     private static boolean argumentTypesMatch(String sig, Object[] av) {
 538         int arity = signatureArity(sig);
 539         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 540         assert(av[0] instanceof MethodHandle) : "av[0] not instace of MethodHandle: " + av[0];
 541         MethodHandle mh = (MethodHandle) av[0];
 542         MethodType mt = mh.type();
 543         assert(mt.parameterCount() == arity-1);
 544         for (int i = 0; i < av.length; i++) {
 545             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 546             assert(valueMatches(sig.charAt(i), pt, av[i]));
 547         }
 548         return true;
 549     }
 550     private static boolean valueMatches(char tc, Class<?> type, Object x) {
 551         // The following line is needed because (...)void method handles can use non-void invokers
 552         if (type == void.class)  tc = 'V';   // can drop any kind of value
 553         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 554         switch (tc) {
 555         case 'I': assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 556         case 'J': assert x instanceof Long   : "instanceof Long: " + x;             break;
 557         case 'F': assert x instanceof Float  : "instanceof Float: " + x;            break;
 558         case 'D': assert x instanceof Double : "instanceof Double: " + x;           break;
 559         case 'L': assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 560         case 'V': break;  // allow anything here; will be dropped
 561         default:  assert(false);
 562         }
 563         return true;
 564     }
 565     private static boolean returnTypesMatch(String sig, Object[] av, Object res) {
 566         MethodHandle mh = (MethodHandle) av[0];
 567         return valueMatches(signatureReturn(sig), mh.type().returnType(), res);
 568     }
 569     private static boolean checkInt(Class<?> type, Object x) {
 570         assert(x instanceof Integer);
 571         if (type == int.class)  return true;
 572         Wrapper w = Wrapper.forBasicType(type);
 573         assert(w.isSubwordOrInt());
 574         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 575         return x.equals(x1);
 576     }
 577     private static boolean checkRef(Class<?> type, Object x) {
 578         assert(!type.isPrimitive());
 579         if (x == null)  return true;
 580         if (type.isInterface())  return true;
 581         return type.isInstance(x);
 582     }
 583 
 584     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 585     private static final int COMPILE_THRESHOLD;
 586     static {
 587         if (MethodHandleStatics.COMPILE_THRESHOLD != null)
 588             COMPILE_THRESHOLD = MethodHandleStatics.COMPILE_THRESHOLD;
 589         else
 590             COMPILE_THRESHOLD = 30;  // default value
 591     }
 592     private int invocationCounter = 0;
 593 
 594     @Hidden
 595     @DontInline
 596     /** Interpretively invoke this form on the given arguments. */
 597     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 598         if (TRACE_INTERPRETER)
 599             return interpretWithArgumentsTracing(argumentValues);
 600         checkInvocationCounter();
 601         assert(arityCheck(argumentValues));
 602         Object[] values = Arrays.copyOf(argumentValues, names.length);
 603         for (int i = argumentValues.length; i < values.length; i++) {
 604             values[i] = interpretName(names[i], values);
 605         }
 606         return (result < 0) ? null : values[result];
 607     }
 608 
 609     @Hidden
 610     @DontInline
 611     /** Evaluate a single Name within this form, applying its function to its arguments. */
 612     Object interpretName(Name name, Object[] values) throws Throwable {
 613         if (TRACE_INTERPRETER)
 614             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 615         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 616         for (int i = 0; i < arguments.length; i++) {
 617             Object a = arguments[i];
 618             if (a instanceof Name) {
 619                 int i2 = ((Name)a).index();
 620                 assert(names[i2] == a);
 621                 a = values[i2];
 622                 arguments[i] = a;
 623             }
 624         }
 625         return name.function.invokeWithArguments(arguments);
 626     }
 627 
 628     private void checkInvocationCounter() {
 629         if (COMPILE_THRESHOLD != 0 &&
 630             invocationCounter < COMPILE_THRESHOLD) {
 631             invocationCounter++;  // benign race
 632             if (invocationCounter >= COMPILE_THRESHOLD) {
 633                 // Replace vmentry with a bytecode version of this LF.
 634                 compileToBytecode();
 635             }
 636         }
 637     }
 638     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 639         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 640         if (invocationCounter < COMPILE_THRESHOLD) {
 641             int ctr = invocationCounter++;  // benign race
 642             traceInterpreter("| invocationCounter", ctr);
 643             if (invocationCounter >= COMPILE_THRESHOLD) {
 644                 compileToBytecode();
 645             }
 646         }
 647         Object rval;
 648         try {
 649             assert(arityCheck(argumentValues));
 650             Object[] values = Arrays.copyOf(argumentValues, names.length);
 651             for (int i = argumentValues.length; i < values.length; i++) {
 652                 values[i] = interpretName(names[i], values);
 653             }
 654             rval = (result < 0) ? null : values[result];
 655         } catch (Throwable ex) {
 656             traceInterpreter("] throw =>", ex);
 657             throw ex;
 658         }
 659         traceInterpreter("] return =>", rval);
 660         return rval;
 661     }
 662 
 663     //** This transform is applied (statically) to every name.function. */
 664     /*
 665     private static MethodHandle eraseSubwordTypes(MethodHandle mh) {
 666         MethodType mt = mh.type();
 667         if (mt.hasPrimitives()) {
 668             mt = mt.changeReturnType(eraseSubwordType(mt.returnType()));
 669             for (int i = 0; i < mt.parameterCount(); i++) {
 670                 mt = mt.changeParameterType(i, eraseSubwordType(mt.parameterType(i)));
 671             }
 672             mh = MethodHandles.explicitCastArguments(mh, mt);
 673         }
 674         return mh;
 675     }
 676     private static Class<?> eraseSubwordType(Class<?> type) {
 677         if (!type.isPrimitive())  return type;
 678         if (type == int.class)  return type;
 679         Wrapper w = Wrapper.forPrimitiveType(type);
 680         if (w.isSubwordOrInt())  return int.class;
 681         return type;
 682     }
 683     */
 684 
 685     static void traceInterpreter(String event, Object obj, Object... args) {
 686         if (TRACE_INTERPRETER) {
 687             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 688         }
 689     }
 690     static void traceInterpreter(String event, Object obj) {
 691         traceInterpreter(event, obj, (Object[])null);
 692     }
 693     private boolean arityCheck(Object[] argumentValues) {
 694         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
 695         // also check that the leading (receiver) argument is somehow bound to this LF:
 696         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
 697         assert(((MethodHandle)argumentValues[0]).internalForm() == this);
 698         // note:  argument #0 could also be an interface wrapper, in the future
 699         return true;
 700     }
 701 
 702     private boolean isEmpty() {
 703         if (result < 0)
 704             return (names.length == arity);
 705         else if (result == arity && names.length == arity + 1)
 706             return names[arity].isConstantZero();
 707         else
 708             return false;
 709     }
 710 
 711     public String toString() {
 712         StringBuilder buf = new StringBuilder(debugName+"=Lambda(");
 713         for (int i = 0; i < names.length; i++) {
 714             if (i == arity)  buf.append(")=>{");
 715             Name n = names[i];
 716             if (i >= arity)  buf.append("\n    ");
 717             buf.append(n);
 718             if (i < arity) {
 719                 if (i+1 < arity)  buf.append(",");
 720                 continue;
 721             }
 722             buf.append("=").append(n.exprString());
 723             buf.append(";");
 724         }
 725         buf.append(result < 0 ? "void" : names[result]).append("}");
 726         if (TRACE_INTERPRETER) {
 727             // Extra verbosity:
 728             buf.append(":").append(basicTypeSignature());
 729             buf.append("/").append(vmentry);
 730         }
 731         return buf.toString();
 732     }
 733 
 734     /**
 735      * Apply immediate binding for a Name in this form indicated by its position relative to the form.
 736      * The first parameter to a LambdaForm, a0:L, always represents the form's method handle, so 0 is not
 737      * accepted as valid.
 738      */
 739     LambdaForm bindImmediate(int pos, char basicType, Object value) {
 740         // must be an argument, and the types must match
 741         assert pos > 0 && pos < arity && names[pos].type == basicType && Name.typesMatch(basicType, value);
 742 
 743         int arity2 = arity - 1;
 744         Name[] names2 = new Name[names.length - 1];
 745         for (int r = 0, w = 0; r < names.length; ++r, ++w) { // (r)ead from names, (w)rite to names2
 746             Name n = names[r];
 747             if (n.isParam()) {
 748                 if (n.index == pos) {
 749                     // do not copy over the argument that is to be replaced with a literal,
 750                     // but adjust the write index
 751                     --w;
 752                 } else {
 753                     names2[w] = new Name(w, n.type);
 754                 }
 755             } else {
 756                 Object[] arguments2 = new Object[n.arguments.length];
 757                 for (int i = 0; i < n.arguments.length; ++i) {
 758                     Object arg = n.arguments[i];
 759                     if (arg instanceof Name) {
 760                         int ni = ((Name) arg).index;
 761                         if (ni == pos) {
 762                             arguments2[i] = value;
 763                         } else if (ni < pos) {
 764                             // replacement position not yet passed
 765                             arguments2[i] = names2[ni];
 766                         } else {
 767                             // replacement position passed
 768                             arguments2[i] = names2[ni - 1];
 769                         }
 770                     } else {
 771                         arguments2[i] = arg;
 772                     }
 773                 }
 774                 names2[w] = new Name(n.function, arguments2);
 775                 names2[w].initIndex(w);
 776             }
 777         }
 778 
 779         int result2 = result == -1 ? -1 : result - 1;
 780         return new LambdaForm(debugName, arity2, names2, result2);
 781     }
 782 
 783     LambdaForm bind(int namePos, BoundMethodHandle.SpeciesData oldData) {
 784         Name name = names[namePos];
 785         BoundMethodHandle.SpeciesData newData = oldData.extendWithType(name.type);
 786         return bind(name, newData.getterName(names[0], oldData.fieldCount()), oldData, newData);
 787     }
 788     LambdaForm bind(Name name, Name binding,
 789                     BoundMethodHandle.SpeciesData oldData,
 790                     BoundMethodHandle.SpeciesData newData) {
 791         int pos = name.index;
 792         assert(name.isParam());
 793         assert(!binding.isParam());
 794         assert(name.type == binding.type);
 795         assert(0 <= pos && pos < arity && names[pos] == name);
 796         assert(binding.function.memberDeclaringClassOrNull() == newData.clazz);
 797         assert(oldData.getters.length == newData.getters.length-1);
 798         if (bindCache != null) {
 799             LambdaForm form = bindCache[pos];
 800             if (form != null) {
 801                 assert(form.contains(binding)) : "form << " + form + " >> does not contain binding << " + binding + " >>";
 802                 return form;
 803             }
 804         } else {
 805             bindCache = new LambdaForm[arity];
 806         }
 807         assert(nameRefsAreLegal());
 808         int arity2 = arity-1;
 809         Name[] names2 = names.clone();
 810         names2[pos] = binding;  // we might move this in a moment
 811 
 812         // The newly created LF will run with a different BMH.
 813         // Switch over any pre-existing BMH field references to the new BMH class.
 814         int firstOldRef = -1;
 815         for (int i = 0; i < names2.length; i++) {
 816             Name n = names[i];
 817             if (n.function != null &&
 818                 n.function.memberDeclaringClassOrNull() == oldData.clazz) {
 819                 MethodHandle oldGetter = n.function.resolvedHandle;
 820                 MethodHandle newGetter = null;
 821                 for (int j = 0; j < oldData.getters.length; j++) {
 822                     if (oldGetter == oldData.getters[j])
 823                         newGetter =  newData.getters[j];
 824                 }
 825                 if (newGetter != null) {
 826                     if (firstOldRef < 0)  firstOldRef = i;
 827                     Name n2 = new Name(newGetter, n.arguments);
 828                     names2[i] = n2;
 829                 }
 830             }
 831         }
 832 
 833         // Walk over the new list of names once, in forward order.
 834         // Replace references to 'name' with 'binding'.
 835         // Replace data structure references to the old BMH species with the new.
 836         // This might cause a ripple effect, but it will settle in one pass.
 837         assert(firstOldRef < 0 || firstOldRef > pos);
 838         for (int i = pos+1; i < names2.length; i++) {
 839             if (i <= arity2)  continue;
 840             names2[i] = names2[i].replaceNames(names, names2, pos, i);
 841         }
 842 
 843         //  (a0, a1, name=a2, a3, a4)  =>  (a0, a1, a3, a4, binding)
 844         int insPos = pos;
 845         for (; insPos+1 < names2.length; insPos++) {
 846             Name n = names2[insPos+1];
 847             if (n.isSiblingBindingBefore(binding)) {
 848                 names2[insPos] = n;
 849             } else {
 850                 break;
 851             }
 852         }
 853         names2[insPos] = binding;
 854 
 855         // Since we moved some stuff, maybe update the result reference:
 856         int result2 = result;
 857         if (result2 == pos)
 858             result2 = insPos;
 859         else if (result2 > pos && result2 <= insPos)
 860             result2 -= 1;
 861 
 862         return bindCache[pos] = new LambdaForm(debugName, arity2, names2, result2);
 863     }
 864 
 865     boolean contains(Name name) {
 866         int pos = name.index();
 867         if (pos >= 0) {
 868             return pos < names.length && name.equals(names[pos]);
 869         }
 870         for (int i = arity; i < names.length; i++) {
 871             if (name.equals(names[i]))
 872                 return true;
 873         }
 874         return false;
 875     }
 876 
 877     LambdaForm addArguments(int pos, char... types) {
 878         assert(pos <= arity);
 879         int length = names.length;
 880         int inTypes = types.length;
 881         Name[] names2 = Arrays.copyOf(names, length + inTypes);
 882         int arity2 = arity + inTypes;
 883         int result2 = result;
 884         if (result2 >= arity)
 885             result2 += inTypes;
 886         // names array has MH in slot 0; skip it.
 887         int argpos = pos + 1;
 888         // Note:  The LF constructor will rename names2[argpos...].
 889         // Make space for new arguments (shift temporaries).
 890         System.arraycopy(names, argpos, names2, argpos + inTypes, length - argpos);
 891         for (int i = 0; i < inTypes; i++) {
 892             names2[argpos + i] = new Name(types[i]);
 893         }
 894         return new LambdaForm(debugName, arity2, names2, result2);
 895     }
 896 
 897     LambdaForm addArguments(int pos, List<Class<?>> types) {
 898         char[] basicTypes = new char[types.size()];
 899         for (int i = 0; i < basicTypes.length; i++)
 900             basicTypes[i] = basicType(types.get(i));
 901         return addArguments(pos, basicTypes);
 902     }
 903 
 904     LambdaForm permuteArguments(int skip, int[] reorder, char[] types) {
 905         // Note:  When inArg = reorder[outArg], outArg is fed by a copy of inArg.
 906         // The types are the types of the new (incoming) arguments.
 907         int length = names.length;
 908         int inTypes = types.length;
 909         int outArgs = reorder.length;
 910         assert(skip+outArgs == arity);
 911         assert(permutedTypesMatch(reorder, types, names, skip));
 912         int pos = 0;
 913         // skip trivial first part of reordering:
 914         while (pos < outArgs && reorder[pos] == pos)  pos += 1;
 915         Name[] names2 = new Name[length - outArgs + inTypes];
 916         System.arraycopy(names, 0, names2, 0, skip+pos);
 917         // copy the body:
 918         int bodyLength = length - arity;
 919         System.arraycopy(names, skip+outArgs, names2, skip+inTypes, bodyLength);
 920         int arity2 = names2.length - bodyLength;
 921         int result2 = result;
 922         if (result2 >= 0) {
 923             if (result2 < skip+outArgs) {
 924                 // return the corresponding inArg
 925                 result2 = reorder[result2-skip];
 926             } else {
 927                 result2 = result2 - outArgs + inTypes;
 928             }
 929         }
 930         // rework names in the body:
 931         for (int j = pos; j < outArgs; j++) {
 932             Name n = names[skip+j];
 933             int i = reorder[j];
 934             // replace names[skip+j] by names2[skip+i]
 935             Name n2 = names2[skip+i];
 936             if (n2 == null)
 937                 names2[skip+i] = n2 = new Name(types[i]);
 938             else
 939                 assert(n2.type == types[i]);
 940             for (int k = arity2; k < names2.length; k++) {
 941                 names2[k] = names2[k].replaceName(n, n2);
 942             }
 943         }
 944         // some names are unused, but must be filled in
 945         for (int i = skip+pos; i < arity2; i++) {
 946             if (names2[i] == null)
 947                 names2[i] = argument(i, types[i - skip]);
 948         }
 949         for (int j = arity; j < names.length; j++) {
 950             int i = j - arity + arity2;
 951             // replace names2[i] by names[j]
 952             Name n = names[j];
 953             Name n2 = names2[i];
 954             if (n != n2) {
 955                 for (int k = i+1; k < names2.length; k++) {
 956                     names2[k] = names2[k].replaceName(n, n2);
 957                 }
 958             }
 959         }
 960         return new LambdaForm(debugName, arity2, names2, result2);
 961     }
 962 
 963     static boolean permutedTypesMatch(int[] reorder, char[] types, Name[] names, int skip) {
 964         int inTypes = types.length;
 965         int outArgs = reorder.length;
 966         for (int i = 0; i < outArgs; i++) {
 967             assert(names[skip+i].isParam());
 968             assert(names[skip+i].type == types[reorder[i]]);
 969         }
 970         return true;
 971     }
 972 
 973     static class NamedFunction {
 974         final MemberName member;
 975         @Stable MethodHandle resolvedHandle;
 976         @Stable MethodHandle invoker;
 977 
 978         NamedFunction(MethodHandle resolvedHandle) {
 979             this(resolvedHandle.internalMemberName(), resolvedHandle);
 980         }
 981         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
 982             this.member = member;
 983             //resolvedHandle = eraseSubwordTypes(resolvedHandle);
 984             this.resolvedHandle = resolvedHandle;
 985         }
 986         NamedFunction(MethodType basicInvokerType) {
 987             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
 988             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
 989                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
 990                 this.member = resolvedHandle.internalMemberName();
 991             } else {
 992                 // necessary to pass BigArityTest
 993                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
 994             }
 995         }
 996 
 997         // The next 3 constructors are used to break circular dependencies on MH.invokeStatic, etc.
 998         // Any LambdaForm containing such a member is not interpretable.
 999         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1000         // And even without the resolvedHandle, the name can still be compiled and optimized.
1001         NamedFunction(Method method) {
1002             this(new MemberName(method));
1003         }
1004         NamedFunction(Field field) {
1005             this(new MemberName(field));
1006         }
1007         NamedFunction(MemberName member) {
1008             this.member = member;
1009             this.resolvedHandle = null;
1010         }
1011 
1012         MethodHandle resolvedHandle() {
1013             if (resolvedHandle == null)  resolve();
1014             return resolvedHandle;
1015         }
1016 
1017         void resolve() {
1018             resolvedHandle = DirectMethodHandle.make(member);
1019         }
1020 
1021         @Override
1022         public boolean equals(Object other) {
1023             if (this == other) return true;
1024             if (other == null) return false;
1025             if (!(other instanceof NamedFunction)) return false;
1026             NamedFunction that = (NamedFunction) other;
1027             return this.member != null && this.member.equals(that.member);
1028         }
1029 
1030         @Override
1031         public int hashCode() {
1032             if (member != null)
1033                 return member.hashCode();
1034             return super.hashCode();
1035         }
1036 
1037         // Put the predefined NamedFunction invokers into the table.
1038         static void initializeInvokers() {
1039             for (MemberName m : MemberName.getFactory().getMethods(NamedFunction.class, false, null, null, null)) {
1040                 if (!m.isStatic() || !m.isPackage())  continue;
1041                 MethodType type = m.getMethodType();
1042                 if (type.equals(INVOKER_METHOD_TYPE) &&
1043                     m.getName().startsWith("invoke_")) {
1044                     String sig = m.getName().substring("invoke_".length());
1045                     int arity = LambdaForm.signatureArity(sig);
1046                     MethodType srcType = MethodType.genericMethodType(arity);
1047                     if (LambdaForm.signatureReturn(sig) == 'V')
1048                         srcType = srcType.changeReturnType(void.class);
1049                     MethodTypeForm typeForm = srcType.form();
1050                     typeForm.namedFunctionInvoker = DirectMethodHandle.make(m);
1051                 }
1052             }
1053         }
1054 
1055         // The following are predefined NamedFunction invokers.  The system must build
1056         // a separate invoker for each distinct signature.
1057         /** void return type invokers. */
1058         @Hidden
1059         static Object invoke__V(MethodHandle mh, Object[] a) throws Throwable {
1060             assert(a.length == 0);
1061             mh.invokeBasic();
1062             return null;
1063         }
1064         @Hidden
1065         static Object invoke_L_V(MethodHandle mh, Object[] a) throws Throwable {
1066             assert(a.length == 1);
1067             mh.invokeBasic(a[0]);
1068             return null;
1069         }
1070         @Hidden
1071         static Object invoke_LL_V(MethodHandle mh, Object[] a) throws Throwable {
1072             assert(a.length == 2);
1073             mh.invokeBasic(a[0], a[1]);
1074             return null;
1075         }
1076         @Hidden
1077         static Object invoke_LLL_V(MethodHandle mh, Object[] a) throws Throwable {
1078             assert(a.length == 3);
1079             mh.invokeBasic(a[0], a[1], a[2]);
1080             return null;
1081         }
1082         @Hidden
1083         static Object invoke_LLLL_V(MethodHandle mh, Object[] a) throws Throwable {
1084             assert(a.length == 4);
1085             mh.invokeBasic(a[0], a[1], a[2], a[3]);
1086             return null;
1087         }
1088         @Hidden
1089         static Object invoke_LLLLL_V(MethodHandle mh, Object[] a) throws Throwable {
1090             assert(a.length == 5);
1091             mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
1092             return null;
1093         }
1094         /** Object return type invokers. */
1095         @Hidden
1096         static Object invoke__L(MethodHandle mh, Object[] a) throws Throwable {
1097             assert(a.length == 0);
1098             return mh.invokeBasic();
1099         }
1100         @Hidden
1101         static Object invoke_L_L(MethodHandle mh, Object[] a) throws Throwable {
1102             assert(a.length == 1);
1103             return mh.invokeBasic(a[0]);
1104         }
1105         @Hidden
1106         static Object invoke_LL_L(MethodHandle mh, Object[] a) throws Throwable {
1107             assert(a.length == 2);
1108             return mh.invokeBasic(a[0], a[1]);
1109         }
1110         @Hidden
1111         static Object invoke_LLL_L(MethodHandle mh, Object[] a) throws Throwable {
1112             assert(a.length == 3);
1113             return mh.invokeBasic(a[0], a[1], a[2]);
1114         }
1115         @Hidden
1116         static Object invoke_LLLL_L(MethodHandle mh, Object[] a) throws Throwable {
1117             assert(a.length == 4);
1118             return mh.invokeBasic(a[0], a[1], a[2], a[3]);
1119         }
1120         @Hidden
1121         static Object invoke_LLLLL_L(MethodHandle mh, Object[] a) throws Throwable {
1122             assert(a.length == 5);
1123             return mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
1124         }
1125 
1126         static final MethodType INVOKER_METHOD_TYPE =
1127             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1128 
1129         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1130             MethodHandle mh = typeForm.namedFunctionInvoker;
1131             if (mh != null)  return mh;
1132             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1133             mh = DirectMethodHandle.make(invoker);
1134             MethodHandle mh2 = typeForm.namedFunctionInvoker;
1135             if (mh2 != null)  return mh2;  // benign race
1136             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1137                 throw new InternalError(mh.debugString());
1138             return typeForm.namedFunctionInvoker = mh;
1139         }
1140 
1141         @Hidden
1142         Object invokeWithArguments(Object... arguments) throws Throwable {
1143             // If we have a cached invoker, call it right away.
1144             // NOTE: The invoker always returns a reference value.
1145             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1146             assert(checkArgumentTypes(arguments, methodType()));
1147             return invoker().invokeBasic(resolvedHandle(), arguments);
1148         }
1149 
1150         @Hidden
1151         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1152             Object rval;
1153             try {
1154                 traceInterpreter("[ call", this, arguments);
1155                 if (invoker == null) {
1156                     traceInterpreter("| getInvoker", this);
1157                     invoker();
1158                 }
1159                 if (resolvedHandle == null) {
1160                     traceInterpreter("| resolve", this);
1161                     resolvedHandle();
1162                 }
1163                 assert(checkArgumentTypes(arguments, methodType()));
1164                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1165             } catch (Throwable ex) {
1166                 traceInterpreter("] throw =>", ex);
1167                 throw ex;
1168             }
1169             traceInterpreter("] return =>", rval);
1170             return rval;
1171         }
1172 
1173         private MethodHandle invoker() {
1174             if (invoker != null)  return invoker;
1175             // Get an invoker and cache it.
1176             return invoker = computeInvoker(methodType().form());
1177         }
1178 
1179         private static boolean checkArgumentTypes(Object[] arguments, MethodType methodType) {
1180             if (true)  return true;  // FIXME
1181             MethodType dstType = methodType.form().erasedType();
1182             MethodType srcType = dstType.basicType().wrap();
1183             Class<?>[] ptypes = new Class<?>[arguments.length];
1184             for (int i = 0; i < arguments.length; i++) {
1185                 Object arg = arguments[i];
1186                 Class<?> ptype = arg == null ? Object.class : arg.getClass();
1187                 // If the dest. type is a primitive we keep the
1188                 // argument type.
1189                 ptypes[i] = dstType.parameterType(i).isPrimitive() ? ptype : Object.class;
1190             }
1191             MethodType argType = MethodType.methodType(srcType.returnType(), ptypes).wrap();
1192             assert(argType.isConvertibleTo(srcType)) : "wrong argument types: cannot convert " + argType + " to " + srcType;
1193             return true;
1194         }
1195 
1196         String basicTypeSignature() {
1197             //return LambdaForm.basicTypeSignature(resolvedHandle.type());
1198             return LambdaForm.basicTypeSignature(methodType());
1199         }
1200 
1201         MethodType methodType() {
1202             if (resolvedHandle != null)
1203                 return resolvedHandle.type();
1204             else
1205                 // only for certain internal LFs during bootstrapping
1206                 return member.getInvocationType();
1207         }
1208 
1209         MemberName member() {
1210             assert(assertMemberIsConsistent());
1211             return member;
1212         }
1213 
1214         // Called only from assert.
1215         private boolean assertMemberIsConsistent() {
1216             if (resolvedHandle instanceof DirectMethodHandle) {
1217                 MemberName m = resolvedHandle.internalMemberName();
1218                 assert(m.equals(member));
1219             }
1220             return true;
1221         }
1222 
1223         Class<?> memberDeclaringClassOrNull() {
1224             return (member == null) ? null : member.getDeclaringClass();
1225         }
1226 
1227         char returnType() {
1228             return basicType(methodType().returnType());
1229         }
1230 
1231         char parameterType(int n) {
1232             return basicType(methodType().parameterType(n));
1233         }
1234 
1235         int arity() {
1236             //int siglen = member.getMethodType().parameterCount();
1237             //if (!member.isStatic())  siglen += 1;
1238             //return siglen;
1239             return methodType().parameterCount();
1240         }
1241 
1242         public String toString() {
1243             if (member == null)  return String.valueOf(resolvedHandle);
1244             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1245         }
1246     }
1247 
1248     void resolve() {
1249         for (Name n : names) n.resolve();
1250     }
1251 
1252     public static char basicType(Class<?> type) {
1253         char c = Wrapper.basicTypeChar(type);
1254         if ("ZBSC".indexOf(c) >= 0)  c = 'I';
1255         assert("LIJFDV".indexOf(c) >= 0);
1256         return c;
1257     }
1258     public static char[] basicTypes(List<Class<?>> types) {
1259         char[] btypes = new char[types.size()];
1260         for (int i = 0; i < btypes.length; i++) {
1261             btypes[i] = basicType(types.get(i));
1262         }
1263         return btypes;
1264     }
1265     public static String basicTypeSignature(MethodType type) {
1266         char[] sig = new char[type.parameterCount() + 2];
1267         int sigp = 0;
1268         for (Class<?> pt : type.parameterList()) {
1269             sig[sigp++] = basicType(pt);
1270         }
1271         sig[sigp++] = '_';
1272         sig[sigp++] = basicType(type.returnType());
1273         assert(sigp == sig.length);
1274         return String.valueOf(sig);
1275     }
1276 
1277     static final class Name {
1278         final char type;
1279         private short index;
1280         final NamedFunction function;
1281         @Stable final Object[] arguments;
1282 
1283         private Name(int index, char type, NamedFunction function, Object[] arguments) {
1284             this.index = (short)index;
1285             this.type = type;
1286             this.function = function;
1287             this.arguments = arguments;
1288             assert(this.index == index);
1289         }
1290         Name(MethodHandle function, Object... arguments) {
1291             this(new NamedFunction(function), arguments);
1292         }
1293         Name(MethodType functionType, Object... arguments) {
1294             this(new NamedFunction(functionType), arguments);
1295             assert(arguments[0] instanceof Name && ((Name)arguments[0]).type == 'L');
1296         }
1297         Name(MemberName function, Object... arguments) {
1298             this(new NamedFunction(function), arguments);
1299         }
1300         Name(NamedFunction function, Object... arguments) {
1301             this(-1, function.returnType(), function, arguments = arguments.clone());
1302             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1303             for (int i = 0; i < arguments.length; i++)
1304                 assert(typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1305         }
1306         Name(int index, char type) {
1307             this(index, type, null, null);
1308         }
1309         Name(char type) {
1310             this(-1, type);
1311         }
1312 
1313         char type() { return type; }
1314         int index() { return index; }
1315         boolean initIndex(int i) {
1316             if (index != i) {
1317                 if (index != -1)  return false;
1318                 index = (short)i;
1319             }
1320             return true;
1321         }
1322 
1323 
1324         void resolve() {
1325             if (function != null)
1326                 function.resolve();
1327         }
1328 
1329         Name newIndex(int i) {
1330             if (initIndex(i))  return this;
1331             return cloneWithIndex(i);
1332         }
1333         Name cloneWithIndex(int i) {
1334             Object[] newArguments = (arguments == null) ? null : arguments.clone();
1335             return new Name(i, type, function, newArguments);
1336         }
1337         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1338             if (oldName == newName)  return this;
1339             @SuppressWarnings("LocalVariableHidesMemberVariable")
1340             Object[] arguments = this.arguments;
1341             if (arguments == null)  return this;
1342             boolean replaced = false;
1343             for (int j = 0; j < arguments.length; j++) {
1344                 if (arguments[j] == oldName) {
1345                     if (!replaced) {
1346                         replaced = true;
1347                         arguments = arguments.clone();
1348                     }
1349                     arguments[j] = newName;
1350                 }
1351             }
1352             if (!replaced)  return this;
1353             return new Name(function, arguments);
1354         }
1355         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1356             @SuppressWarnings("LocalVariableHidesMemberVariable")
1357             Object[] arguments = this.arguments;
1358             boolean replaced = false;
1359         eachArg:
1360             for (int j = 0; j < arguments.length; j++) {
1361                 if (arguments[j] instanceof Name) {
1362                     Name n = (Name) arguments[j];
1363                     int check = n.index;
1364                     // harmless check to see if the thing is already in newNames:
1365                     if (check >= 0 && check < newNames.length && n == newNames[check])
1366                         continue eachArg;
1367                     // n might not have the correct index: n != oldNames[n.index].
1368                     for (int i = start; i < end; i++) {
1369                         if (n == oldNames[i]) {
1370                             if (n == newNames[i])
1371                                 continue eachArg;
1372                             if (!replaced) {
1373                                 replaced = true;
1374                                 arguments = arguments.clone();
1375                             }
1376                             arguments[j] = newNames[i];
1377                             continue eachArg;
1378                         }
1379                     }
1380                 }
1381             }
1382             if (!replaced)  return this;
1383             return new Name(function, arguments);
1384         }
1385         void internArguments() {
1386             @SuppressWarnings("LocalVariableHidesMemberVariable")
1387             Object[] arguments = this.arguments;
1388             for (int j = 0; j < arguments.length; j++) {
1389                 if (arguments[j] instanceof Name) {
1390                     Name n = (Name) arguments[j];
1391                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1392                         arguments[j] = internArgument(n);
1393                 }
1394             }
1395         }
1396         boolean isParam() {
1397             return function == null;
1398         }
1399         boolean isConstantZero() {
1400             return !isParam() && arguments.length == 0 && function.equals(constantZero(0, type).function);
1401         }
1402 
1403         public String toString() {
1404             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+type;
1405         }
1406         public String debugString() {
1407             String s = toString();
1408             return (function == null) ? s : s + "=" + exprString();
1409         }
1410         public String exprString() {
1411             if (function == null)  return "null";
1412             StringBuilder buf = new StringBuilder(function.toString());
1413             buf.append("(");
1414             String cma = "";
1415             for (Object a : arguments) {
1416                 buf.append(cma); cma = ",";
1417                 if (a instanceof Name || a instanceof Integer)
1418                     buf.append(a);
1419                 else
1420                     buf.append("(").append(a).append(")");
1421             }
1422             buf.append(")");
1423             return buf.toString();
1424         }
1425 
1426         private static boolean typesMatch(char parameterType, Object object) {
1427             if (object instanceof Name) {
1428                 return ((Name)object).type == parameterType;
1429             }
1430             switch (parameterType) {
1431                 case 'I':  return object instanceof Integer;
1432                 case 'J':  return object instanceof Long;
1433                 case 'F':  return object instanceof Float;
1434                 case 'D':  return object instanceof Double;
1435             }
1436             assert(parameterType == 'L');
1437             return true;
1438         }
1439 
1440         /**
1441          * Does this Name precede the given binding node in some canonical order?
1442          * This predicate is used to order data bindings (via insertion sort)
1443          * with some stability.
1444          */
1445         boolean isSiblingBindingBefore(Name binding) {
1446             assert(!binding.isParam());
1447             if (isParam())  return true;
1448             if (function.equals(binding.function) &&
1449                 arguments.length == binding.arguments.length) {
1450                 boolean sawInt = false;
1451                 for (int i = 0; i < arguments.length; i++) {
1452                     Object a1 = arguments[i];
1453                     Object a2 = binding.arguments[i];
1454                     if (!a1.equals(a2)) {
1455                         if (a1 instanceof Integer && a2 instanceof Integer) {
1456                             if (sawInt)  continue;
1457                             sawInt = true;
1458                             if ((int)a1 < (int)a2)  continue;  // still might be true
1459                         }
1460                         return false;
1461                     }
1462                 }
1463                 return sawInt;
1464             }
1465             return false;
1466         }
1467 
1468         /** Return the index of the last occurrence of n in the argument array.
1469          *  Return -1 if the name is not used.
1470          */
1471         int lastUseIndex(Name n) {
1472             if (arguments == null)  return -1;
1473             for (int i = arguments.length; --i >= 0; ) {
1474                 if (arguments[i] == n)  return i;
1475             }
1476             return -1;
1477         }
1478 
1479         /** Return the number of occurrences of n in the argument array.
1480          *  Return 0 if the name is not used.
1481          */
1482         int useCount(Name n) {
1483             if (arguments == null)  return 0;
1484             int count = 0;
1485             for (int i = arguments.length; --i >= 0; ) {
1486                 if (arguments[i] == n)  ++count;
1487             }
1488             return count;
1489         }
1490 
1491         boolean contains(Name n) {
1492             return this == n || lastUseIndex(n) >= 0;
1493         }
1494 
1495         public boolean equals(Name that) {
1496             if (this == that)  return true;
1497             if (isParam())
1498                 // each parameter is a unique atom
1499                 return false;  // this != that
1500             return
1501                 //this.index == that.index &&
1502                 this.type == that.type &&
1503                 this.function.equals(that.function) &&
1504                 Arrays.equals(this.arguments, that.arguments);
1505         }
1506         @Override
1507         public boolean equals(Object x) {
1508             return x instanceof Name && equals((Name)x);
1509         }
1510         @Override
1511         public int hashCode() {
1512             if (isParam())
1513                 return index | (type << 8);
1514             return function.hashCode() ^ Arrays.hashCode(arguments);
1515         }
1516     }
1517 
1518     /** Return the index of the last name which contains n as an argument.
1519      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1520      */
1521     int lastUseIndex(Name n) {
1522         int ni = n.index, nmax = names.length;
1523         assert(names[ni] == n);
1524         if (result == ni)  return nmax;  // live all the way beyond the end
1525         for (int i = nmax; --i > ni; ) {
1526             if (names[i].lastUseIndex(n) >= 0)
1527                 return i;
1528         }
1529         return -1;
1530     }
1531 
1532     /** Return the number of times n is used as an argument or return value. */
1533     int useCount(Name n) {
1534         int ni = n.index, nmax = names.length;
1535         int end = lastUseIndex(n);
1536         if (end < 0)  return 0;
1537         int count = 0;
1538         if (end == nmax) { count++; end--; }
1539         int beg = n.index() + 1;
1540         if (beg < arity)  beg = arity;
1541         for (int i = beg; i <= end; i++) {
1542             count += names[i].useCount(n);
1543         }
1544         return count;
1545     }
1546 
1547     static Name argument(int which, char type) {
1548         int tn = ALL_TYPES.indexOf(type);
1549         if (tn < 0 || which >= INTERNED_ARGUMENT_LIMIT)
1550             return new Name(which, type);
1551         return INTERNED_ARGUMENTS[tn][which];
1552     }
1553     static Name internArgument(Name n) {
1554         assert(n.isParam()) : "not param: " + n;
1555         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1556         return argument(n.index, n.type);
1557     }
1558     static Name[] arguments(int extra, String types) {
1559         int length = types.length();
1560         Name[] names = new Name[length + extra];
1561         for (int i = 0; i < length; i++)
1562             names[i] = argument(i, types.charAt(i));
1563         return names;
1564     }
1565     static Name[] arguments(int extra, char... types) {
1566         int length = types.length;
1567         Name[] names = new Name[length + extra];
1568         for (int i = 0; i < length; i++)
1569             names[i] = argument(i, types[i]);
1570         return names;
1571     }
1572     static Name[] arguments(int extra, List<Class<?>> types) {
1573         int length = types.size();
1574         Name[] names = new Name[length + extra];
1575         for (int i = 0; i < length; i++)
1576             names[i] = argument(i, basicType(types.get(i)));
1577         return names;
1578     }
1579     static Name[] arguments(int extra, Class<?>... types) {
1580         int length = types.length;
1581         Name[] names = new Name[length + extra];
1582         for (int i = 0; i < length; i++)
1583             names[i] = argument(i, basicType(types[i]));
1584         return names;
1585     }
1586     static Name[] arguments(int extra, MethodType types) {
1587         int length = types.parameterCount();
1588         Name[] names = new Name[length + extra];
1589         for (int i = 0; i < length; i++)
1590             names[i] = argument(i, basicType(types.parameterType(i)));
1591         return names;
1592     }
1593     static final String ALL_TYPES = "LIJFD";  // omit V, not an argument type
1594     static final int INTERNED_ARGUMENT_LIMIT = 10;
1595     private static final Name[][] INTERNED_ARGUMENTS
1596             = new Name[ALL_TYPES.length()][INTERNED_ARGUMENT_LIMIT];
1597     static {
1598         for (int tn = 0; tn < ALL_TYPES.length(); tn++) {
1599             for (int i = 0; i < INTERNED_ARGUMENTS[tn].length; i++) {
1600                 char type = ALL_TYPES.charAt(tn);
1601                 INTERNED_ARGUMENTS[tn][i] = new Name(i, type);
1602             }
1603         }
1604     }
1605 
1606     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1607 
1608     static Name constantZero(int which, char type) {
1609         return CONSTANT_ZERO[ALL_TYPES.indexOf(type)].newIndex(which);
1610     }
1611     private static final Name[] CONSTANT_ZERO
1612             = new Name[ALL_TYPES.length()];
1613     static {
1614         for (int tn = 0; tn < ALL_TYPES.length(); tn++) {
1615             char bt = ALL_TYPES.charAt(tn);
1616             Wrapper wrap = Wrapper.forBasicType(bt);
1617             MemberName zmem = new MemberName(LambdaForm.class, "zero"+bt, MethodType.methodType(wrap.primitiveType()), REF_invokeStatic);
1618             try {
1619                 zmem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zmem, null, NoSuchMethodException.class);
1620             } catch (IllegalAccessException|NoSuchMethodException ex) {
1621                 throw newInternalError(ex);
1622             }
1623             NamedFunction zcon = new NamedFunction(zmem);
1624             Name n = new Name(zcon).newIndex(0);
1625             assert(n.type == ALL_TYPES.charAt(tn));
1626             CONSTANT_ZERO[tn] = n;
1627             assert(n.isConstantZero());
1628         }
1629     }
1630 
1631     // Avoid appealing to ValueConversions at bootstrap time:
1632     private static int zeroI() { return 0; }
1633     private static long zeroJ() { return 0; }
1634     private static float zeroF() { return 0; }
1635     private static double zeroD() { return 0; }
1636     private static Object zeroL() { return null; }
1637 
1638     // Put this last, so that previous static inits can run before.
1639     static {
1640         if (USE_PREDEFINED_INTERPRET_METHODS)
1641             PREPARED_FORMS.putAll(computeInitialPreparedForms());
1642     }
1643 
1644     /**
1645      * Internal marker for byte-compiled LambdaForms.
1646      */
1647     /*non-public*/
1648     @Target(ElementType.METHOD)
1649     @Retention(RetentionPolicy.RUNTIME)
1650     @interface Compiled {
1651     }
1652 
1653     /**
1654      * Internal marker for LambdaForm interpreter frames.
1655      */
1656     /*non-public*/
1657     @Target(ElementType.METHOD)
1658     @Retention(RetentionPolicy.RUNTIME)
1659     @interface Hidden {
1660     }
1661 
1662 
1663 /*
1664     // Smoke-test for the invokers used in this file.
1665     static void testMethodHandleLinkers() throws Throwable {
1666         MemberName.Factory lookup = MemberName.getFactory();
1667         MemberName asList_MN = new MemberName(Arrays.class, "asList",
1668                                               MethodType.methodType(List.class, Object[].class),
1669                                               REF_invokeStatic);
1670         //MethodHandleNatives.resolve(asList_MN, null);
1671         asList_MN = lookup.resolveOrFail(asList_MN, REF_invokeStatic, null, NoSuchMethodException.class);
1672         System.out.println("about to call "+asList_MN);
1673         Object[] abc = { "a", "bc" };
1674         List<?> lst = (List<?>) MethodHandle.linkToStatic(abc, asList_MN);
1675         System.out.println("lst="+lst);
1676         MemberName toString_MN = new MemberName(Object.class.getMethod("toString"));
1677         String s1 = (String) MethodHandle.linkToVirtual(lst, toString_MN);
1678         toString_MN = new MemberName(Object.class.getMethod("toString"), true);
1679         String s2 = (String) MethodHandle.linkToSpecial(lst, toString_MN);
1680         System.out.println("[s1,s2,lst]="+Arrays.asList(s1, s2, lst.toString()));
1681         MemberName toArray_MN = new MemberName(List.class.getMethod("toArray"));
1682         Object[] arr = (Object[]) MethodHandle.linkToInterface(lst, toArray_MN);
1683         System.out.println("toArray="+Arrays.toString(arr));
1684     }
1685     static { try { testMethodHandleLinkers(); } catch (Throwable ex) { throw new RuntimeException(ex); } }
1686     // Requires these definitions in MethodHandle:
1687     static final native Object linkToStatic(Object x1, MemberName mn) throws Throwable;
1688     static final native Object linkToVirtual(Object x1, MemberName mn) throws Throwable;
1689     static final native Object linkToSpecial(Object x1, MemberName mn) throws Throwable;
1690     static final native Object linkToInterface(Object x1, MemberName mn) throws Throwable;
1691  */
1692 
1693     static { NamedFunction.initializeInvokers(); }
1694 
1695     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1696     // during execution of the static initializes of this class.
1697     // Turning on TRACE_INTERPRETER too early will cause
1698     // stack overflows and other misbehavior during attempts to trace events
1699     // that occur during LambdaForm.<clinit>.
1700     // Therefore, do not move this line higher in this file, and do not remove.
1701     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1702 }