1 /*
   2  * Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.annotation.*;
  29 import java.lang.reflect.Method;
  30 import java.util.Map;
  31 import java.util.List;
  32 import java.util.Arrays;
  33 import java.util.HashMap;
  34 import java.util.concurrent.ConcurrentHashMap;
  35 import sun.invoke.util.Wrapper;
  36 import java.lang.reflect.Field;
  37 
  38 import static java.lang.invoke.LambdaForm.BasicType.*;
  39 import static java.lang.invoke.MethodHandleStatics.*;
  40 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  41 
  42 /**
  43  * The symbolic, non-executable form of a method handle's invocation semantics.
  44  * It consists of a series of names.
  45  * The first N (N=arity) names are parameters,
  46  * while any remaining names are temporary values.
  47  * Each temporary specifies the application of a function to some arguments.
  48  * The functions are method handles, while the arguments are mixes of
  49  * constant values and local names.
  50  * The result of the lambda is defined as one of the names, often the last one.
  51  * <p>
  52  * Here is an approximate grammar:
  53  * <blockquote><pre>{@code
  54  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  55  * ArgName = "a" N ":" T
  56  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  57  * Function = ConstantValue
  58  * Argument = NameRef | ConstantValue
  59  * Result = NameRef | "void"
  60  * NameRef = "a" N | "t" N
  61  * N = (any whole number)
  62  * T = "L" | "I" | "J" | "F" | "D" | "V"
  63  * }</pre></blockquote>
  64  * Names are numbered consecutively from left to right starting at zero.
  65  * (The letters are merely a taste of syntax sugar.)
  66  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  67  * Every occurrence of a name reference in an argument list must refer to
  68  * a name previously defined within the same lambda.
  69  * A lambda has a void result if and only if its result index is -1.
  70  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  71  * even though possesses a number.
  72  * Note that all reference types are erased to "L", which stands for {@code Object}.
  73  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  74  * The other types stand for the usual primitive types.
  75  * <p>
  76  * Function invocation closely follows the static rules of the Java verifier.
  77  * Arguments and return values must exactly match when their "Name" types are
  78  * considered.
  79  * Conversions are allowed only if they do not change the erased type.
  80  * <ul>
  81  * <li>L = Object: casts are used freely to convert into and out of reference types
  82  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  83  * <li>J = long: no implicit conversions
  84  * <li>F = float: no implicit conversions
  85  * <li>D = double: no implicit conversions
  86  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  87  * </ul>
  88  * Although implicit conversions are not allowed, explicit ones can easily be
  89  * encoded by using temporary expressions which call type-transformed identity functions.
  90  * <p>
  91  * Examples:
  92  * <blockquote><pre>{@code
  93  * (a0:J)=>{ a0 }
  94  *     == identity(long)
  95  * (a0:I)=>{ t1:V = System.out#println(a0); void }
  96  *     == System.out#println(int)
  97  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
  98  *     == identity, with printing side-effect
  99  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 100  *                 t3:L = BoundMethodHandle#target(a0);
 101  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 102  *     == general invoker for unary insertArgument combination
 103  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 104  *                 t3:L = MethodHandle#invoke(t2, a1);
 105  *                 t4:L = FilterMethodHandle#target(a0);
 106  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 107  *     == general invoker for unary filterArgument combination
 108  * (a0:L, a1:L)=>{ ...(same as previous example)...
 109  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 110  *     == general invoker for unary/unary foldArgument combination
 111  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 112  *     == invoker for identity method handle which performs i2l
 113  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 114  *                 t3:L = Class#cast(t2,a1); t3 }
 115  *     == invoker for identity method handle which performs cast
 116  * }</pre></blockquote>
 117  * <p>
 118  * @author John Rose, JSR 292 EG
 119  */
 120 class LambdaForm {
 121     final int arity;
 122     final int result;
 123     @Stable final Name[] names;
 124     final String debugName;
 125     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 126     private boolean isCompiled;
 127 
 128     // Caches for common structural transforms:
 129     LambdaForm[] bindCache;
 130 
 131     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 132 
 133     enum BasicType {
 134         L_TYPE('L', Object.class, Wrapper.OBJECT),  // all reference types
 135         I_TYPE('I', int.class,    Wrapper.INT),
 136         J_TYPE('J', long.class,   Wrapper.LONG),
 137         F_TYPE('F', float.class,  Wrapper.FLOAT),
 138         D_TYPE('D', double.class, Wrapper.DOUBLE),  // all primitive types
 139         V_TYPE('V', void.class,   Wrapper.VOID);    // not valid in all contexts
 140 
 141         static final BasicType[] ALL_TYPES = BasicType.values();
 142         static final BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 143 
 144         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 145         static final int TYPE_LIMIT = ALL_TYPES.length;
 146 
 147         private final char btChar;
 148         private final Class<?> btClass;
 149         private final Wrapper btWrapper;
 150 
 151         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper) {
 152             this.btChar = btChar;
 153             this.btClass = btClass;
 154             this.btWrapper = wrapper;
 155         }
 156 
 157         char basicTypeChar() {
 158             return btChar;
 159         }
 160         Class<?> basicTypeClass() {
 161             return btClass;
 162         }
 163         Wrapper basicTypeWrapper() {
 164             return btWrapper;
 165         }
 166         int basicTypeSlots() {
 167             return btWrapper.stackSlots();
 168         }
 169 
 170         static BasicType basicType(byte type) {
 171             return ALL_TYPES[type];
 172         }
 173         static BasicType basicType(char type) {
 174             switch (type) {
 175                 case 'L': return L_TYPE;
 176                 case 'I': return I_TYPE;
 177                 case 'J': return J_TYPE;
 178                 case 'F': return F_TYPE;
 179                 case 'D': return D_TYPE;
 180                 case 'V': return V_TYPE;
 181                 // all subword types are represented as ints
 182                 case 'Z':
 183                 case 'B':
 184                 case 'S':
 185                 case 'C':
 186                     return I_TYPE;
 187                 default:
 188                     throw newInternalError("Unknown type char: '"+type+"'");
 189             }
 190         }
 191         static BasicType basicType(Wrapper type) {
 192             char c = type.basicTypeChar();
 193             return basicType(c);
 194         }
 195         static BasicType basicType(Class<?> type) {
 196             if (!type.isPrimitive())  return L_TYPE;
 197             return basicType(Wrapper.forPrimitiveType(type));
 198         }
 199 
 200         static char basicTypeChar(Class<?> type) {
 201             return basicType(type).btChar;
 202         }
 203         static BasicType[] basicTypes(List<Class<?>> types) {
 204             BasicType[] btypes = new BasicType[types.size()];
 205             for (int i = 0; i < btypes.length; i++) {
 206                 btypes[i] = basicType(types.get(i));
 207             }
 208             return btypes;
 209         }
 210         static BasicType[] basicTypes(String types) {
 211             BasicType[] btypes = new BasicType[types.length()];
 212             for (int i = 0; i < btypes.length; i++) {
 213                 btypes[i] = basicType(types.charAt(i));
 214             }
 215             return btypes;
 216         }
 217         static boolean isBasicTypeChar(char c) {
 218             return "LIJFDV".indexOf(c) >= 0;
 219         }
 220         static boolean isArgBasicTypeChar(char c) {
 221             return "LIJFD".indexOf(c) >= 0;
 222         }
 223 
 224         static { assert(checkBasicType()); }
 225         private static boolean checkBasicType() {
 226             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 227                 assert ARG_TYPES[i].ordinal() == i;
 228                 assert ARG_TYPES[i] == ALL_TYPES[i];
 229             }
 230             for (int i = 0; i < TYPE_LIMIT; i++) {
 231                 assert ALL_TYPES[i].ordinal() == i;
 232             }
 233             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 234             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 235             return true;
 236         }
 237     }
 238 
 239     LambdaForm(String debugName,
 240                int arity, Name[] names, int result) {
 241         assert(namesOK(arity, names));
 242         this.arity = arity;
 243         this.result = fixResult(result, names);
 244         this.names = names.clone();
 245         this.debugName = fixDebugName(debugName);
 246         int maxOutArity = normalize();
 247         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 248             // Cannot use LF interpreter on very high arity expressions.
 249             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 250             compileToBytecode();
 251         }
 252     }
 253 
 254     LambdaForm(String debugName,
 255                int arity, Name[] names) {
 256         this(debugName,
 257              arity, names, LAST_RESULT);
 258     }
 259 
 260     LambdaForm(String debugName,
 261                Name[] formals, Name[] temps, Name result) {
 262         this(debugName,
 263              formals.length, buildNames(formals, temps, result), LAST_RESULT);
 264     }
 265 
 266     private static Name[] buildNames(Name[] formals, Name[] temps, Name result) {
 267         int arity = formals.length;
 268         int length = arity + temps.length + (result == null ? 0 : 1);
 269         Name[] names = Arrays.copyOf(formals, length);
 270         System.arraycopy(temps, 0, names, arity, temps.length);
 271         if (result != null)
 272             names[length - 1] = result;
 273         return names;
 274     }
 275 
 276     private LambdaForm(String sig) {
 277         // Make a blank lambda form, which returns a constant zero or null.
 278         // It is used as a template for managing the invocation of similar forms that are non-empty.
 279         // Called only from getPreparedForm.
 280         assert(isValidSignature(sig));
 281         this.arity = signatureArity(sig);
 282         this.result = (signatureReturn(sig) == V_TYPE ? -1 : arity);
 283         this.names = buildEmptyNames(arity, sig);
 284         this.debugName = "LF.zero";
 285         assert(nameRefsAreLegal());
 286         assert(isEmpty());
 287         assert(sig.equals(basicTypeSignature())) : sig + " != " + basicTypeSignature();
 288     }
 289 
 290     private static Name[] buildEmptyNames(int arity, String basicTypeSignature) {
 291         assert(isValidSignature(basicTypeSignature));
 292         int resultPos = arity + 1;  // skip '_'
 293         if (arity < 0 || basicTypeSignature.length() != resultPos+1)
 294             throw new IllegalArgumentException("bad arity for "+basicTypeSignature);
 295         int numRes = (basicType(basicTypeSignature.charAt(resultPos)) == V_TYPE ? 0 : 1);
 296         Name[] names = arguments(numRes, basicTypeSignature.substring(0, arity));
 297         for (int i = 0; i < numRes; i++) {
 298             Name zero = new Name(constantZero(basicType(basicTypeSignature.charAt(resultPos + i))));
 299             names[arity + i] = zero.newIndex(arity + i);
 300         }
 301         return names;
 302     }
 303 
 304     private static int fixResult(int result, Name[] names) {
 305         if (result == LAST_RESULT)
 306             result = names.length - 1;  // might still be void
 307         if (result >= 0 && names[result].type == V_TYPE)
 308             result = VOID_RESULT;
 309         return result;
 310     }
 311 
 312     private static String fixDebugName(String debugName) {
 313         if (DEBUG_NAME_COUNTERS != null) {
 314             int under = debugName.indexOf('_');
 315             int length = debugName.length();
 316             if (under < 0)  under = length;
 317             String debugNameStem = debugName.substring(0, under);
 318             Integer ctr;
 319             synchronized (DEBUG_NAME_COUNTERS) {
 320                 ctr = DEBUG_NAME_COUNTERS.get(debugNameStem);
 321                 if (ctr == null)  ctr = 0;
 322                 DEBUG_NAME_COUNTERS.put(debugNameStem, ctr+1);
 323             }
 324             StringBuilder buf = new StringBuilder(debugNameStem);
 325             buf.append('_');
 326             int leadingZero = buf.length();
 327             buf.append((int) ctr);
 328             for (int i = buf.length() - leadingZero; i < 3; i++)
 329                 buf.insert(leadingZero, '0');
 330             if (under < length) {
 331                 ++under;    // skip "_"
 332                 while (under < length && Character.isDigit(debugName.charAt(under))) {
 333                     ++under;
 334                 }
 335                 if (under < length && debugName.charAt(under) == '_')  ++under;
 336                 if (under < length)
 337                     buf.append('_').append(debugName, under, length);
 338             }
 339             return buf.toString();
 340         }
 341         return debugName;
 342     }
 343 
 344     private static boolean namesOK(int arity, Name[] names) {
 345         for (int i = 0; i < names.length; i++) {
 346             Name n = names[i];
 347             assert(n != null) : "n is null";
 348             if (i < arity)
 349                 assert( n.isParam()) : n + " is not param at " + i;
 350             else
 351                 assert(!n.isParam()) : n + " is param at " + i;
 352         }
 353         return true;
 354     }
 355 
 356     /** Renumber and/or replace params so that they are interned and canonically numbered.
 357      *  @return maximum argument list length among the names (since we have to pass over them anyway)
 358      */
 359     private int normalize() {
 360         Name[] oldNames = null;
 361         int maxOutArity = 0;
 362         int changesStart = 0;
 363         for (int i = 0; i < names.length; i++) {
 364             Name n = names[i];
 365             if (!n.initIndex(i)) {
 366                 if (oldNames == null) {
 367                     oldNames = names.clone();
 368                     changesStart = i;
 369                 }
 370                 names[i] = n.cloneWithIndex(i);
 371             }
 372             if (n.arguments != null && maxOutArity < n.arguments.length)
 373                 maxOutArity = n.arguments.length;
 374         }
 375         if (oldNames != null) {
 376             int startFixing = arity;
 377             if (startFixing <= changesStart)
 378                 startFixing = changesStart+1;
 379             for (int i = startFixing; i < names.length; i++) {
 380                 Name fixed = names[i].replaceNames(oldNames, names, changesStart, i);
 381                 names[i] = fixed.newIndex(i);
 382             }
 383         }
 384         assert(nameRefsAreLegal());
 385         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 386         boolean needIntern = false;
 387         for (int i = 0; i < maxInterned; i++) {
 388             Name n = names[i], n2 = internArgument(n);
 389             if (n != n2) {
 390                 names[i] = n2;
 391                 needIntern = true;
 392             }
 393         }
 394         if (needIntern) {
 395             for (int i = arity; i < names.length; i++) {
 396                 names[i].internArguments();
 397             }
 398             assert(nameRefsAreLegal());
 399         }
 400         return maxOutArity;
 401     }
 402 
 403     /**
 404      * Check that all embedded Name references are localizable to this lambda,
 405      * and are properly ordered after their corresponding definitions.
 406      * <p>
 407      * Note that a Name can be local to multiple lambdas, as long as
 408      * it possesses the same index in each use site.
 409      * This allows Name references to be freely reused to construct
 410      * fresh lambdas, without confusion.
 411      */
 412     private boolean nameRefsAreLegal() {
 413         assert(arity >= 0 && arity <= names.length);
 414         assert(result >= -1 && result < names.length);
 415         // Do all names possess an index consistent with their local definition order?
 416         for (int i = 0; i < arity; i++) {
 417             Name n = names[i];
 418             assert(n.index() == i) : Arrays.asList(n.index(), i);
 419             assert(n.isParam());
 420         }
 421         // Also, do all local name references
 422         for (int i = arity; i < names.length; i++) {
 423             Name n = names[i];
 424             assert(n.index() == i);
 425             for (Object arg : n.arguments) {
 426                 if (arg instanceof Name) {
 427                     Name n2 = (Name) arg;
 428                     int i2 = n2.index;
 429                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 430                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 431                     assert(i2 < i);  // ref must come after def!
 432                 }
 433             }
 434         }
 435         return true;
 436     }
 437 
 438     /** Invoke this form on the given arguments. */
 439     // final Object invoke(Object... args) throws Throwable {
 440     //     // NYI: fit this into the fast path?
 441     //     return interpretWithArguments(args);
 442     // }
 443 
 444     /** Report the return type. */
 445     BasicType returnType() {
 446         if (result < 0)  return V_TYPE;
 447         Name n = names[result];
 448         return n.type;
 449     }
 450 
 451     /** Report the N-th argument type. */
 452     BasicType parameterType(int n) {
 453         assert(n < arity);
 454         return names[n].type;
 455     }
 456 
 457     /** Report the arity. */
 458     int arity() {
 459         return arity;
 460     }
 461 
 462     /** Return the method type corresponding to my basic type signature. */
 463     MethodType methodType() {
 464         return signatureType(basicTypeSignature());
 465     }
 466     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 467     final String basicTypeSignature() {
 468         StringBuilder buf = new StringBuilder(arity() + 3);
 469         for (int i = 0, a = arity(); i < a; i++)
 470             buf.append(parameterType(i).basicTypeChar());
 471         return buf.append('_').append(returnType().basicTypeChar()).toString();
 472     }
 473     static int signatureArity(String sig) {
 474         assert(isValidSignature(sig));
 475         return sig.indexOf('_');
 476     }
 477     static BasicType signatureReturn(String sig) {
 478         return basicType(sig.charAt(signatureArity(sig) + 1));
 479     }
 480     static boolean isValidSignature(String sig) {
 481         int arity = sig.indexOf('_');
 482         if (arity < 0)  return false;  // must be of the form *_*
 483         int siglen = sig.length();
 484         if (siglen != arity + 2)  return false;  // *_X
 485         for (int i = 0; i < siglen; i++) {
 486             if (i == arity)  continue;  // skip '_'
 487             char c = sig.charAt(i);
 488             if (c == 'V')
 489                 return (i == siglen - 1 && arity == siglen - 2);
 490             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 491         }
 492         return true;  // [LIJFD]*_[LIJFDV]
 493     }
 494     static MethodType signatureType(String sig) {
 495         Class<?>[] ptypes = new Class<?>[signatureArity(sig)];
 496         for (int i = 0; i < ptypes.length; i++)
 497             ptypes[i] = basicType(sig.charAt(i)).btClass;
 498         Class<?> rtype = signatureReturn(sig).btClass;
 499         return MethodType.methodType(rtype, ptypes);
 500     }
 501 
 502     /*
 503      * Code generation issues:
 504      *
 505      * Compiled LFs should be reusable in general.
 506      * The biggest issue is how to decide when to pull a name into
 507      * the bytecode, versus loading a reified form from the MH data.
 508      *
 509      * For example, an asType wrapper may require execution of a cast
 510      * after a call to a MH.  The target type of the cast can be placed
 511      * as a constant in the LF itself.  This will force the cast type
 512      * to be compiled into the bytecodes and native code for the MH.
 513      * Or, the target type of the cast can be erased in the LF, and
 514      * loaded from the MH data.  (Later on, if the MH as a whole is
 515      * inlined, the data will flow into the inlined instance of the LF,
 516      * as a constant, and the end result will be an optimal cast.)
 517      *
 518      * This erasure of cast types can be done with any use of
 519      * reference types.  It can also be done with whole method
 520      * handles.  Erasing a method handle might leave behind
 521      * LF code that executes correctly for any MH of a given
 522      * type, and load the required MH from the enclosing MH's data.
 523      * Or, the erasure might even erase the expected MT.
 524      *
 525      * Also, for direct MHs, the MemberName of the target
 526      * could be erased, and loaded from the containing direct MH.
 527      * As a simple case, a LF for all int-valued non-static
 528      * field getters would perform a cast on its input argument
 529      * (to non-constant base type derived from the MemberName)
 530      * and load an integer value from the input object
 531      * (at a non-constant offset also derived from the MemberName).
 532      * Such MN-erased LFs would be inlinable back to optimized
 533      * code, whenever a constant enclosing DMH is available
 534      * to supply a constant MN from its data.
 535      *
 536      * The main problem here is to keep LFs reasonably generic,
 537      * while ensuring that hot spots will inline good instances.
 538      * "Reasonably generic" means that we don't end up with
 539      * repeated versions of bytecode or machine code that do
 540      * not differ in their optimized form.  Repeated versions
 541      * of machine would have the undesirable overheads of
 542      * (a) redundant compilation work and (b) extra I$ pressure.
 543      * To control repeated versions, we need to be ready to
 544      * erase details from LFs and move them into MH data,
 545      * whevener those details are not relevant to significant
 546      * optimization.  "Significant" means optimization of
 547      * code that is actually hot.
 548      *
 549      * Achieving this may require dynamic splitting of MHs, by replacing
 550      * a generic LF with a more specialized one, on the same MH,
 551      * if (a) the MH is frequently executed and (b) the MH cannot
 552      * be inlined into a containing caller, such as an invokedynamic.
 553      *
 554      * Compiled LFs that are no longer used should be GC-able.
 555      * If they contain non-BCP references, they should be properly
 556      * interlinked with the class loader(s) that their embedded types
 557      * depend on.  This probably means that reusable compiled LFs
 558      * will be tabulated (indexed) on relevant class loaders,
 559      * or else that the tables that cache them will have weak links.
 560      */
 561 
 562     /**
 563      * Make this LF directly executable, as part of a MethodHandle.
 564      * Invariant:  Every MH which is invoked must prepare its LF
 565      * before invocation.
 566      * (In principle, the JVM could do this very lazily,
 567      * as a sort of pre-invocation linkage step.)
 568      */
 569     public void prepare() {
 570         if (COMPILE_THRESHOLD == 0) {
 571             compileToBytecode();
 572         }
 573         if (this.vmentry != null) {
 574             // already prepared (e.g., a primitive DMH invoker form)
 575             return;
 576         }
 577         LambdaForm prep = getPreparedForm(basicTypeSignature());
 578         this.vmentry = prep.vmentry;
 579         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 580     }
 581 
 582     /** Generate optimizable bytecode for this form. */
 583     MemberName compileToBytecode() {
 584         MethodType invokerType = methodType();
 585         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 586         if (vmentry != null && isCompiled) {
 587             return vmentry;  // already compiled somehow
 588         }
 589         try {
 590             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 591             if (TRACE_INTERPRETER)
 592                 traceInterpreter("compileToBytecode", this);
 593             isCompiled = true;
 594             return vmentry;
 595         } catch (Error | Exception ex) {
 596             throw newInternalError(this.toString(), ex);
 597         }
 598     }
 599 
 600     private static void computeInitialPreparedForms() {
 601         // Find all predefined invokers and associate them with canonical empty lambda forms.
 602         for (MemberName m : MemberName.getFactory().getMethods(LambdaForm.class, false, null, null, null)) {
 603             if (!m.isStatic() || !m.isPackage())  continue;
 604             MethodType mt = m.getMethodType();
 605             if (mt.parameterCount() > 0 &&
 606                 mt.parameterType(0) == MethodHandle.class &&
 607                 m.getName().startsWith("interpret_")) {
 608                 String sig = basicTypeSignature(mt);
 609                 assert(m.getName().equals("interpret" + sig.substring(sig.indexOf('_'))));
 610                 LambdaForm form = new LambdaForm(sig);
 611                 form.vmentry = m;
 612                 form = mt.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, form);
 613             }
 614         }
 615     }
 616 
 617     // Set this false to disable use of the interpret_L methods defined in this file.
 618     private static final boolean USE_PREDEFINED_INTERPRET_METHODS = true;
 619 
 620     // The following are predefined exact invokers.  The system must build
 621     // a separate invoker for each distinct signature.
 622     static Object interpret_L(MethodHandle mh) throws Throwable {
 623         Object[] av = {mh};
 624         String sig = null;
 625         assert(argumentTypesMatch(sig = "L_L", av));
 626         Object res = mh.form.interpretWithArguments(av);
 627         assert(returnTypesMatch(sig, av, res));
 628         return res;
 629     }
 630     static Object interpret_L(MethodHandle mh, Object x1) throws Throwable {
 631         Object[] av = {mh, x1};
 632         String sig = null;
 633         assert(argumentTypesMatch(sig = "LL_L", av));
 634         Object res = mh.form.interpretWithArguments(av);
 635         assert(returnTypesMatch(sig, av, res));
 636         return res;
 637     }
 638     static Object interpret_L(MethodHandle mh, Object x1, Object x2) throws Throwable {
 639         Object[] av = {mh, x1, x2};
 640         String sig = null;
 641         assert(argumentTypesMatch(sig = "LLL_L", av));
 642         Object res = mh.form.interpretWithArguments(av);
 643         assert(returnTypesMatch(sig, av, res));
 644         return res;
 645     }
 646     private static LambdaForm getPreparedForm(String sig) {
 647         MethodType mtype = signatureType(sig);
 648         LambdaForm prep =  mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
 649         if (prep != null)  return prep;
 650         assert(isValidSignature(sig));
 651         prep = new LambdaForm(sig);
 652         prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(sig);
 653         return mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
 654     }
 655 
 656     // The next few routines are called only from assert expressions
 657     // They verify that the built-in invokers process the correct raw data types.
 658     private static boolean argumentTypesMatch(String sig, Object[] av) {
 659         int arity = signatureArity(sig);
 660         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 661         assert(av[0] instanceof MethodHandle) : "av[0] not instace of MethodHandle: " + av[0];
 662         MethodHandle mh = (MethodHandle) av[0];
 663         MethodType mt = mh.type();
 664         assert(mt.parameterCount() == arity-1);
 665         for (int i = 0; i < av.length; i++) {
 666             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 667             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 668         }
 669         return true;
 670     }
 671     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 672         // The following line is needed because (...)void method handles can use non-void invokers
 673         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 674         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 675         switch (tc) {
 676         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 677         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 678         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 679         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 680         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 681         case V_TYPE: break;  // allow anything here; will be dropped
 682         default:  assert(false);
 683         }
 684         return true;
 685     }
 686     private static boolean returnTypesMatch(String sig, Object[] av, Object res) {
 687         MethodHandle mh = (MethodHandle) av[0];
 688         return valueMatches(signatureReturn(sig), mh.type().returnType(), res);
 689     }
 690     private static boolean checkInt(Class<?> type, Object x) {
 691         assert(x instanceof Integer);
 692         if (type == int.class)  return true;
 693         Wrapper w = Wrapper.forBasicType(type);
 694         assert(w.isSubwordOrInt());
 695         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 696         return x.equals(x1);
 697     }
 698     private static boolean checkRef(Class<?> type, Object x) {
 699         assert(!type.isPrimitive());
 700         if (x == null)  return true;
 701         if (type.isInterface())  return true;
 702         return type.isInstance(x);
 703     }
 704 
 705     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 706     private static final int COMPILE_THRESHOLD;
 707     static {
 708         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 709     }
 710     private int invocationCounter = 0;
 711 
 712     @Hidden
 713     @DontInline
 714     /** Interpretively invoke this form on the given arguments. */
 715     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 716         if (TRACE_INTERPRETER)
 717             return interpretWithArgumentsTracing(argumentValues);
 718         checkInvocationCounter();
 719         assert(arityCheck(argumentValues));
 720         Object[] values = Arrays.copyOf(argumentValues, names.length);
 721         for (int i = argumentValues.length; i < values.length; i++) {
 722             values[i] = interpretName(names[i], values);
 723         }
 724         Object rv = (result < 0) ? null : values[result];
 725         assert(resultCheck(argumentValues, rv));
 726         return rv;
 727     }
 728 
 729     @Hidden
 730     @DontInline
 731     /** Evaluate a single Name within this form, applying its function to its arguments. */
 732     Object interpretName(Name name, Object[] values) throws Throwable {
 733         if (TRACE_INTERPRETER)
 734             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 735         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 736         for (int i = 0; i < arguments.length; i++) {
 737             Object a = arguments[i];
 738             if (a instanceof Name) {
 739                 int i2 = ((Name)a).index();
 740                 assert(names[i2] == a);
 741                 a = values[i2];
 742                 arguments[i] = a;
 743             }
 744         }
 745         return name.function.invokeWithArguments(arguments);
 746     }
 747 
 748     private void checkInvocationCounter() {
 749         if (COMPILE_THRESHOLD != 0 &&
 750             invocationCounter < COMPILE_THRESHOLD) {
 751             invocationCounter++;  // benign race
 752             if (invocationCounter >= COMPILE_THRESHOLD) {
 753                 // Replace vmentry with a bytecode version of this LF.
 754                 compileToBytecode();
 755             }
 756         }
 757     }
 758     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 759         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 760         if (invocationCounter < COMPILE_THRESHOLD) {
 761             int ctr = invocationCounter++;  // benign race
 762             traceInterpreter("| invocationCounter", ctr);
 763             if (invocationCounter >= COMPILE_THRESHOLD) {
 764                 compileToBytecode();
 765             }
 766         }
 767         Object rval;
 768         try {
 769             assert(arityCheck(argumentValues));
 770             Object[] values = Arrays.copyOf(argumentValues, names.length);
 771             for (int i = argumentValues.length; i < values.length; i++) {
 772                 values[i] = interpretName(names[i], values);
 773             }
 774             rval = (result < 0) ? null : values[result];
 775         } catch (Throwable ex) {
 776             traceInterpreter("] throw =>", ex);
 777             throw ex;
 778         }
 779         traceInterpreter("] return =>", rval);
 780         return rval;
 781     }
 782 
 783     //** This transform is applied (statically) to every name.function. */
 784     /*
 785     private static MethodHandle eraseSubwordTypes(MethodHandle mh) {
 786         MethodType mt = mh.type();
 787         if (mt.hasPrimitives()) {
 788             mt = mt.changeReturnType(eraseSubwordType(mt.returnType()));
 789             for (int i = 0; i < mt.parameterCount(); i++) {
 790                 mt = mt.changeParameterType(i, eraseSubwordType(mt.parameterType(i)));
 791             }
 792             mh = MethodHandles.explicitCastArguments(mh, mt);
 793         }
 794         return mh;
 795     }
 796     private static Class<?> eraseSubwordType(Class<?> type) {
 797         if (!type.isPrimitive())  return type;
 798         if (type == int.class)  return type;
 799         Wrapper w = Wrapper.forPrimitiveType(type);
 800         if (w.isSubwordOrInt())  return int.class;
 801         return type;
 802     }
 803     */
 804 
 805     static void traceInterpreter(String event, Object obj, Object... args) {
 806         if (TRACE_INTERPRETER) {
 807             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 808         }
 809     }
 810     static void traceInterpreter(String event, Object obj) {
 811         traceInterpreter(event, obj, (Object[])null);
 812     }
 813     private boolean arityCheck(Object[] argumentValues) {
 814         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
 815         // also check that the leading (receiver) argument is somehow bound to this LF:
 816         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
 817         MethodHandle mh = (MethodHandle) argumentValues[0];
 818         assert(mh.internalForm() == this);
 819         // note:  argument #0 could also be an interface wrapper, in the future
 820         argumentTypesMatch(basicTypeSignature(), argumentValues);
 821         return true;
 822     }
 823     private boolean resultCheck(Object[] argumentValues, Object result) {
 824         MethodHandle mh = (MethodHandle) argumentValues[0];
 825         MethodType mt = mh.type();
 826         assert(valueMatches(returnType(), mt.returnType(), result));
 827         return true;
 828     }
 829 
 830     private boolean isEmpty() {
 831         if (result < 0)
 832             return (names.length == arity);
 833         else if (result == arity && names.length == arity + 1)
 834             return names[arity].isConstantZero();
 835         else
 836             return false;
 837     }
 838 
 839     public String toString() {
 840         StringBuilder buf = new StringBuilder(debugName+"=Lambda(");
 841         for (int i = 0; i < names.length; i++) {
 842             if (i == arity)  buf.append(")=>{");
 843             Name n = names[i];
 844             if (i >= arity)  buf.append("\n    ");
 845             buf.append(n);
 846             if (i < arity) {
 847                 if (i+1 < arity)  buf.append(",");
 848                 continue;
 849             }
 850             buf.append("=").append(n.exprString());
 851             buf.append(";");
 852         }
 853         if (arity == names.length)  buf.append(")=>{");
 854         buf.append(result < 0 ? "void" : names[result]).append("}");
 855         if (TRACE_INTERPRETER) {
 856             // Extra verbosity:
 857             buf.append(":").append(basicTypeSignature());
 858             buf.append("/").append(vmentry);
 859         }
 860         return buf.toString();
 861     }
 862 
 863     LambdaForm bind(int namePos, BoundMethodHandle.SpeciesData oldData) {
 864         Name name = names[namePos];
 865         BoundMethodHandle.SpeciesData newData = oldData.extendWith(name.type);
 866         return bind(name, new Name(newData.getterFunction(oldData.fieldCount()), names[0]), oldData, newData);
 867     }
 868     LambdaForm bind(Name name, Name binding,
 869                     BoundMethodHandle.SpeciesData oldData,
 870                     BoundMethodHandle.SpeciesData newData) {
 871         int pos = name.index;
 872         assert(name.isParam());
 873         assert(!binding.isParam());
 874         assert(name.type == binding.type);
 875         assert(0 <= pos && pos < arity && names[pos] == name);
 876         assert(binding.function.memberDeclaringClassOrNull() == newData.clazz);
 877         assert(oldData.getters.length == newData.getters.length-1);
 878         if (bindCache != null) {
 879             LambdaForm form = bindCache[pos];
 880             if (form != null) {
 881                 assert(form.contains(binding)) : "form << " + form + " >> does not contain binding << " + binding + " >>";
 882                 return form;
 883             }
 884         } else {
 885             bindCache = new LambdaForm[arity];
 886         }
 887         assert(nameRefsAreLegal());
 888         int arity2 = arity-1;
 889         Name[] names2 = names.clone();
 890         names2[pos] = binding;  // we might move this in a moment
 891 
 892         // The newly created LF will run with a different BMH.
 893         // Switch over any pre-existing BMH field references to the new BMH class.
 894         int firstOldRef = -1;
 895         for (int i = 0; i < names2.length; i++) {
 896             Name n = names[i];
 897             if (n.function != null &&
 898                 n.function.memberDeclaringClassOrNull() == oldData.clazz) {
 899                 MethodHandle oldGetter = n.function.resolvedHandle;
 900                 MethodHandle newGetter = null;
 901                 for (int j = 0; j < oldData.getters.length; j++) {
 902                     if (oldGetter == oldData.getters[j])
 903                         newGetter =  newData.getters[j];
 904                 }
 905                 if (newGetter != null) {
 906                     if (firstOldRef < 0)  firstOldRef = i;
 907                     Name n2 = new Name(newGetter, n.arguments);
 908                     names2[i] = n2;
 909                 }
 910             }
 911         }
 912 
 913         // Walk over the new list of names once, in forward order.
 914         // Replace references to 'name' with 'binding'.
 915         // Replace data structure references to the old BMH species with the new.
 916         // This might cause a ripple effect, but it will settle in one pass.
 917         assert(firstOldRef < 0 || firstOldRef > pos);
 918         for (int i = pos+1; i < names2.length; i++) {
 919             if (i <= arity2)  continue;
 920             names2[i] = names2[i].replaceNames(names, names2, pos, i);
 921         }
 922 
 923         //  (a0, a1, name=a2, a3, a4)  =>  (a0, a1, a3, a4, binding)
 924         int insPos = pos;
 925         for (; insPos+1 < names2.length; insPos++) {
 926             Name n = names2[insPos+1];
 927             if (n.isParam()) {
 928                 names2[insPos] = n;
 929             } else {
 930                 break;
 931             }
 932         }
 933         names2[insPos] = binding;
 934 
 935         // Since we moved some stuff, maybe update the result reference:
 936         int result2 = result;
 937         if (result2 == pos)
 938             result2 = insPos;
 939         else if (result2 > pos && result2 <= insPos)
 940             result2 -= 1;
 941 
 942         return bindCache[pos] = new LambdaForm(debugName, arity2, names2, result2);
 943     }
 944 
 945     boolean contains(Name name) {
 946         int pos = name.index();
 947         if (pos >= 0) {
 948             return pos < names.length && name.equals(names[pos]);
 949         }
 950         for (int i = arity; i < names.length; i++) {
 951             if (name.equals(names[i]))
 952                 return true;
 953         }
 954         return false;
 955     }
 956 
 957     LambdaForm addArguments(int pos, BasicType... types) {
 958         // names array has MH in slot 0; skip it.
 959         int argpos = pos + 1;
 960         assert(argpos <= arity);
 961         int length = names.length;
 962         int inTypes = types.length;
 963         Name[] names2 = Arrays.copyOf(names, length + inTypes);
 964         int arity2 = arity + inTypes;
 965         int result2 = result;
 966         if (result2 >= argpos)
 967             result2 += inTypes;
 968         // Note:  The LF constructor will rename names2[argpos...].
 969         // Make space for new arguments (shift temporaries).
 970         System.arraycopy(names, argpos, names2, argpos + inTypes, length - argpos);
 971         for (int i = 0; i < inTypes; i++) {
 972             names2[argpos + i] = new Name(types[i]);
 973         }
 974         return new LambdaForm(debugName, arity2, names2, result2);
 975     }
 976 
 977     LambdaForm addArguments(int pos, List<Class<?>> types) {
 978         return addArguments(pos, basicTypes(types));
 979     }
 980 
 981     LambdaForm permuteArguments(int skip, int[] reorder, BasicType[] types) {
 982         // Note:  When inArg = reorder[outArg], outArg is fed by a copy of inArg.
 983         // The types are the types of the new (incoming) arguments.
 984         int length = names.length;
 985         int inTypes = types.length;
 986         int outArgs = reorder.length;
 987         assert(skip+outArgs == arity);
 988         assert(permutedTypesMatch(reorder, types, names, skip));
 989         int pos = 0;
 990         // skip trivial first part of reordering:
 991         while (pos < outArgs && reorder[pos] == pos)  pos += 1;
 992         Name[] names2 = new Name[length - outArgs + inTypes];
 993         System.arraycopy(names, 0, names2, 0, skip+pos);
 994         // copy the body:
 995         int bodyLength = length - arity;
 996         System.arraycopy(names, skip+outArgs, names2, skip+inTypes, bodyLength);
 997         int arity2 = names2.length - bodyLength;
 998         int result2 = result;
 999         if (result2 >= 0) {
1000             if (result2 < skip+outArgs) {
1001                 // return the corresponding inArg
1002                 result2 = reorder[result2-skip];
1003             } else {
1004                 result2 = result2 - outArgs + inTypes;
1005             }
1006         }
1007         // rework names in the body:
1008         for (int j = pos; j < outArgs; j++) {
1009             Name n = names[skip+j];
1010             int i = reorder[j];
1011             // replace names[skip+j] by names2[skip+i]
1012             Name n2 = names2[skip+i];
1013             if (n2 == null)
1014                 names2[skip+i] = n2 = new Name(types[i]);
1015             else
1016                 assert(n2.type == types[i]);
1017             for (int k = arity2; k < names2.length; k++) {
1018                 names2[k] = names2[k].replaceName(n, n2);
1019             }
1020         }
1021         // some names are unused, but must be filled in
1022         for (int i = skip+pos; i < arity2; i++) {
1023             if (names2[i] == null)
1024                 names2[i] = argument(i, types[i - skip]);
1025         }
1026         for (int j = arity; j < names.length; j++) {
1027             int i = j - arity + arity2;
1028             // replace names2[i] by names[j]
1029             Name n = names[j];
1030             Name n2 = names2[i];
1031             if (n != n2) {
1032                 for (int k = i+1; k < names2.length; k++) {
1033                     names2[k] = names2[k].replaceName(n, n2);
1034                 }
1035             }
1036         }
1037         return new LambdaForm(debugName, arity2, names2, result2);
1038     }
1039 
1040     static boolean permutedTypesMatch(int[] reorder, BasicType[] types, Name[] names, int skip) {
1041         int inTypes = types.length;
1042         int outArgs = reorder.length;
1043         for (int i = 0; i < outArgs; i++) {
1044             assert(names[skip+i].isParam());
1045             assert(names[skip+i].type == types[reorder[i]]);
1046         }
1047         return true;
1048     }
1049 
1050     static class NamedFunction {
1051         final MemberName member;
1052         @Stable MethodHandle resolvedHandle;
1053         @Stable MethodHandle invoker;
1054 
1055         NamedFunction(MethodHandle resolvedHandle) {
1056             this(resolvedHandle.internalMemberName(), resolvedHandle);
1057         }
1058         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1059             this.member = member;
1060             this.resolvedHandle = resolvedHandle;
1061              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1062              //assert(!isInvokeBasic());
1063         }
1064         NamedFunction(MethodType basicInvokerType) {
1065             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1066             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1067                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1068                 this.member = resolvedHandle.internalMemberName();
1069             } else {
1070                 // necessary to pass BigArityTest
1071                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1072             }
1073             assert(isInvokeBasic());
1074         }
1075 
1076         private boolean isInvokeBasic() {
1077             return member != null &&
1078                    member.isMethodHandleInvoke() &&
1079                    "invokeBasic".equals(member.getName());
1080         }
1081 
1082         // The next 3 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1083         // Any LambdaForm containing such a member is not interpretable.
1084         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1085         // And even without the resolvedHandle, the name can still be compiled and optimized.
1086         NamedFunction(Method method) {
1087             this(new MemberName(method));
1088         }
1089         NamedFunction(Field field) {
1090             this(new MemberName(field));
1091         }
1092         NamedFunction(MemberName member) {
1093             this.member = member;
1094             this.resolvedHandle = null;
1095         }
1096 
1097         MethodHandle resolvedHandle() {
1098             if (resolvedHandle == null)  resolve();
1099             return resolvedHandle;
1100         }
1101 
1102         void resolve() {
1103             resolvedHandle = DirectMethodHandle.make(member);
1104         }
1105 
1106         @Override
1107         public boolean equals(Object other) {
1108             if (this == other) return true;
1109             if (other == null) return false;
1110             if (!(other instanceof NamedFunction)) return false;
1111             NamedFunction that = (NamedFunction) other;
1112             return this.member != null && this.member.equals(that.member);
1113         }
1114 
1115         @Override
1116         public int hashCode() {
1117             if (member != null)
1118                 return member.hashCode();
1119             return super.hashCode();
1120         }
1121 
1122         // Put the predefined NamedFunction invokers into the table.
1123         static void initializeInvokers() {
1124             for (MemberName m : MemberName.getFactory().getMethods(NamedFunction.class, false, null, null, null)) {
1125                 if (!m.isStatic() || !m.isPackage())  continue;
1126                 MethodType type = m.getMethodType();
1127                 if (type.equals(INVOKER_METHOD_TYPE) &&
1128                     m.getName().startsWith("invoke_")) {
1129                     String sig = m.getName().substring("invoke_".length());
1130                     int arity = LambdaForm.signatureArity(sig);
1131                     MethodType srcType = MethodType.genericMethodType(arity);
1132                     if (LambdaForm.signatureReturn(sig) == V_TYPE)
1133                         srcType = srcType.changeReturnType(void.class);
1134                     MethodTypeForm typeForm = srcType.form();
1135                     typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, DirectMethodHandle.make(m));
1136                 }
1137             }
1138         }
1139 
1140         // The following are predefined NamedFunction invokers.  The system must build
1141         // a separate invoker for each distinct signature.
1142         /** void return type invokers. */
1143         @Hidden
1144         static Object invoke__V(MethodHandle mh, Object[] a) throws Throwable {
1145             assert(arityCheck(0, void.class, mh, a));
1146             mh.invokeBasic();
1147             return null;
1148         }
1149         @Hidden
1150         static Object invoke_L_V(MethodHandle mh, Object[] a) throws Throwable {
1151             assert(arityCheck(1, void.class, mh, a));
1152             mh.invokeBasic(a[0]);
1153             return null;
1154         }
1155         @Hidden
1156         static Object invoke_LL_V(MethodHandle mh, Object[] a) throws Throwable {
1157             assert(arityCheck(2, void.class, mh, a));
1158             mh.invokeBasic(a[0], a[1]);
1159             return null;
1160         }
1161         @Hidden
1162         static Object invoke_LLL_V(MethodHandle mh, Object[] a) throws Throwable {
1163             assert(arityCheck(3, void.class, mh, a));
1164             mh.invokeBasic(a[0], a[1], a[2]);
1165             return null;
1166         }
1167         @Hidden
1168         static Object invoke_LLLL_V(MethodHandle mh, Object[] a) throws Throwable {
1169             assert(arityCheck(4, void.class, mh, a));
1170             mh.invokeBasic(a[0], a[1], a[2], a[3]);
1171             return null;
1172         }
1173         @Hidden
1174         static Object invoke_LLLLL_V(MethodHandle mh, Object[] a) throws Throwable {
1175             assert(arityCheck(5, void.class, mh, a));
1176             mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
1177             return null;
1178         }
1179         /** Object return type invokers. */
1180         @Hidden
1181         static Object invoke__L(MethodHandle mh, Object[] a) throws Throwable {
1182             assert(arityCheck(0, mh, a));
1183             return mh.invokeBasic();
1184         }
1185         @Hidden
1186         static Object invoke_L_L(MethodHandle mh, Object[] a) throws Throwable {
1187             assert(arityCheck(1, mh, a));
1188             return mh.invokeBasic(a[0]);
1189         }
1190         @Hidden
1191         static Object invoke_LL_L(MethodHandle mh, Object[] a) throws Throwable {
1192             assert(arityCheck(2, mh, a));
1193             return mh.invokeBasic(a[0], a[1]);
1194         }
1195         @Hidden
1196         static Object invoke_LLL_L(MethodHandle mh, Object[] a) throws Throwable {
1197             assert(arityCheck(3, mh, a));
1198             return mh.invokeBasic(a[0], a[1], a[2]);
1199         }
1200         @Hidden
1201         static Object invoke_LLLL_L(MethodHandle mh, Object[] a) throws Throwable {
1202             assert(arityCheck(4, mh, a));
1203             return mh.invokeBasic(a[0], a[1], a[2], a[3]);
1204         }
1205         @Hidden
1206         static Object invoke_LLLLL_L(MethodHandle mh, Object[] a) throws Throwable {
1207             assert(arityCheck(5, mh, a));
1208             return mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
1209         }
1210         private static boolean arityCheck(int arity, MethodHandle mh, Object[] a) {
1211             return arityCheck(arity, Object.class, mh, a);
1212         }
1213         private static boolean arityCheck(int arity, Class<?> rtype, MethodHandle mh, Object[] a) {
1214             assert(a.length == arity)
1215                     : Arrays.asList(a.length, arity);
1216             assert(mh.type().basicType() == MethodType.genericMethodType(arity).changeReturnType(rtype))
1217                     : Arrays.asList(mh, rtype, arity);
1218             MemberName member = mh.internalMemberName();
1219             if (member != null && member.getName().equals("invokeBasic") && member.isMethodHandleInvoke()) {
1220                 assert(arity > 0);
1221                 assert(a[0] instanceof MethodHandle);
1222                 MethodHandle mh2 = (MethodHandle) a[0];
1223                 assert(mh2.type().basicType() == MethodType.genericMethodType(arity-1).changeReturnType(rtype))
1224                         : Arrays.asList(member, mh2, rtype, arity);
1225             }
1226             return true;
1227         }
1228 
1229         static final MethodType INVOKER_METHOD_TYPE =
1230             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1231 
1232         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1233             typeForm = typeForm.basicType().form();  // normalize to basic type
1234             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1235             if (mh != null)  return mh;
1236             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1237             mh = DirectMethodHandle.make(invoker);
1238             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1239             if (mh2 != null)  return mh2;  // benign race
1240             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1241                 throw newInternalError(mh.debugString());
1242             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1243         }
1244 
1245         @Hidden
1246         Object invokeWithArguments(Object... arguments) throws Throwable {
1247             // If we have a cached invoker, call it right away.
1248             // NOTE: The invoker always returns a reference value.
1249             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1250             assert(checkArgumentTypes(arguments, methodType()));
1251             return invoker().invokeBasic(resolvedHandle(), arguments);
1252         }
1253 
1254         @Hidden
1255         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1256             Object rval;
1257             try {
1258                 traceInterpreter("[ call", this, arguments);
1259                 if (invoker == null) {
1260                     traceInterpreter("| getInvoker", this);
1261                     invoker();
1262                 }
1263                 if (resolvedHandle == null) {
1264                     traceInterpreter("| resolve", this);
1265                     resolvedHandle();
1266                 }
1267                 assert(checkArgumentTypes(arguments, methodType()));
1268                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1269             } catch (Throwable ex) {
1270                 traceInterpreter("] throw =>", ex);
1271                 throw ex;
1272             }
1273             traceInterpreter("] return =>", rval);
1274             return rval;
1275         }
1276 
1277         private MethodHandle invoker() {
1278             if (invoker != null)  return invoker;
1279             // Get an invoker and cache it.
1280             return invoker = computeInvoker(methodType().form());
1281         }
1282 
1283         private static boolean checkArgumentTypes(Object[] arguments, MethodType methodType) {
1284             if (true)  return true;  // FIXME
1285             MethodType dstType = methodType.form().erasedType();
1286             MethodType srcType = dstType.basicType().wrap();
1287             Class<?>[] ptypes = new Class<?>[arguments.length];
1288             for (int i = 0; i < arguments.length; i++) {
1289                 Object arg = arguments[i];
1290                 Class<?> ptype = arg == null ? Object.class : arg.getClass();
1291                 // If the dest. type is a primitive we keep the
1292                 // argument type.
1293                 ptypes[i] = dstType.parameterType(i).isPrimitive() ? ptype : Object.class;
1294             }
1295             MethodType argType = MethodType.methodType(srcType.returnType(), ptypes).wrap();
1296             assert(argType.isConvertibleTo(srcType)) : "wrong argument types: cannot convert " + argType + " to " + srcType;
1297             return true;
1298         }
1299 
1300         MethodType methodType() {
1301             if (resolvedHandle != null)
1302                 return resolvedHandle.type();
1303             else
1304                 // only for certain internal LFs during bootstrapping
1305                 return member.getInvocationType();
1306         }
1307 
1308         MemberName member() {
1309             assert(assertMemberIsConsistent());
1310             return member;
1311         }
1312 
1313         // Called only from assert.
1314         private boolean assertMemberIsConsistent() {
1315             if (resolvedHandle instanceof DirectMethodHandle) {
1316                 MemberName m = resolvedHandle.internalMemberName();
1317                 assert(m.equals(member));
1318             }
1319             return true;
1320         }
1321 
1322         Class<?> memberDeclaringClassOrNull() {
1323             return (member == null) ? null : member.getDeclaringClass();
1324         }
1325 
1326         BasicType returnType() {
1327             return basicType(methodType().returnType());
1328         }
1329 
1330         BasicType parameterType(int n) {
1331             return basicType(methodType().parameterType(n));
1332         }
1333 
1334         int arity() {
1335             return methodType().parameterCount();
1336         }
1337 
1338         public String toString() {
1339             if (member == null)  return String.valueOf(resolvedHandle);
1340             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1341         }
1342 
1343         public boolean isIdentity() {
1344             return this.equals(identity(returnType()));
1345         }
1346 
1347         public boolean isConstantZero() {
1348             return this.equals(constantZero(returnType()));
1349         }
1350     }
1351 
1352     public static String basicTypeSignature(MethodType type) {
1353         char[] sig = new char[type.parameterCount() + 2];
1354         int sigp = 0;
1355         for (Class<?> pt : type.parameterList()) {
1356             sig[sigp++] = basicTypeChar(pt);
1357         }
1358         sig[sigp++] = '_';
1359         sig[sigp++] = basicTypeChar(type.returnType());
1360         assert(sigp == sig.length);
1361         return String.valueOf(sig);
1362     }
1363     public static String shortenSignature(String signature) {
1364         // Hack to make signatures more readable when they show up in method names.
1365         final int NO_CHAR = -1, MIN_RUN = 3;
1366         int c0, c1 = NO_CHAR, c1reps = 0;
1367         StringBuilder buf = null;
1368         int len = signature.length();
1369         if (len < MIN_RUN)  return signature;
1370         for (int i = 0; i <= len; i++) {
1371             // shift in the next char:
1372             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1373             if (c1 == c0) { ++c1reps; continue; }
1374             // shift in the next count:
1375             int c0reps = c1reps; c1reps = 1;
1376             // end of a  character run
1377             if (c0reps < MIN_RUN) {
1378                 if (buf != null) {
1379                     while (--c0reps >= 0)
1380                         buf.append((char)c0);
1381                 }
1382                 continue;
1383             }
1384             // found three or more in a row
1385             if (buf == null)
1386                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1387             buf.append((char)c0).append(c0reps);
1388         }
1389         return (buf == null) ? signature : buf.toString();
1390     }
1391 
1392     static final class Name {
1393         final BasicType type;
1394         private short index;
1395         final NamedFunction function;
1396         @Stable final Object[] arguments;
1397 
1398         private Name(int index, BasicType type, NamedFunction function, Object[] arguments) {
1399             this.index = (short)index;
1400             this.type = type;
1401             this.function = function;
1402             this.arguments = arguments;
1403             assert(this.index == index);
1404         }
1405         Name(MethodHandle function, Object... arguments) {
1406             this(new NamedFunction(function), arguments);
1407         }
1408         Name(MethodType functionType, Object... arguments) {
1409             this(new NamedFunction(functionType), arguments);
1410             assert(arguments[0] instanceof Name && ((Name)arguments[0]).type == L_TYPE);
1411         }
1412         Name(MemberName function, Object... arguments) {
1413             this(new NamedFunction(function), arguments);
1414         }
1415         Name(NamedFunction function, Object... arguments) {
1416             this(-1, function.returnType(), function, arguments = arguments.clone());
1417             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1418             for (int i = 0; i < arguments.length; i++)
1419                 assert(typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1420         }
1421         /** Create a raw parameter of the given type, with an expected index. */
1422         Name(int index, BasicType type) {
1423             this(index, type, null, null);
1424         }
1425         /** Create a raw parameter of the given type. */
1426         Name(BasicType type) { this(-1, type); }
1427 
1428         BasicType type() { return type; }
1429         int index() { return index; }
1430         boolean initIndex(int i) {
1431             if (index != i) {
1432                 if (index != -1)  return false;
1433                 index = (short)i;
1434             }
1435             return true;
1436         }
1437         char typeChar() {
1438             return type.btChar;
1439         }
1440 
1441         void resolve() {
1442             if (function != null)
1443                 function.resolve();
1444         }
1445 
1446         Name newIndex(int i) {
1447             if (initIndex(i))  return this;
1448             return cloneWithIndex(i);
1449         }
1450         Name cloneWithIndex(int i) {
1451             Object[] newArguments = (arguments == null) ? null : arguments.clone();
1452             return new Name(i, type, function, newArguments);
1453         }
1454         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1455             if (oldName == newName)  return this;
1456             @SuppressWarnings("LocalVariableHidesMemberVariable")
1457             Object[] arguments = this.arguments;
1458             if (arguments == null)  return this;
1459             boolean replaced = false;
1460             for (int j = 0; j < arguments.length; j++) {
1461                 if (arguments[j] == oldName) {
1462                     if (!replaced) {
1463                         replaced = true;
1464                         arguments = arguments.clone();
1465                     }
1466                     arguments[j] = newName;
1467                 }
1468             }
1469             if (!replaced)  return this;
1470             return new Name(function, arguments);
1471         }
1472         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1473          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1474          */
1475         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1476             if (start >= end)  return this;
1477             @SuppressWarnings("LocalVariableHidesMemberVariable")
1478             Object[] arguments = this.arguments;
1479             boolean replaced = false;
1480         eachArg:
1481             for (int j = 0; j < arguments.length; j++) {
1482                 if (arguments[j] instanceof Name) {
1483                     Name n = (Name) arguments[j];
1484                     int check = n.index;
1485                     // harmless check to see if the thing is already in newNames:
1486                     if (check >= 0 && check < newNames.length && n == newNames[check])
1487                         continue eachArg;
1488                     // n might not have the correct index: n != oldNames[n.index].
1489                     for (int i = start; i < end; i++) {
1490                         if (n == oldNames[i]) {
1491                             if (n == newNames[i])
1492                                 continue eachArg;
1493                             if (!replaced) {
1494                                 replaced = true;
1495                                 arguments = arguments.clone();
1496                             }
1497                             arguments[j] = newNames[i];
1498                             continue eachArg;
1499                         }
1500                     }
1501                 }
1502             }
1503             if (!replaced)  return this;
1504             return new Name(function, arguments);
1505         }
1506         void internArguments() {
1507             @SuppressWarnings("LocalVariableHidesMemberVariable")
1508             Object[] arguments = this.arguments;
1509             for (int j = 0; j < arguments.length; j++) {
1510                 if (arguments[j] instanceof Name) {
1511                     Name n = (Name) arguments[j];
1512                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1513                         arguments[j] = internArgument(n);
1514                 }
1515             }
1516         }
1517         boolean isParam() {
1518             return function == null;
1519         }
1520         boolean isConstantZero() {
1521             return !isParam() && arguments.length == 0 && function.isConstantZero();
1522         }
1523 
1524         public String toString() {
1525             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1526         }
1527         public String debugString() {
1528             String s = toString();
1529             return (function == null) ? s : s + "=" + exprString();
1530         }
1531         public String exprString() {
1532             if (function == null)  return toString();
1533             StringBuilder buf = new StringBuilder(function.toString());
1534             buf.append("(");
1535             String cma = "";
1536             for (Object a : arguments) {
1537                 buf.append(cma); cma = ",";
1538                 if (a instanceof Name || a instanceof Integer)
1539                     buf.append(a);
1540                 else
1541                     buf.append("(").append(a).append(")");
1542             }
1543             buf.append(")");
1544             return buf.toString();
1545         }
1546 
1547         static boolean typesMatch(BasicType parameterType, Object object) {
1548             if (object instanceof Name) {
1549                 return ((Name)object).type == parameterType;
1550             }
1551             switch (parameterType) {
1552                 case I_TYPE:  return object instanceof Integer;
1553                 case J_TYPE:  return object instanceof Long;
1554                 case F_TYPE:  return object instanceof Float;
1555                 case D_TYPE:  return object instanceof Double;
1556             }
1557             assert(parameterType == L_TYPE);
1558             return true;
1559         }
1560 
1561         /** Return the index of the last occurrence of n in the argument array.
1562          *  Return -1 if the name is not used.
1563          */
1564         int lastUseIndex(Name n) {
1565             if (arguments == null)  return -1;
1566             for (int i = arguments.length; --i >= 0; ) {
1567                 if (arguments[i] == n)  return i;
1568             }
1569             return -1;
1570         }
1571 
1572         /** Return the number of occurrences of n in the argument array.
1573          *  Return 0 if the name is not used.
1574          */
1575         int useCount(Name n) {
1576             if (arguments == null)  return 0;
1577             int count = 0;
1578             for (int i = arguments.length; --i >= 0; ) {
1579                 if (arguments[i] == n)  ++count;
1580             }
1581             return count;
1582         }
1583 
1584         boolean contains(Name n) {
1585             return this == n || lastUseIndex(n) >= 0;
1586         }
1587 
1588         public boolean equals(Name that) {
1589             if (this == that)  return true;
1590             if (isParam())
1591                 // each parameter is a unique atom
1592                 return false;  // this != that
1593             return
1594                 //this.index == that.index &&
1595                 this.type == that.type &&
1596                 this.function.equals(that.function) &&
1597                 Arrays.equals(this.arguments, that.arguments);
1598         }
1599         @Override
1600         public boolean equals(Object x) {
1601             return x instanceof Name && equals((Name)x);
1602         }
1603         @Override
1604         public int hashCode() {
1605             if (isParam())
1606                 return index | (type.ordinal() << 8);
1607             return function.hashCode() ^ Arrays.hashCode(arguments);
1608         }
1609     }
1610 
1611     /** Return the index of the last name which contains n as an argument.
1612      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1613      */
1614     int lastUseIndex(Name n) {
1615         int ni = n.index, nmax = names.length;
1616         assert(names[ni] == n);
1617         if (result == ni)  return nmax;  // live all the way beyond the end
1618         for (int i = nmax; --i > ni; ) {
1619             if (names[i].lastUseIndex(n) >= 0)
1620                 return i;
1621         }
1622         return -1;
1623     }
1624 
1625     /** Return the number of times n is used as an argument or return value. */
1626     int useCount(Name n) {
1627         int ni = n.index, nmax = names.length;
1628         int end = lastUseIndex(n);
1629         if (end < 0)  return 0;
1630         int count = 0;
1631         if (end == nmax) { count++; end--; }
1632         int beg = n.index() + 1;
1633         if (beg < arity)  beg = arity;
1634         for (int i = beg; i <= end; i++) {
1635             count += names[i].useCount(n);
1636         }
1637         return count;
1638     }
1639 
1640     static Name argument(int which, char type) {
1641         return argument(which, basicType(type));
1642     }
1643     static Name argument(int which, BasicType type) {
1644         if (which >= INTERNED_ARGUMENT_LIMIT)
1645             return new Name(which, type);
1646         return INTERNED_ARGUMENTS[type.ordinal()][which];
1647     }
1648     static Name internArgument(Name n) {
1649         assert(n.isParam()) : "not param: " + n;
1650         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1651         return argument(n.index, n.type);
1652     }
1653     static Name[] arguments(int extra, String types) {
1654         int length = types.length();
1655         Name[] names = new Name[length + extra];
1656         for (int i = 0; i < length; i++)
1657             names[i] = argument(i, types.charAt(i));
1658         return names;
1659     }
1660     static Name[] arguments(int extra, char... types) {
1661         int length = types.length;
1662         Name[] names = new Name[length + extra];
1663         for (int i = 0; i < length; i++)
1664             names[i] = argument(i, types[i]);
1665         return names;
1666     }
1667     static Name[] arguments(int extra, List<Class<?>> types) {
1668         int length = types.size();
1669         Name[] names = new Name[length + extra];
1670         for (int i = 0; i < length; i++)
1671             names[i] = argument(i, basicType(types.get(i)));
1672         return names;
1673     }
1674     static Name[] arguments(int extra, Class<?>... types) {
1675         int length = types.length;
1676         Name[] names = new Name[length + extra];
1677         for (int i = 0; i < length; i++)
1678             names[i] = argument(i, basicType(types[i]));
1679         return names;
1680     }
1681     static Name[] arguments(int extra, MethodType types) {
1682         int length = types.parameterCount();
1683         Name[] names = new Name[length + extra];
1684         for (int i = 0; i < length; i++)
1685             names[i] = argument(i, basicType(types.parameterType(i)));
1686         return names;
1687     }
1688     static final int INTERNED_ARGUMENT_LIMIT = 10;
1689     private static final Name[][] INTERNED_ARGUMENTS
1690             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1691     static {
1692         for (BasicType type : BasicType.ARG_TYPES) {
1693             int ord = type.ordinal();
1694             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1695                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1696             }
1697         }
1698     }
1699 
1700     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1701 
1702     static LambdaForm identityForm(BasicType type) {
1703         return LF_identityForm[type.ordinal()];
1704     }
1705     static LambdaForm zeroForm(BasicType type) {
1706         return LF_zeroForm[type.ordinal()];
1707     }
1708     static NamedFunction identity(BasicType type) {
1709         return NF_identity[type.ordinal()];
1710     }
1711     static NamedFunction constantZero(BasicType type) {
1712         return NF_zero[type.ordinal()];
1713     }
1714     private static final LambdaForm[] LF_identityForm = new LambdaForm[TYPE_LIMIT];
1715     private static final LambdaForm[] LF_zeroForm = new LambdaForm[TYPE_LIMIT];
1716     private static final NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1717     private static final NamedFunction[] NF_zero = new NamedFunction[TYPE_LIMIT];
1718     private static void createIdentityForms() {
1719         for (BasicType type : BasicType.ALL_TYPES) {
1720             int ord = type.ordinal();
1721             char btChar = type.basicTypeChar();
1722             boolean isVoid = (type == V_TYPE);
1723             Class<?> btClass = type.btClass;
1724             MethodType zeType = MethodType.methodType(btClass);
1725             MethodType idType = isVoid ? zeType : zeType.appendParameterTypes(btClass);
1726 
1727             // Look up some symbolic names.  It might not be necessary to have these,
1728             // but if we need to emit direct references to bytecodes, it helps.
1729             // Zero is built from a call to an identity function with a constant zero input.
1730             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1731             MemberName zeMem = new MemberName(LambdaForm.class, "zero_"+btChar, zeType, REF_invokeStatic);
1732             try {
1733                 zeMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zeMem, null, NoSuchMethodException.class);
1734                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, NoSuchMethodException.class);
1735             } catch (IllegalAccessException|NoSuchMethodException ex) {
1736                 throw newInternalError(ex);
1737             }
1738 
1739             NamedFunction idFun = new NamedFunction(idMem);
1740             LambdaForm idForm;
1741             if (isVoid) {
1742                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1743                 idForm = new LambdaForm(idMem.getName(), 1, idNames, VOID_RESULT);
1744             } else {
1745                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1746                 idForm = new LambdaForm(idMem.getName(), 2, idNames, 1);
1747             }
1748             LF_identityForm[ord] = idForm;
1749             NF_identity[ord] = idFun;
1750 
1751             NamedFunction zeFun = new NamedFunction(zeMem);
1752             LambdaForm zeForm;
1753             if (isVoid) {
1754                 zeForm = idForm;
1755             } else {
1756                 Object zeValue = Wrapper.forBasicType(btChar).zero();
1757                 Name[] zeNames = new Name[] { argument(0, L_TYPE), new Name(idFun, zeValue) };
1758                 zeForm = new LambdaForm(zeMem.getName(), 1, zeNames, 1);
1759             }
1760             LF_zeroForm[ord] = zeForm;
1761             NF_zero[ord] = zeFun;
1762 
1763             assert(idFun.isIdentity());
1764             assert(zeFun.isConstantZero());
1765             assert(new Name(zeFun).isConstantZero());
1766         }
1767 
1768         // Do this in a separate pass, so that SimpleMethodHandle.make can see the tables.
1769         for (BasicType type : BasicType.ALL_TYPES) {
1770             int ord = type.ordinal();
1771             NamedFunction idFun = NF_identity[ord];
1772             LambdaForm idForm = LF_identityForm[ord];
1773             MemberName idMem = idFun.member;
1774             idFun.resolvedHandle = SimpleMethodHandle.make(idMem.getInvocationType(), idForm);
1775 
1776             NamedFunction zeFun = NF_zero[ord];
1777             LambdaForm zeForm = LF_zeroForm[ord];
1778             MemberName zeMem = zeFun.member;
1779             zeFun.resolvedHandle = SimpleMethodHandle.make(zeMem.getInvocationType(), zeForm);
1780 
1781             assert(idFun.isIdentity());
1782             assert(zeFun.isConstantZero());
1783             assert(new Name(zeFun).isConstantZero());
1784         }
1785     }
1786 
1787     // Avoid appealing to ValueConversions at bootstrap time:
1788     private static int identity_I(int x) { return x; }
1789     private static long identity_J(long x) { return x; }
1790     private static float identity_F(float x) { return x; }
1791     private static double identity_D(double x) { return x; }
1792     private static Object identity_L(Object x) { return x; }
1793     private static void identity_V() { return; }  // same as zeroV, but that's OK
1794     private static int zero_I() { return 0; }
1795     private static long zero_J() { return 0; }
1796     private static float zero_F() { return 0; }
1797     private static double zero_D() { return 0; }
1798     private static Object zero_L() { return null; }
1799     private static void zero_V() { return; }
1800 
1801     /**
1802      * Internal marker for byte-compiled LambdaForms.
1803      */
1804     /*non-public*/
1805     @Target(ElementType.METHOD)
1806     @Retention(RetentionPolicy.RUNTIME)
1807     @interface Compiled {
1808     }
1809 
1810     /**
1811      * Internal marker for LambdaForm interpreter frames.
1812      */
1813     /*non-public*/
1814     @Target(ElementType.METHOD)
1815     @Retention(RetentionPolicy.RUNTIME)
1816     @interface Hidden {
1817     }
1818 
1819     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1820     static {
1821         if (debugEnabled())
1822             DEBUG_NAME_COUNTERS = new HashMap<>();
1823         else
1824             DEBUG_NAME_COUNTERS = null;
1825     }
1826 
1827     // Put this last, so that previous static inits can run before.
1828     static {
1829         createIdentityForms();
1830         if (USE_PREDEFINED_INTERPRET_METHODS)
1831             computeInitialPreparedForms();
1832         NamedFunction.initializeInvokers();
1833     }
1834 
1835     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1836     // during execution of the static initializes of this class.
1837     // Turning on TRACE_INTERPRETER too early will cause
1838     // stack overflows and other misbehavior during attempts to trace events
1839     // that occur during LambdaForm.<clinit>.
1840     // Therefore, do not move this line higher in this file, and do not remove.
1841     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1842 }